WorldWideScience

Sample records for combining laboratory experiments

  1. Dynamics of fault slip near the stability transition combining laboratory and numerical experiments

    Science.gov (United States)

    Mele Veedu, D.; Giorgetti, C.; Scuderi, M. M.; Barbot, S.; Marone, C.; Collettini, C.

    2017-12-01

    Frictional stability controls the seismogenic potential of faults. Laboratory (1) and theoretical (2) studies document and predict the conditions under which fault slip is seismic or aseismic. However, the full gamut of fault slip behavior near the stable/unstable boundary is still poorly known. Here, we combine insight from laboratory and numerical experiments to identify the wide spectrum of frictional instabilities around that transition, including slow-slip events, period-multiplying events, and chaos. We present a synoptic picture of the dynamics of fault slip in a bifurcation diagram obtained from a series of laboratory and numerical experiments. We compare the laboratory observations with spring-slider and finite-fault numerical models. In the laboratory, we vary the stiffness of the system by modulating the stress field around the experimental fault. In the numerical experiments, we vary the characteristic weakening distance to explore a range of critical nucleation sizes. Contrarily to previously found (3), complex fault dynamics can be obtained with a rate-and-state constitutive law with a single state variable. While the dynamics of fault slip is complicated on large faults by the presence of morphological and rheological heterogeneities, the range of instabilities identified in the laboratory is reminiscent of the variety of slow and fast earthquakes found along subduction zones (4). The accord between laboratory data and theoretical models affords more realistic predictions of fault behavior at slow slip speeds. (1) Scuderi et al., (2016), (2) Ruina (1983), (3) Gu & Wong (1994), (4) Obara & Kato (2016)

  2. 1. Introduction. 2. Laboratory experiments. 3. Field experiments. 4. Integrated field-laboratory experiments. 5. Panel recommendations

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Some recommendations for the design of laboratory and field studies in marine radioecology are formulated. The difficulties concerning the comparability of various experimental methods used to measure the fluxes of radionuclides through marine organisms and ecosystems, and also the use of laboratory results to make predictions for the natural environment are discussed. Three working groups were established during the panel meeting, to consider laboratory experiments, field studies, and the design and execution of integrated laboratory and field studies respectively. A number of supporting papers dealing with marine radioecological experiments were presented

  3. Combined experiment Phase 2 data characterization

    Energy Technology Data Exchange (ETDEWEB)

    Miller, M.S.; Shipley, D.E.; Young, T.S.; Robinson, M.C.; Luttges, M.W. [Colorado Univ., Boulder, CO (United States); Simms, D.A. [National Renewable Energy Lab., Golden, CO (United States)

    1995-11-01

    The National Renewable Energy Laboratory`s ``Combined Experiment`` has yielded a large quantity of experimental data on the operation of a downwind horizontal axis wind turbine under field conditions. To fully utilize this valuable resource and identify particular episodes of interest, a number of databases were created that characterize individual data events and rotational cycles over a wide range of parameters. Each of the 59 five-minute data episodes collected during Phase 11 of the Combined Experiment have been characterized by the mean, minimum, maximum, and standard deviation of all data channels, except the blade surface pressures. Inflow condition, aerodynamic force coefficient, and minimum leading edge pressure coefficient databases have also been established, characterizing each of nearly 21,000 blade rotational cycles. In addition, a number of tools have been developed for searching these databases for particular episodes of interest. Due to their extensive size, only a portion of the episode characterization databases are included in an appendix, and examples of the cycle characterization databases are given. The search tools are discussed and the FORTRAN or C code for each is included in appendices.

  4. The Qweakp experiment at Jefferson Laboratory

    International Nuclear Information System (INIS)

    Page, Shelley

    2008-01-01

    A major new experiment is being prepared at Jefferson Laboratory to measure the proton's weak charge via the parity violating asymmetry in elastic electron-proton scattering at very low momentum transfer. The Standard Model makes a firm prediction of the proton' weak charge, Q w p = 1 - 4 sin2thetaW, based on the running of the weak mixing angle sin2thetaW from the Z 0 pole down to low energies, corresponding to a 10sigma effect in our experiment. Our ultimate goal is to determine the proton' weak charge with 4% combined statistical and systematic errors, which in turn leads to a 0.3% measurement of sin2 thetaW. The experiment is currently under construction; installation in Hall C at Jefferson Lab followed by data taking is planned for 2009.

  5. Interrelated experiments in laboratory and space plasmas

    International Nuclear Information System (INIS)

    Koepke, M. E.

    2005-01-01

    Many advances in understanding space plasma phenomena have been linked to insight derived from theoretical modelling and/or laboratory experiments. Here are discussed advances for which laboratory experiments played an important role. How the interpretation of the space plasma data was influenced by one or more laboratory experiments is described. The space-motivation of laboratory investigations and the scaling of laboratory plasma parameters to space plasma conditions are discussed. Examples demonstrating how laboratory experiments develop physical insight, benchmark theoretical models, discover unexpected behaviour, establish observational signatures, and pioneer diagnostic methods for the space community are presented. The various device configurations found in space-related laboratory investigations are outlined. A primary objective of this review is to articulate the overlapping scientific issues that are addressable in space and lab experiments. A secondary objective is to convey the wide range of laboratory and space plasma experiments involved in this interdisciplinary alliance. The interrelation ship between plasma experiments in the laboratory and in space has a long history, with numerous demonstrations of the benefits afforded the space community by laboratory results. An experiment's suitability and limitations for investigating space processes can be quantitatively established using dimensionless parameters. Even with a partial match of these parameters, aspects of waves, instabilities, nonlinearities, particle transport, reconnection, and hydrodynamics are addressable in a way useful to observers and modelers of space phenomena. Because diagnostic access to space plasmas, laboratory-experimentalists awareness of space phenomena, and efforts by theorists and funding agencies to help scientists bridge the gap between the space and laboratory communities are increasing, the range of laboratory and space plasma experiments with overlapping scientific

  6. Virtual laboratory for radiation experiments

    International Nuclear Information System (INIS)

    Tiftikci, A.; Kocar, C.; Tombakoglu, M.

    2009-01-01

    Simulation of alpha, beta and gamma radiation detection and measurement experiments which are part of real nuclear physics laboratory courses was realized with Monte Carlo method and JAVA Programming Language. As being known, establishing this type of laboratories are very expensive. At the same time, highly radioactive sources used in some experiments carries risk for students and also for experimentalists. By taking into consideration of those problems, the aim of this study is to setup a virtual radiation laboratory with minimum cost and to speed up the training of radiation physics for students with no radiation risk. Software coded possesses the nature of radiation and radiation transport with the help of Monte Carlo method. In this software, experimental parameters can be changed manually by the user and experimental results can be followed synchronous in an MCA (Multi Channel Analyzer) or an SCA (Single Channel Analyzer). Results obtained in experiments can be analyzed by these MCA or SCA panels. Virtual radiation laboratory which is developed in this study with reliable results and unlimited experimentation capability seems as an useful educational material. Moreover, new type of experiments can be integrated to this software easily and as a result, virtual laboratory can be extended.

  7. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    Science.gov (United States)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  8. Laboratory experiments to test relativistic gravity

    International Nuclear Information System (INIS)

    Braginsky, V.B.; Caves, C.M.; Thorne, K.S.

    1977-01-01

    Advancing technology will soon make possible a new class of gravitation experiments: pure laboratory experiments with laboratory sources of non-Newtonian gravity and laboratory detectors. This paper proposes seven such experiments; and for each one it describes, briefly, the dominant sources of noise and the technology required. Three experiments would utilize a high-Q torque balance as the detector. They include (i) an ''Ampere-type'' experiment to measure the gravitational spin-spin coupling of two rotating bodies, (ii) a search for time changes of the gravitation constant, and (iii) a measurement of the gravity produced by magnetic stresses and energy. Three experiments would utilize a high-Q dielectric crystal as the detector. They include (i) a ''Faraday-type'' experiment to measure the ''electric-type'' gravity produced by a time-changing flux of ''magnetic-type'' gravity, (ii) a search for ''preferred-frame'' and ''preferred-orientation'' effects in gravitational coupling, and (iii) a measurement of the gravitational field produced by protons moving in a storage ring at nearly the speed of light. One experiment would use a high-Q toroidal microwave cavity as detector to search for the dragging of inertial frames by a rotating body

  9. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  10. Multidimensional Screening as a Pharmacology Laboratory Experience.

    Science.gov (United States)

    Malone, Marvin H.; And Others

    1979-01-01

    A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…

  11. Development of sensorial experiments and their implementation into undergraduate laboratories

    Science.gov (United States)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  12. Cross-disciplinary thermoregulation and sweat analysis laboratory experiences for undergraduate Chemistry and Exercise Science students.

    Science.gov (United States)

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A

    2011-06-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two distinct disciplines [chemistry (CHEM) and exercise physiology (EPHE)] combined to study exercise thermoregulation and sweat analysis. Twenty-eight senior BSc Kinesiology (EPHE) students and 42 senior BSc CHEM students participated as part of their mutually exclusive, respective courses. The effectiveness of this laboratory environment was evaluated qualitatively using written comments collected from all students as well as from formal focus groups conducted after the CD laboratory with a representative cohort from each class (n = 16 CHEM students and 9 EPHE students). An open coding strategy was used to analyze the data from written feedback and focus group transcripts. Coding topics were generated and used to develop five themes found to be consistent for both groups of students. These themes reflected the common student perceptions that the CD experience was valuable and that students enjoyed being able to apply academic concepts to practical situations as well as the opportunity to interact with students from another discipline of study. However, students also reported some challenges throughout this experience that stemmed from the combination of laboratory groups from different disciplines with limited modification to the design of the original, pre-CD, learning environments. The results indicate that this laboratory created an effective learning opportunity that fostered student interest and enthusiasm for learning. The findings also provide information that could inform subsequent design and implementation of similar CD experiences to enhance engagement of all students and improve instructor efficacy.

  13. Microrelief-Controlled Overland Flow Generation: Laboratory and Field Experiments

    Directory of Open Access Journals (Sweden)

    Xuefeng Chu

    2015-01-01

    Full Text Available Surface microrelief affects overland flow generation and the related hydrologic processes. However, such influences vary depending on other factors such as rainfall characteristics, soil properties, and initial soil moisture conditions. Thus, in-depth research is needed to better understand and evaluate the combined effects of these factors on overland flow dynamics. The objective of this experimental study was to examine how surface microrelief, in conjunction with the factors of rainfall, soil, and initial moisture conditions, impacts overland flow generation and runoff processes in both laboratory and field settings. A series of overland flow experiments were conducted for rough and smooth surfaces that represented distinct microtopographic characteristics and the experimental data were analyzed and compared. Across different soil types and initial moisture conditions, both laboratory and field experiments demonstrated that a rough soil surface experienced a delayed initiation of runoff and featured a stepwise threshold flow pattern due to the microrelief-controlled puddle filling-spilling-merging dynamics. It was found from the field experiments that a smooth plot surface was more responsive to rainfall variations especially during an initial rainfall event. However, enhanced capability of overland flow generation and faster puddle connectivity of a rough field plot occurred during the subsequent rain events.

  14. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten; Zanuttigh, B.; van der Meer, J.W.

    2005-01-01

    New unique laboratory experiments on low-crested structures (LCSs) have been performed within the DELOS project. The experiments were carried out in three European laboratories aiming at extending and completing existing available information with respect to a wide range of engineering design...... in a wave channel at small scale, and scale effects regarding wave transmission and reflection were studied in a wave channel at a large scale facility. The paper describes the experiments and associated databank with respect to objectives, test program, set-ups and measurements. Results, guidelines...... and recommendations elaborated from the tests are included in the other companion papers of the Coastal Engineering Special Issue on DELOS....

  15. Project-Based Laboratory Experiences in Mechanical Engineering

    Directory of Open Access Journals (Sweden)

    Narendra Sharma

    2011-12-01

    Full Text Available In this paper we describe project-based laboratories in Mechanical Engineering designed to provide semester-long team experiences which mimic the real life industrial processes of design, development, testing and optimization. The labs are focused on courses at the sophomore level and thus require special attention to constraints of student backgrounds and experience. This paper describes laboratory projects in Dynamics and Fluid Mechanics.

  16. Making Sparklers: An Introductory Laboratory Experiment

    Science.gov (United States)

    Keeney, Allen; Walters, Christina; Cornelius, Richard D.

    1995-07-01

    A laboratory experiment consisting of the preparation of sparklers has been developed as part of a project which organizes the general chemistry sequence according to subjects with which students are familiar. This laboratory makes use of oxidation/reduction chemistry to produce a product familiar to students. The result is a mixture rather than a compound, but the composition must be carefully measured to produce a sparkler that will stay lit and produce sparks. The dramatic reaction may be the most impressive and memorable experience that students encounter in the laboratory. Sparklers are formulated from iron, magnesium, and aluminum powders, plus potassium chlorate and barium nitrate held on thick iron wire by a starch paste. At elevated temperatures metal nitrates and chlorates decompose to produces gases, providing the necessary force to eject bits of powdered, burning metal into the air.

  17. Laboratory Experiments and their Applicability

    OpenAIRE

    Steinhaus, Thomas; Jahn, Wolfram

    2007-01-01

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These were conducted prior to and post the tests in Dalmarnock. Before the tests, ignition experiments were carried out in the laboratory to ensure flame spread from the wastepaper basket to the sofa. The later series of lab tests comprised of small scale cone calori...

  18. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, G.A.; Ford, J.T.; Barber, A.D.

    2011-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  19. Critical experiments at Sandia National Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Harms, G.A.; Ford, J.T.; Barber, A.D., E-mail: gaharms@sandia.gov [Sandia National Laboratories, Albuquerque, NM (United States)

    2011-07-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide

  20. A Kinetic Experiment for the Biochemistry Laboratory.

    Science.gov (United States)

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  1. Neuroendocrine response to GABA-B receptor agonism in alcohol-dependent individuals: Results from a combined outpatient and human laboratory experiment.

    Science.gov (United States)

    Farokhnia, Mehdi; Sheskier, Mikela B; Lee, Mary R; Le, April N; Singley, Erick; Bouhlal, Sofia; Ton, Timmy; Zhao, Zhen; Leggio, Lorenzo

    2018-04-14

    Gamma-aminobutyric acid (GABA), the main inhibitory neurotransmitter in the nervous system, plays an important role in biobehavioral processes that regulate alcohol seeking, food intake, and stress response. The metabotropic GABA-B receptor has been investigated as a potential therapeutic target for alcohol use disorder, by using orthosteric agonists (e.g., baclofen) and positive allosteric modulators. Whether and how pharmacological manipulation of the GABA-B receptor, in combination with alcohol intake, may affect feeding- and stress-related neuroendocrine pathways remains unknown. In the present randomized, double-blind, placebo-controlled study, thirty-four alcohol-dependent individuals received baclofen (30 mg/day) or placebo in a naturalistic outpatient setting for one week, and then performed a controlled laboratory experiment which included alcohol cue-reactivity, fixed-dose priming, and self-administration procedures. Blood samples were collected, and the following neuroendocrine markers were measured: ghrelin, leptin, amylin, glucagon-like peptide-1 (GLP-1), insulin, prolactin, thyroid-stimulating hormone, growth hormone, cortisol, and adrenocorticotropic hormone (ACTH). During the outpatient phase, baclofen significantly increased blood concentrations of acyl-ghrelin (p = 0.01), leptin (p = 0.01), amylin (p = 0.004), and GLP-1 (p = 0.02). Significant drug × time-point interaction effects for amylin (p = 0.001) and insulin (p = 0.03), and trend-level interaction effects for GLP-1 (p = 0.06) and ACTH (p = 0.10) were found during the laboratory experiment. Baclofen, compared to placebo, had no effect on alcohol drinking in this study (p's ≥ 0.05). Together with previous studies, these findings shed light on the role of the GABAergic system and GABA-B receptors in the shared neurobiology of alcohol-, feeding-, and stress-related behaviors. Copyright © 2018. Published by Elsevier Ltd.

  2. Potential effect of fiddler crabs on organic matter distribution: A combined laboratory and field experimental approach

    Science.gov (United States)

    Natálio, Luís F.; Pardo, Juan C. F.; Machado, Glauco B. O.; Fortuna, Monique D.; Gallo, Deborah G.; Costa, Tânia M.

    2017-01-01

    Bioturbators play a key role in estuarine environments by modifying the availability of soil elements, which in turn may affect other organisms. Despite the importance of bioturbators, few studies have combined both field and laboratory experiments to explore the effects of bioturbators on estuarine soils. Herein, we assessed the bioturbation potential of fiddler crabs Leptuca leptodactyla and Leptuca uruguayensis in laboratory and field experiments, respectively. We evaluated whether the presence of fiddler crabs resulted in vertical transport of sediment, thereby altering organic matter (OM) distribution. Under laboratory conditions, the burrowing activity by L. leptodactyla increased the OM content in sediment surface. In the long-term field experiment with areas of inclusion and exclusion of L. uruguayensis, we did not observe influence of this fiddler crab in the vertical distribution of OM. Based on our results, we suggest that small fiddler crabs, such as the species used in these experiments, are potentially capable of alter their environment by transporting sediment and OM but such effects may be masked by environmental drivers and spatial heterogeneity under natural conditions. This phenomenon may be related to the small size of these species, which affects how much sediment is transported, along with the way OM interacts with biogeochemical and physical processes. Therefore, the net effect of these burrowing organisms is likely to be the result of a complex interaction with other environmental factors. In this sense, we highlight the importance of performing simultaneous field and laboratory experiments in order to better understanding the role of burrowing animals as bioturbators.

  3. Raising environmental awareness through applied biochemistry laboratory experiments.

    Science.gov (United States)

    Salman Ashraf, S

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment is described that guides students to learn about the applicability of peroxidase enzymes to degrade organic dyes (as model pollutants) in simulated waste water. In addition to showing how enzymes can potentially be used for waste water remediation, various factors than can affect enzyme-based reactions such as pH, temperature, concentration of substrates/enzymes, and denaturants can also be tested. This "applied biotechnology" experiment was successfully implemented in an undergraduate biochemistry laboratory course to enhance students' learning of environmental issues as well important biochemistry concepts. Student survey confirmed that this laboratory experiment was successful in achieving the objectives of raising environmental awareness in students and illustrating the usefulness of chemistry in solving real-life problems. This experiment can be easily adopted in an introductory biochemistry laboratory course and taught as an inquiry-guided exercise. © 2013 by The International Union of Biochemistry and Molecular Biology.

  4. Exploring the Fundamentals of Microreactor Technology with Multidisciplinary Lab Experiments Combining the Synthesis and Characterization of Inorganic Nanoparticles

    Science.gov (United States)

    Emmanuel, Noemie; Emonds-Alt, Gauthier; Lismont, Marjorie; Eppe, Gauthier; Monbaliu, Jean-Christophe M.

    2017-01-01

    Multidisciplinary lab experiments combining microfluidics, nanoparticle synthesis, and characterization are presented. These experiments rely on the implementation of affordable yet efficient microfluidic setups based on perfluoroalkoxyalkane (PFA) capillary coils and standard HPLC connectors in upper undergraduate chemistry laboratories.…

  5. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    Science.gov (United States)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  6. Laboratory Experiments on Low-crested Breakwaters

    DEFF Research Database (Denmark)

    Kramer, Morten Mejlhede; Zanuttigh, B.; van der Meer, J. W.

    2004-01-01

    The ducument describe 3D tests at scale 1:20 performed in the Laboratory at Department of Civil Engineering, Aalborg University.The wave obliquity was one of the main parameters, which were studied in the wave basin experiments. The experiments provide unique information about the influences...... of this parameter where almost no research has been done before....

  7. The ATLAS Experiment Laboratory - Overview

    International Nuclear Information System (INIS)

    Malecki, P.

    1999-01-01

    Full text: ATLAS Experiment Laboratory has been created by physicists and engineers preparing a research programme and detector for the LHC collider. This group is greatly supported by members of other Departments taking also part (often full time) in the ATLAS project. These are: J. Blocki, J. Godlewski, Z. Hajduk, P. Kapusta, B. Kisielewski, W. Ostrowicz, E. Richter-Was, and M. Turala. Our ATLAS Laboratory realizes its programme in very close collaboration with the Faculty of Physics and Nuclear Technology of the University of Mining and Metallurgy. ATLAS, A Toroidal LHC ApparatuS Collaboration groups about 1700 experimentalists from about 150 research institutes. This apparatus, a huge system of many detectors, which are technologically very advanced, is going to be ready by 2005. With the start of the 2 x 7 TeV LHC collider ATLAS and CMS (the sister experiment at LHC) will begin their fascinating research programme at beam energies and intensities which have never been exploited. (author)

  8. CSI flight experiment projects of the Naval Research Laboratory

    Science.gov (United States)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  9. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    Science.gov (United States)

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  10. Remote Experiments in Control Engineering Education Laboratory

    Directory of Open Access Journals (Sweden)

    Milica B Naumović

    2008-05-01

    Full Text Available This paper presents Automatic Control Engineering Laboratory (ACEL - WebLab, an under-developed, internet-based remote laboratory for control engineering education at the Faculty of Electronic Engineering in Niš. Up to now, the remote laboratory integrates two physical systems (velocity servo system and magnetic levitation system and enables some levels of measurement and control. To perform experiments in ACEL-WebLab, the "LabVIEW Run Time Engine"and a standard web browser are needed.

  11. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    Science.gov (United States)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  12. Siberian Chemical Combine laboratory project work plan, fiscal year 1999

    International Nuclear Information System (INIS)

    Morgado, R.E.; Acobyan, R.; Shropsire, R.

    1998-01-01

    The Siberian Chemical Combine (SKhK), Laboratory Project Work Plan (Plan) is intended to assist the US Laboratory Project Team, and Department of Energy (DOE) staff with the management of the FY99 joint material protection control and accounting program (MPC and A) for enhancing nuclear material safeguards within the Siberian Chemical Combine. The DOE/Russian/Newly Independent States, Nuclear Material Task Force, uses a project work plan document for higher-level program management. The SKhK Plan is a component of the Russian Defense related Sites' input to that document. In addition, it contains task descriptions and a Gantt Chart covering the FY99 time-period. This FY99 window is part of a comprehensive, Project Status Gantt Chart for tasking and goal setting that extends to the year 2003. Secondary and tertiary levels of detail are incorporated therein and are for the use of laboratory project management. The SKhK Plan is a working document, and additions and modifications will be incorporated as the MPC and A project for SKhK evolves

  13. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    Science.gov (United States)

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  14. Ranking protective coatings: Laboratory vs. field experience

    Science.gov (United States)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  15. Using Mole Ratios of Electrolytic Products of Water for Analysis of Household Vinegar: An Experiment for the Undergraduate Physical Chemistry Laboratory

    Science.gov (United States)

    Dabke, Rajeev B.; Gebeyehu, Zewdu

    2012-01-01

    A simple 3-h physical chemistry undergraduate experiment for the quantitative analysis of acetic acid in household vinegar is presented. The laboratory experiment combines titration concept with electrolysis and an application of the gas laws. A vinegar sample was placed in the cathode compartment of the electrolysis cell. Electrolysis of water…

  16. A Contribution to Real-Time Experiments in Remote Laboratories

    Directory of Open Access Journals (Sweden)

    Zoltán Janík

    2013-02-01

    Full Text Available The paper is focused on realization of hard real-time control of experiments in on-line laboratories. The presented solution utilizes already developed on-line laboratory portal that is based on open-source Scilab environment. The customized solution is based on Linux RTAI platform with RTAI-XML server, Comedi and jRTAILab with support of ScicosLab environment. It generates real-time executable code that is used to operate student experiments performed on Humusoft CE152 Magnetic Levitation plant.

  17. Fluorescence quantum yield measurements of fluorescent proteins: a laboratory experiment for a biochemistry or molecular biophysics laboratory course.

    Science.gov (United States)

    Wall, Kathryn P; Dillon, Rebecca; Knowles, Michelle K

    2015-01-01

    Fluorescent proteins are commonly used in cell biology to assess where proteins are within a cell as a function of time and provide insight into intracellular protein function. However, the usefulness of a fluorescent protein depends directly on the quantum yield. The quantum yield relates the efficiency at which a fluorescent molecule converts absorbed photons into emitted photons and it is necessary to know for assessing what fluorescent protein is the most appropriate for a particular application. In this work, we have designed an upper-level, biochemistry laboratory experiment where students measure the fluorescence quantum yields of fluorescent proteins relative to a standard organic dye. Four fluorescent protein variants, enhanced cyan fluorescent protein (ECFP), enhanced green fluorescent protein (EGFP), mCitrine, and mCherry, were used, however the methods described are useful for the characterization of any fluorescent protein or could be expanded to fluorescent quantum yield measurements of organic dye molecules. The laboratory is designed as a guided inquiry project and takes two, 4 hr laboratory periods. During the first day students design the experiment by selecting the excitation wavelength, choosing the standard, and determining the concentration needed for the quantum yield experiment that takes place in the second laboratory period. Overall, this laboratory provides students with a guided inquiry learning experience and introduces concepts of fluorescence biophysics into a biochemistry laboratory curriculum. © 2014 The International Union of Biochemistry and Molecular Biology.

  18. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    Science.gov (United States)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  19. Diffusion Experiments in Opalinus Clay: Laboratory, Large-Scale Diffusion Experiments and Microscale Analysis by RBS.

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso de los Rios, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2008-08-06

    The Opalinus Clay (OPA) formation in the Zurcher Weiland (Switzerland) is a potential host rock for a repository for high-level radioactive waste. Samples collected in the Mont Terri Underground Rock Laboratory (URL), where the OPA formation is located at a depth between -200 and -300 m below the surface, were used to study the radionuclide diffusion in clay materials. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), to understand the transport properties of the OPA and to enhance the methodologies used for in situ diffusion experiments. Through-Diffusion and In-Diffusion conventional laboratory diffusion experiments were carried out with HTO, 36{sup C}l-, I-, 22{sup N}a, 75{sup S}e, 85{sup S}r, 233{sup U}, 137{sup C}s, 60{sup C}o and 152{sup E}u. Large-scale diffusion experiments were performed with HTO, 36{sup C}l, and 85{sup S}r, and new experiments with 60{sup C}o, 137{sup C}s and 152{sup E}u are ongoing. Diffusion experiments with RBS technique were done with Sr, Re, U and Eu. (Author) 38 refs.

  20. A Laboratory Experiment on EM Backscatter from Farley-Buneman and Gradient Drift Waves

    DEFF Research Database (Denmark)

    Alport, M. J.; D'Angelo, N.; Pécseli, Hans

    1981-01-01

    Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent i...... ideas on EM scattering by equatorial and high-latitude ionospheric waves and irregularities.......Results are reported of a laboratory experiment on Bragg backscatter of 3-cm microwaves by turbulent waves driven by the Farley-Buneman and gradient drift instabilities. The present work is the third in a series of laboratory experiments performed to test, under controlled conditions, prevalent...

  1. Modelling of laboratory high-pressure infiltration experiments

    International Nuclear Information System (INIS)

    Smith, P.A.

    1992-02-01

    This report describes the modelling of break-through curves from a series of two-tracer dynamic infiltration experiments, which are intended to complement larger scale experiments at the Nagra Grimsel Test Site. The tracers are 82 Br, which is expected to be non-sorbing, and 24 Na, which is weakly sorbing. The 24 Na concentration is well below the natural Na concentration in the infiltration fluid, so that sorption on the rock is governed by isotopic exchange, exhibiting a linear isotherm. The rock specimens are sub-samples (cores) of granodiorite from the Grimsel Test Site, each containing a distinct shear zone. Best-fits to the break-through curves using single-porosity and dual-porosity transport models are compared and several physical parameters are extracted. It is shown that the dual-porosity model is required in order to reproduce the tailing part of the break-through curves for the non-sorbing tracer. The single-porosity model is sufficient to reproduce the break-through curves for the sorbing tracer within the estimated experimental errors. Extracted K d values are shown to agree well with a field rock-water interaction experiment and in situ migration experiments. Static, laboratory batch-sorption experiments give a larger K d , but this difference could be explained by the larger surface area available for sorption in the artificially crushed samples used in the laboratory and by a slightly different water chemistry. (author) 13 figs., tabs., 19 refs

  2. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    Science.gov (United States)

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  3. Critical experiments at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Harms, Gary A.; Ford, John T.; Barber, Allison Delo

    2010-01-01

    Sandia National Laboratories (SNL) has conducted radiation effects testing for the Department of Energy (DOE) and other contractors supporting the DOE since the 1960's. Over this period, the research reactor facilities at Sandia have had a primary mission to provide appropriate nuclear radiation environments for radiation testing and qualification of electronic components and other devices. The current generation of reactors includes the Annular Core Research Reactor (ACRR), a water-moderated pool-type reactor, fueled by elements constructed from UO2-BeO ceramic fuel pellets, and the Sandia Pulse Reactor III (SPR-III), a bare metal fast burst reactor utilizing a uranium-molybdenum alloy fuel. The SPR-III is currently defueled. The SPR Facility (SPRF) has hosted a series of critical experiments. A purpose-built critical experiment was first operated at the SPRF in the late 1980's. This experiment, called the Space Nuclear Thermal Propulsion Critical Experiment (CX), was designed to explore the reactor physics of a nuclear thermal rocket motor. This experiment was fueled with highly-enriched uranium carbide fuel in annular water-moderated fuel elements. The experiment program was completed and the fuel for the experiment was moved off-site. A second critical experiment, the Burnup Credit Critical Experiment (BUCCX) was operated at Sandia in 2002. The critical assembly for this experiment was based on the assembly used in the CX modified to accommodate low-enriched pin-type fuel in water moderator. This experiment was designed as a platform in which the reactivity effects of specific fission product poisons could be measured. Experiments were carried out on rhodium, an important fission product poison. The fuel and assembly hardware for the BUCCX remains at Sandia and is available for future experimentation. The critical experiment currently in operation at the SPRF is the Seven Percent Critical Experiment (7uPCX). This experiment is designed to provide benchmark

  4. Interactive screen experiments-innovative virtual laboratories for distance learners

    International Nuclear Information System (INIS)

    Hatherly, P A; Jordan, S E; Cayless, A

    2009-01-01

    The desirability and value of laboratory work for physics students is a well-established principle and issues arise where students are inherently remote from their host institution, as is the case for the UK's Open University. In this paper, we present developments from the Physics Innovations Centre for Excellence in Teaching and Learning (piCETL) in the production and technology of the virtual laboratory resources, interactive screen experiments, and the benefits and drawbacks of such resources. We also explore the motivations behind current implementation of interactive screen experiments and examine evaluation strategies and outcomes through a series of case studies

  5. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    Science.gov (United States)

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  6. Laser fusion experiments at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1975-01-01

    A short review is given of some of the important dates in the experimental fusion program at Livermore. A few of the parameters of the laser systems which are being used for these experiments are mentioned. Some information about specialized diagnostics which have been developed at the Livermore Laboratory for these experiments is described. The focusing arrangements for each of the systems are discussed. Experiments both on planar targets and on targets for laser fusion are described

  7. Laboratory Experiments in Teaching Public Economics and Policy

    Directory of Open Access Journals (Sweden)

    Špačková Zuzana

    2015-05-01

    Full Text Available This paper deals with classroom experiments in economics, which have been derived from laboratory experiments. These experiments cover a broad range of topics, from strictly economic ones (like market games or auctions to those with overlaps to other domains such as public policy. The paper discusses different methodologies of research and classroom experiments, introduces the benefits of the latter and presents a concrete teaching experiment used in public economics courses at the Faculty of Economics and Administration of Masaryk University. Another link between economic experiments and public policy is outlined here as well, namely the importance of experimental results for public policy makers.

  8. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    Science.gov (United States)

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  9. Sand characterization by combined centrifuge and laboratory tests

    OpenAIRE

    GAUDIN, C; SCHNAID, F; GARNIER, J

    2005-01-01

    The purpose of this paper is to evaluate new methods of interpretation of in situ tests in sand from correlations established from centrifuge and laboratory data. Emphasis is given to methods that are based on the combination of measurements from independent tests, such as the ratio of the elastic stiffness to ultimate strenght and the ratio of cone resistance and limit pressure. For that purpose, a series of centrifuge tests using a cone penetrometer and a cone pressuremeter was carried out ...

  10. [The opportunity to use combined stem cells transplantation for haemopoesis activation in the old and mature laboratory animals under the conditions of ionizing radiation].

    Science.gov (United States)

    Grebnev, D Iu; Maklakova, I Iu; Iastrebov, A P

    2014-01-01

    The objective of this work was to study the influence of combined transplantation of stem cells (multypotent mesenchimal stromal and haemopoetic stem cells) on the haemopoesis of old and mature laboratory animals under the condition of ionizing radiation. The result of the experiment shows that under physiological conditions the combined transplantation brings the erithropoesis activation, under the ionizing radiation conditions it brings the erythroid and granulocytopoesis activation. Moreover the combined MMSC and HSC transplantation gives cytoprotective action on the myeloid tissue due to decrease of cyto genically changed cells in the mature animals under the condition of ionizing radiation, but in the old animals this effect can be seen even under physiological condition. Combined transplantation of MMSC and GSC can be used in the mature and old laboratory animals under the conditions of ionising radiation for the haemopoesis activation.

  11. A Laboratory Experiment for Rapid Determination of the Stability of Vitamin C

    Science.gov (United States)

    Adem, Seid M.; Lueng, Sam H.; Elles, Lisa M. Sharpe; Shaver, Lee Alan

    2016-01-01

    Experiments in laboratory manuals intended for general, organic, and biological (GOB) chemistry laboratories include few opportunities for students to engage in instrumental methods of analysis. Many of these students seek careers in modern health-related fields where experience in spectroscopic techniques would be beneficial. A simple, rapid,…

  12. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    Science.gov (United States)

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  13. Experience of maintaining laboratory educational website's sustainability.

    Science.gov (United States)

    Dimenstein, Izak B

    2016-01-01

    Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post's material, can improve the website's visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  14. Combined use of random access and ELISA analyzers in the microbiological serology laboratory

    Directory of Open Access Journals (Sweden)

    Alessandra Moroni

    2008-09-01

    Full Text Available In the last years the trend of centralizing small laboratories in large reference centers led to a careful evaluation of the diagnostic profiles. In the serology laboratory of Microbiology Unit, St. Orsola-Malpighi Hospital, Bologna, Italy the choice has been to combine random access analyzers (ARCHITECT Abbott and ELISA analyzers (BEPIII Dade Behring.

  15. Biobased Organic Chemistry Laboratories as Sustainable Experiment Alternatives

    Science.gov (United States)

    Silverman, Julian R.

    2016-01-01

    As nonrenewable resources deplete and educators seek relevant interdisciplinary content for organic chemistry instruction, biobased laboratory experiments present themselves as potential alternatives to petroleum-based transformations, which offer themselves as sustainable variations on important themes. Following the principles of green chemistry…

  16. Laboratory experiments on the interaction between inclined negatively buoyant jets and regular waves

    Directory of Open Access Journals (Sweden)

    Ferrari Simone

    2015-01-01

    Full Text Available In this paper we present the results from a series of laboratory experiments on inclined negatively buoyant jets released in a receiving environment with waves. This simulates the case, typical of many practical applications, of the sea discharge of fluids denser than the receiving environment, as in the case of the brine from a desalination plant. The experiments were performed employing a Light Induced Fluorescence (LIF technique, in order to measure the concentration fields. Both the jet and the wave motion features were varied, in order to simulate a typical discharge into the Mediterranean Sea. Reference discharges in a stagnant environment were performed as well. The jet behaviour was analyzed from a statistical point of view, both considering the global phenomenon and its single phases. The influence of the wave motion on the inclined negatively buoyant jet geometry and dilution turns out to be a combined action of a split into two branches of the jet and a rotation. Their combined action decreases the jet maximum height and the impact distance, and is the main cause for the higher dilution reached in a wavy environment.

  17. LABORATORY FLUME EXPERIMENT WITH A CODED STRUCTURED LIGHT SYSTEM

    Directory of Open Access Journals (Sweden)

    D. Akca

    2012-07-01

    Full Text Available The topography of inland deltas is influenced chiefly by the water-sediment balance in distributary channels and local evaporation and seepage rates. In a previous study, a reduced complexity model has been applied to simulate the process of inland delta formation. Results have been compared with the Okavango Delta, Botswana and with a laboratory experiment. Both in the macro scale and the micro scale cases, high quality digital elevation models (DEM are essential. This work elaborates the laboratory experiment where an artificial inland delta is generated on laboratory scale and its topography is measured using a Breuckmann 3D scanner. The space-time evolution of the inland delta is monitored in the consecutive DEM layers. Regarding the 1.0m x 1.0m x 0.3m size of the working area, better than 100 micron precision is achieved which gives a relative precision of 1/10 000. The entire 3D modelling workflow is presented in terms of scanning, co-registration, surface generation, editing, and visualization steps. The co-registered high resolution topographic data allows us to analyse the stratigraphy patterns of the experiment and gain quantitative insight into the spatio-temporal evolution of the delta formation process.

  18. Exposure to a heat wave under food limitation makes an agricultural insecticide lethal: a mechanistic laboratory experiment

    DEFF Research Database (Denmark)

    Dinh, Khuong Van; Janssens, Lizanne; Stoks, Robby

    2016-01-01

    Extreme temperatures and exposure to agricultural pesticides are becoming more frequent and intense under global change. Their combination may be especially problematic when animals suffer food limitation. We exposed Coenagrion puella damselfly larvae to a simulated heat wave combined with food...... limitation and subsequently to a widespread agricultural pesticide (chlorpyrifos) in an indoor laboratory experiment designed to obtain mechanistic insights in the direct effects of these stressors in isolation and when combined. The heat wave reduced immune function (activity of phenoloxidase, PO...... variables. While the immediate effects of the heat wave were subtle, our results indicate the importance of delayed effects in shaping the total fitness impact of a heat wave when followed by pesticide exposure. Firstly, the combination of delayed negative effects of the heat wave and starvation...

  19. Review of recent experiments on magnetic reconnection in laboratory plasmas

    International Nuclear Information System (INIS)

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10 7 . These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed

  20. OpenLabs Security Laboratory - The Online Security Experiment Platform

    OpenAIRE

    Johan Zackrisson; Charlie Svahnberg

    2008-01-01

    For experiments to be reproducible, it is important to have a known and controlled environment. This requires isolation from the surroundings. For security experiments, e.g. with hostile software, this is even more important as the experiment can affect the environment in adverse ways. In a normal campus laboratory, isolation can be achieved by network separation. For an online environment, where remote control is essential, separation and isolation are still needed, and therefore the securit...

