WorldWideScience

Sample records for combustible nuclear avanzado

  1. Sistema de simulación de escenarios de ciclos avanzados de combustible nuclear en transición = Simulation system for advanced fuel cycle transition scenarios

    OpenAIRE

    Merino Rodríguez, Iván

    2015-01-01

    El estudio de los ciclos del combustible nuclear requieren de herramientas computacionales o "códigos" versátiles para dar respuestas al problema multicriterio de evaluar los actuales ciclos o las capacidades de las diferentes estrategias y escenarios con potencial de desarrollo en a nivel nacional, regional o mundial. Por otra parte, la introducción de nuevas tecnologías para reactores y procesos industriales hace que los códigos existentes requieran nuevas capacidades para evaluar la transi...

  2. AP1000, a nuclear central of advanced design; AP1000, una central nuclear de diseno avanzado

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, N.; Viais J, J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: nhm@nuclear.inin.mx

    2005-07-01

    The AP1000 is a design of a nuclear reactor of pressurized water (PWR) of 1000 M We with characteristic of safety in a passive way; besides presenting simplifications in the systems of the plant, the construction, the maintenance and the safety, the AP1000 is a design that uses technology endorsed by those but of 30 years of operational experience of the PWR reactors. The program AP1000 of Westinghouse is focused to the implementation of the plant to provide improvements in the economy of the same one and it is a design that is derived directly of the AP600 designs. On September 13, 2004 the US-NRC (for their initials in United States- Nuclear Regulatory Commission) approved the final design of the AP1000, now Westinghouse and the US-NRC are working on the whole in a complete program for the certification. (Author)

  3. Development of a computer program of fast calculation for the pre design of advanced nuclear fuel 10 x 10 for BWR type reactors; Desarrollo de un program de computo de calculo rapido para el prediseno de celdas de combustible nuclear avanzado 10 x 10 para reactores de agua en ebullicion

    Energy Technology Data Exchange (ETDEWEB)

    Perusquia, R.; Montes, J.L.; Ortiz, J.J. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: mrpc@nuclear.inin.mx

    2005-07-01

    In the National Institute of Nuclear Research (ININ) a methodology is developed to optimize the design of cells 10x10 of assemble fuels for reactors of water in boil or BWR. It was proposed a lineal calculation formula based on a coefficients matrix (of the change reason of the relative power due to changes in the enrichment of U-235) for estimate the relative powers by pin of a cell. With this it was developed the computer program of fast calculation named PreDiCeldas. The one which by means of a simple search algorithm allows to minimize the relative power peak maximum of cell or LPPF. This is achieved varying the distribution of U-235 inside the cell, maintaining in turn fixed its average enrichment. The accuracy in the estimation of the relative powers for pin is of the order from 1.9% when comparing it with results of the 'best estimate' HELIOS code. With the PreDiCeldas it was possible, at one minimum time of calculation, to re-design a reference cell diminishing the LPPF, to the beginning of the life, of 1.44 to a value of 1.31. With the cell design with low LPPF is sought to even design cycles but extensive that those reached at the moment in the BWR of the Laguna Verde Central. (Author)

  4. Nuclear fuels; Les combustibles nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The nuclear fuel is one of the key component of a nuclear reactor. Inside it, the fission reactions of heavy atoms, uranium and plutonium, take place. It is located in the core of the reactor, but also in the core of the whole nuclear system. Its design and properties influence the behaviour, the efficiency and the safety of the reactor. Even if it represents a weak share of the generated electricity cost, its proper use represents an important economic stake. Important improvements remain to be made to increase its residence time inside the reactor, to supply more energy, and to improve its robustness. Beyond the economical and safety considerations, strategical questions have to find an answer, like the use of plutonium, the management of resources and the management of nuclear wastes and real technological challenges have to be taken up. This monograph summarizes the existing knowledge about the nuclear fuel, its behaviour inside the reactor, its limits of use, and its R and D tracks. It illustrates also the researches in progress and presents some key results obtained recently. Content: 1 - Introduction; 2 - The fuel of water-cooled reactors: aspect, fabrication, behaviour of UO{sub 2} and MOX fuels inside the reactor, behaviour in loss of tightness situation, microscopic morphology of fuel ceramics and evolution under irradiation - migration and localisation of fission products in UOX and MOX matrices, modeling of fuels behaviour - modeling of defects and fission products in the UO{sub 2} ceramics by ab initio calculations, cladding and assembly materials, pellet-cladding interaction, advanced UO{sub 2} and MOX ceramics, mechanical behaviour of the fuel assembly, fuel during a loss of coolant accident, fuel during a reactivity accident, fuel during a serious accident, fuel management inside reactor cores, fuel cycle materials balance, long-term behaviour of the spent fuel, fuel of boiling water reactors; 3 - the fuel of liquid metal fast reactors: fast

  5. Method of processing combustible nuclear waste material

    International Nuclear Information System (INIS)

    Allen, C.R.; Greenhalgh, W.O.; Cowan, R.G.

    1982-01-01

    In treating combustible radio-waste which may contain volatile radio nuclides, e.g. Ru, the waste is heated and agitated with concentrated sulphuric acid, and the resulting residue which comprises elemental carbon which retains the volatile radio-nuclides is separated from the acid. Compounds which form borosilicate glass may be added to the waste, and after removal of sulphate, the resulting residual mixture may be fused into a glass. If the sulphate is not removed from the borosilicate mix, the residual mixture produces a ceramic product on heating. (author)

  6. Combustion Engineering adjusts to slump in nuclear orders

    International Nuclear Information System (INIS)

    Masters, R.

    1980-01-01

    It is three years since Combustion Engineering (C-E) received an order for a nuclear steam system supplier and it could be three or four years before a new order is placed. Although C-E will not work through its current backlog until the late 1990s, the lack of new business and the needs for backfitting are having a major impact on the way the company operates. C-E's determination to stay in the nuclear business is as strong as ever. (author)

  7. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  8. 10 CFR 50.44 - Combustible gas control for nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Combustible gas control for nuclear power reactors. 50.44... for nuclear power reactors. (a) Definitions—(1) Inerted atmosphere means a containment atmosphere with... pressurized water nuclear power reactor with an operating license on October 16, 2003, except for those...

  9. Proceedings of the 1999 international joint power generation conference (FACT-vol. 23). Volume 1: Fuels and combustion technologies; Gas turbines; and Nuclear engineering

    International Nuclear Information System (INIS)

    Penfield, S.R. Jr.; Moussa, N.A.

    1999-01-01

    Papers are arranged under the following topical sections: Gas turbine combustion; Advanced energy conversion; Low NOx solutions; Burner developments; Alternative fuels combustion; Advanced energy conversion technologies; Numerical modeling of combustion; Fluidized bed combustion; Coal combustion; Combustion research; Gasification systems; Mercury emissions; Highly preheated air combustion; Selective catalytic reduction; Special topics in combustion research; Gas turbines and advanced energy; and How can the nuclear industry become more efficient? Papers within scope have been processed separately for inclusion on the database

  10. Inherently safe nuclear-driven internal combustion engines

    International Nuclear Information System (INIS)

    Alesso, P.; Chow, Tze-Show; Condit, R.; Heidrich, J.; Pettibone, J.; Streit, R.

    1991-01-01

    A family of nuclear driven engines is described in which nuclear energy released by fissioning of uranium or plutonium in a prompt critical assembly is used to heat a working gas. Engine performance is modeled using a code that calculates hydrodynamics, fission energy production, and neutron transport self-consistently. Results are given demonstrating a large negative temperature coefficient that produces self-shutoff of energy production. Reduced fission product inventory and the self-shutoff provide inherent nuclear safety. It is expected that nuclear engine reactor units could be scaled from 100 MW on up. 7 refs., 3 figs

  11. Fuel and nuclear fuel cycle; Le combustible et le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Prunier, C

    1998-07-01

    The nuclear fuel is studied in detail, the best choice and why in relation with the type of reactor, the properties of the fuel cans, the choice of fuel materials. An important part is granted to the fuel assembly of PWR type reactor and the performances of nuclear fuels are tackled. The different subjects for research and development are discussed and this article ends with the particular situation of mixed oxide fuels ( materials, behavior, efficiency). (N.C.)

  12. Hydrogen combustion study in the containment of Atucha-I nuclear power plant

    International Nuclear Information System (INIS)

    Baron, J.H.; Gonzalez Videla, E.

    1997-01-01

    In this paper the combustion of hydrogen was modeled and studied in the containment vessel of the Atucha I nuclear power station using the CONTAIN package. The hydrogen comes from the oxidation of metallic materials during the severe accidents proposed. The CONTAIN package is an integrated tool that analyzes the physical, chemical and radiation conditions that affect the containment structure of the radioactive materials unloaded from the primary system during a severe accident in the reactor. (author) [es

  13. ABB.-Combustion Engineering's Experience in Nuclear Power Plant Engineering and Construction in Korea

    International Nuclear Information System (INIS)

    Veris, James W.

    1992-01-01

    The Yonggwang Nuclear Project is a milestone project for the Korean Nuclear Industry. The Project has the two objectives of obtaining self-reliance in all aspects of nuclear technology and of constructing two modern nuclear power plants under the leadership of Korean companies acting as prime contractors. ABB.-Combustion Engineering 1000 MW System 80+ TM was chosen in 1987 as the NSLS design to meet these two objectives. This paper summarizers the significant experiences and lessons learned through the first four years of the Project as well as identifying implications for such future projects. The unique challenges of the project are identified and an evaluation of the experiences in the technology, self-reliance program and in the design and manufacturing processes will be made

  14. Proyecto SAFEBUS: Sistemas Avanzados de Seguridad Integral en Autobuses

    Directory of Open Access Journals (Sweden)

    Leopoldo Armesto

    2016-01-01

    Full Text Available Resumen: Es bien conocido a partir de estudios previamente realizados, la elevada accidentabilidad de los autobuses urbanos en situaciones de baja velocidad que hacen más necesarios sistemas de asistencia a la conducción. En este sentido, el artículo describe los resultados obtenidos como consecuencia del desarrollo del proyecto “Sistemas Avanzados de Seguridad Integral en Autobuses” (SAFEBUS. Concretamente, se centra en los aspectos de seguridad exterior del autobús, proponiendo un sistema para las situaciones de baja velocidad, paradas o arrancadas del autobús. En él se describen las ideas conceptuales del proyecto y los subsistemas que lo conforman: sistema de detección de personas y sistema avanzado de asistencia al conductor, incluyendo el diseño de dispositivos de realimentación háptica y audio-visual. Así mismo, se detallan los experimentos y validaciones realizados tras la implantación del mismo en autobuses de la compañía Castrosua S.A., los cuales demuestran la capacidad de alertar al conductor y en caso necesario detenerlo en situaciones de peligro. Abstract: It is well known from previous studies, that accidents of buses in urban scenarios, with low speed profiles, make necessary to introduce driving assistance systems. In this sense, this paper describes the results of the SAFEBUS research project “Sistemas Avanzados de Seguridad Integral en Autobuses”. It focuses in safety aspects proposing a system valid at low speed profiles, basically at bus stops. Here, we describe the main ideas exploited in the project and their results, that is, a people detection system together with a driving assistance system with audiovisual and haptic feedback. We also show some experiments and validations carried out at the facilities of Castrosua S.A. company. Keywords: Advance driving assistance systems, people detection, bus safety, Palabras clave: Sistemas de Seguridad Avanzados

  15. Sistemas operativos avanzados: de la clase magistral al entorno colaborativo

    OpenAIRE

    Navarro, Joan; Canaleta, Xavi; Sancho Asensio, Andreu; Corchuelo Gil, Rafael (Coordinador); Jiménez Rodríguez, María José (Coordinador); Romero Ternero, María del Carmen (Coordinador)

    2011-01-01

    La implantación del Espacio Europeo de Educación Superior (EEES) apuesta, entre otras cosas, por un nuevo modelo educativo en el que el alumno es el actor principal y el profesor queda relegado a un segundo plano. Esto conlleva el replanteamiento de la metodología docente del profesorado así como la reestructuración integral de ciertas asignaturas. En este trabajo se presenta el caso particular de la asignatura Sistemas Operativos Avanzados, impartida en el tercer curso de Ingeniería Técnica ...

  16. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    Energy Technology Data Exchange (ETDEWEB)

    Li, Hui [Graduate School of Green Energy Technology, Chungnam National University, Yuseong, Daejeon 305-764 (Korea, Republic of); Nersisyan, Hayk H. [Rapidly Solidified Materials Research Institute, Chungnam National University, Yuseong, Daejeon 305-764 (Korea, Republic of); Park, Kyung-Tae [Graduate School of Green Energy Technology, Chungnam National University, Yuseong, Daejeon 305-764 (Korea, Republic of); Park, Sung-Bin; Kim, Jeong-Guk [Korea Atomic Energy Research Institute, 1045 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jeong-Min [Technical Research Laboratory, Poongsan Corporation, 2222-2 Sandae-ri, Angang-oup, Kyungju, Kyungbuk 780-775 (Korea, Republic of); Lee, Jong-Hyeon, E-mail: jonglee@cnu.ac.kr [Graduate School of Green Energy Technology, Chungnam National University, Yuseong, Daejeon 305-764 (Korea, Republic of)

    2011-06-15

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO{sub 4} under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  17. Nuclear-grade zirconium prepared by combining combustion synthesis with molten-salt electrorefining technique

    Science.gov (United States)

    Li, Hui; Nersisyan, Hayk H.; Park, Kyung-Tae; Park, Sung-Bin; Kim, Jeong-Guk; Lee, Jeong-Min; Lee, Jong-Hyeon

    2011-06-01

    Zirconium has a low absorption cross-section for neutrons, which makes it an ideal material for use in nuclear reactor applications. However, hafnium typically contained in zirconium causes it to be far less useful for nuclear reactor materials because of its high neutron-absorbing properties. In the present study, a novel effective method has been developed for the production of hafnium-free zirconium. The process includes two main stages: magnesio-thermic reduction of ZrSiO 4 under a combustion mode, to produce zirconium silicide (ZrSi), and recovery of hafnium-free zirconium by molten-salt electrorefining. It was found that, depending on the electrorefining procedure, it is possible to produce zirconium powder with a low hafnium content: 70 ppm, determined by ICP-AES analysis.

  18. Gaseous products and smoke generation on combustion of the insulation materials of nuclear cables

    International Nuclear Information System (INIS)

    Noguchi, Isamu; Takami, Hiroshi; Ueyama, Michio; Fujimura, Shun-ichi.

    1976-01-01

    Serious requirements have been introduced to the cables used for nuclear power plants on their flame retardation in the IEEE Standard 383-1974. The movements that the users prescribe the quantity of corrosive gas generated from cables are also observed. This report describes on the measured results of the gaseous products generated by burning polyethylene, polyvinyl-chloride (PVC) and their flame-resistant products, and a part of the covering materials of the cables for nuclear power plants (flame-resistant, crosslinking polyethylene, flame-resistant, low hydrochloric acid PVC, flame-resistant jute) in the infra-red rapid heating combustion test facility designed by the Furukawa Electric Co. Ltd. In addition, the report introduces the test method for the smoke generation evaluation of polymers and a part of the measured results. The gaseous products of combustion were collected and determined quantitatively by gas chromatographic method. Since smoke generation is affected greatly by the kinds, shape, atmosphere, temperature, ignition procedure and others of burnt matters, the establishment of the evaluation test method is difficult, and a number of methods have been proposed. As the measured results showed, it is clear that smoke generation increases with the increase of flame resistant reagent addition. The smoke generation of PVC was of course great in quantity because it contains considerable amount of chlorine for its molecular structure. Flame-resistant polyethylene generates smoke much more than polyethylene without flame-resisting treatment because of its flame resistivity, but less than that of PVC. (Wakatsuki, Y.)

  19. Fabrication of nuclear fuel assemblies in Mexico; Fabricacion de ensambles de combustible nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Medrano B, A. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: amb@nuclear.inin.mx

    2007-07-01

    In the Pilot Production Plant of Nuclear Fuel facilities (PPFCN) located in the Nuclear Center of Mexico; its were processed approximately 1000 Kg of powder of uranium dioxide with 11 different enrichments from 0.71 up to 3.95% U-235, the pellets were encapsulated in Zircaloy tubes and armed around 300 rods of nuclear fuel for to manufacture four assembles of nuclear fuel and a DUMMY for the qualification of processes, personnel and equipment. The project beginning in 1990 with the one agreement among General Electric, Federal Commission of Electricity (CFE) and the National Institute of Nuclear Research (ININ), after building the PPFCN, to install equipment, to design the parameters of production and to qualify us as suppliers of nuclear fuel; it was begins in 1994 the production of four GE9B assemblies that surrendered to the CNLV in May, 1996. In 1998 its were loaded in the unit 1 of the CNLV, assemble them of nuclear fuel with serial numbers INI002, INI003, INI004 and INI005 with an average enrichment of 3.03% U-235, four complete operational cycles worked including the central control cell. During the works of the ninth recharge of the unit 1 of the CNLV, September 20, 2002 were removed these assemblies from the reactor core reaching a burnt of 35313 MWD/TMU. (Author)

  20. Axial design of nuclear fuel using path relinking; Diseno axial de combustible nuclear utilizando path relinking

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, A.; Torres, M.; Ortiz, J. J.; Perusquia, R.; Hernandez, J. L.; Montes, J. L. [ININ, 52750 La Marquesa, Estado de Mexico (Mexico)]. e-mail: jacm@nuclear.inin.mx

    2008-07-01

    In the present work the preliminary results were obtained with the zoctli system whose purpose is the axial design of assembly of nuclear fuel under certain considerations. For the mentioned design well-know cells were already used and that they have been proven in diverse cycles of operation in the nuclear power plant of Laguna Verde. The design contemplates fuels assemblies of 10x10 and with 2 water channels. The assembly was distributed in 6 axial zones according to its structure. In order to take to end the optimization is was used the well-known technique like Path relinking and to find the group of previous solutions required by this technique uses the technical Taboo search. In order to work with Path relinking, 5 trajectories was taken in to account from a set of 5 previous solutions generated with theTaboo search, the update of the group of solutions is carried out in dynamic form. In the case of the Taboo search it was used a list of variable size, it was implement an aspiration approach, it was used the vector of frequencies and due to the cost of the evaluation of the objective function, only it was review 5% of the vicinity. For the objective function was considered the limit thermal, the axial profile of power, the effective multiplication factor and the margin of having turned off in cold. In order to prove the design system, it was used a balance cycle with a value of reference of 0.9928 for the effective multiplication factor that is equivalent to a produced energy of 10896 MWd/TU at the end of operation to full power. The designed assemblies were placed both in one of lots different from fresh assemblies on which it counts the referred cycle. At the end one a comparison with the results obtained with other techniques and under similar conditions is made. The results obtained until the moment show an appropriate performance of the system. It is possible to indicate that a small inconvenient is the amount of consumed resources of calculation during

  1. Quantitative data on the fire behavior of combustible materials found in nuclear power plants: A literature review

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1987-02-01

    This report presents the findings of a task in which currently available fire research literature was reviewed for quantitative data on the burning characteristics of combustible materials that are found in nuclear power plants. The materials considered for which quantitative data were available include cable insulation materials, flammable liquids, furniture, trash and general refuse, and wood and wood products. A total of 90 figures and tables, taken primarily from the referenced works, which summarize the available quantitative fire characterization information for these materials is presented

  2. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  3. Storage facilities of spent nuclear fuel in dry for Mexican nuclear facilities; Instalaciones de almacenamiento de combustible nuclear gastado en seco para instalaciones nucleares mexicanas

    Energy Technology Data Exchange (ETDEWEB)

    Salmeron V, J. A.; Camargo C, R.; Nunez C, A.; Mendoza F, J. E.; Sanchez J, J., E-mail: juan.salmeron@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D. F. (Mexico)

    2013-10-15

    In this article the relevant aspects of the spent fuel storage and the questions that should be taken in consideration for the possible future facilities of this type in the country are approached. A brief description is proposed about the characteristics of the storage systems in dry, the incorporate regulations to the present Nuclear Regulator Standard, the planning process of an installation, besides the approaches considered once resolved the use of these systems; as the modifications to the system, the authorization periods for the storage, the type of materials to store and the consequent environmental impact to their installation. At the present time the Comision Nacional de Seguridad Nuclear y Salvaguardias (CNSNS) considers the possible generation of two authorization types for these facilities: Specific, directed to establish a new nuclear installation with the authorization of receiving, to transfer and to possess spent fuel and other materials for their storage; and General, focused to those holders that have an operation license of a reactor that allows them the storage of the nuclear fuel and other materials that they possess. Both authorizations should be valued according to the necessities that are presented. In general, this installation type represents a viable solution for the administration of the spent fuel and other materials that require of a temporary solution previous to its final disposal. Its use in the nuclear industry has been increased in the last years demonstrating to be appropriate and feasible without having a significant impact to the health, public safety and the environment. Mexico has two main nuclear facilities, the nuclear power plant of Laguna Verde of the Comision Federal de Electricidad (CFE) and the facilities of the TRIGA Reactor of the Instituto Nacional de Investigaciones Nucleares (ININ) that will require in a future to use this type of disposition installation of the spent fuel and generated wastes. (Author)

  4. Study of physico-chemical release of uranium and plutonium oxides during the combustion of polycarbonate and of ruthenium during the combustion of solvents used in the reprocessing of nuclear fuel

    International Nuclear Information System (INIS)

    Bouilloux, L.

    1998-01-01

    The level of consequences concerning a fire in a nuclear facility is in part estimated by the quantities and the physico-chemical forms of radioactive compounds that may be emitted out of the facility. It is therefore necessary to study the contaminant release from the fire. Because of the multiplicity of the scenarios, two research subjects were retained. The first one concerns the study of the uranium or plutonium oxides chemical release during the combustion of the polycarbonate glove box sides. The second one is about the physico chemical characterisation of the ruthenium release during the combustion of an organic solvent mixture (tributyl phosphate-dodecane) used for the nuclear fuel reprocessing. Concerning the two research subjects, the chemical release, i.e. means the generation of contaminant compounds gaseous in the fire, was modelled using thermodynamical simulations. Experiments were done in order to determine the ruthenium release factor during solvent combustion. A cone calorimeter was used for small scale experiments. These results were then validated by large scale tests under conditions close to the industrial process. Thermodynamical simulations, for the two scenarios studied. Furthermore, the experiments on solvent combustion allowed the determination of a suitable ruthenium release factor. Finally, the mechanism responsible of the ruthenium release has been found. (author)

  5. Ministerial Decree of 30 March 1978 on the exclusion of nuclear installations from the application of the requirements on combustion control

    International Nuclear Information System (INIS)

    1978-01-01

    This Decree was made by the Italian Minister for Industry, Commerce and Crafts; it lays down that nuclear installations governed by Act No. 1860 of 31 December 1962 on the Peaceful Uses of Nuclear Energy and by Presidential Decree No. 185 of 13 February 1964 on Radiation Protection and excluded from the scope of are Royal Order No. 824 of 12 May 1927 on combustion control. (NEA) [fr

  6. Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

  7. Design and axial optimization of nuclear fuel for BWR reactors; Diseno y optimizacion axial de combustible nuclear para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Garcia V, M.A

    2006-07-01

    In the present thesis, the modifications made to the axial optimization system based on Tabu Search (BT) for the axial design of BWR fuel type are presented, developed previously in the Nuclear Engineering Group of the UNAM Engineering Faculty. With the modifications what is mainly looked is to consider the particular characteristics of the mechanical design of the GE12 fuel type, used at the moment in the Laguna Verde Nucleo electric Central (CNLV) and that it considers the fuel bars of partial longitude. The information obtained in this thesis will allow to plan nuclear fuel reloads with the best conditions to operate in a certain cycle guaranteeing a better yield and use in the fuel burnt, additionally people in charge in the reload planning will be favored with the changes carried out to the system for the design and axial optimization of nuclear fuel, which facilitate their handling and it reduces their execution time. This thesis this developed in five chapters that are understood in the following way in general: Chapter 1: It approaches the basic concepts of the nuclear energy, it describes the physical and chemical composition of the atoms as well as that of the uranium isotopes, the handling of the uranium isotope by means of the nuclear fission until arriving to the operation of the nuclear reactors. Chapter 2: The nuclear fuel cycle is described, the methods for its extraction, its conversion and its enrichment to arrive to the stages of the nuclear fuel management used in the reactors are described. Beginning by the radial design, the axial design and the core design of the nuclear reactor related with the fuel assemblies design. Chapter 3: the optimization methods of nuclear fuel previously used are exposed among those that are: the genetic algorithms method, the search methods based on heuristic rules and the application of the tabu search method, which was used for the development of this thesis. Chapter 4: In this part the used methodology to the

  8. Study of physico-chemical release of uranium and plutonium oxides during the combustion of polycarbonate and of ruthenium during the combustion of solvents used in the reprocessing of nuclear fuel; Etude de la mise en suspension physico-chimique des oxydes de plutonium et d'uranium lors de la combustion de polycarbonate et de ruthenium lors de la combustion des solvants de retraitement du combustible irradie

    Energy Technology Data Exchange (ETDEWEB)

    Bouilloux, L

    1998-07-01

    The level of consequences concerning a fire in a nuclear facility is in part estimated by the quantities and the physico-chemical forms of radioactive compounds that may be emitted out of the facility. It is therefore necessary to study the contaminant release from the fire. Because of the multiplicity of the scenarios, two research subjects were retained. The first one concerns the study of the uranium or plutonium oxides chemical release during the combustion of the polycarbonate glove box sides. The second one is about the physico chemical characterisation of the ruthenium release during the combustion of an organic solvent mixture (tributyl phosphate-dodecane) used for the nuclear fuel reprocessing. Concerning the two research subjects, the chemical release, i.e. means the generation of contaminant compounds gaseous in the fire, was modelled using thermodynamical simulations. Experiments were done in order to determine the ruthenium release factor during solvent combustion. A cone calorimeter was used for small scale experiments. These results were then validated by large scale tests under conditions close to the industrial process. Thermodynamical simulations, for the two scenarios studied. Furthermore, the experiments on solvent combustion allowed the determination of a suitable ruthenium release factor. Finally, the mechanism responsible of the ruthenium release has been found. (author)

  9. Statistical analysis in the design of nuclear fuel cells; Analisis estadistico en el diseno de celdas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Castillo M, J. A.; Ortiz S, J. J.; Montes T, J. L.; Perusquia del Cueto, R., E-mail: alejandro.castillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    This work presents the preliminary results of a statistical analysis carried out for the design of nuclear fuel cells. The analysis consists in verifying the behavior of a cell, related with the frequency of the pines used for its design. In this preliminary study was analyzed the behavior of infinite multiplication factor and the peak factor of local power. On the other hand, the mentioned analysis was carried out using a pines group of enriched uranium previously established, for which varies the pines frequency used in the design. To carry out the study, the CASMO-IV code was used. The obtained designs are for the different axial areas of a fuel assembly. A balance cycle of the unit 1 of the nuclear power plant of Laguna Verde was used like reference. To obtain the result of the present work, systems that are already had and in which have already been implemented the heuristic techniques of ant colonies, neural networks and a hybrid between the dispersed search and the trajectories re-chaining. The results show that is possible to design nuclear fuel cells with a good performance, if is considered a statistical behavior in the frequency of the used pines, in a same way. (Author)

  10. Transfusiones de sangre para la anemia en pacientes con cáncer avanzado

    Directory of Open Access Journals (Sweden)

    2013-07-01

    Conclusiones de los autores: Se necesitan estudios de mayor calidad para determinar la efectividad de la transfusión de sangre al final de la vida y, en particular, para determinar qué pacientes presentan mayores probabilidades de responder y cuáles no, así como la duración de cualquier respuesta. Los efectos perjudiciales potenciales de la transfusión de sangre al final de la vida (indicados por la mortalidad alta a los 14 días se deben distinguir de la transfusión inapropiada en los pacientes que mueren de cáncer avanzado.

  11. Neutron analysis of the fuel of high temperature nuclear reactors; Analisis neutronico del combustible de reactores nucleares de alta temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Bastida O, G. E.; Francois L, J. L., E-mail: gbo729@yahoo.com.mx [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Paseo Cuauhnahuac 8532, 62550 Jiutepec, Morelos (Mexico)

    2014-10-15

    In this work a neutron analysis of the fuel of some high temperature nuclear reactors is presented, studying its main features, besides some alternatives of compound fuel by uranium and plutonium, and of coolant: sodium and helium. For this study was necessary the use of a code able to carry out a reliable calculation of the main parameters of the fuel. The use of the Monte Carlo method was convenient to simulate the neutrons transport in the reactor core, which is the base of the Serpent code, with which the calculations will be made for the analysis. (Author)

  12. Recommendations for the nuclear fuel management in Mexico; Recomendaciones para la gestion del combustible nuclear en Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, R.F. [FI-UNAM, Paseo Cuauhnahuac 8532, Jiutepec, Morelos (Mexico)

    2003-07-01

    In this work some observations about the economic and strategic importance of the nuclear fuel management of a nucleo electric power station are presented, especially of the fuel management outside of the reactor core or supply function. We know that the economic competitiveness of the nucleo electric generation in fact resides in its low cost of fuel, in comparison with other alternative energy generation sources. Notwithstanding, frequently it is not given to this function the importance that should to have. The objective of this work is to focus again the mission of this activity, at view of the evolution and the peculiarities of the international markets of the nuclear fuel cycle. Equally a brief exhibition of the markets is made, from the uranium supply until the post- irradiation phase. In the case of the pre-irradiation phase we are in front of a market that the buyers dominate and that seemingly it will not present bigger problems in the next years, however situations exist like the decrease of the existent uranium inventories and the lack opening of new mines that can change the panorama. In relation with the post-irradiation phase, is necessary to study the strategies followed by other countries as the one uranium and plutonium recycled. As I have observed that the reality of that this passing in these markets and the practice of the fuel management, sometimes do not go of the hand, I have looked for to contribute some ideas and suggestions, on as going adapting this important function. (Author)

  13. Transparency associated with the nuclear fuel cycle; Transparence associee au cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This document presents the different fuel cycle stages with which the CEA is associated, the annual flow of materials and wastes produced at these different stages, and the destiny of these produced materials and wastes. These information are given for the different CEA R and D activities: experimentation hot laboratories (activities, fuel cycle stages, list of laboratories, tables giving annual flows for each of them), research reactors (types of reactors, fuel usage modes, annual flows of nuclear materials for each reactor), spent fuel management (different types of used materials), spent fuels and radioactive wastes with a foreign origin (quantities, processes)

  14. Automatic system of welding for nuclear fuel rods; Sistema automatico de soldadura para barras de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, M; Romero C, J. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    The welding process of nuclear fuel must be realized in an inert gas environment (He) and constant flow of this. In order to reach these conditions it is necessary to do vacuum at the chamber and after it is pressurized with the noble gas (purge) twice in the welding chamber. The purge eliminates impurities that can provoke oxidation in the weld. Once the conditions for initiating the welding are gotten, it is necessary to draw a graph of the flow parameters, pressure, voltage and arc current and to analyse those conditions in which have been carried out the weld. The rod weld must be free of possible pores or cracks which could provoke rod leaks, so reducing the probability of these failures should intervene mechanical and metallurgical factors. Automatizing the process it allows to do reliable welding assuring that conditions have been performed, reaching a high quality welding. Visually it can be observed the welding process by means of a mimic which represents the welding system. There are the parameters acquired such as voltage, current, pressure and flow during the welding arc to be analysed later. (Author)

  15. Data mining in the study of nuclear fuel cells; Mineria de datos en el estudio de celdas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Medina P, J. A. [Universidad Autonoma de Campeche, Av. Agustin Melgar s/n, Col. Buenavista, 24039 San Francisco de Campeche, Campeche (Mexico); Ortiz S, J. J.; Castillo, A.; Montes T, J. L.; Perusquia, R., E-mail: j.angel.mp@hotmail.com [ININ, Departamento de Sistemas Nucleares, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    In this paper is presented a study of data mining application in the analysis of fuel cells and their performance within a nuclear boiling water reactor. A decision tree was used to fulfill questions of the type If (condition) and Then (conclusion) to classify if the fuel cells will have good performance. The performance is measured by compliance or not of the cold shutdown margin, the rate of linear heat generation and the average heat generation in a plane of the reactor. It is assumed that the fuel cells are simulated in the reactor under a fuel reload and rod control patterns pre designed. 18125 fuel cells were simulated according to a steady-state calculation. The decision tree works on a target variable which is one of the three mentioned before. To analyze this objective, the decision tree works with a set of attribute variables. In this case, the attributes are characteristics of the cell as number of gadolinium rods, rods number with certain uranium enrichment mixed with a concentration of gadolinium, etc. The found model was able to predict the execution or not of the shutdown margin with a precision of around 95%. However, the other two variables showed lower percentages due to few learning cases of the model in which these variables were or were not achieved. Even with this inconvenience, the model is quite reliable and can be used in way coupled in optimization systems of fuel cells. (Author)

  16. Observaciones comparativos sobre la estructura de clase de los países capitalistas avanzados

    Directory of Open Access Journals (Sweden)

    CARLO CARBONI

    1984-01-01

    Full Text Available Se realiza un estudio histórico comparativo sobre la estructura de clase en diez países capitalistas avanzados : Austria, Canadá, Francia, República Federal de Alemania, Italia, Japón, España, Suecia, Reino Unido y Estados Unidos. Se utilizan fuentes gubernamentales variadas para determinar qué factores son los que favorecen y determinan la transformación de la estructura de clase. Se concede un especial énfasis a la relación entre el sistema económico y el político. También se tratan otros temas como el impacto del estado de bienestar, la distribución del producto nacional bruto en forma de ingresos per cápita y el número de trabajadores autónomos en cada país.

  17. Combustion/absorption process for the separation of14C and3H in radwastes released from nuclear power plants and their analysis.

    Science.gov (United States)

    Ko, Young Gun; Kim, Chang-Jong; Cho, Young Hyun; Chung, Kun Ho; Kang, Mun Ja

    2017-06-05

    Radioactivities of 3 H and 14 C in spent radioactive ion exchange resins and spent radioactive lubricant oils released from nuclear power plants, has been determined using a combustion and sorption method (combustion method). The liquid scintillation counting (LSC) spectra showed that the interference of other radionuclides has not significantly affected the determination of radioactivities of 3 H and 14 C in the radwaste samples. The chemical structure of 14 CO 2 , which originated from the combustion of radwastes, trapped 14 C sorbent has been investigated using Fourier transform infrared spectroscopy (FT-IR). FT-IR study showed interesting results that peaks for uncoupled CO 2 and carbonic amide appeared at FT-IR spectra of CO 2 high-absorbed 14 C sorbents, while the peak for carbamate was only observed at the spectra of CO 2 low-absorbed sorbents. During the CO 2 sorption in 14 C sorbent, temperature and viscosity of the sorbent increased owing to decrease of enthalpy and increase of apparent molecular weight of the sorbent caused by the bonding formation between sorbent molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. La falta de financiacion publica hipoteca el futuro del acelerador de protones valenciano. La Universidad de Valencia tiene avanzado el diseno de este dispositivo de alta tecnologia

    CERN Document Server

    Jatvia, J M

    2002-01-01

    "La Universidad de Valencia tiene avanzado el diseno de un acelerador lineal de protones, cuya culminacion depende del compromiso del Consell en sufragar la plantilla que necesitaria el centro para estar operativo" (1 page).

  19. Combustion/absorption process for the separation of {sup 14}C and {sup 3}H in radwastes released from nuclear power plants and their analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Young Gun, E-mail: ygko@kaeri.re.kr; Kim, Chang-Jong; Cho, Young Hyun; Chung, Kun Ho; Kang, Mun Ja

    2017-06-05

    Highlights: • {sup 14}CO{sub 2} and THO were produced by the combustion of radwaste samples. • The radioactivity of {sup 14}CO{sub 2} and THO absorbed sorbents were measured by LSC. • The CO{sub 2} absorption in the {sup 14}C sorbent was analyzed using by FT-IR and a rheometer. • The temperature and viscosity of the CO{sub 2} absorbed {sup 14}C sorbent was investigated. - Abstract: Radioactivities of {sup 3}H and {sup 14}C in spent radioactive ion exchange resins and spent radioactive lubricant oils released from nuclear power plants, has been determined using a combustion and sorption method (combustion method). The liquid scintillation counting (LSC) spectra showed that the interference of other radionuclides has not significantly affected the determination of radioactivities of {sup 3}H and {sup 14}C in the radwaste samples. The chemical structure of {sup 14}CO{sub 2}, which originated from the combustion of radwastes, trapped {sup 14}C sorbent has been investigated using Fourier transform infrared spectroscopy (FT-IR). FT-IR study showed interesting results that peaks for uncoupled CO{sub 2} and carbonic amide appeared at FT-IR spectra of CO{sub 2} high-absorbed {sup 14}C sorbents, while the peak for carbamate was only observed at the spectra of CO{sub 2} low-absorbed sorbents. During the CO{sub 2} sorption in {sup 14}C sorbent, temperature and viscosity of the sorbent increased owing to decrease of enthalpy and increase of apparent molecular weight of the sorbent caused by the bonding formation between sorbent molecules.

  20. Management avanzado (pero fácil y breve para directivos públicos

    Directory of Open Access Journals (Sweden)

    Ramió Matas, Carlos

    2014-07-01

    Full Text Available Este trabajo tiene por objetivo identificar y desarrollar, de una forma sencilla y estructurada, las dimensiones o subsistemas que todo directivo público debe tomar en cuenta se habla de management avanzado. Se identifican como elementos básicos y clásicos que agrupan las organizaciones los siguientes: a objetivos; b estructura administrativa; c recursos humanos; d recursos económicos; e recursos materiales y tecnológicos; f el proceso administrativo; g poder y conflicto; y h cultura organizativa. El documento da cuenta de las características de cada dimensión, de las complejidades e interconexiones entre las mismas, así como de las paradojas existentes en su atención, ofreciendo algunos consejos para un adecuado trabajo directivo. A tal fin se ofrecen varios check list que permiten al lector interesado identificar las variables más relevantes, hacer un diagnóstico de las necesidades de la organización pública, que puede ser útil para la evaluación institucional, para la identificación de vacíos, problemas o cuestiones pendientes o sujetas de mejora, así como para el monitoreo o seguimiento de la función del directivo público.

  1. Combustion noise

    Science.gov (United States)

    Strahle, W. C.

    1977-01-01

    A review of the subject of combustion generated noise is presented. Combustion noise is an important noise source in industrial furnaces and process heaters, turbopropulsion and gas turbine systems, flaring operations, Diesel engines, and rocket engines. The state-of-the-art in combustion noise importance, understanding, prediction and scaling is presented for these systems. The fundamentals and available theories of combustion noise are given. Controversies in the field are discussed and recommendations for future research are made.

  2. The ATC, the centralized temporary storage facility for the spanish nuclear spend fuel; El ATC, la instalación de Almacenamiento Temporal Centralizado de Combustible Nuclear Gastado Español

    Energy Technology Data Exchange (ETDEWEB)

    González Fernández-Conde, A.; Gónzalez Gandal, R.; Larrosa Peruga, O.; Medinilla Téllez, G.; Navarro Santos, M.

    2016-07-01

    The ATC, strategic project contained in the Sixth Radioactive Waste General Plan approved by the Government in 2006, is the temporary storage facility of centralized nature intended to store the spent nuclear fuel generated by Spanish NPP during their operation life, for other so-called special waste arising either from the ATC operation itself or from NPP dismantling, and for vitrified waste generated as a result of fuel reprocessing from Vandellós 1 NPP. The main functions of the ATC are the reception of transport casks, encapsulation of spent fuel, and storage of such canister in dry vaults with passive cooling by natural convection; and additionally, the temporary storage of storage casks with spent fuel, of other special waste in canisters, and finally of secondary waste generated during the operation of the facility. The facility estimated operation lifetime is 60 years, and its safety structures, systems and components are designed considering the requirements according to the Spanish nuclear regulations and using best international practices. In the detailed design, major Spanish and some foreign nuclear sector engineering companies are taking part. [Spanish] El ATC, proyecto estratégico recogido en el Sexto Plan General de Residuos Radiactivos aprobado por el Gobierno en 2006, es la instalación de almacenamiento temporal de carácter centralizado destinada para el combustible nuclear gastado generado por las centrales nucleares españolas durante su proceso de operación, así como de otros residuos denominados especiales originados por la propia operación o durante el desmantelamiento de las citadas centrales nucleares, así como los residuos vitrificados originados como consecuencia del reproceso del combustible de la central nuclear de Vandellós I. Las principales funciones del ATC son la recepción de los contenedores de transporte, encapsulado del combustible y almacenamiento de dichas cápsulas en bóvedas en seco con refrigeración pasiva por

  3. The nuclear fuel cell; Le cycle du combustible nucleaire: de la mine d'uranium jusqu'au recyclage et aux dechets

    Energy Technology Data Exchange (ETDEWEB)

    Rigny, P.

    2010-10-15

    The radioactive material, basically uranium, as found in nature is far from suited to enter in the chain reactions needed to produce energy. It has to be concentrated, transformed in chemical forms which allow its isotopic enrichment, transformed again - chemically and physically - to fabricate the fuel elements to be used in the reactor. After combustion, it has turned into a complex mixture of radioelements which has to be processed for the useful part to be extracted for recycling. The remaining part is the radioactive waste that has to be conditioned for the protection of the people. These very numerous transformations are a very complex set of operations. Much research and much industrial development have been and still are required to define and optimize them. They form the 'nuclear fuel cycle', described and analyzed in this paper. (author)

  4. Fuel cycle management by the electric enterprises and spanish nuclear Power plants; Gestion del ciclo de combustible por las empresas electricas y centrales nucleares espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Celma, E. M.; Gonzalez, C.; Lopez, J. V.; Melara, J.; Lopez, L.; Martinez, J. C.; Culbras, F.; Blanco, J.; Francia, L.

    2015-07-01

    The Nuclear Fuel Group reports to the Technology Committee of the UNESA Nuclear Energy Committee, and is constituted by representatives of both the Spanish Utilities and the Nuclear Power Plants. The Group addresses the nuclear plant common issues in relation to the operation and management of the nuclear fuel in their different stages of the Fuel Cycle. The article reviews the activities developed by the Group in the Front-End, mainly in the monitoring of international programs that define criteria to improve the Fuel Reliability and in the establishment of common bases for the implementation of changes in the regulation applying the nuclear fuel. Concerning the Back-End the Group focuses on those activities of coordination with third parties related to the management of used fuel. (Author)

  5. Nuclear wastes. The spent fuel using as false problem; Alquimica de los Residuos Nucleares: de pecado a virtud. El combustible usado como falso problema

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gomez, A.

    2006-07-01

    Firstly this article presents the energy potential and advantages of nuclear waste in comparison with other types of energy residues. As a consequences the existing denomination of residue or waste applied to the uranium used in nuclear power plants is discussed. This semantic issue is relevant when analysing present opposition to nuclear energy and also favours the arguments against its viability posed by antinuclear groups. (Author)

  6. Fonética del alemán para aprendices hispanohablantes avanzados. Estudio empírico

    OpenAIRE

    Zimmermann González, Petra

    2016-01-01

    [ES] Esta investigación comprende un estudio teórico y empírico que relaciona las diferencias entre los sistemas fonético-fonológicos del español y el alemán, la presencia de información fonética en los materiales de aprendizaje del alemán y la manifestación de las destrezas fonéticas en aprendices hispanohablantes avanzados del alemán. Los resultados obtenidos de cada estudio parcial sirven para sentar fundamentos que permitan elaborar materiales y planificar actuaciones adecuadas de correcc...

  7. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  8. Cáncer gástrico temprano vs. avanzado: ¿existen diferencias?

    Directory of Open Access Journals (Sweden)

    Martín Alonso Gómez

    2015-04-01

    Full Text Available Introducción: El cáncer gástrico en Colombia es una enfermedad de alta prevalencia y mortalidad. Es importante detectarlo en estadios tempranos, mediante endoscopia digestiva alta (EDA. Objetivos: Describir las características demográficas, clínicas y endoscópicas de una cohorte de pacientes en un hospital de tercer nivel de Bogotá con cáncer gástrico temprano (CGT o cáncer gástrico avanzado (CGA para establecer características que permitan definir enfoque clínico y endoscópico. Materiales y Métodos: Se recolectaron pacientes desde julio de 2005 hasta diciembre de 2013 para un total de 302; se valoraron reportes endoscópicos e historias clínicas. Las variables cualitativas se expresaron con proporciones y las cuantitativas con promedios. Se realizó un análisis de Ji cuadrado y pruebas paramétricas (T de student. Resultados: De 65 pacientes, el 50% es superior y menos del 5 % de los pacientes con cáncer gástrico se detectan en estado temprano. Los datos difieren de los reportado por Jap y colaboradores, quienes tuvieron el diagnóstico de CGT (edad promedio 63 años y 237 CGA (edad promedio 52 años. En nuestra cohorte, CGT fue más frecuente en mujeres 51% mientras CGA lo fue en hombres 63% y las lesiones tempranas fueron más comunes en pacientes con síntomas dispépticos (52%. En CGA se encontró con más frecuencia signos de alarma, pero no hubo diferencia en la localización de los tumores. La clasificación endoscópica de Paris para las lesiones tempranas fue: 23% I, 32% IIa, 6% IIb, 31% IIc y 8% III. Conclusiones: El CGT es más frecuente en mujeres y el promedio de edad es mayor, lo cual puede estar relacionado en que los pacientes con cáncer difuso son más jóvenes. Los síntomas de alarma son buenos indicadores para un diagnóstico temprano. La evaluación endoscópica debe hacerse de acuerdo al mejor método sistemático disponible en la institución.

  9. Factores asociados al estadio clínico avanzado en el inicio de la terapia antirretroviral

    Directory of Open Access Journals (Sweden)

    Eduardo Warley

    2012-10-01

    Full Text Available A fin de evaluar la frecuencia y posibles factores asociados a la presencia de estadio clínico avanzado al inicio de terapia antirretroviral (ECAITA, efectuamos un análisis retrospectivo de datos de dos cohortes prospectivas de pacientes infectados por HIV que iniciaron terapia antirretroviral (sin tratamiento anterior entre 2005 y 2009. Se analizaron las historias clínicas de 264 pacientes, 123 mujeres (46.6% y 141 hombres (53.4%. La mediana de edad fue de 37.7 años. Observamos ECAITA en 132 casos (50%, de los cuales 102 (77.2% se asociaron a diagnóstico tardío de infección por HIV y 30 (22.8% a pacientes con diagnóstico previo no retenidos en el cuidado clínico de la salud. La mediana de células CD4 fue 120/ml y de carga viral 58 038 copias/ml. El recuento de células CD4 era inferior a 200 cel/ml en 174 pacientes (71.3%. Los hombres presentaron ECAITA con mayor frecuencia que las mujeres (59.8% vs. 40.2%, en quienes el diagnóstico se realizó durante el control de un embarazo en el 25.2% de los casos. Consumo elevado de alcohol (p 0.006, ser soltero (p 0.04 y nivel de educación menor al secundario completo (p 0.008 se asociaron a ECAITA en el análisis bivariado. Ser de sexo masculino (p 0.003 fue el único factor asociado tanto en el análisis bivariado como en el multivariado. Nuestros datos refuerzan la necesidad de expandir el testeo para HIV y deberían impulsar a definir acciones programáticas que promuevan el ingreso precoz al cuidado de la infección por HIV.