  1. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  2. Einstein-Podolsky-Rosen-Bohm laboratory experiments : Data analysis and simulation

    NARCIS (Netherlands)

    De Raedt, H.; Michielsen, K.; Jin, F.; DAriano, M; Fei, SM; Haven, E; Hiesmayr, B; Jaeger, G; Khrennikov, A; Larsson, JA

    2012-01-01

    Data produced by laboratory Einstein-Podolsky-Rosen-Bohm (EPRB) experiments is tested against the hypothesis that the statistics of this data is given by quantum theory of this thought experiment. Statistical evidence is presented that the experimental data, while violating Bell inequalities, does

  3. Uncovering stability mechanisms in microbial ecosystems - combining microcosm experiments, computational modelling and ecological theory in a multidisciplinary approach

    Science.gov (United States)

    Worrich, Anja; König, Sara; Banitz, Thomas; Centler, Florian; Frank, Karin; Kästner, Matthias; Miltner, Anja; Thullner, Martin; Wick, Lukas

    2015-04-01

    Although bacterial degraders in soil are commonly exposed to fluctuating environmental conditions, the functional performance of the biodegradation processes can often be maintained by resistance and resilience mechanisms. However, there is still a gap in the mechanistic understanding of key factors contributing to the stability of such an ecosystem service. Therefore we developed an integrated approach combining microcosm experiments, simulation models and ecological theory to directly make use of the strengths of these disciplines. In a continuous interplay process, data, hypotheses, and central questions are exchanged between disciplines to initiate new experiments and models to ultimately identify buffer mechanisms and factors providing functional stability. We focus on drying and rewetting-cycles in soil ecosystems, which are a major abiotic driver for bacterial activity. Functional recovery of the system was found to depend on different spatial processes in the computational model. In particular, bacterial motility is a prerequisite for biodegradation if either bacteria or substrate are heterogeneously distributed. Hence, laboratory experiments focussing on bacterial dispersal processes were conducted and confirmed this finding also for functional resistance. Obtained results will be incorporated into the model in the next step. Overall, the combination of computational modelling and laboratory experiments identified spatial processes as the main driving force for functional stability in the considered system, and has proved a powerful methodological approach.

  4. The Role of Laboratory Experiments in the Validation of Field Data

    DEFF Research Database (Denmark)

    Mouneyrac, Catherine; Lagarde, Fabienne; Chatel, Amelie

    2017-01-01

    The ubiquitous presence and persistency of microplastics (MPs) in aquatic environments are of particular concern, since they constitute a potential threat to marine organisms and ecosystems. However, evaluating this threat and the impacts of MP on aquatic organisms is challenging. MPs form a very...... and to what degree these complexities are addressed in the current literature, to: (1) evaluate how well laboratory studies, investigated so far, represent environmentally relevant processes and scenarios and (2) suggest directions for future research The Role of Laboratory Experiments in the Validation...... of Field Data | Request PDF. Available from: https://www.researchgate.net/publication/310360438_The_Role_of_Laboratory_Experiments_in_the_Validation_of_Field_Data [accessed Jan 15 2018]....

  5. Organics removal of combined wastewater through shallow soil infiltration treatment: a field and laboratory study.

    Science.gov (United States)

    Zhang, Zhiyin; Lei, Zhongfang; Zhang, Zhenya; Sugiura, Norio; Xu, Xiaotian; Yin, Didi

    2007-11-19

    Soil infiltration treatment (SIT) was proved to be an effective and low-cost treatment technique for decentralized effluents in the areas without perfect sewage systems. Field-scale experiments were conducted under several conditions to assess organics removals through a shallow soil infiltration treatment (SSIT, with effective depth 0.3m) of combined wastewater (discharge from toilets, restaurants and a gas station), while bench-scale soil column experiments were performed in laboratory in parallel to investigate biological and abiological effects of this kind of system. From the start-up to the 10th month, the field SSIT trenches experienced the lowest and highest temperatures of the operation period in Shanghai and exhibited effective organics removals after maturation, with the highest removal rate 75.8% of chemical oxygen demand (COD), highest ultraviolet absorption at 254 nm (UV(254)) decrease by 67.2% and 35.2-100% removals of phenolic and phthalate pollutants. The laboratory results indicated that more organics could be removed in room-temperatured (25+/-2 degrees C) SSIT systems under different influent COD concentrations from 45 mg/l to 406 mg/l, and the highest total COD removal rate could reach 94.0%, in which biological effect accounted for 57.7-71.9%. The results showed that temperature and hydraulic loading rate were the most important factors influencing the removals of COD and organic pollutants in SSIT.

  6. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    Science.gov (United States)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  7. Green Fluorescent Protein-Focused Bioinformatics Laboratory Experiment Suitable for Undergraduates in Biochemistry Courses

    Science.gov (United States)

    Rowe, Laura

    2017-01-01

    An introductory bioinformatics laboratory experiment focused on protein analysis has been developed that is suitable for undergraduate students in introductory biochemistry courses. The laboratory experiment is designed to be potentially used as a "stand-alone" activity in which students are introduced to basic bioinformatics tools and…

  8. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    Science.gov (United States)

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  9. Women's Experiences in the Engineering Laboratory in Japan

    Science.gov (United States)

    Hosaka, Masako

    2014-01-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal…

  10. Armor breakup and reformation in a degradational laboratory experiment

    OpenAIRE

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-01-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1mm sand fraction and two gravel fractions (6 and 10mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport condit...

  11. Gamification of the Laboratory Experience to Encourage Student Engagement

    Directory of Open Access Journals (Sweden)

    Kevin Drace

    2013-08-01

    Full Text Available The American Society for Microbiology (ASM Task Force on Curriculum Guidelines for Undergraduate Microbiology Students published recommendations for introductory microbiology courses that suggest teaching specific skill sets in the laboratory beyond just fundamental knowledge and concepts of microbiology (6; however, students can sometimes view a skills-based laboratory experience as a task list of unrelated assignments to complete for a grade. Therefore, providing explicit connections throughout the lecture and laboratory exercises is critical for a truly integrated learning experience. Several pedagogical techniques can provide a coherent framework throughout a course. For example, case-based studies can connect lecture with laboratory skills and increase student engagement by applying newly developed knowledge and skills to tackle real-world simulations (2, 3. One reason that case-based studies succeed is that they can provide intrinsic motivations and an alternate purpose for students to engage with the material. A more recent trend in pedagogy involves using game design elements to increase student engagement and motivation. Gamification is the application of game design (accruing points or badges, reaching significant levels of accomplishment, or other reward elements in a non-game context to motivate or influence participation (1, 5. A natural extension of both of these methods is to gamify a case-based approach where a fictional scenario is presented for students to role-play as scientists using their developed skills to solve a complex problem. The typical microbiology laboratory, as described by the ASM Task Force, can easily incorporate game design elements without extensive modification of the exercises themselves. Instead, gamification involves structuring the lab in a way that gives the course a coherent and unified purpose. This ultimately allows the student to see how the principles and concepts of lecture and laboratory connect

  12. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    Science.gov (United States)

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  13. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories

    DEFF Research Database (Denmark)

    Koenen, K.; Uttenthal, Åse; Meindl-Böhmer, A.

    2007-01-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning....... It is essential that these plans are established during ‘peace-time’ and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance...

  14. Development of laboratory experiments serving as a basis for modeling the transport behaviour of arsenate, lead, cadmium and copper in water-saturated columns

    International Nuclear Information System (INIS)

    Hamer, K.

    1993-01-01

    The aim of the study was to work out laboratory experiments which might serve as a link between the bench and the application of CoTAM (Column Transport and Absorption Model) in real practice, thus thanking the development of this computer model which is to permit the simulation of the transport behaviour of heavy metals in porous aquilers. Efforts were made to find a process-oriented concept so as to provide a wide field of application. In developing the model and the laboratory experiments, this meant studying all the processes in groundwater separately as far as possible and avoiding case-specific sum parameters. The work centered on an examination of sorption processes during transport in groundwater, as this combination of processes is always found in natural porous aquifers. In water-saturated-column experiments on combinations of arenaceous quartz, feldspar, montmorillonite, goethite, peat and manganese oxide as the aquifer material, the transport of cadmium, copper, lead and arsenate was simulated on the bench scale. These case examples served to study sorption processes and their diverse kinetics as well as hydrodynamic processes. (orig./BBR) [de

  15. Experience with radioactive waste incineration at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Le, V.T.; Beamer, N.V.; Buckley, L.P.

    1988-06-01

    Chalk River Nuclear Laboratories is a nuclear research centre operated by Atomic Energy of Canada Limited. A full-scale waste treatment centre has been constructed to process low- and intermediate-level radioactive wastes generated on-site. A batch-loaded, two-stage, starved-air incinerator for solid combustible waste is one of the processes installed in this facility. The incinerator has been operating since 1982. It has consistently reduced combustible wastes to an inert ash product, with an average volume reduction factor of about 150:1. The incinerator ash is stored in 200 L drums awaiting solidification in bitumen. The incinerator and a 50-ton hydraulic baler have provided treatment for a combined volume of about 1300 m 3 /a of solid low-level radioactive waste. This paper presents a review of the performance of the incinerator during its six years of operation. In addition to presenting operational experience, an assessment of the starved-air incineration technique will also be discussed

  16. UBioLab: a web-LABoratory for Ubiquitous in-silico experiments

    Directory of Open Access Journals (Sweden)

    Bartocci E.

    2012-03-01

    Full Text Available The huge and dynamic amount of bioinformatic resources (e.g., data and tools available nowadays in Internet represents a big challenge for biologists -for what concerns their management and visualization- and for bioinformaticians -for what concerns the possibility of rapidly creating and executing in-silico experiments involving resources and activities spread over the WWW hyperspace. Any framework aiming at integrating such resources as in a physical laboratory has imperatively to tackle -and possibly to handle in a transparent and uniform way- aspects concerning physical distribution, semantic heterogeneity, co-existence of different computational paradigms and, as a consequence, of different invocation interfaces (i.e., OGSA for Grid nodes, SOAP for Web Services, Java RMI for Java objects, etc.. The framework UBioLab has been just designed and developed as a prototype following the above objective. Several architectural features -as those ones of being fully Web-based and of combining domain ontologies, Semantic Web and workflow techniques- give evidence of an effort in such a direction.

  17. Accreditation experience of radioisotope metrology laboratory of Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Iglicki, A. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: iglicki@cae.cnea.gov.ar; Mila, M.I. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)]. E-mail: mila@cae.cnea.gov.ar; Furnari, J.C. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Arenillas, P. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Cerutti, G. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Carballido, M. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Guillen, V. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Araya, X. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina); Bianchini, R. [Laboratorio de Metrologia de Radioisotopos, Comision Nacional de Energia Atomica (Argentina)

    2006-10-15

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the ({alpha}/{beta})-{gamma} coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved.

  18. Accreditation experience of radioisotope metrology laboratory of Argentina

    International Nuclear Information System (INIS)

    Iglicki, A.; Mila, M.I.; Furnari, J.C.; Arenillas, P.; Cerutti, G.; Carballido, M.; Guillen, V.; Araya, X.; Bianchini, R.

    2006-01-01

    This work presents the experience developed by the Radioisotope Metrology Laboratory (LMR), of the Argentine National Atomic Energy Commission (CNEA), as result of the accreditation process of the Quality System by ISO 17025 Standard. Considering the LMR as a calibration laboratory, services of secondary activity determinations and calibration of activimeters used in Nuclear Medicine were accredited. A peer review of the (α/β)-γ coincidence system was also carried out. This work shows in detail the structure of the quality system, the results of the accrediting audit and gives the number of non-conformities detected and of observations made which have all been resolved

  19. Using an Online Remote Laboratory for Electrical Experiments in Upper Secondary Education

    Directory of Open Access Journals (Sweden)

    Lars Håkansson

    2012-03-01

    Full Text Available The use of remote laboratories in courses at university level has been reported in literature numerous times since the mid 90’s. In this article focus is on activities carried out by teachers and students, at the Upper Secondary School Level, using the remote laboratory VISIR (Virtual Instrument Systems in Reality. The Upper Secondary School, Katedralskolan in Lund, Sweden, cooperate with Blekinge Institute of Technology, Sweden, in a project that concerns the introduction of remote laboratory environment suitable for Upper Secondary School science courses. A remote laboratory in electronics has been introduced and is used as a complement to the traditional workbench in the hands-on laboratory. Significant results from the project are; 1 the great interest shown by the students for the remote experiments, 2 the students appreciation for the fact that it was not simulations but actual real experiments, 3 the remote laboratory is easy to implement for use by both teachers and students and 4 it can be used simultaneously by many students.

  20. ISO 15189 accreditation: Requirements for quality and competence of medical laboratories, experience of a laboratory I.

    Science.gov (United States)

    Guzel, Omer; Guner, Ebru Ilhan

    2009-03-01

    Medical laboratories are the key partners in patient safety. Laboratory results influence 70% of medical diagnoses. Quality of laboratory service is the major factor which directly affects the quality of health care. The clinical laboratory as a whole has to provide the best patient care promoting excellence. International Standard ISO 15189, based upon ISO 17025 and ISO 9001 standards, provides requirements for competence and quality of medical laboratories. Accredited medical laboratories enhance credibility and competency of their testing services. Our group of laboratories, one of the leading institutions in the area, had previous experience with ISO 9001 and ISO 17025 Accreditation at non-medical sections. We started to prepared for ISO 15189 Accreditation at the beginning of 2006 and were certified in March, 2007. We spent more than a year to prepare for accreditation. Accreditation scopes of our laboratory were as follows: clinical chemistry, hematology, immunology, allergology, microbiology, parasitology, molecular biology of infection serology and transfusion medicine. The total number of accredited tests is 531. We participate in five different PT programs. Inter Laboratory Comparison (ILC) protocols are performed with reputable laboratories. 82 different PT Program modules, 277 cycles per year for 451 tests and 72 ILC program organizations for remaining tests have been performed. Our laboratory also organizes a PT program for flow cytometry. 22 laboratories participate in this program, 2 cycles per year. Our laboratory has had its own custom made WEB based LIS system since 2001. We serve more than 500 customers on a real time basis. Our quality management system is also documented and processed electronically, Document Management System (DMS), via our intranet. Preparatory phase for accreditation, data management, external quality control programs, personnel related issues before, during and after accreditation process are presented. Every laboratory has

  1. Experience of maintaining laboratory educational website′s sustainability

    Directory of Open Access Journals (Sweden)

    Izak B Dimenstein

    2016-01-01

    Full Text Available Laboratory methodology websites are specialized niche websites. The visibility of a niche website transforms it into an authority site on a particular "niche of knowledge." This article presents some ways in which a laboratory methodology website can maintain its sustainability. The optimal composition of the website includes a basic content, a blog, and an ancillary part. This article discusses experimenting with the search engine optimization query results page. Strategic placement of keywords and even phrases, as well as fragmentation of the post′s material, can improve the website′s visibility to search engines. Hyperlinks open a chain reaction of additional links and draw attention to the previous posts. Publications in printed periodicals are a substantial part of a niche website presence on the Internet. Although this article explores a laboratory website on the basis of our hands-on expertise maintaining "Grossing Technology in Surgical Pathology" (www.grossing-technology.com website with a high volume of traffic for more than a decade, the recommendations presented here for developing an authority website can be applied to other professional specialized websites. The authority websites visibility and sustainability are preconditions for aggregating them in a specialized educational laboratory portal.

  2. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    Science.gov (United States)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  3. Differentiating Biochemistry Course Laboratories Based on Student Experience

    Science.gov (United States)

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  4. Association between laboratory capacities and world-cup performance in Nordic combined.

    Science.gov (United States)

    Rasdal, Vegard; Fudel, Ronny; Kocbach, Jan; Moen, Frode; Ettema, Gertjan; Sandbakk, Øyvind

    2017-01-01

    Nordic combined (NC) is an Olympic winter-sport performed as a ski jumping (SJ) event followed by a cross-country (XC) pursuit race employing the skating style. To elucidate the associations between sport-specific laboratory capacities and SJ, XC skiing, and overall NC performance in a world-cup NC event. Twelve international world-cup NC athletes from 8 nations performed laboratory testing one day prior to participating in a world-cup NC event. Squat jumps and SJ imitations (IMIT) were performed on a three-dimensional force plate, whereas XC skiing-specific physiological characteristics were obtained from roller ski skating tests on a treadmill and an all-out double poling (DP) test. Finally, body composition was measured. Laboratory capacities were correlated against performance in SJ, 10-km XC skiing, and overall NC in the world-cup event. Multiple regression analysis was used to determine the best suited laboratory variables for predicting performance. Vertical IMIT velocity together with body-mass provided the best prediction for SJ performance (r2 = 0.70, pjump capacity while minimizing body-mass within the BMI limit set by FIS should be considered in the seasonal training of NC athletes.

  5. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    Science.gov (United States)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  6. A Low Cost Implementation of an Existing Hands-on Laboratory Experiment in Electronic Engineering

    Directory of Open Access Journals (Sweden)

    Clement Onime

    2014-10-01

    Full Text Available In engineering the pedagogical content of most formative programmes includes a significant amount of practical laboratory hands-on activity designed to deliver knowledge acquisition from actual experience alongside traditional face-to-face classroom based lectures and tutorials; this hands-on aspect is not always adequately addressed by current e-learning platforms. An innovative approach to e-learning in engineering, named computer aided engineering education (CAEE is about the use of computer aids for the enhanced, interactive delivery of educational materials in different fields of engineering through two separate but related components; one for classroom and another for practical hands-on laboratory work. The component for hands-on laboratory practical work focuses on the use of mixed reality (video-based augmented reality tools on mobile devices/platforms. This paper presents the computer aided engineering education (CAEE implementation of a laboratory experiment in micro-electronics that highlights some features such as the ability to closely implement an existing laboratory based hands-on experiment with lower associated costs and the ability to conduct the experiment off-line while maintaining existing pedagogical contents and standards.

  7. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    Science.gov (United States)

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  8. Safety analysis report for the Hanford Critical Mass Laboratory: Supplement No. 2. Experiments with heterogeneous assemblies

    International Nuclear Information System (INIS)

    Gore, B.F.; Davenport, L.C.

    1981-04-01

    Factors affecting the safety of criticality experiments using heterogeneous assemblies are described and assessed. It is concluded that there is no substantial change in safety from experiments already being routinely performed at the Critical Mass Laboratory (CML), and that laboratory and personnel safety are adequately provided by the combination of engineered and administrative safety limits enforced at the CML. This conclusion is based on the analysis of operational controls, potential hazards, and the consequences of accidents. Contingencies considered that could affect nuclear criticality include manual changes in fuel loadings, water flooding, fire, explosion, loss of services, earthquake, windstorm, and flood. Other potential hazards considered include radiation exposure to personnel, and potential releases within the Assembly Room and outside to the environment. It is concluded that the Maximum Credible Nuclear Burst of 3 x 10 18 fissions (which served as the design basis for the CML) is valid for heterogeneous assemblies as well as homogeneous assemblies. This is based upon examination of the results of reactor destructive tests and the results of the SL-1 reactor destructive accident. The production of blast effects which might jeopardize the CML critical assembly room (of thick reinforced concrete) is not considered credible due to the extreme circumstances required to produce blast effects in reactor destructive tests. Consequently, it is concluded that, for experiments with heterogeneous assemblies, the consequences of the Maximum Credible Burst are unchanged from those previously estimated for experiments with homogeneous systems

  9. A Global Remote Laboratory Experimentation Network and the Experiment Service Provider Business Model and Plans

    Directory of Open Access Journals (Sweden)

    Tor Ivar Eikaas

    2003-07-01

    Full Text Available This paper presents results from the IST KAII Trial project ReLAX - Remote LAboratory eXperimentation trial (IST 1999-20827, and contributes with a framework for a global remote laboratory experimentation network supported by a new business model. The paper presents this new Experiment Service Provider business model that aims at bringing physical experimentation back into the learning arena, where remotely operable laboratory experiments used in advanced education and training schemes are made available to a global education and training market in industry and academia. The business model is based on an approach where individual experiment owners offer remote access to their high-quality laboratory facilities to users around the world. The usage can be for research, education, on-the-job training etc. The access to these facilities is offered via an independent operating company - the Experiment Service Provider. The Experiment Service Provider offers eCommerce services like booking, access control, invoicing, dispute resolution, quality control, customer evaluation services and a unified Lab Portal.

  10. How (not) to design procurement mechanisms: A laboratory experiment

    NARCIS (Netherlands)

    Onderstal, S.; van de Meerendonk, A.

    2008-01-01

    In this paper, we examine the relative performance of three commonly used procurement mechanisms: price-only auctions, scoring auctions, and benchmarking. We do so both in theory and in a laboratory experiment. We find that the auctions yield the same level of welfare, and welfare dominate

  11. Clinical and laboratory experience of chorionic villous sampling in ...

    African Journals Online (AJOL)

    Background: Chorionic villous sampling is a first trimester invasive diagnosis procedure that was introduced in Nigeria <2 decades ago. Objective: The objective of the following study is to review experience with chorionic villous sampling in relation to clinical and laboratory procedures, including general characteristics of ...

  12. The laboratory of the mind thought experiments in the natural sciences

    CERN Document Server

    Brown, James Robert

    1993-01-01

    Thought experiments are performed in the laboratory of the mind. Beyond this metaphor it is difficult to say just what these remarkable devices for investigating nature are or how they work. Though most scientists and philosophers would admit their great importance, there has been very little serious study of them. This volume is the first book-length investigation of thought experiments. Starting with Galileo's argument on falling bodies, Brown describes numerous examples of the most influential thought experiments from the history of science. Following this introduction to the subject, some substantial and provocative claims are made, the principle being that some thought experiments should be understood in the same way that platonists understand mathematical activity: as an intellectual grasp of an independently existing abstract realm. With its clarity of style and structure, The Laboratory of the Mind will find readers among all philosophers of science as well as scientists who have puzzled over how thou...

  13. Experiment using laboratory scale extruder. Fluid behavior in twin-screw extruder

    International Nuclear Information System (INIS)

    Suzuki, Hiroshi; Miura, Akihiko

    1999-09-01

    All evidences and chemical data suggest non-chemical heating mechanism raised the filling temperature of the bituminized product. But they indicate the filling temperature was higher than before at the incident. We estimated the physical heat mechanism in the extruder. It is well known that the viscous-heating occurs in mixing process in extruders. In order to confirm the behavior of the torque and temperature, some experiment using laboratory scale extruder were performed. The result of the experiment using laboratory scale extruder showed that the phenomena of salt enrichment and salt accumulation were observed and they raised mixture temperature at the decreased feed rate. These phenomena depend on the feed rate. It is considered that they have large contribution to heat transportation and operational torque due to the friction between screw and mixture. In this report, all experiment result are explained. (author)

  14. Large scale laboratory diffusion experiments in clay rocks

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Missana, T.; Mingarro, M.; Martin, P.L.; Cormenzana, J.L.

    2005-01-01

    Full text of publication follows: Clay formations are potential host rocks for high-level radioactive waste repositories. In clay materials the radionuclide diffusion is the main transport mechanism. Thus, the understanding of the diffusion processes and the determination of diffusion parameters in conditions as similar as possible to the real ones, are critical for the performance assessment of deep geological repository. Diffusion coefficients are mainly measured in the laboratory using small samples, after a preparation to fit into the diffusion cell. In addition, a few field tests are usually performed for confirming laboratory results, and analyse scale effects. In field or 'in situ' tests the experimental set-up usually includes the injection of a tracer diluted in reconstituted formation water into a packed off section of a borehole. Both experimental systems may produce artefacts in the determination of diffusion coefficients. In laboratory the preparation of the sample can generate structural change mainly if the consolidated clay have a layered fabric, and in field test the introduction of water could modify the properties of the saturated clay in the first few centimeters, just where radionuclide diffusion is expected to take place. In this work, a large scale laboratory diffusion experiment is proposed, using a large cylindrical sample of consolidated clay that can overcome the above mentioned problems. The tracers used were mixed with clay obtained by drilling a central hole, re-compacted into the hole at approximately the same density as the consolidated block and finally sealed. Neither additional treatment of the sample nor external monitoring are needed. After the experimental time needed for diffusion to take place (estimated by scoping calculations) the block was sampled to obtain a 3D distribution of the tracer concentration and the results were modelled. An additional advantage of the proposed configuration is that it could be used in 'in situ

  15. FEBEX II Project THG Laboratory Experiments

    International Nuclear Information System (INIS)

    Missana, T.

    2004-01-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  16. FEBEX II Project THG Laboratory Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Missana, T.

    2004-07-01

    The main roles of the bentonite in a radioactive waste repository is to act as a geochemical barrier against the radionuclides migration. The effectiveness of this geochemical barrier depends on the surface properties of the solid phases and on the physico-chemical environment generated by the interaction of the solid phases with the groundwater. Within the FEBEX (Full-scale Engineered Barriers Experiment) project, a program of laboratory tests was designed to study and to understand the processes taking place in the clay barrier. Since the first stages of the project, these laboratory tests enabled to isolate different processes, making easier their interpretation, and provided fundamental parameters to be used in the Thermo Hydro Mechanical (THM) and Thermo Hydro Geochemical (THG) models. Additionally, experimental data enabled to check the predictive capability of these models. In the second phase of the project, laboratory tests focused on all those relevant aspects not sufficiently covered during FEBEX I. Particularly, the following main objectives were proposed for the THG investigations during FEBEX II : Attainment of a reliable description of the pore water chemistry at different geochemical conditions. Identification of the different types of water present in the bentonite and to determine the amount of available water for the solute transport.Evaluation of the potential effects of the extraction pressure in the chemical composition of the water obtained by squeezing methods.Study of the effects of the exchange complex in the rheological properties of the clay.Identification and modelling of the surface processes occurring in smectite, determination of the solubility constants of smectite and the formation constants of the surface complexes.Understanding of the mechanisms involved in the sorption of different radionuclides in the bentonite. Investigation of the diffusion mechanisms of conservative neutral and anionic species to have a deeper insight on the

  17. Fusion virtual laboratory: The experiments' collaboration platform in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, H., E-mail: nakanisi@nifs.ac.jp [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Kojima, M.; Takahashi, C.; Ohsuna, M.; Imazu, S.; Nonomura, M. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Hasegawa, M. [RIAM, Kyushu University, Kasuga, Fukuoka 816-8560 (Japan); Yoshikawa, M. [PRC, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2012-12-15

    'Fusion virtual laboratory (FVL)' is the experiments' collaboration platform covering multiple fusion projects in Japan. Major Japanese fusion laboratories and universities are mutually connected through the dedicated virtual private network, named SNET, on SINET4. It has 3 different categories; (i) LHD remote participation, (ii) bilateral experiments' collaboration, and (iii) remote use of supercomputer. By extending the LABCOM data system developed at LHD, FVL supports (i) and (ii) so that it can deal with not only LHD data but also the data of two remote experiments: QUEST at Kyushu University and GAMMA10 at University of Tsukuba. FVL has applied the latest 'cloud' technology for both data acquisition and storage architecture. It can provide us high availability and performance scalability of the whole system. With a well optimized TCP data transferring method, the unified data access platform for both experimental data and numerical computation results could become realistic on FVL. The FVL project will continue demonstrating the ITER-era international collaboration schemes and the necessary technology.

  18. Retrofitting Combined Space and Water Heating Systems: Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B.; Bohac, D.; Huelman, P.; Olson, R.; Hewitt, M.

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  19. Retrofitting Combined Space and Water Heating Systems. Laboratory Tests

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, B. [NorthernStar Building America Partnership, St. Paul, MN (United States); Bohac, D. [NorthernStar Building America Partnership, St. Paul, MN (United States); Huelman, P. [NorthernStar Building America Partnership, St. Paul, MN (United States); Olsen, R. [NorthernStar Building America Partnership, St. Paul, MN (United States); Hewett, M. [NorthernStar Building America Partnership, St. Paul, MN (United States)

    2012-10-01

    Better insulated and tighter homes can often use a single heating plant for both space and domestic water heating. These systems, called dual integrated appliances (DIA) or combination systems, can operate at high efficiency and eliminate combustion safety issues associated by using a condensing, sealed combustion heating plant. Funds were received to install 400 DIAs in Minnesota low-income homes. The NorthernSTAR DIA laboratory was created to identify proper system components, designs, operating parameters, and installation procedures to assure high efficiency of field installed systems. Tests verified that heating loads up to 57,000 Btu/hr can be achieved with acceptable return water temperatures and supply air temperatures.

  20. Transformation of fault slip modes in laboratory experiments

    Science.gov (United States)

    Martynov, Vasilii; Alexey, Ostapchuk; Markov, Vadim

    2017-04-01

    Slip mode of crust fault can vary because of many reasons. It's well known that fault structure, material of fault gouge, pore fluid et al. in many ways determines slip modes from creep and slow slip events to mega-earthquakes [1-3]. Therefore, the possibility of fault slip transformation due to external action is urgent question. There is popular and developing approach of fluid injection into central part of fault. The phenomenon of earthquakes induced due to pumping of water was investigated on small and large scales [4, 5]. In this work the laboratory experiments were conducted to study the evolution of the experimental fault slip when changing the properties of the interstitial fluid. The scheme of experiments is the classical slider-model set-up, in which the block under the shear force slips along the interface. In our experiments the plexiglas block 8x8x3 cm3 in size was put on the plexiglas base. The contact of the blocks was filled with a thin layer (about 3 mm thick) of a granular material. The normal load varied from 31 to 156 kPa. The shear load was applied through a spring with stiffness 60 kN/m, and the rate of spring deformation was 20 or 5 mcm/s. Two parameters were recorded during experiments: the shear force acting on the upper block (with an accuracy of 1 N) and its displacement relatively the base (with an accuracy of 0.1 μm). The gouge was composed of quartz sand (97.5%) and clay (2.5%). As a moisturizer were used different fluids with viscosity varying from 1 to 103 mPa x s. Different slip modes were simulated during slider-experiments. In our experiments slip mode is the act of instability manifested in an increase of slip velocity and a drop of shear stress acting on a movable block. The amplitude of a shear stress drop and the peak velocity of the upper block were chosen as the characteristics of the slip mode. In the laboratory experiments, slip events of one type can be achieved either as regularly recurring (regular mode) or as random

  1. Nuclear astrophysics at Gran Sasso Laboratory: the LUNA experiment

    Science.gov (United States)

    Cavanna, Francesca

    2018-05-01

    LUNA is an experimental approach for the study of nuclear fusion reactions based on an underground accelerator laboratory. Aim of the experiment is the direct measurement of the cross section of nuclear reactions relevant for stellar and primordial nucleosynthesis. In the following the latest results and the future goals will be presented.

  2. Combination effect of sponge iron and calcium nitrate on severely eutrophic urban landscape water: an integrated study from laboratory to fields.

    Science.gov (United States)

    Wang, Guan-Bai; Wang, Yi; Zhang, Ying

    2018-03-01

    In this study, the in situ restoration of urban landscape water through the combined application of sponge iron (SI) and calcium nitrate (CN) was conducted in the Xi'an Moat of China. The combination effect of SI and CN on the phosphorus (P) control was explored through laboratory and field experiments. Results showed that the optimum mass ratio of SI and CN was 4:1, and the optimum dosage of combined SI and CN was 1.4 g/L for controlling eutrophication in the water body at Xi'an Moat. The field experiment demonstrated that SI and CN efficiently controlled P concentration in overlying and interstitial water and obtained a maximum efficiency of 88.6 and 65.2% in soluble reactive P locking, respectively. The total P, organic P, and Ca-bound P contents in sediment simultaneously increased by 7.7, 15.2, and 2.4%, respectively, after 56 days. Therefore, the combined application of SI and CN achieved the goal of transferring the P from overlying and interstitial water to the sediment. Considering the environmental effect and economic investment, the combined application of SI and CN at a mass ratio of 4:1 and dosage of 1.4 g/L is an excellent choice for the in situ rehabilitation of eutrophic water with a high internal P load.

  3. Virtual geotechnical laboratory experiments using a simulator

    Science.gov (United States)

    Penumadu, Dayakar; Zhao, Rongda; Frost, David

    2000-04-01

    The details of a test simulator that provides a realistic environment for performing virtual laboratory experimentals in soil mechanics is presented. A computer program Geo-Sim that can be used to perform virtual experiments, and allow for real-time observations of material response is presented. The results of experiments, for a given set of input parameters, are obtained with the test simulator using well-trained artificial neural-network-based soil models for different soil types and stress paths. Multimedia capabilities are integrated in Geo-Sim, using software that links and controls a laser disc player with a real-time parallel processing ability. During the simulation of a virtual experiment, relevant portions of the video image of a previously recorded test on an actual soil specimen are dispalyed along with the graphical presentation of response from the feedforward ANN model predictions. The pilot simulator developed to date includes all aspects related to performing a triaxial test on cohesionless soil under undrained and drained conditions. The benefits of the test simulator are also presented.

  4. Guided-inquiry laboratory experiments to improve students' analytical thinking skills

    Science.gov (United States)

    Wahyuni, Tutik S.; Analita, Rizki N.

    2017-12-01

    This study aims to improve the experiment implementation quality and analytical thinking skills of undergraduate students through guided-inquiry laboratory experiments. This study was a classroom action research conducted in three cycles. The study has been carried out with 38 undergraduate students of the second semester of Biology Education Department of State Islamic Institute (SII) of Tulungagung, as a part of Chemistry for Biology course. The research instruments were lesson plans, learning observation sheets and undergraduate students' experimental procedure. Research data were analyzed using quantitative-descriptive method. The increasing of analytical thinking skills could be measured using gain score normalized and statistical paired t-test. The results showed that guided-inquiry laboratory experiments model was able to improve both the experiment implementation quality and the analytical thinking skills. N-gain score of the analytical thinking skills was increased, in spite of just 0.03 with low increase category, indicated by experimental reports. Some of undergraduate students have had the difficulties in detecting the relation of one part to another and to an overall structure. The findings suggested that giving feedback the procedural knowledge and experimental reports were important. Revising the experimental procedure that completed by some scaffolding questions were also needed.

  5. Simulations of Laboratory Astrophysics Experiments using the CRASH code

    Science.gov (United States)

    Trantham, Matthew; Kuranz, Carolyn; Fein, Jeff; Wan, Willow; Young, Rachel; Keiter, Paul; Drake, R. Paul

    2015-11-01

    Computer simulations can assist in the design and analysis of laboratory astrophysics experiments. The Center for Radiative Shock Hydrodynamics (CRASH) at the University of Michigan developed a code that has been used to design and analyze high-energy-density experiments on OMEGA, NIF, and other large laser facilities. This Eulerian code uses block-adaptive mesh refinement (AMR) with implicit multigroup radiation transport, electron heat conduction and laser ray tracing. This poster will demonstrate some of the experiments the CRASH code has helped design or analyze including: Kelvin-Helmholtz, Rayleigh-Taylor, magnetized flows, jets, and laser-produced plasmas. This work is funded by the following grants: DEFC52-08NA28616, DE-NA0001840, and DE-NA0002032.

  6. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    International Nuclear Information System (INIS)

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface

  7. 3D mapping of turbulence: a laboratory experiment

    Science.gov (United States)

    Le Louarn, Miska; Dainty, Christopher; Paterson, Carl; Tallon, Michel

    2000-07-01

    In this paper, we present the first experimental results of the 3D mapping method. 3D mapping of turbulence is a method to remove the cone effect with multiple laser guide stars and multiple deformable mirrors. A laboratory experiment was realized to verify the theoretical predictions. The setup consisted of two turbulent phase screens (made with liquid crystal devices) and a Shack-Hartmann wavefront sensor. We describe the interaction matrix involved in reconstructing Zernike commands for multiple deformable mirror from the slope measurements made from laser guide stars. It is shown that mirror commands can indeed be reconstructed with the 3D mapping method. Limiting factors of the method, brought to light by this experiment are discussed.

  8. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; G. J. Linford is now with Max-Planck-Institut fur Quantenoptik, D-8046 Garching, Federal Republic of Germany)

    1982-01-01

    Large aperture harmonic conversion experiments to 2ω (532 nm), 3ω (355 nm), and 4ω (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2ω and 3ω inertial confinement fusion target performances are provided

  9. Large aperture harmonic conversion experiments at Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Linford, G.J.; Johnson, B.C.; Hildum, J.S.; Martin, W.E.; Snyder, K.; Boyd, R.D.; Smith, W.L.; Vercimak, C.L.; Eimerle, D.; Hunt, J.T.

    1982-10-15

    Large aperture harmonic conversion experiments to 2..omega.. (532 nm), 3..omega.. (355 nm), and 4..omega.. (266 nm) on the Argus laser at the Livermore National Laboratory are described. Harmonically converted energies of up to 346 J have been generated at external conversion efficiencies of 83%. A discussion of the harmonic conversion experiments and a brief summary of enhanced 2..omega.. and 3..omega.. inertial confinement fusion target performances are provided.

  10. On the potential for using immersive virtual environments to support laboratory experiment contextualisation

    Science.gov (United States)

    Machet, Tania; Lowe, David; Gütl, Christian

    2012-12-01

    This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.

  11. Conquer the FPSO (Floating Production Storage and Off loading) separation challenge using CFD (Computational Fluid Dynamics) and laboratory experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Astrid R.; Hannisdal, Andreas; Amarzguioui, Morad; Wood, Deborah; Tor Andersen [Aibel, Stavanger (Norway)

    2008-07-01

    To have the necessary confidence in a separators' performance, the design must be based on more than simple design rules. A combination of separation testing, computer modelling, and general knowledge of the process is needed. In addition, new technologies can provide enhanced overall performance when it is required. This paper describes how all of these techniques can be combined to get the most out of separator design. We will describe how Aibel has used Computational Fluid Dynamics (CFD), together with laboratory testing, multi-disciplinary knowledge and new technology in order to revolutionize the way we design separators. This paper will present a study of separation performance for one of our customers. A CFD simulation was performed to predict the internal waves inside a separator located on a FPSO, and how these affect separation phenomena. The performance of the theoretical CFD model was verified by laboratory wave experiments. Separation tests were performed to test new solutions which could increase the performance of the process. Based on the CFD simulations and the separation tests, a modification of the separator was proposed. (author)

  12. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    Science.gov (United States)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  13. Book Review "Advances on remote laboratories and e-learning experiences"

    Directory of Open Access Journals (Sweden)

    Jesús A. del Alamo

    2007-08-01

    Full Text Available Book Review "Advances on remote laboratories and e-learning experiences", book editors: Luís Gomes and Javier García-Zubía, University of Deusto, Spain. Reviewed by Jesús A. del Alamo, Massachusetts Institute of Technology, M.I.T.

  14. Professor Created On-line Biology Laboratory Course

    Science.gov (United States)

    Bowman, Arthur W.