  10. Development for analysis system of rods enrichment of nuclear fuels; Desarrollo de un sistema de analisis de enriquecimiento de barras de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Rojas C, E.L

    1998-11-01

    Nuclear industry is strongly regulated all over the world and quality assurance is important in every nuclear installation or process related with it. Nuclear fuel manufacture is not the exception. ININ was committed to manufacture four nuclear fuel bundles for the CFE nucleo electric station at Laguna Verde, Veracruz, under General Electric specifications and fulfilling all the requirements of this industry. One of the quality control requisites in nuclear fuel manufacture deals with the enrichment of the pellets inside the fuel bundle rods. To achieve the quality demanded in this aspect, the system described in this work was developed. With this system, developed at ININ it is possible to detect enrichment spikes since 0.4 % in a column of pellets with a 95 % confidence interval and to identify enrichment differences greater than 0.2 % e between homogeneous segments, also with a 95 % confidence interval. ININ delivered the four nuclear fuel bundles to CFE and these were introduced in the core of the nuclear reactor of Unit 1 in the fifth cycle. Nowadays they are producing energy and have shown a correct mechanical performance and neutronic behavior. (Author)

  11. Serpent: an alternative for the nuclear fuel cells analysis of a BWR; SERPENT: una alternativa para el analisis de celdas de combustible nuclear de un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Silva A, L.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, Av. Instituto Politecnico Nacional s/n, U.P. Adolfo Lopez Mateos, Edificio 9, Col. San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Gomez T, A. M., E-mail: lidi.s.albarran@gmail.com [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    In the last ten years the diverse research groups in nuclear engineering of the Universidad Nacional Autonoma de Mexico and Instituto Politecnico Nacional (UNAM, IPN), as of research (Instituto Nacional de Investigaciones Nucleares, ININ) as well as the personnel of the Nuclear Plant Management of the Comision Federal de Electricidad have been using the codes Helios and /or CASMO-4 in the generation of cross sections (X S) of nuclear fuel cells of the cores corresponding to the Units 1 and 2 of the nuclear power plant of Laguna Verde. Both codes belong to the Studsvik-Scandpower Company who receives the payment for the use and their respective maintenance. In recent years, the code Serpent appears among the nuclear community distributed by the OECD/Nea which does not has cost neither in its use neither in its maintenance. The code is based on the Monte Carlo method and makes use of the processing in parallel. In the Escuela Superior de Fisica y Matematicas of the IPN, the personnel has accumulated certain experience in the use of Serpent under the direction of personal of the ININ; of this experience have been obtained for diverse fuel burned, the infinite multiplication factor for three cells of nuclear fuel, without control bar and with control bar for a known thermodynamic state fixed by: a) the fuel temperature (T{sub f}), b) the moderator temperature (T{sub m}) and c) the vacuums fraction (α). Although was not realized any comparison with the X S that the codes Helios and CASMO-4 generate, the results obtained for the infinite multiplication factor show the prospective tendencies with regard to the fuel burned so much in the case in that is not present the control bar like when it is. The results are encouraging and motivate to the study group to continue with the X S generation of a core in order to build the respective library of nuclear data as a following step and this can be used for the codes PARCS, of USA NRC, DYN3D of HZDR, or others developed locally

  12. Ramona hot nuclear bank of the Siemens 9x9-1X; Banco nuclear ramona Hot del combustible Siemens 9x9-1X

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1993-11-15

    With the purpose of making the transitory analyses of the Laguna Verde Nuclear Power station when Siemens fuel of the type 9x9-IX is used, proposed for the cycle 2 of the Unit 2, the data bank in hot condition for the Ramona code has been generated. (Author)

  13. Ramona cold nuclear bank of the Siemens 9x9-IX fuel; Banco nuclear Ramona Cold del combustible Siemens 9x9-1X

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1994-01-15

    With the purpose of making the transitory analyses of the Laguna Verde Nuclear Power station when Siemens fuel of the type 9x9-IX is used, proposed for the cycle 2 of the Unit 2, the data bank in cold condition for the Ramona code has been generated. (Author)

  14. Low content uranium alloys for nuclear fuels; Alliages d'uranium a faible teneur pour elements combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Aubert, H.; Laniesse, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    A description is given of the structure and the properties of low content alloys containing from 0.1 to 0.5 per cent by weight of Al, Fe, Cr, Si, Mo or a combination of these elements. A study of the kinetics and of the mode of transformation has made it possible to choose the most satisfactory thermal treatment. An attempt has been made to prepare alloys suitable for an economical industrial development having a small {alpha} grain structure without marked preferential orientation, with very fine and stable precipitates as well as a high creep-resistance. The physical properties and the mechanical strength of these alloys are given for temperatures of 20 to 600 deg C. These alloys proved very satisfactory when irradiated in the form of normal size fuel elements. (authors) [French] Sont decrits la structure et les proprietes d'alliages a faible teneur, contenant de 0,1 a 0,5 pour cent en poids de Al, Fe, Cr, Si, Mo ou une combinaison de ces elements. L'etude des cinetiques et du mode de transformation permet de choisir le traitement thermique le plus favorable. On a cherche a mettre, au point des alliages se pretant a une mise en oeuvre industrielle economique et presentant une structure a petits grains {alpha}, sans orientation preferentielle marquee, avec des precipites tres fins et stables ainsi qu'une bonne resistance au fluage. Les proprietes physiques et la resistance mecanique de ces alliages sont decrites entre la temperature ambiante et 600 deg C. Irradies sous forme d'elements combustibles de dimensions normales, ces alliages ont montre un bon comportement. (auteurs)

  15. A hybrid approach to solving the problem of design of nuclear fuel cells; Un enfoque hibrido para la solucion del problema del diseno de celdas de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Montes T, J. L.; Perusquia del C, R.; Ortiz S, J. J.; Castillo, A., E-mail: joseluis.montes@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    An approach to solving the problem of fuel cell design for BWR power reactor is presented. For this purpose the hybridization of a method based in heuristic knowledge rules called S15 and the advantages of a meta-heuristic method is proposed. The synergy of potentialities of both techniques allows finding solutions of more quality. The quality of each solution is obtained through a multi-objective function formed from the main cell parameters that are provided or obtained during the simulation with the CASMO-4 code. To evaluate this alternative of solution nuclear fuel cells of reference of nuclear power plant of Laguna Verde were used. The results show that in a systematic way the results improve when both methods are coupled. As a result of the hybridization process of the mentioned techniques an improvement is achieved in a range of 2% with regard to the achieved results in an independent way by the S15 method. (Author)

  16. Impact of the fuel cost in the electric generation cost by nuclear means; Impacto del costo del combustible en el costo de generacion electrica por medios nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Gomez R, M.C.; Palacios H, J. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2007-07-01

    In recent years, the uranium cost has been increased in the international market due to a countless of factors like they are: increase of the demand, the turnaround of the nuclear energy in some Asian countries, the decrease of the offer due to problems in the mining for their extraction, etc. These increments impact the costs of electric generation in the concept of fuel, presently work is calculated that order is the prospective impact when the costs of the uranium and the services of the fuel cycle are increased to the speed that one has come increasing, and an increase is postulated beyond the 100 usd/lb U{sub 3}O{sub 8}, being also calculated its impact in the total cost of electric generation by nuclear means. (Author)

  17. DIMCO. A new system for mechanical and bidimensional, of nuclear fuel pins; DIMCO un nuevo sistema de calculo mecanico de combustibles nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.

    1977-07-01

    The system developed in JEN, for: the mechanical analysis uni and bidimensional, of nuclear fuels is presented. The mathematical and numerical foundations used, are here described. And so the models developed for effects such as swelling, cracking, clad growth etc. Numerical results for several cases are presented. a) Numerical test in one and two dimensions. b) Applicability range, c) Interaction effects. d) Influence of the power history. (Author) 17 refs.

  18. Quality control in nuclear fuel fabrication on the inspection basis; Control de calidad para fabricacion de combustible nuclear en base a inspecciones

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes S, A. [Instituto Tecnologico de Toluca, Toluca (Mexico)

    1997-12-31

    Every plant productive of electric power requires the use of energetics for the transformation to electricity. In the nucleo electric plant the energetic is the uranium, in which it makes ensembles and is used as fuel in the reactor. To assure that the fuel ensembles fulfill the specifications and requirements of design stipulated in the nucleo electric plant is that under a quality control through inspections during the fabrication process. The purpose of this work is to study and verify that the lineaments of the standard 10 CFR 50 appendix B `Quality assurement for nuclear plants` specially in the criteria `Inspections` that is used to guarantee the quality of the ensembles. This standard is the one that rules every activity and operation inside the pilot plant and its established in the quality program in the production of nuclear fuel for the Laguna Verde plant. The quality of the assemble is verified through each one of the tests or inspections due to the importance of it in the fabrication of fuel. (Author)

  19. Biofuels Combustion

    Science.gov (United States)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  20. Biofuels combustion.

    Science.gov (United States)

    Westbrook, Charles K

    2013-01-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  1. Updates of the fire protection system of the Juzbado Nuclear Fuel Fabrication Plant; Actualizaciones del Sistema de Proteccion Contra Incendios de la Fabrica de Combustible Nuclear de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Dorado, P.; Palomo, J. J.; Romano, A.

    2015-07-01

    The Juzbado Nuclear Fuel Fabrication Plant fire protection system is one of the most important safety system of the plant. Every year, a large part of the annual investment is employed to improve this system, to update its technology, in order to improve detection and extinction capability to minimize fire risk. Over the last few years, several improvement projects have been carried out that focused on fire detection technology update and on optimization of local detectors integration with a centralized control system, as well as on an advanced public address system, which used clear and unambiguous messages improving personnel response to a plant evacuation. Planned projects and those, which are currently under development, focus on improving passive fire protection means as well as fire protection of key emergency response equipment s such as emergency diesel generators and fire extinguishing bombs. (Author)

  2. Temporary storage in dry of the spent nuclear fuel in the Nuclear Power Plant of Laguna Verde; Almacenamiento temporal en seco del combustible nuclear gastado en la Central Nuclear Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez M, N.; Vargas A, A., E-mail: natividad.hernandez@cfe.gob.mx [Comision Federal de Electricidad, Gerencia de Centrales Nucleoelectricas, Carretera Veracruz-Medellin Km. 7.5, 94270 Dos Bocas, Veracruz (Mexico)

    2013-10-15

    To guarantee the continuity in the operation of the two nuclear reactors of the nuclear power plant of Laguna Verde (NPP-L V) is an activity of high priority of the Comision Federal de Electricidad (CFE) in Mexico. At the present time, the CFE is working in the storage project in dry of the spent fuel with the purpose of to liberate space of the pools and to have the enlarged capacity of storage of the spent fuel that is discharged of the reactors. This work presents the storage option in dry of the spent fuel, considering that the original capacity of the spent fuel pools of the NPP-L V was of 1242 spaces each one and that in 1991, through a modification of the original design, the storage capacity was increased to 3177 spaces by pool. At present, the cells occupied by unit are of 2165 (68%) for the Unit-I and 1839 (58%) for the Unit-2, however, in 2017 and 2022 the capacity to discharge the complete core will be limited by what is required of a retirement option of spent fuel assemblies to liberate spaces. (author)

  3. Combustion and extinction of magnesium fires

    International Nuclear Information System (INIS)

    Malet, J.C.; Duverger de Cuy, G.

    1988-01-01

    The studies made in France on magnesium combustion and extinguishing means are associated at the nuclear fuel of the graphite-gas reactor. Safety studies are made for ameliorate our knowledge on: - magnesium combustion - magnesium fire propagation - magnesium fire extinguishing [fr

  4. Turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.

  5. Coupling of the four design stages in the management of nuclear fuel; Acoplamiento de las cuatro etapas de diseno en la administracion de combustible nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Marinez R, R. L.

    2016-07-01

    In this work, the main characteristics of the system to solve the four stages of the nuclear fuel management are presented; the above for boiling water reactors (BWR). The novelty of the system is that a complete solution is obtained in a coupled way; the involved stages are fuel lattice design, fuel assembly design, fuel reload design and control rod pattern design. To do this, in each stage of the process some heuristics techniques are applied, and each stage has its own objective function. The used heuristic techniques are neural network and a hybrid between scatter search and path re linking for fuel lattice design; for fuel assembly design a simple local search was applied and finally, for both fuel reload and control rod pattern designs, the tabu search technique was used. The system have two loops, one external loop and one internal loop, the first one starts with fuel lattice design and concludes with control rod pattern design; on the other hand, the internal loop executes an iterative process between both fuel reload design and control rod pattern designs, to start this loop a seed fuel reload is required, which is obtained applying Haling principle. The internal loop is finished when four iterations were achieved, while the external loop is finished when two iterations were achieved, this number of iterations was fixed due to the great quantity of required computational resources. An 18- months equilibrium cycle was considered to have a reference value to compare against the obtained results with our system, this cycle have two fuel fresh batches with the same average uranium enrichment, but different gadolinia content. The above cycle achieved a 10,896 Mwd/Tu of energy and was divided into 12 burnup steps. The obtained results show the advantage to solve the complete problem in a coupled way, even though a great quantity of computational resources are used. It is necessary to note that the energy value was not achieved in all cases, only in some

  6. Tubular combustion

    CERN Document Server

    Ishizuka, Satoru

    2014-01-01

    Tubular combustors are cylindrical tubes where flame ignition and propagation occur in a spatially confined, highly controlled environment, in a nearly flat, elongated geometry. This allows for some unique advantages where extremely even heat dispersion is required over a large surface while still maintaining fuel efficiency. Tubular combustors also allow for easy flexibility in type of fuel source, allowing for quick changeover to meet various needs and changing fuel pricing. This new addition to the MP sustainable energy series will provide the most up-to-date research on tubular combustion--some of it only now coming out of private proprietary protection. Plentiful examples of current applications along with a good explanation of background theory will offer readers an invaluable guide on this promising energy technology. Highlights include: * An introduction to the theory of tubular flames * The "how to" of maintaining stability of tubular flames through continuous combustion * Examples of both small-scal...

  7. Properties of low content uranium-molybdenum alloys which may be used as nuclear fuels; Proprietes des alliages uranium-molybdene de faibles teneurs utilisables comme materiaux combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Lehmann, J.; Decours, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1964-07-01

    Metallurgical properties are given in this report of uranium-molybdenum alloys containing 0,5 to 3 per cent of molybdenum. Since some of these alloys are used in EDF power reactors are given: briefly the operating conditions imposed on nuclear fuels: maximum temperature, temperature gradient and external pressure. In the first part are considered the structural properties of the alloys correlation with the phase transformation kinetics; a description is given of the effects of certain physico-metallurgical factors on the morphology and the crystalline structure of the materials: - solidification conditions and the heredity of the {gamma} structure, - cooling rate at the transformation points, - whether or not the intermediate {gamma} {yields} {beta} transformation is suppressed In the second part we show how a knowledge of the phase transformation processes has made it possible to define the optimum preparation conditions for these materials in the form of fuel tubes intended for the EDF reactors: casting conditions, controlled cooling treatments, weldability. In the third part we study the thermal, stability during the long duration high temperature treatments and the cycles in the two zones of the diagram {alpha} + {gamma}; {beta} + {gamma} the effects of the morphology (in particular the two types of {alpha} pseudo-grains observed) and of the cooling rate during the transformation point transitions are described. In the fourth part are discussed the mechanical properties: resistance to a tractive force, resistance to creep, resilience. These properties can also be affected by the {gamma} structure heredity and by the cooling rate to which the alloy has been subjected. In conclusion we discuss the reasons which led to the choice of some of these alloys for the first EDF reactors in particular the advantages of their high creep resistance between 450 and 600 deg C for use in the form of tubes subjected to an external pressure. (authors) [French] Dans ce rapport

  8. Advanced Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, Gordon R. [NETL

    2013-03-11

    The activity reported in this presentation is to provide the mechanical and physical property information needed to allow rational design, development and/or choice of alloys, manufacturing approaches, and environmental exposure and component life models to enable oxy-fuel combustion boilers to operate at Ultra-Supercritical (up to 650{degrees}C & between 22-30 MPa) and/or Advanced Ultra-Supercritical conditions (760{degrees}C & 35 MPa).

  9. Sistema Avanzado de Asistencia a la Conducción para la Detección de la Somnolencia

    Directory of Open Access Journals (Sweden)

    Marco J. Flores

    2011-07-01

    Full Text Available Resumen: En este artículo se presenta un sistema avanzado de asistencia a la conducción (SAAC diseñado para detectar automáticamente a somnolencia y la distracción del conductor. Este sistema se compone de dos partes: una para trabajar durante el día con luminación natural, y otra para funcionar en la noche utilizando iluminación infrarroja. Los principales objetivos son localizar l rostro y los ojos del conductor para analizarlos a través del tiempo y generar un índice de somnolencia y uno de distracción. Para llo se han utilizado técnicas de Visión por Computador e Inteligencia Artificial. Finalmente, el sistema ha sido probado con varios onductores sobre un vehículo en condiciones reales de conducción, en el día y en la noche. Palabras clave: Inteligencia Artificial, Visión por Computador, somnolencia, distracción, conductor, accidentes de tráfico, iluminación infrarroja

  10. Desarrollo del proyecto “Pruebas de Intercambio Térmico del Sistema de Enfriamiento y Limpieza de la Piscina de Combustible (G41)” de Central Nuclear de Cofrentes

    OpenAIRE

    López, B.; Vaquer, J.I.; Mota, M.; Reyes, S.; Palomo-Anaya, M Jose; Ruiz, G.; Rebollo, C.

    2012-01-01

    Se presenta el trabajo desarrollado para la ejecución del proyecto “Pruebas de Intercambio Térmico (TA-11/0155), del Sistema de Enfriamiento y Limpieza de la Piscina de Combustible (G41)” realizado por Iberdrola Ingeniería y Construcción y por el Departamento de Ingeniería y Mantenimiento de Instrumentación de la Central Nuclear de Cofrentes (CNC), en colaboración con Titania Servicios Tecnológicos S.L. Titania, en colaboración con el Instituto de Seguridad Industrial, Radiofísica y Medio...

  11. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1984-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss of coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, several open-tube tests and more than 100 closed-vessel tests of hydrogen/air combustion, with and without foam were conducted. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by 2 1/2. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam, and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  12. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.; Griffiths, S.; Shepherd, J.

    1983-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because, in practice, the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, we have conducted several open tube tests and over one hundred closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by a factor of two and one-half. Despite this overall pressure reduction, the flame speed is increase by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  13. High Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — At NETL's High-Pressure Combustion Research Facility in Morgantown, WV, researchers can investigate new high-pressure, high-temperature hydrogen turbine combustion...

  14. Combustion Research Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Combustion Research Laboratory facilitates the development of new combustion systems or improves the operation of existing systems to meet the Army's mission for...

  15. Funciones Fiscales, Procesos Presupuestarios y Modelos Constitucionales en Países Avanzados. El caso de Canadá

    Directory of Open Access Journals (Sweden)

    Miguel Angel Asensio

    2007-04-01

    Full Text Available La política fiscal que se expresa en los presupuestos, refiere a recursos, gastos y endeudamiento.  En materia de presupuestos públicos, los fines fiscales no se alcanzan en tanto no exista una adecuada gestión de los mismos, y el proceso político-institucional del presupuesto sea compatible con el enfoque tripartito de presupuesto. Los principios económicos deberán articularse con principios administrativos y roles específicos de actores institucionales. En esa línea, son importantes tres requerimientos funcionales exigidos al presupuesto gubernamental desde la óptica administrativa: el de control, de gestión y de planeamiento. La primera función se alude al control del gasto público, para lo cual se asigna al presupuesto un papel esencial. Pero también importa su eficacia como instrumento de gestión o gerenciamiento de las variables de economía pública. Finalmente, es la herramienta donde por excelencia ha de estar contenido el plan de gobierno, incorporado a sus distintas operaciones, tal como se ha enfatizado, las opciones políticas contenidas en tales decisiones. Estas variables, pertenecientes a distintas visiones, no son neutrales a un eficaz proceso presupuestario, que implicará una relación entre la Rama Ejecutiva y el Parlamento, en los sistemas contemporáneos. Esa es la idea subyacente al considerar el caso de un modelo avanzado, como es el correspondiente a Canadá. 

  16. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  17. Spent fuel, plutonium and nuclear waste: long-term management; Le combustible use et le plutonium en tant que dechets nucleaires: gestion a long terme

    Energy Technology Data Exchange (ETDEWEB)

    Collard, G

    1998-11-01

    Different options for the management of nuclear waste arising from the nuclear fuel cycle are discussed. Special emphasis is on reprocessing followed by geological disposal, geological disposal of reprocessing waste, direct geological disposal of spent nuclear fuel, long term storage. Particular emphasis is on the management of plutonium including recycling, immobilisation and disposal, partitioning and transmutation.

  18. Factores pronósticos y predictivos de respuesta en pacientes con carcinoma de vejiga localmente avanzado tratados con quimioterapia neoadyuvante

    OpenAIRE

    Céliz, Pamela

    2012-01-01

    La cistectomía radical es el tratamiento de elección en pacientes con carcinoma de vejiga localmente avanzado. Sin embargo, más del 50% de los pacientes presentan recurrencias y fallecen por la enfermedad. La quimioterapia neoadyuvante ha demostrado un beneficio modesto en estos pacientes, más significativo en pacientes con respuesta patológica completa tras el tratamiento. Sin embargo, aun no se ha identificado en que pacientes se obtiene un mayor beneficio. El análisis de genes que particip...

  19. Intervención de cuidados paliativos domiciliarios para mejorar la calidad de vida de las mujeres con cáncer de mama avanzado

    OpenAIRE

    Figueredo Villa, Katiuska

    2014-01-01

    La calidad de vida se observa frecuentemente afectada en las mujeres con cáncer de mama avanzado y es considerada el principal indicador de efectividad de los cuidados paliativos. Se presenta un estudio descriptivo y cuasi-experimental, ex-ante/ex-post, mediante la aplicación de entrevistas abiertas para explorar las afectaciones en los procesos de adaptación de cada paciente y una escala auto-administrable que permitió identificar las dimensiones específicas de calidad de vida, de satisfacci...

  20. CONTROL EMOCIONAL, FELICIDAD SUBJETIVA Y SATISFACCIÓN VITAL RELACIONADOS AL AFRONTAMIENTO Y ADAPTACIÓN EN PERSONAS CON CÁNCER AVANZADO

    OpenAIRE

    Hermosilla Ávila,Alicia; Sanhueza Alvarado,Olivia

    2015-01-01

    La teoría del Proceso de Afrontamiento y Adaptación de Roy identifica las estrategias que utiliza la persona para responder a las influencias y cambios ambientales que percibe, de manera de crear una integración humana y ambiental. El objetivo de esta investigación fue conocer la relación entre las variables individuales -control emocional, satisfacción vital y felicidad subjetiva- con el proceso de afrontamiento y adaptación al cáncer, en usuarios con diagnóstico de cáncer avanzado del Polic...

  1. Radioterapia intraoperatoria y cirugía laparoscópica versus cirugía abierta en cáncer de recto localmente avanzado

    OpenAIRE

    Marcos Jiménez, Francisco

    2016-01-01

    En pacientes seleccionados de cáncer de recto, la cirugía laparoscópica es tan segura como la cirugía abierta, ofreciendo similares márgenes y calidad de resección. Hay que añadir que la recuperación del paciente es más rápida tras laparoscopia. Analizamos los resultados a largo plazo en el grupo de pacientes con cáncer de recto localmente avanzado tratados con quimio-radioterapia neoadyuvante seguida de laparoscopia versus cirugía abierta y radioterapia intraoperatoria. Desde Enero de 2006 h...

  2. Equation for Combustion Noise

    Science.gov (United States)

    Liu, T. M.

    1982-01-01

    Mathematical relationship derived for interactions between turbulent flame and combustion noise. Relationship is rigorous theoretical correlation of combustion noise and combustion process. Establishes foundation for acoustic measurements as tool for investigating structure of turbulent flames. Mathematical relationship is expected to aid researchers in field of noise generated by combustion.

  3. Valorización de bagazo de la industria cervecera mediante su transformación en biocombustibles avanzados: biobutanol.

    OpenAIRE

    Plaza Lázaro, Pedro Enrique

    2017-01-01

    La producción de biocombustibles es uno de los grandes desafíos industriales de este siglo. Los problemas de contaminación y la incertidumbre que rodea a los combustibles fósiles (costes, disponibilidad, etc.) hacen necesario que se desarrollen procesos que permitan obtener combustibles a partir de residuos. Uno de los residuos más abundantes es la biomasa lignocelulósica, rica en carbohidratos, que puede ser utilizada en procesos de fermentación. El principal problema de la bi...

  4. Uranium Determination in Samples from Decommissioning of Nuclear facilities Related to the First Stage of Nuclear Fuel Cycle; Determinacion de Uranio en Muestras Procedentes del Desmantelamiento de Instalaciones de la Primera Parte del Cielo del Combustible Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, A.; Correa, E.; Navarro, N.; Sancho, C. [Ciemat, Madrid (Spain); Angeles, A.

    2000-07-01

    An adequate workplace monitoring must be carried out during the decommissioning activities, to ensure the protection of workers involved in these tasks. In addition, a large amount of waste materials are generated during the decommissioning of nuclear facilities. Clearance levels are established by regulatory authorities and are normally quite low. The determination of those activity concentration levels become more difficult when it is necessary to quantify alpha emitters such as uranium, especially when complex matrices are involved. Several methods for uranium determination in samples obtained during the decommissioning of a facility related to the first stage of the nuclear fuel cycle are presented in this work. Measurements were carried out by laboratory techniques. In situ gamma spectrometry was also used to perform measurements on site. A comparison among the different techniques was also done by analysing the results obtained in some practical applications. (Author)

  5. CARA Project: development of the advanced ULE fuel element for heavy water nuclear power plants

    International Nuclear Information System (INIS)

    Brasnarof, Daniel O.; Marino, Armando C.; Florido, Pablo C.; Munoz, C.; Bianchi, Daniel R.; Giorgis, Miguel A.

    2006-01-01

    The CARA Project (Spanish acronym of Combustible Avanzado para Reactores Argentinos) is a national fuel element technology development, compatible with our nuclear power plants (Atucha I, Embalse and Atucha II). It takes into account the experience obtained in our nuclear organisations (CNEA-CONUAR-NASA). The goal of the CARA fuel element is the performance improvement for those reactors and the enhancing of their normal operative conditions. The CARA design allows the burnup extension by using 52 rods of the same diameter. Likewise it keeps good thermo-hydraulic behaviour. The fuel bundle can be directly used in nuclear power plants with horizontal channels. By using an additional system it can be installed in the PHWR with vertical channels. The expected profits, by the use of the CARA in our reactors, broadly guaranty the recovery of the fund for its development, due to a reduction of the NPP fuels and back end cost. We estimate a reduction in the generation cost between 20 or 25 % in relation to the present one if we use 0.85 or 0.90% SEU (Slightly Enriched Uranium). The use of the CARA fuel in our reactors will also reduce the amount of spent fuel to be treated. The shortening could be between 17 to 27 % in Atucha I in relation to the present ULE (0.85%), between 38 to 46% for Embalse, and 45 to 53% for Atucha II. The mechanical behaviour and hydraulic compatibility have been verified. Several CARA prototypes were fabricated with a new design of the end plate and with new processes for the welding for the rods. We present in this paper the current status of the CARA fuel element development. (author) [es

  6. Effects of Fuel to Synthesis of CaTiO3 by Solution Combustion Synthesis for High-Level Nuclear Waste Ceramics.

    Science.gov (United States)

    Jung, Choong-Hwan; Kim, Yeon-Ku; Han, Young-Min; Lee, Sang-Jin

    2016-02-01

    A solution combustion process for the synthesis of perovskite (CaTiO3) powders is described. Perovskite is one of the crystalline host matrics for the disposal of high-level radioactive wastes (HLW) because it immobilizes Sr and Lns elements by forming solid solutions. Solution combustion synthesis, which is a self-sustaining oxi-reduction reaction between nitrate and organic fuel, the exothermic reaction, and the heat evolved convert the precursors into their corresponding oxide products above 1100 degrees C in air. To investigate the effects of amino acid on the combustion reaction, various types of fuels were used; a glycine, amine and carboxylic ligand mixture. Sr, La and Gd-nitrate with equivalent amounts of up to 20% of CaTiO3 were mixed with Ca and Ti nitrate and amino acid. X-ray diffraction analysis, SEM and TEM were conducted to confirm the formed phases and morphologies. While powders with an uncontrolled shape are obtained through a general oxide-route process, Ca(Sr, Lns)TiO3 powders with micro-sized soft agglomerates consisting of nano-sized primary particles can be prepared using this method.

  7. Oxygen-enhanced combustion

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Combustion technology has traditionally been dominated by air/fuel combustion. However, two developments have increased the significance of oxygen-enhanced combustion-new technologies that produce oxygen less expensively and the increased importance of environmental regulations. Advantages of oxygen-enhanced combustion include less pollutant emissions as well as increased energy efficiency and productivity. Oxygen-Enhanced Combustion, Second Edition compiles information about using oxygen to enhance industrial heating and melting processes. It integrates fundamental principles, applications, a

  8. The logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant; Cadena logistica en la fabrica de elementos combustibles de Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The paper describe the logistics and the supply chain in the Juzbado Nuclear Fuel Manufacturing Plant, located in Juzbado in the province of Salamanca. In the the article are described the principal elements in the supply chain and the difficulties of its management derived from the short period for the manufacturing of the nuclear fuel. It's also given a view in relation to the transportation by land sea of the nuclear components, uranium oxide powder and the manufactured fuel. The characteristics of the supply chain are determined by the plant production forecast, by the origin and high technology of the raw materials and by nuclear fuel delivery site locations. (Author)

  9. Combustion 2000

    Energy Technology Data Exchange (ETDEWEB)

    A. Levasseur; S. Goodstine; J. Ruby; M. Nawaz; C. Senior; F. Robson; S. Lehman; W. Blecher; W. Fugard; A. Rao; A. Sarofim; P. Smith; D. Pershing; E. Eddings; M. Cremer; J. Hurley; G. Weber; M. Jones; M. Collings; D. Hajicek; A. Henderson; P. Klevan; D. Seery; B. Knight; R. Lessard; J. Sangiovanni; A. Dennis; C. Bird; W. Sutton; N. Bornstein; F. Cogswell; C. Randino; S. Gale; Mike Heap

    2001-06-30

    . To achieve these objectives requires a change from complete reliance of coal-fired systems on steam turbines (Rankine cycles) and moving forward to a combined cycle utilizing gas turbines (Brayton cycles) which offer the possibility of significantly greater efficiency. This is because gas turbine cycles operate at temperatures well beyond current steam cycles, allowing the working fluid (air) temperature to more closely approach that of the major energy source, the combustion of coal. In fact, a good figure of merit for a HIPPS design is just how much of the enthalpy from coal combustion is used by the gas turbine. The efficiency of a power cycle varies directly with the temperature of the working fluid and for contemporary gas turbines the optimal turbine inlet temperature is in the range of 2300-2500 F (1260-1371 C). These temperatures are beyond the working range of currently available alloys and are also in the range of the ash fusion temperature of most coals. These two sets of physical properties combine to produce the major engineering challenges for a HIPPS design. The UTRC team developed a design hierarchy to impose more rigor in our approach. Once the size of the plant had been determined by the choice of gas turbine and the matching steam turbine, the design process of the High Temperature Advanced Furnace (HITAF) moved ineluctably to a down-fired, slagging configuration. This design was based on two air heaters: one a high temperature slagging Radiative Air Heater (RAH) and a lower temperature, dry ash Convective Air Heater (CAH). The specific details of the air heaters are arrived at by an iterative sequence in the following order:-Starting from the overall Cycle requirements which set the limits for the combustion and heat transfer analysis-The available enthalpy determined the range of materials, ceramics or alloys, which could tolerate the temperatures-Structural Analysis of the designs proved to be the major limitation-Finally the commercialization

  10. Reduced NOX combustion method

    International Nuclear Information System (INIS)

    Delano, M.A.

    1991-01-01

    This patent describes a method for combusting fuel and oxidant to achieve reduced formation of nitrogen oxides. It comprises: It comprises: heating a combustion zone to a temperature at least equal to 1500 degrees F.; injecting into the heated combustion zone a stream of oxidant at a velocity within the range of from 200 to 1070 feet per second; injecting into the combustion zone, spaced from the oxidant stream, a fuel stream at a velocity such that the ratio of oxidant stream velocity to fuel stream velocity does not exceed 20; aspirating combustion gases into the oxidant stream and thereafter intermixing the aspirated oxidant stream and fuel stream to form a combustible mixture; combusting the combustible mixture to produce combustion gases for the aspiration; and maintaining the fuel stream substantially free from contact with oxidant prior to the intermixture with aspirated oxidant

  11. Análisis termohidráulico de la refrigeración del combustible nuclear mediante dinámica de fluidos computacional

    OpenAIRE

    Vicente Sánchez, Pablo

    2016-01-01

    La refrigeración en el núcleo de los reactores de agua en ebullición se rige por la fenomenología propia de los flujos bifásicos. En ella se incluyen cambios de fase y regímenes de flujo muy diversos, que afectan a la interacción entre el refrigerante y las varillas de combustible y, en consecuencia, al rendimiento del reactor. Por ello entender en detalle el flujo en ebullición que caracteriza a estos reactores es de gran importancia a la hora de optimizar su diseño y prever su comportamient...

  12. Assessment of the feasibility of indefinite containment of canadian nuclear fuel wastes; Evaluation de la faisabilite du confinement illimite des dechets de combustible nucleaire canadiens

    Energy Technology Data Exchange (ETDEWEB)

    Shoesmith, D.W.; King, F.; Ikeda, B.M.

    1995-05-01

    This report presents an analysis of the expected corrosion behavior of nuclear fuel waste containers in a conceptual Canadian disposal vault. The container materials considered are dilute Ti alloys (Grades-2, -12 and -16) and oxygen-free copper.

  13. Advanced methods of analysis variance on scenarios of nuclear prospective; Metodos avanzados de analisis de varianza en escenarios de prospectiva nuclear

    Energy Technology Data Exchange (ETDEWEB)

    Blazquez, J.; Montalvo, C.; Balbas, M.; Garcia-Berrocal, A.

    2011-07-01

    Traditional techniques of propagation of variance are not very reliable, because there are uncertainties of 100% relative value, for this so use less conventional methods, such as Beta distribution, Fuzzy Logic and the Monte Carlo Method.

  14. Combustion Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — For more than 30 years The Combustion Research Facility (CRF) has served as a national and international leader in combustion science and technology. The need for a...

  15. Uncertainties in hydrogen combustion

    International Nuclear Information System (INIS)

    Stamps, D.W.; Wong, C.C.; Nelson, L.S.

    1988-01-01

    Three important areas of hydrogen combustion with uncertainties are identified: high-temperature combustion, flame acceleration and deflagration-to-detonation transition, and aerosol resuspension during hydrogen combustion. The uncertainties associated with high-temperature combustion may affect at least three different accident scenarios: the in-cavity oxidation of combustible gases produced by core-concrete interactions, the direct containment heating hydrogen problem, and the possibility of local detonations. How these uncertainties may affect the sequence of various accident scenarios is discussed and recommendations are made to reduce these uncertainties. 40 references

  16. Production and validation of nuclear data for reactor and fuel cycle applications; Production et validation des donnees nucleaires pour les applications reacteurs et cycle du combustible

    Energy Technology Data Exchange (ETDEWEB)

    Trakas, C. [Framatome ANP GmbH NBTT, Erlangen (Germany); Verwaerde, D. [Electricite de France EDF, 75 - Paris (France); Toubon, H. [Cogema, 78 - Velizy Villacoublay (France)] [and others

    2002-07-01

    The aim of this technical meeting is the improvement of the existing nuclear data and the production of new data of interest for the upstream and downstream of the fuel cycle (enrichment, fabrication, management, storage, transport, reprocessing), for the industrial reactors, the research reactors and the new reactor concepts (criticality, dimensioning, exploitation), for the instrumentation systems (external and internal sensors), the radioprotection, the residual power, the structures (neutron bombardment effect on vessels, rods etc..), and for the activation of steel structures (Fr, Ni, Co). The expected result is the collection of more reliable and accurate data in a wider spectrum of energies and temperatures thanks to more precise computer codes and measurement techniques. This document brings together the communications presented at this meeting and dealing with: the process of production and validation of nuclear data; the measurement facilities and the big international programs; the users needs and the industrial priorities; the basic nuclear data (BND) needs at Cogema; the expression and evaluation of BND; the evaluation work: the efficient cross-sections; the processing of data and the creation of activation libraries; from the integral measurement to the qualification and the feedback on nuclear data. (J.S.)

  17. Estilos de aprendizaje en estudiantes universitarios ingresantes y avanzados de Buenos Aires (Learning Styles in Freshmen and Senior University Students from Buenos Aires

    Directory of Open Access Journals (Sweden)

    Agustín Freiberg Hoffmann

    2015-06-01

    Full Text Available Resumen: En esta investigación se analizaron diferencias en los estilos de aprendizaje, según variables sociodemográficas y académicas, para luego examinar su efecto sobre el rendimiento académico de los educandos. Participaron 300 estudiantes universitarios pertenecientes a las facultades de Ingeniería, Medicina y Psicología. Los resultados muestran diferencias significativas en los estilos Asimilador y Pragmático según edad: el estilo asimilador a favor de estudiantes mayores y el estilo pragmatico de los más jóvenes. Los varones destacaron significativamente en los estilos Convergente y Adaptador. Comparando ingresantes y avanzados, mostraron preferencia por el estilo Pragmático los ingresantes y preferencia por el estilo Asimilador los estudiantes avanzados. El análisis explicativo indicó una influencia negativa del estilo Pragmático y una positiva del Asimilador en el rendimiento académico. Abstract: Discusses differences in learning styles, according to socio-demographic and academic variables, and then examine its effect on the academic performance of learners. Participated 300 students from different faculties: Engineering, Medicine, and Psychology. Significant differences were observed in the Assimilator and Pragmatic styles according to age: the first in favor of older students, and the second of younger ones. The men stood out significantly in the Convergent and Adapter styles. Comparing freshmen and senior students, the first expressed a preference for the Pragmatic style, and the second for the Assimilator. The explanatory analysis indicated a negative influence of the Pragmatic style approach, and a positive for the Assimilator on academic performance.

  18. New class of combustion processes

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Borovinskaya, I.P.

    1975-01-01

    A short review is given of the results of work carried out since 1967 on studying the combustion processes caused by the interaction of chemical elements in the condensed phase and leading to the formation of refractory compounds. New phenomena and processes are described which are revealed when investigating the combustion of the systems of this class, viz solid-phase combustion, fast combustion in the condensed phase, filtering combustion, combustion in liquid nitrogen, spinning combustion, self-oscillating combustion, and repeated combustion. A new direction in employment of combustion processes is discussed, viz. a self-propagating high-temperature synthesis of refractory nitrides, carbides, borides, silicides and other compounds

  19. 77 FR 441 - Measurement and Control of Combustible Gas Generation and Dispersal

    Science.gov (United States)

    2012-01-05

    ... measurement and control of combustible gas generation and dispersal within a power reactor system. The NRC is...; ] NUCLEAR REGULATORY COMMISSION 10 CFR Parts 50, 52, and 100 Measurement and Control of Combustible Gas... measurement and control of combustible gas generation and dispersal within a reactor system. The Commission is...

  20. Opportunities in pulse combustion

    Science.gov (United States)

    Brenchley, D. L.; Bomelburg, H. J.

    1985-10-01

    In most pulse combustors, the combustion occurs near the closed end of a tube where inlet valves operate in phase with the pressure amplitude variations. Thus, within the combustion zone, both the temperature and the pressure oscillate around a mean value. However, the development of practical applications of pulse combustion has been hampered because effective design requires the right combination of the combustor's dimensions, valve characteristics, fuel/oxidizer combination, and flow pattern. Pulse combustion has several additional advantages for energy conversion efficiency, including high combustion and thermal efficiency, high combustion intensity, and high convective heat transfer rates. Also, pulse combustion can be self-aspirating, generating a pressure boost without using a blower. This allows the use of a compact heat exchanger that may include a condensing section and may obviate the need for a chimney. In the last decade, these features have revived interest in pulse combustion research and development, which has resulted in the development of a pulse combustion air heater by Lennox, and a pulse combustion hydronic unit by Hydrotherm, Inc. To appraise this potential for energy savings, a systematic study was conducted of the many past and present attempts to use pulse combustion for practical purposes. The authors recommended areas where pulse combustion technology could possibly be applied in the future and identified areas in which additional R and D would be necessary. Many of the results of the study project derived from a special workshop on pulse combustion. This document highlights the main points of the study report, with particular emphasis on pulse combustion application in chemical engineering.

  1. Catalytic combustion of hydrogen as a countermeasure to the risk of deflagration in a nuclear reactor containment in a severe accident situation: study of the poisoning of catalysts in a representative atmosphere

    International Nuclear Information System (INIS)

    Morfin, F.

    2000-06-01

    In case of a severe nuclear reactor accident (beyond design basis accident), with extensive fuel rod damage, a significant quantity of hydrogen would be produced in the reactor primary circuit. Build-up of this combustible gas in the air-filled reactor building could eventually lead to an explosion and, in extreme conditions, to the failure of the containment. In situ catalytic combustion of this hydrogen is one of the mitigation techniques proposed to reduce the so-called hydrogen risk in post-accident PWR containments. In a nuclear safety perspective, we have studied the performances of Passive Auto-catalytic (hydrogen) Recombiners (or PARs) in a representative atmosphere including, beside air, steam and hydrogen, a complex mixture of aerosol particles and vapours incorporating chemical elements (e.g., I or Te) known to be potential poisons of the catalytic materials making-up the recombiners. This study is based on 1) phenomenological (or 'global') experiments, in a containment mock-up (H2-PAR) at the 1/22 scale, making it possible to investigate into the efficiency of recombiners immersed in the representative atmosphere, and on 2) analytical experiments (catalyst testing) in a small laboratory reactor exposing catalysts to iodine and iodine compounds. The analytical experiments shed light on properties of the catalysts that could not be investigated in the containment mock-up, such as the relative catalytic activity of Pt, Pd and a Pt-Pd alloy, and their resistance to poisoning by I 2 and by AgI, CsI, InI or CdI 2 . The remarkable resistance to poisoning of the industrial catalysts under scrutiny is interpreted as a consequence of the low poison to catalyst ratio and of the diffusion regime of recombiner operation. At last, experiments with iodides showed that a possible modification of the post-accident containment atmosphere induced by the catalysts is worth examining, since it could alter the iodine source-term in a containment fitted out with recombiners

  2. Combustion modeling in internal combustion engines

    Science.gov (United States)

    Zeleznik, F. J.

    1976-01-01

    The fundamental assumptions of the Blizard and Keck combustion model for internal combustion engines are examined and a generalization of that model is derived. The most significant feature of the model is that it permits the occurrence of unburned hydrocarbons in the thermodynamic-kinetic modeling of exhaust gases. The general formulas are evaluated in two specific cases that are likely to be significant in the applications of the model.

  3. Sulfur Chemistry in Combustion II

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Kiil, Søren

    2000-01-01

    Several options are available to control the emission of SO2 from combustion processes. One possibility is to use a cleaner technology, i.e. fuel switching from oil and coal to natural gas or biomass, or to desulphurize coal and oil. Another possibility is to change to a different technology...... for power production, such as sun, wind or nuclear power. However, presently and in the near future the most important technology to reduce SO2 emissions from power production is flue gas desulphurization (FGD). There are several methods of FGD, but the majority of the plants are wet scrubbers...

  4. Gestión de los residuos radiactivos derivados del combustible nuclear y análisis del tratamiento informativo del ATC

    OpenAIRE

    Hernaz González, Alberto

    2017-01-01

    La energía nuclear, casi desde sus inicios ha sido fuente de controversia, habiendo contado siempre con buena parte de la opinión pública y también de los medios de comunicación contrarios a la misma. Sin embargo, en la actualidad, la amenaza del cambio climático, las emisiones de CO2 a la atmósfera y las necesidades energéticas, en especial de países en vías de desarrollo están suponiendo que cada vez un mayor número de científicos empiezan a defender la energía nuclear. ...

  5. Nuclear fuel activity with minor actinides after their useful life in a BWR; Actividad del combustible nuclear con actinidos menores despues de su vida util en un reactor BWR

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G., E-mail: eduardo.martinez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2016-09-15

    Nuclear fuel used in nuclear power reactors has a life cycle, in which it provides energy, at the end of this cycle is withdrawn from the reactor core. This used fuel is known as spent nuclear fuel, a strong problem with this fuel is that when the fuel was irradiated in a nuclear reactor it leaves with an activity of approximately 1.229 x 10{sup 15} Bq. The aim of the transmutation of actinides from spent nuclear fuel is to reduce the activity of high level waste that must be stored in geological repositories and the lifetime of high level waste; these two achievements would reduce the number of necessary repositories, as well as the duration of storage. The present work is aimed at evaluating the activity of a nuclear fuel in which radioactive actinides could be recycled to remove most of the radioactive material, first establishing a reference of actinides production in the standard nuclear fuel of uranium at end of its burning in a BWR, and a fuel rod design containing 6% of actinides in an uranium matrix from the enrichment tails is proposed, then 4 standard uranium fuel rods are replaced by 4 actinide bars to evaluate the production and transmutation of the same, finally the reduction of actinide activity in the fuel is evaluated. (Author)

  6. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1982-09-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some loss-of-coolant nuclear reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. To help assess the usefulness of aqueous foams in a mitigation plan, several open tube tests and over one hundred closed vessel tests of hydrogen/air combustion with and without foam have been conducted. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen (the stoichiometric limit is 29.6% hydrogen) where the peak overpressure is reduced by two and one-half. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  7. Lump wood combustion process

    Science.gov (United States)

    Kubesa, Petr; Horák, Jiří; Branc, Michal; Krpec, Kamil; Hopan, František; Koloničný, Jan; Ochodek, Tadeáš; Drastichová, Vendula; Martiník, Lubomír; Malcho, Milan

    2014-08-01

    The article deals with the combustion process for lump wood in low-power fireplaces (units to dozens of kW). Such a combustion process is cyclical in its nature, and what combustion facility users are most interested in is the frequency, at which fuel needs to be stoked to the fireplace. The paper defines the basic terms such as burnout curve and burning rate curve, which are closely related to the stocking frequency. The fuel burning rate is directly dependent on the immediate thermal power of the fireplace. This is also related to the temperature achieved in the fireplace, magnitude of flue gas losses and the ability to generate conditions favouring the full burnout of the fuel's combustible component, which, at once ensures the minimum production of combustible pollutants. Another part of the paper describes experiments conducted in traditional fireplaces with a grate, at which well-dried lump wood was combusted.

  8. Recycling the spent nuclear fuel actinides: a major contribution to the sustainability of the 4. generation nuclear energy systems; Le recyclage des actinides presents dans les combustibles nucleaires uses: une contribution significative pour un nucleaire du 4. generation durable

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch.; Warin, D. [CEA Valrho (DEN/MAR/DRCP/DIR), 30 - Marcoule (France)

    2009-08-15

    In line with the emerging objective of sustainable development, renaissance of nuclear energy requires optimizing current nuclear fuel cycles to recycle all the potentially energetic elements which are still present within the spent nuclear fuel after their first use in reactor. That concerns basically the actinides, first of all uranium and plutonium, but also the minor actinides, which represent the most significant part of the long term radiotoxicity of the nuclear waste to be disposed off deep underground. Current R and D aims to develop chemical processes based on liquid/liquid extraction using organic molecules presenting specific affinity for actinides. This paper aims to give an overview of the recent French results and the current developments which are performed within the framework of the French Waste Management Act from 28 June 2006. (authors)

  9. Design optimization of the Laguna Verde nuclear power station fuel recharge; Optimacion del diseno de recargas de combustible para la Central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Cortes Campos, Carlos Cristobal [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Montes Tadeo, Jose Luis [Instituto Nacional de Investigaciones Nucleares (ININ), Salazar (Mexico)

    1991-12-31

    It is described, in general terms, the procedure that is followed to accomplish the optimization of the recharge design, and an example is shown where this procedure was applied for the analysis of the type BWR reactor of Unit No. 1 of the Laguna Verde Nuclear Power Station. [Espanol] Se describe en terminos generales el procedimiento que se sigue para realizar la optimacion del diseno de recargas, y se muestra un ejemplo en el que se utilizo dicho procedimiento para el analisis del reactor tipo BWR de la unidad 1, de la Central Laguna Verde (CLV).

  10. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    Ashlines: To promote and support the commercially viable and environmentally sound recycling of coal combustion byproducts for productive uses through scientific research, development, and field testing.

  11. Flameless Combustion Workshop

    National Research Council Canada - National Science Library

    Gutmark, Ephraim

    2005-01-01

    .... "Flameless Combustion" is characterized by high stability levels with virtually no thermoacoustic instabilities, very low lean stability limits and therefore extremely low NOx production, efficient...

  12. Research Combustion Laboratory (RCL)

    Data.gov (United States)

    Federal Laboratory Consortium — The Research Combustion Laboratory (RCL) develops aerospace propulsion technology by performing tests on propulsion components and materials. Altitudes up to 137,000...

  13. Sistema Avanzado de Protipado Rápido para Control en la Educación en Ingeniería para grupos Multidisciplinares

    Directory of Open Access Journals (Sweden)

    Antonio Flores Caballero

    2016-07-01

    Full Text Available Resumen: Con el objetivo de alcanzar resultados satisfactorios en la enseñanza y puesta en práctica de cursos semestrales de ingeniería de control, en los que la presencia de alumnos de distintas disciplinas es más que notoria, se torna necesario recurrir a altos niveles de abstracción en la programación de los sistemas de control. Este alto nivel de abstracción procede del uso de un sistema de prototipado rápido para control de carácter avanzado, que permite recurrir a funcionalidades que no habían sido previstas en ningún entorno de prototipado rápido para control disponible con anterioridad. El carácter avanzado del sistema brinda soluciones desde el más alto nivel de abstracción, el denominado diseño basado en modelos, para las intricadas relaciones necesarias entre la ingeniería de control y la informática en tiempo real, permitiendo que los alumnos puedan centrar su esfuerzo en el desarrollo del algoritmo de control, la identificación de sistemas y el modelado de plantas físicas en lugar de preocuparse por las tediosas tareas de gestión y configuración a bajo nivel de la arquitectura hardware que están empleando. Gracias a este alto nivel de abstracción, que cubre el espectro abarcado por funcionalidades de muy bajo nivel y funcionalidades de muy alto nivel, el manejo del sistema propuesto se encuentra al alcance de audiencias multidisciplinares. El sistema avanzado de prototipado rápido para control se está empleando para cursos semestrales así como en multitud de Tesis de Máster y Doctorales. Abstract: In order to achieve successful results in the control courses for a multidisciplinary audience, a high abstraction layer at programming is required. This abstraction is provided by a custom developed rapid control prototyping system that enables the usage of model based design techniques to control real plants. Model based design is focused on the research and development of the control algorithm, system

  14. BUTREN-RC an hybrid system for the recharges optimization of nuclear fuels in a BWR; BUTREN-RC un sistema hibrido para la optimizacion de recargas de combustible nuclear en un BWR

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J.; Castillo M, J.A. [ININ, Carretera Mexico-Toluca Km. 36.5, 52045 Estado de Mexico (Mexico); Valle G, E. del [IPN, ESFM, 07738 Mexico D.F. (Mexico)

    2004-07-01

    The obtained results with the hybrid system BUTREN-RC are presented that obtains recharges of nuclear fuel for a BWR type reactor. The system has implemented the methods of optimization heuristic taboo search and neural networks. The optimization it carried out with the technique of taboo search, and the neural networks, previously trained, were used to predict the behavior of the recharges of fuel, in substitution of commercial codes of reactor simulation. The obtained recharges of nuclear fuel correspond to 5 different operation cycles of the Laguna Verde Nuclear Power plant, Veracruz in Mexico. The obtained results were compared with the designs of this cycles. The energy gain with the recharges of fuel proposals is of approximately 4.5% with respect to those of design. The time of compute consumed it was considerably smaller that when a commercial code for reactor simulation is used. (Author)

  15. Integrated scheme of long-term for spent fuel management of power nuclear reactors; Esquema integrado de largo plazo para la administracion de combustible gastado de reactores nucleares de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Palacios H, J. C.; Martinez C, E., E-mail: ramon-ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2015-09-15

    After of irradiation of the nuclear fuel in the reactor core, is necessary to store it for their cooling in the fuel pools of the reactor. This is the first step in a processes series before the fuel can reach its final destination. Until now there are two options that are most commonly accepted for the end of the nuclear fuel cycle, one is the open nuclear fuel cycle, requiring a deep geological repository for the fuel final disposal. The other option is the fuel reprocessing to extract the plutonium and uranium as valuable materials that remaining in the spent fuel. In this study the alternatives for the final part of the fuel cycle, which involves the recycling of plutonium and the minor actinides in the same reactor that generated them are shown. The results shown that this is possible in a thermal reactor and that there are significant reductions in actinides if they are recycled into reactor fuel. (Author)

  16. Strobes: An oscillatory combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; Lingen, J.N.J. van; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  17. Catalytically enhanced combustion process

    International Nuclear Information System (INIS)

    Rodriguez, C.

    1992-01-01

    This patent describes a fuel having improved combustion efficiency. It comprises a petroleum based liquid hydrocarbon; and a combustion catalyst comprising from about 18 to about 21 weight percent naphthalene, from about 75 to about 80 weight percent toluene, and from about 2.8 to about 3.2 weight percent benzyl alcohol

  18. Strobes: An Oscillatory Combustion

    NARCIS (Netherlands)

    Corbel, J.M.L.; van Lingen, J.N.J.; Zevenbergen, J.F.; Gijzeman, O.L.J.; Meijerink, A.

    2012-01-01

    Strobe compositions belong to the class of solid combustions. They are mixtures of powdered ingredients. When ignited, the combustion front evolves in an oscillatory fashion, and flashes of light are produced by intermittence. They have fascinated many scientists since their discovery at the

  19. Fifteenth combustion research conference

    International Nuclear Information System (INIS)

    1993-01-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers

  20. Fifteenth combustion research conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-06-01

    The BES research efforts cover chemical reaction theory, experimental dynamics and spectroscopy, thermodynamics of combustion intermediates, chemical kinetics, reaction mechanisms, combustion diagnostics, and fluid dynamics and chemically reacting flows. 98 papers and abstracts are included. Separate abstracts were prepared for the papers.

  1. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  2. PDF Modeling of Turbulent Combustion

    National Research Council Canada - National Science Library

    Pope, Stephen B

    2006-01-01

    .... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...

  3. Theory of a new elastic-plastic-viscous model and its application to the nuclear fuel mechanical analysis; Teoria y aplicacion a los combustibles nucleares de un nuevo modelo de respuesta de un solido elasto-visco-plastico

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, A.

    1977-07-01

    In this work a new elastic-plastic-viscous model is described. The model is one of the multiple integral type, and has been included in a numerical code to predict the behaviour of a nuclear fuel of cylindrical form. Some features of this code are also described. (Author) 91 refs.

  4. Report on the possibilities of long-term storage of irradiated nuclear fuels; Rapport sur les possibilites d'entreposage a long terme de combustibles nucleaires irradies

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    This report aims at giving a legislative aspect to the many rules that govern the activities of the back-end of the fuel cycle in France. These activities concern the unloading of spent nuclear fuels, their reprocessing, storage, recycling and definitive disposal. The following points are reviewed and commented: the management of non-immediately reprocessed fuels (historical reasons of the 'all wastes reprocessing' initial choice, evolution of the economic and political context, the future reprocessing or the definitive disposal of spent fuels in excess); the inevitable long-term storage of part of the spent fuels (quantities and required properties of long-term stored fuels, the eventuality of a definitive disposal of spent fuels); the criteria that long-term storage facilities must fulfill (confinement measures, reversibility, surveillance and control during the whole duration of the storage); storage concept to be retained (increase of storage pools capacity, long-term storage in pools of reprocessing plants, centralized storage in pools, surface dry-storage on power plant sites, reversible underground storage, subsurface storage and storage/disposal in galleries, surface dry-storage facilities); the preliminary studies for the creation of long-term storage facilities (public information, management by a public French organization, clarifying of the conditions of international circulation of spent fuels); problems linked with the presence of foreign spent fuels in France (downstream of the reprocessing cycle, foreign plutonium and wastes re-shipment); conclusions and recommendations. (J.S.)

  5. Impact analysis of modifying the composition of the nuclear fuel of a BWR with beryllium oxide; Analisis del impacto de modificar la composicion del combustible nuclear de un BWR con oxido de berilio

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo V, J. M.; Morales S, J. B., E-mail: euqrop@hotmail.com [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2013-10-15

    The beryllium oxide (Be O) presents excellent physical properties, especially its high thermal conductivity that contrasts clearly with that of the uranium dioxide (UO{sub 2}) used at the present as fuel in a great number of nuclear plants. The present work models a nuclear reactor cooled by light water in boiling with two external recirculation loops (BWR/5) using the code for the transitory analysis and postulated accidents Trac-B F1, implementing a UO{sub 2} mixture and different fractions of Be O, with the objective of improving the thermal conductivity of the fuel. The numeric results and the realized analyses indicate that when adding a fraction in volume of 10% the central temperature decreases in 30.4% in stationary state, while during the large break loss of coolant accident the peak cladding temperature diminishes in 7%. Although the real interaction of the mixture has not been determined experimentally, the obtained results are promising. (Author)

  6. Dry low combustion system with means for eliminating combustion noise

    Science.gov (United States)

    Verdouw, Albert J.; Smith, Duane; McCormick, Keith; Razdan, Mohan K.

    2004-02-17

    A combustion system including a plurality of axially staged tubular premixers to control emissions and minimize combustion noise. The combustion system includes a radial inflow premixer that delivers the combustion mixture across a contoured dome into the combustion chamber. The axially staged premixers having a twist mixing apparatus to rotate the fluid flow and cause improved mixing without causing flow recirculation that could lead to pre-ignition or flashback.

  7. Sandia Combustion Research: Technical review

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This report contains reports from research programs conducted at the Sandia Combustion Research Facility. Research is presented under the following topics: laser based diagnostics; combustion chemistry; reacting flow; combustion in engines and commercial burners; coal combustion; and industrial processing. Individual projects were processed separately for entry onto the DOE databases.

  8. Indoor combustion and asthma.

    Science.gov (United States)

    Belanger, Kathleen; Triche, Elizabeth W

    2008-08-01

    Indoor combustion produces both gases (eg, nitrogen dioxide, carbon monoxide) and particulate matter that may affect the development or exacerbation of asthma. Sources in the home include both heating devices (eg, fireplaces, woodstoves, kerosene heaters, flued [ie, vented] or nonflued gas heaters) and gas stoves for cooking. This article highlights the recent literature examining associations between exposure to indoor combustion and asthma development and severity. Since asthma is a chronic condition affecting both children and adults, both age groups are included in this article. Overall, there is some evidence of an association between exposure to indoor combustion and asthma, particularly asthma symptoms in children. Some sources of combustion such as coal stoves have been more consistently associated with these outcomes than other sources such as woodstoves.

  9. Development of database for spent fuel and special waste from the Spanish nuclear power plants; Desarrollo de la base de datos para el combustible gastado y residuos especiales de las centrales nucleares espanolas

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Gandal, R.; Rodriguez Gomez, M. A.; Serrano, G.; Lopez Alvarez, G.

    2013-07-01

    GNF Engineering is developing together with ENRESA and with the UNESA participation, the spent fuel and high activity radioactive waste data base of Spanish nuclear power plants. In the article is detailed how this strategic project essential to carry out the CTS (centralized temporary storage) future management and other project which could be emerged is being dealing with, This data base will serve as mechanics of relationship between ENRESA and Spanish NPPS, covering the expected necessary information to deal with mentioned future management of spent fuel and high activity radioactive waste. (Author)

  10. Sandia Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, S.C.; Palmer, R.E.; Montana, C.A. (eds.)

    1988-01-01

    During the late 1970s, in response to a national energy crisis, Sandia proposed to the US Department of Energy (DOE) a new, ambitious program in combustion research. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''user facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative-involving US inventories, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions several research projects which have been simulated by working groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship program, supported through the Office of Energy Research, has been instrumental in the success of some of these joint efforts. The remainder of this report presents results of calendar year 1988, separated thematically into eleven categories. Referred journal articles appearing in print during 1988 and selected other publications are included at the end of Section 11. Our traditional'' research activities--combustion chemistry, reacting flows, diagnostics, engine and coal combustion--have been supplemented by a new effort aimed at understanding combustion-related issues in the management of toxic and hazardous materials.

  11. Design of nuclear fuel cells by means of a statistical analysis and a sensibility study; Diseno de celdas de combustible nuclear mediante un analisis estadistico y un estudio de sensibilidad

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui C, V. [Universidad Autonoma de Zacatecas, Unidad Academica de Estudios Nucleares, Cipres No. 10, Fracc. La Penuela, 98060 Zacatecas (Mexico); Castillo M, J. A.; Ortiz S, J. J.; Montes T, J. L.; Perusquia del C, R., E-mail: alejandro.castillo@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2013-10-15

    This work contains the results of the statistical analysis realized to study the nuclear fuel cells performance, considering the frequencies for the election of fuel bars used in the design of the same ones. The election of the bars used for the cells design are of 3 types, the first election shows that to the plotting the respective frequency is similar to a normal distribution, in the second case the frequencies graph is of type inverted square X{sup 2} and the last election is when the bars are chosen in aleatory form. The heuristic techniques used for the cells design were the neural networks, the ant colonies and a hybrid between the dispersed search and the trajectories re-linkage. To carry out the statistical analysis in the cells design were considered the local power peak factor and the neutron infinite multiplication factor (k∞) of this. On the other hand, the performance of the designed cells was analyzed when verifying the position of the bars containing gadolinium. The results show that is possible to design cells of nuclear fuel with a good performance, when considering the frequency of the bars used in their design. (Author)

  12. License considerations of the temporary storage in dry of the nuclear spent fuel of light water reactors; Consideraciones de licenciamiento del almacenamiento temporal en seco del combustible gastado nuclear de reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Bazan L, A.; Vargas A, A.; Cardenas J, J. B., E-mail: ariadna.bazan@cfe.gob.mx [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Carretera Cardel-Nautla Km 42.5, Alto Lucero, Veracruz (Mexico)

    2011-11-15

    The spent fuel of the nuclear power plants of light water is usually stored in cells or frames inside steel coating pools. The water of the spent fuel pool has a double function: it serves as shielding or barrier for the radiation that emits the spent fuel and, on the other hand, to cool it in accordance with its decay in the time. The administration policies of the spent fuel vary of some countries to other, resulting common to all the cases this initial stage of cooling in the pools, after its irradiation in the reactor. When is not possible to increase more this capacity, usually, technologies of temporary storage in dry of the spent fuel in independent facilities are used. The storage in dry of the spent fuel differs of the storage in the fuel pools making use of gas instead of water as coolant and using metal or concrete instead of the water like barrier against the radiation. The storage industry in dry offers a great variety of technologies, which should be certified by the respective nuclear regulator entity before its use. (Author)

  13. Standard technical specifications combustion engineering plants

    International Nuclear Information System (INIS)

    1992-09-01

    This report documents the results of the combined effort of the NRC and the industry to produce improved Standard Technical Specifications (STS) for Combustion Engineering Plants. The improved STS wee developed based on the criteria in the interim Commission Policy Statement on Technical Specification Improvements for Nuclear Power Reactors, dated February 6, 1987. The improved STS will be used as the basis for individual nuclear power plant licensees to develop improved plant-specific technical specifications. This report contains three volumes. This document, Volume 1, contains the Specifications for all chapters and sections of the improved STS. Volume 2 contains the Bases for Sections 3.4--3.9 of the improved STS

  14. Evaluation of the recycling costs, as a disposal form of the spent nuclear fuel; Evaluacion de los costos del reciclado como una forma de disposicion del combustible nuclear gastado

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J.R.; Alonso V, G.; Palacios, J.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jrrs@nuclear.inin.mx

    2006-07-01

    At the moment there are 2 BWR reactors operating in the Nuclear Power station of Laguna Verde in Mexico. At the end of the programmed life of the reactors (40 years) its will have completed 26 operation cycles, with will have 6712 spent fuel assemblies will be in the pools of the power station. Up to now, the decision on the destination of the high level wastes (spent nuclear fuel) it has not been determined in Mexico, the same as in other countries, adopting a politics of 'to wait to see that it happens in the world', in this respect, in the world two practical alternatives exist, one is to store the fuel in repositories designed for that end, another is reprocess the fuel to recycle the plutonium contained in it, both solutions have their particular technical and economic problematic. In this work it is evaluated from the economic point of view the feasibility of having the spent fuel, using the one recycled fuel, for that which thinks about a consistent scenario of a BWR reactor in which the fuel discharged in each operation cycle is reprocessed and its are built fuel assemblies of the MOX type to replace partly to the conventional fuel. This scenario shows an alternative to the indefinite storage of the high level radioactive waste. The found results when comparing from the economic point of view both options, show that the one recycled, even with the current costs of the uranium it is of the order of 7% more expensive that the option of storing the fuel in repositories constructed for that purpose. However the volumes of spent fuel decrease in 66%. (Author)

  15. Combustion behavior of spent solvent in a submerged combustion process

    International Nuclear Information System (INIS)

    Uchiyama, Gunzo; Maeda, Mitsuru; Fujine, Sachio; Amakawa, Masayuki; Uchida, Katsuhide.

    1993-10-01

    An experimental study has been conducted in order to evaluate the applicability of a submerged combustion technique to the treatment of spent solvents contaminated with TRU elements. A bench-scale equipment of submerged combustor having combustion capacity of 1.39 liter of tri-n-butyl phosphate (TBP) per hour was used to obtain process data such as the distribution behavior of radioactive nuclides in the submerged combustion process. This report describes the experimental results on the combustion characteristics of the simulated spent solvents of TBP and/or n-dodecane, and on the distribution behaviors of combustion products such as ruthenium and iodine in the submerged combustion process. (author)

  16. IMPLEMENTACIÓN EN HARDWARE DEL ESTÁNDAR DE ENCRIPTACIÓN AVANZADO (AES, EN UNA PLATAFORMA FPGA, EMPLEANDO EL MICROCONTROLADOR PICOBLAZETM

    Directory of Open Access Journals (Sweden)

    J. Fernando Piñal M.

    2009-01-01

    Full Text Available En este trabajo analizamos las características del estándar de encriptación avanzado AES y suimplementación en una tarjeta de desarrollo FPGA Spartan-3E , utilizando una de las herramientas de procesamiento embebido del fabricante Xilinx®, el microcontrolador PicoBlaze¿. Además se diseñó un bloque en VHDL, el cual es el encargado de realizar la interfaz entre el microcontrolador y los periféricos de entrada- salida de la tarjeta. El ingreso de los datos a cifrar puede realizarse de dos maneras: mediante un teclado conectado al puerto PS/2 de la tarjeta o transmitiéndolos por el puerto serie de una computadora personal; para esto se diseñó una interfaz programada en Matlab¿. Los datos cifrados pueden observarse en el exhibidor LCD de la tarjeta de desarrollo, o bien se pueden transmitir en modo serial hacia una computadora personal. Estas opciones de funcionamiento del sistema se seleccionan mediante los interruptores deslizables de la tarjeta de desarrollo. La verificación del funcionamiento del sistema se realiza haciendo uso del documento oficial que describe a AES: FIPS-PUB 197. Aun cuando se implementó el algoritmo en un sistema basado en un procesador, se obtuvo un buen rendimiento. Se incluye la comparación del desempeño de nuestro diseño con otras arquitecturas que implementan también el mismo algoritmo.

  17. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water; Estudio de un ensamble de combustible para el reactor nuclear de generacion IV enfriado con agua supercritica

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Espinosa P, G., E-mail: albrm29@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (MX)

    2011-11-15

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  18. Combustion and regulation; Combustion et reglementation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This conference was organized after the publication of the French by-law no 2010 relative to combustion installations and to the abatement of atmospheric pollution. Five topics were discussed during the conference: the new regulations, their content, innovations and modalities of application; the means of energy suppliers to face the new provisions and their schedule; the manufacturers proposals for existing installations and the new equipments; the administration control; and the impact of the new measures on exploitation and engineering. Twenty papers and 2 journal articles are reported in these proceedings. (J.S.)

  19. Internal combustion engine

    Science.gov (United States)

    Baker, Quentin A.; Mecredy, Henry E.; O'Neal, Glenn B.

    1991-01-01

    An improved engine is provided that more efficiently consumes difficult fuels such as coal slurries or powdered coal. The engine includes a precombustion chamber having a portion thereof formed by an ignition plug. The precombustion chamber is arranged so that when the piston is proximate the head, the precombustion chamber is sealed from the main cylinder or the main combustion chamber and when the piston is remote from the head, the precombustion chamber and main combustion chamber are in communication. The time for burning of fuel in the precombustion chamber can be regulated by the distance required to move the piston from the top dead center position to the position wherein the precombustion chamber and main combustion chamber are in communication.

  20. Transition nozzle combustion system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Won-Wook; McMahan, Kevin Weston; Maldonado, Jaime Javier

    2016-11-29

    The present application provides a combustion system for use with a cooling flow. The combustion system may include a head end, an aft end, a transition nozzle extending from the head end to the aft end, and an impingement sleeve surrounding the transition nozzle. The impingement sleeve may define a first cavity in communication with the head end for a first portion of the cooling flow and a second cavity in communication with the aft end for a second portion of the cooling flow. The transition nozzle may include a number of cooling holes thereon in communication with the second portion of the cooling flow.

  1. Studies in combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Koszykowski, M.L. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to develop a fundamental understanding and a quantitative predictive capability in combustion modeling. A large part of the understanding of the chemistry of combustion processes comes from {open_quotes}chemical kinetic modeling.{close_quotes} However, successful modeling is not an isolated activity. It necessarily involves the integration of methods and results from several diverse disciplines and activities including theoretical chemistry, elementary reaction kinetics, fluid mechanics and computational science. Recently the authors have developed and utilized new tools for parallel processing to implement the first numerical model of a turbulent diffusion flame including a {open_quotes}full{close_quotes} chemical mechanism.

  2. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  3. Combuster. [low nitrogen oxide formation

    Science.gov (United States)

    Mckay, R. A. (Inventor)

    1978-01-01

    A combuster is provided for utilizing a combustible mixture containing fuel and air, to heat a load fluid such as water or air, in a manner that minimizes the formation of nitrogen oxide. The combustible mixture passes through a small diameter tube where the mixture is heated to its combustion temperature, while the load fluid flows past the outside of the tube to receive heat. The tube is of a diameter small enough that the combustible mixture cannot form a flame, and yet is not subject to wall quench, so that combustion occurs, but at a temperature less than under free flame conditions. Most of the heat required for heating the combustible mixture to its combustion temperature, is obtained from heat flow through the walls of the pipe to the mixture.

  4. Toxicology of Biodiesel Combustion products

    Science.gov (United States)

    1. Introduction The toxicology of combusted biodiesel is an emerging field. Much of the current knowledge about biological responses and health effects stems from studies of exposures to other fuel sources (typically petroleum diesel, gasoline, and wood) incompletely combusted. ...

  5. Análisis de costo-efectividad de hormonoterapia en primera línea de tratamiento en cáncer avanzado de mama de mujeres postmenopáusicas receptor hormonal positivo en Colombia

    OpenAIRE

    León Guzmán, Erika

    2012-01-01

    Objetivo: Comparar los costos y la efectividad de las estrategias de hormonoterapia usadas en primera línea de tratamiento para el cáncer avanzado de mama en pacientes postmenopáusicas y receptor hormonal positivo en Colombia. Materiales y métodos: Se realiza evaluación económica de costo-efectividad, mediante simulación con modelo de Markov se comparan las estrategias hasta la expectativa de vida de las pacientes desde la perspectiva de la sociedad. La efectividad se mide en ...

  6. Combustion Engine Identification and Control

    OpenAIRE

    Blasco Serrano, Daniel

    2013-01-01

    The topic of this thesis is system identification and control of two different internal combustion engines, Partially Premixed Combustion (PPC) engine and a more conventional Combustion Ignited (CI) diesel engine. The control of both engines is aimed to emission reduction and to increase the eficiency. There is an introduction to the internal combustion engine, as well as theory used about system identification and Model Predictive Control (MPC). A physical model of a PPC en...

  7. Report of the generation of the nuclear bank Presto-Hot for the SVEA-96 fuel with the FMS codes; Reporte de generacion del banco nuclear PRESTO-HOT para el combustible SVEA-96 con los codigos del FMS

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1991-12-15

    In this work it is described in a general way the form in that was generated the database of the SVEA-96 fuel for Laguna Verde. The formation of the bank it was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-lB codes of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico, D.F. The formed bank is denominated 'LlPG9102'. All this was carried out following the '6F3/I/CN029/90/P1' procedure. By means of the MERGE code of the FMS package installed in the VAX system of the offices of the Federal Commission of Electricity in Mexico, D.F., it was annex this information to the contained bank 'LlPG3314' being generated the one bank 'LlPG9701'. This contains the information of the 5 fuel types of the initial load of the unit 1 and of the first reload of Laguna Verde as well as the information corresponding to the SVEA-96 fuel. The results obtained during the formation of the data bank of the fuel as for the behavior of those different cell parameters regarding the burnt of the fuel and the variation of vacuums in the coolant channel is compared with those reported in the documents of fuel design provided by ABB-ATOM. These comparisons, although they are not exhaustive they show the general tendency of the results the which is quite favorable. The generated database contains the enough information in terms of constant in two dependent groups of burnt and instantaneous vacuums, for the different arrangements of present fuel bars in the one assemble as well as those coefficients that take into account the presence of the control bar, the variation in the fuel temperature and the one effect of the 'historical' vacuums. All this included in that is knows as SUPER option of the bank for PRESTO with the options PRCOEF and POLRAM. Also, in the Annex G of this report its were provided for separate the M-Factor, the coefficients of Xenon and the

  8. 75 FR 32142 - Combustible Dust

    Science.gov (United States)

    2010-06-07

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of combustible dust Web Chat. SUMMARY: OSHA invites interested parties to participate in a Web Chat on the workplace hazards of combustible dust. OSHA plans to use the information gathered in response to this Web...

  9. Optical Tomography in Combustion

    DEFF Research Database (Denmark)

    Evseev, Vadim

    . JQSRT 113 (2012) 2222, 10.1016/j.jqsrt.2012.07.015] included in the PhD thesis as an attachment. The knowledge and experience gained in the PhD project is the first important step towards introducing the advanced optical tomography methods of combustion diagnostics developed in the project to future...

  10. Resultados del uso de la prótesis transtumoral en el cáncer de esófago avanzado

    Directory of Open Access Journals (Sweden)

    Radamés I Adefna Pérez

    2000-12-01

    Full Text Available El cáncer de esófago constituye una de las neoplasias más frecuentes, y alcanza en algunos países proporciones epidémicas. A pesar de los adelantos diagnósticos, en el 50 % de los pacientes se realizará sólo un tratamiento paliativo. Una de estas técnicas la constituye la intubación transtumoral, para aliviar la disfagia y permitir la deglución. Con el objetivo de evaluar su utilidad, se realizó una investigación prospectiva, desde 1993 hasta 1997, en pacientes con carcinoma de esófago avanzado. Se seleccionaron a 22 pacientes: en estadio IV, 15 (68,1 %; con fístulas traqueoesofágicas, 3 (13,6 % y 4 por no consentimiento para una operación curativa (18,1 %. La prótesis utilizada fue la de Häring, colocada por tracción. El sexo masculino fue el más afectado, 81,8 %; la localización más común fue en el tercio medio, 63,6 %; en todos los pacientes se diagnosticó carcinoma epidermoide; no existió mortalidad operatoria. La supervivencia al año fue de 3 enfermos (13,6 %. No existieron complicaciones relacionadas con el uso de la prótesisEsophagus cancer is one of the most frequent neoplasias and it reaches epidemic proportions in some countries. In spite of the diagnostic advances, 50% of the patients will recieve only a palliative treatment. Transtumoral intubation is one of these techniques used to alliviate dysphagia and to allow deglutition. A prospective research was made among patients with advanced esophagus carcinoma from 1993 to 1997 in order to evaluate its usefulness. 22 patients were selected: 15 (68,1%, in stage IV; 3 (13,6%, with tracheoesophageal fistulas; and 4 (18,1%, with no consent for a curative operation. The prosthesis used was that of Häring, which was placed by traction. Males were the most affected, 81,8%. The commonest localization was the mean third, 63,6%. Epidermoid carcinoma was diagnosed in all patients. There was no operative mortality. Survival after a year was of 3 patients (13,6%. There

  11. Hydrogen combustion modelling in large-scale geometries

    International Nuclear Information System (INIS)

    Studer, E.; Beccantini, A.; Kudriakov, S.; Velikorodny, A.

    2014-01-01

    Hydrogen risk mitigation issues based on catalytic recombiners cannot exclude flammable clouds to be formed during the course of a severe accident in a Nuclear Power Plant. Consequences of combustion processes have to be assessed based on existing knowledge and state of the art in CFD combustion modelling. The Fukushima accidents have also revealed the need for taking into account the hydrogen explosion phenomena in risk management. Thus combustion modelling in a large-scale geometry is one of the remaining severe accident safety issues. At present day there doesn't exist a combustion model which can accurately describe a combustion process inside a geometrical configuration typical of the Nuclear Power Plant (NPP) environment. Therefore the major attention in model development has to be paid on the adoption of existing approaches or creation of the new ones capable of reliably predicting the possibility of the flame acceleration in the geometries of that type. A set of experiments performed previously in RUT facility and Heiss Dampf Reactor (HDR) facility is used as a validation database for development of three-dimensional gas dynamic model for the simulation of hydrogen-air-steam combustion in large-scale geometries. The combustion regimes include slow deflagration, fast deflagration, and detonation. Modelling is based on Reactive Discrete Equation Method (RDEM) where flame is represented as an interface separating reactants and combustion products. The transport of the progress variable is governed by different flame surface wrinkling factors. The results of numerical simulation are presented together with the comparisons, critical discussions and conclusions. (authors)

  12. Characterisation of metal combustion with DUST code

    Energy Technology Data Exchange (ETDEWEB)

    García-Cascales, José R., E-mail: jr.garcia@upct.es [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Velasco, F.J.S. [Centro Universitario de la Defensa de San Javier, MDE-UPCT, C/Coronel Lopez Peña s/n, 30730 Murcia (Spain); Otón-Martínez, Ramón A.; Espín-Tolosa, S. [DITF, ETSII, Universidad Politécnica de Cartagena, Dr Fleming s/n, 30202 Murcia (Spain); Bentaib, Ahmed; Meynet, Nicolas; Bleyer, Alexandre [Institut de Radioprotection et Sûreté Nucléaire, BP 17, 92260 Fontenay-aux-Roses (France)

    2015-10-15

    Highlights: • This paper is part of the work carried out by researchers of the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security of France. • We have developed a code for the study of mobilisation and combustion that we have called DUST by using CAST3M, a multipurpose software for studying many different problems of Mechanical Engineering. • In this paper, we present the model implemented in the code to characterise metal combustion which describes the combustion model, the kinetic reaction rates adopted and includes a first comparison between experimental data and calculated ones. • The results are quite promising although suggest that improvement must be made on the kinetic of the reaction taking place. - Abstract: The code DUST is a CFD code developed by the Technical University of Cartagena, Spain and the Institute of Radioprotection and Nuclear Security, France (IRSN) with the objective to assess the dust explosion hazard in the vacuum vessel of ITER. Thus, DUST code permits the analysis of dust spatial distribution, remobilisation and entrainment, explosion, and combustion. Some assumptions such as particle incompressibility and negligible effect of pressure on the solid phase make the model quite appealing from the mathematical point of view, as the systems of equations that characterise the behaviour of the solid and gaseous phases are decoupled. The objective of this work is to present the model implemented in the code to characterise metal combustion. In order to evaluate its ability analysing reactive mixtures of multicomponent gases and multicomponent solids, two combustion problems are studied, namely H{sub 2}/N{sub 2}/O{sub 2}/C and H{sub 2}/N{sub 2}/O{sub 2}/W mixtures. The system of equations considered and finite volume approach are briefly presented. The closure relationships used are commented and special attention is paid to the reaction rate correlations used in the model. The numerical

  13. Sulfur Chemistry in Combustion I

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Glarborg, Peter

    2000-01-01

    Most fossil fuels contain sulphur and also biofuels and household waste have a sulphur content. As a consequence sulphur species will often be present in combustion processes. In this paper the fate and influence of fuel sulphur species in combustion will be treated. First a description...... of the sulphur compounds in fossil fuels and the possibilities to remove them will be given. Then the combustion of sulphur species and their influence on the combustion chemistry and especially on the CO oxidation and the NOx formation will be described. Finally the in-situ removal of sulphur in the combustion...

  14. Low emission internal combustion engine

    Science.gov (United States)

    Karaba, Albert M.

    1979-01-01

    A low emission, internal combustion compression ignition engine having a cylinder, a piston movable in the cylinder and a pre-combustion chamber communicating with the cylinder near the top thereof and in which low emissions of NO.sub.x are achieved by constructing the pre-combustion chamber to have a volume of between 70% and 85% of the combined pre-chamber and main combustion chamber volume when the piston is at top dead center and by variably controlling the initiation of fuel injection into the pre-combustion chamber.

  15. Characteristics of combustion products: a review of the literature

    International Nuclear Information System (INIS)

    Chan, M.K.W.; Mishima, J.

    1983-07-01

    To determine the effects of fires in nuclear-fuel-cycle facilities, Pacific Northwest Laboratory (PNL) has surveyed the literature to gather data on the characteristics of combustion products. This report discusses the theories of the origin of combustion with an emphasis on the behavior of the combustible materials commonly found in nuclear-fuel-cycle facilities. Data that can be used to calculate particulate generation rate, size, distribution, and concentration are included. Examples are given to illustrate the application of this data to quantitatively predict both the mass and heat generated from fires. As the final result of this review, information gaps are identified that should be filled for fire-accident analyses in fuel-cycle facilities. 29 figures, 32 tables

  16. Characteristics of combustion products: a review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.K.W.; Mishima, J.

    1983-07-01

    To determine the effects of fires in nuclear-fuel-cycle facilities, Pacific Northwest Laboratory (PNL) has surveyed the literature to gather data on the characteristics of combustion products. This report discusses the theories of the origin of combustion with an emphasis on the behavior of the combustible materials commonly found in nuclear-fuel-cycle facilities. Data that can be used to calculate particulate generation rate, size, distribution, and concentration are included. Examples are given to illustrate the application of this data to quantitatively predict both the mass and heat generated from fires. As the final result of this review, information gaps are identified that should be filled for fire-accident analyses in fuel-cycle facilities. 29 figures, 32 tables.

  17. Fuel accountability and control at Combustion Engineering, Inc

    International Nuclear Information System (INIS)

    Kersteen, G.C.

    1978-01-01

    Combustion Engineering, Inc. has recently developed and installed an automated data collection, data processing system for the accounting and control of special nuclear material. The system uses a variety of data collection techniques and some relatively new data processing ideas. The next few pages describe the Fuel Accountability and Control System

  18. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  19. Combustion engine system

    Science.gov (United States)

    Houseman, John (Inventor); Voecks, Gerald E. (Inventor)

    1986-01-01

    A flow through catalytic reactor which selectively catalytically decomposes methanol into a soot free hydrogen rich product gas utilizing engine exhaust at temperatures of 200 to 650 C to provide the heat for vaporizing and decomposing the methanol is described. The reactor is combined with either a spark ignited or compression ignited internal combustion engine or a gas turbine to provide a combustion engine system. The system may be fueled entirely by the hydrogen rich gas produced in the methanol decomposition reactor or the system may be operated on mixed fuels for transient power gain and for cold start of the engine system. The reactor includes a decomposition zone formed by a plurality of elongated cylinders which contain a body of vapor permeable, methanol decomposition catalyst preferably a shift catalyst such as copper-zinc.

  20. Dynamic features of combustion

    Science.gov (United States)

    Oppenheim, A. K.

    1985-01-01

    The dynamic features of combustion are discussed for four important cases: ignition, inflammation, explosion, and detonation. Ignition, the initiation of a self-sustained exothermic process, is considered in the simplest case of a closed thermodynamic system and its stochastic distribution. Inflammation, the initiation and propagation of self-sustained flames, is presented for turbulent flow. Explosion, the dynamic effects caused by the deposition of exothermic energy in a compressible medium, is illustrated by self-similar blast waves with energy deposition at the front and the adiabatic non-self-similar wave. Detonation, the most comprehensive illustration of all the dynamic effects of combustion, is discussed with a phenomenological account of the development and structure of the wave.

  1. Combustion science and engineering

    CERN Document Server

    Annamalai, Kalyan

    2006-01-01

    Introduction and Review of Thermodynamics Introduction Combustion Terminology Matter and Its Properties Microscopic Overview of Thermodynamics Conservation of Mass and Energy and the First Law of Thermodynamics The Second Law of Thermodynamics Summary Stoichiometry and Thermochemistry of Reacting Systems Introduction Overall Reactions Gas Analyses Global Conservation Equations for Reacting Systems Thermochemistry Summary Appendix Reaction Direction and Equilibrium Introduction Reaction Direction and Chemical Equilibrium Chemical Equilibrium Relations Vant Hoff Equation Adi

  2. Fluid-bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, G.; Schoebotham, N.

    1981-02-01

    In Energy Equipment Company's two-stage fluidized bed system, partial combustion in a fluidized bed is followed by burn-off of the generated gases above the bed. The system can be retrofitted to existing boilers, and can burn small, high ash coal efficiently. It has advantages when used as a hot gas generator for process drying. Tests on a boiler at a Cadbury Schweppes plant are reported.

  3. Issues in waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Gustavsson, Lennart; Robertson, Kerstin; Tullin, Claes [Swedish National Testing and Research Inst., Boraas (Sweden); Sundquist, Lena; Wrangensten, Lars [AaF-Energikonsult AB, Stockholm (Sweden); Blom, Elisabet [AaF-Processdesign AB, Stockholm (Sweden)

    2003-05-01

    The main purpose of this review is to provide an overview of the state-of-the-art on research and development issues related to waste combustion with relevance for Swedish conditions. The review focuses on co-combustion in grate and fluidised bed furnaces. It is primarily literature searches in relevant databases of scientific publications with to material published after 1995. As a complement, findings published in different report series, have also been included. Since the area covered by this report is very wide, we do not claim to cover the issues included completely and it has not been possitile to evaluate the referred studies in depth. Basic knowledge about combustion issues is not included since such information can be found elsewhere in the literature. Rather, this review should be viewed as an overview of research and development in the waste-to-energy area and as such we hope that it will inspire scientists and others to further work in relevant areas.

  4. Combustion of uraniferous lignites in fluidized bed

    International Nuclear Information System (INIS)

    Morales, G.; Gasos, P.

    1985-01-01

    In this paper a description of the continuous fluid bed combustion pilot plant unit, installed in the Junta de Energia Nuclear facilities, is presented. Besides, this paper deals with some of the studies carried out in the pilot plant aimed at the recovery of uranium from lignites, high in sulfur and ashes, coming from Calaf basin (Barcelona). These studies include the recovery of the heating value of these lignites and the reduction of environmental effect of SO 2 . Based on these studies an application exercise is presented. 9 references, 5 figures, 5 tables

  5. The Diesel Combustion Collaboratory: Combustion Researchers Collaborating over the Internet

    Energy Technology Data Exchange (ETDEWEB)

    C. M. Pancerella; L. A. Rahn; C. Yang

    2000-02-01

    The Diesel Combustion Collaborator (DCC) is a pilot project to develop and deploy collaborative technologies to combustion researchers distributed throughout the DOE national laboratories, academia, and industry. The result is a problem-solving environment for combustion research. Researchers collaborate over the Internet using DCC tools, which include: a distributed execution management system for running combustion models on widely distributed computers, including supercomputers; web-accessible data archiving capabilities for sharing graphical experimental or modeling data; electronic notebooks and shared workspaces for facilitating collaboration; visualization of combustion data; and video-conferencing and data-conferencing among researchers at remote sites. Security is a key aspect of the collaborative tools. In many cases, the authors have integrated these tools to allow data, including large combustion data sets, to flow seamlessly, for example, from modeling tools to data archives. In this paper the authors describe the work of a larger collaborative effort to design, implement and deploy the DCC.

  6. Internal combustion engine using premixed combustion of stratified charges

    Science.gov (United States)

    Marriott, Craig D [Rochester Hills, MI; Reitz, Rolf D [Madison, WI

    2003-12-30

    During a combustion cycle, a first stoichiometrically lean fuel charge is injected well prior to top dead center, preferably during the intake stroke. This first fuel charge is substantially mixed with the combustion chamber air during subsequent motion of the piston towards top dead center. A subsequent fuel charge is then injected prior to top dead center to create a stratified, locally richer mixture (but still leaner than stoichiometric) within the combustion chamber. The locally rich region within the combustion chamber has sufficient fuel density to autoignite, and its self-ignition serves to activate ignition for the lean mixture existing within the remainder of the combustion chamber. Because the mixture within the combustion chamber is overall premixed and relatively lean, NO.sub.x and soot production are significantly diminished.

  7. Development of flameless combustion; Desarrollo de la combustion sin flama

    Energy Technology Data Exchange (ETDEWEB)

    Flores Sauceda, M. Leonardo; Cervantes de Gortari, Jaime Gonzalo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: 8344afc@prodigy.net.mx; jgonzalo@servidor.unam.mx

    2010-11-15

    The paper intends contribute to global warming mitigation joint effort that develops technologies to capture the CO{sub 2} produced by fossil fuels combustion and to reduce emission of other greenhouse gases like the NO{sub x}. After reviewing existing combustion bibliography is pointed out that (a) touches only partial aspects of the collective system composed by Combustion-Heat transfer process-Environment, whose interactions are our primary interest and (b) most specialists think there is not yet a clearly winning technology for CO{sub 2} capture and storage. In this paper the study of combustion is focused as integrated in the aforementioned collective system where application of flameless combustion, using oxidant preheated in heat regenerators and fluent gas recirculation into combustion chamber plus appropriated heat and mass balances, simultaneously results in energy saving and environmental impact reduction. [Spanish] El trabajo pretende contribuir al esfuerzo conjunto de mitigacion del calentamiento global que aporta tecnologias para capturar el CO{sub 2} producido por la combustion de combustibles fosiles y para disminuir la emision de otros gases invernadero como NOx. De revision bibliografica sobre combustion se concluye que (a) trata aspectos parciales del sistema compuesto por combustion-proceso de trasferencia de calor-ambiente, cuyas interacciones son nuestro principal interes (b) la mayoria de especialistas considera no hay todavia una tecnologia claramente superior a las demas para captura y almacenaje de CO{sub 2}. Se estudia la combustion como parte integrante del mencionado sistema conjunto, donde la aplicacion de combustion sin flama, empleando oxidante precalentado mediante regeneradores de calor y recirculacion de gases efluentes ademas de los balances de masa y energia adecuados, permite tener simultaneamente ahorros energeticos e impacto ambiental reducido.

  8. Dissolution of nuclear fuels; Disolucion de combustibles Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Uriarte Hueda, A.; Berberana Eizmendi, M.; Rainey, R.

    1968-07-01

    A laboratory study was made of the instantaneous dissolution rate (IDR) for unirradiated uranium metal rods and UO{sub 2}, PuO{sub 2} and PuO{sub 2}-UO{sub 2} pellets in boiling nitric acid alone and with additives. The uranium metal and UO{sub 2} dissolved readily in nitric acid alone; PuO{sub 2} dissolved slowly even with the addition of fluoride; PuO{sub 2}-UO{sub 2} pellets containing as much as 35% PuO{sub 2} in UO{sub 2} gave values of the instantaneous dissolution rate to indicate can be dissolved with nitric acid alone. An equation to calculate the time for complete dissolution has been determinate in function of the instantaneous dissolution rates. The calculated values agree with the experimental. Uranium dioxide pellets from various sources but all having a same density varied in instantaneous dissolution rate. All the pellets, however, have dissolved ved in the same time. The time for complete dissolution of PuO{sub 2}-UO{sub 2} pellets, having the same composition, and the concentration of the used reagents are function of the used reagents are function of the fabrication method. (Author) 8 refs.

  9. Factores asociados al estadio clínico avanzado en el inicio de la terapia antirretroviral Factors associated to late clinical stage at the initiation of antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Eduardo Warley

    2012-10-01

    Full Text Available A fin de evaluar la frecuencia y posibles factores asociados a la presencia de estadio clínico avanzado al inicio de terapia antirretroviral (ECAITA, efectuamos un análisis retrospectivo de datos de dos cohortes prospectivas de pacientes infectados por HIV que iniciaron terapia antirretroviral (sin tratamiento anterior entre 2005 y 2009. Se analizaron las historias clínicas de 264 pacientes, 123 mujeres (46.6% y 141 hombres (53.4%. La mediana de edad fue de 37.7 años. Observamos ECAITA en 132 casos (50%, de los cuales 102 (77.2% se asociaron a diagnóstico tardío de infección por HIV y 30 (22.8% a pacientes con diagnóstico previo no retenidos en el cuidado clínico de la salud. La mediana de células CD4 fue 120/ml y de carga viral 58 038 copias/ml. El recuento de células CD4 era inferior a 200 cel/ml en 174 pacientes (71.3%. Los hombres presentaron ECAITA con mayor frecuencia que las mujeres (59.8% vs. 40.2%, en quienes el diagnóstico se realizó durante el control de un embarazo en el 25.2% de los casos. Consumo elevado de alcohol (p 0.006, ser soltero (p 0.04 y nivel de educación menor al secundario completo (p 0.008 se asociaron a ECAITA en el análisis bivariado. Ser de sexo masculino (p 0.003 fue el único factor asociado tanto en el análisis bivariado como en el multivariado. Nuestros datos refuerzan la necesidad de expandir el testeo para HIV y deberían impulsar a definir acciones programáticas que promuevan el ingreso precoz al cuidado de la infección por HIV.In order to evaluate the frequency of a late clinical stage in HIV infected patients at onset of antiretroviral therapy (LART and to identify possible associated factors, we performed a retrospective analysis of data reported in two prospective cohorts of HIV infected patients who started antiretroviral therapy for the first time between 2005 and 2009. Medical records of 265 patients -123 women (46.6% and 141 men, median age 37.7 years old- were analyzed. LART was

  10. Propellant combustion at low pressures

    Energy Technology Data Exchange (ETDEWEB)

    Schoyer, H.F.R.; Korting, P.A.O.G.

    1986-03-01

    The combustion characteristics of a family of composite propellants have been investigated at low (i.e., subatmospheric) pressures and three different temperatures. Although a de Vieille-type burning rate law appeared to be applicable, the burning rate exponent and coefficient vary strongly with the initial temperatures. Indications are that this is primarily due to the presence of nitroguanidine and oxalate. Combustion efficiency proved to be poor. At low pressures, all propellants are susceptible to irregular burning: above 50 kPa oscillatory combustion was hardly observed. All propellants exhibit distinct preferred frequencies for oscillatory combustion. These frequencies, being much lower than the acoustic frequency of the test system, are associated with the combustion characteristics of the propellants. They depend strongly on the combustion pressure and the initial propellant temperature.

  11. Example Problems in LES Combustion

    Science.gov (United States)

    2016-09-26

    memorandum is the evaporation and subsequent combustion of liquid fuel droplets. Kerosene, a complex hydrogen mixture, is explored from the standpoint of...AFRL-RW-EG-TP-2016-002 Example Problems in LES Combustion Douglas V. Nance Air Force Research Laboratory Munitions...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Example Problem in LES Combustion 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER

  12. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  13. The modes of gaseous combustion

    CERN Document Server

    Rubtsov, Nickolai M

    2016-01-01

    This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.

  14. Mathematical Modeling in Combustion Science

    CERN Document Server

    Takeno, Tadao

    1988-01-01

    An important new area of current research in combustion science is reviewed in the contributions to this volume. The complicated phenomena of combustion, such as chemical reactions, heat and mass transfer, and gaseous flows, have so far been studied predominantly by experiment and by phenomenological approaches. But asymptotic analysis and other recent developments are rapidly changing this situation. The contributions in this volume are devoted to mathematical modeling in three areas: high Mach number combustion, complex chemistry and physics, and flame modeling in small scale turbulent flow combustion.

  15. Active Combustion Control Valve Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the past decade, research into active combustion control has yielded impressive results in suppressing thermoacoustic instabilities and widening the operational...

  16. Combustion from basics to applications

    CERN Document Server

    Lackner, Maximilian; Winter, Franz

    2013-01-01

    Combustion, the process of burning, is defined as a chemical reaction between a combustible reactant (the fuel) and an oxidizing agent (such as air) in order to produce heat and in most cases light while new chemical species (e.g., flue gas components) are formed. This book covers a gap on the market by providing a concise introduction to combustion. Most of the other books currently available are targeted towards the experienced users and contain too many details and/or contain knowledge at a fairly high level. This book provides a brief and clear overview of the combustion basics, suitable f

  17. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Ziemkiewicz, Paul; Vandivort, Tamara; Pflughoeft-Hassett, Debra; Chugh, Y Paul; Hower, James

    2008-08-31

    Each year, over 100 million tons of solid byproducts are produced by coal-burning electric utilities in the United States. Annual production of flue gas desulfurization (FGD) byproducts continues to increase as the result of more stringent sulfur emission restrictions. In addition, stricter limits on NOx emissions mandated by the 1990 Clean Air Act have resulted in utility burner/boiler modifications that frequently yield higher carbon concentrations in fly ash, which restricts the use of the ash as a cement replacement. Controlling ammonia in ash is also of concern. If newer, “clean coal” combustion and gasification technologies are adopted, their byproducts may also present a management challenge. The objective of the Combustion Byproducts Recycling Consortium (CBRC) is to develop and demonstrate technologies to address issues related to the recycling of byproducts associated with coal combustion processes. A goal of CBRC is that these technologies, by the year 2010, will lead to an overall ash utilization rate from the current 34% to 50% by such measures as increasing the current rate of FGD byproduct use and increasing in the number of uses considered “allowable” under state regulations. Another issue of interest to the CBRC would be to examine the environmental impact of both byproduct utilization and disposal. No byproduct utilization technology is likely to be adopted by industry unless it is more cost-effective than landfilling. Therefore, it is extremely important that the utility industry provide guidance to the R&D program. Government agencies and privatesector organizations that may be able to utilize these materials in the conduct of their missions should also provide input. The CBRC will serve as an effective vehicle for acquiring and maintaining guidance from these diverse organizations so that the proper balance in the R&D program is achieved.

  18. Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors

    International Nuclear Information System (INIS)

    Vito, D.J.

    1980-12-01

    The Standard Technical Specifications for Combustion Engineering Pressurized Water Reactors (CE-STS) is a generic document prepared by the US NRC for use in the licensing process of current Combustion Engineering Pressurized Water Reactors. The CE-STS sets forth the limits, operating conditions, and other requirements applicable to nuclear reactor facility operation as set forth by Section 50.36 of 10 CFR 50 for the protection of the health and safety of the public. The document is revised periodically to reflect current licensing requirements

  19. Objetivo: Ahorro de combustible

    OpenAIRE

    Cabrero Sopena, Rosa María; Catalán Mogorrón, Heliodoro Fco.

    2011-01-01

    Con los precios de la energía en escalada imparable y particularmente, el gasóleo en precios históricos, se hace indispensable que el agricultor intente ahorrar en la partida energética de su explotación agrícola. El tractor se pondrá en el punto de mira del ahorro. Curioso paradigma, el gran amigo del agricultor, el tractor, se convierte en el máximo responsable de la partida energética. Una cifra, el consumo de combustible puede llegar incluso al 50% del coste horario total en la vida de...

  20. Alternate fuels; Combustibles alternos

    Energy Technology Data Exchange (ETDEWEB)

    Romero Paredes R, Hernando; Ambriz G, Juan Jose [Universidad Autonoma Metropolitana. Iztapalapa (Mexico)

    2003-07-01

    In the definition and description of alternate fuels we must center ourselves in those technological alternatives that allow to obtain compounds that differ from the traditional ones, in their forms to be obtained. In this article it is tried to give an overview of alternate fuels to the conventional derivatives of petroleum and that allow to have a clear idea on the tendencies of modern investigation and the technological developments that can be implemented in the short term. It is not pretended to include all the tendencies and developments of the present world, but those that can hit in a relatively short term, in accordance with agreed with the average life of conventional fuels. Nevertheless, most of the conversion principles are applicable to the spectrum of carbonaceous or cellulosic materials which are in nature, are cultivated or wastes of organic origin. Thus one will approach them in a successive way, the physical, chemical and biological conversions that can take place in a production process of an alternate fuel or the same direct use of the fuel such as burning the sweepings derived from the forests. [Spanish] En la definicion y descripcion de combustibles alternos nos debemos centrar en aquellas alternativas tecnologicas que permitan obtener compuestos que difieren de los tradicionales, al menos en sus formas de ser obtenidos. En este articulo se pretende dar un panorama de los combustibles alternos a los convencionales derivados del petroleo y que permita tener una idea clara sobre las tendencias de la investigacion moderna y los desarrollos tecnologicos que puedan ser implementados en el corto plazo. No se pretende abarcar todas las tendencias y desarrollos del mundo actual, sino aquellas que pueden impactar en un plazo relativamente corto, acordes con la vida media de los combustibles convencionales. Sin embargo, la mayor parte de los principios de conversion son aplicables al espectro de materiales carbonaceos o celulosicos los cuales se

  1. Combustion Stratification for Naphtha from CI Combustion to PPC

    KAUST Repository

    Vallinayagam, R.

    2017-03-28

    This study demonstrates the combustion stratification from conventional compression ignition (CI) combustion to partially premixed combustion (PPC). Experiments are performed in an optical CI engine at a speed of 1200 rpm for diesel and naphtha (RON = 46). The motored pressure at TDC is maintained at 35 bar and fuelMEP is kept constant at 5.1 bar to account for the difference in fuel properties between naphtha and diesel. Single injection strategy is employed and the fuel is injected at a pressure of 800 bar. Photron FASTCAM SA4 that captures in-cylinder combustion at the rate of 10000 frames per second is employed. The captured high speed video is processed to study the combustion homogeneity based on an algorithm reported in previous studies. Starting from late fuel injection timings, combustion stratification is investigated by advancing the fuel injection timings. For late start of injection (SOI), a direct link between SOI and combustion phasing is noticed. At early SOI, combustion phasing depends on both intake air temperature and SOI. In order to match the combustion phasing (CA50) of diesel, the intake air temperature is increased to 90°C for naphtha. The combustion stratification from CI to PPC is also investigated for various level of dilution by displacing oxygen with nitrogen in the intake. The start of combustion (SOC) was delayed with the increase in dilution and to compensate for this, the intake air temperature is increased. The mixture homogeneity is enhanced for higher dilution due to longer ignition delay. The results show that high speed image is initially blue and then turned yellow, indicating soot formation and oxidation. The luminosity of combustion images decreases with early SOI and increased dilution. The images are processed to generate the level of stratification based on the image intensity. The level of stratification is same for diesel and naphtha at various SOI. When O concentration in the intake is decreased to 17.7% and 14

  2. Some Factors Affecting Combustion in an Internal-Combustion Engine

    Science.gov (United States)

    Rothrock, A M; Cohn, Mildred

    1936-01-01

    An investigation of the combustion of gasoline, safety, and diesel fuels was made in the NACA combustion apparatus under conditions of temperature that permitted ignition by spark with direct fuel injection, in spite of the compression ratio of 12.7 employed. The influence of such variables as injection advance angle, jacket temperature, engine speed, and spark position was studied. The most pronounced effect was that an increase in the injection advance angle (beyond a certain minimum value) caused a decrease in the extent and rate of combustion. In almost all cases combustion improved with increased temperature. The results show that at low air temperatures the rates of combustion vary with the volatility of the fuel, but that at high temperatures this relationship does not exist and the rates depend to a greater extent on the chemical nature of the fuel.