    2010-01-01

    This paper will share the creation, implementation, and modification of an online college level general biology laboratory course offered for non-science majors as a part of a General Education Curriculum. The ability of professors to develop quality online laboratories will address a growing need in Higher Education as more institutions combine course sections and look for suitable alternative course delivery formats due to declining departmental budgets requiring reductions in staffing, equipment, and supplies. Also, there is an equal or greater need for more professors to develop the ability to create online laboratory experiences because many of the currently available online laboratory course packages from publishers do not always adequately parallel on-campus laboratory courses, or are not as aligned with the companion lecture sections. From a variety of scientific simulation and animation web sites, professors can easily identify material that closely fit the specific needs of their courses, instructional environment, and students that they serve. All too often, on-campus laboratory courses in the sciences provide what are termed confirmation experiences that do NOT allow students to experience science as would be carried out by scientists. Creatively developed online laboratory experiences can often provide the type of authentic investigative experiences that are not possible on-campus due to the time constraints of a typical two-hour, once-per-week-meeting laboratory course. In addition, online laboratory courses can address issues related to the need for students to more easily complete missing laboratory assignments, and to have opportunities to extend introductory exercises into more advanced undertakings where a greater sense of scientific discovery can be experienced. Professors are strongly encourages to begin creating online laboratory exercises for their courses, and to consider issues regarding assessment, copyrights, and Intellectual Property

  15. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    Science.gov (United States)

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed.

  16. Design calculations for a combined ventilation and brine injection experiment at the Grimsel Rock Laboratory, Switzerland

    International Nuclear Information System (INIS)

    Finsterle, S.; Pruess, K.

    1993-07-01

    A combined ventilation and brine injection test is planned at the Grimsel Test Site. The objective of the experiment is to study the transport of liquid and gas in the vicinity of a ventilated drift in order to evaluate the impact of the drying process on the characterization of the rock matrix. The proposed test sequence includes a desaturation-resaturation cycle. In addition, brine and fresh water will be injected from a borehole as trace electrolytes in order to better track the propagation of the individual phases. Results of design calculations using the TOUGH2 code show that injection of brine may significantly influence the unsaturated flow behavior by changing the pressure and saturation distribution around the borehole. Transport velocity is predicted to be very slow, requiring several months for the brine to reach the draft wall. However, the presence of preferential flow paths may reduce travel time and alter brine content and saturation distribution so that certain sensors may respond earlier or not at all

  17. Maintenance experiences at analytical laboratory at the Tokai reprocessing plant

    International Nuclear Information System (INIS)

    Suzuki, Hisanori; Nagayama, Tetsuya; Horigome, Kazushi; Ishibashi, Atsushi; Kitao, Takahiko; Surugaya, Naoki

    2014-01-01

    The Tokai Reprocessing Plant (TRP) is developing the technology to recover uranium and plutonium from spent nuclear fuel. There is an analytical laboratory which was built in 1977, as one of the most important facilities for process and material control analyses at the TRP. Samples taken from each process are analyzed by various analytical methods using hot cells, glove boxes and hume-hoods. A large number of maintenance work have been so far carried out and different types of experience have been accumulated. This paper describes our achievements in the maintenance activities at the analytical laboratory at the TRP. (author)

  18. Swedish-German actinide migration experiment at ÄSPÖ hard rock laboratory

    Science.gov (United States)

    Kienzler, B.; Vejmelka, P.; Römer, J.; Fanghänel, E.; Jansson, M.; Eriksen, T. E.; Wikberg, P.

    2003-03-01

    Within the scope of a bilateral cooperation between Svensk Kärnbränslehantering (SKB) and Forschungszentrum Karlsruhe, Institut für Nukleare Entsorgung (FZK-INE), an actinide migration experiment is currently being performed at the Äspö Hard Rock Laboratory (HRL) in Sweden. This paper covers laboratory and in situ investigations on actinide migration in single-fractured granite core samples. For the in situ experiment, the CHEMLAB 2 probe developed by SKB was used. The experimental setup as well as the breakthrough of inert tracers and of the actinides Am, Np and Pu are presented. The breakthrough curves of inert tracers were analyzed to determine hydraulic properties of the fractured samples. Postmortem analyses of the solid samples were performed to characterize the flow path and the sorbed actinides. After cutting the cores, the abraded material was analyzed with respect to sorbed actinides. The slices were scanned optically to visualize the flow path. Effective volumes and inner surface areas were measured. In the experiments, only breakthrough of Np(V) was observed. In each experiment, the recovery of Np(V) was ≤40%. Breakthrough of Am(III) and Pu(IV) as well as of Np(IV) was not observed.

  19. Zero-Gravity Atmospheric Cloud Physics Experiment Laboratory engineering concepts/design tradeoffs. Volume 1: Study results

    Science.gov (United States)

    Greco, R. V.; Eaton, L. R.; Wilkinson, H. C.

    1974-01-01

    The work is summarized which was accomplished from January 1974 to October 1974 for the Zero-Gravity Atmospheric Cloud Physics Laboratory. The definition and development of an atmospheric cloud physics laboratory and the selection and delineation of candidate experiments that require the unique environment of zero gravity or near zero gravity are reported. The experiment program and the laboratory concept for a Spacelab payload to perform cloud microphysics research are defined. This multimission laboratory is planned to be available to the entire scientific community to utilize in furthering the basic understanding of cloud microphysical processes and phenomenon, thereby contributing to improved weather prediction and ultimately to provide beneficial weather control and modification.

  20. BOW SHOCK FRAGMENTATION DRIVEN BY A THERMAL INSTABILITY IN LABORATORY ASTROPHYSICS EXPERIMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki-Vidal, F.; Lebedev, S. V.; Pickworth, L. A.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; De Grouchy, P.; Music, J.; Suttle, L. [Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Ciardi, A. [Sorbonne Universités, UPMC Univ. Paris 6, UMR 8112, LERMA, F-75005, Paris (France); Rodriguez, R.; Gil, J. M.; Espinosa, G. [Departamento de Fisica de la Universidad de Las Palmas de Gran Canaria, E-35017 Las Palmas de Gran Canaria (Spain); Hartigan, P. [Department of Physics and Astronomy, Rice University, 6100 S. Main, Houston, TX 77521-1892 (United States); Hansen, E.; Frank, A., E-mail: f.suzuki@imperial.ac.uk [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States)

    2015-12-20

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  1. Eight year experience in open ended instrumentation laboratory

    Science.gov (United States)

    Marques, Manuel B.; Rosa, Carla C.; Marques, Paulo V. S.

    2015-10-01

    When designing laboratory courses in a Physics Major we consider a range of objectives: teaching Physics; developing lab competencies; instrument control and data acquisition; learning about measurement errors and error propagation; an introduction to project management; team work skills and scientific writing. But nowadays we face pressure to decrease laboratory hours due to the cost involved. Many universities are replacing lab classes for simulation activities, hiring PhD. and master students to give first year lab classes, and reducing lab hours. This leads to formatted lab scripts and poor autonomy of the students, and failure to enhance creativity and autonomy. In this paper we present our eight year experience with a laboratory course that is mandatory in the third year of Physics and Physical Engineering degrees. Since the students had previously two standard laboratory courses, we focused on teaching instrumentation and giving students autonomy. The course is divided in two parts: one third is dedicated to learn computer controlled instrumentation and data acquisition (based in LabView); the final 2/3 is dedicated to a group project. In this project, the team (2 or 3 students) must develop a project and present it in a typical conference format at the end of the semester. The project assignments are usually not very detailed (about two or three lines long), giving only general guidelines pointing to a successful project (students often recycle objectives putting forward a very personal project); all of them require assembling some hardware. Due to our background, about one third of the projects are related to Optics.

  2. The safeguards on-site laboratory at Sellafield. Five years operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Duinslaeger, L.; Belle, P. van; Mayer, K.; Casteleyn, K.; Abousahl, S.; Daures, P.; Eberle, H.; Enright, T.; Guiot, A.; Hild, M.; Horta Domenech, J.; Lajarge, P.; Laurent, P.; Le Terrier, A.; Lynch, B.; Marucci, M.; Millet, S.; Ottmar, H.; Richir, P.; Street, S.; Vallet, P.; Zuleger, E. [European Commission, Karlsruhe (Germany). Inst. for Transuranium Elements

    2004-06-01

    The start of operation of the large reprocessing facilities led Euratom Safeguards to a new approach for verification analysis of samples taken at the facility: the installation of on-site laboratories. The availability of analytical capabilities for independent verification measurements at the site of these facilities offers obvious advantages in view of timeliness of results. The 'On-Site Laboratory' (OSL) at the BNFL Sellafield site was the first ever and entered into operation in 1999. For almost five years, the Institute for Transuranium Elements (ITU) has been operating the laboratory under routine conditions. During this period, more than one thousand safeguards samples were analysed. The experience gained in the management, logistics and operation of the OSL allow a critical review based on a significant period in time. This includes also aspects of training of staff, maintenance of equipment, flow of information, and improvements in the efficiency. The analytical issues are of key importance: based on the operational experience, the measurement methods were adapted (changing boundary conditions), the distribution of samples according to material type changed (start up of MOS fabrication plant), and the cutback in resources triggered a further streamlining of the analytical efforts. (orig.)

  3. Reducing cognitive load in the chemistry laboratory by using technology-driven guided inquiry experiments

    Science.gov (United States)

    Hubacz, Frank, Jr.

    The chemistry laboratory is an integral component of the learning experience for students enrolled in college-level general chemistry courses. Science education research has shown that guided inquiry investigations provide students with an optimum learning environment within the laboratory. These investigations reflect the basic tenets of constructivism by engaging students in a learning environment that allows them to experience what they learn and to then construct, in their own minds, a meaningful understanding of the ideas and concepts investigated. However, educational research also indicates that the physical plant of the laboratory environment combined with the procedural requirements of the investigation itself often produces a great demand upon a student's working memory. This demand, which is often superfluous to the chemical concept under investigation, creates a sensory overload or extraneous cognitive load within the working memory and becomes a significant obstacle to student learning. Extraneous cognitive load inhibits necessary schema formation within the learner's working memory thereby impeding the transfer of ideas to the learner's long-term memory. Cognitive Load Theory suggests that instructional material developed to reduce extraneous cognitive load leads to an improved learning environment for the student which better allows for schema formation. This study first compared the cognitive load demand, as measured by mental effort, experienced by 33 participants enrolled in a first-year general chemistry course in which the treatment group, using technology based investigations, and the non-treatment group, using traditional labware, investigated identical chemical concepts on five different exercises. Mental effort was measured via a mental effort survey, a statistical comparison of individual survey results to a procedural step count, and an analysis of fourteen post-treatment interviews. Next, a statistical analysis of achievement was

  4. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    International Nuclear Information System (INIS)

    Horak, H.L.

    1995-01-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy's (DOE's) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers

  5. Vapor-phase biofiltration: Laboratory and field experience

    International Nuclear Information System (INIS)

    Evans, P.J.; Bourbonais, K.A.; Peterson, L.E.; Lee, J.H.; Laakso, G.L.

    1995-01-01

    Application of vapor-phase bioreactors (VPBs) to petroleum hydrocarbons is complicated by the different mass transfer characteristics of aliphatics and aromatics. Laboratory- and pilot-scale VPB studies were conducted to evaluate treatment of soil vapor extraction (SVE) off-gas. A mixture of compost, perlite, and activated carbon was the selected medium based on pressure drop, microbial colonization, and adsorption properties. Two different pilot-scale reactors were built with a difference of 70:1 in scale. The smaller VPB's maximum effective elimination capacity (EC) was determined to be 7.2 g m -3 h -1 ; the larger unit's EC was 70% to 80% of this value. Low EC values may be attributable to a combination of mass-transfer and kinetic limitations

  6. Lecture Meets Laboratory - Experimental Experiences for Large Audiences: Concept and Implementation

    Directory of Open Access Journals (Sweden)

    Katrin Temmen

    2014-10-01

    Full Text Available Lecture courses are an integral part of academia with a long tradition. The efficiency of such courses can be notably increased by active participation of students in the learning process. This article will elaborate on a re-structuring of an engineering lecture attended by more than 400 students; during the course, laboratory experiments are integrated directly into the lecture, allowing students to gain their own practical experience.

  7. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    Science.gov (United States)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  8. Laboratory experiments in innovation research: A methodological overview and a review of the current literature

    OpenAIRE

    Brüggemann, Julia; Bizer, Kilian

    2016-01-01

    Innovation research has developed a broad set of methodological approaches in recent decades. In this paper, we propose laboratory experiments as a fruitful methodological addition to the existing methods in innovation research. Therefore, we provide an overview of the existing methods, discuss the advantages and limitations of laboratory experiments, and review experimental studies dealing with different fields of innovation policy, namely intellectual property rights, financi...

  9. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  10. Development and Use of Online Prelaboratory Activities in Organic Chemistry to Improve Students' Laboratory Experience

    Science.gov (United States)

    Chaytor, Jennifer L.; Al Mughalaq, Mohammad; Butler, Hailee

    2017-01-01

    Online prelaboratory videos and quizzes were prepared for all experiments in CHEM 231, Organic Chemistry I Laboratory. It was anticipated that watching the videos would help students be better prepared for the laboratory, decrease their anxiety surrounding the laboratory, and increase their understanding of the theories and concepts presented.…

  11. Association between laboratory capacities and world-cup performance in Nordic combined.

    Directory of Open Access Journals (Sweden)

    Vegard Rasdal

    Full Text Available Nordic combined (NC is an Olympic winter-sport performed as a ski jumping (SJ event followed by a cross-country (XC pursuit race employing the skating style.To elucidate the associations between sport-specific laboratory capacities and SJ, XC skiing, and overall NC performance in a world-cup NC event.Twelve international world-cup NC athletes from 8 nations performed laboratory testing one day prior to participating in a world-cup NC event. Squat jumps and SJ imitations (IMIT were performed on a three-dimensional force plate, whereas XC skiing-specific physiological characteristics were obtained from roller ski skating tests on a treadmill and an all-out double poling (DP test. Finally, body composition was measured. Laboratory capacities were correlated against performance in SJ, 10-km XC skiing, and overall NC in the world-cup event. Multiple regression analysis was used to determine the best suited laboratory variables for predicting performance.Vertical IMIT velocity together with body-mass provided the best prediction for SJ performance (r2 = 0.70, p<0.01, while body-mass-normalized [Formula: see text] and DP power provided the best prediction for XC performance (r2 = 0.68, p<0.05. Body-mass-normalized [Formula: see text] was the only significant correlate with overall NC performance (r2 = 0.43, p<0.05 in this competition.Overall, the concurrent development of [Formula: see text], upper-body power, and SJ-specific vertical jump capacity while minimizing body-mass within the BMI limit set by FIS should be considered in the seasonal training of NC athletes.

  12. Investigating the dynamics of Vulcanian explosions: scaled laboratory experiments of particle-laden puffs

    Science.gov (United States)

    Clarke, A. B.; Phillips, J. C.; Chojnicki, K. N.

    2006-12-01

    Scaled laboratory experiments analogous to Vulcanian eruptions were conducted, producing particle-laden jets and plumes. A reservoir of a mixture of water and isopropanol plus solid particles (kaolin or Ballotini glass spheres) was pressurized and suddenly released via a rapid-release valve into a 2 ft by 2 ft by 4 ft plexiglass tank containing fresh water. The duration of the subsequent flow was limited by the potential energy associated with the pressurized fluid rather than by the available volume of fluid or by the duration of the valve opening. Particle size (4 &45 microns) and concentration (0 to 10 vol%) were varied in order to change particle settling characteristics and control bulk mixture density (960 kg m-3 to 1060 kg m-3). Water and isopropanol in varying proportions created a light interstitial fluid to simulate buoyant volcanic gases in erupted mixtures. Variations in reservoir pressure and vent size allowed exploration of controlling source parameters; total momentum injected (M) and total buoyancy injected (B). Mass flux at the vent was measured by an in-line Coriolis flowmeter sampling at 100 Hz, allowing rapidly varying M and B to be recorded. The velocity-height relationship of each experiment was measured from high-speed video footage, permitting classification into the following groups: long continuously accelerating jets; accelerating jets transitioning to plumes; and collapsing fountains which generated density currents. Field-documented Vulcanian explosions exhibit this same wide range of behavior, demonstrating that regimes obtained in the laboratory are relevant to natural systems. A generalized framework of results was defined as follows. Increasing M/B for small particles (4 microns; settling time>>experiment duration) pushes the system from collapsing fountains to low-energy plumes to high-energy, continuously accelerating jets; increasing M/B for large particles (45 microns; settling time non-dimensional groups were combined to

  13. Sampling Participants' Experience in Laboratory Experiments: Complementary challenges for more complete data collection

    Directory of Open Access Journals (Sweden)

    Alan eMcAuliffe

    2016-05-01

    Full Text Available Speelman and McGann's (2013 examination of the uncritical way in which the mean is often used in psychological research raises questions both about the average's reliability and its validity. In the present paper, we argue that interrogating the validity of the mean involves, amongst other things, a better understanding of the person's experiences, the meaning of their actions, at the time that the behaviour of interest is carried out. Recently emerging approaches within Psychology and Cognitive Science have argued strongly that experience should play a more central role in our examination of behavioural data, but the relationship between experience and behaviour remains very poorly understood. We outline some of the history of the science on this fraught relationship, as well as arguing that contemporary methods for studying experience fall into one of two categories. Wide approaches tend to incorporate naturalistic behaviour settings, but sacrifice accuracy and reliability in behavioural measurement. Narrow approaches maintain controlled measurement of behaviour, but involve too specific a sampling of experience, which obscures crucial temporal characteristics. We therefore argue for a novel, mid-range sampling technique, that extends Hurlburt's Descriptive Experience Sampling, and adapts it for the controlled setting of the laboratory. This Controlled Descriptive Experience Sampling may be an appropriate tool to help calibrate both the mean and the meaning of an experimental situation with one another.

  14. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    Science.gov (United States)

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  15. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    Science.gov (United States)

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  16. Simulating the volatilization of solvents in unsaturated soils during laboratory and field infiltration experiments

    Science.gov (United States)

    Cho, H. Jean; Jaffe, Peter R.; Smith, James A.

    1993-01-01

    This paper describes laboratory and field experiments which were conducted to study the dynamics of trichloroethylene (TCE) as it volatilized from contaminated groundwater and diffused in the presence of infiltrating water through the unsaturated soil zone to the land surface. The field experiments were conducted at the Picatinny Arsenal, which is part of the United States Geological Survey Toxic Substances Hydrology Program. In both laboratory and field settings the gas and water phase concentrations of TCE were not in equilibrium during infiltration. Gas-water mass transfer rate constants were calibrated to the experimental data using a model in which the water phase was treated as two phases: a mobile water phase and an immobile water phase. The mass transfer limitations of a volatile organic compound between the gas and liquid phases were described explicitly in the model. In the laboratory experiment the porous medium was nonsorbing, and water infiltration rates ranged from 0.076 to 0.28 cm h−1. In the field experiment the water infiltration rate was 0.34 cm h−1, and sorption onto the soil matrix was significant. The laboratory-calibrated gas-water mass transfer rate constant is 3.3×10−4 h−1 for an infiltration rate of 0.076 cm h−1 and 1.4×10−3 h−1 for an infiltration rate of 0.28 cm h−1. The overall mass transfer rate coefficients, incorporating the contribution of mass transfer between mobile and immobile water phases and the variation of interfacial area with moisture content, range from 3×10−4 h−1 to 1×10−2 h−1. A power law model relates the gas-water mass transfer rate constant to the infiltration rate and the fraction of the water phase which is mobile. It was found that the results from the laboratory experiments could not be extrapolated to the field. In order to simulate the field experiment the very slow desorption of TCE from the soil matrix was incorporated into the mathematical model. When desorption from the

  17. Background study of absorbed dose in biological experiments at the Modane Underground Laboratory

    Directory of Open Access Journals (Sweden)

    Lampe Nathanael

    2016-01-01

    Full Text Available Aiming to explore how biological systems respond to ultra-low background environ-ments, we report here our background studies for biological experiments in the Modane Under-ground Laboratory. We find that the minimum radioactive background for biology experiments is limited by the potassium content of the biological sample itself, coming from its nutritive me-dium, which we find in our experimental set-up to be 26 nGy hr-1. Compared to our reference radiation environment in Clermont-Ferrand, biological experiments can be conducted in the Modane laboratory with a radiation background 8.2 times lower than the reference above-ground level. As the radiation background may be further reduced by using different nutritive media, we also provide measurements of the potassium concentration by gamma spectroscopy of yeast extract (63.3±1.2 mg g-1 and tryptone (2.5±0.2 mg g-1 in order to guide media selection in future experiments.

  18. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles-a combination of laboratory and field experiments.

    Science.gov (United States)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  19. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments

    Science.gov (United States)

    Chemnitz, Johanna; Bagrii, Nadiia; Ayasse, Manfred; Steiger, Sandra

    2017-08-01

    Life history theory predicts a trade-off between male sexual trait expression and immunocompetence. Using burying beetles, Nicrophorus vespilloides, as a model, we investigated the relationship between male immune function, sex pheromone emission, and attractiveness under field conditions. In the first experiment, we tested whether there is a positive correlation between immune capacity, sex pheromone characteristics (quantity, relative composition, and time invested in pheromone emission), and male attractiveness. As a measurement of immune capacity, we used an individual's encapsulation ability against a novel antigen. In the second experiment, we specifically examined whether a trade-off between chemical trait expression and immune function existed. To this end, we challenged the immune system and measured the subsequent investment in sex pheromone emission and the attractiveness of the male under field conditions. We found that a male's immunocompetence was neither related to the emission of the male's sex pheromone nor to its attractiveness in the field. Furthermore, none of the immune-challenge treatments affected the subsequent investment in pheromone emission or number of females attracted. However, we showed that the same males that emitted a high quantity of their sex pheromone in the laboratory were able to attract more females in the field. Our data suggest that the chemical signal is not a reliable predictor of a male's immunocompetence but rather is a general important fitness-related trait, with a higher emission of the sex pheromone measured in the laboratory directly affecting the attractiveness of a male under field conditions.

  20. Isolation and Characterization of Agrobacterium Strains from Soil: A Laboratory Capstone Experience

    Directory of Open Access Journals (Sweden)

    Kim R. Finer

    2016-12-01

    Full Text Available In this investigation, the students’ goal was to isolate and characterize Agrobacterium strains from soil. Following selection and enrichment on 1A-t medium, putative Agrobacterium isolates were characterized by Gram stain reaction and biochemical tests. Isolates were further evaluated using polymerase chain reaction (PCR with different primer sets designed to amplify specific regions of bacterial deoxyribonucleic acid (DNA. Primer sets included AGRH to identify isolates that were members of the Rhizobiaceae, BIOVAR1 primers to identify members of Agrobacterium biovar group I, and a third set, VIRG, to determine presence of virG (only present in pathogenic Agrobacterium strains. During the investigation, students applied previously learned techniques including serial dilution, use of selective/differential media, staining protocols, biochemical analysis, molecular analysis via PCR, and electrophoresis. Students also gained practical experience using photo documentation to record data for an eventual mock journal publication of the capstone laboratory experience. Pre- and post-evaluation of class content knowledge related to the techniques, protocols, and learning objectives of these laboratories revealed significant learning gains in the content areas of Agrobacterium–plant interactions (p ≤ 0.001 and molecular biology (p ≤ 0.01. The capstone journal assignment served as the assessment tool to evaluate mastery and application of laboratory technique, the ability to accurately collect and evaluate data, and critical thinking skills associated with experimental troubleshooting and extrapolation. Analysis of journal reports following the capstone experience showed significant improvement in assignment scores (p ≤ 0.0001 and attainment of capstone experience learning outcomes.

  1. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    Science.gov (United States)

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  2. Combined Reactor and Microelectrode Measurements in Laboratory Grown Biofilms

    DEFF Research Database (Denmark)

    Larsen, Tove; Harremoës, Poul

    1994-01-01

    A combined biofilm reactor-/microelectrode experimental set-up has been constructed, allowing for simultaneous reactor mass balances and measurements of concentration profiles within the biofilm. The system consists of an annular biofilm reactor equipped with an oxygen microelectrode. Experiments...... were carried out with aerobic glucose and starch degrading biofilms. The well described aerobic glucose degradation biofilm system was used to test the combined reactor set-up. Results predicted from known biofilm kinetics were obtained. In the starch degrading biofilm, basic assumptions were tested...... with the microelectrode measurements. It was established, that even with a high molecular weight, non-diffusible substrate, degradation took place in the depths of the biofilm. Intrinsic enzymatic hydrolysis was not limiting and the volumetric removal rate of oxygen was zero order....

  3. The Laboratory of the Mind Thought Experiments in the Natural Sciences

    CERN Document Server

    Brown, James Robert

    2010-01-01

    Newton's bucket, Einstein's elevator, Schrödinger's cat - these are some of the best-known examples of thought experiments in the natural sciences. But what function do these experiments perform? Are they really experiments at all? Can they help us gain a greater understanding of the natural world?  How is it possible that we can learn new things just by thinking?   In this revised and updated new edition of his classic text The Laboratory of the Mind, James Robert Brown continues to defend apriorism in the physical world. This edition features two new chapters, one on "counter

  4. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    Science.gov (United States)

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  5. Association between laboratory capacities and world-cup performance in Nordic combined

    Science.gov (United States)

    Fudel, Ronny; Kocbach, Jan; Moen, Frode; Ettema, Gertjan; Sandbakk, Øyvind

    2017-01-01

    Background Nordic combined (NC) is an Olympic winter-sport performed as a ski jumping (SJ) event followed by a cross-country (XC) pursuit race employing the skating style. Purpose To elucidate the associations between sport-specific laboratory capacities and SJ, XC skiing, and overall NC performance in a world-cup NC event. Methods Twelve international world-cup NC athletes from 8 nations performed laboratory testing one day prior to participating in a world-cup NC event. Squat jumps and SJ imitations (IMIT) were performed on a three-dimensional force plate, whereas XC skiing-specific physiological characteristics were obtained from roller ski skating tests on a treadmill and an all-out double poling (DP) test. Finally, body composition was measured. Laboratory capacities were correlated against performance in SJ, 10-km XC skiing, and overall NC in the world-cup event. Multiple regression analysis was used to determine the best suited laboratory variables for predicting performance. Results Vertical IMIT velocity together with body-mass provided the best prediction for SJ performance (r2 = 0.70, p<0.01), while body-mass-normalized V˙O2peak and DP power provided the best prediction for XC performance (r2 = 0.68, p<0.05). Body-mass-normalized V˙O2peak was the only significant correlate with overall NC performance (r2 = 0.43, p<0.05) in this competition. Conclusion Overall, the concurrent development of V˙O2peak, upper-body power, and SJ-specific vertical jump capacity while minimizing body-mass within the BMI limit set by FIS should be considered in the seasonal training of NC athletes. PMID:28662163

  6. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    Science.gov (United States)

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  7. Spherical wave particle velocities in geologic materials from laboratory experiments

    International Nuclear Information System (INIS)

    Cizek, J.C.; Florence, A.L.

    1983-01-01

    Particle velocity records that describe spherical waves in rock simulants, tuffs, salt, and granite have been obtained in laboratory experiments. The records aid the modeling of constitutive equations for continuum mechanics codes used in DNA containment research. The technique has also been applied to investigate containment-related problems involving material poperties, failure criteria, scaling, decoupling, and residual strain field relaxation. 22 figures

  8. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    Science.gov (United States)

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  9. Stratospheric controlled perturbation experiment (SCoPEx): overview, status, and results from related laboratory experiments

    Science.gov (United States)

    Keith, D.; Dykema, J. A.; Keutsch, F. N.

    2017-12-01

    Stratospheric Controlled Perturbation Experiment (SCoPEx), is a scientific experiment to advance understanding of stratospheric aerosols. It aims to make quantitative measurements of aerosol microphysics and atmospheric chemistry to improve large-scale models used to assess the risks and benefits of solar geoengineering. A perturbative experiment requires: (a) means to create a well-mixed, small perturbed volume, and (b) observation of time evolution of chemistry and aerosols in the volume. SCoPEx will used a propelled balloon gondola containing all instruments and drive system. The propeller wake forms a well-mixed volume (roughly 1 km long and 100 meters in diameter) that serves as an experimental `beaker' into which aerosols (e.g., budget, etc; (d) results from CFD simulation of propeller wake and simulation of chemistry and aerosol microphysics; and finally (e) proposed concept of operations and schedule. We will also provide an overview of the plans for governance including management of health safety and environmental risks, transparency, public engagement, and larger questions about governance of solar geoengineering experiments. Finally, we will briefly present results of laboratory experiments of the interaction of chemical such as ClONO2 and HCl on particle surfaces relevant for stratospheric solar geoengineering.

  10. Acoustic testing and modeling: an advanced undergraduate laboratory.

    Science.gov (United States)

    Russell, Daniel A; Ludwigsen, Daniel O

    2012-03-01

    This paper describes an advanced laboratory course in acoustics, specifically targeted for students with an interest in engineering applications at a school with a strongly integrated industrial co-op program. The laboratory course is developed around a three-pronged approach to problem solving that combines and integrates theoretical models, computational models, and experimental data. The course is structured around modules that begin with fundamental concepts and build laboratory skills and expand the knowledge base toward a final project. Students keep a detailed laboratory notebook, write research papers in teams, and must pass laboratory certification exams. This paper describes the course layout and philosophy and shares personal experience from both faculty and student perspectives. © 2012 Acoustical Society of America

  11. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    Science.gov (United States)

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  12. Microscale Organic Laboratory II: The Benefits Derived from Conversion to the Program and Representative Experiments.

    Science.gov (United States)

    Mayo, Dana W.; And Others

    1985-01-01

    Smaller amounts of materials are used in organic chemistry experiments as a means of improving air quality in the laboratory. Outlines benefits from this approach and describes two representative experiments in detail. These experiments are the Cannizzaro reaction and preparation of an aromatic nitrile. (JN)

  13. Underwater laboratory: Teaching physics through diving practice

    International Nuclear Information System (INIS)

    Favale, F.

    2013-01-01

    Diving education and diving science and technology may be a useful tool in teaching physics in non–physics-oriented High School courses. In this paper we present an activity which combines some simple theoretical aspects of fluid statics, fluid dynamics and gas behavior under pressure with diving experience, where the swimming pool and the sea are used as a laboratory. This topic had previously been approached in a pure experimental way in school laboratory, but some particular experiments became much more attractive and meaningful to the students when they could use their bodies to perform them directly in water. The activity was carried out with groups of students from Italian High School classes in different situations.

  14. Laboratory Astrophysics Experiments to Study Star Formation

    Science.gov (United States)

    Young, Rachel

    As a thesis project, I devised and implemented a scaled accretion shock experiment on the OMEGA laser (Laboratory for Laser Energetics). This effort marked the first foray into the growing field of laser-created magnetized flowing plasmas for the Center for Laser Experimental Astrophysical Research (CLEAR) here at the University of Michigan. Accretion shocks form when streams of accreting material fall to the surface of a young, growing star along magnetic field lines and, due to their supersonic flow, create shocks. As I was concerned with what was happening immediately on the surface of the star where the shock forms, I scaled the system by launching a plasma jet (the "accreting flow") and driving it into a solid surface (the "stellar surface") in the presence of an imposed magnetic field parallel to the jet flow (locally analogous to the dipole field of the star). Early work for this thesis project was dedicated to building a magnetized flowing plasma platform at CLEAR. I investigated a method for launching collimated plasma jets and studied them using Thomson scattering, a method which measures parameters such as temperature and density by scattering a probe beam off the experimental plasma. Although the data were corrupted with probe heating effects, I overcame this problem by finding the mass density of the jets and using it to determine they were isothermal rarefactions with a temperature of 6 eV. Scaling an astrophysical phenomenon to the laboratory requires tailoring the parameters of the experiment to preserve its physics, rather than creating an experiment that merely superficially resembles it. I ensured this by distilling the driving physical processes of the astrophysical system--accretion shocks--into a list of dimensionless number constraints and mapping these into plasma parameter space. Due to this project being the first magnetized flowing plasma effort at CLEAR, it suffered the growing pains typical of a young research program. Of my two primary

  15. CANDU steam generator life management: laboratory data and plant experience

    International Nuclear Information System (INIS)

    Tapping, R.L.; Nickerson, J.H.; Subash, N.; Wright, M.D.

    2001-10-01

    As CANDU reactors enter middle age, and the potential value of the plants in a deregulated market is realized, life management and life extension issues become increasingly important. An accurate assessment of critical components, such as the CANDU 6 steam generators (SGs), is crucial for successful life extension, and in this context, material issues are a key factor. For example, service experience with Alloy 900 tubing indicates very low levels of degradation within CANDU SGs; the same is also noted worldwide. With little field data for extrapolation, life management and life extension decisions for the tube bundles rely heavily on laboratory data. Similarly, other components of the SGs, in particular the secondary side internals, have only limited inspection data upon which to base a condition assessment. However, in this case there are also relatively little laboratory data. Decisions on life management and life extension are further complicated--not only is inspection access often restricted, but repair or replacement options for internal components are, by definition, also limited. The application of CANDU SG life management and life extension requires a judicious blend of in-service data, laboratory research and development (R and D) and materials and engineering judgment. For instance, the available laboratory corrosion and fretting wear data for Alloy 800 SG tubing have been compared with plant experience (with all types of tubing), and with crevice chemistry simulations, in order to provide an appropriate inspection guide for a 50-year SG life. A similar approach has been taken with other SG components, where the emphasis has been on known degradation mechanisms worldwide. This paper provides an outline of the CANDU SG life management program, including the results to date, a summary of the supporting R and D program showing the integration with condition assessment and life management activities, and the approach taken to life extension for a typical

  16. Pre-test simulations of laboratory-scale heater experiments in tuff. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Ho, Clifford K.

    1995-09-01

    Laboratory-scale heater experiments are Proposed to observe thermohydrologic Processes in tuffaceous rock using existing equipment and x-ray imaging techniques. The purpose of the experiments is to gain understanding of the near-field behavior and thermodynamic environment surrounding a heat source. As a prelude to these experiments, numerical simulations are performed to determine design-related parameters such as optimal heating power and heating duration. In addition, the simulations aid in identifying and understanding thermal processes and mechanisms that may occur under a variety of experimental conditions. Results of the simulations show that convection may play an important role in the heat transfer and thermodynamic environment of the heater if the Rayleigh-Darcy number exceeds a critical value (= 10 for the laboratory experiments) depending on the type of backfill material within the annulus (or drift)

  17. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    Science.gov (United States)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  18. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    Energy Technology Data Exchange (ETDEWEB)

    Stephen M. Masutani

    1999-12-31

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  19. Calibration Laboratory for Medical Physics towards ISO/ IEC 17025 accreditation: Experience and challenges

    International Nuclear Information System (INIS)

    Asmaliza Hashim; Abdul Aziz Ramli; Muhammad Jamal Isa; Sharul Azlan Azizan

    2011-01-01

    Medical Physics Calibration Laboratory is laboratory where placed under Medical Physics Group, Radiation Healthy and Safety Division. This laboratory offers calibration services to their customers that covered doses calibration, tube voltan (kVp), exposure doses, sensitometer and densitometer. After 12 years of operation, it is the right time for this laboratory to upgrade their quality services based on ISO/ IEC 17025. Accreditation scope covered calibration for diagnostic doses only. Starting from 2009, serious effort was done to prepare the quality documents that covered quality manual, quality procedure and work orders. Meanwhile, several series of audit were done by Quality Management Center (QMC), now Innovation Management Center (IMC) with collaboration with Standard Department. This paper works revealed challenges and experience during the process toward ISO/ IEC 17025 accreditation. (author)

  20. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    Science.gov (United States)

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  1. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    International Nuclear Information System (INIS)

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-01-01

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers

  2. Analyses of internal tides generation and propagation over a Gaussian ridge in laboratory and numerical experiments

    Science.gov (United States)

    Dossmann, Yvan; Paci, Alexandre; Auclair, Francis; Floor, Jochem

    2010-05-01

    test the dynamics and energetics of the numerical model, but also to advance the analysis based on combined wavelet and empirical orthogonal function. In particular, we focus on the study of the transient regime of internal wave generation near the ridge. Our analyses of the experimental fields show that, for fixed background stratification and topography, the evolution of the stratification anomaly strongly depends on the forcing frequency. The duration of the transient regime, as well as the amplitude reached in the stationary state vary significantly with the parameter ω/N (where ω is the forcing frequency, and N is the background Brunt-Väisälä frequency). We also observe that, for particular forcing frequencies, for which the ridge slope matches the critical slope of the first harmonic mode, internal waves are excited both at the fundamental and the first harmonic frequency. Associated energy transfers are finally evaluated both experimentally and numerically, enabling us to highlight the similarities and discrepancies between the laboratory experiments and the numerical simulations. References [1] Munk W. and C. Wunsch (1998): Abyssal recipes II: energetics of tidal and wind mixing Deep-Sea Res. 45, 1977-2010 [2] Tailleux R. (2009): On the energetics of stratified turbulent mixing, irreversible thermodynamics, Boussinesq models and the ocean heat engine controversy, J. Fluid Mech. 638, 339-382 [3] Knigge C., D. Etling, A. Paci and O. Eiff (2010): Laboratory experiments on mountain-induced rotors, Quarterly Journal of the Royal Meteorological Society, in press. [4] Auclair F., C. Estournel, J. Floor, C. N'Guyen and P. Marsaleix, (2009): A non-hydrostatic, energy conserving algorithm for regional ocean modelling. Under revision. [5] Wunsch, C. & R. Ferrari (2004): Vertical mixing, energy and the general circulation of the oceans. Annu. Rev. Fluid Mech., 36:281-314.

  3. Laboratory Experiments on Meandering Meltwater Channels

    Science.gov (United States)

    Fernandez, R.; Berens, J.; Parker, G.; Stark, C. P.

    2017-12-01

    Meandering channels of all scales and flowing over a wide variety of media have common planform patterns. Although the analogy in planform suggests there is a common underlying framework, the constitutive relations driving planform evolution through vertical incision/deposition and lateral migration differ from medium to medium. The driving processes in alluvial and mixed bedrock-alluvial meandering channels have been studied substantially over the last decades. However, this is not the case for meandering channels in other media such as ice or soluble rock. Here we present results from experiments conducted at the Ven Te Chow Hydrosystems Laboratory of the University of Illinois at Urbana-Champaign on meltwater meandering channels. A rivulet is carved into an ice block and water is allowed to flow at a constant discharge. Planform evolution is analyzed with time lapse imaging and complemented with rubber molds of the channel once the experiment is over. These molds give us the full 3D structure of the meandering, including incisional overhang. Vertical incision rates are measured throughout the run by taking elevations along the channel, and these measurements are complemented with analysis from the molds. We show examples of meandering of intense amplitude with deep overhangs. Features resembling scroll bars document cyclically punctuated melting. We report on lateral migration rates, incision rates, sinuosity, channel depths, channel widths, reach averaged velocities, bend wavelengths and amplitudes and compare them to values reported in the literature for alluvial rivers.