  3. Preliminary assessment of combustion modes for internal combustion wave rotors

    Science.gov (United States)

    Nalim, M. Razi

    1995-01-01

    Combustion within the channels of a wave rotor is examined as a means of obtaining pressure gain during heat addition in a gas turbine engine. Several modes of combustion are considered and the factors that determine the applicability of three modes are evaluated in detail; premixed autoignition/detonation, premixed deflagration, and non-premixed compression ignition. The last two will require strong turbulence for completion of combustion in a reasonable time in the wave rotor. The compression/autoignition modes will require inlet temperatures in excess of 1500 R for reliable ignition with most hydrocarbon fuels; otherwise, a supplementary ignition method must be provided. Examples of combustion mode selection are presented for two core engine applications that had been previously designed with equivalent 4-port wave rotor topping cycles using external combustion.

  4. Path planning during combustion mode switch

    Science.gov (United States)

    Jiang, Li; Ravi, Nikhil

    2015-12-29

    Systems and methods are provided for transitioning between a first combustion mode and a second combustion mode in an internal combustion engine. A current operating point of the engine is identified and a target operating point for the internal combustion engine in the second combustion mode is also determined. A predefined optimized transition operating point is selected from memory. While operating in the first combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion engine to approach the selected optimized transition operating point. When the engine is operating at the selected optimized transition operating point, the combustion mode is switched from the first combustion mode to the second combustion mode. While operating in the second combustion mode, one or more engine actuator settings are adjusted to cause the operating point of the internal combustion to approach the target operating point.

  5. Plasma igniter for internal-combustion engines

    Science.gov (United States)

    Breshears, R. R.; Fitzgerald, D. J.

    1978-01-01

    Hot ionized gas (plasma) ignites air/fuel mixture in internal combustion engines more effectively than spark. Electromagnetic forces propel plasma into combustion zone. Combustion rate is not limited by flame-front speed.

  6. Energies and media nr 30. Conditions for the nuclear sector. The fuel cycle and wastes. The usefulness of fuel reprocessing. Wastes; Energies et medias no. 30. La conjoncture, pour le nucleaire. Le cycle du combustible et les dechets. L'utilite du retraitement des combustibles. Les dechets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-10-15

    After some comments on recent events in the nuclear sector in different countries (energy policy and projects in the USA, Europe, China, India, Russia), this issue proposes some explanations on the nuclear fuel cycle and on nuclear wastes: involved processes and products from mining to reprocessing and recycling, usefulness of reprocessing (future opportunities of fast neutron reactors, present usefulness of reprocessing with the recycling of separated fissile materials), impact of reprocessing on the environment in La Hague (gas and liquid releases, release standard definition), and the destiny of wastes

  7. 75 FR 3881 - Combustible Dust

    Science.gov (United States)

    2010-01-25

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  8. 75 FR 10739 - Combustible Dust

    Science.gov (United States)

    2010-03-09

    ... Combustible Dust AGENCY: Occupational Safety and Health Administration (OSHA), Labor. ACTION: Notice of stakeholder meetings. SUMMARY: OSHA invites interested parties to participate in informal stakeholder meetings on the workplace hazards of combustible dust. OSHA plans to use the information gathered at these...

  9. Combustion & Laser Diagnostics Research Complex (CLDRC)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The Combustion and Laser Diagnostics Research Complex (CLRDC) supports the experimental and computational study of fundamental combustion phenomena to...

  10. Behavior of Chernobyl fallout radionuclides in peat combustion

    International Nuclear Information System (INIS)

    Jantunen, M.J.; Reponen, A.; Mustonen, R.; Itkonen, A.; Kauranen, P.

    1992-01-01

    The fallout from the explosion and fire at the Chernobyl nuclear power plant concentrated levels of up to 10 kBq 137Cs kg-1 dry weight in the fuel peat harvested during the summer of 1986 in Finland. We investigated the behavior of fallout radionuclides 137Cs, 134Cs, 106Ru, 144Ce, 125Sb, 95Zr, and 110mAg together with naturally occurring 210Pb and 226Ra in the combustion of this contaminated peat in four different power plants. The elements antimony, ruthenium, lead, and cesium were enriched on the smallest particles, indicating that they were in a volatile chemical form, while cerium, zirconium, and radium were nonvolatile at the combustion temperatures. This result confirms the previous finding that ruthenium is volatile in combustion. Although metallic ruthenium requires 2,310 degrees C to melt, some of its oxides melt and evaporate at much lower temperatures

  11. Combustion instability control in the model of combustion chamber

    International Nuclear Information System (INIS)

    Akhmadullin, A N; Ahmethanov, E N; Iovleva, O V; Mitrofanov, G A

    2013-01-01

    An experimental study of the influence of external periodic perturbations on the instability of the combustion chamber in a pulsating combustion. As an external periodic disturbances were used sound waves emitted by the electrodynamics. The purpose of the study was to determine the possibility of using the method of external periodic perturbation to control the combustion instability. The study was conducted on a specially created model of the combustion chamber with a swirl burner in the frequency range from 100 to 1400 Hz. The study found that the method of external periodic perturbations may be used to control combustion instability. Depending on the frequency of the external periodic perturbation is observed as an increase and decrease in the amplitude of the oscillations in the combustion chamber. These effects are due to the mechanisms of synchronous and asynchronous action. External periodic disturbance generated in the path feeding the gaseous fuel, showing the high efficiency of the method of management in terms of energy costs. Power required to initiate periodic disturbances (50 W) is significantly smaller than the thermal capacity of the combustion chamber (100 kW)

  12. 1: the atom. 2: radioactivity. 3: man and radiations. 4: the energy. 5: nuclear energy: fusion and fission. 6: the operation of a nuclear reactor. 7: the nuclear fuel cycle; 1: l'atome. 2: la radioactivite. 3: l'homme et les rayonnements. 4: l'energie. 5: l'energie nucleaire: fusion et fission. 6: le fonctionnement d'un reacteur nucleaire. 7: le cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This series of 7 digest booklets present the bases of the nuclear physics and of the nuclear energy: 1 - the atom (structure of matter, chemical elements and isotopes, the four fundamental interactions, nuclear physics); 2 - radioactivity (definition, origins of radioelements, applications of radioactivity); 3 - man and radiations (radiations diversity, biological effects, radioprotection, examples of radiation applications); 4 - energy (energy states, different forms of energy, characteristics); 5 - nuclear energy: fusion and fission (nuclear energy release, thermonuclear fusion, nuclear fission and chain reaction); 6 - operation of a nuclear reactor (nuclear fission, reactor components, reactor types); 7 - nuclear fuel cycle (nuclear fuel preparation, fuel consumption, reprocessing, wastes management). (J.S.)

  13. GOTHIC-3D applicability to hydrogen combustion analysis

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Lee, Jin Yong; Park, Goon Cherl; Yoo, Ho Jong; Kim, Hyeong Taek; Lee, Byung Chul; Oh, Seung Jong

    2005-01-01

    Severe accidents in nuclear power plants can cause hydrogen-generating chemical reactions, which create the danger of hydrogen combustion and thus threaten containment integrity. For containment analyses, a three-dimensional mechanistic code, GOTHIC-3D has been applied near source compartments to predict whether or not highly reactive gas mixtures can form during an accident with the hydrogen mitigation system working. To assess the code applicability to hydrogen combustion analysis, this paper presents the numerical calculation results of GOTHIC-3D for various hydrogen combustion experiments, including FLAME, LSVCTF, and SNU-2D. In this study, a technical base for the modeling of large- and small-scale facilities was introduced through sensitivity studies on cell size and burn modeling parameters. Use of a turbulent burn option of the eddy dissipation concept enabled scale-free applications. Lowering the burn parameter values for the flame thickness and the burn temperature limit resulted in a larger flame velocity. When applied to hydrogen combustion analysis, this study revealed that the GOTHIC-3D code is generally able to predict the combustion phenomena with its default burn modeling parameters for large-scale facilities. However, the code needs further modifications of its burn modeling parameters to be applied to either small-scale facilities or extremely fast transients

  14. Nuclear and radiological safety in the substitution process of the fuel HEU to LEU 30/20 in the Reactor TRIGA Mark III of the ININ; Seguridad nuclear y radiologica en el proceso de sustitucion del combustible HEU a LEU 30/20 en el Reactor TRIGA Mark III del Instituto Nacional de Investigaciones Nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez G, J., E-mail: jaime.hernandez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2012-10-15

    Inside the safety initiative in the international ambit, with the purpose of reducing the risks associated with the use of high enrichment nuclear fuels (HEU) for different proposes to the peaceful uses of the nuclear energy, Mexico contributes by means of the substitution of the high enrichment fuel HEU for low enrichment fuel LEU 30/20 in the TRIGA Mark III Reactor, belonging to Instituto Nacional de Investigaciones Nucleares (ININ). The conversion process was carried out by means of the following activities: analysis of the proposed core, reception and inspection of the fuel LEU 30/20, the discharge of the fuels of the mixed reactor core, shipment of the fuels HEU fresh and irradiated to the origin country, reload activities with the fuels LEU 30/20 and parameters measurement of the core operation. In order to maintaining the personnel's integrity and infrastructure associated to the Reactor, during the whole process the measurements of nuclear and radiological safety were controlled to detail, in execution with the license requirements of the installation. This work describes the covering activities and radiological inspections more relevant, as well as the measurements of radiological control implemented with base in the estimate of the equivalent dose of the substitution process. (Author)

  15. Analysis of two different types of hydrogen combustion during severe accidents in a typical pressurized water reactor

    International Nuclear Information System (INIS)

    Ko Yuchih; Lee Min

    2005-01-01

    Hydrogen combustion is an important phenomenon that may occur during severe accidents of Nuclear Power Plants (NPPs). Depending on the specific plant design, the initiating events, and mitigation actions executed, hydrogen combustion may have distinct characteristics and may damage the plant in various degrees. The worst scenario will be the catastrophic failure of containment. In this study two specific types of hydrogen combustion are analyzed to evaluate their impact on the containment integrity. In this paper, Station Blackout (SBO) and Loss of Coolant Accidents (LOCAs) sequences are analyzed using MAAP4 (Modular Accident Analysis Program) code. The former sequence is used to represent hydrogen combustion phenomenon under the condition that the reactor pressure vessel (RPV) breaches at high pressure and the latter sequence represents the phenomenon that RPV fails at low pressure. Two types of hydrogen combustion are observed in the simulation. The Type I hydrogen combustion represents global and instantaneous hydrogen combustion. Large pressure spike is created during the combustion and represents a threat to containment integrity. Type II hydrogen combustion is localized burn and burn continuously over a time period. There is hardly any impact of this type hydrogen burn on the containment pressurization rate. Both types of hydrogen combustion can occur in the severe accidents without any human intervention. From the accident mitigation point of view, operators should try to bring the containment into conditions that favor the Type II hydrogen combustion. (authors)

  16. Catalytic Combustion of Gasified Waste

    Energy Technology Data Exchange (ETDEWEB)

    Kusar, Henrik

    2003-09-01

    This thesis concerns catalytic combustion for gas turbine application using a low heating-value (LHV) gas, derived from gasified waste. The main research in catalytic combustion focuses on methane as fuel, but an increasing interest is directed towards catalytic combustion of LHV fuels. This thesis shows that it is possible to catalytically combust a LHV gas and to oxidize fuel-bound nitrogen (NH{sub 3}) directly into N{sub 2} without forming NO{sub x} The first part of the thesis gives a background to the system. It defines waste, shortly describes gasification and more thoroughly catalytic combustion. The second part of the present thesis, paper I, concerns the development and testing of potential catalysts for catalytic combustion of LHV gases. The objective of this work was to investigate the possibility to use a stable metal oxide instead of noble metals as ignition catalyst and at the same time reduce the formation of NO{sub x} In paper II pilot-scale tests were carried out to prove the potential of catalytic combustion using real gasified waste and to compare with the results obtained in laboratory scale using a synthetic gas simulating gasified waste. In paper III, selective catalytic oxidation for decreasing the NO{sub x} formation from fuel-bound nitrogen was examined using two different approaches: fuel-lean and fuel-rich conditions. Finally, the last part of the thesis deals with deactivation of catalysts. The various deactivation processes which may affect high-temperature catalytic combustion are reviewed in paper IV. In paper V the poisoning effect of low amounts of sulfur was studied; various metal oxides as well as supported palladium and platinum catalysts were used as catalysts for combustion of a synthetic gas. In conclusion, with the results obtained in this thesis it would be possible to compose a working catalytic system for gas turbine application using a LHV gas.

  17. Reducing emissions from diesel combustion

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This paper contains information dealing with engine design to reduce emissions and improve or maintain fuel economy. Topics include: Observation of High Pressure Fuel Spray with Laser Light Sheet Method; Determination of Engine Cylinder Pressures from Crankshaft Speed Fluctuations; Combustion Similarity for Different Size Diesel Engines: Theoretical Prediction and Experimental Results; Prediction of Diesel Engine Particulate Emission During Transient Cycles; Characteristics and Combustibility of Particulate Matter; Dual-Fuel Diesel Engine Using Butane; Measurement of Flame Temperature Distribution in D.I. Diesel Engine with High Pressure Fuel Injection: and Combustion in a Small DI Diesel Engine at Starting

  18. On Lean Turbulent Combustion Modeling

    Directory of Open Access Journals (Sweden)

    Constantin LEVENTIU

    2014-06-01

    Full Text Available This paper investigates a lean methane-air flame with different chemical reaction mechanisms, for laminar and turbulent combustion, approached as one and bi-dimensional problem. The numerical results obtained with Cantera and Ansys Fluent software are compared with experimental data obtained at CORIA Institute, France. First, for laminar combustion, the burn temperature is very well approximated for all chemical mechanisms, however major differences appear in the evaluation of the flame front thickness. Next, the analysis of turbulence-combustion interaction shows that the numerical predictions are suficiently accurate for small and moderate turbulence intensity.

  19. Measures for a quality combustion (combustion chamber exit and downstream); Mesures pour une combustion de qualite (sortie de chambre de combustion et en aval)

    Energy Technology Data Exchange (ETDEWEB)

    Epinat, G. [APAVE Lyonnaise, 69 (France)

    1996-12-31

    After a review of the different pollutants related to the various types of stationary and mobile combustion processes (stoichiometric, reducing and oxidizing combustion), measures and analyses than may be used to ensure the quality and efficiency of combustion processes are reviewed: opacimeters, UV analyzers, etc. The regulation and control equipment for combustion systems are then listed, according to the generator capacity level

  20. Computational Modeling of Turbulent Spray Combustion

    NARCIS (Netherlands)

    Ma, L.

    2016-01-01

    The objective of the research presented in this thesis is development and validation of predictive models or modeling approaches of liquid fuel combustion (spray combustion) in hot-diluted environments, known as flameless combustion or MILD combustion. The goal is to combine good physical insight,

  1. Control issues in oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Snarheim, Dagfinn

    2009-08-15

    Combustion of fossil fuels is the major energy source in todays society. While the use of fossil fuels is a necessity for our society to function, there has been an increasing concern on the emissions of CO{sub 2} resulting from human activities. Emissions of CO{sub 2} are considered to be the main cause for the global warming and climate changes we have experienced in recent years. To fight the climate changes, the emissions of CO{sub 2} must be reduced in a timely fashion. Strategies to achieve this include switching to less carbon intensive fuels, renewable energy sources, nuclear energy and combustion with CO{sub 2} capture. The use of oxy-fuel combustion is among the alternative post- and pre combustion capture concepts, a strategy to achieve power production from fossil fuels with CO{sub 2} capture. In an oxy-fuel process, the fuel is burned in a mixture of oxygen and CO{sub 2} (or steam), leaving the exhaust consisting mainly of CO{sub 2} and steam. The steam can be removed by use of a condenser, leaving (almost) pure CO{sub 2} ready to be captured. The downside to CO{sub 2} capture is that it is expensive, both in capital cost of extra equipment, and in operation as it costs energy to capture the CO{sub 2}. Thus it is important to maximize the efficiency in such plants. One attractive concept to achieve CO{sub 2} capture by use of oxy-fuel, is a semi-closed oxy-fuel gas turbine cycle. The dynamics of such a plant are highly integrated, involving energy and mass recycle, and optimizing efficiency might lead to operational (control) challenges. In these thesis we investigate how such a power cycle should be controlled. By looking at control at such an early stage in the design phase, it is possible to find control solutions otherwise not feasible, that leads to better overall performance. Optimization is used on a nonlinear model based on first principles, to compare different control structures. Then, closed loop simulations using MPC, are used to validate

  2. Decontamination equipment for the bottom of the cavity NPP during refueling operations; Equipo para la descontaminacion del fondo de la cavidad de centrales nucleares durante las operaciones de recarga de combustible

    Energy Technology Data Exchange (ETDEWEB)

    Vaquer, J. I.; Pastor, I.; Pascual, A.; Garcia Martinez, A.

    2014-04-01

    In this work the DEMOS robot is displayed, as a designed and developed equipment by Grupo Dominguis in order to carry out the decontamination of the cavity background in Nuclear Power Plants during the refueling operations. the aim of the project is executing the decontamination of the cavity ground, in case of flood pool, by means of brushing and aspirated after the fuel movement operation, in order to reduce the operational dose of the workers. In the activities that are carried out after while in the cavity. Eventually, the obtained results of the operative experience in many Nuclear Power Plants will be displayed. (Author)

  3. Combustion modeling in waste tanks

    International Nuclear Information System (INIS)

    Mueller, C.; Unal, C.; Travis, J.R.; Forschungszentrum Karlsruhe

    1997-01-01

    This paper has two objectives. The first one is to repeat previous simulations of release and combustion of flammable gases in tank SY-101 at the Hanford reservation with the recently developed code GASFLOW-II. The GASFLOW-II results are compared with the results obtained with the HMS/TRAC code and show good agreement, especially for non-combustion cases. For combustion GASFLOW-II predicts a steeper pressure rise than HMS/TRAC. The second objective is to describe a so-called induction parameter model which was developed and implemented into GASFLOW-II and reassess previous calculations of Bureau of Mines experiments for hydrogen-air combustion. The pressure time history improves compared with the one-step model, and the time rate of pressure change is much closer to the experimental data

  4. Sodium nitrate combustion limit tests

    International Nuclear Information System (INIS)

    Beitel, G.A.

    1976-04-01

    Sodium nitrate is a powerful solid oxidant. Energetically, it is capable of exothermically oxidizing almost any organic material. Rate-controlling variables such as temperature, concentration of oxidant, concentration of fuel, thermal conductivity, moisture content, size, and pressure severely limit the possibility of a self-supported exothermic reaction (combustion). The tests reported in this document were conducted on one-gram samples at atmospheric pressure. Below 380 0 C, NaNO 3 was stable and did not support combustion. At moisture concentrations above 22 wt percent, exothermic reactions did not propagate in even the most energetic and reactive compositions. Fresh resin and paraffin were too volatile to enable a NaNO 2 -supported combustion process to propagate. Concentrations of NaNO 3 above 95 wt percent or below 35 wt percent did not react with enough energy release to support combustion. The influence of sample size and confining pressure, both important factors, was not investigated in this study

  5. Fifth International Microgravity Combustion Workshop

    Science.gov (United States)

    Sacksteder, Kurt (Compiler)

    1999-01-01

    This conference proceedings document is a compilation of 120 papers presented orally or as poster displays to the Fifth International Microgravity Combustion Workshop held in Cleveland, Ohio on May 18-20, 1999. The purpose of the workshop is to present and exchange research results from theoretical and experimental work in combustion science using the reduced-gravity environment as a research tool. The results are contributed by researchers funded by NASA throughout the United States at universities, industry and government research agencies, and by researchers from at least eight international partner countries that are also participating in the microgravity combustion science research discipline. These research results are intended for use by public and private sector organizations for academic purposes, for the development of technologies needed for the Human Exploration and Development of Space, and to improve Earth-bound combustion and fire-safety related technologies.

  6. Nuclear power after Copenhagen

    International Nuclear Information System (INIS)

    Adam, G.

    2010-01-01

    The presentation discusses the problems of carbon dioxide emissions and advantages of nuclear technology as the only non-carbon technology with a proven track record that can make a significant contribution on the scale that will be required. The nuclear technology also has the potential to produce carbon free heat, and a further potential to produce hydrogen for the transport sector and possibly also for desalination projects. Nuclear energy also helps to reduce the serious health effects resulting from fossil fuel combustion which particularly affects women

  7. Smoldering Combustion Experiments in Microgravity

    Science.gov (United States)

    Walther, David C.; Fernandez-Pello, A. Carlos; Urban, David L.

    1997-01-01

    The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a microgravity environment. Smoldering is a non-flaming form of combustion that takes place in the interior of porous materials and takes place in a number of processes ranging from smoldering of porous insulation materials to high temperature synthesis of metals. The objective of the study is to provide a better understanding of the controlling mechanisms of smolder, both in microgravity and normal-gravity. As with many forms of combustion, gravity affects the availability of oxidizer and transport of heat, and therefore the rate of combustion. Microgravity smolder experiments, in both a quiescent oxidizing environment, and in a forced oxidizing flow have been conducted aboard the NASA Space Shuttle (STS-69 and STS-77 missions) to determine the effect of the ambient oxygen concentration and oxidizer forced flow velocity on smolder combustion in microgravity. The experimental apparatus is contained within the NASA Get Away Special Canister (GAS-CAN) Payload. These two sets of experiments investigate the propagation of smolder along the polyurethane foam sample under both diffusion driven and forced flow driven smoldering. The results of the microgravity experiments are compared with identical ones carried out in normal gravity, and are used to verify present theories of smolder combustion. The results of this study will provide new insights into the smoldering combustion process. Thermocouple histories show that the microgravity smolder reaction temperatures (Ts) and propagation velocities (Us) lie between those of identical normal-gravity upward and downward tests. These observations indicate the effect of buoyancy on the transport of oxidizer to the reaction front.

  8. Combustion Noise in Modern Aero-Engines

    OpenAIRE

    Duran, I.; Moreau, S.; Nicoud, F.; T., Livebardon; Bouty, E.; Poinsot, T.

    2014-01-01

    International audience; Combustion noise has recently been the subject of attention of both the aeroacoustic and the combustion research communities. Over the last decades, engine manufacturershave made important efforts to significantly reduce fan and jet noise, which increased the relative importance of combustion noise. Two main mechanisms of combustion-noise generation have been identified: direct combustion noise, generated by acoustic waves propagating to the outlet, and indirect combus...

  9. Rotary internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Witkowski, J.

    1989-12-05

    This patent describes an internal combustion engine assembly. It includes: a central rotor means formed with at least one peripheral fuel cavity. The cavity having a first surface defining a thrust surface and a second surface defining a contoured surface; a housing means enclosing the rotor and having an internal wall encircling the rotor. The internal wall being intercepted by at least two recesses defining cylinder means. The housing means and the rotor means being relatively rotatable; piston means individual to each the cylinder means and reciprocable therein; each piton means having a working face complementary to aid contoured surface; and power means for urging the working face into intimate areal contact with the contoured surface to create a first seal means. The housing means having at lest one fuel inlet port, at least one fuel ignition means and at least one exhaust port whereby during the course of a revolution of the rotor means relative to the housing means, the first seal means, the power means, the respective ports, the ignition means and the fuel cavity cooperate to develop fuel compression, fuel ignition and exhaust functions.

  10. Hydrogen combustion in aqueous foams

    International Nuclear Information System (INIS)

    Baer, M.R.; Griffiths, S.K.; Shepherd, J.E.

    1982-01-01

    Water fogs are recognized as an effective means to mitigate the effects of large-scale hydrogen combustion that might accompany some reactor loss-of-coolant reactor accidents. Fogs of sufficiently high density to produce large beneficial effects may, however, be difficult to generate and maintain. An alternate method of suspending the desired mass of water is via high expansion-ratio aqueous foams. Because the foam would be generated using the combustible gaseous contents of the containment vessel, combustion occurs inside the foam cells. Although foams generated with inert gas have been well studied for use in fire fighting, little is known about combustion in foams generated with flammable mixtures. To help assess the usefulness of aqueous foams in a mitigation plan, the authors have conducted open tube tests and closed vessel tests of hydrogen/air combustion with and without foam. At low and intermediate hydrogen concentrations, the foam has little effect on the ultimate isochoric pressure rise. Above 15% hydrogen concentration, the foam causes a significant reduction in the pressure rise. The maximum effect occurs at about 28% hydrogen where the peak overpressure is reduced by two and one-half. Despite this overall pressure reduction, the flame speed is increased by up to an order of magnitude for combustion in the foam and strong pressure fluctuations are observed near a hydrogen concentration of 23%

  11. Techniques de combustion Combustin Techniques

    Directory of Open Access Journals (Sweden)

    Perthuis E.

    2006-11-01

    Full Text Available L'efficacité d'un processus de chauffage par flamme est étroitement liée à la maîtrise des techniques de combustion. Le brûleur, organe essentiel de l'équipement de chauffe, doit d'une part assurer une combustion complète pour utiliser au mieux l'énergie potentielle du combustible et, d'autre part, provoquer dans le foyer les conditions aérodynamiques les plus propices oux transferts de chaleur. En s'appuyant sur les études expérimentales effectuées à la Fondation de Recherches Internationales sur les Flammes (FRIF, au Groupe d'Étude des Flammes de Gaz Naturel (GEFGN et à l'Institut Français du Pétrole (IFP et sur des réalisations industrielles, on présente les propriétés essentielles des flammes de diffusion aux combustibles liquides et gazeux obtenues avec ou sans mise en rotation des fluides, et leurs répercussions sur les transferts thermiques. La recherche des températures de combustion élevées conduit à envisager la marche à excès d'air réduit, le réchauffage de l'air ou son enrichissement à l'oxygène. Par quelques exemples, on évoque l'influence de ces paramètres d'exploitation sur l'économie possible en combustible. The efficiency of a flame heating process is closely linked ta the mastery of, combustion techniques. The burner, an essential element in any heating equipment, must provide complete combustion sa as to make optimum use of the potential energy in the fuel while, at the same time, creating the most suitable conditions for heat transfers in the combustion chamber. On the basis of experimental research performed by FRIF, GEFGN and IFP and of industrial achievements, this article describesthe essential properties of diffusion flames fed by liquid and gaseous fuels and produced with or without fluid swirling, and the effects of such flames on heat transfers. The search for high combustion temperatures means that consideration must be given to operating with reduced excess air, heating the air or

  12. Jet plume injection and combustion system for internal combustion engines

    Science.gov (United States)

    Oppenheim, Antoni K.; Maxson, James A.; Hensinger, David M.

    1993-01-01

    An improved combustion system for an internal combustion engine is disclosed wherein a rich air/fuel mixture is furnished at high pressure to one or more jet plume generator cavities adjacent to a cylinder and then injected through one or more orifices from the cavities into the head space of the cylinder to form one or more turbulent jet plumes in the head space of the cylinder prior to ignition of the rich air/fuel mixture in the cavity of the jet plume generator. The portion of the rich air/fuel mixture remaining in the cavity of the generator is then ignited to provide a secondary jet, comprising incomplete combustion products which are injected into the cylinder to initiate combustion in the already formed turbulent jet plume. Formation of the turbulent jet plume in the head space of the cylinder prior to ignition has been found to yield a higher maximum combustion pressure in the cylinder, as well as shortening the time period to attain such a maximum pressure.

  13. Combustion Byproducts Recycling Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Paul Ziemkiewicz; Tamara Vandivort; Debra Pflughoeft-Hassett; Y. Paul Chugh; James Hower

    2008-08-31

    The Combustion Byproducts Recycling Consortium (CBRC) program was developed as a focused program to remove and/or minimize the barriers for effective management of over 123 million tons of coal combustion byproducts (CCBs) annually generated in the USA. At the time of launching the CBRC in 1998, about 25% of CCBs were beneficially utilized while the remaining was disposed in on-site or off-site landfills. During the ten (10) year tenure of CBRC (1998-2008), after a critical review, 52 projects were funded nationwide. By region, the East, Midwest, and West had 21, 18, and 13 projects funded, respectively. Almost all projects were cooperative projects involving industry, government, and academia. The CBRC projects, to a large extent, successfully addressed the problems of large-scale utilization of CCBs. A few projects, such as the two Eastern Region projects that addressed the use of fly ash in foundry applications, might be thought of as a somewhat smaller application in comparison to construction and agricultural uses, but as a novel niche use, they set the stage to draw interest that fly ash substitution for Portland cement might not attract. With consideration of the large increase in flue gas desulfurization (FGD) gypsum in response to EPA regulations, agricultural uses of FGD gypsum hold promise for large-scale uses of a product currently directed to the (currently stagnant) home construction market. Outstanding achievements of the program are: (1) The CBRC successfully enhanced professional expertise in the area of CCBs throughout the nation. The enhanced capacity continues to provide technology and information transfer expertise to industry and regulatory agencies. (2) Several technologies were developed that can be used immediately. These include: (a) Use of CCBs for road base and sub-base applications; (b) full-depth, in situ stabilization of gravel roads or highway/pavement construction recycled materials; and (c) fired bricks containing up to 30%-40% F

  14. Severe Accident Analysis for Combustible Gas Risk Evaluation inside CFVS

    International Nuclear Information System (INIS)

    Lee, NaRae; Lee, JinYong; Bang, YoungSuk; Lee, DooYong; Kim, HyeongTaek

    2015-01-01

    The purpose of this study is to identify the composition of gases discharged into the containment filtered venting system by analyzing severe accidents. The accident scenarios which could be significant with respect to containment pressurization and hydrogen generation are derived and composition of containment atmosphere and possible discharged gas mixtures are estimated. In order to ensure the safety of the public and environment, the ventilation system should be designed properly by considering discharged gas flow rate, aerosol loads, radiation level, etc. One of considerations to be resolved is the risk due to combustible gas, especially hydrogen. Hydrogen can be generated largely by oxidation of cladding and decomposition of concrete. If the hydrogen concentration is high enough and other conditions like oxygen and steam concentration is met, the hydrogen can burn, deflagrate or detonate, which result in the damage the structural components. In particularly, after Fukushima accident, the hydrogen risk has been emphasized as an important contributor threatening the integrity of nuclear power plant during the severe accident. These results will be used to analyze the risk of hydrogen combustion inside the CFVS as boundary conditions. Severe accident simulation results are presented and discussed qualitatively with respect to hydrogen combustion. The hydrogen combustion risk inside of the CFVS has been examined qualitatively by investigating the discharge flow characteristics. Because the composition of the discharge flow to CFVS would be determined by the containment atmosphere, the severe accident progression and containment atmosphere composition have been investigated. Due to PAR operation, the hydrogen concentration in the containment would be decreased until the oxygen is depleted. After the oxygen is depleted, the hydrogen concentration would be increased. As a result, depending on the vent initiation timing (i.e. vent initiation pressure), the important

  15. The chemistry of the nuclear fuel cycle: from mine to waste management; La chimie dans le cycle du combustible nucleaire: de la mine a la gestion des dechets radioactifs

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Deidier, L. [CEA Saclay, DEN/DIR, 91 - Gif-sur-Yvette (France); Gin, St. [CEA Marcoule, DTCD/SECM, 30 (France)

    2011-05-15

    There is no getting away from nuclear energy as one of the solutions to achieve the conflicting goals of satisfying the world's rising energy requirements while reducing greenhouse gas emissions. Fuel cycle technologies with uranium for initial material are evolving to transform nuclear energy into a sustainable resource. Materials with high added value are increasingly recycled, reactors are becoming more efficient, radioactive wastes volumes are decreasing and suitable disposition routes are progressively being developed to manage them depending on their toxicity. This article provides an overview of the current situation in France and a glimpse of future trends. It highlights the central role of chemistry in most fuel cycle operations, opening a broad spectrum of possibilities for research and innovation to accompany the prospects for development of this sector. (authors)

  16. Twenty-fifth symposium (international) on combustion

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Approximately two-thirds of the papers presented at this conference are contained in this volume. The other one-third appear in special issues of ''Combustion and Flame'', Vol. 99, 1994 and Vol. 100, 1995. Papers are divided into the following sections: Supersonic combustion; Detonations and explosions; Internal combustion engines; Practical aspects of combustion; Incineration and wastes; Sprays and droplet combustion; Coal and organic solids combustion; Soot and polycyclic aromatic hydrocarbons; Reaction kinetics; NO x ; Turbulent flames; Turbulent combustion; Laminar flames; Flame spread, fire and halogenated fire suppressants; Global environmental effects; Ignition; Two-phase combustion; Solid propellant combustion; Materials synthesis; Microgravity; and Experimental diagnostics. Papers have been processed separately for inclusion on the data base

  17. HCCI Combustion: Analysis and Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Salvador M. Aceves; Daniel L. Flowers; Joel Martinez-Frias; J. Ray Smith; Robert Dibble; Michael Au; James Girard

    2001-05-14

    Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOX emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions. The multi-zone model h as applicability to the optimization of combustion chamber geometry and operating conditions to achieve controlled combustion at high efficiency and low emissions. On experimental work, we have done a thorough evaluation of operating conditions in a 4-cylinder Volkswagen TDI engine. The engine has been operated over a wide range of conditions by adjusting the intake temperature and the fuel flow rate. Satisfactory operation has been obtained over a wide range of operating conditions. Cylinder-to-cylinder variations play an important role in limiting maximum power, and should be controlled to achieve satisfactory performance.

  18. Synthesis on the long term behavior of spent nuclear fuel. Vol.1,2; Synthese sur l'evolution a long terme des colis de combustibles irradies. Tome 1,2

    Energy Technology Data Exchange (ETDEWEB)

    Poinssot, Ch.; Toulhoat, P.; Grouiller, J.P.; Pavageau, J.; Piron, J.P.; Pelletier, M.; Dehaudt, Ph.; Cappelaere, Ch.; Limon, R.; Desgranges, L.; Jegou, Ch.; Corbel, C.; Maillard, S.; Faure, M.H.; Cicariello, J.C.; Masson, M. [CEA Saclay, DEN/DDIN/DPRGD, 91 - Gif sur Yvette (France)

    2001-07-01

    The aim of this report is to present the major objectives, the key scientific issues, and the preliminary results of the research conducted in France in the framework of the third line of the 1991 Law, on the topic of the long term behavior of spent nuclear fuel in view of long term storage or geological disposal. Indeed, CEA launched in 1998 the Research Program on the Long Term Behavior of Spent Nuclear Fuel (abbreviated and referred to as PRECCI in French; Poinssot, 1998) the aim of which is to study and assess the ability of spent nuclear fuel packages to keep their initially allocated functions in interim storage and geological disposal: total containment and recovery functions for duration up to hundreds of years (long term or short-term interim storage and/or first reversible stages of geological disposal) and partial confinement function (controlled fluxes of RN) for thousands of years in geological disposal. This program has to allow to obtain relevant and reliable data concerning the long term behavior of the spent fuel packages so that feasibility of interim storage and/or geological disposal can be assessed and demonstrated as well as optimized. Within this framework, this report presents for every possible scenario of evolution (closed system, in Presence of water in presence of gases) what are estimated to be the most relevant evolution mechanism. For the most relevant scientific issues hence defined, a complete scientific review of the best state of knowledge is subsequently here given thus allowing to draw a clear guideline of the major R and D issues for the next years. (authors)

  19. Efecto de la presión ambiental en la efectividad del lanzamiento al aro y la ansiedad previa a la ejecución en basquetbolistas principiantes y avanzados

    Directory of Open Access Journals (Sweden)

    Guadalupe Delgado Socatelli

    2003-01-01

    Full Text Available Con el objetivo de determinar si las condiciones de presión ambiental dadas por: el tiempo de ejecución, y la ausencia o presencia de público afectaban el rendimiento de 10 jugadores de baloncesto principiantes y 10 jugadores avanzados al ejecutar 10 tiros libres al aro lo cual permitiría conocer los cambios en la ansiedad grupal e individual de los participantes mediante la aplicación de los instrumentos POMS de McNair, Loor y Droppleman (1971 y el CSAI-2 de Martens y Vealey (1990. El análisis estadístico se efectuó mediante la aplicación de un ANOVA de medidas repetidas para buscar diferencias entre los intentos según el tipo de presión. La determinación de las diferencias entre grupos, entre las mediciones, según el nivel de presión ambiental, y la interacción de la presión de los grupos, se hizo mediante la aplicación de un ANOVA Factorial Mixto. Los resultados de la investigación permitieron corroborar la individualidad de las respuestas de la ansiedad ante distintas situaciones y la importancia de la personalización del afrontamiento para el manejo de la ansiedad competitiva

  20. Analizando la Efectividad del Uso de un EVCI para Asistir a Estudiantes Avanzados en la Identificación de Faltas en el Código: Un Experimento Controlado

    Directory of Open Access Journals (Sweden)

    Juan P. Ucán-Pech

    2016-04-01

    Full Text Available El objetivo de esta investigación se centra en el estudio de la detección de faltas con y sin apoyo de un Entorno Virtual Colaborativo Inteligente (EVCI, a través de una replicación independiente de un experimento controlado. A diferencia de otros estudios realizados con el apoyo de un EVCI, este trabajo se desarrolló empleando como sujetos experimentales a estudiantes avanzados de pregrado. En este trabajo se explora la efectividad en la detección de faltas en programas instrumentados en Java con y sin apoyo de un EVCI. Con respecto a las faltas observadas por los sujetos, se obtuvo una efectividad equivalente para quienes emplearon el EVCI (53.70% como para quienes trabajaron de manera tradicional (50.00%. Se observa que en esta segunda réplica, los sujetos lograron identificar un número mayor de faltas con respecto a la primera réplica de este experimento.

  1. AREVA Technical Days (ATD) session 2: operations of the back-end of the nuclear fuel cycle; AREVA Technical Days (ATD) session 2: les activites du pole Aval du cycle du combustible nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    These technical days organized by the Areva Group aims to explain the group activities in a technological and economic point of view, to provide an outlook of worldwide energy trends and challenges and to present each of their businesses in a synthetic manner. This second session deals with the reprocessing business, back-end financing mechanisms, technology transfer, environmental management, risk management programs, research and development contribution to waste volume reductions, issues and outlook of nuclear wastes, comparison of the open and closed cycles. (A.L.B.)

  2. Characterisation of wood combustion ashes

    DEFF Research Database (Denmark)

    Maresca, Alberto

    The combustion of wood chips and wood pellets for the production of renewable energy in Denmark increased from 5.7 PJ to 16 PJ during the period 2000-2015, and further increases are expected to occur within the coming years. In 2012, about 22,300 tonnes of wood ashes were generated in Denmark....... Currently, these ashes are mainly landfilled, despite Danish legislation allowing their application onto forest and agricultural soils for fertilising and/or liming purposes. During this PhD work, 16 wood ash samples generated at ten different Danish combustion plants were collected and characterised...... for their composition and leaching properties. Despite the relatively large variations in the contents of nutrients and trace metals, the overall levels were comparable to typical ranges reported in the literature for other wood combustion ashes, as well as with regards to leaching. In general, the composition...

  3. Combustion instability modeling and analysis

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.J.; Yang, V.; Santavicca, D.A. [Pennsylvania State Univ., University Park, PA (United States); Sheppard, E.J. [Tuskeggee Univ., Tuskegee, AL (United States). Dept. of Aerospace Engineering

    1995-12-31

    It is well known that the two key elements for achieving low emissions and high performance in a gas turbine combustor are to simultaneously establish (1) a lean combustion zone for maintaining low NO{sub x} emissions and (2) rapid mixing for good ignition and flame stability. However, these requirements, when coupled with the short combustor lengths used to limit the residence time for NO formation typical of advanced gas turbine combustors, can lead to problems regarding unburned hydrocarbons (UHC) and carbon monoxide (CO) emissions, as well as the occurrence of combustion instabilities. The concurrent development of suitable analytical and numerical models that are validated with experimental studies is important for achieving this objective. A major benefit of the present research will be to provide for the first time an experimentally verified model of emissions and performance of gas turbine combustors. The present study represents a coordinated effort between industry, government and academia to investigate gas turbine combustion dynamics. Specific study areas include development of advanced diagnostics, definition of controlling phenomena, advancement of analytical and numerical modeling capabilities, and assessment of the current status of our ability to apply these tools to practical gas turbine combustors. The present work involves four tasks which address, respectively, (1) the development of a fiber-optic probe for fuel-air ratio measurements, (2) the study of combustion instability using laser-based diagnostics in a high pressure, high temperature flow reactor, (3) the development of analytical and numerical modeling capabilities for describing combustion instability which will be validated against experimental data, and (4) the preparation of a literature survey and establishment of a data base on practical experience with combustion instability.

  4. Studies of neo-formed phases occurring during spent nuclear fuel dissolution in geological repository: influence of silicate ions; Etude des phases neoformees lors de la dissolution du combustible nucleaire en condition de stockage geologique: influence des ions silicate

    Energy Technology Data Exchange (ETDEWEB)

    Robit-Pointeau, V

    2005-12-15

    Spent nuclear fuel alteration in deep storage conditions may proceed by local oxidising conditions at the fuel / water interface under influence of alpha irradiation. However, due to the strong redox buffer capacity of the near-field materials (especially the canister and the geological media), most of the near-field environment will remain reducing. Due to the relative high concentration in silica in such system, coffinite USiO{sub 4}.n(H{sub 2}O) may be a relevant phase to consider as it has been suggested from the natural analogues observations (Oklo). The aim of this work was to assess the relevance of coffinitisation of the spent fuel phenomena. The results of the experimental work contest the thermodynamic predictions. Instead of coffinite, a new U(IV)-Si phase has been observed in water simulating storage conditions. The thermodynamic data on coffinite validated by OECD are based on the average concentration of dissolved silica present in natural system containing uraninite and quartz. As the silica concentration in natural groundwaters is more probably controlled by minerals like chalcedony or silica gel, the coffinite present with uraninite in such systems, is probably not in equilibrium even in 2-billion years- old geological sites. Based on the results of this study, coffinitisation of the spent nuclear fuel in deep geological disposal is not anticipated to be a dominant short term process. (author)

  5. Combustion heater for oil shale

    Science.gov (United States)

    Mallon, Richard G.; Walton, Otis R.; Lewis, Arthur E.; Braun, Robert L.

    1985-01-01

    A combustion heater for oil shale heats particles of spent oil shale containing unburned char by burning the char. A delayed fall is produced by flowing the shale particles down through a stack of downwardly sloped overlapping baffles alternately extending from opposite sides of a vertical column. The delayed fall and flow reversal occurring in passing from each baffle to the next increase the residence time and increase the contact of the oil shale particles with combustion supporting gas flowed across the column to heat the shale to about 650.degree.-700.degree. C. for use as a process heat source.

  6. Catalytic Combustion of Ethyl Acetate

    OpenAIRE

    ÖZÇELİK, Tuğba GÜRMEN; ATALAY, Süheyda; ALPAY, Erden

    2014-01-01

    The catalytic combustion of ethyl acetate over prepared metal oxide catalysts was investigated. CeO, Co2O3, Mn2O3, Cr2O3, and CeO-Co2O3 catalysts were prepared on monolith supports and they were tested. Before conducting the catalyst experiments, we searched for the homogeneous gas phase combustion reaction of ethyl acetate. According to the homogeneous phase experimental results, 45% of ethyl acetate was converted at the maximum reactor temperature tested (350 °C). All the prepare...

  7. Chemical kinetics and combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    The goal of this program is to gain qualitative insight into how pollutants are formed in combustion systems and to develop quantitative mathematical models to predict their formation rates. The approach is an integrated one, combining low-pressure flame experiments, chemical kinetics modeling, theory, and kinetics experiments to gain as clear a picture as possible of the process in question. These efforts are focused on problems involved with the nitrogen chemistry of combustion systems and on the formation of soot and PAH in flames.

  8. The molten salt reactors (MSR) pyro chemistry and fuel cycle for innovative nuclear systems; Congres sur les reacteurs a sels fondus (RSF) pyrochimie et cycles des combustibles nucleaires du futur

    Energy Technology Data Exchange (ETDEWEB)

    Brossard, Ph. [GEDEON, Groupement de Recherche CEA CNRS EDF FRAMATOME (France); Garzenne, C.; Mouney, H. [and others

    2002-07-01

    In the frame of the studies on next generation nuclear systems, and especially for the molten salt reactors and for the integrated fuel cycle (as IFR), the fuel cycle constraints must be taken into account in the preliminary studies of the system to improve the cycle and reactor optimisation. Among the purposes for next generation nuclear systems, sustainability and waste (radio-toxicity and mass) management are important goals. These goals imply reprocessing and recycling strategies. The objectives of this workshop are to present and to share the different strategies and scenarios, the needs based on these scenarios, the experimental facilities available today or in the future and their capabilities, the needs for demonstration. It aims at: identifying the needs for fuel cycle based on solid fuel or liquid fuel, and especially, the on-line reprocessing or clean up for the molten salt reactors; assessing the state-of-the-art on the pyro-chemistry applied to solid fuel and to present the research activities; assessing the state-of-the-art on liquid fuels (or others), and to present the research activities; expressing the R and D programs for pyro-chemistry, molten salt, and also to propose innovative processes; and proposing some joint activities in the frame of GEDEON and PRACTIS programs. This document brings together the transparencies of 18 contributions dealing with: scenario studies with AMSTER concept (Scenarios, MSR, breeders (Th) and burners); fuel cycle for innovative systems; current reprocessing of spent nuclear fuel (SNF) in molten salts (review of pyro-chemistry processes (non nuclear and nuclear)); high temperature NMR spectroscopies in molten salts; reductive extraction of An from molten fluorides (salt - liquid metal extraction); electrochemistry characterisation; characterisation with physical methods - extraction coefficient and kinetics; electrolytic extraction; dissolution-precipitation of plutonium in the eutectic LiCl-KCl (dissolution and

  9. Application of the FIRST Combustion model to Spray Combustion

    NARCIS (Netherlands)

    de Jager, B.; Kok, Jacobus B.W.

    2004-01-01

    Liquid fuel is of interest to apply to gas turbines. The large advantage is that liquids are easily storable as compared to gaseous fuels. Disadvantage is that liquid fuel has to be sprayed, vaporized and mixed with air. Combustion occurs at some stage of mixing and ignition. Depending on the

  10. Development of a Premixed Combustion Capability for Scramjet Combustion Experiments

    Science.gov (United States)

    Rockwell, Robert D.; Goyne, Christopher P.; Rice, Brian E.; Chelliah, Harsha; McDaniel, James C.; Edwards, Jack R.; Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Danehy, Paul M.

    2015-01-01

    Hypersonic air-breathing engines rely on scramjet combustion processes, which involve high speed, compressible, and highly turbulent flows. The combustion environment and the turbulent flames at the heart of these engines are difficult to simulate and study in the laboratory under well controlled conditions. Typically, wind-tunnel testing is performed that more closely approximates engine testing rather than a careful investigation of the underlying physics that drives the combustion process. The experiments described in this paper, along with companion data sets being developed separately, aim to isolate the chemical kinetic effects from the fuel-air mixing process in a dual-mode scramjet combustion environment. A unique fuel injection approach is taken that produces a nearly uniform fuel-air mixture at the entrance to the combustor. This approach relies on the precombustion shock train upstream of the dual-mode scramjet combustor. A stable ethylene flame anchored on a cavity flameholder with a uniformly mixed combustor inflow has been achieved in these experiments allowing numerous companion studies involving coherent anti-Stokes Raman scattering (CARS), particle image velocimetry (PIV), and planar laser induced fluorescence (PLIF) to be performed.

  11. Safety reassessment of nuclear installations: consequences for the 900 MWe-PWR type reactors. Safety reassessment of laboratories and nuclear industrial plant, application to a nuclear laboratory; Les reexamens de la surete des installations nucleaires: conclusions des reexamens de surete des tranches de 900 MWE. Le reexamen de surete des laboratoires et usines nucleaires, application au laboratoire d'examen des combustibles actifs

    Energy Technology Data Exchange (ETDEWEB)

    Dousson, D.; Guillard, M.; Charles, Th

    2002-10-01

    In 1987 EDF (Electricite de France) launched the first campaign of the reassessment of safety of 6 operating nuclear reactors (2 Fessenheim units and the 4 reactors of the Bugey plant). This reassessment was requested by the Safety Authority in order to: - check that the safety studies led by EDF are consistent with the real state of the reactors and - be sure that the feedback experience cumulated over years of operating life has been profitable. This work ended in 1995. In 1990 EDF launched the second campaign involving the remaining 28 units of the 900 MWe-PWR type reactors. The aim was the same as previously but this time the procedure has included the use of probabilistic studies of safety. This second campaign has now entered its final stage and has led to several measures concerning fire protection, seismic resistance, and protection against deep cold weather. The probabilistic studies have shown that the reliability of some systems important for safety might be improved, so some modifications have been proposed. These modifications concern the emergency feedwater supply of steam generators, the ventilation systems and the emergency turbine generator set. The second part of the document presents the reassessment of safety that has been performed on a CEA laboratory dedicated to the study of irradiated fuel rods. (A.C.)

  12. Combustion noise and combustion instabilities in propulsion systems

    Science.gov (United States)

    Culick, F. E. C.; Paparizos, L.; Sterling, J.; Burnley, V.

    1992-01-01

    This paper is concerned with some aspects of non-linear behavior of unsteady motions in combustion chambers. The emphasis is on conditions under which organized oscillations having discrete frequencies may exist in the presence of random motions. In order to treat the two types of motions together, and particularly to investigate coupling between noise and combustion instabilities, the unsteady field is represented as a synthesis of acoustic modes having time-varying amplitudes. Each of the amplitudes are written as the sum of two parts, one associated with the random field and the remainder representing the organized oscillations. After spatial averaging, the general problem is reduced to solution of a set of second-order ordinary differential equations whose structure depends on the sorts of nonlinear processes accounted for. This formulation accommodates any physical process; in particular, terms are included to represent noise sources, although only limited modeling is discussed. Our results suggest that random sources of noise have only small effects on combustion instabilities and seem not to be a cause of unstable motions. However, the coupling between the two sorts of unsteady motions may be important as an essential process in a proposed scheme for noise control. It is now a familiar observation that many nonlinear deterministic systems are capable of exhibiting apparently random motions called 'chaos.' This is a particularly interesting possibility for systems which also executed non-deterministic random motions. In combustion chambers, a nonlinear deterministic system (acoustical motions) exists in the presence of noise produced by flow separation, turbulent motions, and energy released by combustion processes. The last part of the paper is directed to the matter of discovering whether or not chaotic motions exist in combustion systems. Analysis has not progressed sufficiently far to answer the question. We report here recent results of processing data

  13. Scramjet Combustion Stability Behavior Modeling, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the potential to predict the combustion stability of a scramjet. This capability is very...

  14. Scramjet Combustion Stability Behavior Modeling, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A recent breakthrough in combustion stability analysis (UCDS) offers the means to accurately predict the combustion stability of a scramjet. This capability is very...

  15. Liquid Fuel Combustion Using Porous Inert Media

    National Research Council Canada - National Science Library

    Agrawal, Ajay K; Gollahalli, Subramanayam R

    2006-01-01

    Combustion using porous inert media (PIM) offers benefits such as high power density, stable operation over a wider turndown ratio, homogeneous product gases, lower combustion noise and reduced emissions of NOx, CO, particulates, etc...

  16. Free Energy and Internal Combustion Engine Cycles

    OpenAIRE

    Harris, William D.

    2012-01-01

    The performance of one type (Carnot) of Internal Combustion Engine (ICE) cycle is analyzed within the framework of thermodynamic free energies. ICE performance is different from that of an External Combustion Engine (ECE) which is dictated by Carnot's rule.

  17. High Frequency Combustion Instabilities of LOx/CH4 Spray Flames in Rocket Engine Combustion Chambers

    NARCIS (Netherlands)

    Sliphorst, M.

    2011-01-01

    Ever since the early stages of space transportation in the 1940’s, and the related liquid propellant rocket engine development, combustion instability has been a major issue. High frequency combustion instability (HFCI) is the interaction between combustion and the acoustic field in the combustion

  18. Center for emergency response at the ENUSA fuel fabrication plant in Juzbado; El centro de gestion de las emergencias de la fabrica de combustible nuclear de ENUSA en Juzbado

    Energy Technology Data Exchange (ETDEWEB)

    Alvaro Perez, C.; Romano, A.

    2016-08-01

    Effective emergency preparedness and management is critical for a safe exploitation of nuclear installations like the Enusa fuel fabrication plant. In 2012, an important project was carried out at the plant which enlarged and remodeled the Emergency Room used until then to give response to the Internal Emergency Plan postulated scenarios. This project was motivated after carefully analyzing the results of audits, inspections and operation experience as well as after studying the conclusions of the Fukushima accident emergency management weaknesses. The new Center for Emergency Response, which hosts the plant control room, devoted to monitoring the plant safety systems on a constant basis, greatly improves both technical means available and operative procedures as well as human interactions during an emergency. This paper describes the most relevant technical features of this Center, the safety systems which support its operation and the emergency management process that takes place in it. (Author)

  19. Straw combustion on slow-moving grates

    DEFF Research Database (Denmark)

    Kær, Søren Knudsen

    2005-01-01

    Combustion of straw in grate-based boilers is often associated with high emission levels and relatively poor fuel burnout. A numerical grate combustion model was developed to assist in improving the combustion performance of these boilers. The model is based on a one-dimensional ‘‘walking...

  20. Furnaces with multiple ?ameless combustion burners

    NARCIS (Netherlands)

    Danon, B.

    2011-01-01

    In this thesis three different combustion systems, equipped with either a single or multiple ?ameless combustion burner(s), are discussed. All these setups were investigated both experimentally and numerically, i.e., using Computational Fluid Dynamics (CFD) simulations. Flameless combustion is a

  1. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  2. Leaching from biomass combustion ash

    DEFF Research Database (Denmark)

    Maresca, Alberto; Astrup, Thomas Fruergaard

    2014-01-01

    The use of biomass combustion ashes for fertilizing and liming purposes has been widely addressed in scientific literature. Nevertheless, the content of potentially toxic compounds raises concerns for a possible contamination of the soil. During this study five ash samples generated at four...

  3. Turbulent combustion and DDT events as an upper bound for hydrogen mitigation techniques

    International Nuclear Information System (INIS)

    Dorofeev, S.B.

    1997-01-01

    A brief review is presented on the limiting conditions for fast combustion regimes (accelerated flames, fast turbulent deflagrations, and DDT events), and on their effect on confining structures. Main attention is given to hydrogen-air-steam mixtures typical for severe accidents in nuclear power plants. Comparison is made of the pressure loads resulting from different combustion regimes. Transient wave processes are shown to be very important for description of the pressure loads. Different limiting conditions are discussed for DDT being the most dangerous combustion event. Possibility of DDT is shown to be limited by the geometrical scale. Detailed description is presented for DDT criterion based on the minimum scale requirement for detonation formation. This criterion gives a conservative estimate that DDT is impossible, if characteristic size of combustible mixture is less than 7 detonation cell widths of the mixture. Conditions limiting possibility of flame acceleration are also discussed. (author)

  4. State of art in incineration technology of radioactive combustible solid wastes

    International Nuclear Information System (INIS)

    Karita, Yoichi

    1984-01-01

    The features of incineration treatment as the method of treating radioactive wastes are the effect of volume reduction and inorganic stabilization (change to ash). The process of incineration treatment is roughly divided into dry process and wet process. But that in practical use is dry incineration by excess air combustion or suppressed combustion. The important things in incineration techniques are the techniques of exhaust gas treatment as well as combustion techniques. In Europe and USA, incineration has been practiced in laboratories and reprocessing plants for low level combustible solids, but the example of application in nuclear power stations is few. In Japan, though the fundamental techniques are based on the introduction from Europe, the incineration treatment of combustible solids has been carried out in laboratories, reprocessing plants, nuclear fuel production facilities and also nuclear power stations. The techniques of solidifying ash by incineration and the techniques of incinerating spent ion exchange resin are actively developed, and the development of the treatment of radioactive wastes in the lump including incineration also is in progress. (Kako, I.)

  5. Combustor nozzle for a fuel-flexible combustion system

    Science.gov (United States)

    Haynes, Joel Meier [Niskayuna, NY; Mosbacher, David Matthew [Cohoes, NY; Janssen, Jonathan Sebastian [Troy, NY; Iyer, Venkatraman Ananthakrishnan [Mason, OH

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  6. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1977-11-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester, a residue recovery system, and an off-gas treatment system

  7. Acid digestion of combustible wastes: a status report

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1975-05-01

    Work at the Hanford Engineering Development Laboratory on development of the acid digestion process for treating combustible wastes is discussed. Materials such as paper, rubber, and plastics are readily decomposed into a low volume, noncombustible residue. Engineering results using the Acid Digestion Test Unit are discussed. Tests to date generally duplicated earlier laboratory results with respect to waste processing rates, volume reduction, off-gas generation rates and volumes, acid consumption, and completeness of reaction. Demonstrated processing rates were as high as 5 kg/hr for short duration run periods. The tests indicated engineering feasibility of the acid digestion process and showed acid digestion to be a potentially attractive method for treating combustible nuclear wastes. Other areas discussed in the report are behavior of plutonium and americium during acid digestion, behavior of various construction materials, and safety. An integrated flowsheet for operation of an acid digestion unit is also presented. (U.S.)

  8. Acid digestion and pressurization control in combustible radwaste treatment

    International Nuclear Information System (INIS)

    Allen, C.R.; Cowan, R.G.; Grelecki, C.J.

    1978-01-01

    Acid digestion has been developed to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to process radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September, 1977, and is currently undergoing nonradioactive shakedown tests. Radioactive operation is expected in May, 1978. Because of uncertainties in waste composition and reactivity, the system was required to contain pressurizations. This led to the development of a simple and inexpensive system, which is capable of attenuating a shock wave from a full scale vapor detonation. The system has potential application in a wide spectrum of chemical reactors, since the fabrication materials are resistant to a very wide range of corrosive chemical attack

  9. Environmental optimisation of waste combustion

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Robert [AaF Energikonsult, Stockholm (Sweden); Berge, Niclas; Stroemberg, Birgitta [TPS Termiska Processer AB, Nykoeping (Sweden)

    2000-12-01

    The regulations concerning waste combustion evolve through R and D and a strive to get better and common regulations for the European countries. This study discusses if these rules of today concerning oxygen concentration, minimum temperature and residence time in the furnace and the use of stand-by burners are needed, are possible to monitor, are the optimum from an environmental point of view or could be improved. No evidence from well controlled laboratory experiments validate that 850 deg C in 6 % oxygen content in general is the best lower limit. A lower excess air level increase the temperature, which has a significant effect on the destruction of hydrocarbons, favourably increases the residence time, increases the thermal efficiency and the efficiency of the precipitators. Low oxygen content is also necessary to achieve low NO{sub x}-emissions. The conclusion is that the demands on the accuracy of the measurement devices and methods are too high, if they are to be used inside the furnace to control the combustion process. The big problem is however to find representative locations to measure temperature, oxygen content and residence time in the furnace. Another major problem is that the monitoring of the operation conditions today do not secure a good combustion. It can lead to a false security. The reason is that it is very hard to find boilers without stratifications. These stratifications (stream lines) has each a different history of residence time, mixing time, oxygen and combustible gas levels and temperature, when they reach the convection area. The combustion result is the sum of all these different histories. The hydrocarbons emission is in general not produced at a steady level. Small clouds of unburnt hydrocarbons travels along the stream lines showing up as peaks on a THC measurement device. High amplitude peaks has a tendency to contain higher ratio of heavy hydrocarbons than lower peaks. The good correlation between some easily detected

  10. Hydrogen combustion issues and containment integrity

    International Nuclear Information System (INIS)

    Tennankore, K.N.; Koroll, G.W.; Kumar, R.K.; Lam, A.H.T.; Chan, C.K.; Wren, D.J.

    1987-01-01

    This report reviews recent results from the research program at the Whiteshell Nuclear Research Establishment aimed at resolving hydrogen combustion issues relevant to reactor containment integrity. The areas considered are hydrogen mixing behaviour, flame propagation, pressure transients caused by deflagration, flame acceleration and transition to detonation. Small-scale tests carried out with helium/CO 2 systems indicate that the presence of a recirculation path will enhance buoyancy-driven mixing of hydrogen-steam jets with air in the containment. An extensive database has been assembled for the laminar burning velocity of hydrogen-air-steam mixtures. Work is now beginning on obtaining burning velocities under turbulent conditions likely to prevail in containments. Turbulent and vented combustion data obtained in a 2.3-m-diameter spherical vessel have been analyzed. The results indicate that the pressure predictions of a one-dimensional model can be matched with the data if different effective burning velocities are used. Obstacle-induced flame acceleration and transition to detonation have been studied in a small-scale test facility to determine conditions required for transition to detonation in containments. For a repeated obstacle configuration, the obstacle blockage ratio required to cause transition (deflagation to detonation or detonation to deflagration) can be correlated well with detonation cell size. Cell sizes for mixtures of interest are being determined in our laboratory to complement available data. The transition-to-detonation process has been visualized in the above tests by Schlieren photography. The eventual objective of this work is to identify the local conditions controlling the transition process

  11. Combustion noise analysis of partially premixed combustion concept using gasoline fuel in a 2-stroke engine

    OpenAIRE

    Broatch Jacobi, Jaime Alberto; Margot , Xandra; Novella Rosa, Ricardo; Gómez-Soriano, Josep

    2016-01-01

    In the last decade, different advanced combustion concepts based on generating totally or partially premixed conditions have been investigated in CI (compression ignition) engines with the aim of achieving lower NOx (nitrous oxides) and soot emissions. Most of the drawbacks inherent to this type of combustions, such as the combustion phasing control or combustion stability, can be mitigated by combining the PPC (Partially Premixed Combustion) concept fueled by gasoline and a small...

  12. Combustive management of oil spills

    International Nuclear Information System (INIS)

    1992-01-01

    Extensive experiments with in situ incineration were performed on a desert site at the University of Arizona with very striking results. The largest incinerator, 6 feet in diameter with a 30 foot chimney, developed combustion temperatures of 3000, F, and attendant soot production approximately 1000 times less than that produced by conventional in situ burning. This soot production, in fact, is approximately 30 times less than current allowable EPA standards for incinerators and internal combustion engines. Furthermore, as a consequence of the high temperature combustion, the bum rate was established at a very high 3400 gallons per hour for this particular 6 foot diameter structure. The rudimentary design studies we have carried out relative to a seagoing 8 foot diameter incinerator have predicted that a continuous burn rate of 7000 gallons per hour is realistic. This structure was taken as a basis for operational design because it is compatible with C130 flyability, and will be inexpensive enough ($120,000 per copy) to be stored at those seaside depots throughout the US coast line in which the requisite ancillary equipments (booms, service tugs, etc.) are already deployed. The LOX experiments verified our expectations with respect to combustion of debris and various highly weathered or emulsified oils. We have concluded, however, that the use of liquid oxygen in actual beach clean up is not promising because the very high temperatures associated with this combustion are almost certain to produce environmentally deleterious effects on the beach surface and its immediately sublying structures. However, the use of liquid oxygen augmentation for shore based and flyable incinerators may still play an important role in handing the problem of accumulated debris

  13. Modeling of Laser-Induced Metal Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Boley, C D; Rubenchik, A M

    2008-02-20

    Experiments involving the interaction of a high-power laser beam with metal targets demonstrate that combustion plays an important role. This process depends on reactions within an oxide layer, together with oxygenation and removal of this layer by the wind. We present an analytical model of laser-induced combustion. The model predicts the threshold for initiation of combustion, the growth of the combustion layer with time, and the threshold for self-supported combustion. Solutions are compared with detailed numerical modeling as benchmarked by laboratory experiments.

  14. Nuclear power: the alternative

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    South Africa has only two resources for large-scale generation of energy, namely coal and uranium. The petrochemical industry uses more and more coal to provide internal combustion engines of fuel. Until an alternative for nuclear energy is found, the country will have to rely on nuclear energy to provide in the energy needs. According to mr. John Maree, former chairman of the Atomic Energy Corporation of South Africa, the last coal power station will be built more or less in the year 2030. Sites for the building of future nuclear power stations are already identified. The West Coast is ideally suited for this purpose mainly because of the geological stability of the area and the lack of industrial development. The development of the nuclear industry in South Africa is reviewed

  15. Study of factors related to quality of life in patients with locally advanced rectal cancer Estudio de factores de calidad de vida en los pacientes con cáncer de recto localmente avanzado

    Directory of Open Access Journals (Sweden)

    F. J. Pérez Lara

    2004-11-01

    Full Text Available Objectives: given the increasing concern about the physical, psychological, and social welfare of patients surgically treated for rectal cancer, we designed a study of the factors influencing quality of life in these patients. Experimental design: we prospectively analyzed factors related to quality of life in a cohort of patients using the Nottingham Health Profile and the EORTC questionnaire (QLQ-CR 38. Patients: a total of 116 patients with locally advanced rectal cancer surgically treated in our hospital from 1994 to 1999. Results: quality of life scores for the various factors studied showed that quality of life was worse in women, in patients with tumors in the middle third of the rectum, and in patients undergoing low anterior resection. Conclusions: factors influencing quality of life in patients surgically treated for locally advanced rectal cancer included sex, tumor site, and surgical technique. Since only this latter factor is modifiable, we suggest that the surgical technique be individualized in persons with mid-lower and lower-third tumors of the rectum, bearing in mind that quality of life in amputated patients is, in many respects, better than that of patients with preserved sphincters.Objetivos: debido al creciente interés por el bienestar tanto físico como psicológico y social de los pacientes intervenidos por Cáncer de recto, hemos diseñado un estudio para evaluar los factores que determinan la calidad de vida en estos pacientes. Diseño experimental: analizamos en un estudio de cohortes prospectivo, los factores relacionados con su calidad de vida, usando el Perfil de Salud de Nottingham y el cuestionario EORTC (QLQ-CR 38. Pacientes: un total de 116 pacientes con Cáncer de recto localmente avanzado intervenidos quirúrgicamente en nuestro hospital desde 1994 hasta 1999. Resultados: las puntuaciones de los tests de calidad de vida mostraron que la calidad de vida es peor en la mujer, en los pacientes con tumores

  16. Molten salt combustion of radioactive wastes

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKenzie, D.E.; Richards, W.L.; Oldenkamp, R.D.

    1976-01-01

    The Atomics International Molten Salt Combustion Process reduces the weight and volume of combustible β-γ contaminated transuranic waste by utilizing air in a molten salt medium to combust organic materials, to trap particulates, and to react chemically with any acidic gases produced during combustion. Typically, incomplete combustion products such as hydrocarbons and carbon monoxide are below detection limits (i.e., 3 ) is directly related to the sodium chloride vapor pressure of the melt; >80% of the particulate is sodium chloride. Essentially all metal oxides (combustion ash) are retained in the melt, e.g., >99.9% of the plutonium, >99.6% of the europium, and >99.9% of the ruthenium are retained in the melt. Both bench-scale radioactive and pilot scale (50 kg/hr) nonradioactive combustion tests have been completed with essentially the same results. Design of three combustors for industrial applications are underway

  17. Distributed Low Temperature Combustion: Fundamental Understanding of Combustion Regime Transitions

    Science.gov (United States)

    2016-09-07

    turbulent premixed flows . Hence, Tau_c is here varied via the mixture stoichiometry (Phi) with variations in Tau_f pursued in a parallel study...transitions in turbulent premixed flows . Hence, τc is here varied via the mixture stoichiometry (Φ) with variations in τf pursued in a parallel study...combustion products that alter or govern the mixing fluid flow dynamics lead to a gradual alignment of Umix/Ub with the HCP fluid flow direction. This

  18. New Combustion Regimes and Kinetic Studies of Plasma Assisted Combustion

    Science.gov (United States)

    2012-11-01

    to JACS, 2012 7.1 μm Mid infra - red Faraday Rotation Spectroscopy (FRS), 1396 cm-1 Quantitative HO2 Measurement (very challenging!): 2L + 1... red absorption spectroscopy and MBMS system are developed and successfully measured H2O2 and other intermediate species. 6. A mid-infrared Faraday...flux 1000 times faster! Plasma assisted combustion dramatically changed the ”SPEED” of low temperature chemistry CH2O PLIF measurements at 355 nm

  19. Separation of transuranic elements and some fission products in irradiated spent fuels. Program 2005; Separacion de elementos transuranicos y algunos productos de fision presentes en los combustibles nucleares irradiados Programa 2005

    Energy Technology Data Exchange (ETDEWEB)

    Caravaca, C.; Espartero, A. G.; Cordoba, G. de; Gascon, J. L.; Pina, G.; Martinez-Esparza, A.; Uriarte, A.

    2006-07-01

    This technical publication of ENRESA refers to Partitioning of some chemical elements containing longlived radionuclides (actinides and fission products), from spent nuclear fuels. The Partitioning includes the different processes developed or on R and D way, from the middle of the past century to the present. These processes are of two types, wet (hydro-metallurgical) and dry (pyro-metallurgical). Among the hydro-metallurgical processes the most important is the PUREX process, developed in the U.S.A. at the middle of the past century, used for the separation of uranium and plutonium from spent nuclear fuels, previous dissolution with nitric acid of the irradiated fuels. Later other hydrometallurgical processes have been developed for the separation of some TRUs and long-lived fission products from the high activity liquid (HLW) coming from PUREX reprocessing. Among the most important countries and institutions that are developing new hydrometallurgical processes are USA, Japan, China, Russia and the European Union, fundamentally France, the Czech Republic, United Kingdom, Italy, Belgium, Holland, Germany, Spain and the JRC-ITU. In the case of Spain it is possible to remark the works of synthesis of new extractants, developed by the group of the Prof. Javier de Mendoza of the Dept. of Organic Chemistry of the Universidad Autonoma de Madrid and by the group of Prof. Teixidor of the Instituto de Ciencias de Materiales de Barcelona (ICMAB) of the Consejo Superior de Investigaciones Cientificas (CSIC) and the activities carried out by the CIEMAT from 1999, based fundamentally on a collaboration agreement with ENRESA, that are related to the characterization and tests of the new extractants synthesized in Spain and also abroad, mainly by the CEA (France). All these activities are included in the Projects PARTNEW and EUROPART of the European Union. About Pyro-metallurgical Processes, they started in the ANL (Argonne National Laboratory, USA) by the 60' is of the

  20. La incidencia de rasgos de personalidad en estudiantes avanzados de psicología hacia la elección de una línea teórica

    Directory of Open Access Journals (Sweden)

    Maria Lucia Cariaga Siracusa

    2014-07-01

    Full Text Available El propósito de este artículo de investigación es analizar la influencia de la personalidad y las motivaciones para optar por una especialización clínica, en estudiantes de Psicología. Método: 155 estudiantes avanzados de la carrera Lic. en Psicología fueron evaluados con el test Big Five de Personalidad (Castro Solano, 2005 y con una encuesta Ad Hoc. Resultados: Se encontraron diferencias significativas en dos dimensiones de personalidad: Agradabilidad (p= ,034 y Responsabilidad (p= ,053 entre estudiantes de diferentes corrientes teóricas. Además se observaron diferencias en las motivaciones elegidas para optar por determinada orientación clínica. Se puede concluir que existe una relación significativa entre los rasgos de personalidad y los enfoques teóricos de la Psicología como ciencia en estudiantes de Psicología. Se discuten estos resultados en función de estudios previos. Abstract The aim of this research paper is to analyze the influence of personality and motivations in the choice of a clinical specialization in psychology students. Method: 155 psychology advanced were assessed with the Big Five Personality test (Castro Solano, 2005 and an Ad Hoc survey. Results: Significant differences in two dimensions of personality were found: Agreeableness (p = .034 and Accountability (p = .053 among students of different clinical specialization. Besides, differences in motivations chosen were found in the choice of a specific clinical orientation. We conclude that a significant relationship exists between personality traits and the theoretical Psychology approaches as a science in Psychology students.

  1. Nuclear law - Nuclear safety

    International Nuclear Information System (INIS)

    Pontier, Jean-Marie; Roux, Emmanuel; Leger, Marc; Deguergue, Maryse; Vallar, Christian; Pissaloux, Jean-Luc; Bernie-Boissard, Catherine; Thireau, Veronique; Takahashi, Nobuyuki; Spencer, Mary; Zhang, Li; Park, Kyun Sung; Artus, J.C.

    2012-01-01

    This book contains the contributions presented during a one-day seminar. The authors propose a framework for a legal approach to nuclear safety, a discussion of the 2009/71/EURATOM directive which establishes a European framework for nuclear safety in nuclear installations, a comment on nuclear safety and environmental governance, a discussion of the relationship between citizenship and nuclear, some thoughts about the Nuclear Safety Authority, an overview of the situation regarding the safety in nuclear waste burying, a comment on the Nome law with respect to electricity price and nuclear safety, a comment on the legal consequences of the Fukushima accident on nuclear safety in the Japanese law, a presentation of the USA nuclear regulation, an overview of nuclear safety in China, and a discussion of nuclear safety in the medical sector

  2. Exergetical analysis of combustion, heat transfers, thermodynamical cycles and their applications

    International Nuclear Information System (INIS)

    Buchet, E.

    1983-11-01

    Exergetic analysis allowed to show up and evaluate irreversibilities in combustion, vapor exchanges and thermodynamic cycles, and also to justify processes often used to improve yields of thermal and energetic plants, and among them some more and more complex in cogeneration plants. This analysic method has been applied to thermal or nuclear steam power plant, to gas turbines and to cogeneration [fr

  3. Aerosol generation by oxidation and combustion of plutonium and its compounds: literature survey

    International Nuclear Information System (INIS)

    Ballereau, P.

    1987-09-01

    Generation of aerosols by oxidation or combustion is one of the greatest risks due to plutonium. A review is made of the most interesting documents available on this topic. Following a brief study of plutonium oxydation conditions, characteristics of aerosols generated by accidents of fires involving metallic Pu and some of its compounds are assessed. Nuclear weapons are not included in this review [fr

  4. Low Temperature Combustion Demonstrator for High Efficiency Clean Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ojeda, William de

    2010-07-31

    The project which extended from November 2005 to May of 2010 demonstrated the application of Low Temperature Combustion (LTC) with engine out NOx levels of 0.2 g/bhp-hr throughout the program target load of 12.6bar BMEP. The project showed that the range of loads could be extended to 16.5bar BMEP, therefore matching the reference lug line of the base 2007 MY Navistar 6.4L V8 engine. Results showed that the application of LTC provided a dramatic improvement over engine out emissions when compared to the base engine. Furthermore LTC improved thermal efficiency by over 5% from the base production engine when using the steady state 13 mode composite test as a benchmark. The key enablers included improvements in the air, fuel injection, and cooling systems made in Phases I and II. The outcome was the product of a careful integration of each component under an intelligent control system. The engine hardware provided the conditions to support LTC and the controller provided the necessary robustness for a stable combustion. Phase III provided a detailed account on the injection strategy used to meet the high load requirements. During this phase, the control strategy was implemented in a production automotive grade ECU to perform cycle-by-cycle combustion feedback on each of the engine cylinders. The control interacted on a cycle base with the injection system and with the Turbo-EGR systems according to their respective time constants. The result was a unique system that could, first, help optimize the combustion system and maintain high efficiency, and secondly, extend the steady state results to the transient mode of operation. The engine was upgraded in Phase IV with a Variable Valve Actuation system and a hybrid EGR loop. The impact of the more versatile EGR loop did not provide significant advantages, however the application of VVA proved to be an enabler to further extend the operation of LTC and gain considerable benefits in fuel economy and soot reduction. Finally

  5. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, G.D.; Chick, L.A.; Kurosky, R.P.

    1998-01-06

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor. 10 figs.

  6. Combustion synthesis continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Maupin, Gary D. (Richland, WA); Chick, Lawrence A. (West Richland, WA); Kurosky, Randal P. (Maple Valley, WA)

    1998-01-01

    The present invention is a reactor for combustion synthesis of inorganic powders. The reactor includes a reaction vessel having a length and a first end and a second end. The reaction vessel further has a solution inlet and a carrier gas inlet. The reactor further has a heater for heating both the solution and the carrier gas. In a preferred embodiment, the reaction vessel is heated and the solution is in contact with the heated reaction vessel. It is further preferred that the reaction vessel be cylindrical and that the carrier gas is introduced tangentially into the reaction vessel so that the solution flows helically along the interior wall of the reaction vessel. As the solution evaporates and combustion produces inorganic material powder, the carrier gas entrains the powder and carries it out of the reactor.

  7. Steady state HNG combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Louwers, J.; Gadiot, G.M.H.J.L. [TNO Prins Maurits Lab., Rijswijk (Netherlands); Brewster, M.Q. [Univ. of Illinois, Urbana, IL (United States); Son, S.F. [Los Alamos National Lab., NM (United States); Parr, T.; Hanson-Parr, D. [Naval Air Warfare Center, China Lake, CA (United States)

    1998-04-01

    Two simplified modeling approaches are used to model the combustion of Hydrazinium Nitroformate (HNF, N{sub 2}H{sub 5}-C(NO{sub 2}){sub 3}). The condensed phase is treated by high activation energy asymptotics. The gas phase is treated by two limit cases: the classical high activation energy, and the recently introduced low activation energy approach. This results in simplification of the gas phase energy equation, making an (approximate) analytical solution possible. The results of both models are compared with experimental results of HNF combustion. It is shown that the low activation energy approach yields better agreement with experimental observations (e.g. regression rate and temperature sensitivity), than the high activation energy approach.

  8. Oxy-coal Combustion Studies

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, J. [Univ. of Utah, Salt Lake City, UT (United States); Eddings, E. [Univ. of Utah, Salt Lake City, UT (United States); Lighty, J. [Univ. of Utah, Salt Lake City, UT (United States); Ring, T. [Univ. of Utah, Salt Lake City, UT (United States); Smith, P. [Univ. of Utah, Salt Lake City, UT (United States); Thornock, J. [Univ. of Utah, Salt Lake City, UT (United States); Y Jia, W. Morris [Univ. of Utah, Salt Lake City, UT (United States); Pedel, J. [Univ. of Utah, Salt Lake City, UT (United States); Rezeai, D. [Univ. of Utah, Salt Lake City, UT (United States); Wang, L. [Univ. of Utah, Salt Lake City, UT (United States); Zhang, J. [Univ. of Utah, Salt Lake City, UT (United States); Kelly, K. [Univ. of Utah, Salt Lake City, UT (United States)

    2012-01-06

    The objective of this project is to move toward the development of a predictive capability with quantified uncertainty bounds for pilot-scale, single-burner, oxy-coal operation. This validation research brings together multi-scale experimental measurements and computer simulations. The combination of simulation development and validation experiments is designed to lead to predictive tools for the performance of existing air fired pulverized coal boilers that have been retrofitted to various oxy-firing configurations. In addition, this report also describes novel research results related to oxy-combustion in circulating fluidized beds. For pulverized coal combustion configurations, particular attention is focused on the effect of oxy-firing on ignition and coal-flame stability, and on the subsequent partitioning mechanisms of the ash aerosol.

  9. Microscale combustion and power generation

    CERN Document Server

    Cadou, Christopher; Ju, Yiguang

    2014-01-01

    Recent advances in microfabrication technologies have enabled the development of entirely new classes of small-scale devices with applications in fields ranging from biomedicine, to wireless communication and computing, to reconnaissance, and to augmentation of human function. In many cases, however, what these devices can actually accomplish is limited by the low energy density of their energy storage and conversion systems. This breakthrough book brings together in one place the information necessary to develop the high energy density combustion-based power sources that will enable many of these devices to realize their full potential. Engineers and scientists working in energy-related fields will find: An overview of the fundamental physics and phenomena of microscale combustion; Presentations of the latest modeling and simulation techniques for gasphase and catalytic micro-reactors; The latest results from experiments in small-scale liquid film, microtube, and porous combustors, micro-thrusters, a...

  10. Incidence of sulfur based additives to the microstructure of nuclear fuels. Elaboration and characterizations; Incidence d'additifs a base de soufre sur la microstructure des combustibles nucleaires. Elaboration et caracterisations

    Energy Technology Data Exchange (ETDEWEB)

    Caranoni, L

    2002-05-01

    Even though the global reactor working of MOX fuel is good, the fission gas emission now represents the limitative factor of its use at high burn-up. The increase of the average grain size promotes the diffusional length of fission gas inside the grain, slowing down their emission. In this respect, we have studied the influence of sulphur based additives on the crystal grain growth of nuclear oxide ceramics. The first part of this work concerns the preparation and characterisation of sulfur additives and especially the uranium oxy-sulphur, UOS. The study of its thermal behaviour has shown that the partial pressure ratio pH{sub 2}O/pH{sub 2}S controls the reaction kinetics between UOS and H{sub 2}O vapour, which leads to SO{sub 2} emission. After sintering at 1700 deg. C under reducing atmosphere, the UOS grains are strongly anisotropic. Their structure is characterised by (0,0,1) planar defects. The second part presents the study of the incorporation of these additives in UO{sub 2} powder. We have shown that the sulphur has a very favourable action on crystal growth. After sintering at 1700 deg C during 4 hours under Ar-5% H{sub 2} - 1000 ppm H{sub 2}O atmosphere, the average grain size is about 25-30 microns. The samples present a local grain size gradient between a thick peripheral layer (usual grain size) and the core (large grains) which is in accordance with a local sulphur concentration gradient. The sulphur action suddenly appears during the thermal cycle between 1600 deg C and 1700 deg C, whereas its mass concentration is lower than 30 ppm. SIMS analysis have highlighted, in the core, the segregation of sulphur at the grain boundary. According to these observations, a mechanism has been proposed to explain the activation induced by sulphur. The experiences carried out on mixed oxide, especially (U, Pu)O{sub 2}, confirm that the grain growth activation is induced by the presence of sulphur. (authors)

  11. Noise induced phenomena in combustion

    Science.gov (United States)

    Liu, Hongliang

    Quantitative models of combustion usually consist of systems of deterministic differential equations. However, there are reasons to suspect that noise may have a significant influence. In this thesis, our primary objective is to study the effect of noise on measurable quantities in the combustion process. Our first study involves combustion in a homogeneous gas. With a one step reaction model, we analytically estimate the requirements under which noise is important to create significant differences. Our simulation shows that a bi-modality phenomenon appears when appropriate parameters are applied, which agrees with our analytical result. Our second study involves steady planar flames. We use a relatively complete chemical model of the H2/air reaction system, which contains all eight reactive species (H2, O2, H, O, OH, H2O, HO2, H2O2) and N2. Our mathematical model for this system is a reacting flow model. We derive noise terms related to transport processes by a method advocated by Landau & Lifshitz, and we also derive noise terms related to chemical reactions. We develop a code to simulate this system. The numerical implementation relies on a good Riemann solver, suitable initial and boundary conditions, and so on. We also implement a code on a continuation method, which not only can be used to study approximate properties of laminar flames under deterministic governing equations, but also eliminates the difficulty of providing a suitable initial condition for governing equations with noise. With numerical experiments, we find the difference of flame speed exist when the noise is turned on or off although it is small when compared with the influence of other parameters, for example, the equivalence ratio. It will be a starting point for further studies to include noise in combustion.

  12. Coal combustion technology in China

    International Nuclear Information System (INIS)

    Huang, Z.X.

    1994-01-01

    Coal is the most important energy source in China, the environmental pollution problem derived from coal burning is rather serious in China. The present author discusses coal burning technologies both in boilers and industrial furnaces and their relations with environmental protection problems in China. The technological situations of Circulating Fluidized Bed Coal Combustor, Pulverized Coal Combustor with Aerodynamic Flame Holder and Coal Water Slurry Combustion have been discussed here as some of the interesting problems in China only. (author). 3 refs

  13. Electrorheology Leads to Efficient Combustion

    Science.gov (United States)

    Tao, R.; Huang, K.; Tang, H.; Bell, D.

    2009-03-01

    Improving engine efficiency and reducing pollutant emissions are important. Since combustion starts at the interface between fuel and air and most harmful emissions come from incomplete burning, reducing the size of fuel droplets for the fuel injection would increase the total surface area to start burning, leading to a cleaner and more efficient engine. While most efforts are focused on ultra-dilute mixtures at extremely high pressure to produce much finer mist of fuel for combustion, the new technology is still under development and only for next generation vehicles. Here we report our fuel injection technology based on new physics principle that proper application of electrorheology can reduce the viscosity of petroleum fuels. A small device is thus introduced just before the fuel injection for the engine, producing a strong electric field to reduce the fuel viscosity, resulting in much smaller fuel droplets in atomization. Both lab tests and road tests confirm our theory and indicate that such a device improves fuel mileage significantly and reduces emission. The technology is expected to have broad applications, applicable to current internal combustion engines and future engines as well. Supported by STWA and RAND.

  14. Modeling the internal combustion engine

    Science.gov (United States)

    Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    A flexible and computationally economical model of the internal combustion engine was developed for use on large digital computer systems. It is based on a system of ordinary differential equations for cylinder-averaged properties. The computer program is capable of multicycle calculations, with some parameters varying from cycle to cycle, and has restart capabilities. It can accommodate a broad spectrum of reactants, permits changes in physical properties, and offers a wide selection of alternative modeling functions without any reprogramming. It readily adapts to the amount of information available in a particular case because the model is in fact a hierarchy of five models. The models range from a simple model requiring only thermodynamic properties to a complex model demanding full combustion kinetics, transport properties, and poppet valve flow characteristics. Among its many features the model includes heat transfer, valve timing, supercharging, motoring, finite burning rates, cycle-to-cycle variations in air-fuel ratio, humid air, residual and recirculated exhaust gas, and full combustion kinetics.

  15. Particle Emissions from Biomass Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Szpila, Aneta; Bohgard, Mats [Lund Inst. of Technology (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Div. of Bioenergy Technology; Pagels, Joakim; Rissler, Jenny; Swietlicki, Erik; Gharibi, Arash [Lund Univ. (Sweden). Div. of Nuclear Physics

    2003-05-01

    We have shown that high concentrations of fine particles of the order of 2-7x10{sup -7} particles per cm{sup 3} are being formed in all the combustion units studied. There was a higher difference between the units in terms of particle mass concentrations. While the largest differences was found for gas-phase constituents (CO and THC) and polyaromatic hydrocarbons. In 5 out of 7 studied units, multi-cyclones were the only measure for flue-gas separation. The multicyclones had negligible effect on the particle number concentration and a small effect on the mass of particles smaller than 5 {mu}m. The separation efficiency was much higher for the electrostatic precipitators. The boiler load had a dramatic influence on the coarse mode concentration during combustion of forest residue. PM0.8-6 increased from below 5 mg/m{sup 3} to above 50 mg/m{sup 3} even at a moderate change in boiler load from medium to high. A similar but less pronounced trend was found during combustion of dry wood. PM0.8-PM6 increased from 12 to 23 mg/m{sup 3} when the load was changed from low to high. When increasing the load, the primary airflow taken through the grate is increased; this itself may lead to a higher potential of the air stream to carry coarse particles away from the combustion zone. Measurements with APS-instrument with higher time-resolution showed a corresponding increase in coarse mode number concentration with load. Additional factor influencing observed higher concentration of coarse mode during combustion of forest residues, could be relatively high ash content in this type of fuel (2.2 %) in comparison to dry wood (0.3 %) and pellets (0.5 %). With increasing load we also found a decrease in PM1 during combustion of forest residue. Whether this is caused by scavenging of volatilized material by the high coarse mode concentration or a result of a different amount of volatilized material available for formation of fine particles needs to be shown in future studies. The

  16. IEA combustion agreement : a collaborative task on alternative fuels in combustion

    International Nuclear Information System (INIS)

    Larmi, M.

    2009-01-01

    The focus of the alternative fuels in combustion task of the International Energy Agency is on high efficiency engine combustion, furnace combustion, and combustion chemistry. The objectives of the task are to develop optimum combustion for dedicated fuels by fully utilizing the physical and chemical properties of synthetic and renewable fuels; a significant reduction in carbon dioxide, NOx and particulate matter emissions; determine the minimum emission levels for dedicated fuels; and meet future emission standards of engines without or with minimum after-treatment. This presentation discussed the alternative fuels task and addressed issues such as synthetic fuel properties and benefits. The anticipated future roadmap was presented along with a list of the synthetic and renewable engine fuels to be studied, such as neat oxygenates like alcohols and ethers, biogas/methane and gas combustion, fuel blends, dual fuel combustion, high cetane number diesel fuels like synthetic Fischer-Tropsch diesel fuel and hydrogenated vegetable oil, and low CN number fuels. Implementation examples were also discussed, such as fuel spray studies in optical spray bombs; combustion research in optical engines and combustion chambers; studies on reaction kinetics of combustion and emission formation; studies on fuel properties and ignition behaviour; combustion studies on research engines; combustion optimization; implementing the optimum combustion in research engines; and emission measurements. Overall milestone examples and the overall schedule of participating countries were also presented. figs.

  17. Progress in BNL High-Temperature Hydrogen Combustion Research Program

    International Nuclear Information System (INIS)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

    1992-01-01

    The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The ''high-speed'' combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986

  18. Progress in BNL High-Temperature Hydrogen Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

    1992-12-31

    The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The ``high-speed`` combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

  19. Progress in BNL High-Temperature Hydrogen Combustion Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Curtiss, J.; Economos, C.; Jahelka, J.; Sato, K.

    1992-01-01

    The objectives of the BNL High-Temperature Hydrogen Combustion Research Program are discussed. The experimental facilities are described and two sets of preliminary experiments are presented. Chemical reaction time experiments have been performed to determine the length of time reactive mixtures of interest can be kept at temperature before reaction in the absence of ignition sources consumes the reactants. Preliminary observations are presented for temperatures in the range 588K--700K. Detonation experiments are described in which detonation cell width is measured as a measure of mixture sensitivity to detonation. Preliminary experiments are described which are being carried out to establish data reproducibility with previous measurements in the literature and to test out and refine experimental methods. Intensive studies of hydrogen combustion phenomena were carried out during the 1980s. Much of this effort was driven by issues related to nuclear reactor safety. The high-speed'' combustion phenomena of flame acceleration, deflagration-to-detonation transition, direct initiation of detonation, detonation propagation, limits of detonation in tubes and channels, transmission of detonations from confined to unconfined geometry and other related phenomena were studied using a variety of gaseous fuel-oxidant systems, including hydrogen-steam-air systems of interest in reactor safety studies. Several reviews are available which document this work [Lee, 1989; Berman, 1986].

  20. Waste gas combustion in a Hanford radioactive waste tank

    International Nuclear Information System (INIS)

    Travis, J.R.; Fujita, R.K.; Spore, J.W.

    1994-01-01

    It has been observed that a high-level radioactive waste tank generates quantities of hydrogen, ammonia, nitrous oxide, and nitrogen that are potentially well within flammability limits. These gases are produced from chemical and nuclear decay reactions in a slurry of radioactive waste materials. Significant amounts of combustible and reactant gases accumulate in the waste over a 110- to 120-d period. The slurry becomes Taylor unstable owing to the buoyancy of the gases trapped in a matrix of sodium nitrate and nitrite salts. As the contents of the tank roll over, the generated waste gases rupture through the waste material surface, allowing the gases to be transported and mixed with air in the cover-gas space in the dome of the tank. An ignition source is postulated in the dome space where the waste gases combust in the presence of air resulting in pressure and temperature loadings on the double-walled waste tank. This analysis is conducted with hydrogen mixing studies HMS, a three-dimensional, time-dependent fluid dynamics code coupled with finite-rate chemical kinetics. The waste tank has a ventilation system designed to maintain a slight negative gage pressure during normal operation. We modeled the ventilation system with the transient reactor analysis code (TRAC), and we coupled these two best-estimate accident analysis computer codes to model the ventilation system response to pressures and temperatures generated by the hydrogen and ammonia combustion

  1. GOTHIC 3D applicability to fast hydrogen combustions

    International Nuclear Information System (INIS)

    Lee, Jung Jae; Park, Goon Cherl; Lee, Byung Chul; Yoo, Ho Jong; Kim, Hyeong Taek; Oh, Seung Jong

    2004-01-01

    Under severe accidents in nuclear power plant (NPP), the hydrogen can be generated by chemical reactions and may threaten the containment integrity via hydrogen combustion. For containment analyses, three-dimensional mechanistic code, GOTHIC had to be applied near source compartments in order to predict whether highly reactive gas mixture can be formed or not under hydrogen mitigation system (HMS) working. For its applicability, this paper presents numerical calculation results of GOTHIC 3D on some hydrogen combustion experiments, which are the FLAME (Sandia National Lab.) experiments, the LSVCTF (AECL Whiteshell Lab.) experiments and the SNU-2D (Seoul National Univ.) experiments. A technical basis for the modeling of the large- and small-scale facilities was developed through sensitivity studies on cell size and combustion modeling parameters. It was found that for large-scale facilities, there were no significant differences in the results with different turbulent burn options, while for small-scale facility, the option using the eddy dissipation concept showed the faster flame propagations. The flame velocity became larger with smaller burn parameters such as the flame thickness δ f and the burn temperature limit T lim . The best estimate modeling parameters found from this study would be applied to real plant simulation of GOTHIC 3D later

  2. Processing of combustible radioactive waste using incineration techniques

    International Nuclear Information System (INIS)

    Maestas, E.

    1981-01-01

    Among the OECD Nuclear Energy Agency Member countries numerous incineration concepts are being studied as potential methods for conditioning alpha-bearing and other types of combustible radioactive waste. The common objective of these different processes is volume reduction and the transformation of the waste to a more acceptable waste form. Because the combustion processes reduce the mass and volume of waste to a form which is generally more inert than the feed material, the resulting waste can be more uniformly compatible with safe handling, packaging, storage and/or disposal techniques. The number of different types of combustion process designed and operating specifically for alpha-bearing wastes is somewhat small compared with those for non-alpha radioactive wastes; however, research and development is under way in a number of countries to develop and improve alpha incinerators. This paper provides an overview of most alpha-incineration concepts in operation or under development in OECD/NEA Member countries. The special features of each concept are briefly discussed. A table containing characteristic data of incinerators is presented so that a comparison of the major programmes can be made. The table includes the incinerator name and location, process type, capacity throughput, operational status and application. (author)

  3. Accidental behaviour of nuclear fuel in a warehousing site under air: investigation of the nuclear ceramic oxidation and of fission gas release; Comportement accidentel du combustible nucleaire dans un site d'entreposage sous air: Etude de l'oxydation de la ceramique nucleaire et du relachement des gaz de fission

    Energy Technology Data Exchange (ETDEWEB)

    Desgranges, L.

    2006-12-15

    After a brief presentation of the context of his works, i.e. the nuclear fuel, its behaviour in a nuclear reactor, and studies performed in high activity laboratory, the author more precisely presents its research topic: the behaviour of defective nuclear fuel in air. Then, he describes the researches performed in three main directions: firstly, the characterization and understanding of fission gas localisation (experimental localisation, understanding of the bubble forming mechanisms), secondly, the determination of mechanisms related to oxidation (atomic mechanisms related to UO{sub 2} oxidation, oxidation of fragments of irradiated fuel, the CROCODILE installation). He finally presents his scientific project which notably deals with fission gas release (from UO{sub 2} to U{sub 3}O{sub 7}, and from U{sub 3}O{sub 7} to U{sub 3}O{sub 8}), and with further high activity laboratory experiments

  4. Sandia Combustion Research Program: Annual report, 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report presents research results of the past year, divided thematically into some ten categories. Publications and presentations arising from this work are included in the appendix. Our highlighted accomplishment of the year is the announcement of the discovery and demonstration of the RAPRENOx process. This new mechanism for the elimination of nitrogen oxides from essentially all kinds of combustion exhausts shows promise for commercialization, and may eventually make a significant contribution to our nation's ability to control smog and acid rain. The sections of this volume describe the facility's laser and computer system, laser diagnostics of flames, combustion chemistry, reacting flows, liquid and solid propellant combustion, mathematical models of combustion, high-temperature material interfaces, studies of engine/furnace combustion, coal combustion, and the means of encouraging technology transfer. 182 refs., 170 figs., 12 tabs.

  5. Combustion en lit fluidisé Fluidized-Bed Combustion

    Directory of Open Access Journals (Sweden)

    Chrysostome G.

    2006-11-01

    Full Text Available Après quelques rappels généraux sur la fluidisation où seront présentés en par-ticulier les avantages qu'elle offre en combustion, on exposera l'état actuel du développement des générateurs à lit fluidisé opérant avec les combustibles suivants : charbon, combustibles pétroliers, résidus divers ; il sera fait mention de la contribution de l'Institut Français du Pétrole (IFP dans les deux derniers domaines.On présentera ensuite les installations les plus récentes en traitement de minerais (grillage des sulfures, calcination de calcaires. En raison de son importance on examinera encore les possibilités de désulfuration au sein de lits fluidisés, de même que seront commentés les travaux de régénération des absorbants.On terminera enfin en mentionnant les développements des lits circulants ou rapides, considérés comme les réacteurs de la seconde génération. After a general review of fluidization including in particular the advantages it offers for combustion, this article describes the present state of the development of fluidized-bed gcnerators operating with the following fuels : cool, petroleum fuels, different residues. Mention is made of Institut Français du Pétrole (IFP contribution in the last two fields. Then the most recent ore-treating installations are described (roasting of sulfides, calcination of limestones. Because of its importance, the possibilities of desulfurizoticn inside fluidized beds is examined, and research on the regeneration of absorbants is commented on. The article ends by mentioning the development of circulating or fast beds which are considered as second generation reactors.

  6. Papel de la tomografía por computadora en la decisión terapeútica con respecto a la clínica y radiografía simple de tórax tras quimioterapia neoadyuvante en el carcinoma de pulmón no microcítico localmente avanzado

    OpenAIRE

    Calvo Temprano, David

    2012-01-01

    Esta Tesis Doctoral se ha basado en un grupo de pacientes incluidos en un ensayo clínico aleatorizado publicado anteriormente en la que la quimioterapia (AT) se administró a los pacientes con cáncer de pulmón no microcítico (CPNM) localmente avanzado. De todos ellos, hay métodos disponibles de imágenes anteriores y posterioresa QT, consistentes en dos radiografías de tórax (Rx) en dos proyecciones (antes y después de QT) y tomografía computarizada (TC) de tórax y parte superior del abdomen. L...

  7. “Plicatura del disco articular (discopexia) con mini anclajes absorbibles en estadios avanzados de disfunción de la articulación temporomandibular según la clasificación de wilkes, en el hospital universitario de la samaritana, Bogotá, Colombia. Enero del 2011 a Junio de 2013”

    OpenAIRE

    Restrepo Zapata, Ana Paulina

    2014-01-01

    Este estudio evaluó la efectividad de la plicatura del disco articular con mini anclajes reabsorbibles en estadios avanzados de disfunción de la articulación temporomandibular según la clasificación de Wilkes, en 28 pacientes para un total de 48 articulaciones que presentaban desplazamiento del disco sin reducción, con indicación de realizar reposición del disco articular, las cuales fueron realizada con mini anclaje reabsorbible (Mitek reabsorbible ® Depuy Synthes). En este se...

  8. Advanced control system for temperature control in the pressurized fluid bed of Escatron Thermal Plant Power; Sistema de Control Avanzado para Control de la Temperatura del Lecho Fluido a Presion de la Central Termica de Escatron

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    In the P. F-B. C a small problem appears, particularly in Escatron the bed temperature gradient is very high. Such gradient very occasionally reaches 50 degree centigree in a same plane. With the reduction of bed difference of temperature, the average bed temperature could be increased with the result steam cycle benefit, at the same time combustion gases would go at a higher temperature to the gas turbine, increasing therefore its performance. The SCAP system will allow to face the resolution of the injection of combustible problem and in this manner achieve the homogenization of bed temperature in Escatron PFBC Thermal Power Station. (Author)

  9. The retention of iodine by iodine filters in nuclear power plants in the case of fire

    International Nuclear Information System (INIS)

    Giraud, V.

    1985-01-01

    Due to the liberation of considerable amounts of gaseous combustion products, fires in nuclear power plants may lead to a deterioration in the retention of radioiodine by iodine filters. The combustion products of the burnable materials, i.e., insulations, lubricants and paints, vary considerably with the development of the fire. Combustion product analyses of these materials have been performed only to a limited extent. The reaction of iodine with combustion products as well as the retention of the resulting iodine reaction products by sorbents have not yet been investigated. The reduction in the removal efficiencies of iodine sorbents due to the presence of combustion products is unknown. (orig.) [de

  10. Celda combustible polimérica

    OpenAIRE

    Esquivel Bojórquez, Juan Pablo; Sabaté Vizcarra, María Neus; Santander Vallejo, Joaquín; Torres Herrero, Nuria; Gràcia Tortadès, Isabel; Cané Ballart, Carles

    2010-01-01

    La presente invención se refiere a una celda combustible polimérica fabricada con la fotoresina SU-8, todos los componentes de la celda de combustible, colectores de corriente y MEA, están fabricados en base a este mismo material. Además la presente invención también se refiere a su procedimiento de obtención y a los usos de dicha celda combustible.