  4. Evidence of lead biomagnification in invertebrate predators from laboratory and field experiments

    International Nuclear Information System (INIS)

    Rubio-Franchini, Isidoro; Rico-Martinez, Roberto

    2011-01-01

    This report includes atomic absorption data from water column, elutriates and zooplankton that demonstrate that lead biomagnifies at El Niagara reservoir, Mexico. Results include field data (bioaccumulation factors) (BAFs) and laboratory data (bioconcentration factors) (BCFs). Two findings: high BAFs for invertebrate predator like Acanthocyclops robustus, Asplanchna brightwellii, Culex sp. larvae, and Hyalella azteca, compared to grazer species Moina micrura and Simocephalus vetulus; low BCF's found for some predators, suggested that lead biomagnifications were taking place. The presence of Moina micrura in the gut of Asplanchna allowed us to design experiments where A. brightwellii was fed lead-exposed M. micrura neonates. The BAF of Asplanchna was 123,684, BCF was 490. Asplanchna individuals fed exposed Moina had 13.31 times more lead than Asplanchna individuals just exposed 48-h to lead, confirming that lead biomagnification occurs. Results of two fish species showed no lead biomagnification, suggesting that lead biomagnification might be restricted to invertebrate predators. - Highlights: → Study shows lead biomagnification evidence in reservoirs where top predators are invertebrates. → Study discusses why in previous studies lead biomagnifications were not detected. → Evidence of biomagnification comes from field and laboratory studies. - This study shows evidence (from field and laboratory experiments) of lead biomagnification in a freshwater reservoir where the main predators are invertebrates.

  5. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    Science.gov (United States)

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  6. Database of full-scale laboratory experiments on wave-driven sand transport processes

    NARCIS (Netherlands)

    van der Werf, Jebbe J.; Schretlen, Johanna Lidwina Maria; Ribberink, Jan S.; O'Donoghue, Tom

    2009-01-01

    A new database of laboratory experiments involving sand transport processes over horizontal, mobile sand beds under full-scale non-breaking wave and non-breaking wave-plus-current conditions is described. The database contains details of the flow and bed conditions, information on which quantities

  7. Tapping Recent Alumni for the Development of Cutting-Edge, Investigative Teaching Laboratory Experiments

    Science.gov (United States)

    Brodl, Mark R.

    2005-01-01

    This project presents a model for the development of an innovative, highly-experimental teaching laboratory course that centers upon collaborative efforts between recent alumni currently enrolled in Ph. D. programs (consultants) and current faculty. Because these consultants are involved in cutting-edge research, their combined talents represent a…

  8. Laboratory simulation of the formation of an ionospheric depletion using Keda Space Plasma EXperiment (KSPEX

    Directory of Open Access Journals (Sweden)

    Pengcheng Yu

    2017-10-01

    Full Text Available In the work, the formation of an ionospheric depletion was simulated in a controlled laboratory plasma. The experiment was performed by releasing chemical substance sulfur hexafluoride (SF6 into the pure argon discharge plasma. Results indicate that the plasma parameters change significantly after release of chemicals. The electron density is nearly depleted due to the sulfur hexafluoride-electron attachment reaction; and the electron temperature and space potential experience an increase due to the decrease of the electron density. Compared to the traditional active release experiments, the laboratory scheme can be more efficient, high repetition rate and simpler measurement of the varying plasma parameter after chemical releasing. Therefore, it can effective building the bridge between the theoretical work and real space observation.

  9. Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments

    Science.gov (United States)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Weihs, Philipp; Rieder, Harald E.

    2017-03-01

    This study investigates the effects of ambient meteorology on the accuracy of radiation (R) measurements performed with pyranometers contained in various heating and ventilation systems (HV-systems). It focuses particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments as well as two targeted field campaigns were performed in 2016. The results indicate that precipitation (as simulated by spray tests or observed under ambient conditions) significantly affects the thermal environment of the instruments and thus their stability. Statistical analyses of laboratory experiments showed that precipitation triggers zero offsets of -4 W m-2 or more, independent of the HV-system. Similar offsets were observed in field experiments under ambient environmental conditions, indicating a clear exceedance of BSRN (Baseline Surface Radiation Network) targets following precipitation events. All pyranometers required substantial time to return to their initial signal states after the simulated precipitation events. Therefore, for BSRN-class measurements, the recommendation would be to flag the radiation measurements during a natural precipitation event and 90 min after it in nighttime conditions. Further daytime experiments show pyranometer offsets of 50 W m-2 or more in comparison to the reference system. As they show a substantially faster recovery, the recommendation would be to flag the radiation measurements within a natural precipitation event and 10 min after it in daytime conditions.

  10. Design of simulated nuclear electronics laboratory experiments based on IAEA-TECDOC-530 on pcs

    International Nuclear Information System (INIS)

    Ghousia, S.F.; Nadeem, M.; Khaleeq, M.T.

    2002-05-01

    In this IAEA project, PK-11089 (Design of Simulated Nuclear Electronics Laboratory Experiments based on IAEA-TECDOC-530 on PCs), a software package consisting of Computer-Simulated Laboratory Experiments on Nuclear Electronics compatible with the IAEA-TECDOC-530 (Nuclear Electronics Laboratory Manual) has been developed in OrCAD 9.0 (an electronic circuit simulation software environment) as a self-training aid. The software process model employed in this project is the Feedback Waterfall model with some Rapid Application Model. The project work is completed in the five phases of the SDLC, (all of them have been fully completed) which includes the Requirement Definition, Phase, System and Software Design, Implementation and Unit testing, Integration and System-testing phase and the Operation and Maintenance phase. A total of 125 circuits are designed in 39 experiments from Power Supplies, Analog circuits, Digital circuits and Multi-channel analyzer sections. There is another set of schematic designs present in the package, which contains faulty circuits. This set is designed for the learners to exercise the troubleshooting. The integration and system-testing phase was carried out simultaneously. The Operation and Maintenance phase has been implemented by accomplishing it through some trainees and some undergraduate engineering students by allowing them to play with the software independently. (author)

  11. Laboratory experiments inform iceberg-calving forces

    Science.gov (United States)

    Cathles, L. M.; Burton, J. C.

    2013-12-01

    Globally detected glacial earthquakes are produced during cubic-kilometer scale calving events. The mechanism producing these earthquakes and the dependence of the seismic moment on iceberg size and glacial calving front geometry are not well established. We use a laboratory-scale model of the post-fracture calving process to measure aspects of the calving process not observable in nature. In our experiments, buoyant plastic blocks rest against against a force plate (glacial terminus) which measures both the total force and the torque exerted during the calving process. The blocks are gravitationally unstable, so that they will spontaneously capsize and rotate away from the terminus. We find that hydrodynamics are crucial when considering the coupling between the calving process and the solid earth. There is both a pushing contact force and a simultaneous pulling hydrodynamic force created by a reduced pressure along the terminus face. This suggests that a single couple force mechanism is a more appropriate mode for glacial earthquakes than the commonly used centroid single force model.

  12. An Undergraduate Laboratory Experiment for Upper-Level Forensic Science, Biochemistry, or Molecular Biology Courses: Human DNA Amplification Using STR Single Locus Primers by Real-Time PCR with SYBR Green Detection

    Science.gov (United States)

    Elkins, Kelly M.; Kadunc, Raelynn E.

    2012-01-01

    In this laboratory experiment, real-time polymerase chain reaction (real-time PCR) was conducted using published human TPOX single-locus DNA primers for validation and various student-designed short tandem repeat (STR) primers for Combined DNA Index System (CODIS) loci. SYBR Green was used to detect the amplification of the expected amplicons. The…

  13. Educational laboratory experiments on chemistry in a nuclear engineering school

    International Nuclear Information System (INIS)

    Akatsu, E.

    1982-01-01

    An educational laboratory experiment on radiochemistry was investigated by students in the general course of the Nuclear Engineering School of Japan Atomic Energy Research Institute. Most of them are not chemical engineers, but electrical and mechanical engineers. Therefore, the educational experiment was designed for them by introducing a ''word experiment'' in the initial stage and by reducing the chemical procedure as far as possible. It began with calculations on a simple solvent extraction process-the ''word experiment''--followed by the chemical separation of 144 Pr from 144 Ce with tri-n-butyl phosphate in a nitric acid system and then measurement of the radioactive decay and growth of the separated 144 Pr and 144 Ce, respectively. The chemical procedure was explained by the phenomenon but not by the mechanism of chelation. Most students thought the experiment was an exercise in solvent extraction or radiochemical separation rather than a radioactive equilibrium experiment. However, a pure chemist considered it as a sort of physical experiment, where the chemical procedure was used only for preparation of measuring samples. Another experiment, where 137 Cs was measured after isolation with ammonium phosphomolybdate, was also investigated. The experiment eliminated the need for students who were not chemists to know how to use radioactive tracers. These students appreciated the realization that they could understand the radioactivity in the environmental samples in a chemical frame of reference even though they were not chemists

  14. Comparison of laboratory and field experience of PWSCC in Alloy 182 weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Scott, P.; Meunier, M.-C.; Steltzlen, F. [AREVA NP, Tour AREVA, Paris La Defense (France); Calonne, O.; Foucault, M. [AREVA NP, Centre Technique, Le Creusot Cedex (France); Combrade, P. [ACXCOR, Saint Etienne (France); Amzallag, C. [EDF, SEPTEN, Villeurbanne (France)

    2007-07-01

    Laboratory studies of stress corrosion cracking of the nickel base weld metal, Alloy 182, in simulated PWR primary water suggest similar resistance to crack initiation and somewhat enhanced propagation rates relative to wrought Alloy 600. By contrast, field experience of cracking in the primary circuits of PWRs shows in general much better performance for Alloy 182 relative to Alloy 600 than would be anticipated from laboratory studies. This paper endeavours to resolve this apparent conundrum. It draws on the conclusions of recent research that has focussed on the role of surface finish, particularly cold work and residual stresses resulting from different fabrication processes, on the risk of initiating IGSCC in nickel base alloys in PWR primary water. It also draws on field experience of stress corrosion cracking that highlights the important role of surface finish for crack initiation. (author)

  15. Laboratory preparation questionnaires as a tool for the implementation of the Just in Time Teaching in the Physics I laboratories: Research training

    Science.gov (United States)

    Miranda, David A.; Sanchez, Melba J.; Forero, Oscar M.

    2017-06-01

    The implementation of the JiTT (Just in Time Teaching) strategy is presented to increase the previous preparation of students enrolled in the subject Physics Laboratory I offered at the Industrial University of Santander (UIS), Colombia. In this study, a laboratory preparation questionnaire (CPL) was applied as a tool for the implementation of JiTT combined with elements of mediated learning. It was found that the CPL allows to improve the students’ experience regarding the preparation of the laboratory and the development of the experimental session. These questionnaires were implemented in an academic manager (Moodle) and a web application (lab.ciencias.uis.edu.co) was used to publish the contents essential for the preparation of the student before each practical session. The most significant result was that the students performed the experimental session with the basic knowledge to improve their learning experience.

  16. Combining p-values in replicated single-case experiments with multivariate outcome.

    Science.gov (United States)

    Solmi, Francesca; Onghena, Patrick

    2014-01-01

    Interest in combining probabilities has a long history in the global statistical community. The first steps in this direction were taken by Ronald Fisher, who introduced the idea of combining p-values of independent tests to provide a global decision rule when multiple aspects of a given problem were of interest. An interesting approach to this idea of combining p-values is the one based on permutation theory. The methods belonging to this particular approach exploit the permutation distributions of the tests to be combined, and use a simple function to combine probabilities. Combining p-values finds a very interesting application in the analysis of replicated single-case experiments. In this field the focus, while comparing different treatments effects, is more articulated than when just looking at the means of the different populations. Moreover, it is often of interest to combine the results obtained on the single patients in order to get more global information about the phenomenon under study. This paper gives an overview of how the concept of combining p-values was conceived, and how it can be easily handled via permutation techniques. Finally, the method of combining p-values is applied to a simulated replicated single-case experiment, and a numerical illustration is presented.

  17. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  18. Evaluation of Surface Runoff Generation Processes Using a Rainfall Simulator: A Small Scale Laboratory Experiment

    Science.gov (United States)

    Danáčová, Michaela; Valent, Peter; Výleta, Roman

    2017-12-01

    Nowadays, rainfall simulators are being used by many researchers in field or laboratory experiments. The main objective of most of these experiments is to better understand the underlying runoff generation processes, and to use the results in the process of calibration and validation of hydrological models. Many research groups have assembled their own rainfall simulators, which comply with their understanding of rainfall processes, and the requirements of their experiments. Most often, the existing rainfall simulators differ mainly in the size of the irrigated area, and the way they generate rain drops. They can be characterized by the accuracy, with which they produce a rainfall of a given intensity, the size of the irrigated area, and the rain drop generating mechanism. Rainfall simulation experiments can provide valuable information about the genesis of surface runoff, infiltration of water into soil and rainfall erodibility. Apart from the impact of physical properties of soil, its moisture and compaction on the generation of surface runoff and the amount of eroded particles, some studies also investigate the impact of vegetation cover of the whole area of interest. In this study, the rainfall simulator was used to simulate the impact of the slope gradient of the irrigated area on the amount of generated runoff and sediment yield. In order to eliminate the impact of external factors and to improve the reproducibility of the initial conditions, the experiments were conducted in laboratory conditions. The laboratory experiments were carried out using a commercial rainfall simulator, which was connected to an external peristaltic pump. The pump maintained a constant and adjustable inflow of water, which enabled to overcome the maximum volume of simulated precipitation of 2.3 l, given by the construction of the rainfall simulator, while maintaining constant characteristics of the simulated precipitation. In this study a 12-minute rainfall with a constant intensity

  19. Validation experiment of a numerically processed millimeter-wave interferometer in a laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kogi, Y., E-mail: kogi@fit.ac.jp; Higashi, T.; Matsukawa, S. [Department of Information Electronics, Fukuoka Institute of Technology, Fukuoka 811-0295 (Japan); Mase, A. [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-0811 (Japan); Kohagura, J.; Yoshikawa, M. [Plasma Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Nagayama, Y.; Kawahata, K. [National Institute for Fusion Science, Toki, Gifu 509-5202 (Japan); Kuwahara, D. [Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588 (Japan)

    2014-11-15

    We propose a new interferometer system for density profile measurements. This system produces multiple measurement chords by a leaky-wave antenna driven by multiple frequency inputs. The proposed system was validated in laboratory evaluation experiments. We confirmed that the interferometer generates a clear image of a Teflon plate as well as the phase shift corresponding to the plate thickness. In another experiment, we confirmed that quasi-optical mirrors can produce multiple measurement chords; however, the finite spot size of the probe beam degrades the sharpness of the resulting image.

  20. Undergraduate Laboratory Experiment: Measuring Matter Antimatter Asymmetries at the Large Hadron Collider

    CERN Document Server

    Parkes, Chris; Gutierrez, J

    2015-01-01

    This document is the student manual for a third year undergraduate laboratory experiment at the University of Manchester. This project aims to measure a fundamental difference between the behaviour of matter and antimatter through the analysis of data collected by the LHCb experiment at the Large Hadron Collider. The three-body dmecays $B^\\pm \\rightarrow h^\\pm h^+ h^-$, where $h^\\pm$ is a $\\pi^\\pm$ or $K^\\pm$ are studied. The inclusive matter antimatter asymmetry is calculated, and larger asymmetries are searched for in localized regions of the phase-space.

  1. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  2. High-energy Nd:glass laser facility for collisionless laboratory astrophysics

    International Nuclear Information System (INIS)

    Niemann, C; Constantin, C G; Schaeffer, D B; Lucky, Z; Gekelman, W; Everson, E T; Tauschwitz, A; Weiland, T; Winske, D

    2012-01-01

    A kilojoule-class laser (Raptor) has recently been activated at the Phoenix-laser-facility at the University of California Los Angeles (UCLA) for an experimental program on laboratory astrophysics in conjunction with the Large Plasma Device (LAPD). The unique combination of a high-energy laser system and the 18 meter long, highly-magnetized but current-free plasma will support a new class of plasma physics experiments, including the first laboratory simulations of quasi-parallel collisionless shocks, experiments on magnetic reconnection, or advanced laser-based diagnostics of basic plasmas. Here we present the parameter space accessible with this new instrument, results from a laser-driven magnetic piston experiment at reduced power, and a detailed description of the laser system and its performance.

  3. Emulation-Based Virtual Laboratories: A Low-Cost Alternative to Physical Experiments in Control Engineering Education

    Science.gov (United States)

    Goodwin, G. C.; Medioli, A. M.; Sher, W.; Vlacic, L. B.; Welsh, J. S.

    2011-01-01

    This paper argues the case for emulation-based virtual laboratories in control engineering education. It demonstrates that such emulation experiments can give students an industrially relevant educational experience at relatively low cost. The paper also describes a particular emulation-based system that has been developed with the aim of giving…

  4. Modeling and experiment to threshing unit of stripper combine ...

    African Journals Online (AJOL)

    Modeling and experiment to threshing unit of stripper combine. ... were conducted with the different feed rates and drum rotator speeds for the rice stripped mixtures. ... and damage as well as for threshing unit design and process optimization.

  5. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    Science.gov (United States)

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  6. Experience of TLD personnel monitoring laboratory

    International Nuclear Information System (INIS)

    Jakhete, Prashant

    2002-01-01

    Full text: Renentech Laboratories is the first Private Enterprise in India to have been chosen to provide Personnel radiation monitoring services to radiation workers at different parts of the country. Since 1992 the Company has been manufacturing TLD phosphor powder of requisite quality and from 1995 commenced the production of TLD cards for radiation monitoring. After getting the necessary approval from the competent authorities in the country, the company undertook a rigorous quality assurance programme and received the accreditation in 1999 to carry out the personnel monitoring of radiation. Since then the trained staff of the Company is covering 1200 institutions in 16 states where radiation is being used. This translates to processing of 60,000 Till cards annually, the maximum limit permitted by BARC. Processing of exposure data is done strictly according well-laid guidelines. Any cases of overexposure are immediately referred to Calibration and Dose Record Section of BARC to meet the regulatory requirements. Necessary procedural guidelines are followed to handle such cases. In this lecture, learning, operation and implementation experience of a typical Private Company in a task, which, hitherto had been regarded as exclusive responsibility of state owned institution, is enumerated

  7. Ice and Atoms: experiments with laboratory-based positron beams

    International Nuclear Information System (INIS)

    Coleman, P G

    2011-01-01

    This short review presents results of new positron and positronium (Ps) experiments in condensed matter and atomic physics, as an illustration of the satisfying variety of scientific endeavours involving positron beams which can be pursued with relatively simple apparatus in a university laboratory environment. The first of these two studies - on ice films - is an example of how positrons and Ps can provide new insights into an important system which has been widely interrogated by other techniques. The second is an example of how simple positron beam systems can still provide interesting information - here on a current interesting fundamental problem in positron atomic physics.

  8. Solid deuterated water in space: detection constraints from laboratory experiments

    Science.gov (United States)

    Urso, R. G.; Palumbo, M. E.; Baratta, G. A.; Scirè, C.; Strazzulla, G.

    2018-06-01

    The comparison between astronomical spectra and laboratory experiments is fundamental to spread light on the structure and composition of ices found in interstellar dense molecular clouds and in Solar System bodies. Water is among the most abundant solid-phase species observed in these environments, and several attempts have been made to investigate the presence of its solid-phase isotopologues. In particular, the detection of the O-D stretching mode band at 4.1 μm due to both D2O and HDO within icy grain mantles is still under debate, and no detection have been reported about the presence of these species within icy bodies in the Solar System yet. In the near future, an important contribution could derive from the data acquired in the O-D stretching mode spectral range by the sensitive instruments on board the James Webb Space Telescope. With this in mind, we performed several laboratory experiments to study the O-D stretching mode band in solid mixtures containing water and deuterated water deposited in the temperature range between 17 and 155 K, in order to simulate astrophysical relevant conditions. Furthermore, samples have been studied at various temperature and irradiated with energetic ions (200 keV H+) in order to study the effects induced by both thermal and energetic processing. Our results provide some constraints on the detection of the 4.1 μm band in astronomical environments.

  9. Combined Steady-State and Dynamic Heat Exchanger Experiment

    Science.gov (United States)

    Luyben, William L.; Tuzla, Kemal; Bader, Paul N.

    2009-01-01

    This paper describes a heat-transfer experiment that combines steady-state analysis and dynamic control. A process-water stream is circulated through two tube-in-shell heat exchangers in series. In the first, the process water is heated by steam. In the second, it is cooled by cooling water. The equipment is pilot-plant size: heat-transfer areas…

  10. Constraints on the rheology of the partially molten mantle from numerical models of laboratory experiments

    Science.gov (United States)

    Rudge, J. F.; Alisic Jewell, L.; Rhebergen, S.; Katz, R. F.; Wells, G. N.

    2015-12-01

    One of the fundamental components in any dynamical model of melt transport is the rheology of partially molten rock. This rheology is poorly understood, and one way in which a better understanding can be obtained is by comparing the results of laboratory deformation experiments to numerical models. Here we present a comparison between numerical models and the laboratory setup of Qi et al. 2013 (EPSL), where a cylinder of partially molten rock containing rigid spherical inclusions was placed under torsion. We have replicated this setup in a finite element model which solves the partial differential equations describing the mechanical process of compaction. These computationally-demanding 3D simulations are only possible due to the recent development of a new preconditioning method for the equations of magma dynamics. The experiments show a distinct pattern of melt-rich and melt-depleted regions around the inclusions. In our numerical models, the pattern of melt varies with key rheological parameters, such as the ratio of bulk to shear viscosity, and the porosity- and strain-rate-dependence of the shear viscosity. These observed melt patterns therefore have the potential to constrain rheological properties. While there are many similarities between the experiments and the numerical models, there are also important differences, which highlight the need for better models of the physics of two-phase mantle/magma dynamics. In particular, the laboratory experiments display more pervasive melt-rich bands than is seen in our numerics.

  11. Operational experience at RCD and FCD laboratories during various ventilation conditions

    International Nuclear Information System (INIS)

    Murali, S.; Ashok Kumar, P.; Thanamani, M.; Rath, D.P.; Sapkal, J.A.; Raman, Anand

    2007-01-01

    Radiochemistry and Fuel Chemistry wing of Radiological Laboratory facility has various radio-chemical operations on isotopes of plutonium and trans-plutonium elements, carried out under containment and safe operational conditions. The ventilation provided to the facility is a Once - through system. The ventilation system is designed with separate headers for laboratory and glove box exhausts. There is scheduled periodic shut down of ventilation system for maintenance during non-occupancy hours/week ends. The buildup of natural α - emitters activity due to ventilation shut down, observed to be prevailing on stack air sample filter papers after the ventilation startup, is studied. The paper describes the operational experience gained over a period during ventilation shut down and suggests the course of remedial action for reducing the internal exposure due to build up of natural α - emitters and their progenies. (author)

  12. Low-cost nonlinear optics experiment for undergraduate instructional laboratory and lecture demonstration

    Science.gov (United States)

    Turchiello, Rozane de F.; Pereira, Luiz A. A.; Gómez, Sergio L.

    2017-07-01

    This paper presents a simple and affordable experiment on the thermal lens effect, suitable for an undergraduate educational laboratory or as a tabletop demonstration in a lecture on nonlinear optics. Such an experiment exploits the formation of a lens in an absorbing medium illuminated by a laser beam with a Gaussian intensity profile. As an absorber, we use a commercial soy sauce, which exhibits a strong thermal lensing effect. Additionally, we show how to measure the radius of a Gaussian beam using the knife-edge method, and how to estimate the focal length of the induced thermal lens.

  13. Field tracer transport experiments at the site of Canada's underground research laboratory

    International Nuclear Information System (INIS)

    Frost, L.H.; Davison, C.C.; Vandergraaf, T.T.; Scheier, N.W.; Kozak, E.T.

    1997-01-01

    To gain a better understanding of the processes affecting solute transport in fractured crystalline rock, groundwater tracer experiments are being performed within natural fracture domains and excavation damage zones at various scales at the site of AECL's Underground Research Laboratory (URL). The main objective of these experiments is to develop and demonstrate methods for characterizing the solute transport properties within fractured crystalline rock. Estimates of these properties are in turn being used in AECL's conceptual and numerical models of groundwater flow and solute transport through the geosphere surrounding a nuclear fuel waste disposal vault in plutonic rock of the Canadian Shield. (author)

  14. Pollination Requirements of Almond (Prunus dulcis): Combining Laboratory and Field Experiments.

    Science.gov (United States)

    Henselek, Yuki; Eilers, Elisabeth J; Kremen, Claire; Hendrix, Stephen D; Klein, Alexandra-Maria

    2018-03-08

    Almond (Prunus dulcis (Mill.) D. A. Webb; Rosales: Rosaceae) is a cash crop with an estimated global value of over seven billion U.S. dollars annually and commercial varieties are highly dependent on insect pollination. Therefore, the understanding of basic pollination requirements of the main varieties including pollination efficiency of honey bees (Apis mellifera, Linnaeus, Hymenoptera: Apidae) and wild pollinators is essential for almond production. We first conducted two lab experiments to examine the threshold number of pollen grains needed for successful pollination and to determine if varietal identity or diversity promotes fruit set and weight. Further, we examined stigma and ovules of flowers visited by Apis and non-Apis pollinators in the field to study the proportion of almond to non-almond pollen grains deposited, visitation time per flower visit, and tube set. Results indicate that the threshold for successful fertilization is around 60 pollen grains, but pollen can be from any compatible variety as neither pollen varietal identity nor diversity enhanced fruit set or weight. Andrena cerasifolii Cockerell (Hymenoptera: Andrenidae) was a more effective pollinator on a per single visit basis than Apis and syrphid flies. Nevertheless, Apis was more efficient than A. cerasifolii and syrphid flies as they spent less time on a flower during a single visit. Hence, planting with two compatible varieties and managing for both Apis and non-Apis pollinators is likely to be an optimal strategy for farmers to secure high and stable pollination success.

  15. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  16. A combined field and laboratory design for assessing the impact of night shift work on police officer operational performance.

    Science.gov (United States)

    Waggoner, Lauren B; Grant, Devon A; Van Dongen, Hans P A; Belenky, Gregory; Vila, Bryan

    2012-11-01

    This study assessed the utility of a combined field and laboratory research design for measuring the impact of consecutive night shift work on the sleepiness, vigilance, and driving performance of police patrol officers. For police patrol officers working their normal night shift duty cycles, simulated driving performance and psychomotor vigilance were measured in a laboratory on two separate occasions: in the morning after the last of five consecutive 10.7-h night shifts, and at the same time in the morning after three consecutive days off duty. Order of participation in conditions was randomized among subjects. Subjects experienced manipulation of sleep schedules due to working night shifts in a real operational environment, but performance testing was conducted under controlled laboratory conditions. N = 29 active-duty police patrol officers (27 male, 2 female; age 37.1 ± 6.3 years) working night shift schedules participated in this study. Simulated driving performance, psychomotor vigilance, and subjective sleepiness were significantly degraded following 5 consecutive night shifts as compared to 3 consecutive days off duty, indicating that active-duty police officers are susceptible to performance degradation as a consequence of working nights. This combined field and laboratory research design succeeded in bridging the gap between the realism of the operational environment and the control of laboratory performance testing, demonstrating that this is a useful approach for addressing the relationship between shift work induced fatigue and critical operational task performance.

  17. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    Science.gov (United States)

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  18. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination Experiment (PEACE) Polymers

    Science.gov (United States)

    Stambler, Arielle H.; Inoshita, Karen E.; Roberts, Lily M.; Barbagallo, Claire E.; deGroh, Kim K.; Banks, Bruce A.

    2011-01-01

    The Materials International Space Station Experiment 2 (MISSE 2) Polymer Erosion and Contamination Experiment (PEACE) polymers were exposed to the environment of low Earth orbit (LEO) for 3.95 years from 2001 to 2005. There were 41 different PEACE polymers, which were flown on the exterior of the International Space Station (ISS) in order to determine their atomic oxygen erosion yields. In LEO, atomic oxygen is an environmental durability threat, particularly for long duration mission exposures. Although spaceflight experiments, such as the MISSE 2 PEACE experiment, are ideal for determining LEO environmental durability of spacecraft materials, ground-laboratory testing is often relied upon for durability evaluation and prediction. Unfortunately, significant differences exist between LEO atomic oxygen exposure and atomic oxygen exposure in ground-laboratory facilities. These differences include variations in species, energies, thermal exposures and radiation exposures, all of which may result in different reactions and erosion rates. In an effort to improve the accuracy of ground-based durability testing, ground-laboratory to in-space atomic oxygen correlation experiments have been conducted. In these tests, the atomic oxygen erosion yields of the PEACE polymers were determined relative to Kapton H using a radio-frequency (RF) plasma asher (operated on air). The asher erosion yields were compared to the MISSE 2 PEACE erosion yields to determine the correlation between erosion rates in the two environments. This paper provides a summary of the MISSE 2 PEACE experiment; it reviews the specific polymers tested as well as the techniques used to determine erosion yield in the asher, and it provides a correlation between the space and ground laboratory erosion yield values. Using the PEACE polymers asher to in-space erosion yield ratios will allow more accurate in-space materials performance predictions to be made based on plasma asher durability evaluation.

  19. Combining program visualization with programming workspace to assist students for completing programming laboratory task

    Directory of Open Access Journals (Sweden)

    Elvina Elvina

    2018-06-01

    Full Text Available Numerous Program Visualization tools (PVs have been developed for assisting novice students to understand their source code further. However, none of them are practical to be used in the context of completing programming laboratory task; students are required to keep switching between PV and programming workspace when they need to know how their code works. This paper combines PV with programming workspace to handle such issue. Resulted tool (which is named PITON has 13 features extracted from PythonTutor, PyCharm, and student’s feedbacks about PythonTutor. According to think-aloud and user study, PITON is more practical to be used than a combination of PythonTutor and PyCharm. Further, its features are considerably helpful; students rated these features as useful and frequently used.

  20. Radon transport in fractured soil. Laboratory experiments and modelling

    International Nuclear Information System (INIS)

    Hoff, A.

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs

  1. Radon transport in fractured soil. Laboratory experiments and modelling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, A

    1997-10-01

    Radon (Rn-222) transport in fractured soil has been investigated by laboratory experiments and by modelling. Radon transport experiments have been performed with two sand columns (homogeneous and inhomogeneous) and one undisturbed clayey till column containing a net of preferential flow paths (root holes). A numerical model (the finite-element model FRACTRAN) and an analytic model (a pinhole model) have been applied in simulations if soil gas and radon transport in fractured soil. Experiments and model calculations are included in a discussion of radon entry rates into houses placed on fractured soil. The main conclusion is, that fractures does not in general alter transport of internally generated radon out of soil, when the pressure and flow conditions in the soil is comparable to the conditions prevailing under a house. This indicates the important result, that fractures in soil have no impact on radon entry into a house beyond that of an increased gas permeability, but a more thorough investigation of this subject is needed. Only in the case where the soil is exposed to large pressure gradients, relative to gradients induced by a house, may it be possible to observe effects of radon exchange between fractures and matrix. (au) 52 tabs., 60 ill., 5 refs.

  2. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    Science.gov (United States)

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  3. The testing effect for mediator final test cues and related final test cues in online and laboratory experiments.

    Science.gov (United States)

    Coppens, Leonora C; Verkoeijen, Peter P J L; Bouwmeester, Samantha; Rikers, Remy M J P

    2016-05-31

    The testing effect is the finding that information that is retrieved during learning is more often correctly retrieved on a final test than information that is restudied. According to the semantic mediator hypothesis the testing effect arises because retrieval practice of cue-target pairs (mother-child) activates semantically related mediators (father) more than restudying. Hence, the mediator-target (father-child) association should be stronger for retrieved than restudied pairs. Indeed, Carpenter (2011) found a larger testing effect when participants received mediators (father) than when they received target-related words (birth) as final test cues. The present study started as an attempt to test an alternative account of Carpenter's results. However, it turned into a series of conceptual (Experiment 1) and direct (Experiment 2 and 3) replications conducted with online samples. The results of these online replications were compared with those of similar existing laboratory experiments through small-scale meta-analyses. The results showed that (1) the magnitude of the raw mediator testing effect advantage is comparable for online and laboratory experiments, (2) in both online and laboratory experiments the magnitude of the raw mediator testing effect advantage is smaller than in Carpenter's original experiment, and (3) the testing effect for related cues varies considerably between online experiments. The variability in the testing effect for related cues in online experiments could point toward moderators of the related cue short-term testing effect. The raw mediator testing effect advantage is smaller than in Carpenter's original experiment.

  4. Benchmarking numerical codes for tracer transport with the aid of laboratory-scale experiments in 2D heterogeneous porous media.

    Science.gov (United States)

    Maina, Fadji Hassane; Ackerer, Philippe; Younes, Anis; Guadagnini, Alberto; Berkowitz, Brian

    2017-06-07

    We present a combined experimental and numerical modeling study that addresses two principal questions: (i) is any particular Eulerian-based method used to solve the classical advection-dispersion equation (ADE) clearly superior (relative to the others), in terms of yielding solutions that reproduce BTCs of the kind that are typically sampled at the outlet of a laboratory cell? and (ii) in the presence of matches of comparable quality against such BTCs, do any of these methods render different (or similar) numerical BTCs at locations within the domain? To address these questions, we obtained measurements from carefully controlled laboratory experiments, and employ them as a reference against which numerical results are benchmarked and compared. The experiments measure solute transport breakthrough curves (BTCs) through a square domain containing various configurations of coarse, medium, and fine quartz sand. The approaches to solve the ADE involve Eulerian-Lagrangian and Eulerian (finite volume, finite elements, mixed and discontinuous finite elements) numerical methods. Model calibration is not examined; permeability and porosity of each sand were determined previously through separate, standard laboratory tests, while dispersivities are assigned values proportional to mean grain size. We find that the spatial discretization of the flow field is of critical importance, due to the non-uniformity of the domain. Although simulated BTCs at the system outlet are observed to be very similar for these various numerical methods, computed local (point-wise, inside the domain) BTCs can be very different. We find that none of the numerical methods is able to fully reproduce the measured BTCs. The impact of model parameter uncertainty on the calculated BTCs is characterized through a set of numerical Monte Carlo simulations; in cases where the impact is significant, assessment of simulation matches to the experimental data can be ambiguous. Copyright © 2017 Elsevier B.V. All

  5. Immersion and contact freezing experiments in the Mainz wind tunnel laboratory

    Science.gov (United States)

    Eppers, Oliver; Mayer, Amelie; Diehl, Karoline; Mitra, Subir; Borrmann, Stephan; Szakáll, Miklós

    2016-04-01

    Immersion and contact freezing are of outmost important ice nucleation processes in mixed phase clouds. Experimental studies are carried out in the Mainz vertical wind tunnel laboratory in order to characterize these nucleation processes for different ice nucleating particles (INP), such as for mineral dust or biological particles. Immersion freezing is investigated in our laboratory with two different experimental techniques, both attaining contact-free levitation of liquid droplets and cooling of the surrounding air down to about -25 °C. In an acoustic levitator placed in the cold room of our laboratory, drops with diameters of 2 mm are investigated. In the vertical air stream of the wind tunnel droplets with diameter of 700 micron are freely floated at their terminal velocities, simulating the flow conditions of the free atmosphere. Furthermore, the wind tunnel offers a unique platform for contact freezing experiments. Supercooled water droplets are floated in the vertical air stream at their terminal velocities and INP are injected into the tunnel air stream upstream of them. As soon as INP collides with the supercooled droplet the contact freezing is initiated. The first results of immersion and contact freezing experiments with cellulose particles both in the acoustic levitator and in the wind tunnel will be presented. Cellulose is considered as typical INP of biological origin and a macrotracer for plant debris. Nucleating properties of cellulose will be provided, mainly focusing on the temperature, INP concentration, and specific surface area dependences of the freezing processes. Direct comparison between the different experimental techniques (acoustic levitator and wind tunnel), as well as between nucleation modes (immersion and contact freezing) will be presented. The work is carried out within the framework of the German research unit INUIT.

  6. Diffusion Experiments with Opalinus and Callovo-Oxfordian Clays: Laboratory, Large-Scale Experiments and Microscale Analysis by RBS

    International Nuclear Information System (INIS)

    Garcia-Gutierrez, M.; Alonso, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2009-01-01

    Consolidated clays are potential host rocks for deep geological repositories for high-level radioactive waste. Diffusion is the main transport process for radionuclides (RN) in these clays. Radionuclide (RN) diffusion coefficients are the most important parameters for Performance Assessment (PA) calculations of clay barriers. Different diffusion methodologies were applied at a laboratory scale to analyse the diffusion behaviour of a wide range of RN. Main aims were to understand the transport properties of different RNs in two different clays and to contribute with feasible methodologies to improve in-situ diffusion experiments, using samples of larger scale. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed, together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), for diffusion analyses at the micrometer scale. The main experimental and theoretical characteristics of the different methodologies, and their advantages and limitations are here discussed. Experiments were performed with the Opalinus and the Callovo-Oxfordian clays. Both clays are studied as potential host rock for a repository. Effective diffusion coefficients ranged between 1.10 - 10 to 1.10 - 12 m 2 /s for neutral, low sorbing cations (as Na and Sr) and anions. Apparent diffusion coefficients for strongly sorbing elements, as Cs and Co, are in the order of 1.10-13 m 2 /s; europium present the lowest diffusion coefficient (5.10 - 15 m 2 /s). The results obtained by the different approaches gave a comprehensive database of diffusion coefficients for RN with different transport behaviour within both clays. (Author) 42 refs

  7. Role of Laboratory Plasma Experiments in exploring the Physics of Solar Eruptions

    Science.gov (United States)

    Tripathi, S.