  11. Numerical investigation of biogas flameless combustion

    International Nuclear Information System (INIS)

    Hosseini, Seyed Ehsan; Bagheri, Ghobad; Wahid, Mazlan Abdul

    2014-01-01

    Highlights: • Fuel consumption decreases from 3.24 g/s in biogas conventional combustion to 1.07 g/s in flameless mode. • The differences between reactants and products temperature intensifies irreversibility in traditional combustion. • The temperature inside the chamber is uniform in biogas flameless mode and exergy loss decreases in this technique. • Low O 2 concentration in the flameless mode confirms a complete and quick combustion process in flameless regime. - Abstract: The purpose of this investigation is to analyze combustion characteristics of biogas flameless mode based on clean technology development strategies. A three dimensional (3D) computational fluid dynamic (CFD) study has been performed to illustrate various priorities of biogas flameless combustion compared to the conventional mode. The effects of preheated temperature and wall temperature, reaction zone and pollutant formation are observed and the impacts of combustion and turbulence models on numerical results are discussed. Although preheated conventional combustion could be effective in terms of fuel consumption reduction, NO x formation increases. It has been found that biogas is not eligible to be applied in furnace heat up due to its low calorific value (LCV) and it is necessary to utilize a high calorific value fuel to preheat the furnace. The required enthalpy for biogas auto-ignition temperature is supplied by enthalpy of preheated oxidizer. In biogas flameless combustion, the mean temperature of the furnace is lower than traditional combustion throughout the chamber. Compared to the biogas flameless combustion with uniform temperature, very high and fluctuated temperatures are recorded in conventional combustion. Since high entropy generation intensifies irreversibility, exergy loss is higher in biogas conventional combustion compared to the biogas flameless regime. Entropy generation minimization in flameless mode is attributed to the uniform temperature inside the chamber

  12. Materials for High-Temperature Catalytic Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Ersson, Anders

    2003-04-01

    Catalytic combustion is an environmentally friendly technique to combust fuels in e.g. gas turbines. Introducing a catalyst into the combustion chamber of a gas turbine allows combustion outside the normal flammability limits. Hence, the adiabatic flame temperature may be lowered below the threshold temperature for thermal NO{sub X} formation while maintaining a stable combustion. However, several challenges are connected to the application of catalytic combustion in gas turbines. The first part of this thesis reviews the use of catalytic combustion in gas turbines. The influence of the fuel has been studied and compared over different catalyst materials. The material section is divided into two parts. The first concerns bimetallic palladium catalysts. These catalysts showed a more stable activity compared to their pure palladium counterparts for methane combustion. This was verified both by using an annular reactor at ambient pressure and a pilot-scale reactor at elevated pressures and flows closely resembling the ones found in a gas turbine combustor. The second part concerns high-temperature materials, which may be used either as active or washcoat materials. A novel group of materials for catalysis, i.e. garnets, has been synthesised and tested in combustion of methane, a low-heating value gas and diesel fuel. The garnets showed some interesting abilities especially for combustion of low-heating value, LHV, gas. Two other materials were also studied, i.e. spinels and hexa aluminates, both showed very promising thermal stability and the substituted hexa aluminates also showed a good catalytic activity. Finally, deactivation of the catalyst materials was studied. In this part the sulphur poisoning of palladium, platinum and the above-mentioned complex metal oxides has been studied for combustion of a LHV gas. Platinum and surprisingly the garnet were least deactivated. Palladium was severely affected for methane combustion while the other washcoat materials were

  13. The combustion of solid fuels and wastes

    CERN Document Server

    Tillman, David

    1991-01-01

    Careful organization and empirical correlations help clarify the prodigious technical information presented in this useful reference.Key Features* Written for practicing engineers, this comprehensive book supplies an overall framework of the combustion process; It connects information on specific reactions and reaction sequences with current applications and hardware; Each major group of combustion solids is evaluated; Among the many topics covered are:* Various biomass forms* The coalification process* Grate, kiln, and suspension firing* Fluidized bed combustion

  14. 14 CFR 25.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 25.859....859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... surrounds the combustion chamber. However, no fire extinguishment is required in cabin ventilating air...

  15. 14 CFR 29.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 29.859... § 29.859 Combustion heater fire protection. (a) Combustion heater fire zones. The following combustion... any ventilating air passage that— (i) Surrounds the combustion chamber; and (ii) Would not contain...

  16. High Impact Technology Compact Combustion (HITCC) Compact Core Technologies

    Science.gov (United States)

    2016-01-01

    were combusted in a vitiated stream. The molecular weight and hydrogen -to-carbon ratios of these fuels were measured by Princeton University [17...AFRL-RQ-WP-TR-2016-0010 HIGH IMPACT TECHNOLOGY COMPACT COMBUSTION (HITCC) COMPACT CORE TECHNOLOGIES Andrew W. Caswell Combustion ...ANDREW W. CASWELL CHARLES J. CROSS, Branch Chief Program Engineer Combustion Branch Combustion Branch Turbine Engine Division Turbine

  17. 46 CFR 105.10-10 - Combustible liquid.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Combustible liquid. 105.10-10 Section 105.10-10 Shipping... Combustible liquid. (a) The term combustible liquid means any liquid having a flashpoint above 80 °F. (as..., combustible liquids are referred to by grades, as follows: (1) Grade D. Any combustible liquid having a...

  18. Engine Valve Actuation For Combustion Enhancement

    Science.gov (United States)

    Reitz, Rolf Deneys; Rutland, Christopher J.; Jhavar, Rahul

    2004-05-18

    A combustion chamber valve, such as an intake valve or an exhaust valve, is briefly opened during the compression and/or power strokes of a 4-stroke combustion cycle in an internal combustion engine (in particular, a diesel or CI engine). The brief opening may (1) enhance mixing withing the combustion chamber, allowing more complete oxidation of particulates to decrease engine emissions; and/or may (2) delay ignition until a more desirable time, potentially allowing a means of timing ignition in otherwise difficult-to-control conditions, e.g., in HCCI (Homogeneous Charge Compression Ignition) conditions.

  19. Pressurized Fluidized Bed Combustion of Sewage Sludge

    Science.gov (United States)

    Suzuki, Yoshizo; Nojima, Tomoyuki; Kakuta, Akihiko; Moritomi, Hiroshi

    A conceptual design of an energy recovering system from sewage sludge was proposed. This system consists of a pressurized fluidized bed combustor, a gas turbine, and a heat exchanger for preheating of combustion air. Thermal efficiency was estimated roughly as 10-25%. In order to know the combustion characteristics of the sewage sludge under the elevated pressure condition, combustion tests of the dry and wet sewage sludge were carried out by using laboratory scale pressurized fluidized bed combustors. Combustibility of the sewage sludge was good enough and almost complete combustion was achieved in the combustion of the actual wet sludge. CO emission and NOx emission were marvelously low especially during the combustion of wet sewage sludge regardless of high volatile and nitrogen content of the sewage sludge. However, nitrous oxide (N2O) emission was very high. Hence, almost all nitrogen oxides were emitted as the form of N2O. From these combustion tests, we judged combustion of the sewage sludge with the pressurized fluidized bed combustor is suitable, and the conceptual design of the power generation system is available.

  20. Pyrolysis reactor and fluidized bed combustion chamber

    Science.gov (United States)

    Green, Norman W.

    1981-01-06

    A solid carbonaceous material is pyrolyzed in a descending flow pyrolysis reactor in the presence of a particulate source of heat to yield a particulate carbon containing solid residue. The particulate source of heat is obtained by educting with a gaseous source of oxygen the particulate carbon containing solid residue from a fluidized bed into a first combustion zone coupled to a second combustion zone. A source of oxygen is introduced into the second combustion zone to oxidize carbon monoxide formed in the first combustion zone to heat the solid residue to the temperature of the particulate source of heat.

  1. Pulsed atmospheric fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    1989-11-01

    In order to verify the technical feasibility of the MTCI Pulsed Atmospheric Fluidized Bed Combustor technology, a laboratory-scale system was designed, built and tested. Important aspects of the operational and performance parameters of the system were established experimentally. A considerable amount of the effort was invested in the initial task of constructing an AFBC that would represent a reasonable baseline against which the performance of the PAFBC could be compared. A summary comparison of the performance and emissions data from the MTCI 2 ft {times} 2 ft facility (AFBC and PAFBC modes) with those from conventional BFBC (taller freeboard and recycle operation) and circulating fluidized bed combustion (CFBC) units is given in Table ES-1. The comparison is for typical high-volatile bituminous coals and sorbents of average reactivity. The values indicated for BFBC and CFBC were based on published information. The AFBC unit that was designed to act as a baseline for the comparison was indeed representative of the larger units even at the smaller scale for which it was designed. The PAFBC mode exhibited superior performance in relation to the AFBC mode. The higher combustion efficiency translates into reduced coal consumption and lower system operating cost; the improvement in sulfur capture implies less sorbent requirement and waste generation and in turn lower operating cost; lower NO{sub x} and CO emissions mean ease of site permitting; and greater steam-generation rate translates into less heat exchange surface area and reduced capital cost. Also, the PAFBC performance generally surpasses those of conventional BFBC, is comparable to CFBC in combustion and NO{sub x} emissions, and is better than CFBC in sulfur capture and CO emissions even at the scaled-down size used for the experimental feasibility tests.

  2. COMBUSTION PROPERTIES OF EUCALYPTUS WOOD

    Directory of Open Access Journals (Sweden)

    Yalçın ÖRS

    1999-03-01

    Full Text Available In this study, the combustion properties of some impregnation materials (abiotic and biotic factors used for eucalyptus wood in interior or exterior environments were investigated. The experimental samples were prepared from Eucalyptus wood based on ASTM-D-1413-76 Tanalith-CBC, boric acid, borax, vacsol-WR, immersol-WR, polyethylen glycole-400 and ammonium sulphate were used as an impregnation material. The results indicated that, vacuum treatment on Eucalyptus gave the lowest retention value of salts. Compounds containing boron+salt increased fire resistance however water repellents decreased the wood flammability.

  3. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  4. Modeling nitrogen chemistry in combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Miller, James A.; Ruscic, Branko

    2018-01-01

    Understanding of the chemical processes that govern formation and destruction of nitrogen oxides (NOx) in combustion processes continues to be a challenge. Even though this area has been the subject of extensive research over the last four decades, there are still unresolved issues that may limit...... via NNH or N2O are discussed, along with the chemistry of NO removal processes such as reburning and Selective Non-Catalytic Reduction of NO. Each subset of the mechanism is evaluated against experimental data and the accuracy of modeling predictions is discussed....

  5. Combustion

    National Research Council Canada - National Science Library

    Glassman, Irvin

    1996-01-01

    ... permission in writing from the publisher. Permissions may be sought directly from Elsevier's Science and Technology Rights Department in Oxford, UK. Phone (44) 1865 843830, Fax: (44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also complete your request on-line via the Elsevier homepage: http://www.elsevier.com by selecting "...

  6. Participation in benchmark MATIS-H of NEA/OCDE: uses CFD codes applied to nuclear safety. Study of the spacer grids in the fuel elements; Participacion en el Benchmark Matis-H de la NEA/OCDE: usos de codigos CFD aplicados a seguridad nuclear. Estudio de las rejillas espaciadoras en los elementos combustibles

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Monferrer, C.; Chiva, S.; Munoz-cobo, J. L.; Vela, E.

    2012-07-01

    This paper develops participation in benchmark MATIS-H, promoted by the NEA / OECD-KAERI, involving the study of turbulent flow in a rod beam with spacers in an experimental installation. Its aim is the analysis of hydraulic behavior of turbulent flow in the subchannels of the fuel elements, essential for the improvement of safety margins in normal and transient operations and to maximize the use of nuclear energy through an optimal design of grids.

  7. Low NOx combustion technologies for high-temperature natural gas combustion

    International Nuclear Information System (INIS)

    Flamme, Michael

    1999-01-01

    Because of the high process temperature which is required for some processes like glass melting and the high temperature to which the combustion air is preheated, NOx emission are extremely high. Even at these high temperatures, NOx emissions could be reduced drastically by using advanced combustion techniques such as staged combustion or flame-less oxidation, as experimental work has shown. In the case of oxy-fuel combustion, the NOx emission are also very high if conventional burners are used. The new combustion techniques achieve similar NOx reductions. (author)

  8. Combustion chemistry and formation of pollutants; Chimie de la combustion et formation des polluants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This book of proceedings reports on 7 papers on combustion chemistry and formation of pollutants presented during the workshop organized by the `Combustion and Flames` section of the French society of thermal engineers. The chemistry of combustion is analyzed in various situations such as: turbojet engines, spark ignition engines, industrial burners, gas turbines etc... Numerical simulation is used to understand the physico-chemical processes involved in combustion, to describe the kinetics of oxidation, combustion and flame propagation, and to predict the formation of pollutants. (J.S.)

  9. Refuerzo de estructuras con composites avanzados

    Directory of Open Access Journals (Sweden)

    Recuero, A.

    1997-12-01

    Full Text Available Restoration, strengthening and rehabilitation of buildings becomes one of the more interesting aspects of the use of composites. Construction industry has not yet accepted the wide structural use of these new materials because it does not know the advantages of composites in comparison with traditional materials, such as concrete or steel. Professionals involved in design and construction are conservative and resist to changes. They require codes and specifications, what makes that an entity should lead the use of the new material or technology. At present, the experience needed to prepare those codes does not exist. Experimental tests and successful cases are necessary for the acceptance of these materials in construction. In this work, an introduction to the subject is done and notice is given of a project which is developing with the aim to provide the experimental basis, needed to update design codes and standards, and the technology for the use of these new composites in building and civil structures strengthening, taking actual pathology, quality and durability into account, as well as urban aesthetics. Research specialists in composites, structural analysis and testing, and in structural pathology, as well as composites and adhesives manufacturers and appliers, designers and final users will cooperate in this project. This will allow that all relevant aspects of the problem be considered.

    La restauración, refuerzo o rehabilitación de estructuras resulta ser uno de los campos de aplicación de mayor interés y más directamente relacionado con los nuevos materiales compuestos. La Industria de la Construcción no ha aceptado aún el uso estructural extenso de los nuevos materiales compuestos, porque todavía no conoce bien cuándo existen ventajas respecto a los materiales tradicionales, tales como el hormigón o el acero. Los profesionales implicados en el proyecto y en la ejecución de obras suelen ser conservadores y resistirse a los cambios. Para aceptar un nuevo material requieren disponer de normativa relativa a la nueva tecnología, lo que hace necesario que alguna entidad lidere la aceptación del nuevo material o tecnología. Actualmente no existe ni a nivel nacional ni internacional la experiencia precisa para el desarrollo de tal normativa. Para ello es necesario tener la adecuada base experimental y de realizaciones con éxito. En el presente trabajo se trata de hacer una introducción al tema y de dar noticia de un proyecto de investigación que se está desarrollando, orientado a proporcionar la base experimental requerida para poner a punto, en un próximo futuro, normas y recomendaciones para el proyecto y la tecnología para el uso de estos nuevos materiales compuestos en el refuerzo de estructuras de edificación y obra civil, atendiendo a su patología, calidad y durabilidad del refuerzo, y a la estética urbanística. En él colaboran especialistas en investigación en materiales compuestos y en análisis teórico y experimental y en patología de estructuras, fabricantes y aplicadores del material y adhesivos, proyectistas y usuarios finales, lo que permitirá considerar todos los aspectos del problema.

  10. PLUSPROCESSOR. Un procesador de textos avanzado

    OpenAIRE

    Galán Largo, Mariano

    2007-01-01

    Proyecto Fin de Carrera leído en la Universidad Rey Juan Carlos durante el curso académico 2006/2007. Tutores del Proyecto: Micael Gallego Carrillo y Patxi Gortázar Bellas Arquitectura de Computadores y Ciencias de la Computación e Inteligencia Artificial

  11. Nuclear Medicine

    Science.gov (United States)

    ... Parents/Teachers Resource Links for Students Glossary Nuclear Medicine What is nuclear medicine? What are radioactive tracers? ... funded researchers advancing nuclear medicine? What is nuclear medicine? Nuclear medicine is a medical specialty that uses ...

  12. Depressão em pacientes com dor no câncer avançado Depresión en pacientes con dolor en el cáncer avanzado Depression in patients with advanced cancer and pain

    Directory of Open Access Journals (Sweden)

    Jeane Pereira da Silva Juver

    2008-06-01

    Full Text Available JUSTIFICATIVA E OBJETIVOS: A observação da importância dos sintomas emocionais no contexto do binômio saúde-doença e os esforços para divulgação da Medicina Paliativa motivaram a realização deste artigo. O objetivo desta revisão da literatura foi propor uma reflexão sobre o diagnóstico de depressão em pacientes com câncer avançado que apresentam quadros de dor com base nos conceitos e definições já existentes. CONTEÚDO: A dor e a depressão são sintomas prevalentes em pacientes com câncer. Considerando os vários pontos de interseção das doenças físicas e mentais, por vezes o diagnóstico de depressão em pacientes com câncer e dor torna-se difícil. Esse dado tem grande importância haja vista que a depressão compromete de forma importante a qualidade de vida dos pacientes, devendo ser diagnosticada e tratada a contento. CONCLUSÕES: Após a revisão da literatura algumas perguntas ficaram sem resposta adequada. Esse fato desperta o interesse para realização de estudos que proponham saídas para diagnóstico preciso e tratamento eficiente desse sintoma em pacientes com câncer avançado.JUSTIFICATIVA Y OBJETIVOS: La observación de la importancia de los síntomas emocionales en el contexto del binomio salud-enfermedad y los esfuerzos para la divulgación de la Medicina Paliativa, motivaron la realización de este artículo. El objetivo de esta revisión de la literatura fue proponer una reflexión sobre el diagnóstico de depresión en pacientes con cáncer avanzado que presentan cuadros de dolor con base en los conceptos y definiciones ya existentes. CONTENIDO: El dolor y la depresión son síntomas prevalecientes en pacientes con cáncer. Considerando los diversos puntos de intersección de las enfermedades físicas y mentales, a veces el diagnóstico de depresión en pacientes con cáncer y dolor se hace difícil. Ese dato tiene una gran importancia a causa de que la depresión compromete de forma importante la

  13. Ultra-low pollutant emission combustion method and apparatus

    International Nuclear Information System (INIS)

    Khinkis, M.J.

    1992-01-01

    This patent describes a method for ultra-low pollutant emission combustion of fossil fuel. It comprises: introducing into a primary combustion chamber a first fuel portion of about 1 percent to about 20 percent of a total fuel to be combusted; introducing primary combustion air into the primary combustion chamber; introducing a first portion of water into the primary combustion chamber, having a first water heat capacity equivalent to a primary combustion air heat capacity of one of a primary combustion air amount of about 10 percent to about 60 percent of the first stoichiometirc requirement for complete combustion of the first fuel portion and an excess primary combustion air amount of about 20 percent to about 150 percent of the first stoichiometric requirement for complete combustion of the first fuel portion; burning the first fuel portion with the primary combustion air in the primary combustion chamber at a temperature abut 2000 degrees F to about 2700 degrees F producing initial combustion products; passing the initial combustion products into a secondary combustion chamber; introducing into the secondary combustion chamber a second fuel portion of about 80 percent to about 99 percent of the total fuel to be combusted; introducing secondary combustion air into the secondary combustion chamber in an amount of about 105 percent to about 130 percent of a second stoichiometric requirement for complete combustion of the second fuel portion; introducing a second portion of water into the secondary combustion chamber; burning the second fuel portion and any remaining fuel in the initial combustion products; passing the final combustion products into a dilution chamber; introducing dilution air into the dilution chamber; discharging the ultra-low pollutant emission vitiated air form the dilution chamber

  14. Cars diagnostics for combustion and plasma processes

    International Nuclear Information System (INIS)

    Eckbreth, A.C.; Stufflebeam, J.H.

    1988-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) is an analysis approach for nonintrusive temperature and species measurements in hostile environments. Widely utilized in combustion, it may be able to significantly impact materials processing research. CARS is described. Its applications to combustion and plasma process environments are reviewed and contrasted

  15. Coal combustion ashes: A radioactive Waste?

    International Nuclear Information System (INIS)

    Michetti, F.P.; Tocci, M.

    1992-01-01

    The radioactive substances naturally hold in fossil fuels, such as Uranium and Thorium, after the combustion, are subjected to an increase of concentration in the residual combustion products as flying ashes or as firebox ashes. A significant percentage of the waste should be classified as radioactive waste, while the political strategies seems to be setted to declassify it as non-radioactive waste. (Author)

  16. Combustion synthesis and photoluminescence study of silicate ...

    Indian Academy of Sciences (India)

    Silicate based bioceramics are promising candidates as biomaterials for tissue engineering. The combustion synthesis method provides control on the morphology and particle size of the synthesized material. This paper discusses the combustion synthesis of akermanite (Ca2MgSi2O7 and Sr2MgSi2O7), which has been ...

  17. Flue Gas Emissions from Fluidized Bed Combustion

    NARCIS (Netherlands)

    Bramer, E.A.; Valk, M.

    1995-01-01

    During the past decades fluidized bed coal combustion was developed as a technology for burning coal in an effective way meeting the standards for pollution control. During the earlier years of research on fluidized bed combustion, the potential for limiting the S02 emission by adding limestone to

  18. Coal slurry combustion and technology. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Volume II contains papers presented at the following sessions of the Coal Slurry Combustion and Technology Symposium: (1) bench-scale testing; (2) pilot testing; (3) combustion; and (4) rheology and characterization. Thirty-three papers have been processed for inclusion in the Energy Data Base. (ATT)

  19. Internal combustion engines in hybrid vehicles

    NARCIS (Netherlands)

    Mourad, S.; Weijer, C.J.T. van de; Beckman, D.E.

    1998-01-01

    In this paper the use of internal combustion engines in hybrid powertrains is investigated. The substantial difference between the use of internal combustion engines in conventional and in hybrid vehicles mean that engines for hybrid vehicles should be designed specifically for the purpose. At the

  20. Sandia combustion research program: Annual report, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.E.; Sanders, B.R.; Ivanetich, C.A. (eds.)

    1988-01-01

    More than a decade ago, in response to a national energy crisis, Sandia proposed to the US Department of Energy a new, ambitious program in combustion research. Our strategy was to apply the rapidly increasing capabilities in lasers and computers to combustion science and technology. Shortly thereafter, the Combustion Research Facility (CRF) was established at Sandia's Livermore location. Designated a ''User Facility,'' the charter of the CRF was to develop and maintain special-purpose resources to support a nationwide initiative--involving US universities, industry, and national laboratories--to improve our understanding and control of combustion. This report includes descriptions of several research projects which have been stimulated by Working Groups and involve the on-site participation of industry scientists. DOE's Industry Technology Fellowship Program has been instrumental in the success of some of the joint efforts. The remainder of this report presents research results of calendar year 1987, separated thematically into nine categories. Refereed journal articles appearing in print during 1987, along with selected other publications, are included at the end of Section 10. In addition to our ''traditional'' research--chemistry, reacting flow, diagnostics, engine combustion, and coal combustion--you will note continued progress in somewhat recent themes: pulse combustion, high temperature materials, and energetic materials, for example. Moreover, we have just started a small, new effort to understand combustion-related issues in the management of toxic and hazardous materials.

  1. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  2. A model for premixed combustion oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Janus, M.C.; Richards, G.A.

    1996-09-01

    This paper describes a simulation based on a time dependent, nonlinear control volume analysis. The combustion is modeled as a well-stirred reactor having finite kinetics. Flow properties and species in the nozzle, combustion, and tailpipe regions are determined using a control volume formulation of the conservation equation.

  3. A predictive model of natural gas mixture combustion in internal combustion engines

    Directory of Open Access Journals (Sweden)

    Henry Espinoza

    2007-05-01

    Full Text Available This study shows the development of a predictive natural gas mixture combustion model for conventional com-bustion (ignition engines. The model was based on resolving two areas; one having unburned combustion mixture and another having combustion products. Energy and matter conservation equations were solved for each crankshaft turn angle for each area. Nonlinear differential equations for each phase’s energy (considering compression, combustion and expansion were solved by applying the fourth-order Runge-Kutta method. The model also enabled studying different natural gas components’ composition and evaluating combustion in the presence of dry and humid air. Validation results are shown with experimental data, demonstrating the software’s precision and accuracy in the results so produced. The results showed cylinder pressure, unburned and burned mixture temperature, burned mass fraction and combustion reaction heat for the engine being modelled using a natural gas mixture.

  4. Internal and surface phenomena in metal combustion

    Science.gov (United States)

    Dreizin, Edward L.; Molodetsky, Irina E.; Law, Chung K.

    1995-01-01

    Combustion of metals has been widely studied in the past, primarily because of their high oxidation enthalpies. A general understanding of metal combustion has been developed based on the recognition of the existence of both vapor-phase and surface reactions and involvement of the reaction products in the ensuing heterogeneous combustion. However, distinct features often observed in metal particle combustion, such as brightness oscillations and jumps (spearpoints), disruptive burning, and non-symmetric flames are not currently understood. Recent metal combustion experiments using uniform high-temperature metal droplets produced by a novel micro-arc technique have indicated that oxygen dissolves in the interior of burning particles of certain metals and that the subsequent transformations of the metal-oxygen solutions into stoichiometric oxides are accompanied with sufficient heat release to cause observed brightness and temperature jumps. Similar oxygen dissolution has been observed in recent experiments on bulk iron combustion but has not been associated with such dramatic effects. This research addresses heterogeneous metal droplet combustion, specifically focusing on oxygen penetration into the burning metal droplets, and its influence on the metal combustion rate, temperature history, and disruptive burning. A unique feature of the experimental approach is the combination of the microgravity environment with a novel micro-arc Generator of Monodispersed Metal Droplets (GEMMED), ensuring repeatable formation and ignition of uniform metal droplets with controllable initial temperature and velocity. The droplet initial temperatures can be adjusted within a wide range from just above the metal melting point, which provides means to ignite droplets instantly upon entering an oxygen containing environment. Initial droplet velocity will be set equal to zero allowing one to organize metal combustion microgravity experiments in a fashion similar to usual microgravity

  5. Solid waste combustion for alpha waste incineration

    International Nuclear Information System (INIS)

    Orloff, D.I.

    1981-02-01

    Radioactive waste incinerator development at the Savannah River Laboratory has been augmented by fundamental combustion studies at the University of South Carolina. The objective was to measure and model pyrolysis and combustion rates of typical Savannah River Plant waste materials as a function of incinerator operating conditions. The analytical models developed in this work have been incorporated into a waste burning transient code. The code predicts maximum air requirement and heat energy release as a function of waste type, package size, combustion chamber size, and temperature. Historically, relationships have been determined by direct experiments that did not allow an engineering basis for predicting combustion rates in untested incinerators. The computed combustion rates and burning times agree with measured values in the Savannah River Laboratory pilot (1 lb/hr) and full-scale (12 lb/hr) alpha incinerators for a wide variety of typical waste materials

  6. 2003 Laser Diagnostic in Combustion Conference

    Energy Technology Data Exchange (ETDEWEB)

    Mark G. Allen

    2004-09-10

    The GRC Laser Diagnostics in Combustion aims at bringing together scientists and engineers working in the front edge of research and development to discuss and find new ways to solve problems connected to combustion diagnostics. Laser-based techniques have proven to be very efficient tools for studying combustion processes thanks to features as non-intrusiveness in combination with high spatial and temporal resolution. Major tasks for the community are to develop and apply techniques for quantitative measurements with high precision e.g of species concentrations, temperatures, velocities and particles characteristics (size and concentration). These issues are of global interest, considering that the major part of the World's energy conversion comes from combustion sources and the influence combustion processes have on the environment and society.

  7. Interactive wood combustion for botanical tree models

    KAUST Repository

    Pirk, Sören

    2017-11-22

    We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of a plant and the exothermic reaction of the combustion. Coupled with realistic physics for rods, the particles enable dynamic branch motions. We model material properties, such as moisture and charring behavior, and associate them with individual particles. The combustion is efficiently processed in the surface domain of the tree model on a polygonal mesh. A user can dynamically interact with the model by initiating fires and by inducing stress on branches. The flames realistically propagate through the tree model by consuming the available resources. Our method runs at interactive rates and supports multiple tree instances in parallel. We demonstrate the effectiveness of our approach through numerous examples and evaluate its plausibility against the combustion of real wood samples.

  8. Passive autocatalytic recombiners for combustible gas control in advanced light water reactors

    International Nuclear Information System (INIS)

    Wolff, U.; Sliter, G.

    2004-01-01

    A key aspect of the worldwide effort to develop advanced nuclear power plants is designing to address severe accident phenomena, including the generation of hydrogen during core melt progression (metal-water and core-concrete reactions). This design work not only resolves safety concerns with hydrogen, but also supports the development of a technical basis for simplification of off-site emergency planning. The dominant challenge to any emergency planning approach is a large, early containment failure due to pressure excursions. Among the potential contributors to large and rapid increases in containment pressure is hydrogen combustion. The more improbable a containment-threatening combustion becomes, the more appropriate the argument for significant emergency planning simplification. As discussed in this paper, catalytic recombiners provide a means to passively and reliably limit hydrogen combustion to a continuous oxidation process with virtually no potential for containment failure in passive advanced light water reactors (ALWRs). (author)

  9. Pilot incineration plant for solid, combustible, and low-level wastes

    International Nuclear Information System (INIS)

    Francioni, W.M.

    Radioactively contaminated wastes are formed in the handling of radioactive materials at the Federal Institute for Reactor Research (FIRR) and in other facilities, hospitals, sanitoria, industry, and nuclear power plants. A large part of the wastes are combustible and only very slightly radioactive. Incineration of these wastes is obvious. A pilot incineration plant, henceforth called the PIP, for radioactive combustible wastes of the FIRR is surveyed. The plant and its individual components are described. The production costs of the plant and experience gained in operation available at present are reviewed. Solid combustible radioactive waste can be incinerated in the PIP. The maximum possible reduction in volume of these wastes is achieved by incineration. Subsequently the chemically sterile ashes can be consolidated in a stable block suitable for long-term storage mixing with cement

  10. New nuclear technologies

    International Nuclear Information System (INIS)

    Bouchard, J.; Thomas, J.B.

    2001-01-01

    The potential of nuclear energy for sustainable development is based on its competitiveness, environmental friendliness and sustainability of natural resources. The improvements to be achieved relate to cleanliness (by reducing the production of long lived radioactive waste), safety demonstration and sobriety which contributes to minimise the consumption of natural resources. The current level of competitiveness, which is fairly good, has to be maintained. The required improvements benefit from a high efficiency and a simpler architecture of industrial systems; they imply the recycling of nuclear materials and a high efficiency of nuclear combustion. The latter requires a hardened spectrum using fast neutrons, which makes the nuclear core 'omnivorous' as for transuranics. The studies must take into account reactor design, nuclear fuel and fuel cycle. Diverse coolants (water, gas, liquid metals) are considered, with solid fuel (pins, particles) and reprocessing by hydrometallurgical or pyrochemical processes, as well as liquid fuel reactors. Several ways of combining options look promising. The required time before industrial implementation is highly variable. A nuclear fleet can include diversified, specialized components and new applications (hydrogen production) can be envisaged. The R and D programme will rely on the development of simulation power and will imply a strong international cooperation. (authors)

  11. Distributed combustion in a cyclonic burner

    Science.gov (United States)

    Sorrentino, Giancarlo; Sabia, Pino; de Joannon, Mara; Cavaliere, Antonio; Ragucci, Raffaele

    2017-11-01

    Distributed combustion regime occurs in several combustion technologies were efficient and environmentally cleaner energy conversion are primary tasks. For such technologies (MILD, LTC, etc…), working temperatures are enough low to boost the formation of several classes of pollutants, such as NOx and soot. To access this temperature range, a significant dilution as well as preheating of reactants is required. Such conditions are usually achieved by a strong recirculation of exhaust gases that simultaneously dilute and pre-heat the fresh reactants. However, the intersection of low combustion temperatures and highly diluted mixtures with intense pre-heating alters the evolution of the combustion process with respect to traditional flames, leading to significant features such as uniformity and distributed ignition. The present study numerically characterized the turbulence-chemistry and combustion regimes of propane/oxygen mixtures, highly diluted in nitrogen, at atmospheric pressure, in a cyclonic combustor under MILD Combustion operating conditions. The velocity and mixing fields were obtained using CFD with focus on mean and fluctuating quantities. The flow-field information helped differentiate between the impact of turbulence levels and dilution ones. The integral length scale along with the fluctuating velocity is critical to determine Damköhler and Karlovitz numbers. Together these numbers identify the combustion regime at which the combustor is operating. This information clearly distinguishes between conventional flames and distributed combustion. The results revealed that major controllers of the reaction regime are dilution and mixing levels; both are significantly impacted by lowering oxygen concentration through entrainment of hot reactive species from within the combustor, which is important in distributed combustion. Understanding the controlling factors of distributed regime is critical for the development and deployment of these novel combustion

  12. Invisible nuclear; converting nuclear

    International Nuclear Information System (INIS)

    Park, Jongmoon

    1993-03-01

    This book consists of 14 chapters which are CNN era and big science, from East and West to North and South, illusory nuclear strategy, UN and nuclear arms reduction, management of armaments, advent of petroleum period, the track of nuclear power generation, view of energy, internationalization of environment, the war over water in the Middle East, influence of radiation and an isotope technology transfer and transfer armament into civilian industry, the end of nuclear period and the nuclear Nonproliferation, national scientific and technological power and political organ and executive organ.

  13. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    Science.gov (United States)

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  14. Conclusive experimental study of prevention measures against sodium combustion residuum reignition. Run-F9-1, Run-F9-2

    International Nuclear Information System (INIS)

    Ishikawa, Hiroyasu; Ohno, Shuji; Miyahara, Shinya

    2004-04-01

    Nitrogen gas can be an extinguisher or a mitigating material in the case of sodium leak and fire accident in an air atmosphere, which may occur at a liquid metal cooled nuclear power plant. However, sodium combustion residuum sometimes reignites in the air atmosphere even at room temperature when it was produced by nitrogen gas injection to the burning sodium. Then, in this study we executed conclusive experiments of prevention measures against sodium combustion residuum reignition by a mixture of carbon-dioxide (CO 2 ) gas, humidity and nitrogen gas. The experiments were carried out with the FRAT-1 test equipment; the humidity conditions were changed in air which were used to sodium combustion atmosphere and exposure air for confirmation of prevented combustion residue reignition. First of all, the sodium of about 2.5 kg was leaked in air atmosphere, and next, the sodium combustion was stopped by nitrogen gas injection. Next, the combustion residuum was cooled in the nitrogen atmosphere, and then the combustion residuum was exposed to atmosphere of carbon-dioxide (4%); humidity (6000vppm); oxygen (3%)-nitrogen (based gas) mixture. It was confirmed that the combustion residuum was not reignition even if exposed to the air atmosphere again at the end of experiment. We had confirmed that the prevention measures against sodium combustion residuum reignition to establish by this research were effective. (author)

  15. Nanoparticle emissions from combustion engines

    CERN Document Server

    Merkisz, Jerzy

    2015-01-01

     This book focuses on particulate matter emissions produced by vehicles with combustion engines. It describes the physicochemical properties of the particulate matter, the mechanisms of its formation and its environmental impacts (including those on human beings). It discusses methods for measuring particulate mass and number, including the state-of-the-art in Portable Emission Measurement System (PEMS) equipment for measuring the exhaust emissions of both light and heavy-duty vehicles and buses under actual operating conditions. The book presents the authors’ latest investigations into the relations between particulate emission (mass and number) and engine operating parameters, as well as their new findings obtained through road tests performed on various types of vehicles, including those using diesel particulate filter regeneration. The book, which addresses the needs of academics and professionals alike, also discusses relevant European regulations on particulate emissions and highlights selected metho...

  16. Use of Gray code in PBIL algorithm for application in recharge of nuclear fuels; Utilização do código Gray no algoritmo PBIL para aplicação na recarga de combustíveis nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Nast, Fernando N.; Silva, Patrick V.; Meneses, Anderson A. M., E-mail: anderson.meneses@pq.cnpq.br [Universidade Federal do Oeste do Para (UNIOESTE), Santarem, PA (Brazil). Lab. de Inteligencia Computacional; Schirru, Roberto, E-mail: schirru@lmp.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoracao de Processos

    2017-07-01

    The In-Core Fuel Management Optimization (OGCIN) problem, or design optimization of Load Patterns (PCs) are denominations for the optimization problem associated with the refueling operation in a reactor nuclear. The OCGIN is considered a problem of difficult resolution, considering aspects of combinatorial optimization and calculations of analysis and physics of reactors. In order to validate algorithms for the OGCIN solution, we use benchmark problems such as the Travelling Salesman Problem (TSP), because it is considered, like OGCIN, an NP-difficult problem. In the present work, we implemented the Population-Based Incremental Learning (PBIL) algorithm with binary coding and Gray coding and applied them to the optimization of the symmetric PCV Oliver30 and Rykel48 asymmetric PCV and implemented only the Gray coding in the OGCIN application of the cycle 7 of the Angra-1 Nuclear Plant, where we compared its performance with binary coding in. The results on average were 1311 and 1327 ppm of Boron for the binary and Gray codifications respectively, emphasizing that the binary codification obtained a maximum value of 1330 ppm, while the Gray code obtained a value of 1401 ppm, showing superiority, since the Boron concentration is an indicator of the PC cycle extension.

  17. Report of generation of the nuclear bank Presto-Warm (T=373 K) for the SVEA-96 fuel with the FMS codes; Reporte de generacion del banco nuclear Presto-Warm (T=373 K) para el combustible SVEA-96 con los codigos del FMS

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1992-03-15

    In this work it is described in a general way the form in that was generated the Presto Warm database (TF=TM=373K) of the one SVEA-96 fuel for Laguna Verde. The formation of the bank it was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-1B of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico D.F. The formed bank is denominated L1PG9109. All this was carried out following the 6F3/I/CN029/90/P1 procedure. The generated database contains information of the 10 nuclear parameters required in Presto without and with the effect of the control bar for the different arrangements of fuel bars present in the one assemble. All this included in what is known as Super option of the bank for Presto. (Author)

  18. The nuclear energy outlook--a new book from the OECD nuclear energy agency.

    Science.gov (United States)

    Yoshimura, Uichiro

    2011-01-01

    This paper summarizes the key points of a report titled Nuclear Energy Outlook, published in 2008 by the Nuclear Energy Agency of the Organization for Economic Cooperation and Development, which has 30 member nations. The report discusses the commitment of many nations to increase nuclear power generating capacity and the potential rate of building new electricity-generating nuclear plants by 2030 to 2050. The resulting decrease in carbon dioxide emissions from fossil fuel combustion resulting from an increase in nuclear power sources is described. Other topics that are discussed include the need to develop non-proliferative nuclear fuels, the importance of developing geological disposal facilities or reprocessing capabilities for spent nuclear fuel and high-level radioactive waste materials, and the requirements for a larger nuclear workforce and greater cost competitiveness for nuclear power generation. Copyright © 2010 Health Physics Society

  19. Effect of Variant End of Injection Period on Combustion Process of Biodiesel Combustion

    Directory of Open Access Journals (Sweden)

    Khalid Amir

    2016-01-01

    Full Text Available Biodiesel is an alternative fuel as a replacement to the standard diesel fuel in combustion diesel engine. The biodiesel fuel has a significantly influences throughout the combustion process and exhaust emission. The purpose of this research is to investigate the combustion process behavior during the End of Injection (EOI period and operates under variant conditions using Rapid Compression Machine (RCM. Experimental of RCM is used to simulate a combustion process and combustion characteristics of diesel engine combustion. Three types of biodiesel blend which are B5, B10 and B15 were tested at several injection pressures of 80 MPa, 90 MPa and 130 MPa under different ambient temperatures, 750 K to 1100 K. The results of this study showed that the ignition delay slightly reduced with increasing the content of biodiesel blends from B5, B10 and B15 and became more shorten as the injection pressure been enhanced. As the injection pressure increased, the behavior of combustion pressure at end of injection is reduced, radically increased the NOX emission. It is noted that the process of combustion at the end of injection increased as the ambient temperature is rising. In fact, higher initial ambient temperature improved the fuel atomization and mixing process. Under the biodiesel combustion with higher ambient temperature condition, the exhaust emission of CO, O2, and HC became less but increased in NOX emission. Besides, increased in blends of biodiesel ratio are found to enhance the combustion process, resulted a decreased in HC emissions.

  20. Capitalizing the contribution of the nuclear industry

    International Nuclear Information System (INIS)

    Donnadieu, G.

    1984-01-01

    The main contributions of the French nuclear industry to the country, and ways to make the most of them are presented. The advantages acquired include the nuclear power stations built; mastering of the combustion cycle; a powerful, well structured nuclear construction industry; and a nuclear-industrial complex giving France an important industrial potential. It is recommended that the industrial and research effort be maintained. The proposed strategy consists of defining an electronuclear program and associated economic development program and sticking to them; promoting exports; possibly merging certain industrial capacities; and strengthening the national position and independence concerning the fuel cycle [fr

  1. Extended lattice Boltzmann scheme for droplet combustion.

    Science.gov (United States)

    Ashna, Mostafa; Rahimian, Mohammad Hassan; Fakhari, Abbas

    2017-05-01

    The available lattice Boltzmann (LB) models for combustion or phase change are focused on either single-phase flow combustion or two-phase flow with evaporation assuming a constant density for both liquid and gas phases. To pave the way towards simulation of spray combustion, we propose a two-phase LB method for modeling combustion of liquid fuel droplets. We develop an LB scheme to model phase change and combustion by taking into account the density variation in the gas phase and accounting for the chemical reaction based on the Cahn-Hilliard free-energy approach. Evaporation of liquid fuel is modeled by adding a source term, which is due to the divergence of the velocity field being nontrivial, in the continuity equation. The low-Mach-number approximation in the governing Navier-Stokes and energy equations is used to incorporate source terms due to heat release from chemical reactions, density variation, and nonluminous radiative heat loss. Additionally, the conservation equation for chemical species is formulated by including a source term due to chemical reaction. To validate the model, we consider the combustion of n-heptane and n-butanol droplets in stagnant air using overall single-step reactions. The diameter history and flame standoff ratio obtained from the proposed LB method are found to be in good agreement with available numerical and experimental data. The present LB scheme is believed to be a promising approach for modeling spray combustion.

  2. Bifurcation, pattern formation and chaos in combustion

    International Nuclear Information System (INIS)

    Bayliss, A.; Matkowsky, B.J.

    1991-01-01

    In this paper problems in gaseous combustion and in gasless condensed phase combustion are studied both analytically and numerically. In gaseous combustion we consider the problem of a flame stabilized on a line source of fuel. The authors find both stationary and pulsating axisymmetric solutions as well as stationary and pulsating cellular solutions. The pulsating cellular solutions take the form of either traveling waves or standing waves. Transitions between these patterns occur as parameters related to the curvature of the flame front and the Lewis number are varied. In gasless condensed phase combustion both planar and nonplanar problems are studied. For planar condensed phase combustion we consider two models: accounts for melting and does not. Both models are shown to exhibit a transition from uniformly to pulsating propagating combustion when a parameter related to the activation energy is increased. Upon further increasing this parameter both models undergo a transition to chaos: by intermittency and by a period doubling sequence. In nonplanar condensed phase combustion the nonlinear development of a branch of standing wave solutions is studied and is shown to lead to relaxation oscillations and subsequently to a transition to quasi-periodicity

  3. Catalytic combustion in small wood burning appliances

    Energy Technology Data Exchange (ETDEWEB)

    Oravainen, H. [VTT Energy, Jyvaeskylae (Finland)

    1996-12-31

    There is over a million hand fired small heating appliances in Finland where about 5,4 million cubic meters of wood fuel is used. Combustion in such heating appliances is a batch-type process. In early stages of combustion when volatiles are burned, the formation of carbon monoxide (CO) and other combustible gases are difficult to avoid when using fuels that have high volatile matter content. Harmful emissions are formed mostly after each fuel adding but also during char burnout period. When the CO-content in flue gases is, say over 0.5 %, also other harmful emissions will be formed. Methane (CH{sub 4}) and other hydrocarbons are released and the amount of polycyclic aromatic hydrocarbons (PAH)-compounds can be remarkable. Some PAH-compounds are very carcinogenic. It has been estimated that in Finland even more than 90 % of hydrocarbon and PAH emissions are due to small scale wood combustion. Emissions from transportation is excluded from these figures. That is why wood combustion has a net effect on greenhouse gas phenomena. For example carbon monoxide emissions from small scale wood combustion are two fold compared to that of energy production in power plants. Methane emission is of the same order as emission from transportation and seven fold compared with those of energy production. Emissions from small heating appliances can be reduced by developing the combustion techniques, but also by using other means, for example catalytic converters. In certain stages of the batch combustion, temperature is not high enough, gas mixing is not good enough and residence time is too short for complete combustion. When placed to a suitable place inside a heating appliance, a catalytic converter can oxidize unburned gases in the flue gas into compounds that are not harmful to the environment. (3 refs.)

  4. Nuclear hydrogen production: re-examining the fusion option

    International Nuclear Information System (INIS)

    Baindur, S.

    2007-01-01

    This paper describes a scheme for nuclear hydrogen production by fusion. The basic idea is to use nuclear energy of the fuel (hydrogen plasma) to produce molecular hydrogen fro carbon-free hydrogen compounds. The hydrogen is then stored and utilized electrochemically in fuel cells or chemically as molecular hydrogen in internal combustion engines

  5. The retention of iodine by iodine filters in nuclear power plants in the case of fire (a literature review)

    International Nuclear Information System (INIS)

    Giraud, V.

    1985-03-01

    Due to the liberation of considerable amounts of gaseous combustion products, fires in nuclear power plants may lead to a deterioration in the retention of radioiodine by iodine filters. The combustion products of the burnable materials, i.e., insulations, lubricants and paints, vary considerably with the development of the fire. Combustion product analyses of these materials have been performed only to a limited extent. The reaction of iodine with combustion products as well as the retention of the resulting iodine reaction products by sorbents have not yet been investigated. The reduction in the removal efficiencies of iodine sorbents due to the presence of combustion products is unknown. (orig.) [de

  6. Stress corrosion (Astm G30-90 standard) in 08x18H10T stainless steel of nuclear fuel storage pool in WWER reactors; Corrosion bajo esfuerzo (Norma ASTM G30-90) en acero inoxidable 08x18H10T de piscinas de almacenamiento de combustible nuclear en reactores V.V.E.R

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, V.; Zamora R, L. [Centro de Estudios Aplicados al Desarrollo Nuclear (Cuba)

    1997-07-01

    At the water storage of the irradiated nuclear fuel has been an important factor in its management. The actual pools have its walls covered with inoxidable steel and heat exchangers to dissipate the residual heat from fuel. It is essential to control the water purity to eliminate those conditions which aid to the corrosion process in fuel and at related components. The steel used in this research was obtained from an austenitic inoxidizable steel standardized with titanium 08x18H10T (Type 321) similar to one of the two steel coatings used to cover walls and the pools floor. the test consisted in the specimen deformation through an U ply according to the Astm G30-90 standard. The exposition of the deformed specimen it was realized in simulated conditions to the chemical regime used in pools. (Author)

  7. Nuclear liability - nuclear insurance

    International Nuclear Information System (INIS)

    Roesch, H.

    1981-01-01

    In the fourth concluding article on this subject (following articles in VW 1981 pp. 483, 552 and 629), the author explains procedures, duties and obligations according to the Para. Para. 5, 6 and 7 of the AHBKA. These obligations are to be observed before or after the occurrence of damages. In addition, legal consequences following violations of duties - loss of right - joint, insurance, transfer ban, period for filing suit, duty to notify, 'The German Nuclear Reactor Insurance and Reinsurance Community', the insurance according to the 'General terms and conditions governing the liability insurance of licensed activities involving nuclear fuels and other radioactive substances outside nuclear installations (AHBStr.)', object, beginning and exclusion of coverage, 'Special conditions governing the transport of nuclear fuels according to Para. 25 (2) of the Atomic Energy Law' are attached to the General Terms and Conditions governing the liability insurance of licenced activities involving nuclear fuels and other radioactive substances outside nuclear installations. (HSCH) [de

  8. Advanced technology application for combustion chamber concepts

    Science.gov (United States)

    Tygielski, Kathy S.

    1992-01-01

    NASA-Marshall is engaged in the development of an Advanced Main Combustion Chamber under the aegis of the Earth-to-Orbit Propulsion Technology Program. AMCC is to be a robust and highly reliable combustion-chamber prototype costing one-third as much as current designs of comparable performance; it will be associated with a reduction of fabrication time by one-half. Attention is presently given to the three component-manufacturing processes used: single-piece investment casting for the structural jacket and manifolds; vacuum plasma spraying, for the combustion liner, and an alternative, platelet-compounded liner.

  9. The John Zink Hamworthy combustion handbook

    CERN Document Server

    Baukal, Charles E

    2013-01-01

    Despite the length of time it has been around, its importance, and vast amounts of research, combustion is still far from being completely understood. Issues regarding the environment, cost, and fuel consumption add further complexity, particularly in the process and power generation industries. Dedicated to advancing the art and science of industrial combustion, The John Zink Hamworthy Combustion Handbook, Second Edition: Volume 3 - Applications offers comprehensive, up-to-date coverage of equipment used in the process and power generation industries. Under the leadership of Charles E. Baukal

  10. Annual Report: Advanced Combustion (30 September 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey [NETL; Richards, George

    2012-09-30

    The Advanced Combustion Project addresses fundamental issues of fire-side and steam-side corrosion and materials performance in oxy-fuel combustion environments and provides an integrated approach into understanding the environmental and mechanical behavior such that environmental degradation can be ameliorated and long-term microstructural stability, and thus, mechanical performance can lead to longer lasting components and extended power plant life. The technical tasks of this effort are Oxy-combustion Environment Characterization, Alloy Modeling and Life Prediction, and Alloy Manufacturing and Process Development.

  11. Modeling of combustion noise in helicopter engines

    OpenAIRE

    Livebardon, Thomas

    2015-01-01

    The growth of air traffic at the vicinity of areas at high population density imposes to make quieter aircrafts on aeronautical manufacturers.The engine noise is one of the major contributors to the overall sound levels. Furthermore, the combustion is known to be responsible for a broadband noise generation at low-frequency. The combustion noise can be put into two main mechanisms. The first one is the emission of sound pulses by the unsteady heat release of the combustion process and is call...

  12. Characteristic of combustion of Colombian gases

    International Nuclear Information System (INIS)

    Gil B, Edison; Maya, Ruben; Andres, Amel A.

    1996-01-01

    The variety of gas locations in the country, makes that the gas that will be distributed by the net of present gas pipeline a very different composition, what bears to that these they behave in a different way during its use. In this work the main characteristics of the combustion are calculated for the Colombian gases, basically the properties of the combustion and the characteristics of the smoke, as basic information for the design and operation of the gas teams and their certification. These properties were calculated with the special help software for combustion developed by the authors

  13. 3rd International Conference on Numerical Combustion

    CERN Document Server

    Larrouturou, Bernard; Numerical Combustion

    1989-01-01

    Interest in numerical combustion is growing among applied mathematicians, physicists, chemists, engine manufacturers and many industrialists. This proceedings volume contains nine invited lectures and twenty seven contributions carefully selected by the editors. The major themes are numerical simulation of transsonic and supersonic combustion phenomena, the study of supersonic reacting mixing layers, and turbulent combustion. Emphasis is laid on hyperbolic models and on numerical simulations of hydrocarbon planes with a complete set of chemical reactions carried out in two-dimensional geometries as well as on complex reactive flow simulations.

  14. Oxy-fuel combustion of solid fuels

    DEFF Research Database (Denmark)

    Toftegaard, Maja Bøg; Brix, Jacob; Jensen, Peter Arendt

    2010-01-01

    temperature. The flue gas produced thus consists primarily of carbon dioxide and water. Much research on the different aspects of an oxy-fuel power plant has been performed during the last decade. Focus has mainly been on retrofits of existing pulverized-coal-fired power plant units. Green-field plants which......Oxy-fuel combustion is suggested as one of the possible, promising technologies for capturing CO2 from power plants. The concept of oxy-fuel combustion is removal of nitrogen from the oxidizer to carry out the combustion process in oxygen and, in most concepts, recycled flue gas to lower the flame...

  15. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  16. Plasma assisted combustion of parafin mixture

    International Nuclear Information System (INIS)

    Nedybaliuk, O.A.; Chernyak, V.Ya.; Martysh, E.V.; Lisitchenko, T.E.; Vergun, O.Yu.; Orlovska, S.G.

    2013-01-01

    In this work the results of solid paraffin combustion with the aid of the plasma of transverse and rotational gliding arc studies are represented. The question of the additional activation of paraffin based solid fuels is examined. The mixture of n-paraffin and stearin in the solid state as the model of the solid paraffin based fuel is used. The plasma assisted combustion of this model is experimentally investigated. The voltage-current characteristics of discharge at the different regimes are measured. The population temperatures of excited rotational levels are determined. The flame temperature during the combustion of solid paraffin containing mixture is calculated

  17. Stereoscopic pyrometer for char combustion characterization.

    Science.gov (United States)

    Schiemann, M; Vorobiev, N; Scherer, V

    2015-02-10

    For many pulverized fuels, especially coal and biomass, char combustion is the time determining step. Based on intensified ICCD cameras, a novel setup has been developed to study pulverized fuel combustion, mainly in a laminar flow reactor. For char burning characterization, the typical measurement parameters are particle temperature, size, and velocity. The working principle of the camera setup is introduced and its capabilities are discussed by examination of coal particle combustion under CO(2)-enriched, so-called oxy-fuel atmospheres with varying O(2) content.

  18. Novel combustion concepts for sustainable energy development

    CERN Document Server

    Agarwal, Avinash K; Gupta, Ashwani K; Aggarwal, Suresh K; Kushari, Abhijit

    2014-01-01

    This book comprises research studies of novel work on combustion for sustainable energy development. It offers an insight into a few viable novel technologies for improved, efficient and sustainable utilization of combustion-based energy production using both fossil and bio fuels. Special emphasis is placed on micro-scale combustion systems that offer new challenges and opportunities. The book is divided into five sections, with chapters from 3-4 leading experts forming the core of each section. The book should prove useful to a variety of readers, including students, researchers, and professionals.

  19. Chaotic combustion in spark ignition engines

    International Nuclear Information System (INIS)

    Wendeker, Miroslaw; Czarnigowski, Jacek; Litak, Grzegorz; Szabelski, Kazimierz

    2003-01-01

    We analyse the combustion process in a spark ignition engine using the experimental data of an internal pressure during the combustion process and show that the system can be driven to chaotic behaviour. Our conclusion is based on the observation of unperiodicity in the time series, suitable stroboscopic maps and a complex structure of a reconstructed strange attractor. This analysis can explain that in some circumstances the level of noise in spark ignition engines increases considerably due to nonlinear dynamics of a combustion process

  20. Gamma spectrometry at OSIRIS. Determination of the power and combustion rate of irradiated fuel elements

    International Nuclear Information System (INIS)

    Destot, M.; Musso, J.F.; Cerles, J.M.

    1975-12-01

    An original gamma spectrometer is available at Saclay near the core of the Osiris reactor. With such a device, it is possible to investigate nuclear fuel elements irradiated at Osiris or originating from power reactors. It is quite possible to build devices based on this principle in nuclear power reactors, more particularly in water reactors. With such a device, it is possible to follow the evolution in space and with time of a large number of fission products, and from there to draw precious conclusions relative to reactor safety (e.g. failed element detection) and to fuel economy (i.e. determination of combustion rate). The general characteristics of the device are given as well as its applications: determination of the mass combustion and of the linear power of an irradiated element. A non-destructive, versatile and fast means of investigation is therefore given by the installation of gamma spectroscopy inside a reactor [fr

  1. 14 CFR 23.859 - Combustion heater fire protection.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heater fire protection. 23.859... Construction Fire Protection § 23.859 Combustion heater fire protection. (a) Combustion heater fire regions. The following combustion heater fire regions must be protected from fire in accordance with the...

  2. Key factors of combustion from kinetics to gas dynamics

    CERN Document Server

    Rubtsov, Nikolai M

    2017-01-01

    This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.

  3. Pulse combustion: an assessment of opportunities for increased efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Brenchley, D.L.; Bomelburg, H.J.

    1984-12-01

    The results of a literature review on pulse combustion are discussed. Current, near-future, and potential opportunities for pulse combustion applications are summarized, and the barriers to developing and using pulse combustion technology are discussed, along with research and development needs. Also provided are the proceedings of a pulse combustion workshop held in May, 1984 in Seattle, Washington. (LEW)

  4. SO3 Formation and the Effect of Fly Ash in a Bubbling Fluidised Bed under Oxy-Fuel Combustion Conditions.

    Czech Academy of Sciences Publication Activity Database

    Sarbassov, Y.; Duan, L.; Jeremiáš, Michal; Manovic, V.; Anthony, E.J.

    2017-01-01

    Roč. 167, DEC 1 (2017), s. 314-321 ISSN 0378-3820 Institutional support: RVO:67985858 Keywords : SO3 formation * oxy-fuel combustion * fluidised bed Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use OBOR OECD: Energy and fuels Impact factor: 3.752, year: 2016

  5. Combustion Noise Analysis for Combustion and Fuels Diagnosis of a CI Diesel Engine Operating with Biodiesels

    OpenAIRE

    Zhen, Dong; Shi, Zhanqun; Song, Zhongyue; Gu, Fengshou; Ball, Andrew

    2015-01-01

    In this paper, the combustion noise of a compression ignition (CI) diesel engine operating with biodiesels has been investigated experimentally. It aims to explore an effective method for combustion process monitoring and fuel quality evaluation through analysing the characteristics of the engine combustion noise. The experiments were conducted on a four-cylinder, four-stroke, direct injection and turbocharged diesel engine fuelled with biodiesels (B50 and B100) and normal pure diesel, and op...

  6. [Nuclear theory

    International Nuclear Information System (INIS)

    Haxton, W.

    1990-01-01

    This report discusses research in nuclear physics. Topics covered in this paper are: symmetry principles; nuclear astrophysics; nuclear structure; quark-gluon plasma; quantum chromodynamics; symmetry breaking; nuclear deformation; and cold fusion

  7. Nuclear power: the future reassessed

    International Nuclear Information System (INIS)

    Roberts, L.

    1991-01-01

    In recommending that consent be given for the construction of a further Pressurized Water Reactor at Hinkley Point in Somerset, UK, the Inspector at the Public Inquiry underlined two major benefits: (i) the contribution an additional large nuclear plant would make to the strategic objective of diversity of supply, and (ii) the environmental benefits of nuclear power compared to many alternative forms of electricity generation. The major environmental advantages of nuclear power over fossil fuel combustion arise both because of the small amounts of fuel required - 1/18,000 compared to coal - thus minimizing transport needs and land use, and because of the virtual absence of atmospheric emissions from nuclear stations. Nuclear reactors emit no acid gases and the nuclear fuel cycle gives rise to only small amounts of carbon dioxide. An expansion of the nuclear option is often opposed on three grounds; the need to dispose of radioactive waste; the danger of the proliferation of nuclear weapons and the risk of a large scale accident. However all these doubts can be answered and the arguments supporting nuclear safety are summarized. It is argued that the contribution to primary energy demand in Europe could be doubled or trebled by 2020 with considerable benefits in overall safety environmental impacts at no extra cost. (author)

  8. Coal Combustion Products Extension Program

    Energy Technology Data Exchange (ETDEWEB)

    Tarunjit S. Butalia; William E. Wolfe

    2006-01-11

    This final project report presents the activities and accomplishments of the ''Coal Combustion Products Extension Program'' conducted at The Ohio State University from August 1, 2000 to June 30, 2005 to advance the beneficial uses of coal combustion products (CCPs) in highway and construction, mine reclamation, agricultural, and manufacturing sectors. The objective of this technology transfer/research program at The Ohio State University was to promote the increased use of Ohio CCPs (fly ash, FGD material, bottom ash, and boiler slag) in applications that are technically sound, environmentally benign, and commercially competitive. The project objective was accomplished by housing the CCP Extension Program within The Ohio State University College of Engineering with support from the university Extension Service and The Ohio State University Research Foundation. Dr. Tarunjit S. Butalia, an internationally reputed CCP expert and registered professional engineer, was the program coordinator. The program coordinator acted as liaison among CCP stakeholders in the state, produced information sheets, provided expertise in the field to those who desired it, sponsored and co-sponsored seminars, meetings, and speaking at these events, and generally worked to promote knowledge about the productive and proper application of CCPs as useful raw materials. The major accomplishments of the program were: (1) Increase in FGD material utilization rate from 8% in 1997 to more than 20% in 2005, and an increase in overall CCP utilization rate of 21% in 1997 to just under 30% in 2005 for the State of Ohio. (2) Recognition as a ''voice of trust'' among Ohio and national CCP stakeholders (particularly regulatory agencies). (3) Establishment of a national and international reputation, especially for the use of FGD materials and fly ash in construction applications. It is recommended that to increase Ohio's CCP utilization rate from 30% in 2005 to

  9. DIAGNOSIS OF FAILURE OF COMBUSTION IN THE COMBUSTION CHAMBER WITH A THERMOVISION EQUIPMENT

    Directory of Open Access Journals (Sweden)

    S. V. Vorobiev

    2014-01-01

    Full Text Available The use of thermovision technology to diagnose failure of the combustion flame test tube of the main combustion chamber gas turbine engine is deal with in the article. Join the thermal radiation of the jet of combustion products and the internal elements was carried out using short-wave thermovision system AGA-782 with spectral spectral filters in several ranges from 3.2 to 5.6 microns. Thermovision is mounted on the axis of the flame tube. The output signal was recorded and processed on a computer in real time, allowing monitor the combustion process and the thermal state of the object during the experiment.

  10. Engine combustion control via fuel reactivity stratification

    Science.gov (United States)

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  11. Flex-flame burner and combustion method

    Science.gov (United States)

    Soupos, Vasilios; Zelepouga, Serguei; Rue, David M.; Abbasi, Hamid A.

    2010-08-24

    A combustion method and apparatus which produce a hybrid flame for heating metals and metal alloys, which hybrid flame has the characteristic of having an oxidant-lean portion proximate the metal or metal alloy and having an oxidant-rich portion disposed above the oxidant lean portion. This hybrid flame is produced by introducing fuel and primary combustion oxidant into the furnace chamber containing the metal or metal alloy in a substoichiometric ratio to produce a fuel-rich flame and by introducing a secondary combustion oxidant into the furnace chamber above the fuel-rich flame in a manner whereby mixing of the secondary combustion oxidant with the fuel-rich flame is delayed for a portion of the length of the flame.

  12. Two phase exhaust for internal combustion engine

    Science.gov (United States)

    Vuk, Carl T [Denver, IA

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  13. Mechanism of Combustion of Heterogeneous Solid Propellants

    National Research Council Canada - National Science Library

    Price, E

    1998-01-01

    ... (and compare results with those of AP oxidizer and Ap/hydrocarbon binder propellants). 4. Develop a realistic qualitative model of the combustion process that would identify the requirements for formulation of realistic analytical models.

  14. Plume Diagnostics for Combustion Stability Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Sierra Engineering Inc. and Purdue University propose to develop a non-intrusive plume instrument capable of detecting and diagnosing combustion instability. This...

  15. System and method for engine combustion

    Energy Technology Data Exchange (ETDEWEB)

    Sczomak, David P.; Gallon, Robert J.; Solomon, Arun S.

    2018-03-13

    A combustion system for use with one or more cylinder bores of an internal combustion engine includes at least one cylinder head defining first and second intake ports in fluid communication with the one or more cylinder bores. A flap is adjustably connected to the at least one cylinder head. The flap includes a first flap portion cooperating with the first intake port extending from an arm and a second flap portion cooperating with the second intake port extending from the arm and disposed adjacent the first flap portion. A controller in electrical communication with an actuator monitors the condition of the engine and actuates the flap to position the first and second flap portions between first and second positions to create a first combustion condition and a second combustion condition.

  16. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2001-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  17. Fuels Combustion Research: Supercritical Fuel Pyrolysis

    National Research Council Canada - National Science Library

    Glassman, Irvin

    2000-01-01

    .... The focus during the subject period was directed to understanding the pyrolysis and combustion of endothermic fuels under subcritical conditions and the pyrolysis of these fuels under supercritical conditions...

  18. Explosion-combustion in exoplanetary atmospheres

    Science.gov (United States)

    Grenfell, John Lee; Godolt, Mareike; Stracke, Barbara; Gebauer, Stefanie; Rauer, Heike

    2017-04-01

    Conditions leading to explosion or/and combustion in exoplanetary atmospheres are investigated for different atmospheric composition, temperature and pressure. Cases considered are Super-Earths orbiting in the habitable zone of M-dwarf stars with atmospheres consisting of abiotically-produced molecular oxygen together with molecular hydrogen accreted from the protoplanetary disk. Should these atmospheres undergo hydrogen-oxygen combustion triggered by e.g. lightning or cosmic rays, this would limit the build-up of abiotic oxygen, lower the hydrogen gas envelope and could lead to liquid oceans with masses tens to hundreds of times larger than on the Earth. We also consider other explosive-combustive gas mixtures which could lead to carbon monoxide or methane combustion in the atmospheres of some Mini Gas Planets or in (Early) Earth-like atmospheres.

  19. Statistical analysis in the design of nuclear fuel cells and training of a neural network to predict safety parameters for reactors BWR; Analisis estadistico en el diseno de celdas de combustible nuclear y entrenamiento de una red neuronal para predecir parametros de seguridad para reactores BWR

    Energy Technology Data Exchange (ETDEWEB)

    Jauregui Ch, V.

    2013-07-01

    In this work the obtained results for a statistical analysis are shown, with the purpose of studying the performance of the fuel lattice, taking into account the frequency of the pins that were used. For this objective, different statistical distributions were used; one approximately to normal, another type X{sup 2} but in an inverse form and a random distribution. Also, the prediction of some parameters of the nuclear reactor in a fuel reload was made through a neuronal network, which was trained. The statistical analysis was made using the parameters of the fuel lattice, which was generated through three heuristic techniques: Ant Colony Optimization System, Neuronal Networks and a hybrid among Scatter Search and Path Re linking. The behavior of the local power peak factor was revised in the fuel lattice with the use of different frequencies of enrichment uranium pines, using the three techniques mentioned before, in the same way the infinite multiplication factor of neutrons was analyzed (k..), to determine within what range this factor in the reactor is. Taking into account all the information, which was obtained through the statistical analysis, a neuronal network was trained; that will help to predict the behavior of some parameters of the nuclear reactor, considering a fixed fuel reload with their respective control rods pattern. In the same way, the quality of the training was evaluated using different fuel lattices. The neuronal network learned to predict the next parameters: Shutdown Margin (SDM), the pin burn peaks for two different fuel batches, Thermal Limits and the Effective Neutron Multiplication Factor (k{sup eff}). The results show that the fuel lattices in which the frequency, which the inverted form of the X{sup 2} distribution, was used revealed the best values of local power peak factor. Additionally it is shown that the performance of a fuel lattice could be enhanced controlling the frequency of the uranium enrichment rods and the variety of

  20. Assessment of ISLOCA risk-methodology and application to a combustion engineering plant

    International Nuclear Information System (INIS)

    Kelly, D.L.; Auflick, J.L.; Haney, L.N.

    1992-04-01

    Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISOLOCA core damage frequency and risk. This report presents a detailed of description of the application of this analysis methodology to a Combustion Engineering plant

  1. Secondary combustion system for woodburning stove

    Energy Technology Data Exchange (ETDEWEB)

    von Conta, P. E. W.

    1985-11-19

    A secondary combustion system for a woodburning stove employs a concave shaped screen for dispersing exhaust gases. A mixing chamber is formed in an insulated conduit between the concave screen and a second planar screen. The planar screen is perforated to form a random array of flaps which increase the turbulence of the exhaust stream so that a secondary combustion of the exhaust gases is produced.

  2. COMBUSTION OPTIMIZATION IN SPARK IGNITION ENGINES

    OpenAIRE

    Barhm Mohamad; Gabor Szebesi; Betti Bollo

    2017-01-01

    The blending technique used in internal combustion engines can reduce emission of toxic exhaust components and noises, enhance overall energy efficiency and reduce fuel costs. The aim of the study was to compare the effects of dual alcohols (methanol and ethanol) blended in gasoline fuel (GF) against performance, combustion and emission characteristics. Problems arise in the fuel delivery system when using the highly volatile methanol - gasoline blends. This problem is reduced by using specia...

  3. Building America Expert Meeting. Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, Larry [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2013-03-01

    This is an overview of "The Best Approach to Combustion Safety in a Direct Vent World," held June 28, 2012, in San Antonio, TX. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  4. Building America Expert Meeting: Combustion Safety

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.

    2013-03-01

    This is a meeting overview of 'The Best Approach to Combustion Safety in a Direct Vent World', held June 28, 2012, in San Antonio, Texas. The objective of this Expert Meeting was to identify gaps and barriers that need to be addressed by future research, and to develop data-driven technical recommendations for code updates so that a common approach for combustion safety can be adopted by all members of the building energy efficiency and code communities.

  5. Simulation of lean premixed turbulent combustion

    OpenAIRE

    Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, Michael J.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.

    2008-01-01

    There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels such as hydrogenor syngas. Lean premixed systems have the potential to burn these types of fuels with high efficiency and low NOx emissions due to reduced burnt gas temperatures. Although traditional scientific approaches based on theory and laboratory experiment have played essential roles in developing our current understanding of premixed combustion, they are unable to m...

  6. Internal combustion engine and method for control

    Science.gov (United States)

    Brennan, Daniel G

    2013-05-21

    In one exemplary embodiment of the invention an internal combustion engine includes a piston disposed in a cylinder, a valve configured to control flow of air into the cylinder and an actuator coupled to the valve to control a position of the valve. The internal combustion engine also includes a controller coupled to the actuator, wherein the controller is configured to close the valve when an uncontrolled condition for the internal engine is determined.

  7. LES and RANS modeling of pulverized coal combustion in swirl burner for air and oxy-combustion technologies

    International Nuclear Information System (INIS)

    Warzecha, Piotr; Boguslawski, Andrzej

    2014-01-01

    Combustion of pulverized coal in oxy-combustion technology is one of the effective ways to reduce the emission of greenhouse gases into the atmosphere. The process of transition from conventional combustion in air to the oxy-combustion technology, however, requires a thorough investigations of the phenomena occurring during the combustion process, that can be greatly supported by numerical modeling. The paper presents the results of numerical simulations of pulverized coal combustion process in swirl burner using RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) methods for turbulent flow. Numerical simulations have been performed for the oxyfuel test facility located at the Institute of Heat and Mass Transfer at RWTH Aachen University. Detailed analysis of the flow field inside the combustion chamber for cold flow and for the flow with combustion using different numerical methods for turbulent flows have been done. Comparison of the air and oxy-coal combustion process for pulverized coal shows significant differences in temperature, especially close to the burner exit. Additionally the influence of the combustion model on the results has been shown for oxy-combustion test case. - Highlights: • Oxy-coal combustion has been modeled for test facility operating at low oxygen ratio. • Coal combustion process has been modeled with simplified combustion models. • Comparison of oxy and air combustion process of pulverized coal has been done. • RANS (Reynolds-averaged Navier–Stokes equations) and LES (large Eddy simulation) results for pulverized coal combustion process have been compared

  8. Methodology based in the fuzzy logic for constructing the objective functions in optimization problems of nuclear fuel: application to the cells radial design; Metodologia basada en logica difusa para construir las funciones objetivo en problemas de optimizacion de combustible nuclear: aplicacion al diseno radial de celdas

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.M.; Martin del Campo M, C.; Palomera P, M.A. [FI-UNAM, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D.F. (Mexico)]. E-mail: ale_bar_m@yahoo.com.mx

    2005-07-01

    A methodology based on Fuzzy Logic for the construction of the objective function of the optimization problems of nuclear fuel is described. It was created an inference system that responds, in certain form, as a human expert when it has the task of qualifying different radial designs of fuel cells. Specifically it is detailed how an inference system based based on Fuzzy Logic that has five enter variables and one exit variable was built, which corresponds to the objective function for the radial design of a fuel cell for a BWR. The use of Fuzzy with Mat lab offered the visualization capacity of the exit variable in function of one or two enter variables at the same time. This allowed to build, in appropriate way, the combination of the inference rules and the membership functions of those diffuse sets used for each one of the enter variables. The obtained objective function was used in an optimization process based on Taboo search. The new methodology was proven for the design of a cell used in a fuel assemble of the Laguna Verde reactor obtaining excellent results. (Author)

  9. Combustible gas recombining method and processing facility for gas waste

    Energy Technology Data Exchange (ETDEWEB)

    Watabe, Atsushi; Murakami, Kazuo

    1998-09-02

    Combustible gases (hydrogen, oxygen) generated by radiation decomposition of reactor water in the vicinity of a reactor core in a reactor pressure vessel of a BWR type nuclear power plant pass, together with flow of steams, through a gas/water separator and a steam dryer disposed at the upper portion of a reactor core. A catalyst for allowing hydrogen and oxygen to react efficiently and recombine them into water is plated on the surface of the steam dryer. The catalyst comprises palladium (Pd) or platinum (Pt) or a Pd-Pt alloy. The combustible gases passing through the steam dryer are recombined and formed into steams by the catalyst. A slight amount of hydrogen and oxygen which are not recombined transfers, together with main steams, from a main steam pipe to a main condensator by way of a turbine. Then they are released, together with air from an air extraction device, from an activated carbon-type rare gas hold up tower. (I.N.)

  10. Combustion kinetics and reaction pathways

    Energy Technology Data Exchange (ETDEWEB)

    Klemm, R.B.; Sutherland, J.W. [Brookhaven National Laboratory, Upton, NY (United States)

    1993-12-01

    This project is focused on the fundamental chemistry of combustion. The overall objectives are to determine rate constants for elementary reactions and to elucidate the pathways of multichannel reactions. A multitechnique approach that features three independent experiments provides unique capabilities in performing reliable kinetic measurements over an exceptionally wide range in temperature, 300 to 2500 K. Recent kinetic work has focused on experimental studies and theoretical calculations of the methane dissociation system (CH{sub 4} + Ar {yields} CH{sub 3} + H + Ar and H + CH{sub 4} {yields} CH{sub 3} + H{sub 2}). Additionally, a discharge flow-photoionization mass spectrometer (DF-PIMS) experiment is used to determine branching fractions for multichannel reactions and to measure ionization thresholds of free radicals. Thus, these photoionization experiments generate data that are relevant to both reaction pathways studies (reaction dynamics) and fundamental thermochemical research. Two distinct advantages of performing PIMS with high intensity, tunable vacuum ultraviolet light at the National Synchrotron Light Source are high detection sensitivity and exceptional selectivity in monitoring radical species.

  11. Carburetor for internal combustion engines

    Science.gov (United States)

    Csonka, John J.; Csonka, Albert B.

    1978-01-01

    A carburetor for internal combustion engines having a housing including a generally discoidal wall and a hub extending axially from the central portion thereof, an air valve having a relatively flat radially extending surface directed toward and concentric with said discoidal wall and with a central conoidal portion having its apex directed toward the interior of said hub portion. The housing wall and the radially extending surface of the valve define an air passage converging radially inwardly to form an annular valving construction and thence diverge into the interior of said hub. The hub includes an annular fuel passage terminating at its upper end in a circumferential series of micro-passages for directing liquid fuel uniformly distributed into said air passage substantially at said valving constriction at right angles to the direction of air flow. The air valve is adjustable axially toward and away from the discoidal wall of the carburetor housing to regulate the volume of air drawn into the engine with which said carburetor is associated. Fuel is delivered under pressure to the fuel metering valve and from there through said micro-passages and controlled cams simultaneously regulate the axial adjustment of said air valve and the rate of delivery of fuel through said micro-passages according to a predetermined ratio pattern. A third jointly controlled cam simultaneously regulates the ignition timing in accordance with various air and fuel supply settings. The air valve, fuel supply and ignition timing settings are all independent of the existing degree of engine vacuum.

  12. Fuel and Combustion Characteristics of Organic Wastes

    Science.gov (United States)

    Namba, Kunihiko; Ida, Tamio

    From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies for prevent global warning. This study is an attempt to burn biomass lamps made from residues in order to thermally recycle waste products of drink industries. The pyrolytic properties of shochu dregs and used tea leaves were observed by thermo-gravimertic analysis (TG) to obtained fundamental data of drink waste pyrolysis. It observed that shochu dregs pyrolyze under lower temperature than used tea leaves. These wastes were compressed by hot press apparatus in the temperature range from 140 to 180 °C for use as Bio-fuel (BF). The combustion behavior of BF was observed in fall-type electric furnace, where video-recording was carried out at sequential steps, such as ignition, visible envelope flame combustion and char combustion to obtain combustion characteristics such as ignition delay, visible flame combustion time and char combustion time.

  13. Fluidized bed combustion: mixing and pollutant limitation

    Energy Technology Data Exchange (ETDEWEB)

    Leckner, B. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Energy Conversion

    1997-10-01

    Fluidized bed combustion (FBC) has been applied commercially during a few decades, and sufficient knowledge is gained to design boilers with sizes of up to several hundreds of megawatt thermal power (MW{sub th}). The knowledge of what goes on inside a large combustion chamber is still limited, however, and this impedes further optimization and efficient solution of problems that might occur. Despite this lack of knowledge the present survey deals with combustion chamber processes and discusses mixing and distribution of fuel and air in the combustion chamber and its importance for sulphur capture and reduction of emissions of nitrogen oxides. It is desirable to present the material in a general way and to cover the entire field of FBC. However, the scarce openly published information deals mostly with coal combustion in atmospheric circulating fluidized bed (CFB) combustors, and therefore this application will receive most attention, but reference is also made to pressurized combustion and to other fuels than coal. In this context the important work made in the LIEKKI project on the analysis of different fuels and on the influence of pressure should be especially pointed out. (orig.)

  14. Handbook of advanced nuclear hydrogen safety. 1st edition

    International Nuclear Information System (INIS)

    Hino, Ryutaro; Takegami, Hiroaki; Ogawa, Toru

    2017-03-01

    In the aftermath of the Fukushima nuclear accident, safety measures against hydrogen in severe accident has been recognized as a serious technical problem in Japan. Therefore, efforts have begun to form a common knowledge base between nuclear engineers and experts on combustion and explosion, and to secure and improve future nuclear energy safety. As one of such activities, we have prepared the 'Handbook of Advanced Nuclear Hydrogen Safety'. A handbook committee consisting of Japanese experts in the fields of nuclear and combustion-explosion in universities, nuclear companies, electric companies and research institutes was established in 2012. The objective and consents of the handbook were determined, and the outline of the contents was decided. The concepts of the handbook are as follows: to show advanced nuclear hydrogen safety technologies that nuclear engineers should understand, to show hydrogen safety points to make combustion-explosion experts cooperate with nuclear engineers, to expand information on water radiolysis considering the situation from just after the Fukushima accidents and to the waste management necessary for decommissioning after the accident etc. Many experts have participated to manuscript preparation, which was the first step of forming a hydrogen community across the boundaries of fields. The hydrogen community is expected to grow along with its improvement to the knowledge base on nuclear hydrogen safety. (author)

  15. Nuclear power and nuclear weapons

    International Nuclear Information System (INIS)

    Vaughen, V.C.A.

    1983-01-01

    The proliferation of nuclear weapons and the expanded use of nuclear energy for the production of electricity and other peaceful uses are compared. The difference in technologies associated with nuclear weapons and nuclear power plants are described

  16. Combustion, detonation, shock waves. Proceedings of the Zel'dovich memorial - International conference on combustion. Volume 1

    International Nuclear Information System (INIS)

    Merzhanov, A.G.; Frolov, S.M.

    1995-01-01

    This book contains lectures by the experts in various fields of modern research in combustion, detonation and shock waves, presented at the Zel'dovich memorial - International conference on combustion dedicated to the 80-th birthday of academician Ya.B. Zel'dovich. There are eight chapters discussing the state-of-the-art in combustion kinetics, ignition and steady-state flame propagation, diffusion and heterogeneous combustion, turbulent combustion, unsteady combustion, detonation, combustion and detonation analogies, intense shock waves and extreme states of matter [ru

  17. MCO combustible gas management leak test acceptance criteria

    International Nuclear Information System (INIS)

    SHERRELL, D.L.

    1999-01-01

    Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10 -5 std cc/sec and 1 x 10 -7 std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL)

  18. MCO combustible gas management leak test acceptance criteria; TOPICAL

    International Nuclear Information System (INIS)

    SHERRELL, D.L.

    1999-01-01

    Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10(sup -5) std cc/sec and 1 x 10(sup -7) std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations[within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL)

  19. Real time identification of the internal combustion engine combustion parameters based on the vibration velocity signal

    Science.gov (United States)

    Zhao, Xiuliang; Cheng, Yong; Wang, Limei; Ji, Shaobo

    2017-03-01

    Accurate combustion parameters are the foundations of effective closed-loop control of engine combustion process. Some combustion parameters, including the start of combustion, the location of peak pressure, the maximum pressure rise rate and its location, can be identified from the engine block vibration signals. These signals often include non-combustion related contributions, which limit the prompt acquisition of the combustion parameters computationally. The main component in these non-combustion related contributions is considered to be caused by the reciprocating inertia force excitation (RIFE) of engine crank train. A mathematical model is established to describe the response of the RIFE. The parameters of the model are recognized with a pattern recognition algorithm, and the response of the RIFE is predicted and then the related contributions are removed from the measured vibration velocity signals. The combustion parameters are extracted from the feature points of the renovated vibration velocity signals. There are angle deviations between the feature points in the vibration velocity signals and those in the cylinder pressure signals. For the start of combustion, a system bias is adopted to correct the deviation and the error bound of the predicted parameters is within 1.1°. To predict the location of the maximum pressure rise rate and the location of the peak pressure, algorithms based on the proportion of high frequency components in the vibration velocity signals are introduced. Tests results show that the two parameters are able to be predicted within 0.7° and 0.8° error bound respectively. The increase from the knee point preceding the peak value point to the peak value in the vibration velocity signals is used to predict the value of the maximum pressure rise rate. Finally, a monitoring frame work is inferred to realize the combustion parameters prediction. Satisfactory prediction for combustion parameters in successive cycles is achieved, which

  20. Report of generation of the nuclear bank Presto-Hot for the CAORSO 3.26 fuel with the FMS codes; Reporte de generacion del banco nuclear Presto-Hot para el combustible CAORSO 3.26 con los codigos del FMS

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1991-03-15

    In this work it is described in a general way the form in that it was generated the database of the CAORSO 3.26 fuel for to analyze their use in a future reload for Laguna Verde. The formation of the bank was carries out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-1B codes of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico City. The formed bank is denominated 'L1PG9105'. All this one carries out following the '6F3/I/CN029/90/P1' procedure. The generated database contains the enough information in terms of constant in two dependent groups of burnt and instantaneous holes, for the different arrangements of bars present in the one assemble as well as those coefficients that take into account the presence of the control bar, the variation in the fuel temperature and the effect of the 'historical' holes. All this is included in it that one knows as SUPER option of the bank for PRESTO with those options PRCOEF and POLRAM. Also, in the Annex G of this report, the M-FACTOR, the Xenon coefficients and the burnt parameters of the control bar for PRESTO its are by separate provided. They are also presented charts and comparative graphic of the obtained results in the BURNT cell series for three percentages of holes in the moderator, 0%, 40% and 70%, for each one of the five cells identified in the one assemble. (Author)

  1. Nuclear rights - nuclear wrongs

    Energy Technology Data Exchange (ETDEWEB)

    Paul, E.F.; Miller, F.D.; Paul, J.; Ahrens, J.

    1986-01-01

    This book contains 11 selections. The titles are: Three Ways to Kill Innocent Bystanders: Some Conundrums Concerning the Morality of War; The International Defense of Liberty; Two Concepts of Deterrence; Nuclear Deterrence and Arms Control; Ethical Issues for the 1980s; The Moral Status of Nuclear Deterrent Threats; Optimal Deterrence; Morality and Paradoxical Deterrence; Immoral Risks: A Deontological Critique of Nuclear Deterrence; No War Without Dictatorship, No Peace Without Democracy: Foreign Policy as Domestic Politics; Marxism-Leninism and its Strategic Implications for the United States; Tocqueveille War.

  2. Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control

    NARCIS (Netherlands)

    Leskens, M.

    2013-01-01

    The combustion of municipal solid waste (MSW) is used for its inertisation, reduction of its volume and the conversion of its energy content into heat and/or electricity. Operation and control of modern large scale MSW combustion (MSWC) plants is determined by economic and environmental objectives

  3. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  4. Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines

    Directory of Open Access Journals (Sweden)

    Miroslaw Weclas

    2010-01-01

    Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.

  5. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  6. Report of generation of the nuclear bank Presto-Hot for the CAORSO 3.29 fuel with the FMS codes; Reporte de generacion del banco nuclear Presto-Hot para el combustible CAORSO 3.29 con los codigos del FMS

    Energy Technology Data Exchange (ETDEWEB)

    Alonso V, G. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    1992-10-15

    Prior to the CAORSO 3.26 fuel data bank had been generated whose active longitude was of 144 inches, longitude that not this in agreement with the used assemblies in the unit 1 of Laguna Verde, of 150 inches of active longitude. When realizing this difference, it was speak with the personnel of the CAORSO plant to verify if there was some error in the sent information. The CAORSO personnel, when verifying it, point out that they sent us information of another fuel and that the appropriate one for our plant is that of the CAORSO 3.29 fuel, that which made necessary the generation of this bank. In this work in a general way the form in that was generated the data bank of the CAORSO 3.29 fuel to analyze their use in a future reload for Laguna Verde is described. The formation of the bank was carried out with the ECLIPSE 86-2D, RECORD 89-1A and POLGEN 88-1B of the FMS package installed in the VAX system of the offices of the National Commission of Nuclear Safety and Safeguards in Mexico D.F and in the Electric Investigations Institute in Cuernavaca, Morelos. The formed bank is denominated 'L1PG9110' and was carried out following the '6F3/I/CN029/90/P1' procedure. The generated data bank contains the enough information in terms of constant in two groups of burnt dependent and instantaneous vacuums, for the different arrangements of fuel bars present in the assemble, as well as those coefficients that take into account the presence of the control bar, the variation in the fuel temperature and the effect of the 'historical' vacuums. All this is included in that is known as SUPER option of the bank for PRESTO with the options PRCOEF and POLRAM. Also, in the Annex G of this report, is provided by separate the M-FACTOR, the Xenon coefficients and the burnt parameters of the control bar for PRESTO. Its are also presented charts and comparative graphic of the obtained results in the BURNT series of the cell for three vacuum percentages in the

  7. Liquid rocket combustion chamber acoustic characterization

    Directory of Open Access Journals (Sweden)

    Cândido Magno de Souza

    2010-09-01

    Full Text Available Over the last 40 years, many solid and liquid rocket motors have experienced combustion instabilities. Among other causes, there is the interaction of acoustic modes with the combustion and/or fluid dynamic processes inside the combustion chamber. Studies have been showing that, even if less than 1% of the available energy is diverted to an acoustic mode, combustion instability can be generated. On one hand, this instability can lead to ballistic pressure changes, couple with other propulsion systems such as guidance or thrust vector control, and in the worst case, cause motor structural failure. In this case, measures, applying acoustic techniques, must be taken to correct/minimize these influences on the combustion. The combustion chamber acoustic behavior in operating conditions can be estimated by considering its behavior in room conditions. In this way, acoustic tests can be easily performed, thus identifying the cavity modes. This paper describes the procedures to characterize the acoustic behavior in the inner cavity of four different configurations of a combustion chamber. Simple analytical models are used to calculate the acoustic resonance frequencies and these results are compared with acoustic natural frequencies measured at room conditions. Some comments about the measurement procedures are done, as well as the next steps for the continuity of this research. The analytical and experimental procedures results showed good agreement. However, limitations on high frequency band as well as in the identification of specific kinds of modes indicate that numerical methods able to model the real cavity geometry and an acoustic experimental modal analysis may be necessary for a more complete analysis. Future works shall also consider the presence of passive acoustic devices such as baffles and resonators capable of introducing damping and avoiding or limiting acoustic instabilities.

  8. Internal Heterogeneous Processes in Aluminum Combustion

    Science.gov (United States)

    Dreizin, E. L.

    1999-01-01

    This paper discusses the aluminum particle combustion mechanism which has been expanded by inclusion of gas dissolution processes and ensuing internal phase transformations. This mechanism is proposed based on recent normal and microgravity experiments with particles formed and ignited in a pulsed micro-arc. Recent experimental findings on the three stages observed in Al particle combustion in air and shows the burning particle radiation, trajectory (streak), smoke cloud shapes, and quenched particle interiors are summarized. During stage I, the radiation trace is smooth and the particle flame is spherically symmetric. The temperature measured using a three-color pyrometer is close to 3000 K. Because it exceeds the aluminum boiling point (2730 K), this temperature most likely characterizes the vapor phase flame zone rather than the aluminum surface. The dissolved oxygen content within particles quenched during stage I was below the detection sensitivity (about 1 atomic %) for Wavelength Dispersive Spectroscopy (WDS). After an increase in the radiation intensity (and simultaneous decrease in the measured color temperature from about 3000 to 2800 K) indicative of the transition to stage II combustion, the internal compositions of the quenched particles change. Both oxygen-rich (approx. 10 atomic %) and oxygen-lean (combustion behavior and the evolution of its internal composition, the change from the spherically symmetric to asymmetric flame shape occurring upon the transition from stage I to stage II combustion could not be understood based only on the fact that dissolved oxygen is detected in the particles. The connection between the two phenomena appeared even less significant because in earlier aluminum combustion studies carried in O2/Ar mixtures, flame asymmetry was not observed as opposed to experiments in air or O2/CO mixtures. It has been proposed that the presence of other gases, i.e., hydrogen, or nitrogen causes the change in the combustion regime.

  9. Assessment of Literature Related to Combustion Appliance Venting Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, V. H.; Less, B. D.; Singer, B. C.; Stratton, J. C.; Wray, C. P.

    2015-02-01

    In many residential building retrofit programs, air tightening to increase energy efficiency is often constrained by safety concerns with naturally vented combustion appliances. Tighter residential buildings more readily depressurize when exhaust equipment is operated, making combustion appliances more prone to backdraft or spill combustion exhaust into the living space. Several measures, such as installation guidelines, vent sizing codes, and combustion safety diagnostics, are in place with the intent to prevent backdrafting and combustion spillage, but the diagnostics conflict and the risk mitigation objective is inconsistent. This literature review summarizes the metrics and diagnostics used to assess combustion safety, documents their technical basis, and investigates their risk mitigations. It compiles information from the following: codes for combustion appliance venting and installation; standards and guidelines for combustion safety diagnostics; research evaluating combustion safety diagnostics; research investigating wind effects on building depressurization and venting; and software for simulating vent system performance.

  10. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. New technologies reducing emissions from combustion of biofuels

    International Nuclear Information System (INIS)

    Oravainen, H.

    1997-01-01

    In reducing CO 2 emissions, bioenergy will be the most important source of renewable energy in the next few decades. In principle, combustion of biomass is friendly to the environment because CO 2 released during combustion is recycled back into natural circulation. Biofuels normally contain little nitrogen and sulphur. However, depending on the combustion technology used, emissions may be quite high. This is true of combustion of biomass fuels in small appliances like wood stoves, fireplaces, small boilers etc. When fuels having high content of volatile matter are burnt in appliances using batch type combustion, the process is rather an unsteady-state combustion. Emissions of carbon monoxide, other combustible gases and particulates are quite difficult to avoid. With continuous combustion processes this is not normally a problem. This conference paper presents some means of reducing emissions from combustion of biofuels. 5 refs., 4 figs

  12. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    Science.gov (United States)

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  13. Diesel oil combustion in fluidized bed; Combustion de aceite diesel en lecho fluidizado

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Cazares, Mario [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1992-07-01

    The effect of the fluidized bed depth in the combustion in burning diesel oil in a fluidized bed, was analyzed. A self sustained combustion was achieved injecting the oil with an injector that utilized a principle similar to an automobile carburetor venturi. Three different depths were studied and it was found that the deeper the bed, the greater the combustion efficiency. Combustion efficiencies were attained from 82% for a 100mm bed depth, up to 96% for a 200mm bed depth. The diminution in the efficiency was mainly attributed to unburned hydrocarbons and to the carbon carried over, which was observed in the black smoke at the stack outlet. Other phenomena registered were the temperature gradient between the lower part of the bed and the upper part, caused by the fluidization velocity; additionally it was observed that the air employed for the oil injection (carbureting air) is the most important parameter to attain a complete combustion. [Espanol] Se analizo el efecto de la profundidad del lecho en la combustion al quemar aceite diesel en un lecho fluidizado experimental. Se logro combustion autosostenida inyectando el aceite con un inyector que utilizo un principio similar al venturi del carburador de automovil. Se estudiaron tres diferentes profundidades del lecho y se encontro que a mayor profundidad del lecho, mayor eficiencia de la combustion. Se lograron eficiencias de la combustion desde 82% para el lecho de 100 mm de profundidad hasta 96% para el de 200 mm. La disminucion de la eficiencia se atribuyo, principalmente, a los hidrocarburos no quemados y al carbon arrastrado, lo cual se observo en el humo negro a la salida de la chimenea. Otros fenomenos registrados fueron el gradiente de temperatura entre la parte baja del lecho y la parte superior causado por la velocidad de fluidizacion; ademas, se observo que el aire utilizado para inyectar el aceite (aire de carburacion) es el parametro mas importante para lograr una combustion completa.

  14. Chemical Kinetic Modeling of Biofuel Combustion

    Science.gov (United States)

    Sarathy, Subram Maniam

    Bioalcohols, such as bioethanol and biobutanol, are suitable replacements for gasoline, while biodiesel can replace petroleum diesel. Improving biofuel engine performance requires understanding its fundamental combustion properties and the pathways of combustion. This study's contribution is experimentally validated chemical kinetic combustion mechanisms for biobutanol and biodiesel. Fundamental combustion data and chemical kinetic mechanisms are presented and discussed to improve our understanding of biofuel combustion. The net environmental impact of biobutanol (i.e., n-butanol) has not been studied extensively, so this study first assesses the sustainability of n-butanol derived from corn. The results indicate that technical advances in fuel production are required before commercializing biobutanol. The primary contribution of this research is new experimental data and a novel chemical kinetic mechanism for n-butanol combustion. The results indicate that under the given experimental conditions, n-butanol is consumed primarily via abstraction of hydrogen atoms to produce fuel radical molecules, which subsequently decompose to smaller hydrocarbon and oxygenated species. The hydroxyl moiety in n-butanol results in the direct production of the oxygenated species such as butanal, acetaldehyde, and formaldehyde. The formation of these compounds sequesters carbon from forming soot precursors, but they may introduce other adverse environmental and health effects. Biodiesel is a mixture of long chain fatty acid methyl esters derived from fats and oils. This research study presents high quality experimental data for one large fatty acid methyl ester, methyl decanoate, and models its combustion using an improved skeletal mechanism. The results indicate that methyl decanoate is consumed via abstraction of hydrogen atoms to produce fuel radicals, which ultimately lead to the production of alkenes. The ester moiety in methyl decanoate leads to the formation of low molecular

  15. Fuel and Additive Characterization for HCCI Combustion

    International Nuclear Information System (INIS)

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

    2003-01-01

    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included

  16. Dioxins and polyvinylchloride in combustion and fires.

    Science.gov (United States)

    Zhang, Mengmei; Buekens, Alfons; Jiang, Xuguang; Li, Xiaodong

    2015-07-01

    This review on polyvinylchloride (PVC) and dioxins collects, collates, and compares data from selected sources on the formation of polychlorinated dibenzofurans (PCDFs) and dibenzo-p-dioxins (PCDDs), or in brief dioxins, in combustion and fires. In professional spheres, the incineration of PVC as part of municipal solid waste is seldom seen as a problem, since deep flue gas cleaning is required anyhow. Conversely, with its high content of chlorine, PVC is frequently branded as a major chlorine donor and spitefully leads to substantial formation of dioxins during poorly controlled or uncontrolled combustion and open fires. Numerous still ill-documented and diverse factors of influence may affect the formation of dioxins during combustion: on the one hand PVC-compounds represent an array of materials with widely different formulations; on the other hand these may all be exposed to fires of different nature and consequences. Hence, attention should be paid to PVC with respect to the ignition and development of fires, as well as attenuating the emission of objectionable compounds, such as carbon monoxide, hydrogen chloride, polycyclic aromatic hydrocarbons, and dioxins. This review summarises available dioxin emissions data, gathers experimental and simulation studies of fires and combustion tests involving PVC, and identifies and analyses the effects of several local factors of influence, affecting the formation of dioxins during PVC combustion. © The Author(s) 2015.

  17. Simulation of lean premixed turbulent combustion

    Science.gov (United States)

    Bell, J.; Day, M.; Almgren, A.; Lijewski, M.; Rendleman, C.; Cheng, R.; Shepherd, I.

    2006-09-01

    There is considerable technological interest in developing new fuel-flexible combustion systems that can burn fuels such as hydrogen or syngas. Lean premixed systems have the potential to burn these types of fuels with high efficiency and low NOx emissions due to reduced burnt gas temperatures. Although traditional Scientific approaches based on theory and laboratory experiment have played essential roles in developing our current understanding of premixed combustion, they are unable to meet the challenges of designing fuel-flexible lean premixed combustion devices. Computation, with its ability to deal with complexity and its unlimited access to data, has the potential for addressing these challenges. Realizing this potential requires the ability to perform high fidelity simulations of turbulent lean premixed flames under realistic conditions. In this paper, we examine the specialized mathematical structure of these combustion problems and discuss simulation approaches that exploit this structure. Using these ideas we can dramatically reduce computational cost, making it possible to perform high-fidelity simulations of realistic flames. We illustrate this methodology by considering ultra-lean hydrogen flames and discuss how this type of simulation is changing the way researchers study combustion.

  18. Fluidized bed combustion and gasification of corncobs

    Energy Technology Data Exchange (ETDEWEB)

    Butuk, N.; Morey, R.V.

    1987-01-01

    A 15.2 cm (6 in) diameter fluidized bed reactor was evaluated in combustion and gasification modes using hammer milled corncobs with average particle size of 0.2 cm (0.08 in). Combustion tests were run at 10 and 32% w.b. moisture contents and 710 degrees C and 815 degrees C bed temperatures. Heat output rates of 13.4 to 16.2 MJ/h were achieved. Gasification tests were run at 10 and 22% w.b. moisture contents and 710 degrees C bed temperature, and heat output rates of 84 to 133 MJ/h were achieved. Particulates in the exhaust gases were determined in both the combustion and gasification modes of operation. The measurements showed the inadequacy of the flame holder for flaring the gas in the gasification mode. A combustion model based on elemental balances and the first law of thermodynamics was developed and compared to experimental results. The model adequately predicted fuel-air ratios and exhaust gas mass fractions in the combustion mode.

  19. Combustion Safety Simplified Test Protocol Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L [Gas Technology Inst., Des Plaines, IL (United States); Cautley, D. [Gas Technology Inst., Des Plaines, IL (United States); Bohac, D. [Gas Technology Inst., Des Plaines, IL (United States); Francisco, P. [Gas Technology Inst., Des Plaines, IL (United States); Shen, L. [Gas Technology Inst., Des Plaines, IL (United States); Gloss, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2015-11-05

    "9Combustions safety is an important step in the process of upgrading homes for energy efficiency. There are several approaches used by field practitioners, but researchers have indicated that the test procedures in use are complex to implement and provide too many false positives. Field failures often mean that the house is not upgraded until after remediation or not at all, if not include in the program. In this report the PARR and NorthernSTAR DOE Building America Teams provide a simplified test procedure that is easier to implement and should produce fewer false positives. A survey of state weatherization agencies on combustion safety issues, details of a field data collection instrumentation package, summary of data collected over seven months, data analysis and results are included. The project provides several key results. State weatherization agencies do not generally track combustion safety failures, the data from those that do suggest that there is little actual evidence that combustion safety failures due to spillage from non-dryer exhaust are common and that only a very small number of homes are subject to the failures. The project team collected field data on 11 houses in 2015. Of these homes, two houses that demonstrated prolonged and excessive spillage were also the only two with venting systems out of compliance with the National Fuel Gas Code. The remaining homes experienced spillage that only occasionally extended beyond the first minute of operation. Combustion zone depressurization, outdoor temperature, and operation of individual fans all provide statistically significant predictors of spillage.

  20. Two-Color Pyrometry with Diesel Combustion

    Science.gov (United States)

    Burn, Katharine; Bittle, Joshua

    2017-11-01

    Diesel combustion lasts only milliseconds and takes place inside a closed engine cylinder. Because of this, the mixing and subsequent combustion processes are still not completely understood. Using optically accessible experimental apparatuses and various highspeed optical diagnostic techniques can give insight into the effects of different types of fuels on their subsequent combustion. Two-color pyrometry is an example of such techniques, and has been proven to give accurate temperature measurements of a flame while requiring no physical contact with the surface of interest. A two-color pyrometer has been designed, built, and tested with a Bunsen burner, with the intent of applying the pyrometer to a combustion spray chamber in the future. Initial testing has been made at various fuel rates using a controlled Bunsen burner flame. Temperature maps have been generated from the pyrometer images showing trends that flames with higher fuel flow rates burned at lower mean temperatures. A preliminary video of diesel spray has been captured, showing that future application to diesel combustion is possible with the pyrometer setup.