    2017-12-01

    Solar eruptive events are triggered over a broad range of spatio-temporal scales by a variety of fundamental processes (e.g., force-imbalance, magnetic-reconnection, electrical-current driven instabilities) associated with arched magnetoplasma structures in the solar atmosphere. Contemporary research on solar eruptive events is at the forefront of solar and heliospheric physics due to its relevance to space weather. Details on the formation of magnetized plasma structures on the Sun, storage of magnetic energy in such structures over a long period (several Alfven transit times), and their impulsive eruptions have been recorded in numerous observations and simulated in computer models. Inherent limitations of space observations and uncontrolled nature of solar eruptions pose significant challenges in testing theoretical models and developing the predictive capability for space-weather. The pace of scientific progress in this area can be significantly boosted by tapping the potential of appropriately scaled laboratory plasma experiments to compliment solar observations, theoretical models, and computer simulations. To give an example, recent results from a laboratory plasma experiment on arched magnetic flux ropes will be presented and future challenges will be discussed. (Work supported by National Science Foundation, USA under award number 1619551)

  8. Small Laccase from "Streptomyces Coelicolor"--An Ideal Model Protein/Enzyme for Undergraduate Laboratory Experience

    Science.gov (United States)

    Cook, Ryan; Hannon, Drew; Southard, Jonathan N.; Majumdar, Sudipta

    2018-01-01

    A one semester undergraduate biochemistry laboratory experience is described for an understanding of recombinant technology from gene cloning to protein characterization. An integrated experimental design includes three sequential modules: molecular cloning, protein expression and purification, and protein analysis and characterization. Students…

  9. Aespoe Hard Rock Laboratory. Final report of the first stage of the tracer retention understanding experiments

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, A. [Conterra AB, Uppsala (Sweden); Andersson, Peter [Geosigma AB, Uppsala (Sweden); Hermanson, Jan [Golder Grundteknik, Solna (Sweden); Byegaard, Johan [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Nuclear Chemistry; Cvetkovic, V. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Water Resources Engineering; Birgersson, Lars [Kemakta Konsult AB, Stockholm (Sweden)

    2000-03-15

    The first stage of the Tracer Retention Understanding Experiments (TRUE) was performed as a SKB funded project. The overall objectives of TRUE are to develop the understanding of radionuclide migration and retention in fractured rock, to evaluate the realism in applied model concepts, and to assess whether the necessary input data to the models can be collected from site characterisation. Further, to evaluate the usefulness and feasibility of different model approaches, and finally to provide in situ data on radionuclide migration and retention. The strive for address with multiple approaches is facilitated through a close collaboration with the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. The TRUE programme is a staged programme which addresses various scales from laboratory (< 0.5 m), detailed scale (< 10 m) and block scale (10-50 m). The First TRUE Stage was performed in the detailed scale with the specific objectives of providing data and conceptualising the investigated feature using conservative and sorbing tracers. Further, to improve methodologies for performing tracer tests, and to develop and test a methodology for obtaining pore volume/aperture data from epoxy resin injection, excavation and subsequent analyses. The experimental site is located at approximately 400 m depth in the northeastern part of the Aespoe Hard Rock Laboratory. The identification of conductive fractures and the target feature has benefited from the use of BIPS borehole TV imaging combined with detailed flow logging. The assessment of the conductive geometry has been further sustained by cross-hole pressure interference data. The investigated target feature (Feature A) is a reactivated mylonite which has later undergone brittle deformation. The feature is oriented northwest, along the principal horizontal stress orientation, and is a typical conductor for Aespoe conditions. Hydraulic characterisation shows that the feature is relatively well isolated

  10. Five biomedical experiments flown in an Earth orbiting laboratory: Lessons learned from developing these experiments on the first international microgravity mission from concept to landing

    Science.gov (United States)

    Winget, C. M.; Lashbrook, J. J.; Callahan, P. X.; Schaefer, R. L.

    1993-01-01

    There are numerous problems associated with accommodating complex biological systems in microgravity in the flexible laboratory systems installed in the Orbiter cargo bay. This presentation will focus upon some of the lessons learned along the way from the University laboratory to the IML-1 Microgravity Laboratory. The First International Microgravity Laboratory (IML-1) mission contained a large number of specimens, including: 72 million nematodes, US-1; 3 billion yeast cells, US-2; 32 million mouse limb-bud cells, US-3; and 540 oat seeds (96 planted), FOTRAN. All five of the experiments had to undergo significant redevelopment effort in order to allow the investigator's ideas and objectives to be accommodated within the constraints of the IML-1 mission. Each of these experiments were proposed as unique entities rather than part of the mission, and many procedures had to be modified from the laboratory practice to meet IML-1 constraints. After a proposal is accepted by NASA for definition, an interactive process is begun between the Principal Investigator and the developer to ensure a maximum science return. The success of the five SLSPO-managed experiments was the result of successful completion of all preflight biological testing and hardware verification finalized at the KSC Life Sciences Support Facility housed in Hangar L. The ESTEC Biorack facility housed three U.S. experiments (US-1, US-2, and US-3). The U.S. Gravitational Plant Physiology Facility housed GTHRES and FOTRAN. The IML-1 mission (launched from KSC on 22 Jan. 1992, and landed at Dryden Flight Research Facility on 30 Jan. 1992) was an outstanding success--close to 100 percent of the prelaunch anticipated science return was achieved and, in some cases, greater than 100 percent was achieved (because of an extra mission day).

  11. Numerical simulation studies of the LBNL heavy-ion beam combiner experiment

    International Nuclear Information System (INIS)

    Fawley, W.M.; Seidl, P.; Haber, I.; Friedman, A.; Grote, D.P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for heavy-ion inertial fusion energy drivers. A major area of interest, both theoretically and experimentally, is the resultant transverse phase space dilution during the beam merging process. Currently, a prototype combining experiment is underway at LBNL and we have employed a variety of numerical descriptions to aid in both the initial design of the experiment data. These range from simple envelope codes to detailed 2- and 3-D PIC simulations. We compare the predictions of the different numerical models to each other and to experimental data at different longitudinal positions

  12. Applicability of sorption data determined by laboratory experiments for evaluation of strontium-85 mobility in subsurface field

    International Nuclear Information System (INIS)

    Tanaka, Tadao; Mukai, Masayuki

    2003-01-01

    Applicability of laboratory measurements to radionuclide transport in a natural environment was studied using the data from the field tests. The K d values obtained in the laboratory experiments were input into the instantaneous equilibrium sorption model, which simulates the migration of 85 Sr in the unsaturated loess. This simulation managed to reproduce results of the aforementioned field tests. To evaluate more accurately migration behavior of 85 Sr, based on the sorption data obtained by the laboratory experiments, the hybrid sorption model consisting of the equilibrium sorption process and the kinetic sorption process was proposed. When compared with predictions using the K d -based equilibrium sorption model, the results of the field migration tests of 85 Sr were more successfully reproduced by introducing the hybrid sorption model. (author)

  13. Laboratory Experiments in Physics for Modern Astronomy With Comprehensive Development of the Physical Principles

    CERN Document Server

    Golden, Leslie

    2013-01-01

    This book presents experiments which will teach physics relevant to astronomy. The astronomer, as instructor, frequently faces this need when his college or university has no astronomy department and any astronomy course is taught in the physics department. The physicist, as instructor, will find this intellectually appealing when faced with teaching an introductory astronomy course. From these experiments, the student will acquire important analytical tools, learn physics appropriate to astronomy, and experience instrument calibration and the direct gathering and analysis of data. Experiments that can be performed in one laboratory session as well as semester-long observation projects are included. This textbook is aimed at undergraduate astronomy students.

  14. Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments

    OpenAIRE

    S. M. Oswald; H. Pietsch; D. J. Baumgartner; P. Weihs; H. E. Rieder

    2017-01-01

    This study investigates effects of ambient meteorology on the accuracy of radiation measurements performed with pyranometers contained in various heating/ventilation systems (HV-systems). It focuses particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments as well as two targeted field campaigns were performed in 2016. The results indicate that precipitation (as simulated by spr...

  15. In situ and laboratory migration experiments through boom clay at Mol

    International Nuclear Information System (INIS)

    Preter, P. de; Put, M.; Canniere, P. de

    1993-01-01

    Physico-chemical characterization and migration studies in the Boom clay, envisaged as a potential host sediment for high level waste disposal in Belgium, were started some 15 years ago. A synthesis study of this experimental work has recently been conducted to compile all available data. From a comparison of the available migration data and the data requirements as derived from the performance assessment studies PAGIS (1988) and PACOMA (1991) the new migration programme (1991-1995) was defined. The critical radionuclides, both with relation to dose rates to man and to missing or unreliable migration data, turned out to be 14 C, 99 Tc. 135 Cs and 237 Np. A second group of radionuclides was found to be possibly critical: 79 Se, 93 Zr, 107 Pd, U - , Am - , Cm - , and Pu-isotopes. This report concentrates on the experimental results as obtained from the migration experiments started in the previous migration programme. Some of the reported radionuclides e.g. 90 Sr) have lost their critical character and will not be further studied within the new programme. New experimental data from laboratory tests have become available for Np, Cs, Sr and C (as HC0 3 - ) and the first results on the migration of organic molecules dissolved in the interstitial Boom clay water are reported. The hydraulic parameters (the hydraulic conductivity K and the storage coefficient S o ) were calculated from both laboratory percolation experiments and in situ piezometric measurements. Conclusions concerning Boom clay anisotropy are drawn. Finally, a short description of the ongoing in situ HTO injection experiment is given and the experimental data are analyzed and discussed. 10 refs., 4 figs., 1 tab

  16. Setup and commissioning of a combined water detritiation and isotope separation experiment at the Tritium Laboratory Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Welte, S., E-mail: stefan.welte@kit.edu; Cristescu, I.; Dittrich, H.; Lohr, N.; Melzer, C.; Michling, R.; Plusczyk, C.; Schaefer, P.

    2013-10-15

    Highlights: • Technical scale, tritium compatible liquid phase catalytic exchange (LPCE). • Technical scale, tritium compatible cryogenic distillation. • Combines processing option for tritiated water and isotope separation. -- Abstract: The European union in kind supply for the ITER fuel cycle development consists, among others, of the water detritiation system (WDS) and the isotope separation system (ISS). In order to mitigate the release of tritium to the environment, these systems are combined by feeding hydrogen exhaust from the ISS into the WDS for final processing. Therefore, the WDS is the final tritium barrier before releasing hydrogen (H{sub 2}) exhaust to the environment. The TRENTA 4 scaled prototype facility at TLK is based on combination of the combined electrolysis and catalytic exchange (CECE) process and a cryogenic distillation (CD) process. All components are fully tritium compatible and controlled using a state of the art control system for process automation, backed up by an additional dedicated safety system. The paper will give a detailed overview of the current experimental facility including all process components. Furthermore the paper will present the results of the functional test of the WDS/ISS combination using protium and deuterium, as well the results of the first commissioning runs using HTO of approximately 5 × 10{sup 9} Bq kg{sup −1} activity concentration.

  17. Linear Accelerator Laboratory

    International Nuclear Information System (INIS)

    1976-01-01

    This report covers the activity of the Linear Accelerator Laboratory during the period June 1974-June 1976. The activity of the Laboratory is essentially centered on high energy physics. The main activities were: experiments performed with the colliding rings (ACO), construction of the new colliding rings and beginning of the work at higher energy (DCI), bubble chamber experiments with the CERN PS neutrino beam, counter experiments with CERN's PS and setting-up of equipment for new experiments with CERN's SPS. During this period a project has also been prepared for an experiment with the new PETRA colliding ring at Hamburg. On the other hand, intense collaboration with the LURE Laboratory, using the electron synchrotron radiation emitted by ACO and DCI, has been developed [fr

  18. Interactive virtual optical laboratories

    Science.gov (United States)

    Liu, Xuan; Yang, Yi

    2017-08-01

    Laboratory experiences are essential for optics education. However, college students have limited access to advanced optical equipment that is generally expensive and complicated. Hence there is a need for innovative solutions to expose students to advanced optics laboratories. Here we describe a novel approach, interactive virtual optical laboratory (IVOL) that allows unlimited number of students to participate the lab session remotely through internet, to improve laboratory education in photonics. Although students are not physically conducting the experiment, IVOL is designed to engage students, by actively involving students in the decision making process throughout the experiment.

  19. EXPERIENCE OF THE ORGANIZATION OF VIRTUAL LABORATORIES ON THE BASIS OF TECHNOLOGIES OF CLOUD COMPUTING

    Directory of Open Access Journals (Sweden)

    V. Oleksyuk

    2014-06-01

    Full Text Available The article investigated the concept of «virtual laboratory». This paper describes models of deploying of cloud technologies in IT infrastructure. The hybrid model is most recent for higher educational institution. The author suggests private cloud platforms to deploying the virtual laboratory. This paper describes the experience of the deployment enterprise cloud in IT infrastructure of Department of Physics and Mathematics of Ternopil V. Hnatyuk National Pedagogical University. The object of the research are virtual laboratories as components of IT infrastructure of higher education. The subject of the research are clouds as base of deployment of the virtual laboratories. Conclusions. The use of cloud technologies in the development virtual laboratories of the is an actual and need of the development. The hybrid model is the most appropriate in the deployment of cloud infrastructure of higher educational institution. It is reasonable to use the private (Cloudstack, Eucalyptus, OpenStack cloud platform in the universities.

  20. Design and implementation of an internet-based electrical engineering laboratory.

    Science.gov (United States)

    He, Zhenlei; Shen, Zhangbiao; Zhu, Shanan

    2014-09-01

    This paper describes an internet-based electrical engineering laboratory (IEE-Lab) with virtual and physical experiments at Zhejiang University. In order to synthesize the advantages of both experiment styles, the IEE-Lab is come up with Client/Server/Application framework and combines the virtual and physical experiments. The design and workflow of IEE-Lab are introduced. The analog electronic experiment is taken as an example to show Flex plug-in design, data communication based on XML (Extensible Markup Language), experiment simulation modeled by Modelica and control terminals' design. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  1. Does fault strengthening in laboratory rock friction experiments really depend primarily upon time and not slip?

    Science.gov (United States)

    Bhattacharya, Pathikrit; Rubin, Allan M.; Beeler, Nicholas M.

    2017-08-01

    The popular constitutive formulations of rate-and-state friction offer two end-member views on whether friction evolves only with slip (Slip law) or with time even without slip (Aging law). While rate stepping experiments show support for the Slip law, laboratory-observed frictional behavior near-zero slip rates has traditionally been inferred as supporting Aging law style time-dependent healing, in particular, from the slide-hold-slide experiments of Beeler et al. (1994). Using a combination of new analytical results and explicit numerical (Bayesian) inversion, we show instead that the slide-hold-slide data of Beeler et al. (1994) favor slip-dependent state evolution during holds. We show that, while the stiffness-independent rate of growth of peak stress (following reslides) with hold duration is a property shared by both the Aging and (under a more restricted set of parameter combinations) Slip laws, the observed stiffness dependence of the rate of stress relaxation during long holds is incompatible with the Aging law with constant rate-state parameters. The Slip law consistently fits the evolution of the stress minima at the end of the holds well, whether fitting jointly with peak stresses or otherwise. But neither the Aging nor Slip laws fit all the data well when a - b is constrained to values derived from prior velocity steps. We also attempted to fit the evolution of stress peaks and minima with the Kato-Tullis hybrid law and the shear stress-dependent Nagata law, both of which, even with the freedom of an extra parameter, generally reproduced the best Slip law fits to the data.

  2. Combined effect of internal irradiation, alcohol and smoking on some immunological indices

    International Nuclear Information System (INIS)

    Shubik, V.M.

    1987-01-01

    It is shown that chronic intake of 0.21 kBq/g 210 Po per day by laboratory animals after three months of experiment results in increase of autoantibody concentration to hepatic tissue and circulating immune complexes (CIC). Combined effect of radionuclide with ethanol or tobacco smokes didn't result in increase of autoantibody and CIC concentration independent of 210 Po concentration in experiments. During combined single chronic effect of radionuclide, ethanol and tobacco smokes considerable increase of autoantibody titers, particularly to hepatic tissue, as compared to mice, which intake of these components was separate, was detected. The results rermit to suppose on additive action of 210 Po, alcohol and tobacco smokes in case of their chronic effect on the boDy of laboratory animals

  3. Computer Assisted Fluid Power Instruction: A Comparison of Hands-On and Computer-Simulated Laboratory Experiences for Post-Secondary Students

    Science.gov (United States)

    Wilson, Scott B.

    2005-01-01

    The primary purpose of this study was to examine the effectiveness of utilizing a combination of lecture and computer resources to train personnel to assume roles as hydraulic system technicians and specialists in the fluid power industry. This study compared computer simulated laboratory instruction to traditional hands-on laboratory instruction,…

  4. A Laboratory experiment on vermicomposting of winery residues and sewage sledge

    Energy Technology Data Exchange (ETDEWEB)

    Soriano, M. D.; Molina, M. J.; Llinares, J.; Pons, V.; Pallares, L.

    2009-07-01

    Organic waste addition to agricultural soils is proposed as a disposal strategy to improve the structural properties and organic matter content of soils. In this work, the results obtained after a vermicomposting process are reported. The process has been performed mixing rabitt crop wastes with increasing addition of either vinasse bio solids or municipal sewage sludges. For this purpose, a laboratory experiment was conducted in which both wastes were inoculated with earthworms (Eisenia foetida) and maintained under controlled conditions for 4 months. (Author)

  5. A Laboratory experiment on vermicomposting of winery residues and sewage sledge

    International Nuclear Information System (INIS)

    Soriano, M. D.; Molina, M. J.; Llinares, J.; Pons, V.; Pallares, L.

    2009-01-01

    Organic waste addition to agricultural soils is proposed as a disposal strategy to improve the structural properties and organic matter content of soils. In this work, the results obtained after a vermicomposting process are reported. The process has been performed mixing rabitt crop wastes with increasing addition of either vinasse bio solids or municipal sewage sludges. For this purpose, a laboratory experiment was conducted in which both wastes were inoculated with earthworms (Eisenia foetida) and maintained under controlled conditions for 4 months. (Author)

  6. A combination dielectric and acoustic laboratory instrument for petrophysics

    Science.gov (United States)

    Josh, Matthew

    2017-12-01

    Laboratory testing of rock samples is the primary method for establishing the physics models which relate the rock properties (i.e. porosity, fluid permeability, pore-fluid and saturation) essential to evaluating a hydrocarbon reservoir, to the physical properties (resistivity, nuclear magnetic resonance, dielectric permittivity and acoustic properties) which can be measured with borehole logging instrumentation. Rock samples usually require machining to produce a suitable geometry for each test as well as specific sample preparation, e.g. multiple levels of saturation and chemical treatments, and this leads to discrepancies in the condition of the sample between different tests. Ideally, multiphysics testing should occur on one sample simultaneously so that useful correlations between data sets can be more firmly established. The world’s first dielectric and acoustic combination cell has been developed at CSIRO, so that a sample may be machined and prepared, then measured to determine the dielectric and acoustic properties simultaneously before atmospheric conditions in the laboratory affect the level of hydration in the sample. The dielectric measurement is performed using a conventional three-terminal parallel plate capacitor which can operate from 40 Hz up to 110 MHz, with modified electrodes incorporating a 4 MHz P-wave piezo crystal. Approximately 10 (acoustic P-) wavelengths interact with a typical (10 mm thick) sample so that the user may reliably ‘pick’ the P-wave arrival times with acceptable resolution. Experimental evidence indicates that the instrument is able to resolve 0.25 mm thickness in a Teflon sample test piece. For a number of engineering materials including Teflon and glass and also for a geological samples (Donnybrook sandstone from Western Australia) there is a perfectly linear relationship between both capacitance and P-wave arrival time with sample thickness. Donnybrook sandstone has a consistently linear increase in dielectric

  7. A Survey on Faculty Perspectives on the Transition to a Biochemistry Course-Based Undergraduate Research Experience Laboratory

    Science.gov (United States)

    Craig, Paul A.

    2017-01-01

    It will always remain a goal of an undergraduate biochemistry laboratory course to engage students hands-on in a wide range of biochemistry laboratory experiences. In 2006, our research group initiated a project for "in silico" prediction of enzyme function based only on the 3D coordinates of the more than 3800 proteins "of unknown…

  8. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    Science.gov (United States)

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  9. If you pay peanuts: a laboratory experiment on reward schemes in employment service contracting

    NARCIS (Netherlands)

    van de Meerendonk, A.; Onderstal, S.

    2010-01-01

    The design of tenders and contracts is a crucial factor in the success or failure of the contracting-out of reintegration services. In a laboratory experiment with professionals from private reintegration service providers, we tested two tender designs. In the first design, the government announces

  10. Fault healing promotes high-frequency earthquakes in laboratory experiments and on natural faults

    Science.gov (United States)

    McLaskey, Gregory C.; Thomas, Amanda M.; Glaser, Steven D.; Nadeau, Robert M.

    2012-01-01

    Faults strengthen or heal with time in stationary contact and this healing may be an essential ingredient for the generation of earthquakes. In the laboratory, healing is thought to be the result of thermally activated mechanisms that weld together micrometre-sized asperity contacts on the fault surface, but the relationship between laboratory measures of fault healing and the seismically observable properties of earthquakes is at present not well defined. Here we report on laboratory experiments and seismological observations that show how the spectral properties of earthquakes vary as a function of fault healing time. In the laboratory, we find that increased healing causes a disproportionately large amount of high-frequency seismic radiation to be produced during fault rupture. We observe a similar connection between earthquake spectra and recurrence time for repeating earthquake sequences on natural faults. Healing rates depend on pressure, temperature and mineralogy, so the connection between seismicity and healing may help to explain recent observations of large megathrust earthquakes which indicate that energetic, high-frequency seismic radiation originates from locations that are distinct from the geodetically inferred locations of large-amplitude fault slip

  11. Designing experiments on thermal interactions by secondary-school students in a simulated laboratory environment

    Science.gov (United States)

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-07-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and communication technology, and specifically of the simulated virtual laboratory 'ThermoLab'. Design and methods A pre-post comparison was applied. Students' design of experiments was rated in eight dimensions; namely, hypothesis forming and verification, selection of variables, initial conditions, device settings, materials and devices used, process and phenomena description. A three-level ranking scheme was employed for the evaluation of students' answers in each dimension. Results A Wilcoxon signed-rank test revealed a statistically significant difference between the students' pre- and post-test scores. Additional analysis by comparing the pre- and post-test scores using the Hake gain showed high gains in all but one dimension, which suggests that this improvement was almost inclusive. Conclusions We consider that our findings support the statement that there was an improvement in students' ability to design experiments.

  12. Diffusion Experiments with Opalinus and Callovo-Oxfordian Clays: Laboratory, Large-Scale Experiments and Microscale Analysis by RBS

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Gutierrez, M.; Alonso, U.; Missana, T.; Cormenzana, J.L.; Mingarro, M.; Morejon, J.; Gil, P.

    2009-09-25

    Consolidated clays are potential host rocks for deep geological repositories for high-level radioactive waste. Diffusion is the main transport process for radionuclides (RN) in these clays. Radionuclide (RN) diffusion coefficients are the most important parameters for Performance Assessment (PA) calculations of clay barriers. Different diffusion methodologies were applied at a laboratory scale to analyse the diffusion behaviour of a wide range of RN. Main aims were to understand the transport properties of different RNs in two different clays and to contribute with feasible methodologies to improve in-situ diffusion experiments, using samples of larger scale. Classical laboratory essays and a novel experimental set-up for large-scale diffusion experiments were performed, together to a novel application of the nuclear ion beam technique Rutherford Backscattering Spectrometry (RBS), for diffusion analyses at the micrometer scale. The main experimental and theoretical characteristics of the different methodologies, and their advantages and limitations are here discussed. Experiments were performed with the Opalinus and the Callovo-Oxfordian clays. Both clays are studied as potential host rock for a repository. Effective diffusion coefficients ranged between 1.10{sup -}10 to 1.10{sup -}12 m{sup 2}/s for neutral, low sorbing cations (as Na and Sr) and anions. Apparent diffusion coefficients for strongly sorbing elements, as Cs and Co, are in the order of 1.10-13 m{sup 2}/s; europium present the lowest diffusion coefficient (5.10{sup -}15 m{sup 2}/s). The results obtained by the different approaches gave a comprehensive database of diffusion coefficients for RN with different transport behaviour within both clays. (Author) 42 refs.

  13. Experiments at the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    2004-12-01

    A dress rehearsal is being held in preparation for the construction of a deep repository for spent nuclear fuel at SKB's underground Hard Rock Laboratory (HRL) on Aespoe, outside Oskarshamn. Here we can test different technical solutions on a full scale and in a realistic environment. The Aespoe HRL is also used for field research. We are conducting a number of experiments here in collaboration with Swedish and international experts. In the Zedex experiment we have compared how the rock is affected around a drill-and-blast tunnel versus a bored tunnel. In a new experiment we will investigate how much the rock can take. A narrow pillar between two boreholes will be loaded to the point that the rock's ultimate strength is exceeded (Aespoe Pillar Stability Experiment). In the Demo Test we are demonstrating emplacement of the copper canisters and the surrounding bentonite in the deposition holes. In the Prototype Repository we study what long-term changes occur in the barriers under the conditions prevailing in a deep repository. Horizontal deposition: Is it possible to deposit the canisters horizontally without compromising safety? Backfill and Plug Test: The tunnels in the future deep repository for spent nuclear fuel will be filled with clay and crushed rock and then plugged. Canister Retrieval Test: If the deep repository should not perform satisfactorily for some reason, we want to be able to retrieve the spent fuel. The Lot test is intended to show how the bentonite behaves in an environment similar to that in the future deep repository. The purpose of the TBT test is to determine how the bentonite clay in the buffer is affected by high temperatures. Two-phase flow means that liberated gas in the groundwater flows separately in the fractures in the rock. This reduces the capacity of the rock to conduct water. Lasgit: By pressurizing a canister with helium, we can measure how the gas moves through the surrounding buffer. Colloid Project: Can very small particles

  14. Team-Based Learning, Faculty Research, and Grant Writing Bring Significant Learning Experiences to an Undergraduate Biochemistry Laboratory Course

    Science.gov (United States)

    Evans, Hedeel Guy; Heyl, Deborah L.; Liggit, Peggy

    2016-01-01

    This biochemistry laboratory course was designed to provide significant learning experiences to expose students to different ways of succeeding as scientists in academia and foster development and improvement of their potential and competency as the next generation of investigators. To meet these goals, the laboratory course employs three…

  15. Bioremediation of petroleum contaminated soil at CFS Alert - Laboratory scale respirometry experiment

    International Nuclear Information System (INIS)

    Haidar, S.; Bennett, J.; Jarrett, P.; Biggar, K.

    1998-01-01

    The feasibility of 'biopiling' was tested at Canadian Forces Station 'Alert', located in the high Arctic where the feasibility of bioremediation is yet to be proven. Laboratory respirometer experiments were conducted at 11 degrees C that examined the behaviour of indigenous microorganisms. Experiments were also carried out at one contaminated site. Various soil properties were analyzed, as well as total petroleum hydrocarbons. Results showed that the respirometer system functioned properly in monitoring the behaviour of microorganisms, that indigenous microorganisms were active at 11 degrees C, and that they functioned at a constant rate of oxygen consumption. These results suggest that biopiling may be feasible under the conditions existing at CFS 'Alert'. 12 refs., 5 tabs., 8 figs

  16. Dehydration of 2-Methyl-1-Cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment

    Science.gov (United States)

    Friesen, J. Brent; Schretzman, Robert

    2011-01-01

    The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohexanol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev's rule. However, sensitive analytical techniques reveal that the results do not entirely…

  17. Combining symbolic cues with sensory input and prior experience in an iterative Bayesian framework

    Directory of Open Access Journals (Sweden)

    Frederike Hermi Petzschner

    2012-08-01

    Full Text Available Perception and action are the result of an integration of various sources of information, such as current sensory input, prior experience, or the context in which a stimulus occurs. Often, the interpretation is not trivial hence needs to be learned from the co-occurrence of stimuli. Yet, how do we combine such diverse information to guide our action?Here we use a distance production-reproduction task to investigate the influence of auxiliary, symbolic cues, sensory input, and prior experience on human performance under three different conditions that vary in the information provided. Our results indicate that subjects can (1 learn the mapping of a verbal, symbolic cue onto the stimulus dimension and (2 integrate symbolic information and prior experience into their estimate of displacements.The behavioral results are explained by to two distinct generative models that represent different structural approaches of how a Bayesian observer would combine prior experience, sensory input, and symbolic cue information into a single estimate of displacement. The first model interprets the symbolic cue in the context of categorization, assuming that it reflects information about a distinct underlying stimulus range (categorical model. The second model applies a multi-modal integration approach and treats the symbolic cue as additional sensory input to the system, which is combined with the current sensory measurement and the subjects’ prior experience (cue-combination model. Notably, both models account equally well for the observed behavior despite their different structural assumptions. The present work thus provides evidence that humans can interpret abstract symbolic information and combine it with other types of information such as sensory input and prior experience. The similar explanatory power of the two models further suggest that issues such as categorization and cue-combination could be explained by alternative probabilistic approaches.

  18. Nulling interferometry for the darwin mission: laboratory demonstration experiment

    Science.gov (United States)

    Ollivier, Marc; Léger, Alain; Sekulic, Predrag; Labèque, Alain; Michel, Guy

    2017-11-01

    The DARWIN mission is a project of the European Space Agency that should allow around 2012 the search for extrasolar planets and a spectral analysis of their potential atmosphere in order to evidence gases and particularly tracers of life. The principle of the instrument is based on the Bracewell nulling interferometer. It allows high angular resolution and high dynamic range. However, this concept, proposed more than 20 years ago, has never been experimentally demonstrated in the thermal infrared with high levels of extinction. We present here a laboratory monochromatic experiment dedicated to this goal. A theoretical and numerical approach of the question highlights a strong difficulty: the need for very clean and homogeneous wavefronts, in terms of intensity, phase and polarisation distribution. A classical interferometric approach appears to be insufficient to reach our goals. We have shown theoretically then numerically that this difficulty can be surpassed if we perform an optical filtering of the interfering beams. This technique allows us to decrease strongly the optical requirements and to view very high interferometric contrast measurements with commercial optical pieces. We present here a laboratory interferometer working at 10,6 microns, and implementing several techniques of optical filtering (pinholes and single-mode waveguides), its realisation, and its first promising results. We particularly present measurements that exhibit stable visibility levels better than 99,9% that is to say extinction levels better than 1000.

  19. Strain Localization and Weakening Processes in Viscously Deforming Rocks: Numerical Modeling Based on Laboratory Torsion Experiments

    Science.gov (United States)

    Doehmann, M.; Brune, S.; Nardini, L.; Rybacki, E.; Dresen, G.

    2017-12-01

    Strain localization is an ubiquitous process in earth materials observed over a broad range of scales in space and time. Localized deformation and the formation of shear zones and faults typically involves material softening by various processes, like shear heating and grain size reduction. Numerical modeling enables us to study the complex physical and chemical weakening processes by separating the effect of individual parameters and boundary conditions. Using simple piece-wise linear functions for the parametrization of weakening processes allows studying a system at a chosen (lower) level of complexity (e.g. Cyprych et al., 2016). In this study, we utilize a finite element model to test two weakening laws that reduce the strength of the material depending on either the I) amount of accumulated strain or II) deformational work. Our 2D Cartesian models are benchmarked to single inclusion torsion experiments performed at elevated temperatures of 900 °C and pressures of up to 400 MPa (Rybacki et al., 2014). The experiments were performed on Carrara marble samples containing a weak Solnhofen limestone inclusion at a maximum strain rate of 2.0*10-4 s-1. Our models are designed to reproduce shear deformation of a hollow cylinder equivalent to the laboratory setup, such that material leaving one side of the model in shear direction enters again on the opposite side using periodic boundary conditions. Similar to the laboratory tests, we applied constant strain rate and constant stress boundary conditions.We use our model to investigate the time-dependent distribution of stress and strain and the effect of different parameters. For instance, inclusion rotation is shown to be strongly dependent on the viscosity ratio between matrix and inclusion and stronger ductile weakening increases the localization rate while decreasing shear zone width. The most suitable weakening law for representation of ductile rock is determined by combining the results of parameter tests with

  20. The Effect of an Open-Ended Design Experience on Student Achievement in an Engineering Laboratory Course

    Directory of Open Access Journals (Sweden)

    Matthew Cullin

    2017-11-01

    Full Text Available This study explores the effect of incorporating an Open-Ended Design Experience (OEDE into an undergraduate materials science laboratory taken by third-year mechanical engineering students. The focus of the OEDE was carbon fiber reinforced plastics and sandwich structures. The results indicate that the incorporation of OEDE’s in laboratory courses produces significant benefits in terms of student engagement, participation, and perception of competence. In addition, the OEDE was found to enhance students’ ability to apply related concepts as compared to non-OEDE lab activities. The authors conclude that the incorporation of OEDE’s can increase the effectiveness of engineering laboratory courses.

  1. Fitting It All In: Adapting a Green Chemistry Extraction Experiment for Inclusion in an Undergraduate Analytical Laboratory

    Science.gov (United States)

    Buckley, Heather L.; Beck, Annelise R.; Mulvihill, Martin J.; Douskey, Michelle C.

    2013-01-01

    Several principles of green chemistry are introduced through this experiment designed for use in the undergraduate analytical chemistry laboratory. An established experiment of liquid CO2 extraction of D-limonene has been adapted to include a quantitative analysis by gas chromatography. This facilitates drop-in incorporation of an exciting…

  2. Kinetics of Hydrolysis of Acetic Anhydride by In-Situ FTIR Spectroscopy: An Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Haji, Shaker; Erkey, Can

    2005-01-01

    A reaction kinetics experiment for the chemical engineering undergraduate laboratory course was developed in which in-situ Fourier Transfer Infrared spectroscopy was used to measure reactant and product concentrations. The kinetics of the hydrolysis of acetic anhydride was determined by experiments carried out in a batch reactor. The results…

  3. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

    Science.gov (United States)

    Rice, Charles V.; Giffin, Guinevere A.

    2008-01-01

    Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

  4. Performance assessment experience at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Lee, D.W.

    1994-01-01

    The development of a performance assessment (PA) for low-level radioactive waste disposal operations at Oak Ridge National Laboratory (ORNL) was initiated in 1989 and is continuing. A draft PA was prepared in September 1990 and submitted to the DOE Peer Review Panel for review and comment. Recommendations were received that formed the basis for a revised PA that was completed in December 1993. The review of the revised PA is continuing. This paper reviews the experience gained in the preparation of the PA including the technical difficulties associated with performance assessment in Oak Ridge and an overview of the methods used in the PA. Changes in waste operations that resulted from the findings in the PA include improved waste acceptance criteria, waste certification, and waste management practices. The discussion includes issues that relate to the application of current performance objectives to older disposal facilities, which are being addressed as part of the CERCLA process

  5. Network Performance and Quality of Experience of Remote Access Laboratories

    Directory of Open Access Journals (Sweden)

    Alexander A. Kist

    2012-11-01

    Full Text Available Remote Access Laboratories (RAL have become important learning and teaching tools. This paper presents a performance study that targets a specific remote access architecture implemented within a universities operational environment. This particular RAL system provides globally authenticated and arbitrated remote access to virtualized computers as well as computer controlled hardware experiments. This paper presents system performance results that have been obtained utilizing both a set of automated and human subject tests. Principle objectives of the study were: To gain a better understanding of the nature of network traffic caused by experimental activity usage; to obtain an indication of user expectations of activity performance; and to develop a measure to predict Quality of Experience, based on easily measurable Quality of Service parameters. The study emulates network layer variation of access-bandwidth and round-trip-time of typical usage scenarios and contrasts against user perception results that allow classifying expected user performance. It demonstrates that failure rate is excellent measure of usability, and that round-trip-time predominantly affects user experience. Thin-client and remote desktop architectures are popular to separate the location of users and the actual data processing and use similar structures, hence results of this study to be applied in these application areas as well.

  6. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    Science.gov (United States)

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  7. Laboratory Impact Experiments

    Science.gov (United States)

    Horanyi, M.; Munsat, T.

    2017-12-01

    The experimental and theoretical programs at the SSERVI Institute for Modeling Plasmas, Atmospheres, and Cosmic Dust (IMPACT) address the effects of hypervelocity dust impacts and the nature of the space environment of granular surfaces interacting with solar wind plasma and ultraviolet radiation. These are recognized as fundamental planetary processes due their role in shaping the surfaces of airless planetary objects, their plasma environments, maintaining dust haloes, and sustaining surface bound exospheres. Dust impacts are critically important for all airless bodies considered for possible human missions in the next decade: the Moon, Near Earth Asteroids (NEAs), Phobos, and Deimos, with direct relevance to crew and mission safety and our ability to explore these objects. This talk will describe our newly developed laboratory capabilities to assess the effects of hypervelocity dust impacts on: 1) the gardening and redistribution of dust particles; and 2) the generation of ionized and neutral gasses on the surfaces of airless planetary bodies.

  8. Microbial analysis of the buffer/container experiment at AECL's underground research laboratory

    International Nuclear Information System (INIS)

    Stroes-Gascoyne, S.

    1996-07-01

    The Buffer/Container Experiment (BCE) was carried out at AECL's Underground Research Laboratory (URL) for 2.5 years to examine the in situ performance of compacted buffer material in a single emplacement borehole under vault-relevant conditions. During decommissioning of this experiment, numerous samples were taken for microbial analysis to determine if the naturally present microbial population in buffer material survived the conditions (i.e., compaction, heat and desiccation) in the BCE and to determine which group(s) of microorganisms would be dominant in such a simulated vault environment. Such knowledge will be very useful in assessing the potential effects of microbial activity on the concept for deep disposal of Canada's nuclear fuel waste, proposed by AECL. 46 refs., 31 tabs., 35 figs

  9. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    Science.gov (United States)

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  10. Investigating Student Perceptions of the Chemistry Laboratory and Their Approaches to Learning in the Laboratory

    Science.gov (United States)

    Berger, Spencer Granett

    This dissertation explores student perceptions of the instructional chemistry laboratory and the approaches students take when learning in the laboratory environment. To measure student perceptions of the chemistry laboratory, a survey instrument was developed. 413 students responded to the survey during the Fall 2011 semester. Students' perception of the usefulness of the laboratory in helping them learn chemistry in high school was related to several factors regarding their experiences in high school chemistry. Students' perception of the usefulness of the laboratory in helping them learn chemistry in college was also measured. Reasons students provided for the usefulness of the laboratory were categorized. To characterize approaches to learning in the laboratory, students were interviewed midway through semester (N=18). The interviews were used to create a framework describing learning approaches that students use in the laboratory environment. Students were categorized into three levels: students who view the laboratory as a requirement, students who believe that the laboratory augments their understanding, and students who view the laboratory as an important part of science. These categories describe the types of strategies students used when conducting experiments. To further explore the relationship between students' perception of the laboratory and their approaches to learning, two case studies are described. These case studies involve interviews in the beginning and end of the semester. In the interviews, students reflect on what they have learned in the laboratory and describe their perceptions of the laboratory environment. In order to encourage students to adopt higher-level approaches to learning in the laboratory, a metacognitive intervention was created. The intervention involved supplementary questions that students would answer while completing laboratory experiments. The questions were designed to encourage students to think critically about the

  11. A Scaled Beam-Combining Experiment for Heavy Ion Inertial Fusion

    International Nuclear Information System (INIS)

    Celata, C.M.; Chupp, W.W.; Faltens, A.; Fawley, W.M.; Ghiorso, W.; Hahn, K.; Henestroza, E.; MacLaren, S.; Peters, C.; Seidl, P.

    1997-01-01

    Transverse beam combining is a cost-saving option employed in many designs for induction linac heavy ion fusion drivers. The resultant transverse emittance increase, due predominantly to enharmonic space charge forces, must be kept minimal so that the beam remains focusable at the target. A prototype combining experiment has been built and preliminary results are presented. Four sources each produce up to 4.8 mA Cs+ beams at 160 keV. Focusing upstream of the merge consists of four quadruples and a final combined-function element (quadruple ampersand dipole). All lattice elements of the prototype are electrostatic. Due to the small distance between beams near the merge (-3-4 mm), the electrodes here are a cage of small rods, each at different voltage

  12. Laboratory experiments in the study of the chemistry of the outer planets

    Science.gov (United States)

    Scattergood, Thomas W.

    1987-01-01

    It is shown that much information about planetary chemistry and physics can be gained through laboratory work. The types of experiments relevant to planetary research concern fundamental properties, spectral/optical properties, 'Miller-Urey' syntheses, and detailed syntheses. Specific examples of studies of the chemistry in the atmosphere of Titan are described with attention given to gas phase chemistry in the troposphere and the composition of model Titan aerosols. A list of work that still needs to be done is provided.

  13. Laboratory experiments on the magnetic field and neutral density limits on CIV interaction

    International Nuclear Information System (INIS)

    Axnaes, I.; Brenning, N.

    1990-03-01

    Laboratory experiments are reported which determine the magnetic field and neutral density limit for Critical Ionization Velocity (CIV) interaction in the impact configuration. A combination of microwave interferometry and spectroscopy has been used to measure how the electron energy distribution varies with the neutral density and the magnetic field strength. The efficiency of the CIV process is evaluated in terms of the efficiency factor η of energy transfer to the electron. This efficiency is studied as function of the ratio V A /V 0 between the Alfven velocity and the plasma stream velocity and the ratio ν i /ω gi between the ionization frequency and the ion gyro frequency. With other parameters kept constant, V A /V 0 is proportional to the square root of the magnetic field, while ν i /ω gi is proportional to the neutral density. We have found that these two dimensionless parameters are coupled in such a fashion that a stronger magnetic field can compensate for a lower neutral density. For our strongest magnetic field, corresponding to V A /V 0 = 4, CIV interaction is found to occur for a comparatively low value ν i /ω gi ∼ 0.1. For V A /V 0 = 1, we found a clear absence of CIV interaction even for ν i /ω gi approaching unity. (authors)

  14. Laboratory space physics: Investigating the physics of space plasmas in the laboratory

    Science.gov (United States)

    Howes, Gregory G.

    2018-05-01

    Laboratory experiments provide a valuable complement to explore the fundamental physics of space plasmas without the limitations inherent to spacecraft measurements. Specifically, experiments overcome the restriction that spacecraft measurements are made at only one (or a few) points in space, enable greater control of the plasma conditions and applied perturbations, can be reproducible, and are orders of magnitude less expensive than launching spacecraft. Here, I highlight key open questions about the physics of space plasmas and identify the aspects of these problems that can potentially be tackled in laboratory experiments. Several past successes in laboratory space physics provide concrete examples of how complementary experiments can contribute to our understanding of physical processes at play in the solar corona, solar wind, planetary magnetospheres, and the outer boundary of the heliosphere. I present developments on the horizon of laboratory space physics, identifying velocity space as a key new frontier, highlighting new and enhanced experimental facilities, and showcasing anticipated developments to produce improved diagnostics and innovative analysis methods. A strategy for future laboratory space physics investigations will be outlined, with explicit connections to specific fundamental plasma phenomena of interest.

  15. Integration of Microsoft Windows applications with MDSplus data acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Mastrovito, Dana M.

    2002-01-01

    Data acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers and specially developed 'turn-key' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and Component Object Model (COM) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as charged couple device cameras and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from interactive data language for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  16. Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory

    International Nuclear Information System (INIS)

    Dana M. Mastrovito

    2002-03-01

    Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  17. International experience in addressing combined exposures: Increasing the efficiency of assessment

    International Nuclear Information System (INIS)

    Meek, M.E.

    2013-01-01

    More efficient methodology for assessing the impact of combined exposures to multiple chemicals has been considered in a project of the World Health Organization (WHO) International Programme on Chemical Safety (IPCS). Recommendations regarding terminology and the status of development of the framework, its content, review and application are described. Evolving experience in its application is illustrated by example (polybrominated diphenyls) with special emphasis on the critical content of problem formulation, the role of predictive tools in grouping of chemicals for consideration and the importance of explicit delineation of relative uncertainty and sensitivity for tiered assessment. Priorities in increasing the efficiency of risk assessment not only for combined exposures, but more generally based on experience acquired in developing the framework and its application in case studies are identified and recommendations included

  18. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  19. Variability in Small Hive Beetle (Coleoptera: Nitidulidae) Reproduction in Laboratory and Field Experiments.

    Science.gov (United States)

    Meikle, William G; Holst, Niels; Cook, Steven C; Patt, Joseph M

    2015-06-01

    Experiments were conducted to examine how several key factors affect population growth of the small hive beetle, Aethina tumida Murray (Coleoptera: Nitidulidae). Laboratory experiments were conducted to examine effects of food quantity and temperature on reproduction of cohorts of young A. tumida adults (1:1 sex ratio) housed in experimental arenas. Daily numbers and total mass of larvae exiting arenas were highly variable within treatment. Either one or two cohorts of larvae were observed exiting the arenas. Food quantity, either 10 g or 20 g, did not significantly affect the number of larvae exiting arenas at 32°C, but did at 28°C; arenas provided 20 g food produced significantly more larvae than arenas provided 10 g. Temperature did not affect the total mass of larvae provided 10 g food, but did affect larval mass provided 20 g; beetles kept at 28°C produced more larval mass than at 32°C. Field experiments were conducted to examine A. tumida reproductive success in full strength bee colonies. Beetles were introduced into hives as egg-infested frames and as adults, and some bee colonies were artificially weakened through removal of sealed brood. Efforts were unsuccessful; no larvae were observed exiting from, or during the inspection of, any hives. Possible reasons for these results are discussed. The variability observed in A. tumida reproduction even in controlled laboratory conditions and the difficulty in causing beetle infestations in field experiments involving full colonies suggest that accurately forecasting the A. tumida severity in such colonies will be difficult. Published by Oxford University Press on behalf of Entomological Society of America 2015. This work is written by US Government employees and is in the public domain in the US.

  20. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    Science.gov (United States)

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  1. A Kennedy-Thorndike experiment using LLR data

    Science.gov (United States)

    Müller, J.; Soffel, M. H.

    1995-02-01

    We have analyzed data from Lunar Laser Ranging to determine the combination / vbζ1- ζ0-1/ vb of Robertson-Mansouri-Sexl parameters of special relativity. In such a Kennedy-Thorndike experiments we obtained a realistic upper limit for this combination of 1.5 × 10 -4 only a factor of two or so worse than that obtained with modern laser techniques in the laboratory.

  2. On the possibility of measuring the Earth's gravitomagnetic force in a new laboratory experiment

    International Nuclear Information System (INIS)

    Iorio, Lorenzo

    2003-01-01

    In this letter we propose, in a preliminary way, a new Earth-based laboratory experiment aimed at the detection of the gravitomagnetic field of the Earth. It consists of the measurement of the difference between the circular frequencies of two rotators moving along identical circular paths, but in opposite directions, on a horizontal friction-free plane in a vacuum chamber placed at the South Pole. The accuracy to our knowledge of the Earth's rotation from VLBI and the possibility of measuring the rotators' periods over many revolutions should allow for the feasibility of the proposed experiment. (letter to the editor)

  3. First Year Chemistry Laboratory Courses for Distance Learners: Development and Transfer Credit Acceptance

    Directory of Open Access Journals (Sweden)

    Sharon E. Brewer,

    2013-07-01

    Full Text Available In delivering chemistry courses by distance, a key challenge is to offer the learner an authentic and meaningful laboratory experience that still provides the rigour required to continue on in science. To satisfy this need, two distance general chemistry laboratory courses appropriate for Bachelor of Science (B.Sc. students, including chemistry majors, have been recently developed at Thompson Rivers University. A constructive alignment process was employed which clearly mapped learning outcomes and activities to appropriate assessment tools. These blended laboratory courses feature custom, home experimental kits and combine elements of online and hands-on learning. The courses were designed for flexible continuous enrollment and provide online resources including tutor support, instructional videos, lab report submission, and student evaluation. The assessment of students includes laboratory reports, safety quizzes, reflective journaling, digital photo documentation, and invigilated written and online practical exams. Emphasizing the quality and rigour in these distance laboratory learning experiences allowed both courses to be accepted for B.Sc. transfer credit by other institutions, an important criterion for students. This paper will outline the design and development process of these new blended laboratory courses, their course structures and assessments, and initial student results.

  4. Positive experiences of volunteers working in deployable laboratories in West Africa during the Ebola outbreak.

    NARCIS (Netherlands)

    Belfroid, Evelien; Mollers, Madelief; Smit, Pieter W; Hulscher, Marlies; Koopmans, Marion; Reusken, Chantal; Timen, Aura

    2018-01-01

    The largest outbreak of Ebola virus disease ever started in West Africa in December 2013; it created a pressing need to expand the workforce dealing with it. The aim of this study was to gain insight into the experiences of volunteers from the European Union who worked in deployable laboratories in

  5. Reform in a General Chemistry Laboratory: How Do Students Experience Change in the Instructional Approach?

    Science.gov (United States)

    Chopra, I.; O'Connor, J.; Pancho, R.; Chrzanowski, M.; Sandi-Urena, S.

    2017-01-01

    This qualitative study investigated the experience of a cohort of students exposed consecutively to two substantially different environments in their General Chemistry Laboratory programme. To this end, the first semester in a traditional expository programme was followed by a semester in a cooperative, problem-based, multi-week format. The focus…

  6. LabView Based Nuclear Physics Laboratory experiments as a remote teaching and training tool for Latin American Educational Centers

    International Nuclear Information System (INIS)

    Sajo-Bohus, L.; Greaves, E. D.; Barros, H.; Gonzalez, W.; Rangel, A.

    2007-01-01

    A virtual laboratory via internet to provide a highly iterative and powerful teaching tool for scientific and technical discipline is given. The experimenter takes advantage of a virtual laboratory and he can execute nuclear experiment at introductory level e.g. Gamma ray detection with Geiger-Mueller Counter at remote location using internet communication technology

  7. Metal mixture toxicity to aquatic biota in laboratory experiments: Application of the WHAM-F{sub TOX} model

    Energy Technology Data Exchange (ETDEWEB)

    Tipping, E., E-mail: et@ceh.ac.uk; Lofts, S.

    2013-10-15

    Highlights: •Metal accumulation by living organisms is successfully simulated with WHAM. •Modelled organism-bound metal provides a measure of toxic exposure. •The toxic potency of individual bound metals is quantified by fitting toxicity data. •Eleven laboratory mixture toxicity data sets were parameterised. •Relatively little variability amongst individual test organisms is indicated. -- Abstract: The WHAM-F{sub TOX} model describes the combined toxic effects of protons and metal cations towards aquatic organisms through the toxicity function (F{sub TOX}), a linear combination of the products of organism-bound cation and a toxic potency coefficient (α{sub i}) for each cation. Organism-bound, metabolically-active, cation is quantified by the proxy variable, amount bound by humic acid (HA), as predicted by the WHAM chemical speciation model. We compared published measured accumulations of metals by living organisms (bacteria, algae, invertebrates) in different solutions, with WHAM predictions of metal binding to humic acid in the same solutions. After adjustment for differences in binding site density, the predictions were in reasonable line with observations (for logarithmic variables, r{sup 2} = 0.89, root mean squared deviation = 0.44), supporting the use of HA binding as a proxy. Calculated loadings of H{sup +}, Al, Cu, Zn, Cd, Pb and UO{sub 2} were used to fit observed toxic effects in 11 published mixture toxicity experiments involving bacteria, macrophytes, invertebrates and fish. Overall, WHAM-F{sub TOX} gave slightly better fits than a conventional additive model based on solution concentrations. From the derived values of α{sub i}, the toxicity of bound cations can tentatively be ranked in the order: H < Al < (Zn–Cu–Pb–UO{sub 2}) < Cd. The WHAM-F{sub TOX} analysis indicates much narrower ranges of differences amongst individual organisms in metal toxicity tests than was previously thought. The model potentially provides a means to

  8. Coulometric Titration of Ethylenediaminetetraacetate (EDTA) with Spectrophotometric Endpoint Detection: An Experiment for the Instrumental Analysis Laboratory

    Science.gov (United States)

    Williams, Kathryn R.; Young, Vaneica Y.; Killian, Benjamin J.

    2011-01-01

    Ethylenediaminetetraacetate (EDTA) is commonly used as an anticoagulant in blood-collection procedures. In this experiment for the instrumental analysis laboratory, students determine the quantity of EDTA in commercial collection tubes by coulometric titration with electrolytically generated Cu[superscript 2+]. The endpoint is detected…

  9. Variability of Biological Degradation of Aromatic Hydrocarbons in an Aerobic Aquifer Determined by Laboratory Batch Experiments

    DEFF Research Database (Denmark)

    Nielsen, Per Henning; Christensen, Thomas Højlund

    1994-01-01

    The biological aerobic degradation of 7 aromatic hydrocarbons (benzene, toluene, o-xylene, p-dichlorobenzene, o-dichlorobenzene, naphthalene and biphenyl) was studied for 149 days in replicate laboratory batch experiments with groundwater and sediment from 8 localities representing a 15 m × 30 m...

  10. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments.

    Science.gov (United States)

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-03-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.

  11. New Dimensions in Teaching Digital Electronics: A Multimode Laboratory Utilizing NI ELVIS IITM, LabVIEW and NI Multisim

    Directory of Open Access Journals (Sweden)

    Andrew Katumba

    2010-11-01

    Full Text Available Over the years, conventional Laboratories in African Universities have been hampered by inadequate resources in terms of the required hardware, space and skilled personnel to administer them. This paper describes a multi-dimensional approach to experimentation, developed by the Makerere University iLabs Project Team, hereafter referred to as iLABS@MAK. The two dimensional approach involves both Virtual Labs and Online Laboratories designed to address laboratory deficiencies in Digital Electronics, encompassing five courses in the curricula of the Bachelor of Science (B.Sc in Computer, Electrical and Telecommunication Engineering Programs. A digital Online Laboratory, the Makerere University Digital iLab (MDEi supporting experiments in the fields of combinational logic circuits and asynchronous sequential logic circuits has been developed. The laboratory utilizes the National Instruments Educational Laboratory Virtual Instrumentation Suite (NI ELVIS II™ platform, the Laboratory Virtual Instrument Engineering Workbench (LabVIEW graphical programming environment and NI Multisim. Typical experiment setups supported by the MDEi are presented

  12. Undergraduate Organic Chemistry Laboratory Safety

    Science.gov (United States)

    Luckenbaugh, Raymond W.

    1996-11-01

    Each organic chemistry student should become familiar with the educational and governmental laboratory safety requirements. One method for teaching laboratory safety is to assign each student to locate safety resources for a specific class laboratory experiment. The student should obtain toxicity and hazardous information for all chemicals used or produced during the assigned experiment. For example, what is the LD50 or LC50 for each chemical? Are there any specific hazards for these chemicals, carcinogen, mutagen, teratogen, neurotixin, chronic toxin, corrosive, flammable, or explosive agent? The school's "Chemical Hygiene Plan", "Prudent Practices for Handling Hazardous Chemicals in the Laboratory" (National Academy Press), and "Laboratory Standards, Part 1910 - Occupational Safety and Health Standards" (Fed. Register 1/31/90, 55, 3227-3335) should be reviewed for laboratory safety requirements for the assigned experiment. For example, what are the procedures for safe handling of vacuum systems, if a vacuum distillation is used in the assigned experiment? The literature survey must be submitted to the laboratory instructor one week prior to the laboratory session for review and approval. The student should then give a short presentation to the class on the chemicals' toxicity and hazards and describe the safety precautions that must be followed. This procedure gives the student first-hand knowledge on how to find and evaluate information to meet laboartory safety requirements.

  13. Scaled laboratory experiments explain the kink behaviour of the Crab Nebula jet.

    Science.gov (United States)

    Li, C K; Tzeferacos, P; Lamb, D; Gregori, G; Norreys, P A; Rosenberg, M J; Follett, R K; Froula, D H; Koenig, M; Seguin, F H; Frenje, J A; Rinderknecht, H G; Sio, H; Zylstra, A B; Petrasso, R D; Amendt, P A; Park, H S; Remington, B A; Ryutov, D D; Wilks, S C; Betti, R; Frank, A; Hu, S X; Sangster, T C; Hartigan, P; Drake, R P; Kuranz, C C; Lebedev, S V; Woolsey, N C

    2016-10-07

    The remarkable discovery by the Chandra X-ray observatory that the Crab nebula's jet periodically changes direction provides a challenge to our understanding of astrophysical jet dynamics. It has been suggested that this phenomenon may be the consequence of magnetic fields and magnetohydrodynamic instabilities, but experimental demonstration in a controlled laboratory environment has remained elusive. Here we report experiments that use high-power lasers to create a plasma jet that can be directly compared with the Crab jet through well-defined physical scaling laws. The jet generates its own embedded toroidal magnetic fields; as it moves, plasma instabilities result in multiple deflections of the propagation direction, mimicking the kink behaviour of the Crab jet. The experiment is modelled with three-dimensional numerical simulations that show exactly how the instability develops and results in changes of direction of the jet.

  14. Laboratory Experiments to Stimulate CO2 Ocean Disposal

    International Nuclear Information System (INIS)

    Masutani, S.M.

    1997-01-01

    This Technical Progress Report summarizes activities conducted over the period 8/16/96-2/15/97 as part of this project. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation is to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO 2 ) from coal and other fossil fuel combustion systems into the atmosphere. Critical technical uncertainties of ocean disposal of CO 2 will be addressed by performing experiments that: (1) characterize size spectra and velocities of a dispersed CO 2 phase in the near-field of a discharge jet; and (2) estimate rates of mass transfer from dissolving droplets of liquid CO 2 encased in a thin hydrate shell. Experiments will be conducted in a laboratory facility that can reproduce conditions in the ocean to depths of 600 m (1,969 ft). Between 8/16/96 and 2/15/97, activities focused on modifications to the experimental apparatus and the testing of diagnostics. Following completion of these tasks, experiments will be initiated and will continue through the end of the 36 month period of performance. Major accomplishments of this reporting period were: (1) delivery, set-up, and testing of the PDPA (Phase Doppler Particle Analyzer), which will be the principal diagnostic of the continuous CO 2 jet injection tests; (2) presentation of research papers and posters at the 212th American Chemical Society National Meeting and the Third International Conference on Carbon Dioxide Removal; (3) participation in the 4th Expert Workshop on Ocean Storage of Carbon Dioxide; (4) execution of an Agreement with ABB Management, Ltd. to support and extend the activities of this grant; and (5) initiation of research collaborations with Dr. P.M. Haugen of the University of

  15. Personal computer versus personal computer/mobile device combination users' preclinical laboratory e-learning activity.

    Science.gov (United States)

    Kon, Haruka; Kobayashi, Hiroshi; Sakurai, Naoki; Watanabe, Kiyoshi; Yamaga, Yoshiro; Ono, Takahiro

    2017-11-01

    The aim of the present study was to clarify differences between personal computer (PC)/mobile device combination and PC-only user patterns. We analyzed access frequency and time spent on a complete denture preclinical website in order to maximize website effectiveness. Fourth-year undergraduate students (N=41) in the preclinical complete denture laboratory course were invited to participate in this survey during the final week of the course to track login data. Students accessed video demonstrations and quizzes via our e-learning site/course program, and were instructed to view online demonstrations before classes. When the course concluded, participating students filled out a questionnaire about the program, their opinions, and devices they had used to access the site. Combination user access was significantly more frequent than PC-only during supplementary learning time, indicating that students with mobile devices studied during lunch breaks and before morning classes. Most students had favorable opinions of the e-learning site, but a few combination users commented that some videos were too long and that descriptive answers were difficult on smartphones. These results imply that mobile devices' increased accessibility encouraged learning by enabling more efficient time use between classes. They also suggest that e-learning system improvements should cater to mobile device users by reducing video length and including more short-answer questions. © 2016 John Wiley & Sons Australia, Ltd.

  16. A laboratory plasma experiment for studying magnetic dynamics of accretion discs and jets

    OpenAIRE

    Hsu, S. C.; Bellan, P. M.

    2002-01-01

    This work describes a laboratory plasma experiment and initial results which should give insight into the magnetic dynamics of accretion discs and jets. A high-speed multiple-frame CCD camera reveals images of the formation and helical instability of a collimated plasma, similar to MHD models of disc jets, and also plasma detachment associated with spheromak formation, which may have relevance to disc winds and flares. The plasmas are produced by a planar magnetized coaxial gun. The resulting...

  17. Integration of Microsoft Windows Applications with MDSplus Data Acquisition on the National Spherical Torus Experiment at the Princeton Plasma Physics Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    Dana M. Mastrovito

    2002-01-01

    Data acquisition on the National Spherical Torus Experiment (NSTX) at the Princeton Plasma Physics Laboratory (PPPL) has increasingly involved the use of Personal Computers (PC's) and specially developed ''turn-key'' hardware and software systems to control diagnostics. Interaction with these proprietary software packages is accomplished through use of Visual Basic, or Visual C++ and COM (Component Object Model) technology. COM is a software architecture that allows the components made by different software vendors to be combined into a variety of applications. This technology is particularly well suited to these systems because of its programming language independence, standards for function calling between components, and ability to transparently reference remote processes. COM objects make possible the creation of acquisition software that can control the experimental parameters of both the hardware and software. Synchronization of these applications for diagnostics, such as CCD camer as and residual gas analyzers, with the rest of the experiment event cycle at PPPL has been made possible by utilization of the MDSplus libraries for Windows. Instead of transferring large data files to remote disk space, Windows MDSplus events and I/O functions allow us to put raw data into MDSplus directly from IDL for Windows and Visual Basic. The combination of COM technology and the MDSplus libraries for Windows provide the tools for many new possibilities in versatile acquisition applications and future diagnostics

  18. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2008-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  19. Hands-On Experiences of Undergraduate Students in Automatics and Robotics Using a Virtual and Remote Laboratory

    Science.gov (United States)

    Jara, Carlos A.; Candelas, Francisco A.; Puente, Santiago T.; Torres, Fernando

    2011-01-01

    Automatics and Robotics subjects are always greatly improved when classroom teaching is supported by adequate laboratory courses and experiments following the "learning by doing" paradigm, which provides students a deep understanding of theoretical lessons. However, expensive equipment and limited time prevent teachers having sufficient…

  20. The effect of noise in a performance measure on work motivation: A real effort laboratory experiment

    NARCIS (Netherlands)

    Sloof, R.; van Praag, C.M.

    2010-01-01

    This paper reports the results of an individual real effort laboratory experiment where subjects are paid for measured performance. Measured performance equals actual performance plus noise. We compare a stable environment where the noise is small with a volatile environment where the noise is

  1. Combined Characterization Techniques to Understand the Stability of a Variety of Organic Photovoltaic Devices - the ISOS-3 inter- laboratory collaboration

    DEFF Research Database (Denmark)

    Lira-Cantu, Monica; Tanenbaum, David M.; Norrman, Kion

    2012-01-01

    . The results reported from the combination of the different characterization techniques results in a proposed degradation mechanism. The final conclusion is that the failure of the photovoltaic response of the device with time under full sun solar simulation, is mainly due to the degradation of the electrodes...... and not to the active materials of the solar cell.......This work is part of the inter-laboratory collaboration to study the stability of seven distinct sets of state-of-the-art organic photovoltaic (OPVs) devices prepared by leading research laboratories. All devices have been shipped to and degraded at the Danish Technical University (DTU, formerly...

  2. Recent Progress on the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory

    Science.gov (United States)

    Schaffner, D. A.; Cartagena-Sanchez, C. A.; Johnson, H. K.; Fahim, L. E.; Fiedler-Kawaguchi, C.; Douglas-Mann, E.

    2017-10-01

    Recent progress is reported on the construction, implementation and testing of the magnetic turbulence experiment at the Bryn Mawr Plasma Laboratory (BMPL). The experiment at the BMPL consists of an ( 300 μs) long coaxial plasma gun discharge that injects magnetic helicity into a flux-conserving chamber in a process akin to sustained slow-formation of spheromaks. A 24cm by 2m cylindrical chamber has been constructed with a high density axial port array to enable detailed simultaneous spatial measurements of magnetic and plasma fluctuations. Careful positioning of the magnetic structure produced by the three separately pulsed coils (one internal, two external) are preformed to optimize for continuous injection of turbulent magnetized plasma. High frequency calibration of magnetic probes is also underway using a power amplifier.

  3. Making Sense of the Combined Degree Experience: The Example of Criminology Double Degrees

    Science.gov (United States)

    Wimshurst, Kerry; Manning, Matthew

    2017-01-01

    Little research has been undertaken on student experiences of combined degrees. The few studies report that a considerable number of students experienced difficulty with the contrasting epistemic/disciplinary demands of the component programmes. A mixed-methods approach was employed to explore the experiences of graduates from four double degrees…

  4. Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Starosta, K., E-mail: starosta@sfu.c [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Crawford, H.; Mantica, P. [National Superconducting Cyclotron Laboratory and Department of Chemistry, Michigan State University, East Lansing, MI 48824 (United States); Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W.K. [XIA LLC, Hayward, CA 94544 (United States)

    2009-11-11

    A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a gamma ray in a SeGA detector from implementation of gamma-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.

  5. Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory

    International Nuclear Information System (INIS)

    Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W.K.

    2009-01-01

    A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.

  6. Digital Data Acquisition System for experiments with segmented detectors at National Superconducting Cyclotron Laboratory

    Science.gov (United States)

    Starosta, K.; Vaman, C.; Miller, D.; Voss, P.; Bazin, D.; Glasmacher, T.; Crawford, H.; Mantica, P.; Tan, H.; Hennig, W.; Walby, M.; Fallu-Labruyere, A.; Harris, J.; Breus, D.; Grudberg, P.; Warburton, W. K.

    2009-11-01

    A 624-channel Digital Data Acquisition System capable of instrumenting the Segmented Germanium Array at National Superconducting Cyclotron Laboratory has been implemented using Pixie-16 Digital Gamma Finder modules by XIA LLC. The system opens an opportunity for determination of the first interaction position of a γ ray in a SeGA detector from implementation of γ-ray tracking. This will translate into a significantly improved determination of angle of emission, and in consequence much better Doppler corrections for experiments with fast beams. For stopped-beam experiments the system provides means for zero dead time measurements of rare decays, which occur on time scales of microseconds.

  7. DHCVIM - a direct heating containment vessel interactions module: applications to Sandia National Laboratories Surtsey experiments

    International Nuclear Information System (INIS)

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Direct containment heating is the mechanism of severe nuclear reactor accident containment loading that results from transfer of thermal and chemical energy from high-temperature, finely divided, molten core material to the containment atmosphere. The direct heating containment vessel interactions module (DHCVIM) has been developed at Brookhaven National Laboratory to model the mechanisms of containment loading resulting from the direct heating accident sequence. The calculational procedure is being used at present to model the Sandia National Laboratories one-tenth-scale Surtsey direct containment heating experiments. The objective of the code is to provide a test bed for detailed modeling of various aspects of the thermal, chemical, and hydrodynamic interactions that are expected to occur in three regions of a containment building: reactor cavity, intermediate subcompartments, and containment dome. Major emphasis is placed on the description of reactor cavity dynamics. This paper summarizes the modeling principles that are incorporated in DHCVIM and presents a prediction of the Surtsey Test DCH-2 that was made prior to execution of the experiment

  8. Interrelationship between Plasma Experiments in the Laboratory and in Space

    Energy Technology Data Exchange (ETDEWEB)

    Koepke, Mark E. [West Virginia Univ., Morgantown, WV (United States)

    2017-05-25

    Funds were expended to offset the travel costs of three students and three postdoctoral research associates to participate in and present work at the 2015 International Workshop on the Interrelationship between Plasma Experiments in the Laboratory and in Space (IPELS2015), 23-28 August 2015, Pitlochry, Scotland, UK. Selection was priority-ranked by lab-space engagement, first, and topic relevance, second. Supplementary selection preference was applied to under-represented populations, applicants lacking available travel-resources in their home research group, applicants unusually distant from the conference venue, and the impact of the applicant’s attendance in increasing the diversity of conference participation. One support letter per student was required. The letters described the specific benefit of IPELS2015 to the student dissertation or the postdoc career development, and document the evidence for the ordering criteria.

  9. Feasibility of establishing a biosafety level 3 tuberculosis culture laboratory of acceptable quality standards in a resource-limited setting: an experience from Uganda.

    Science.gov (United States)

    Ssengooba, Willy; Gelderbloem, Sebastian J; Mboowa, Gerald; Wajja, Anne; Namaganda, Carolyn; Musoke, Philippa; Mayanja-Kizza, Harriet; Joloba, Moses Lutaakome

    2015-01-15

    Despite the recent innovations in tuberculosis (TB) and multi-drug resistant TB (MDR-TB) diagnosis, culture remains vital for difficult-to-diagnose patients, baseline and end-point determination for novel vaccines and drug trials. Herein, we share our experience of establishing a BSL-3 culture facility in Uganda as well as 3-years performance indicators and post-TB vaccine trials (pioneer) and funding experience of sustaining such a facility. Between September 2008 and April 2009, the laboratory was set-up with financial support from external partners. After an initial procedure validation phase in parallel with the National TB Reference Laboratory (NTRL) and legal approvals, the laboratory registered for external quality assessment (EQA) from the NTRL, WHO, National Health Laboratories Services (NHLS), and the College of American Pathologists (CAP). The laboratory also instituted a functional quality management system (QMS). Pioneer funding ended in 2012 and the laboratory remained in self-sustainability mode. The laboratory achieved internationally acceptable standards in both structural and biosafety requirements. Of the 14 patient samples analyzed in the procedural validation phase, agreement for all tests with NTRL was 90% (P 80% in all years from NTRL, CAP, and NHLS, and culture was 100% for CAP panels and above regional average scores for all years with NHLS. Quarterly DST scores from WHO-EQA ranged from 78% to 100% in 2010, 80% to 100% in 2011, and 90 to 100% in 2012. From our experience, it is feasible to set-up a BSL-3 TB culture laboratory with acceptable quality performance standards in resource-limited countries. With the demonstrated quality of work, the laboratory attracted more research groups and post-pioneer funding, which helped to ensure sustainability. The high skilled experts in this research laboratory also continue to provide an excellent resource for the needed national discussion of the laboratory and quality management systems.

  10. Role of Organic Acids in Bioformation of Kaolinite: Results of Laboratory Experiments

    Science.gov (United States)

    Bontognali, T. R. R.; Vasconcelos, C.; McKenzie, J. A.

    2012-04-01

    Clay minerals and other solid silica phases have a broad distribution in the geological record and greatly affect fundamental physicochemical properties of sedimentary rocks, including porosity. An increasing number of studies suggests that microbial activity and microbially produced organic acids might play an important role in authigenic clay mineral formation, at low temperatures and under neutral pH conditions. In particular, early laboratory experiments (Linares and Huertas, 1971) reported the precipitation of kaolinite in solutions of SiO2 and Al2O3 with different molar ratios SiO2/Al2O3, together with fulvic acid (a non-characterized mixture of many different acids containing carboxyl and phenolate groups) that was extracted from peat soil. Despite many attempts, these experiments could not be reproduced until recently. Fiore et al. (2011) hypothesized that the non-sterile fulvic acid might have contained microbes that participated in the formation of kaolinite. Using solutions saturated with Si and Al and containing oxalate and/or mixed microbial culture extracted from peat-moss soil, they performed incubation experiments, which produced kaolinite exclusively in solutions containing oxalate and microbes. We proposed to test the role of specific organic acids for kaolinite formation, conducting laboratory experiments at 25˚C, with solutions of sodium silicate, aluminum chloride and various organic compounds (i.e. EDTA, citric acid, succinic acid and oxalic acid). Specific organic acids may stabilize aluminum in octahedral coordination positions, which is crucial for the initial nucleation step. In our experiments, a poorly crystalline mineral that is possibly a kaolinite precursor formed exclusively in the presence of succinic acid. In experiments with other organic compounds, no incorporation of Al was observed, and amorphous silica was the only precipitated phase. In natural environments, succinic acid is produced by a large variety of microbes as an

  11. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  12. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  13. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    International Nuclear Information System (INIS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-01-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%. (paper)

  14. Red Seaweed Enzyme-Catalyzed Bromination of Bromophenol Red: An Inquiry-Based Kinetics Laboratory Experiment for Undergraduates

    Science.gov (United States)

    Jittam, Piyachat; Boonsiri, Patcharee; Promptmas, Chamras; Sriwattanarothai, Namkang; Archavarungson, Nattinee; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2009-01-01

    Haloperoxidase enzymes are of interest for basic and applied bioscientists because of their increasing importance in pharmaceutical industry and environmental cleanups. In a guided inquiry-based laboratory experiment for life-science, agricultural science, and health science undergraduates, the bromoperoxidase from a red seaweed was used to…

  15. Undergraduate Student Attitudes and Perceptions toward Low- and High-Level Inquiry Exercise Physiology Teaching Laboratory Experiences

    Science.gov (United States)

    Henige, Kim

    2011-01-01

    The purpose of this investigation was to compare student attitudes toward two different science laboratory learning experiences, specifically, traditional, cookbook-style, low-inquiry level (LL) activities and a high-inquiry level (HL) investigative project. In addition, we sought to measure and compare students' science-related attitudes and…

  16. Current sheets in the Earth’s magnetosphere and in laboratory experiments: The magnetic field structure and the Hall effect

    International Nuclear Information System (INIS)

    Frank, A. G.; Artemyev, A. V.; Zelenyi, L. M.

    2016-01-01

    The main characteristics of current sheets (CSs) formed in laboratory experiments are compared with the results of satellite observations of CSs in the Earth’s magnetotail. We show that many significant features of the magnetic field structure and the distributions of plasma parameters in laboratory and magnetospheric CSs exhibit a qualitative similarity, despite the enormous differences of scales, absolute values of plasma parameters, magnetic fields, and currents. In addition to a qualitative comparison, we give a number of dimensionless parameters that demonstrate the possibility of laboratory modeling of the processes occurring in the magnetosphere.

  17. The Effect of Combining Analogy-Based Simulation and Laboratory Activities on Turkish Elementary School Students' Understanding of Simple Electric Circuits

    Science.gov (United States)

    Unlu, Zeynep Koyunlu; Dokme, Ibilge

    2011-01-01

    The purpose of this study was to investigate whether the combination of both analogy-based simulation and laboratory activities as a teaching tool was more effective than utilizing them separately in teaching the concepts of simple electricity. The quasi-experimental design that involved 66 seventh grade students from urban Turkish elementary…

  18. The radionuclide migration experiment - overview of investigations 1985 - 1990

    International Nuclear Information System (INIS)

    Frick, U.; McKinley, I.G.; Baeyens, B.; Bradbury, M.H.; Eikenberg, J.; Heer, W.; Hoehn, E.; Smith, P.A.; Alexander, W.R.; Bossart, P.; Buehler, C.; Fierz, T.

    1992-03-01

    This paper provides an overview of the investigations conducted from 1985 to 1990 as a part of the radionuclide migration experiment which is currently in progress in the Nagra underground research laboratory at the Grimsel pass in the Central Swiss Alps. The major aims of the project are (1) to test the extrapolation of laboratory sorption data to field conditions, (2) to analyse retardation processes in a fractured rock, (3) to improve and develop the necessary methodologies for site characterization and (4) to test existing geochemical, hydrodynamic, and solute transport models or their associated data bases. Field and modeling work are complemented by an extensive laboratory support programme. The Grimsel migration experiment demonstrates conclusively how the combined efforts of modeling, laboratory and field investigations can substantially widen the understanding of radionuclide transport in a geological environment. (author) figs., tabs., refs

  19. ENTRY 2003: The international workshop on reliable performance assessment through laboratory experiments and ground surface investigations. 10th anniversary of ENTRY

    International Nuclear Information System (INIS)

    Ishikawa, Hirohisa; Yui, Mikazu; Uchida, Masahiro; Kamei, Gento

    2004-03-01

    To commemorate the 10th anniversary of the ENTRY, a laboratory in JNC Tokai for R and D in the field of geological disposal of radioactive waste, an international workshop was held in JNC Tokai, during the term of Sept 22 to 24, 2003. A technical tour for the Horonobe Underground Research Laboratory site was also done before the workshop, on October 20 to 21, to deepen understanding the background of discussion in the workshop. The workshop contained two sessions. The topic of each session was 1. long-term transition of the near-field and 2. cooperation among the performance assessment, in-situ experiment, and laboratory experiment, respectively. In the session 1, we mainly discussed the thermal-hydrological-mechanical-chemical (THMC) coupled processes for the near-field performance assessment, especially focusing on chemical degradation effects by cement materials and the status of mechanistic understanding radionuclide migration. Silicate dissolution kinetic model, including smectite dissolution in a hyper alkaline solution, was also discussed. Then, we discussed a relevant linkage among laboratory experiments, model (simulation experiment) and database development, in-situ experiment and natural analogue. In the session 2, we discussed 1) methodology for understanding the site based on the surface and boreholes investigations, 2) identification of remained uncertainty after the surface and boreholes investigations, 3) the critical measurement at the surface and boreholes investigations, 4) feedback items from performance assessment to site characterization and 5) required data besides the site investigation. This report contains the minutes of discussion in the workshop. Presented materials were also appended with permission from the speakers. (author)

  20. Frictional sliding in layered rock: laboratory-scale experiments

    International Nuclear Information System (INIS)

    Buescher, B.J.; Perry, K.E. Jr.; Epstein, J.S.