  1. Reaction and diffusion in turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pope, S.B. [Mechanical and Aerospace Engineering, Ithaca, NY (United States)

    1993-12-01

    The motivation for this project is the need to obtain a better quantitative understanding of the technologically-important phenomenon of turbulent combustion. In nearly all applications in which fuel is burned-for example, fossil-fuel power plants, furnaces, gas-turbines and internal-combustion engines-the combustion takes place in a turbulent flow. Designers continually demand more quantitative information about this phenomenon-in the form of turbulent combustion models-so that they can design equipment with increased efficiency and decreased environmental impact. For some time the PI has been developing a class of turbulent combustion models known as PDF methods. These methods have the important virtue that both convection and reaction can be treated without turbulence-modelling assumptions. However, a mixing model is required to account for the effects of molecular diffusion. Currently, the available mixing models are known to have some significant defects. The major motivation of the project is to seek a better understanding of molecular diffusion in turbulent reactive flows, and hence to develop a better mixing model.

  2. Ignition and wave processes in combustion of solids

    CERN Document Server

    Rubtsov, Nickolai M; Alymov, Michail I

    2017-01-01

    This book focuses on the application of classical combustion theory to ignition and flame propagation in solid-solid and gas-solid systems. It presents experimental investigations in the areas of local ignition, filtration combustion, self-propagating high temperature synthesis and nanopowders protection. The authors highlight analytical formulas used in different areas of combustion in solids and propose an approach based on classical combustion theory. The book attempts to analyze the basic approaches to understanding of solid-solid and solid - gas combustion presented in contemporary literature in a unified approach based on classical combustion theory. .

  3. Transport Properties for Combustion Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J.; Bastein, L.; Price, P.N.

    2010-02-19

    This review examines current approximations and approaches that underlie the evaluation of transport properties for combustion modeling applications. Discussed in the review are: the intermolecular potential and its descriptive molecular parameters; various approaches to evaluating collision integrals; supporting data required for the evaluation of transport properties; commonly used computer programs for predicting transport properties; the quality of experimental measurements and their importance for validating or rejecting approximations to property estimation; the interpretation of corresponding states; combination rules that yield pair molecular potential parameters for unlike species from like species parameters; and mixture approximations. The insensitivity of transport properties to intermolecular forces is noted, especially the non-uniqueness of the supporting potential parameters. Viscosity experiments of pure substances and binary mixtures measured post 1970 are used to evaluate a number of approximations; the intermediate temperature range 1 < T* < 10, where T* is kT/{var_epsilon}, is emphasized since this is where rich data sets are available. When suitable potential parameters are used, errors in transport property predictions for pure substances and binary mixtures are less than 5 %, when they are calculated using the approaches of Kee et al.; Mason, Kestin, and Uribe; Paul and Warnatz; or Ern and Giovangigli. Recommendations stemming from the review include (1) revisiting the supporting data required by the various computational approaches, and updating the data sets with accurate potential parameters, dipole moments, and polarizabilities; (2) characterizing the range of parameter space over which the fit to experimental data is good, rather than the current practice of reporting only the parameter set that best fits the data; (3) looking for improved combining rules, since existing rules were found to under-predict the viscosity in most cases; (4

  4. SCR at bio fuel combustion

    International Nuclear Information System (INIS)

    Andersson, Christer; Odenbrand, I.; Andersson, L.H.

    1998-10-01

    In this project the cause for and the extent of catalyst deactivation has been investigated when using 100 % wood as fuel. The trend of deactivation has been studied as a function of the flue gas temperature, the type of catalyst and the type of combustion technique used. The field tests have been performed in the CFB boiler in Norrkoeping, firing forest residues, and in the boiler in Jordbro, firing pulverized wood (PC). Samples of four different commercial catalyst types have been exposed to flue gas in a test rig connected to the convection section of the boiler. The samples have been analysed at even time intervals. The results after 2 100 hours show a large difference in deactivation trend between the two plants; when using a conventional honeycomb catalyst 80 % of the original activity remains in the CFB boiler but only 20 % remains in the PC boiler. The deactivation in the CFB boiler is about 3 - 4 times faster than what is expected for a conservative design for a coal fired boiler. The results show that the general deactivation trend is similar for the plate and the honeycomb catalyst types. With a catalyst optimised for bio fuels the deactivation rate was about 2/3 compared with a conventional catalyst. At an operating temperature of 315 deg C the deactivation was not as rapid as at 370 deg C. The amount of easily dissolved potassium increases on the surface of the catalyst, especially in the PC boiler, and this is probably the reason for the deactivation. The total amount of potassium in the flue gas is about 5 times higher in the CFB boiler compared with the PC boiler. This indicates that only a certain form of potassium attacks the catalyst and that the total alkali content of the fuel is not a good indicator of the deactivation tendency. The potassium on the catalyst dissolves easily in both water and sulphuric acid. A wash of deactivated catalyst samples with water resulted in higher activity than for the fresh samples if the washing was supplemented

  5. Making nuclear power sustainable

    International Nuclear Information System (INIS)

    Barre, B

    2003-01-01

    According to the present data, we must double our energy production while dividing by a factor of two the greenhouse gases emissions, knowing that today, 80% of our energy comes from the combustion of coal, gas and oil, all of which produce CO, released in the atmosphere. This is the toughest challenge facing us in the next few decades, and I include the water challenge, since producing drinking water will also increase our energy needs. This formidable challenge will not be easily met. No magic bullet is in sight, not even a nuclear bullet. To have any chance of success, we must actually implement all the available measures, and invent some more. In fact, we shall certainly need a three-pronged approach: Increase energy efficiency to limit energy consumption in our developed countries; Diversify our energy mix to reduce the share supplied by fossil fuels and that translates into increasing nuclear and renewable energy source; Trap and sequester CO 2 wherever and whenever economically possible. This article focuses on the nuclear issue. According to International Energy Agency (lEA) statistics, nuclear energy accounts today for 6.8% of the world energy supply. Is it realistic to expect this share to grow, when many forecasts (including lEA's own) predict a slow reduction? The future is not engraved in marble, it is ours to make; the future role of nuclear power will depend on the results of our present efforts to expand or overcome its limitations. It is quite possible that, within four decades, 40% of the electric power generated in all OECD countries, plus Russia, China, India and Brazil, comes from nuclear reactors. It is not far-fetched, when you consider that it took only two decades for France to increase its nuclear share of electricity from 8% to 80%. More ambitious, let's assume that in the same time frame and within the same countries 15% of the fuels for transportation come from nuclear produced hydrogen and that 10% of the space heating is supplied by

  6. Combustion and smoke formation following exposure of actinide metals to explosions

    International Nuclear Information System (INIS)

    Luna, R.E.; Church, H.W.; Elrick, R.M.; Parker, D.R.; Nelson, L.S.

    1976-01-01

    Results from the plutonium aerosol generation experiment (PAGE) program studies indicate that: (1) Significant quantities of metal-bearing aerosols are likely to be formed in an accidental high explosive detonation of a nuclear weapon. Although the explosive charge-to-metal ratio has been reduced in modern weapons, considerable inhalation hazard is still expected due to increased shrapnel formation and streamer combustion. (2) Close-in shrapnel particle sizes and velocities can be estimated by impact sampling techniques. (3) Uranium droplets are a very accurate simulant of plutonium droplets from the standpoint of combustion-related phenomena but do not seem to simulate either the total quantity of aerosol formed from plutonium droplets or its time-dependent generation pattern very well. This is due primarily to the large effect of the explosion of the burning uranium droplets on total aerosol formation which is not observed in the case of plutonium, even though more aerosol is produced per unit time during the actual combustion itself. (4) The formation of chain-like plutonium aerosols from the droplets produced during streamer combustion is expected to produce an unusually active material from the standpoint of inhalation into the lung and ultimate translocation in the body. 16 figures

  7. Integral large scale experiments on hydrogen combustion for severe accident code validation-HYCOM

    International Nuclear Information System (INIS)

    Breitung, W.; Dorofeev, S.; Kotchourko, A.; Redlinger, R.; Scholtyssek, W.; Bentaib, A.; L'Heriteau, J.-P.; Pailhories, P.; Eyink, J.; Movahed, M.; Petzold, K.-G.; Heitsch, M.; Alekseev, V.; Denkevits, A.; Kuznetsov, M.; Efimenko, A.; Okun, M.V.; Huld, T.; Baraldi, D.

    2005-01-01

    A joint research project was carried out in the EU Fifth Framework Programme, concerning hydrogen risk in a nuclear power plant. The goals were: Firstly, to create a new data base of results on hydrogen combustion experiments in the slow to turbulent combustion regimes. Secondly, to validate the partners CFD and lumped parameter codes on the experimental data, and to evaluate suitable parameter sets for application calculations. Thirdly, to conduct a benchmark exercise by applying the codes to the full scale analysis of a postulated hydrogen combustion scenario in a light water reactor containment after a core melt accident. The paper describes the work programme of the project and the partners activities. Significant progress has been made in the experimental area, where test series in medium and large scale facilities have been carried out with the focus on specific effects of scale, multi-compartent geometry, heat losses and venting. The data were used for the validation of the partners CFD and lumped parameter codes, which included blind predictive calculations and pre- and post-test intercomparison exercises. Finally, a benchmark exercise was conducted by applying the codes to the full scale analysis of a hydrogen combustion scenario. The comparison and assessment of the results of the validation phase and of the challenging containment calculation exercise allows a deep insight in the quality, capabilities and limits of the CFD and the lumped parameter tools which are currently in use at various research laboratories

  8. Nuclear power

    OpenAIRE

    2005-01-01

    David Waller and Alan McDonald ask whether a nuclear renaissance can be predicted; Judith M. Greenwald discusses keeping the nuclear power option open; Paul Mobbs considers the availability of uranium and the future of nuclear energy.

  9. Nuclear Medicine.

    Science.gov (United States)

    Badawi, Ramsey D.

    2001-01-01

    Describes the use of nuclear medicine techniques in diagnosis and therapy. Describes instrumentation in diagnostic nuclear medicine and predicts future trends in nuclear medicine imaging technology. (Author/MM)

  10. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  11. An investigation of combustion and entropy noise

    Science.gov (United States)

    Strahle, W. C.

    1977-01-01

    The relative importance of entropy and direct combustion noise in turbopropulsion systems and the parameters upon which these noise sources depend were studied. Theory and experiment were employed to determine that at least with the apparatus used here, entropy noise can dominate combustion noise if there is a sufficient pressure gradient terminating the combustor. Measurements included combustor interior fluctuating pressure, near and far field fluctuating pressure, and combustor exit plane fluctuating temperatures, as well as mean pressures and temperatures. Analysis techniques included spectral, cross-correlation, cross power spectra, and ordinary and partial coherence analysis. Also conducted were combustor liner modification experiments to investigate the origin of the frequency content of combustion noise. Techniques were developed to extract nonpropagational pseudo-sound and the heat release fluctuation spectra from the data.

  12. Understanding Combustion Processes Through Microgravity Research

    Science.gov (United States)

    Ronney, Paul D.

    1998-01-01

    A review of research on the effects of gravity on combustion processes is presented, with an emphasis on a discussion of the ways in which reduced-gravity experiments and modeling has led to new understanding. Comparison of time scales shows that the removal of buoyancy-induced convection leads to manifestations of other transport mechanisms, notably radiative heat transfer and diffusional processes such as Lewis number effects. Examples from premixed-gas combustion, non-premixed gas-jet flames, droplet combustion, flame spread over solid and liquid fuels, and other fields are presented. Promising directions for new research are outlined, the most important of which is suggested to be radiative reabsorption effects in weakly burning flames.

  13. Redesigning the rotating-bomb combustion calorimeter

    International Nuclear Information System (INIS)

    Flores, Henoc; Mentado, Juan; Amador, Patricia; Torres, Luis Alfonso; Campos, Myriam; Rojas, Aaron

    2006-01-01

    In order to obtain reliable data of the standard enthalpy of combustion of compounds containing sulfur or halogen atoms, a new calorimetric rotating-bomb system has been set up. Around a platinum lining Parr 1004 C combustion bomb, an isoperibolic calorimeter has been designed, constructed and tested. The calorimeter was calibrated by using standard benzoic acid and the resulting equivalent in energy was ε(calor)=(14321.2+/-2.4)J.K -1 . Combustion measurements using thianthrene were made in order to verify the accuracy of the device, leading to the value of Δ c u o =-(33462.9+/-5.7)J.g -1 , in agreement with the recommended one

  14. Analysis of circulating fluidized bed combustion technology

    Energy Technology Data Exchange (ETDEWEB)

    Furusawa, Takehiko; Shimizu, Tadaaki; Yang, Guilin

    1987-05-20

    Fluidized bed combustors are commercialized as a technology to combust solid fuels with higher efficiency and lower emission and have functions of both combustion and simultaneous desulfurization and NOx reduction with dense phase fluidized beds but it is not so easy to realize these problems. The technology of circulating fluidized bed coal combustion is expected to offer potential break-through of various problems. But the details are not reported so far. Quantitative analysis of present situations was conducted and future problems were shown with officially available informations. This analysis includes the circulating rate and loading of solids, heat recovery and heat transfer rate as a function of loading of solids, the design of cyclones related to high solid concentration within the combustor, sulfur retention with reduced Ca/S ratio and problems related to NOx reduction to be developed in future. (51 refs, 23 figs, 8 tabs)

  15. Processing of hydroxyapatite obtained by combustion synthesis

    International Nuclear Information System (INIS)

    Canillas, M.; Rivero, R.; García-Carrodeguas, R.; Barba, F.; Rodríguez, M.A.

    2017-01-01

    One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties. [es

  16. Processing of hydroxyapatite obtained by combustion synthesis

    Directory of Open Access Journals (Sweden)

    M. Canillas

    2017-09-01

    Full Text Available One of the reasons of implants failure are the stress forces appearing in the material–tissue interface due to the differences between their mechanical properties. For this reason, similar mechanical properties to the surrounding tissue are desirable. The synthesis of hydroxyapatite by solution combustion method and its processing have been studied in order to obtain fully dense ceramic bodies with improved mechanical strength. Combustion synthesis provides nanostructured powders characterized by a high surface area to facilitate the following sintering. Moreover, synthesis was conducted in aqueous and oxidizing media. Oxidizing media improve homogenization and increase the energy released during combustion. It gives rise to particles whose morphology and size suggest lower surface energies compared with aqueous media. The obtained powders were sintered by using a controlled sintering rate schedule. Lower surfaces energies minimize the shrinkage during sintering and relative densities measurements and diametral compression test confirm improved densification and consequently mechanical properties.

  17. Starting procedure for internal combustion vessels

    Science.gov (United States)

    Harris, Harry A.

    1978-09-26

    A vertical vessel, having a low bed of broken material, having included combustible material, is initially ignited by a plurality of ignitors spaced over the surface of the bed, by adding fresh, broken material onto the bed to buildup the bed to its operating depth and then passing a combustible mixture of gas upwardly through the material, at a rate to prevent back-firing of the gas, while air and recycled gas is passed through the bed to thereby heat the material and commence the desired laterally uniform combustion in the bed. The procedure permits precise control of the air and gaseous fuel mixtures and material rates, and permits the use of the process equipment designed for continuous operation of the vessel.

  18. Large eddy simulation and combustion instabilities; Simulation des grandes echelles et instabilites de combustion

    Energy Technology Data Exchange (ETDEWEB)

    Lartigue, G.

    2004-11-15

    The new european laws on pollutants emission impose more and more constraints to motorists. This is particularly true for gas turbines manufacturers, that must design motors operating with very fuel-lean mixtures. Doing so, pollutants formation is significantly reduced but the problem of combustion stability arises. Actually, combustion regimes that have a large excess of air are naturally more sensitive to combustion instabilities. Numerical predictions of these instabilities is thus a key issue for many industrial involved in energy production. This thesis work tries to show that recent numerical tools are now able to predict these combustion instabilities. Particularly, the Large Eddy Simulation method, when implemented in a compressible CFD code, is able to take into account the main processes involved in combustion instabilities, such as acoustics and flame/vortex interaction. This work describes a new formulation of a Large Eddy Simulation numerical code that enables to take into account very precisely thermodynamics and chemistry, that are essential in combustion phenomena. A validation of this work will be presented in a complex geometry (the PRECCINSTA burner). Our numerical results will be successfully compared with experimental data gathered at DLR Stuttgart (Germany). Moreover, a detailed analysis of the acoustics in this configuration will be presented, as well as its interaction with the combustion. For this acoustics analysis, another CERFACS code has been extensively used, the Helmholtz solver AVSP. (author)

  19. Sounding Solid Combustibles: Non-Premixed Flame Sound Synthesis for Different Solid Combustibles.

    Science.gov (United States)

    Yin, Qiang; Liu, Shiguang

    2018-02-01

    With the rapidly growing VR industry, in recent years, more and more attention has been paid for fire sound synthesis. However, previous methods usually ignore the influences of the different solid combustibles, leading to unrealistic sounding results. This paper proposes SSC (sounding solid combustibles), which is a new recording-driven non-premixed flame sound synthesis framework accounting for different solid combustibles. SSC consists of three components: combustion noise, vortex noise and popping sounds. The popping sounds are the keys to distinguish the differences of solid combustibles. To improve the quality of fire sound, we extract the features of popping sounds from the real fire sound examples based on modified Empirical Mode Decomposition (EMD) method. Unlike previous methods, we take both direct combustion noise and vortex noise into account because the fire model is non-premixed flame. In our method, we also greatly resolve the synchronization problem during blending the three components of SSC. Due to the introduction of the popping sounds, it is easy to distinguish the fire sounds of different solid combustibles by our method, with great potential in practical applications such as games, VR system, etc. Various experiments and comparisons are presented to validate our method.

  20. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  1. Numerical simulation of combustion and soot under partially premixed combustion of low-octane gasoline

    KAUST Repository

    An, Yanzhao

    2017-09-23

    In-cylinder combustion visualization and engine-out soot particle emissions were investigated in an optical diesel engine fueled with low octane gasoline. Single injection strategy with an early injection timing (−30 CAD aTDC) was employed to achieve partially premixed combustion (PPC) condition. A high-speed color camera was used to record the combustion images for 150 cycles. The regulated emission of carbon dioxide, carbon monoxide, nitrogen oxides and soot mass concentration were measured experimentally. Full cycle engine simulations were performed using CONVERGE™ and the simulation results matched with the experimental results. The in-cylinder soot particle evolution was performed by coupling a reduced toluene reference fuel mechanism including the PAHs formation/oxidation reactions with particulate size mimic model. The results showed that PPC presents typical stratified combustion characteristics, which is significantly different from the conventional diesel spray-driven combustion. The in-cylinder temperature and equivalence ratio overlaid with soot-NO formation regime revealed that PPC operating condition under study mostly avoided the main sooting conditions throughout the entire combustion. The evaluation of temperature distribution showed formaldehyde could be regarded as an indicator for low temperature reactions, while hydroxyl group represents the high temperature reactions. Soot evolution happened during the combustion process, hydroxyl radicals promoted the soot oxidation.

  2. Dust Combustion Safety Issues for Fusion Applications

    Energy Technology Data Exchange (ETDEWEB)

    L. C. Cadwallader

    2003-05-01

    This report summarizes the results of a safety research task to identify the safety issues and phenomenology of metallic dust fires and explosions that are postulated for fusion experiments. There are a variety of metal dusts that are created by plasma erosion and disruptions within the plasma chamber, as well as normal industrial dusts generated in the more conventional equipment in the balance of plant. For fusion, in-vessel dusts are generally mixtures of several elements; that is, the constituent elements in alloys and the variety of elements used for in-vessel materials. For example, in-vessel dust could be composed of beryllium from a first wall coating, tungsten from a divertor plate, copper from a plasma heating antenna or diagnostic, and perhaps some iron and chromium from the steel vessel wall or titanium and vanadium from the vessel wall. Each of these elements has its own unique combustion characteristics, and mixtures of elements must be evaluated for the mixture’s combustion properties. Issues of particle size, dust temperature, and presence of other combustible materials (i.e., deuterium and tritium) also affect combustion in air. Combustion in other gases has also been investigated to determine if there are safety concerns with “inert” atmospheres, such as nitrogen. Several coolants have also been reviewed to determine if coolant breach into the plasma chamber would enhance the combustion threat; for example, in-vessel steam from a water coolant breach will react with metal dust. The results of this review are presented here.

  3. Denitrification mechanism in combustion of biocoal briquettes.

    Science.gov (United States)

    Kim, Heejoon; Li, Tianji

    2005-02-15

    Pulp black liquor (PBL), an industrial waste from paper production, has been previously shown to be an effective binder and denitrification agent for coal briquettes. This study investigated the denitrification mechanism of PBL in both the volatile combustion and char combustion stages of coal briquettes. X-ray diffraction and ion chromatography were used to analyze the residual ashes of combustion. The exhaust gas was analyzed by a flue gas analysis system and a Q-mass spectrometry system. The denitrification mechanism of PBL in the volatile combustion stage was found to result from the emission of NH3. The denitrification of PBL in the char combustion stage was associated with the NaOH contained in PBL. The direct reaction of NaOH with NO gas was examined, and some interesting phenomena were observed. Pure carbon or pure NaOH showed only limited reaction with NO. However, the mixture of NaOH and carbon (NaOH + C) significantly enhanced the reaction. This mixture increased the NO removal up to 100%. Subsequently, denitrification lasted for a long time period, with about 25% of NO removal. The pyrolysis characteristic of NaNO3, a compound resulting from denitrification, was also affected by the presence of carbon. In the presence of carbon, the NOx emission resulting from the pyrolysis of NaNO3 was reduced by a factor of 6. Since the denitrification phenomena appeared only in the absence of oxygen, a model of oxygen distribution in a burning coal briquette was employed to explain the reactions occurring in real combustion of coal briquettes.

  4. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  5. Improvement of energy efficiency of natural gas combustion by applying a homogeneous combustion

    Directory of Open Access Journals (Sweden)

    Szymczyk Jacek

    2017-01-01

    Full Text Available In many heat devices designers and operators meet the problem of low efficiency of combustion and restricted emission standards. This process should be improved to maximize its efficiency and satisfy additional requirements as, for example, uniform temperature fieldin combustion chamber, low noise level or very low NOx emission. These requirements are satisfied by homogeneous combustion. Such combustion method is particularly attractive for the steel or glass industry or power industry based in particular on natural gas. In this paper factors, which have the biggest influence on performance of flameless combustion, are discussed, among others: momentum of fuel and oxidizer, composition of the mixture, the temperature of the inlet gases. Additionally, blind simulations of combustion in a combustion chamber of a furnace are run to assess how high is the influence of these factors individually. Numerical simulations are performed in a CFD code AVL Fire. The detailed chemical kinetics mechanism GRI-mech 3.0 is used for combustion calculations. Calculations results are correlated with experimental data. Blind simulations and experiment provide similar level of NOX emission (~6-8 ppm. Experiments showed that the effect of the addition of ethylene to fuel on emissions of NOX, CO, THC is not significant. Similarly, numerical simulations predict that influence of ethylene is negligible. CO, THC and CO2 were on a stable level across all cases. NOX emissions increases when mass flow of air and fuel increases due to higher heat release in the same volume, what results in higher temperature of combustion products. When temperature of fuel increases NOX level decreases.

  6. Heavy metals behaviour during mono-combustion and co-combustion of sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, M. Helena; Abelha, Pedro; Olieveira, J.F. Santos; Gulyurtlu, Ibrahim; Cabrita, Isabel [INETI-DEECA, Lisboa (Portugal)

    2005-03-01

    This paper presents the study of the combustion of granular dry sewage sludge performed on a pilot fluidized bed system. The results of mono-combustion of sludge and co-combustion with coal were compared with those of coal combustion for ash partitioning, the formation of gaseous pollutants and heavy metals behaviour. It was found that the mineral matter of sludge was essentially retained as bottom ashes. The production of fines ashes was small during the mono-combustion due to the tendency of coal to produce fine ashes which also contained unburned char. The degree of heavy metal volatilization was found to be slightly higher during co-combustion than in mono-combustion; however, most of them were retained in ashes and their emissions were found to be below the regulated levels. Hg was completely volatilized; however, during combustion trials involving coal it was captured by cyclone ashes at temperatures below 300 deg C. During sludge mono-combustion the retention of Hg in cyclone ashes containing low LOI was not enough to decrease emissions below the regulated levels; hence, it is necessary to install dedicated flue gas treatment for Hg removal. The leachability and ecotoxicity of sludge and ashes was compared with the new regulatory limits for landfill disposal in the EU. It was found that the release of organic matter and heavy metals found in the sludge was low from granular bed ashes; hence, except for sulphate release, bed ashes were converted into inert and non-ecotoxic materials. Ashes from test with limestone and cyclone ashes seemed to be more problematic because of pH effects and contamination with steel corrosion products. The recovery and reutilization of sludge bed ashes could, therefore, be possible, as long as the release of sulphate do not interfere with the process.

  7. Reaction-diffusion pulses: a combustion model

    International Nuclear Information System (INIS)

    Campos, Daniel; Llebot, Josep Enric; Fort, Joaquim

    2004-01-01

    We focus on a reaction-diffusion approach proposed recently for experiments on combustion processes, where the heat released by combustion follows first-order reaction kinetics. This case allows us to perform an exhaustive analytical study. Specifically, we obtain the exact expressions for the speed of the thermal pulses, their maximum temperature and the condition of self-sustenance. Finally, we propose two generalizations of the model, namely, the case of several reactants burning together, and that of time-delayed heat conduction. We find an excellent agreement between our analytical results and simulations

  8. Chemical Kinetic Modeling of 2-Methylhexane Combustion

    KAUST Repository

    Mohamed, Samah Y.

    2015-03-30

    Accurate chemical kinetic combustion models of lightly branched alkanes (e.g., 2-methylalkanes) are important for investigating the combustion behavior of diesel, gasoline, and aviation fuels. Improving the fidelity of existing kinetic models is a necessity, as new experiments and advanced theories show inaccuracy in certain portions of the models. This study focuses on updating thermodynamic data and kinetic model for a gasoline surrogate fuel, 2-methylhexane, with recently published group values and rate rules. These update provides a better agreement with rapid compression machine measurements of ignition delay time, while also strengthening the fundamental basis of the model.

  9. Large Eddy Simulation of turbulent combustion processes

    Science.gov (United States)

    Jones, W. P.

    2002-08-01

    The application of Large Eddy Simulation to Turbulent Combusting flows is described and results are presented for a turbulent hydrogen-air jet flame and for a model can-type gas turbine Combustion chamber. In both cases the results are in good agreement with measurements. For the hydrogen flame and in contrast to the results of other approaches the profiles of all quantities and the rate of spread of the jet were all accurately reproduced by the computations without any modification to the model constants being necessary.

  10. Spray and Combustion of Gelled Hypergolic Propellants

    Science.gov (United States)

    2014-10-20

    attacked by a radical, R, to fonn CH3-N -NH2, which is fmther attacked by another radical to f01m CH3NNH. Often the abst:I·action prutner is N02...forming HONO. Once f01med, HONO then decomposes to f01m NO and regenerate OH radicals. The CH3NNH is attacked once again by a radical abst:I·action...Combustion Test Facility for Monomethylhydrazine and Red Fuming Nitric Acid Gels”, JANNAF Combustion Meeting, 2011.  T. R. Sippel, S. C. Shark , M. C

  11. Resonance ionization detection of combustion radicals

    Energy Technology Data Exchange (ETDEWEB)

    Cool, T.A. [Cornell Univ., Ithaca, NY (United States)

    1993-12-01

    Fundamental research on the combustion of halogenated organic compounds with emphasis on reaction pathways leading to the formation of chlorinated aromatic compounds and the development of continuous emission monitoring methods will assist in DOE efforts in the management and disposal of hazardous chemical wastes. Selective laser ionization techniques are used in this laboratory for the measurement of concentration profiles of radical intermediates in the combustion of chlorinated hydrocarbon flames. A new ultrasensitive detection technique, made possible with the advent of tunable VUV laser sources, enables the selective near-threshold photoionization of all radical intermediates in premixed hydrocarbon and chlorinated hydrocarbon flames.

  12. Nordic seminar on biomass gasification and combustion

    International Nuclear Information System (INIS)

    1993-01-01

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs

  13. Gas Emissions in Combustion of Biofuel

    Directory of Open Access Journals (Sweden)

    Vitázek Ivan

    2014-10-01

    Full Text Available Nowadays, biomass or more precisely biofuel is more and more being exploited as a substitute for fossil fuels for heating as well as for example for heating a drying environment. This contribution focuses on assessing a heat source by combusting various types of solid biofuels. It is a boiler VIGAS 25 with AK 2000 regulation for heating a family house. Gaseous emissions were measured using a device TESTO 330-2LL. Firewood, peat briquettes, bark briquettes and hardwood briquettes were burnt. Results of experimental measurements concerning the production of gaseous emissions are processed in tables and graphs depending on boiler performance and combustion time.

  14. Nordic seminar on biomass gasification and combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-12-31

    The report comprises a collection of papers from a seminar arranged as a part of the Nordic Energy Research Program. The aim of this program is to strengthen the basic competence in the energy field at universities and research organizations in the Nordic countries. In the program 1991-1994 six areas are selected for cooperation such as energy and society, solid fuels, district heating, petroleum technology, bioenergy and environment, and fuel cells. The topics deal both with biomass combustion and gasification, and combustion of municipal solid waste (MSW) and refuse derived fuel (RDF). A number of 11 papers are prepared. 97 refs., 91 figs., 11 tabs.

  15. Long term profitable technique: in situ combustion

    Energy Technology Data Exchange (ETDEWEB)

    Naudin, Y.

    1980-03-01

    Onsite combustion, used for heavy petroleum, should permit the rate of recuperation of certain oil fields to be increased to 45% before the end of the century. This procedure, which has not yet been perfected and is, to large extent, still in the laboratory stage, is the object of extensive experiments in the oil fields of Suplacu and Balaria in Rumania. The IFP, which has been associated with these projects since 1969, is continuing its exhaustive laboratory tests. From an economic point of view, onsite combustion necessitates heavy investments, and the technical cost of production ranges from $5 to $15/bbl.

  16. Internal Combustion Engine Principles with Vehicle Applications

    DEFF Research Database (Denmark)

    Sorenson, Spencer C

    The book is an introductory text on the subject of internal combustion engines, intended for use in engineering courses at the senior or introductory graduate student level. The focus in on describing the basic principles of engine operation on a broad basis, to provide a foundation for further...... exchange processes, combustion in different engine types, exhaust emissions, engine control including mean value engine models, pressure charging, fuels and fuel systems, balancing, friction, and heat transfer. In addition, methods to establish the connection between engine characteristics and vehicle...

  17. Advanced Chemical Modeling for Turbulent Combustion Simulations

    Science.gov (United States)

    2012-05-03

    Bunsen flame. Proc. Comb. Inst., 31:1291–1298, 2007. [48] J.-H. Chen, A. Choudhary, B. De Supinski, M. DeVries, E. R. Hawkes, S. Klasky, W. K. Liao...turbulent combustion. Combust. Flame, 143:587–598, 2005. [50] J. A. van Oijen, F. A. Lammers, and L. P. H. de Goey. Modeling of complex premixed burner ... bunsen flames using flamelet-generated manifold reduction. Int. J. of Hydrogen Energy, 34:2778–2788, 2009. [53] K.-J. Nogenmyr, P. Petersson, X. S. Bai

  18. CARS measurements in an internal combustion engine.

    Science.gov (United States)

    Stenhouse, I A; Williams, D R; Cole, J B; Swords, M D

    1979-11-15

    The first reported coherent anti-Stokes Raman scattering (CARS) experiments within the cylinder of a firing internal combustion engine are described. The feasibility of making noninvasive temperature and species measurements, with good spatial and temporal resolution, both before and after ignition has been demonstrated. Temperatures have been derived from the shape of the Q-branch vibrational spectrum of nitrogen since it is present as a major species and does not take part in combustion. Methods of overcoming such problems as were encountered are discussed.

  19. Plasma igniter for internal combustion engine

    Science.gov (United States)

    Fitzgerald, D. J.; Breshears, R. R. (Inventor)

    1978-01-01

    An igniter for the air/fuel mixture used in the cylinders of an internal combustion engine is described. A conventional spark is used to initiate the discharge of a large amount of energy stored in a capacitor. A high current discharge of the energy in the capacitor switched on by a spark discharge produces a plasma and a magnetic field. The resultant combined electromagnetic current and magnetic field force accelerates the plasma deep into the combustion chamber thereby providing an improved ignition of the air/fuel mixture in the chamber.

  20. Microwave assisted ignition to achieve combustion synthesis

    Directory of Open Access Journals (Sweden)

    E. Balakrishnan

    2001-01-01

    Full Text Available The use of microwave heating to initiate combustion synthesis has been increasingly investigated in recent years because of its advantages over traditional methods. A simple mathematical model is used to model these experiments. The microwave power absorption term is modelled as the product of an Arrhenius reaction term with a function that decays exponentially with distance. The former represents the temperature-dependent absorption of the microwaves whereas the latter describes the penetration of the material by the microwaves. Combustion kinetics are modelled as a first-order Arrhenius reaction.

  1. Kinetic data base for combustion modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, W.; Herron, J.T. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-01

    The aim of this work is to develop a set of evaluated rate constants for use in the simulation of hydrocarbon combustion. The approach has been to begin with the small molecules and then introduce larger species with the various structural elements that can be found in all hydrocarbon fuels and decomposition products. Currently, the data base contains most of the species present in combustion systems with up to four carbon atoms. Thus, practically all the structural grouping found in aliphatic compounds have now been captured. The direction of future work is the addition of aromatic compounds to the data base.

  2. Signal Processing Methods for Liquid Rocket Engine Combustion Spontaneous Stability and Rough Combustion Assessments

    Science.gov (United States)

    Kenny, R. Jeremy; Casiano, Matthew; Fischbach, Sean; Hulka, James R.

    2012-01-01

    Liquid rocket engine combustion stability assessments are traditionally broken into three categories: dynamic stability, spontaneous stability, and rough combustion. This work focuses on comparing the spontaneous stability and rough combustion assessments for several liquid engine programs. The techniques used are those developed at Marshall Space Flight Center (MSFC) for the J-2X Workhorse Gas Generator program. Stability assessment data from the Integrated Powerhead Demonstrator (IPD), FASTRAC, and Common Extensible Cryogenic Engine (CECE) programs are compared against previously processed J-2X Gas Generator data. Prior metrics for spontaneous stability assessments are updated based on the compilation of all data sets.

  3. Some specific features of organic waste combustion in fluidized bed facility

    International Nuclear Information System (INIS)

    Masanov, O.L.; Bochvar, A.A.

    1995-01-01

    Discussion is given to the specific features of reprocessing nuclear fuel cycle liquid organic waste in a fluidized bed apparatus at moderate temperatures. Issues are considered relevant to efficiency and safety of the process and effects of nitrogen oxides on temperature regime. Conditions of thermal decomposition of TBP, paraffin and aromatic hydrocarbons (Dowtherm) are revealed. Relations are established of interactions between phosphorus oxides resulting from TBP combustion and a packing material (Al, Ca). Cs and Ru trapping efficiency is evaluated for organic phase combustion on bed granules. The recent studies have shown that hydrocarbon compounds available in waste to be disposed of can promote transuranium nuclide migration and subsequent escape to the environment. This is the reason why reprocessing this type of nuclear fuel cycle waste is one of the most important directions in waste localization. Investigations carried out in the course of the liquid nitric acid waste calcination in a fluidized bed apparatus indicated the high efficiency of kerosene thermal oxidation within 400--500 C. In this connection the authors have performed experiments in a laboratory scale to more accurately determine combustion regime for some organic compounds that found use in technologies of spent fuel radiochemical reprocessing. The studies were conducted in a fluidized bed facility. Its major component is a packed apparatus in the form cylinders with a cone shaped joint in the middle

  4. Torrefaction of empty fruit bunches under biomass combustion gas atmosphere.

    Science.gov (United States)

    Uemura, Yoshimitsu; Sellappah, Varsheta; Trinh, Thanh Hoai; Hassan, Suhaimi; Tanoue, Ken-Ichiro

    2017-11-01

    Torrefaction of oil palm empty fruit bunches (EFB) under combustion gas atmosphere was conducted in a batch reactor at 473, 523 and 573K in order to investigate the effect of real combustion gas on torrefaction behavior. The solid mass yield of torrefaction in combustion gas was smaller than that of torrefaction in nitrogen. This may be attributed to the decomposition enhancement effect by oxygen and carbon dioxide in combustion gas. Under combustion gas atmosphere, the solid yield for torrefaction of EFB became smaller as the temperature increased. The representative products of combustion gas torrefaction were carbon dioxide and carbon monoxide (gas phase) and water, phenol and acetic acid (liquid phase). By comparing torrefaction in combustion gas with torrefaction in nitrogen gas, it was found that combustion gas can be utilized as torrefaction gas to save energy and inert gas. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determination of (BTEX) of the gasoline's combustion in Ecuador

    International Nuclear Information System (INIS)

    Garcia, Nelson; Insuasti, Alicia

    1998-01-01

    The contents of benzene, toluene, ethyl benzene and xylenes (BTEX) were determined and quantified in the gasoline's combustion on an internal combustion engine. Gas chromatography with flame ionization detector were used for chemical determinations

  6. 75 FR 17111 - Hazardous Materials Regulations: Combustible Liquids

    Science.gov (United States)

    2010-04-05

    ... labeling requirements, unless the material also meets the definition of Division 6.1 (Poison) or is offered...., the words ``COMBUSTIBLE'' or ``COMBUSTIBLE LIQUID'' in red letters on a white background) in place of...

  7. Improved Combustion Products Monitor for the ISS, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer – Combustion Products, used on the International Space Station as a warning monitor of smoldering or combustion events, is being...

  8. Improved Combustion Products Monitor for the ISS, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The Compound Specific Analyzer - Combustion Products is used on the International Space Station as a warning monitor of smoldering or combustion events and, after...

  9. Combustion chemistry - activities in the CHEK research programme

    Energy Technology Data Exchange (ETDEWEB)

    Dam-Johansen, K.; Johnsson, J.E.; Glarborg, P.; Frandsen, F.; Jensen, A.; Oestberg, M. [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Chemical Engineering

    1997-10-01

    The combustion chemistry in the oxidation of fossil fuels and biofuels determines together with mixing and heat transfer the required size of a furnace, the emission of gaseous pollutants, and the formation of ash and deposits on surfaces. This presentation describes technologies for solid fuels combustion and gives a summary of the fuels, the pollutant chemistry and the inorganic chemistry in combustion processes. Emphasis is put on the work carried out in the CHEC (Combustion and Harmful Emission Control) Research Programme. (orig.)

  10. Staged combustion with piston engine and turbine engine supercharger

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Larry E [Los Gatos, CA; Anderson, Brian L [Lodi, CA; O' Brien, Kevin C [San Ramon, CA

    2011-11-01

    A combustion engine method and system provides increased fuel efficiency and reduces polluting exhaust emissions by burning fuel in a two-stage combustion system. Fuel is combusted in a piston engine in a first stage producing piston engine exhaust gases. Fuel contained in the piston engine exhaust gases is combusted in a second stage turbine engine. Turbine engine exhaust gases are used to supercharge the piston engine.

  11. Fundamentals of Turbulent and Multi-Phase Combustion

    CERN Document Server

    Kuo, Kenneth Kuan-yun

    2012-01-01

    Detailed coverage of advanced combustion topics from the author of Principles of Combustion, Second Edition Turbulence, turbulent combustion, and multiphase reacting flows have become major research topics in recent decades due to their application across diverse fields, including energy, environment, propulsion, transportation, industrial safety, and nanotechnology. Most of the knowledge accumulated from this research has never been published in book form-until now. Fundamentals of Turbulent and Multiphase Combustion presents up-to-date, integrated coverage of the fundamentals of turbulence

  12. Application of Detailed Chemical Kinetics to Combustion Instability Modeling

    Science.gov (United States)

    2016-01-04

    sustained by combustion . Irreparable damage can occur in less than 1 second. CI caused a four year delay in the development of the F-1 engine used...Distribution A: approved for public release; distribution unlimited. 2 Challenges of Combustion Instability Damaged engine injector faceplate...caused by combustion instability “ Combustion instabilities have been observed in almost every engine development effort, including even the most recent

  13. Boris Novozhilov: Life and contribution to the physics of combustion

    Science.gov (United States)

    Novozhilov, Vasily

    2018-04-01

    Professor Boris Novozhilov (1930-2017) passed away on February 19th, 2017 in Moscow. The present paper provides brief account of his life and contributions to the physics of combustion. From extensive scientific legacy left by Boris, several major achievements are discussed here: Zeldovich-Novozhilov (ZN) theory of unsteady solid propellant combustion, contributions to thermal explosion theory, the theory of spin combustion, discovery of propellant combustion transition to chaotic regimes through Feigenbaum period bifurcation scenario.

  14. Development of a NO/x/-free combustion system

    Science.gov (United States)

    Sadakata, M.; Furusawa, T.; Kunii, D.; Imagawa, M.; Nawada, M.

    1980-04-01

    The development of a NO(x)-free combustion-heating system realizing both pollution control and energy savings is described. An experiment was carried out by using a small model plant. The system consists of a combustion furnace and a new-type multifunctional heat exchanger. The heat exchanger is a rotary continuous type designed for soot collection and for catalytic combustion of CO and H2 as well as for preheating combustion air.

  15. Traveling-Wave Thermoacoustic Engines With Internal Combustion

    Science.gov (United States)

    Weiland, Nathan Thomas; Zinn, Ben T.; Swift, Gregory William

    2004-05-11

    Thermoacoustic devices are disclosed wherein, for some embodiments, a combustion zone provides heat to a regenerator using a mean flow of compressible fluid. In other embodiments, burning of a combustible mixture within the combustion zone is pulsed in phase with the acoustic pressure oscillations to increase acoustic power output. In an example embodiment, the combustion zone and the regenerator are thermally insulated from other components within the thermoacoustic device.

  16. Modelling of flame temperature of solution combustion synthesis of ...

    Indian Academy of Sciences (India)

    Hydroxyapatite (HAp), an important bio-ceramic was successfully synthesized by combustion in the aqueous system containing calcium nitrate-di-ammonium hydrogen orthophosphate-urea. The combustion flame temperature of solution combustion reaction depends on various process parameters, and it plays a significant ...

  17. 30 CFR 56.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  18. 40 CFR 74.16 - Application requirements for combustion sources.

    Science.gov (United States)

    2010-07-01

    ... combustion sources. 74.16 Section 74.16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... for combustion sources. (a) Opt-in permit application. Each complete opt-in permit application for a combustion source shall contain the following elements in a format prescribed by the Administrator: (1...

  19. 40 CFR 74.44 - Reduced utilization for combustion sources.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Reduced utilization for combustion....44 Reduced utilization for combustion sources. (a) Calculation of utilization—(1) Annual utilization... reported in accordance with subpart F of this part for combustion sources. “Allowances transferred to all...

  20. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  1. 16 CFR 1209.7 - Test procedures for smoldering combustion.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test procedures for smoldering combustion. 1209.7 Section 1209.7 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY... for smoldering combustion. This section provides the test method for determining smoldering combustion...

  2. 30 CFR 57.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 57.7807... and Rotary Jet Piercing Rotary Jet Piercing-Surface Only § 57.7807 Flushing the combustion chamber. The combustion chamber of a jet drill stem which has been sitting unoperated in a drill hole shall be...

  3. 30 CFR 57.4103 - Fueling internal combustion engines.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts of...

  4. 30 CFR 56.7807 - Flushing the combustion chamber.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Flushing the combustion chamber. 56.7807 Section 56.7807 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Rotary Jet Piercing Rotary Jet Piercing § 56.7807 Flushing the combustion chamber. The combustion chamber...

  5. 14 CFR 25.833 - Combustion heating systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Combustion heating systems. 25.833 Section... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Ventilation and Heating § 25.833 Combustion heating systems. Combustion heaters must be approved. [Amdt. 25-72, 55 FR 29783, July 20, 1990...

  6. Numerical investigation of spray combustion towards HITAC conditions

    NARCIS (Netherlands)

    Zhu, Shanglong

    2017-01-01

    The features of High Temperature Air Combustion (HiTAC), i.e. high-efficiency combustion processes creating a uniform temperature distribution with low NOX and CO emissions, lend itself ideally for the combustion of all sorts of "difficult” fuels, ranging from low-calorific gases such as

  7. Knock characteristics of dual-fuel combustion in diesel engines ...

    Indian Academy of Sciences (India)

    This paper investigates the combustion knock characteristics of diesel engines running on natural gas using pilot injection as means of initiating combustion. The diesel engines knock under normal operating conditions but the knock referred to in this paper is an objectionable one. In the dual-fuel combustion process we ...

  8. Decomposition of water into highly combustible hydroxyl gas used in ...

    African Journals Online (AJOL)

    The method proposed involves the decomposition of water into highly combustible hydroxyl gas via electrolysis, which is used in internal combustion engines of electrical generators for electricity generation. The by-product obtained from combustion of this gas is water vapour and oxygen to replenish the atmosphere.

  9. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion engines...

  10. A Comparison of Prominent LES Combustion Models for Nonpremixed Supersonic Combustion

    Data.gov (United States)

    National Aeronautics and Space Administration — The capability of accurately simulating supersonic combustion is a vital topic for designing and advancing hypersonic air-breathing vehicles. As a consequence, there...

  11. Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst

    Science.gov (United States)

    Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.

    2018-01-01

    Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.

  12. Technology Awareness Workshop on Active Combustion Control (ACC) in Propulsion Systems: JANNAF Combustion Subcommittee Workshop

    Science.gov (United States)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1997-01-01

    A JANNAF Combustion Subcommittee Technology Awareness Seminar on Active Combustion Control (ACC) in Propulsion Systems' was held 12 November 1997 at the NASA Lewis Research Center (LeRC), Cleveland, Ohio. The objectives of the seminar were: 1) Define the need and potential of ACC to meet future requirements for gas turbines and ramjets; 2) Explain general principles of ACC and discuss recent successes to suppress combustion instabilities, increase combustion efficiency, reduce emission, and extend flammability limits; 3) Identify R&D barriers/needs for practical implementation of ACC; 4) Explore potential for improving coordination of future R&D activities funded by various government agencies. Over 40 individuals representing senior management from over 20 industry and government organizations participated. This document summarizes the presentations and findings of this seminar.

  13. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  14. Combustion Velocity of Benzine-Benzol-Air Mixtures in High-Speed Internal-Combustion Engines

    Science.gov (United States)

    Schnauffer, Kurt

    1932-01-01

    The present paper describes a device whereby rapid flame movement within an internal-combustion engine cylinder may be recorded and determined. By the aid of a simple cylindrical contact and an oscillograph the rate of combustion within the cylinder of an airplane engine during its normal operation may be measured for gas intake velocities of from 30 to 35 m/s and for velocities within the cylinder of from 20 to 25 m/s. With it the influence of mixture ratios, of turbulence, of compression ratio and kind of fuel on combustion velocity may be determined. Besides the determination of the influence of the above factors on combustion velocity, the degree of turbulence may also be determined. As a unit of reference in estimating the degree of turbulence, the intake velocity of the charge is chosen.

  15. Experimental toxicology of pyrolysis and combustion hazards.

    Science.gov (United States)

    Cornish, H H; Hahn, K J; Barth, M L

    1975-06-01

    Data are presented on the acute toxicity (mortality only) of the thermal degradation products of polymers obtained by two methods of degradation. One system utilized a slowly increasing temperature (5 degrees C/min) and gradual degradation of the polymer with the rats being exposed to degradation products as they were evolved. In this system the more toxic polymers included wool, polypropylene, poly(vinyl chloride), and urethane foam. The second system utilized conditions of rapid combustion and exposure of rats to the total products of combustion for a period of 4 hr. In this system the more toxic materials included red oak, cotton, acrylonitrile-butadiene-styrene (ABS), and styrene-acrylonitrile. It is of interest to note that the natural product wool is among the least toxic under these rapid combustion conditions and among the most toxic under slow pyrolysis conditions. Other materials also vary in the comparative toxicity of their thermal degradation products, depending upon the conditions of degradation and animal exposure. The two experimental techniques presented here may well represent the two extreme conditions of rapid combustion versus slow pyrolysis. Intermediate types of fire situations might be expected to result in relative acute toxicities somewhere between these two extremes. This report deals with acute toxicity on the basis of mortality data only and does not include other parameters of toxicity such as organ weights and histopathology.

  16. Thermally stimulated luminescence studies in combustion ...

    Indian Academy of Sciences (India)

    Wintec

    resonance, photoacoustic studies/optical absorption etc in order to understand the TSL mechanism leading to gene- ration and trapping of defect centres due to ionizing radiation and light emission in aluminum oxide during thermal stimulation. Figure 3 shows the variation of TSL intensity with γ- ray dose in combustion ...

  17. Combustion synthesis of cadmium sulphide nanomaterials for ...

    Indian Academy of Sciences (India)

    Emission of oxides of carbon due to combustion of fossil fuels has made global warming a difficult task to handle.1 As fossil fuel reserves are also depleting, there is an immediate need to look for renewable and/or clean energy sources that are free of carbon. In this con- text, research on direct utilization of solar energy has.

  18. Simulation of lean premixed turbulent combustion

    Energy Technology Data Exchange (ETDEWEB)

    Bell, John B.; Day, Marcus S.; Almgren, Ann S.; Lijewski, MichaelJ.; Rendleman, Charles A.; Cheng, Robert K.; Shepherd, Ian G.

    2006-06-25

    There is considerable technological interest in developingnew fuel-flexible combustion systems that can burn fuels such ashydrogenor syngas. Lean premixed systems have the potential to burn thesetypes of fuels with high efficiency and low NOx emissions due to reducedburnt gas temperatures. Although traditional scientific approaches basedon theory and laboratory experiment have played essential roles indeveloping our current understanding of premixed combustion, they areunable to meet the challenges of designing fuel-flexible lean premixedcombustion devices. Computation, with itsability to deal with complexityand its unlimited access to data, hasthe potential for addressing thesechallenges. Realizing this potential requires the ability to perform highfidelity simulations of turbulent lean premixed flames under realisticconditions. In this paper, we examine the specialized mathematicalstructure of these combustion problems and discuss simulation approachesthat exploit this structure. Using these ideas we can dramatically reducecomputational cost, making it possible to perform high-fidelitysimulations of realistic flames. We illustrate this methodology byconsidering ultra-lean hydrogen flames and discuss how this type ofsimulation is changing the way researchers study combustion.

  19. Straw Combustion in a Grate Furnace

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    1998-01-01

    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...

  20. Combustion synthesis and preliminary luminescence studies of ...

    Indian Academy of Sciences (India)

    The polycrystalline sample of LiBaPO4 : Tb3+ (LBPT) was successfully synthesized by solution combustion synthesis and studied for its luminescence characteristics. The thermoluminescence (TL) glow curve of LBPT material consists of two peaks at 204.54 and 251.21°C. The optimum concentration was 0.005 mol to ...