    1996-09-01

    The work is part of the rock mechanics effort for the Yucca Mountain Site Characterization Program. The laboratory-scale experiments are intended to provide high quality data on the mechanical behavior of jointed structures that can be used to validate complex numerical models for rock-mass behavior. Frictional sliding between simulated rock joints was studied using phase shifting moire interferometry. A model, constructed from stacks of machined and sandblasted granite plates, contained a central hole bore normal to the place so that frictional slip would be induced between the plates near the hole under compressive loading. Results show a clear evolution of slip with increasing load. Since the rock was not cycled through loading- unloading, the quantitative differences between the three data sets are probably due to a ''wearing-in'' effect. The highly variable spatial frequency of the data is probably due to the large grain size of the granite and the stochastic frictional processes. An unusual feature of the evolution of slip with increasing load is that as the load gets larger, some plates seem to return to a null position. Figs, 6 refs

  1. Large eddy simulation and laboratory experiments on the decay of grid wakes in strongly stratified flows

    International Nuclear Information System (INIS)

    Fraunie, P.; Berrella, S.; Chashechkin, Y.D.; Velasco, D.; Redondo, M.

    2008-01-01

    A detailed analysis of the flow structure resulting from the combination of turbulence and internal waves is carried out and visualized by means of the Schlieren method on waves in a strongly stratified fluid at the Laboratory of the IPM in Moscow. The joint appearance of the more regular internal wave oscillations and the small-scale turbulence that is confined vertically to the Ozmidov length scale favours the use of a simple geometrical analysis to investigate their time-space span and evolution. This provides useful information on the collapse of internal wave breaking processes in the ocean and the atmosphere. The measurements were performed under a variety of linear stratifications and different grid forcing scales, combining the grid wake and velocity shear. A numerical simulation using LES on the passage of a single bar in a linearly stratified fluid medium has been compared with the experiments identifying the different influences of the environmental agents on the actual affective vertical diffusion of the wakes. The equation of state, which connects the density and salinity, is assumed to be linear, with the coefficient of the salt contraction being included into the definition of salinity or heat. The characteristic internal waves as well as the entire beam width are related to the diameter of the bar, the Richardson number and the peak-to-peak value of oscillations. The ultimate frequency of the infinitesimal periodic internal waves is limited by the maximum buoyancy frequency relating the decrease in the vertical scale with the anisotropy of the velocity turbulent r.m.s. velocity.

  2. The Effect of Chemistry Laboratory Activities on Students' Chemistry Perception and Laboratory Anxiety Levels

    Science.gov (United States)

    Aydogdu, Cemil

    2017-01-01

    Chemistry lesson should be supported with experiments to understand the lecture effectively. For safety laboratory environment and to prevent laboratory accidents; chemical substances' properties, working principles for chemical substances' usage should be learnt. Aim of the present study was to analyze the effect of experiments which depend on…

  3. Modeling plant interspecific interactions from experiments with perennial crop mixtures to predict optimal combinations.

    Science.gov (United States)

    Halty, Virginia; Valdés, Matías; Tejera, Mauricio; Picasso, Valentín; Fort, Hugo

    2017-12-01

    The contribution of plant species richness to productivity and ecosystem functioning is a longstanding issue in ecology, with relevant implications for both conservation and agriculture. Both experiments and quantitative modeling are fundamental to the design of sustainable agroecosystems and the optimization of crop production. We modeled communities of perennial crop mixtures by using a generalized Lotka-Volterra model, i.e., a model such that the interspecific interactions are more general than purely competitive. We estimated model parameters -carrying capacities and interaction coefficients- from, respectively, the observed biomass of monocultures and bicultures measured in a large diversity experiment of seven perennial forage species in Iowa, United States. The sign and absolute value of the interaction coefficients showed that the biological interactions between species pairs included amensalism, competition, and parasitism (asymmetric positive-negative interaction), with various degrees of intensity. We tested the model fit by simulating the combinations of more than two species and comparing them with the polycultures experimental data. Overall, theoretical predictions are in good agreement with the experiments. Using this model, we also simulated species combinations that were not sown. From all possible mixtures (sown and not sown) we identified which are the most productive species combinations. Our results demonstrate that a combination of experiments and modeling can contribute to the design of sustainable agricultural systems in general and to the optimization of crop production in particular. © 2017 by the Ecological Society of America.

  4. Characteristics of two types of beam plasma discharge in a laboratory experiment

    International Nuclear Information System (INIS)

    Boswell, R.W.; Kellogg, P.J.

    1983-01-01

    Experiments on the Beam Plasma Discharge (BPD) using an electron beam travelling along a magnetic field have been carried out in a large volume laboratory vacuum chamber. Two different types of BPD have been observed, and scaling laws for varying neutral gas pressure, axial magnetic field, interaction length and electron flux, deduced. The second type of BPD occurs when the beam current is increased well above the threshold for the first type. The transition from the first type to the second, like the ignition of the first, is distinguished by abrupt changes of luminosity, discharge diameter, and wave emission signature

  5. Experiences with fast breeder reactor education in laboratory and short course settings

    International Nuclear Information System (INIS)

    Waltar, A.E.

    1983-01-01

    The breeder reactor industry throughout the world has grown impressively over the last two decades. Despite the uncertainties in some national programs, breeder reactor technology is well established on a global scale. Given the magnitude of this technological undertaking, there has been surprisingly little emphasis on general breeder reactor education - either at the university or laboratory level. Many universities assume the topic too specialized for including appropriate courses in their curriculum - thus leaving students entering the breeder reactor industry to learn almost exclusively from on-the-job experience. The evaluation of four course presentations utilizing visual aids is presented

  6. Controlled laboratory experiments and modeling of vegetative filter strips with shallow water tables

    Science.gov (United States)

    Fox, Garey A.; Muñoz-Carpena, Rafael; Purvis, Rebecca A.

    2018-01-01

    Natural or planted vegetation at the edge of fields or adjacent to streams, also known as vegetative filter strips (VFS), are commonly used as an environmental mitigation practice for runoff pollution and agrochemical spray drift. The VFS position in lowlands near water bodies often implies the presence of a seasonal shallow water table (WT). In spite of its potential importance, there is limited experimental work that systematically studies the effect of shallow WTs on VFS efficacy. Previous research recently coupled a new physically based algorithm describing infiltration into soils bounded by a water table into the VFS numerical overland flow and transport model, VFSMOD, to simulate VFS dynamics under shallow WT conditions. In this study, we tested the performance of the model against laboratory mesoscale data under controlled conditions. A laboratory soil box (1.0 m wide, 2.0 m long, and 0.7 m deep) was used to simulate a VFS and quantify the influence of shallow WTs on runoff. Experiments included planted Bermuda grass on repacked silt loam and sandy loam soils. A series of experiments were performed including a free drainage case (no WT) and a static shallow water table (0.3-0.4 m below ground surface). For each soil type, this research first calibrated VFSMOD to the observed outflow hydrograph for the free drainage experiments to parameterize the soil hydraulic and vegetation parameters, and then evaluated the model based on outflow hydrographs for the shallow WT experiments. This research used several statistical metrics and a new approach based on hypothesis testing of the Nash-Sutcliffe model efficiency coefficient (NSE) to evaluate model performance. The new VFSMOD routines successfully simulated the outflow hydrographs under both free drainage and shallow WT conditions. Statistical metrics considered the model performance valid with greater than 99.5% probability across all scenarios. This research also simulated the shallow water table experiments with

  7. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    Science.gov (United States)

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  8. The Consequence of Combined Pain and Stress on Work Ability in Female Laboratory Technicians

    DEFF Research Database (Denmark)

    Andersen, Kenneth Jay; Friborg, Maria Kristine; Sjøgaard, Gisela

    2015-01-01

    Musculoskeletal pain and stress-related disorders are leading causes of impaired work ability, sickness absences and disability pensions. However, knowledge about the combined detrimental effect of pain and stress on work ability is lacking. This study investigates the association between pain...... in the neck-shoulders, perceived stress, and work ability. In a cross-sectional survey at a large pharmaceutical company in Denmark 473 female laboratory technicians replied to questions about stress (Perceived Stress Scale), musculoskeletal pain intensity (scale 0-10) of the neck and shoulders, and work...... ability (Work Ability Index). General linear models tested the association between variables. In the multi-adjusted model, stress (p work ability index score, and there was no significant stress by pain interaction (p = 0.32). Work ability...

  9. The consequence of combined pain and stress on work ability in female laboratory technicians

    DEFF Research Database (Denmark)

    Jay, Kenneth; Friborg, Maria Kristine; Sjøgaard, Gisela

    2015-01-01

    Musculoskeletal pain and stress-related disorders are leading causes of impaired work ability, sickness absences and disability pensions. However, knowledge about the combined detrimental effect of pain and stress on work ability is lacking. This study investigates the association between pain...... in the neck-shoulders, perceived stress, and work ability. In a cross-sectional survey at a large pharmaceutical company in Denmark 473 female laboratory technicians replied to questions about stress (Perceived Stress Scale), musculoskeletal pain intensity (scale 0-10) of the neck and shoulders, and work...... ability (Work Ability Index). General linear models tested the association between variables. In the multi-adjusted model, stress (p work ability index score, and there was no significant stress by pain interaction (p = 0.32). Work ability...

  10. Study about the behaviour of fishways in laboratory. Experiments 2009-2010

    International Nuclear Information System (INIS)

    Lara Dominguez, A.; Aramburu Godinez, E.; Berges Acedo, J. A.; Morcillo Alonso, F.; Castillo Blanco, M.

    2011-01-01

    The Hydraulic Laboratory of the Center for Hydro graphic Studies (CEDEX) is carrying out a study about the behaviour of some salmonid and cryprinid fish species in a vertical slot fishways built in the Laboratory, in order to know the relationship between hydraulic and biological parameters and to obtain valid design criteria. Its the first time in our country that fish are been monitored in a fishways using a RFD system, underwater and cenital cameras. First at all, the hydraulic of this typology has been characterised. An experiment protocol has been established to optimize the results. Regarding fish movements in the fishways, on the one hand we have found that fish always rest ascending the pass and, on the other, an influence of the flow on the percentage of fish that ascend the whole pass. Moreover, a tool analyze the efficiency of a fish way model according to biological criteria has been contrasted but it needs to be calibrated with biological variables obtained from native fish species. concerning fish fatigue and effort, studies about physiological parameters in plasma (hematocrit, glucose, cortisol and lactate) have implemented and the results point out the need to increase the studies with physiological parameters in muscle. (Author) 14 refs.

  11. Design of a Flexible Hardware Interface for Multiple Remote Electronic practical Experiments of Virtual Laboratory

    Directory of Open Access Journals (Sweden)

    Farah Said

    2012-03-01

    Full Text Available The objective of this work is to present a new design of a Flexible Hardware Interface (FHI based on PID control techniques to use in a virtual laboratory. This flexible hardware interface allows the easy implementation of different and multiple remote electronic practical experiments for undergraduate engineering classes. This interface can be viewed as opened hardware architecture to easily develop simple or complex remote experiments in the electronic domain. The philosophy of the use of this interface can also be expanded to many other domains as optic experiments for instance. It is also demonstrated that software can be developed to enable remote measurements of electronic circuits or systems using only Web site Interface. Using standard browsers (such as Internet explorer, Firefox, Chrome or Safari, different students can have a remote access to different practical experiments at a time.

  12. Determination of the Modulation Transfer Function of Screen-Film Combinations in X-ray photography by the grating method

    International Nuclear Information System (INIS)

    Hoeschen, D.

    1987-01-01

    An intercomparison experiment concerning the determination of the Modulation Transfer Function (MTF) of Screen-Film Combinations in x-ray photography by the grating method was made. Six laboratories located in four countries participated. Each laboratory has used its own, individually developed measurement procedure. The results have shown a surprisingly good agreement, the standard deviation (1 σ value) of MTF values reported by the different laboratories was about ± 0.02

  13. In-situ experiments on bentonite-based buffer and sealing materials at the Mont Terri rock laboratory (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Wieczorek, K. [Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) GmbH, Braunschweig (Germany); Gaus, I. [National Cooperative for the Disposal of Radioactive Waste (NAGRA), Wettingen (Switzerland); Mayor, J. C. [Empresa Nacional de Residuos Radiactivos SA (ENRESA), Madrid (Spain); and others

    2017-04-15

    Repository concepts in clay or crystalline rock involve bentonite-based buffer or seal systems to provide containment of the waste and limit advective flow. A thorough understanding of buffer and seal evolution is required to make sure the safety functions are fulfilled in the short and long term. Experiments at the real or near-real scale taking into account the interaction with the host rock help to make sure the safety-relevant processes are identified and understood and to show that laboratory-scale findings can be extrapolated to repository scale. Three large-scale experiments on buffer and seal properties performed in recent years at the Mont Terri rock laboratory are presented in this paper: The 1:2 scale HE-E heater experiment which is currently in operation, and the full-scale engineered barrier experiment and the Borehole Seal experiment which have been completed successfully in 2014 and 2012, respectively. All experiments faced considerable difficulties during installation, operation, evaluation or dismantling that required significant effort to overcome. The in situ experiments show that buffer and seal elements can be constructed meeting the expectations raised through small-scale testing. It was, however, also shown that interaction with the host rock caused additional effects in the buffer or seal that could not always be quantified or even anticipated from the experience of small-scale tests (such as re-saturation by pore-water from the rock, interaction with the excavation damaged zone in terms of preferential flow or mechanical effects). This led to the conclusion that testing of the integral system buffer/rock or seal/rock is needed. (authors)

  14. Conditions for building a community of practice in an advanced physics laboratory

    Science.gov (United States)

    Irving, Paul W.; Sayre, Eleanor C.

    2014-06-01

    We use the theory of communities of practice and the concept of accountable disciplinary knowledge to describe how a learning community develops in the context of an upper-division physics laboratory course. The change in accountable disciplinary knowledge motivates students' enculturation into a community of practice. The enculturation process is facilitated by four specific structural features of the course and supported by a primary instructional choice. The four structural features are "paucity of instructor time," "all in a room together," "long and difficult experiments," and "same experiments at different times." The instructional choice is the encouragement of the sharing and development of knowledge and understanding by the instructor. The combination of the instructional choice and structural features promotes the development of the learning community in which students engage in authentic practices of a physicist. This results in a classroom community that can provide students with the opportunity to have an accelerated trajectory towards being a more central participant of the community of a practice of physicists. We support our claims with video-based observations of laboratory classroom interactions and individual, semistructured interviews with students about their laboratory experiences and physics identity.

  15. On the use of laboratory experimentation: "Hydrologists, bring out shovels and garden hoses and hit the dirt"

    NARCIS (Netherlands)

    Kleinhans, M.G.; Bierkens, M.F.P.; Perk, M. van der

    2010-01-01

    From an outsider’s perspective, hydrology combines field work with modelling, but mostly ignores the potential for gaining understanding and conceiving new hypotheses from controlled laboratory experiments. Sivapalan (2009) pleaded for a question- and hypothesis-driven hydrology where data

  16. CIEMAT external dosimetry service: ISO/IEC 17025 accreditation and 3 y of operational experience as an accredited laboratory

    International Nuclear Information System (INIS)

    Romero, A.M.; Rodriguez, R.; Lopez, J.L.; Martin, R.; Benavente, J.F.

    2016-01-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. (authors)

  17. Bacterial Transport in Heterogeneous Porous Media: Laboratory and Field Experiments

    Science.gov (United States)

    Fuller, M. E.

    2001-12-01

    A fully instrumented research site for examining field-scale bacterial transport has been established on the eastern shore of Virginia. Studies employing intact sediment cores from the South Oyster site have been performed to examine the effects of physical and chemical heterogeneity, to derive transport parameters, and to aid in the selection of bacterial strains for use in field experiments. A variety of innovative methods for tracking bacteria were developed and evaluated under both laboratory and field conditions, providing the tools to detect target cell concentrations in groundwater down to effects of physical and chemical heterogeneity on field-scale bacterial transport. The results of this research not only contribute to the development of more effective bioremediation strategies, but also have implications for a better understanding of bacterial movement in the subsurface as it relates to public health microbiology and general microbial ecology.

  18. Safety Research Experiment Facilities, Idaho National Engineering Laboratory, Idaho. Draft environmental statement

    International Nuclear Information System (INIS)

    1977-01-01

    This environmental statement was prepared in accordance with the National Environmental Policy Act of 1969 (NEPA) in support of the Energy Research and Development Administration's (ERDA) proposal for legislative authorization and appropriations for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evalution of some design options and in the assessment of the long-term potential risk associated with wide-scale deployment of the FBR

  19. Aespoe Hard Rock Laboratory. Final report of the first stage of the tracer retention understanding experiments

    International Nuclear Information System (INIS)

    Winberg, A.; Andersson, Peter; Hermanson, Jan; Byegaard, Johan

    2000-03-01

    The first stage of the Tracer Retention Understanding Experiments (TRUE) was performed as a SKB funded project. The overall objectives of TRUE are to develop the understanding of radionuclide migration and retention in fractured rock, to evaluate the realism in applied model concepts, and to assess whether the necessary input data to the models can be collected from site characterisation. Further, to evaluate the usefulness and feasibility of different model approaches, and finally to provide in situ data on radionuclide migration and retention. The strive for address with multiple approaches is facilitated through a close collaboration with the Aespoe Task Force on Modelling of Groundwater Flow and Transport of Solutes. The TRUE programme is a staged programme which addresses various scales from laboratory ( 22 Na + 47 Ca 2+ ≅ 85 Sr 2+ 86 Rb + ≅ 133 Ba 2+ The field tracer tests, using essentially the same cocktail of sorbing tracers as in the laboratory, were found to show the same relative sorbtivity as seen in the laboratory. A test using 137 Cs showed that after termination of the test, some 63% of the injected activity remained sorbed in the rock. The interpretation of the in situ tests with sorbing tracers was performed using the LaSAR approach, developed as a part of the TRUE project. In this approach the studied flow path is viewed as a part of an open fracture. Key processes are spatially variable advection and mass transfer. The evaluation shows that laboratory diffusion data are not representative for in situ conditions, and that a close fit between field and modelled breakthrough is obtained only when a parameter group which includes diffusion is enhanced with a factor varying between 32-50 for all tracers and experiments (except for Cs) and 137 for Cs. Our interpretation is that the enhancement is mainly due to higher diffusivity/porosity and higher sorption in the part of the altered rim zone of the feature which is accessible over the time scales

  20. Hematologic, hepatic, renal, and lipid laboratory monitoring after initiation of combination antiretroviral therapy in the United States, 2000-2010.

    Science.gov (United States)

    Yanik, Elizabeth L; Napravnik, Sonia; Ryscavage, Patrick; Eron, Joseph J; Koletar, Susan L; Moore, Richard D; Zinski, Anne; Cole, Stephen R; Hunt, Peter; Crane, Heidi M; Kahn, James; Mathews, William C; Mayer, Kenneth H; Taiwo, Babafemi O

    2013-06-01

    We assessed laboratory monitoring after combination antiretroviral therapy initiation among 3678 patients in a large US multisite clinical cohort, censoring participants at last clinic visit, combination antiretroviral therapy change, or 3 years. Median days (interquartile range) to first hematologic, hepatic, renal, and lipid tests were 30 (18-53), 31 (19-56), 33 (20-59), and 350 (96-1106), respectively. At 1 year, approximately 80% received more than 2 hematologic, hepatic, and renal tests consistent with guidelines. However, only 40% received 1 or more lipid tests. Monitoring was more frequent in specific subgroups, likely reflecting better clinic attendance or clinician perception of higher susceptibility to toxicities.

  1. Drug Synthesis and Analysis on a Dime: A Capstone Medicinal Chemistry Experience for the Undergraduate Biochemistry Laboratory

    Science.gov (United States)

    Streu, Craig N.; Reif, Randall D.; Neiles, Kelly Y.; Schech, Amanda J.; Mertz, Pamela S.

    2016-01-01

    Integrative, research-based experiences have shown tremendous potential as effective pedagogical approaches. Pharmaceutical development is an exciting field that draws heavily on organic chemistry and biochemistry techniques. A capstone drug synthesis/analysis laboratory is described where biochemistry students synthesize azo-stilbenoid compounds…

  2. The Advanced Interdisciplinary Research Laboratory: A Student Team Approach to the Fourth-Year Research Thesis Project Experience

    Science.gov (United States)

    Piunno, Paul A. E.; Boyd, Cleo; Barzda, Virginijus; Gradinaru, Claudiu C.; Krull, Ulrich J.; Stefanovic, Sasa; Stewart, Bryan

    2014-01-01

    The advanced interdisciplinary research laboratory (AIRLab) represents a novel, effective, and motivational course designed from the interdisciplinary research interests of chemistry, physics, biology, and education development faculty members as an alternative to the independent thesis project experience. Student teams are assembled to work…

  3. Educating Laboratory Science Learners at a Distance Using Interactive Television

    Science.gov (United States)

    Reddy, Christopher

    2014-01-01

    Laboratory science classes offered to students learning at a distance require a methodology that allows for the completion of tactile activities. Literature describes three different methods of solving the distance laboratory dilemma: kit-based laboratory experience, computer-based laboratory experience, and campus-based laboratory experience,…

  4. A Decade of Experience in Implementing Quality Management System at Radiochemistry and Environmental Laboratory (RAS)

    International Nuclear Information System (INIS)

    Norfaizal Mohamed; Nita Salina Abu Bakar; Zal U'yun Wan Mahmood; Wo, Y.M.; Abdul Kadir Ishak; Nurrul Assyikeen Md Jaffary; Noor Fadzilah Yusof

    2016-01-01

    Quality management system has been introduced to a few laboratories in the Malaysian Nuclear Agency (Nuclear Malaysia) for the purpose to enhance the delivery of quality services to customers. Radiochemistry and Environmental Laboratory (RAS) is a service center in Nuclear Malaysia has implemented a quality management system in procedures carried out and has obtained accreditation for MS ISO/ IEC 17025 since 8 December 2005. This paper is intended to share experiences RAS in implementing a quality management system in accordance with standard MS ISO/ IEC 17025 accreditation and managed to keep it to this day. In addition, the RAS achievements including issues and challenges in implementing the quality management system in the past 10 years will also be discussed. (author)

  5. Laboratory Evaluation of Gas-Fired Tankless and Storage Water Heater Approaches to Combination Water and Space Heating

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, T. [Gas Technology Inst., Des Plaines, IL (United States); Scott, S. [Gas Technology Inst., Des Plaines, IL (United States)

    2013-03-01

    Homebuilders are exploring more cost-effective combined space and water heating systems (combo systems) with major water heater manufacturers that are offering pre-engineered forced air space heating combo systems. In this project, unlike standardized tests, laboratory tests were conducted that subjected condensing tankless and storage water heater based combo systems to realistic, coincidental space and domestic hot water loads and found that the tankless combo system maintained more stable DHW and space heating temperatures than the storage combo system, among other key findings.

  6. A combination of preliminary results on gauge boson couplings measured by the LEP Experiments

    CERN Document Server

    CERN. Geneva

    2004-01-01

    This note presents a combination of published and preliminary measurements of triple gauge boson couplings (TGCs) and quartic gauge boson couplings (QGCs) from the four LEP experiments. We give an updated combination of the charged TGCs, g1z, kg and lg in single and multi-parameter fits. Updated results from the QGCs from the ZZgg vertex, ac/Lambda^2 and a0/Lambda^2, are given as well. The combinations of neutral TGCs hiv anf fiv are also presented, including an updated fiv combination.

  7. Going paperless: implementing an electronic laboratory notebook in a bioanalytical laboratory.

    Science.gov (United States)

    Beato, Brian; Pisek, April; White, Jessica; Grever, Timothy; Engel, Brian; Pugh, Michael; Schneider, Michael; Carel, Barbara; Branstrator, Laurel; Shoup, Ronald

    2011-07-01

    AIT Bioscience, a bioanalytical CRO, implemented a highly configurable, Oracle-based electronic laboratory notebook (ELN) from IDBS called E-WorkBook Suite (EWBS). This ELN provides a high degree of connectivity with other databases, including Watson LIMS. Significant planning and training, along with considerable design effort and template validation for dozens of laboratory workflows were required prior to EWBS being viable for either R&D or regulated work. Once implemented, EWBS greatly reduced the need for traditional quality review upon experiment completion. Numerous real-time error checks occur automatically when conducting EWBS experiments, preventing the majority of laboratory errors by pointing them out while there is still time to correct any issues. Auditing and reviewing EWBS data are very efficient, because all data are forever securely (and even remotely) accessible, provided a reviewer has appropriate credentials. Use of EWBS significantly increases both data quality and laboratory efficiency.

  8. Anatomy and Humanity: Examining the Effects of a Short Documentary Film and First Anatomy Laboratory Experience on Medical Students

    Science.gov (United States)

    Dosani, Farah; Neuberger, Lindsay

    2016-01-01

    Medical students begin their education inside a laboratory dissecting cadavers to learn human gross anatomy. Many schools use the course experience as a way to instill empathy and some have begun integrating video and recorded interviews with body donors to humanize the experience, but their impact has yet to be measured. This study examines the…

  9. Laboratory Experiment and Numerical Analysis of a New Type of Solar Tower Efficiently Generating a Thermal Updraft

    Directory of Open Access Journals (Sweden)

    Yuji Ohya

    2016-12-01

    Full Text Available A new type of solar tower was developed through laboratory experiments and numerical analyses. The solar tower mainly consists of three components. The transparent collector area is an aboveground glass roof, with increasing height toward the center. Attached to the center of the inside of the collector is a vertical tower within which a wind turbine is mounted at the lower entry to the tower. When solar radiation heats the ground through the glass roof, ascending warm air is guided to the center and into the tower. A solar tower that can generate electricity using a simple structure that enables easy and less costly maintenance has considerable advantages. However, conversion efficiency from sunshine energy to mechanical turbine energy is very low. Aiming to improve this efficiency, the research project developed a diffuser-type tower instead of a cylindrical tower, and investigated a suitable diffuser shape for practical use. After changing the tower height and diffuser open angle, with a temperature difference between the ambient air aloft and within the collector, various diffuser tower shapes were tested by laboratory experiments and numerical analyses. As a result, it was found that a diffuser tower with a semi-open angle of 4° is an optimal shape, producing the fastest updraft at each temperature difference in both the laboratory experiments and numerical analyses. The relationships between thermal updraft speed and temperature difference and/or tower height were confirmed. It was found that the thermal updraft velocity is proportional to the square root of the tower height and/or temperature difference.

  10. Educational and laboratory base for the expert training on physical protection of nuclear materials: the requirements and experience of practical implementation

    International Nuclear Information System (INIS)

    Bondarev, P.V.; Pogozhin, N.S.; Ryzhukhin, D.V.; Tolstoy, A.I.

    2002-01-01

    Full text: In expert training on physical protection of nuclear materials (NMPP) an educational and laboratory base has special importance. In these laboratories the students receive practical skills concerning physical protection systems (PPS). The basic requirements for creating such base are formulated in a certain educational program implemented at an educational institution. Thus it is necessary to take into account the following features of a modern nuclear object PPS: restriction of an object visiting with the purpose of acquaintance with features of a certain object PPS; dynamical change of PPS component nomenclature; increase of use of computer facilities for managing all PPS subsystems; increase of integration degree of separate subsystems in a uniform PPS complex; high cost of PPS components. Taking that into consideration a university, which assumes to begin the expert training on NMPP, is compelled to solve the following tasks: creation of its own laboratory base. The implementation of practical occupations with visiting a nuclear object cannot be executed practically; definition of quantity and structure of educational laboratories. Thus the features of the implemented educational plan should be taken into account in addition; optimization of expenses on laboratory creation. The regular updating of laboratory equipment structure is impossible in a practical manner. Therefore unique correct decision is to supply laboratories with the equipment, which uses the typical technological decisions on performing the basic PPS functions (detection, delay, estimation of a situation, neutralization); development of laboratory work conducting procedures (laboratory practical works); technical support of the created laboratories. The certain experience of solving the listed tasks is accumulated at the Moscow Engineering Physics Institute (State University) (MEPhl) while implementing 'Physical Protection, Control and Accountability of Nuclear Materials' master

  11. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  12. Short-crested waves in deep water: a numerical investigation of recent laboratory experiments

    DEFF Research Database (Denmark)

    Fuhrman, David R.; Madsen, Per A.

    2006-01-01

    A numerical study of quasi-steady, doubly-periodic monochromatic short-crested wave patterns in deep water is conducted using a high-order Boussinesq-type model. Simulations using linear wavemaker conditions in the nonlinear model are initially used to approximate conditions from recent laboratory...... experiments. The computed patterns share many features with those observed in wavetanks, including bending (both frontwards and backwards) of the wave crests, dipping at the crest centerlines, and a pronounced long modulation in the direction of propagation. A new and simple explanation for these features...

  13. Two examples of the interplay between field observations and laboratory experiments from 35 years of research with planktonic organisms

    NARCIS (Netherlands)

    Ringelberg, J.

    1997-01-01

    Two studies of complicated ecological phenomena in Lake Maarsseveen (The Netherlands) are presented to illustrate that a combination of field and laboratory analysis might be a successful approach. In the first one, the yearly varying ratio of population abundance of two diatoms, Asterionella

  14. Laboratory Modelling of Volcano Plumbing Systems: a review

    Science.gov (United States)

    Galland, Olivier; Holohan, Eoghan P.; van Wyk de Vries, Benjamin; Burchardt, Steffi

    2015-04-01

    Earth scientists have, since the XIX century, tried to replicate or model geological processes in controlled laboratory experiments. In particular, laboratory modelling has been used study the development of volcanic plumbing systems, which sets the stage for volcanic eruptions. Volcanic plumbing systems involve complex processes that act at length scales of microns to thousands of kilometres and at time scales from milliseconds to billions of years, and laboratory models appear very suitable to address them. This contribution reviews laboratory models dedicated to study the dynamics of volcano plumbing systems (Galland et al., Accepted). The foundation of laboratory models is the choice of relevant model materials, both for rock and magma. We outline a broad range of suitable model materials used in the literature. These materials exhibit very diverse rheological behaviours, so their careful choice is a crucial first step for the proper experiment design. The second step is model scaling, which successively calls upon: (1) the principle of dimensional analysis, and (2) the principle of similarity. The dimensional analysis aims to identify the dimensionless physical parameters that govern the underlying processes. The principle of similarity states that "a laboratory model is equivalent to his geological analogue if the dimensionless parameters identified in the dimensional analysis are identical, even if the values of the governing dimensional parameters differ greatly" (Barenblatt, 2003). The application of these two steps ensures a solid understanding and geological relevance of the laboratory models. In addition, this procedure shows that laboratory models are not designed to exactly mimic a given geological system, but to understand underlying generic processes, either individually or in combination, and to identify or demonstrate physical laws that govern these processes. From this perspective, we review the numerous applications of laboratory models to

  15. Short-term, informal, and low-stakes scientific laboratory and field experiences improve STEM student retention and academic success

    Science.gov (United States)

    Hintz, C.; Pride, C. J.; Cox, T.

    2017-12-01

    Formal internship experiences strongly improve student success in the STEM fields. Classical programs like NSF's Research Experiences for Undergraduates are highly successful for traditional and non-traditional students. Moreover when early undergraduate and at-risk (e.g., low income, academically-challenged) students engage in these experiences, their career paths are re-enforced or changed, academic progress and retention improves, and they are encouraged to continue into graduate school. Students build connections to their course-based learning and experience the life of a working scientist. However, NSF formal experiences are relatively expensive to provide (>5000 per student per experience) and are available to fewer than 5% of geoscience majors each year. Although other funded formal internship opportunities exist, they are likely available to no more than 10% of total enrolled geoscience students. These high-quality programs cannot impact enough early undergraduate students to encourage their remaining in science and improve the current overall retention and graduation rates in the US. Savannah State University faculty successfully completed multiple grants funding low-stakes undergraduate field-science experiences. These short-term (semester to year), part-time (5-10h/week) experiences provide similar classroom-to-real-world science connections, offer students direct laboratory and field experiences, build skill sets, and provide a small source of revenue assisting financially-challenged students to stay on campus rather than seeking off-campus employment. For a much lower investment in time and grant resources (500-1500 per student per experience), participant graduation rates exceeded 80%, well above the university 27-34% graduation rate during the same time period. Relatively small infusions of research dollars targeting undergraduate experiences in the field and laboratory could significantly impact long-term student outcomes in STEM disciplines. These

  16. Crystal assisted experiments for multi-disciplinary physics with heavy ion beams at GANIL

    International Nuclear Information System (INIS)

    Dauvergne, Denis

    2015-01-01

    We present a review of the channeling and blocking experiments that have been performed at GANIL during the 30 years of stable beam operation, with the strong support of the multi-disciplinary CIRIL-CIMAP laboratory. These experiments combine atomic physics, solid state physics and nuclear physics. (paper)

  17. Laboratory Experiments for Network Security Instruction

    Science.gov (United States)

    Brustoloni, Jose Carlos

    2006-01-01

    We describe a sequence of five experiments on network security that cast students successively in the roles of computer user, programmer, and system administrator. Unlike experiments described in several previous papers, these experiments avoid placing students in the role of attacker. Each experiment starts with an in-class demonstration of an…

  18. Tracking the train of thought from the laboratory into everyday life: An experience-sampling study of mind wandering across controlled and ecological contexts

    OpenAIRE

    McVay, Jennifer C.; Kane, Michael J.; Kwapil, Thomas R.

    2009-01-01

    In an experience-sampling study that bridged laboratory, ecological, and individual-differences approaches to mind-wandering research, 72 subjects completed an executive-control task with periodic thought probes (reported by McVay & Kane, 2009) and then carried PDAs for a week that signaled them 8 times daily to report immediately whether their thoughts were off-task. Subjects who reported more mind wandering during the laboratory task endorsed more mind-wandering experiences during everyday ...

  19. A Laboratory Notebook System

    OpenAIRE

    Schreiber, Andreas

    2012-01-01

    Many scientists are using a laboratory notebook when conducting experiments. The scientist documents each step, either taken in the experiment or afterwards when processing data. Due to computerized research systems, acquired data increases in volume and becomes more elaborate. This increases the need to migrate from originally paper-based to electronic notebooks with data storage, computational features and reliable electronic documentation. This talks describes a laboratory notebook bas...

  20. Preparation of a Cobalt(II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy

    Science.gov (United States)

    Burns, Patrick J.; Tsitovich, Pavel B.; Morrow, Janet R.

    2016-01-01

    Laboratory experiments that demonstrate the effect of paramagnetic complexes on chemical shifts and relaxation times of protons are a useful way to introduce magnetic resonance spectroscopy (MRS) probes or magnetic resonance imaging (MRI) contrast agents. In this undergraduate inorganic chemistry experiment, a paramagnetic Co(II) cage complex is…

  1. Achievements and experience in Laboratory for Low Level Measurements, Rudjer Boskovic Institute, Croatia, during the IAEA QA/QC program

    International Nuclear Information System (INIS)

    Obelic, B.; Horvatincic, N.; Krajcar Bronic, I.

    2002-01-01

    In this summary we explain our motivation for joining the IAEA Program on Quality Assurance and Quality Control in Nuclear Analytical Techniques, the situation in the Laboratory before joining the program, and achievements during this 2-year program. We also describe our experience and difficulties with implementation of the quality system in the Laboratory, as well as with the quality system at the Rudjer Boskovic Institute. Finally, we present our plans for the future

  2. Measuring meaningful learning in the undergraduate chemistry laboratory

    Science.gov (United States)

    Galloway, Kelli R.

    The undergraduate chemistry laboratory has been an essential component in chemistry education for over a century. The literature includes reports on investigations of singular aspects laboratory learning and attempts to measure the efficacy of reformed laboratory curriculum as well as faculty goals for laboratory learning which found common goals among instructors for students to learn laboratory skills, techniques, experimental design, and to develop critical thinking skills. These findings are important for improving teaching and learning in the undergraduate chemistry laboratory, but research is needed to connect the faculty goals to student perceptions. This study was designed to explore students' ideas about learning in the undergraduate chemistry laboratory. Novak's Theory of Meaningful Learning was used as a guide for the data collection and analysis choices for this research. Novak's theory states that in order for meaningful learning to occur the cognitive, affective, and psychomotor domains must be integrated. The psychomotor domain is inherent in the chemistry laboratory, but the extent to which the cognitive and affective domains are integrated is unknown. For meaningful learning to occur in the laboratory, students must actively integrate both the cognitive domain and the affective domains into the "doing" of their laboratory work. The Meaningful Learning in the Laboratory Instrument (MLLI) was designed to measure students' cognitive and affective expectations and experiences within the context of conducting experiments in the undergraduate chemistry laboratory. Evidence for the validity and reliability of the data generated by the MLLI were collected from multiple quantitative studies: a one semester study at one university, a one semester study at 15 colleges and universities across the United States, and a longitudinal study where the MLLI was administered 6 times during two years of general and organic chemistry laboratory courses. Results from

  3. Nanoparticle Synthesis, Characterization, and Ecotoxicity: A Research-Based Set of Laboratory Experiments for a General Chemistry Course

    Science.gov (United States)

    Amaris, Zoe N.; Freitas, Daniel N.; Mac, Karen; Gerner, Kyle T.; Nameth, Catherine; Wheeler, Korin E.

    2017-01-01

    A series of laboratory experiments were developed to introduce first-year chemistry students to nanoscience through a green chemistry approach. Students made and characterized the stability of silver nanoparticles using two different methods: UV-visible spectroscopy and dynamic light scattering. They then assessed the ecotoxicity of silver…

  4. Controls on Lava Flow Morphology and Propagation: Using Laboratory Analogue Experiments

    Science.gov (United States)

    Peters, S.; Clarke, A. B.

    2017-12-01

    The morphology of lava flows is controlled by eruption rate, composition, cooling rate, and topography [Fink and Griffiths, 1990; Gregg and Fink, 2000, 2006]. Lava flows are used to understand how volcanoes, volcanic fields, and igneous provinces formed and evolved [Gregg and Fink., 1996; Sheth, 2006]. This is particularly important for other planets where compositional data is limited and historical context is nonexistent. Numerical modeling of lava flows remains challenging, but has been aided by laboratory analog experiments [Gregg and Keszrthelyi, 2004; Soule and Cashman, 2004]. Experiments using polyethylene glycol (PEG) 600 wax have been performed to understand lava flow emplacement [Fink and Griffiths, 1990, 1992; Gregg and Fink, 2000]. These experiments established psi (hereafter denoted by Ψ), a dimensionless parameter that relates crust formation and advection timescales of a viscous gravity current. Four primary flow morphologies corresponding to discreet Ψ ranges were observed. Gregg and Fink [2000] also investigated flows on slopes and found that steeper slopes increase the effective effusion rate producing predicted morphologies at lower Ψ values. Additional work is needed to constrain the Ψ parameter space, evaluate the predictive capability of Ψ, and determine if the preserved flow morphology can be used to indicate the initial flow conditions. We performed 514 experiments to address the following controls on lava flow morphology: slope (n = 282), unsteadiness/pulsations (n = 58), slope & unsteadiness/pulsations (n = 174), distal processes, and emplacement vs. post-emplacement morphologies. Our slope experiments reveal a similar trend to Gregg and Fink [2000] with the caveat that very high and very low local & source eruption rates can reduce the apparent predictive capability of Ψ. Predicted Ψ morphologies were often produced halfway through the eruption. Our pulse experiments are expected to produce morphologies unique to each eruption rate

  5. The Canfranc Underground Laboratory

    International Nuclear Information System (INIS)

    Amare, J.; Beltran, B.; Carmona, J.M.; Cebrian, S.; Garcia, E.; Irastorza, I.G.; Gomez, H.; Luzon, G.; Martinez, M.; Morales, J.; Ortiz de Solorzano, A.; Pobes, C.; Puimedon, J.; Rodriguez, A.; Ruz, J.; Sarsa, M.L.; Torres, L.; Villar, J.A.

    2005-01-01

    This paper describes the forthcoming enlargement of the Canfranc Underground Laboratory (LSC) which will allow to host new international Astroparticle Physics experiments and therefore to broaden the European underground research area. The new Canfranc Underground Laboratory will operate in coordination (through the ILIAS Project) with the Gran Sasso (Italy), Modane (France) and Boulby (UK) underground laboratories

  6. Critical experiments AT Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Clayton, E.D.; Bierman, S.R.

    1984-01-01

    After a short description of the facility, a brief listing of the principal types of fuel forms and assembly geometries is provided. A number of experiments have recently been performed on plain fissionable units, or isolated assemblies of single units, that include measurements on solutions composed of Pu-U mixtures and critical experiment data on lattices of low enriched uranium in water. Experiments have been performed on planar arrays of containers with Pu solutions because of the lack of data in this field concerning the safe storage of nuclear fuel; others have been conducted on arrays of low enriched U lattice assemblies. Neutronic measurements to date have shown they can be used to provide additional benchmark data for improvement and validation of criticality codes. Studies have previously been made to ascertain the need for critical experiments in support of fuel recycle operations. The result of an effort to update the list of needed critical experiments is summarized in this section. Experiments are listed in support of uranium based fuels and fast breeder reactor fuels. An effort is made to identify those areas within the fuel cycle wherein the critical experiment data would be applied and to identify the experiments (and data) required to fulfill the needs in each of these areas. The type and form of fuel on which the data would be obtained also are identified. In presenting this information, no attempt is made to describe the experiments in detail, or to define the actual number of critical experiments that might be needed to provide the required data

  7. Dedicated Laboratory Setup for CO2 TEA Laser Propulsion Experiments at Rensselaer Polytechnic Institute

    International Nuclear Information System (INIS)

    Salvador, Israel I.; Kenoyer, David; Myrabo, Leik N.; Notaro, Samuel

    2010-01-01

    Laser propulsion research progress has traditionally been hindered by the scarcity of photon sources with desirable characteristics, as well as integrated specialized flow facilities in a dedicated laboratory environment. For TEA CO 2 lasers, the minimal requirements are time-average powers of >100 W), and pulse energies of >10 J pulses with short duration (e.g., 0.1 to 1 μs); furthermore, for the advanced pulsejet engines of interest here, the laser system must simulate pulse repetition frequencies of 1-10 kilohertz or more, at least for two (carefully sequenced) pulses. A well-equipped laser propulsion laboratory should have an arsenal of sensor and diagnostics tools (such as load cells, thrust stands, moment balances, pressure and heat transfer gages), Tesla-level electromagnet and permanent magnets, flow simulation facilities, and high-speed visualization systems, in addition to other related equipment, such as optics and gas supply systems. In this paper we introduce a cutting-edge Laser Propulsion Laboratory created at Rensselaer Polytechnic Institute, one of the very few in the world to be uniquely set up for beamed energy propulsion (BEP) experiments. The present BEP research program is described, along with the envisioned research strategy that will exploit current and expanded facilities in the near future.

  8. Communication and laboratory performance in parapsychology experiments: demand characteristics and the social organization of interaction.

    Science.gov (United States)

    Wooffitt, Robin

    2007-09-01

    This paper reports findings from a conversation analytic study of experimenter-participant interaction in parapsychology experiments. It shows how properties of communication through which the routine business of the experiment is conducted may have an impact on the research participant's subsequent performance. In this, the study explores social psychological features of the psychology laboratory. In particular, it examines aspects of Orne's (1962) account of what he called the demand characteristics of the psychological experiment. The data come from a corpus of audio recordings of experimenter-participant interaction during experiments on extra-sensory perception. These kinds of experiments, and the phenomena they purport to study, are undoubtedly controversial; however, the paper argues that there are grounds for social psychologists to consider parapsychology experiments as a class (albeit distinctive) of psychology experiments, and, therefore, as sites in which general social psychological and communicative phenomena can be studied. The empirical sections of the paper examine interaction during part of the experimental procedure when the experimenter verbally reviews a record of the participant's imagery reported during an earlier part of the experiment. The analysis shows that the way in which the experimenter acknowledges the research participants' utterances may be significant for the trajectory of the experiment and explores how the participants' subsequent performance in the experiment may be influenced by interactionally generated contingencies.

  9. Gallium Safety in the Laboratory

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2003-01-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002

  10. Laboratory investigations in support of the migration experiments at the Grimsel test site

    International Nuclear Information System (INIS)

    Bradbury, M.H.

    1989-04-01

    Tracer migration experiments are in progress at the underground Grimsel Test Site (GTS). In order to interpret tracer tests a supporting laboratory experimental programme is essential. This report describes the results from the first part of such a programme. Insufficient material from the protomylonite surrounding the fracture was available from the migration site for the foreseen experiments and so mylonite from an adjacent fault zone was used instead. Detailed petrographic and mineralogical characterisations of the protomylonite and mylonite were carried out. The mylonitic samples from these two sources were shown to be mineralogically similar although some potentially significant differences did exist. The promylonite was slightly depleted in those minerals (chlorite, muscovite etc.) which could be significant for sorption/exchange processes. This may have consequences for predictions of the sorption behaviour in the migration zone deduced from laboratory measurements. The fracture zone exhibited groundwater discharge at five discrete channels situated in a single fracture. Groundwater emerging from these five locations, and from two boreholes intersecting the plane of the fracture, were sampled and analysed at approximately monthly intervals over a period of 12 months. The results showed that there were no significant temporal or spatial variations in the compositions. This groundwater may be characterised as being of low ionic strength (∼9.6) with Na + , Ca 2+ , Cl - , SO 4 2- , F - and HCO 3 - as the major ions. The partial pressure of CO 2 calculated to be in equilibrium with the groundwater was ∼4x10 -6 bar. (author) 14 figs., 17 tabs., 31 refs

  11. A Laboratory Experiment to Demonstrate the Principles of Sedimentation in a Centrifuge: Estimation of Radius and Settling Velocity of Bacteria

    Science.gov (United States)

    Riley, Erin; Felse, P. Arthur

    2017-01-01

    Centrifugation is a major unit operation in chemical and biotechnology industries. Here we present a simple, hands-on laboratory experiment to teach the basic principles of centrifugation and to explore the shear effects of centrifugation using bacterial cells as model particles. This experiment provides training in the use of a bench-top…

  12. Undergraduate students' goals for chemistry laboratory coursework

    Science.gov (United States)

    DeKorver, Brittland K.

    Chemistry laboratory coursework has the potential to offer many benefits to students, yet few of these learning goals are realized in practice. Therefore, this study seeks to characterize undergraduate students' learning goals for their chemistry laboratory coursework. Data were collected by recording video of students completing laboratory experiments and conducting interviews with the students about their experiences that were analyzed utilizing the frameworks of Human Constructivism and Self-Regulated Learning. A cross-sectional sampling of students allowed comparisons to be made among students with varying levels of chemistry experience and interest in chemistry. The student goals identified by this study were compared to previously described laboratory learning goals of the faculty who instruct these courses in an effort to identify potential avenues to improve laboratory learning.

  13. Laboratory and field investigation of chemical disinfection of combined sewer overflow in Copenhagen area

    DEFF Research Database (Denmark)

    Chhetri, Ravi Kumar; Thornberg, Dines; Berner, Jesper

    We investigated the possibility to apply performic acid (PFA) and peracetic acid (PAA) for disinfection of combined sewer overflow (CSO) in existing CSO management infrastructures. The disinfection power of PFA and PAA to Escherichia coli (E. coli) and enterococcus were studied in batch scale...... and pre-field experiment. In batch scale experiment 2.5 mg·L -1 PAA removed around 4 log unit of E. coli and enterococcus from CSO with long contact time. Removal of E. coli and enterococcus from CSO were always around or above 3 log unit using 2-4 mg·L -1 PFA with short contact time in batch scale...... and pre-field experiment. There were no toxicological effect measured by Vibrio fischeri when CSO was disinfected with PFA, slight toxicological effect was observed on CSO disinfected with PAA. When the design for PFA based disinfection was applied to CSO collected from an authentic event. Disinfection...

  14. HESS Opinions On the use of laboratory experimentation: "Hydrologists, bring out shovels and garden hoses and hit the dirt"

    NARCIS (Netherlands)

    Kleinhans, M. G.; Bierkens, M. F. P.; van der Perk, M.

    2010-01-01

    From an outsider's perspective, hydrology combines field work with modelling, but mostly ignores the potential for gaining understanding and conceiving new hypotheses from controlled laboratory experiments. Sivapalan (2009) pleaded for a question- and hypothesis-driven hydrology where data analysis

  15. Benchmarking in a differentially heated rotating annulus experiment: Multiple equilibria in the light of laboratory experiments and simulations

    Science.gov (United States)

    Vincze, Miklos; Harlander, Uwe; Borchert, Sebastian; Achatz, Ulrich; Baumann, Martin; Egbers, Christoph; Fröhlich, Jochen; Hertel, Claudia; Heuveline, Vincent; Hickel, Stefan; von Larcher, Thomas; Remmler, Sebastian

    2014-05-01

    In the framework of the German Science Foundation's (DFG) priority program 'MetStröm' various laboratory experiments have been carried out in a differentially heated rotating annulus configuration in order to test, validate and tune numerical methods to be used for modeling large-scale atmospheric processes. This classic experimental set-up is well known since the late 1940s and is a widely studied minimal model of the general mid-latitude atmospheric circulation. The two most relevant factors of cyclogenesis, namely rotation and meridional temperature gradient are quite well captured in this simple arrangement. The tabletop-size rotating tank is divided into three sections by coaxial cylindrical sidewalls. The innermost section is cooled whereas the outermost annular cavity is heated, therefore the working fluid (de-ionized water) in the middle annular section experiences differential heat flow, which imposes thermal (density) stratification on the fluid. At high enough rotation rates the isothermal surfaces tilt, leading to baroclinic instability. The extra potential energy stored in this unstable configuration is then converted into kinetic energy, exciting drifting wave patterns of temperature and momentum anomalies. The signatures of these baroclinic waves at the free water surface have been analysed via infrared thermography in a wide range of rotation rates (keeping the radial temperature difference constant) and under different initial conditions (namely, initial spin-up and "spin-down"). Paralelly to the laboratory simulations of BTU Cottbus-Senftenberg, five other groups from the MetStröm collaboration have conducted simulations in the same parameter regime using different numerical approaches and solvers, and applying different initial conditions and perturbations for stability analysis. The obtained baroclinic wave patterns have been evaluated via determining and comparing their Empirical Orthogonal Functions (EOFs), drift rates and dominant wave

  16. Sandia National Laboratories

    Science.gov (United States)

    Gilliom, Laura R.

    1992-01-01

    Sandia National Laboratories has identified technology transfer to U.S. industry as a laboratory mission which complements our national security mission and as a key component of the Laboratory's future. A number of technology transfer mechanisms - such as CRADA's, licenses, work-for-others, and consortia - are identified and specific examples are given. Sandia's experience with the Specialty Metals Processing Consortium is highlighted with a focus on the elements which have made it successful. A brief discussion of Sandia's potential interactions with NASA under the Space Exploration Initiative was included as an example of laboratory-to-NASA technology transfer. Viewgraphs are provided.

  17. Comparing the Impact of Course-Based and Apprentice-Based Research Experiences in a Life Science Laboratory Curriculum†

    Science.gov (United States)

    Shapiro, Casey; Moberg-Parker, Jordan; Toma, Shannon; Ayon, Carlos; Zimmerman, Hilary; Roth-Johnson, Elizabeth A.; Hancock, Stephen P.; Levis-Fitzgerald, Marc; Sanders, Erin R.

    2015-01-01

    This four-year study describes the assessment of a bifurcated laboratory curriculum designed to provide upper-division undergraduate majors in two life science departments meaningful exposure to authentic research. The timing is critical as it provides a pathway for both directly admitted and transfer students to enter research. To fulfill their degree requirements, all majors complete one of two paths in the laboratory program. One path immerses students in scientific discovery experienced through team research projects (course-based undergraduate research experiences, or CUREs) and the other path through a mentored, independent research project (apprentice-based research experiences, or AREs). The bifurcated laboratory curriculum was structured using backwards design to help all students, irrespective of path, achieve specific learning outcomes. Over 1,000 undergraduates enrolled in the curriculum. Self-report survey results indicate that there were no significant differences in affective gains by path. Students conveyed which aspects of the curriculum were critical to their learning and development of research-oriented skills. Students’ interests in biology increased upon completion of the curriculum, inspiring a subset of CURE participants to subsequently pursue further research. A rubric-guided performance evaluation, employed to directly measure learning, revealed differences in learning gains for CURE versus ARE participants, with evidence suggesting a CURE can reduce the achievement gap between high-performing students and their peers. PMID:26751568

  18. [Experience with combined spinal and epidural anesthesia at cesarean section].

    Science.gov (United States)

    Levinzon, A S; Taran, O I; Pura, K R; Mishchenko, G S; Mamaeva, N V

    2006-01-01

    The paper analyzes some experience gained in using various modes of regional anesthesia as an anesthetic appliance at cesarean sections and comparatively characterizes various types of central segmental blocks. The results of 213 cases of cesarean section performed under spinal or combined spinal and epidural anesthesia (CSEA) were generalized by the following parameters: block onset, maternal and fetal action, the quality of anesthesia and postoperative analgesia, which leads to the conclusion that CSEA is the method of choice.

  19. An approach to Poiseuille's law in an undergraduate laboratory experiment

    International Nuclear Information System (INIS)

    Sianoudis, I A; Drakaki, E

    2008-01-01

    The continuous growth of computer and sensor technology allows many researchers to develop simple modifications and/or refinements to standard educational experiments, making them more attractive and comprehensible to students and thus increasing their educational impact. In the framework of this approach, the present study proposes an alternative experimental setup, which allows the confirmation of Hagen-Poiseuille's law, governing the flow of real fluids through tubes, a law with numerous important applications in both technology and medicine. In the proposed educational procedure, experimental measurements of fluid outflow are performed with the use of a motion sensor and a suitable computer program, allowing the determination of both the hydrostatic pressure and the flow rate. The dependence of the flow rate on parameters such as viscosity of the fluid, length and radius of the tube and the pressure difference between the ends of the tube are also studied, providing a laboratory activity which is useful and attractive for first year students, especially those of technologically oriented departments

  20. Examining High School Anatomy and Physiology Teacher Experience in a Cadaver Dissection Laboratory and Impacts on Practice

    Science.gov (United States)

    Mattheis, Allison; Ingram, Debra; Jensen, Murray S.; Jackson, Jon

    2015-01-01

    This article describes the results of a study that investigated the experiences of a group of high school anatomy and physiology teachers who participated in a cadaver dissection laboratory workshop organized through a university-school partnership. Teacher feedback was collected before, during, and after the workshop through pre-arrival surveys,…

  1. Enhancing Hispanic Minority Undergraduates' Botany Laboratory Experiences: Implementation of an Inquiry-Based Plant Tissue Culture Module Exercise

    Science.gov (United States)

    Siritunga, Dimuth; Navas, Vivian; Diffoot, Nanette

    2012-01-01

    Early involvement of students in hands-on research experiences are known to demystify research and promote the pursuit of careers in science. But in large enrollment departments such opportunities for undergraduates to participate in research are rare. To counteract such lack of opportunities, inquiry-based laboratory module in plant tissue…

  2. Depuration kinetics of paralytic shellfish toxins in Mytilus galloprovincialis exposed to Gymnodinium catenatum: laboratory and field experiments.

    Science.gov (United States)

    Botelho, Maria João; Vale, Carlos; Mota, Ana M; S Simões Gonçalves, Maria de Lurdes

    2010-12-01

    The kinetics of paralytic shellfish toxins in Mytilus galloprovincialis, previously exposed to Gymnodinium catenatum, was studied under depuration laboratory conditions and over a declining bloom of the dinoflagellate in the field. The variation of the levels observed throughout the laboratory experiment was characterized by a fast depuration of B1, C1 + 2, dcSTX and dcGTX2 + 3, possibly due to the gut evacuation of unassimilated toxins or microalgae cells, or loss during digestive mechanisms. Subsequent enhancements were observed for all compounds with emphasis to dcSTX and dcGTX2 + 3, pointing to biotransformation of the assimilated toxins. Then levels decreased gradually. A first-order depuration kinetic model fitted well to the decrease of B1, C1 + 2 and dcGTX2 + 3 concentrations, but not for dcSTX. Mussels exposed to a declining bloom of Gymnodinium catenatum exhibited a loss of toxins following the same pattern. Despite the low abundance of this dinoflagellate, a similar kinetic model was applied to the field data. The depuration rate of dcGTX2 + 3 in the field experiment (0.153 ± 0.03 day(-1)) significantly exceeded the value calculated in the laboratory (0.053 ± 0.01 day(-1)), while smaller differences were obtained for B1 (0.071 ± 0.02 and 0.048 ± 0.01 day(-1)) and similar values for C1 + 2 (0.082 ± 0.03 and 0.080 ± 0.03 day(-1)). The slower depuration rate of dcGTX2 + 3 in the heavily contaminated mussels at the laboratory may be related to a more effective contribution of C1 + 2 biotransformation.

  3. Emissions of hydrocarbons from marine phytoplankton—Some results from controlled laboratory experiments

    Science.gov (United States)

    McKay, W. A.; Turner, M. F.; Jones, B. M. R.; Halliwell, C. M.

    Laboratory experiments have been carried out to help assess and quantify the role of marine phytoplankton in the production of non-methane hydrocarbons. Evidence is presented here that supports the hypothesis that some short-chain hydrocarbons are produced during diatom and dinoflagellate lifecycles. The pattern of their emissions to the air above axenic unicultures of diatoms and dinoflagellates has been followed. The results suggest that ethane, ethene, propane and propene are produced during the autolysis of some phytoplankton, possibly by the oxidation of polyunsaturated lipids released into their culture medium. In contrast, isoprene and hexane appear during phytoplankton growth and are thus most likely produced either directly by the plankton or through the oxidation of exuded dissolved organic carbon.

  4. A review of the findings of the plasma diagnostic package and associated laboratory experiments: Implications of large body/plasma interactions for future space technology

    Science.gov (United States)

    Murphy, Gerald B.; Lonngren, Karl E.

    1986-01-01

    The discoveries and experiments of the Plasma Diagnostic Package (PDP) on the OSS 1 and Spacelab 2 missions are reviewed, these results are compared with those of other space and laboratory experiments, and the implications for the understanding of large body interactions in a low Earth orbit (LEO) plasma environment are discussed. First a brief review of the PDP investigation, its instrumentation and experiments is presented. Next a summary of PDP results along with a comparison of those results with similar space or laboratory experiments is given. Last of all the implications of these results in terms of understanding fundamental physical processes that take place with large bodies in LEO is discussed and experiments to deal with these vital questions are suggested.

  5. Tracking the train of thought from the laboratory into everyday life: an experience-sampling study of mind wandering across controlled and ecological contexts.

    Science.gov (United States)

    McVay, Jennifer C; Kane, Michael J; Kwapil, Thomas R

    2009-10-01

    In an experience-sampling study that bridged laboratory, ecological, and individual-differences approaches to mind-wandering research, 72 subjects completed an executive-control task with periodic thought probes (reported by McVay & Kane, 2009) and then carried PDAs for a week that signaled them eight times daily to report immediately whether their thoughts were off task. Subjects who reported more mind wandering during the laboratory task endorsed more mind-wandering experiences during everyday life (and were more likely to report worries as off-task thought content). We also conceptually replicated laboratory findings that mind wandering predicts task performance: Subjects rated their daily-life performance to be impaired when they reported off-task thoughts, with greatest impairment when subjects' mind wandering lacked metaconsciousness. The propensity to mind wander appears to be a stable cognitive characteristic and seems to predict performance difficulties in daily life, just as it does in the laboratory.

  6. Perceptual assessment of quality of urban soundscapes with combined noise sources and water sounds.

    Science.gov (United States)

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2010-03-01

    In this study, urban soundscapes containing combined noise sources were evaluated through field surveys and laboratory experiments. The effect of water sounds on masking urban noises was then examined in order to enhance the soundscape perception. Field surveys in 16 urban spaces were conducted through soundwalking to evaluate the annoyance of combined noise sources. Synthesis curves were derived for the relationships between noise levels and the percentage of highly annoyed (%HA) and the percentage of annoyed (%A) for the combined noise sources. Qualitative analysis was also made using semantic scales for evaluating the quality of the soundscape, and it was shown that the perception of acoustic comfort and loudness was strongly related to the annoyance. A laboratory auditory experiment was then conducted in order to quantify the total annoyance caused by road traffic noise and four types of construction noise. It was shown that the annoyance ratings were related to the types of construction noise in combination with road traffic noise and the level of the road traffic noise. Finally, water sounds were determined to be the best sounds to use for enhancing the urban soundscape. The level of the water sounds should be similar to or not less than 3 dB below the level of the urban noises.

  7. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  8. Characterizing oxidative flow reactor SOA production and OH radical exposure from laboratory experiments of complex mixtures (engine exhaust) and simple precursors (monoterpenes)

    Science.gov (United States)

    Michael Link, M. L.; Friedman, B.; Ortega, J. V.; Son, J.; Kim, J.; Park, G.; Park, T.; Kim, K.; Lee, T.; Farmer, D.

    2016-12-01

    Recent commercialization of the Oxidative Flow Reactor (OFR, occasionally described in the literature as a "Potential Aerosol Mass") has created the opportunity for many researchers to explore the mechanisms behind OH-driven aerosol formation on a wide range of oxidative timescales (hours to weeks) in both laboratory and field measurements. These experiments have been conducted in both laboratory and field settings, including simple (i.e. single component) and complex (multi-component) precursors. Standard practices for performing OFR experiments, and interpreting data from the measurements, are still being developed. Measurement of gas and particle phase chemistry, from oxidation products generated in the OFR, through laboratory studies on single precursors and the measurement of SOA from vehicle emissions on short atmospheric timescales represent two very different experiments in which careful experimental design is essential for exploring reaction mechanisms and SOA yields. Two parameters essential in experimental design are (1) the role of seed aerosol in controlling gas-particle partitioning and SOA yields, and (2) the accurate determination of OH exposure during any one experiment. We investigated the role of seed aerosol surface area in controlling the observed SOA yields and gas/particle composition from the OH-initiated oxidation of four monoterpenes using an aerosol chemical ionization time-of-flight mass spectrometer and scanning mobility particle sizer. While the OH exposure during laboratory experiments is simple to constrain, complex mixtures such as diesel exhaust have high estimated OH reactivity values, and thus require careful consideration. We developed methods for constraining OH radical exposure in the OFR during vehicle exhaust oxidation experiments. We observe changes in O/C ratios and highly functionalized species over the temperature gradient employed in the aerosol-CIMS measurement. We relate this observed, speciated chemistry to the

  9. Estimated Uncertainties in the Idaho National Laboratory Matched-Index-of-Refraction Lower Plenum Experiment

    International Nuclear Information System (INIS)

    Donald M. McEligot; Hugh M. McIlroy, Jr.; Ryan C. Johnson

    2007-01-01

    The purpose of the fluid dynamics experiments in the MIR (Matched-Index-of-Refraction) flow system at Idaho National Laboratory (INL) is to develop benchmark databases for the assessment of Computational Fluid Dynamics (CFD) solutions of the momentum equations, scalar mixing, and turbulence models for typical Very High Temperature Reactor (VHTR) plenum geometries in the limiting case of negligible buoyancy and constant fluid properties. The experiments use optical techniques, primarily particle image velocimetry (PIV) in the INL MIR flow system. The benefit of the MIR technique is that it permits optical measurements to determine flow characteristics in passages and around objects to be obtained without locating a disturbing transducer in the flow field and without distortion of the optical paths. The objective of the present report is to develop understanding of the magnitudes of experimental uncertainties in the results to be obtained in such experiments. Unheated MIR experiments are first steps when the geometry is complicated. One does not want to use a computational technique, which will not even handle constant properties properly. This report addresses the general background, requirements for benchmark databases, estimation of experimental uncertainties in mean velocities and turbulence quantities, the MIR experiment, PIV uncertainties, positioning uncertainties, and other contributing measurement uncertainties

  10. Science with multiply-charged ions at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Jones, K.W.; Johnson, B.M.; Meron, M.; Thieberger, P.

    1987-01-01

    The production of multiply-charged heavy ions at Brookhaven National Laboratory and their use in different types of experiments are discussed. The main facilities that are used are the Double MP Tandem Van de Graaff and the National Synchrotron Light Source. The capabilities of a versatile Atomic Physics Facility based on a combination of the two facilities and a possible new heavy-ion storage ring are summarized. It is emphasized that the production of heavy ions and the relevant science necessitates very flexible and diverse apparatus

  11. Estimating the Analytical and Surface Enhancement Factors in Surface-Enhanced Raman Scattering (SERS): A Novel Physical Chemistry and Nanotechnology Laboratory Experiment

    Science.gov (United States)

    Pavel, Ioana E.; Alnajjar, Khadijeh S.; Monahan, Jennifer L.; Stahler, Adam; Hunter, Nora E.; Weaver, Kent M.; Baker, Joshua D.; Meyerhoefer, Allie J.; Dolson, David A.

    2012-01-01

    A novel laboratory experiment was successfully implemented for undergraduate and graduate students in physical chemistry and nanotechnology. The main goal of the experiment was to rigorously determine the surface-enhanced Raman scattering (SERS)-based sensing capabilities of colloidal silver nanoparticles (AgNPs). These were quantified by…

  12. Aquifer recharge with reclaimed water in the Llobregat Delta. Laboratory batch experiments and field test site.

    Science.gov (United States)

    Tobella, J.

    2010-05-01

    Summary Spain, as most other Mediterranean countries, faces near future water shortages, generalized pollution and loss of water dependent ecosystems. Aquifer recharge represents a promising option to become a source for indirect potable reuse purposes but presence of pathogens as well as organic and inorganic pollutants should be avoided. To this end, understanding the processes of biogeochemical degradation occurring within the aquifer during infiltration is capital. A set of laboratory batch experiments has been assembled in order to assess the behaviour of selected pesticides, drugs, estrogens, surfactant degradation products, biocides and phthalates under different redox conditions. Data collected during laboratory experiments and monitoring activities at the Sant Vicenç dels Horts test site will be used to build and calibrate a numerical model (i) of the physical-chemical-biochemical processes occurring in the batches and (ii) of multicomponent reactive transport in the unsaturated/saturated zone at the test site. Keywords Aquifer recharge, batch experiments, emerging micropollutants, infiltration, numerical model, reclaimed water, redox conditions, Soil Aquifer Treatment (SAT). 1. Introduction In Spain, the Llobregat River and aquifers, which supply water to Barcelona, have been overexploited for years and therefore, suffer from serious damages: the river dries up on summer, riparian vegetation has disappeared and seawater has intruded the aquifer. In a global context, solutions to water stress problems are urgently needed yet must be sustainable, economical and safe. Recent developments of analytical techniques detect the presence of the so-called "emerging" organic micropollutants in water and soils. Such compounds may affect living organisms when occurring in the environment at very low concentrations (microg/l or ng/l). In wastewater and drinking water treatment plants, a remarkable removal of these chemicals from water can be obtained only using

  13. The UAH Spinning Terrella Experiment: A Laboratory Analog for the Earth's Magnetosphere

    Science.gov (United States)

    Sheldon, R. B.; Gallagher, D. L.; Craven, P. D.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The UAH Spinning Terrella Experiment has been modified to include the effect of a second magnet. This is a simple laboratory demonstration of the well-known double-dipole approximation to the Earth's magnetosphere. In addition, the magnet has been biassed $\\sim$-400V which generates a DC glow discharge and traps it in a ring current around the magnet. This ring current is easily imaged with a digital camera and illustrates several significant topological properties of a dipole field. In particular, when the two dipoles are aligned, and therefore repel, they emulate a northward IMF Bz magnetosphere. Such a geometry traps plasma in the high latitude cusps as can be clearly seen in the movies. Likewise, when the two magnets are anti-aligned, they emulate a southward IMF Bz magnetosphere with direct feeding of plasma through the x-line. We present evidence for trapping and heating of the plasma, comparing the dipole-trapped ring current to the cusp-trapped population. We also present a peculiar asymmetric ring current produced in by the plasma at low plasma densities. We discuss the similarities and dissimilarities of the laboratory analog to the collisionless Earth plasma, and implications for the interpretation of IMAGE data.

  14. Monitoring and modelling of thermo-hydro-mechanical processes - main results of a heater experiment at the Mont Terri underground rock laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Ingeborg, G.; Alheid, H.J. [BGR - Federal Institute for Geosciences and Natural Resources, Hannover (Germany); Jockwerz, N. [Gesellschaft fur Anlagen- und Reaktorsicherheit (GRS) - Final Repository Research Division, Braunschweig (Germany); Mayor, J.C. [ENRESA - Empresa Nacional des Residuos Radioactivos, Madrid (Spain); Garcia-Siner, J.L. [AITEMIN -Asociacion para la Investigacion y Desarrollo Industrial de los Recursos Naturales, Madrid, (Spain); Alonso, E. [CIMNE - Centre Internacional de Metodos Numerics en Ingenyeria, UPC, Barcelona (Spain); Weber, H.P. [NAGRA - National Cooperative for the Disposal of Radioactive Waste, Wettingen (Switzerland); Plotze, M. [ETHZ - Swiss Federal Institute of Technology Zurich, IGT, Zurich, (Switzerland); Klubertanz, G. [COLENCO Power Engineering Ltd., Baden (Switzerland)

    2005-07-01

    The long-term safety of permanent underground repositories relies on a combination of engineered and geological barriers, so that the interactions between the barriers in response to conditions expected in a high-level waste repository need to be identified and fully understood. Co-financed by the European Community, a heater experiment was realized on a pilot plant scale at the underground laboratory in Mont Terri, Switzerland. The experiment was accompanied by an extensive programme of continuous monitoring, experimental investigations on-site as well as in laboratories, and numerical modelling of the coupled thermo-hydro-mechanical processes. Heat-producing waste was simulated by a heater element of 10 cm diameter, held at a constant surface temperature of 100 C. The heater element (length 2 m) operated in a vertical borehole of 7 m depth at 4 to 6 m depth. It was embedded in a geotechnical barrier of pre-compacted bentonite blocks (outer diameter 30 cm) that were irrigated for 35 months before the heating phase (duration 18 months) began. The host rock is a highly consolidated stiff Jurassic clay stone (Opalinus Clay). After the heating phase, the vicinity of the heater element was explored by seismic, hydraulic, and geotechnical tests to investigate if the heating had induced changes in the Opalinus Clay. Additionally, rock mechanic specimens were tested in the laboratory. Finally, the experiment was dismantled to provide laboratory specimens of post - heating buffer and host rock material. The bentonite blocks were thoroughly wetted at the time of the dismantling. The volume increase amounted to 5 to 9% and was thus below the bentonite potential. Geo-electrical measurements showed no decrease of the water content in the vicinity of the heater during the heating phase. Decreasing energy input to the heater element over time suggests hence, that the bentonite dried leading to a decrease of its thermal conductivity. Gas release during the heating period occurred

  15. Combined Time-Dependent CP Violation Measurements by the B factory experiments BaBar and Belle

    CERN Document Server

    CERN. Geneva

    2018-01-01

    During the 2000s, the BaBar experiment at SLAC in Stanford/USA and the Belle experiment at KEK in Tsukuba/Japan performed a very successful flavor physics program. In particular, BaBar and Belle discovered CP violation in the neutral and charged B meson system. In this talk, we present the results of two measurements from a novel analysis campaign by the former 'friendly competitors'. The novel approach combines the integrated luminosity of about 1.1 inverse attobarn collected by both experiments in single physics analyses. The first combined measurement presented is a time-dependent CP violation measurement of $B^{0} \\to D^{(*)}_{CP} h^{0}$ decays, where the light neutral hadron $h^{0}$ is a $\\pi^{0}$, $\\eta$ or $\\omega$ meson, and the neutral $D$ meson is reconstructed in decays to the two-body CP eigenstates $K^{+}K^{-}$, $K_{S}^{0}\\pi^{0}$ or $K_{S}^{0}\\omega$. A first observation of CP violation governed by mixing-induced CP violation according to $\\sin{2\\beta}$ is reported. The second combined measurem...

  16. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    Science.gov (United States)

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  17. STAR: Preparing future science and math teachers through authentic research experiences at national laboratories

    Science.gov (United States)

    Keller, John; Rebar, Bryan

    2012-11-01

    The STEM Teacher and Researcher (STAR) Program provides 9-week paid summer research experiences at national research laboratories for future science and math teachers. The program, run by the Cal Poly Center for Excellence in Science and Mathematics Education (CESaME) on behalf of the entire California State University (CSU) System, has arranged 290 research internships for 230 STEM undergraduates and credential candidates from 43 campuses over the past 6 years. The program has partnered with seven Department of Energy labs, four NASA centers, three NOAA facilities, and the National Optical Astronomy Observatory (NOAO). Primary components of the summer experience include a) conducting research with a mentor or mentor team, b) participating in weekly 2-3 hour workshops focused on translating lessons learned from summer research into classroom practice, and c) presenting a research poster or oral presentation and providing a lesson plan linked to the summer research experience. The central premise behind the STAR Program is that future science and math teachers can more effectively prepare the next generation of science, math, and engineering students if they themselves have authentic experiences as researchers.

  18. New Laboratory-Based Satellite Impact Experiments for Breakup Fragment Characterization

    Science.gov (United States)

    Liou, J.-C.; Fitz-Coy, N.; Dikova, R.; Wilson, M.; Huynh, T.; Sorge, M.; Sheaffer, P.; Opiela, J.; Cowardin, H.; Krisko, P.; hide

    2014-01-01

    A consortium consisting of the NASA Orbital Debris Program Office, U.S. Air Force's Space and Missile Systems Center, the Aerospace Corporation, and University of Florida is planning a series of hypervelocity impact experiments on mockup targets at the U.S. Air Force's Arnold Engineering Development Complex (AEDC) in early 2014. The target for the first experiment resembles a rocket upper stage whereas the target for the second experiment represents a typical 60-cm/50-kg class payload that incorporates modern spacecraft materials and components as well as exterior wrap of multi-layer insulation and three solar panels. The projectile is designed with the maximum mass that AEDC's Range G two-stage light gas gun can accelerate to an impact speed of 7 km/sec. The impact energy is expected to be close to 15 MJ to ensure catastrophic destruction of the target after the impact. Low density foam panels are installed inside the target chamber to slow down and soft-catch the fragments for post-impact processing. Diagnostic instruments, such as x-ray and high speed optical cameras, will also be used to record the breakup process. The main goal of this "DebriSat" project is to characterize the physical properties, including size, mass, shape, and density distributions, of orbital debris that would be generated by a hypervelocity collision involving an upper stage or a modern satellite in the low Earth orbit environment. In addition, representative fragments will be selected for laboratory optical and radar measurements to allow for better interpretation of data obtained by telescope and radar observations. This paper will provide a preliminary report of the impact results and the plans to process, measure, and analyze the fragments.

  19. Target laboratory

    International Nuclear Information System (INIS)

    Ephraim, D.C.; Pednekar, A.R.

    1993-01-01

    A target laboratory to make stripper foils for the accelerator and various targets for use in the experiments is set up in the pelletron accelerator facility. The facilities available in the laboratory are: (1) D.C. glow discharge setup, (2) carbon arc set up, and (3) vacuum evaporation set up (resistance heating), electron beam source, rolling mill - all for target preparation. They are described. Centrifugal deposition technique is used for target preparation. (author). 3 figs

  20. A Laboratory Experiment To Measure Henry's Law Constants of Volatile Organic Compounds with a Bubble Column and a Gas Chromatography Flame Ionization Detector (GC-FID)

    Science.gov (United States)

    Lee, Shan-Hu; Mukherjee, Souptik; Brewer, Brittany; Ryan, Raphael; Yu, Huan; Gangoda, Mahinda

    2013-01-01

    An undergraduate laboratory experiment is described to measure Henry's law constants of organic compounds using a bubble column and gas chromatography flame ionization detector (GC-FID). This experiment is designed for upper-division undergraduate laboratory courses and can be implemented in conjunction with physical chemistry, analytical…

  1. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    International Nuclear Information System (INIS)

    Bossart, P.; Bernier, F.; Birkholzer, J.

    2017-01-01

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  2. Mont Terri rock laboratory, 20 years of research: introduction, site characteristics and overview of experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, P. [Swisstopo, Federal Office of Topography, Wabern (Switzerland); Bernier, F. [Federal Agency for Nuclear Control FANC, Brussels (Belgium); Birkholzer, J. [Lawrence Berkeley National Laboratory, Berkeley (United States); and others

    2017-04-15

    Geologic repositories for radioactive waste are designed as multi-barrier disposal systems that perform a number of functions including the long-term isolation and containment of waste from the human environment, and the attenuation of radionuclides released to the subsurface. The rock laboratory at Mont Terri (canton Jura, Switzerland) in the Opalinus Clay plays an important role in the development of such repositories. The experimental results gained in the last 20 years are used to study the possible evolution of a repository and investigate processes closely related to the safety functions of a repository hosted in a clay rock. At the same time, these experiments have increased our general knowledge of the complex behaviour of argillaceous formations in response to coupled hydrological, mechanical, thermal, chemical, and biological processes. After presenting the geological setting in and around the Mont Terri rock laboratory and an overview of the mineralogy and key properties of the Opalinus Clay, we give a brief overview of the key experiments that are described in more detail in the following research papers to this Special Issue of the Swiss Journal of Geosciences. These experiments aim to characterise the Opalinus Clay and estimate safety-relevant parameters, test procedures, and technologies for repository construction and waste emplacement. Other aspects covered are: bentonite buffer emplacement, high-pH concrete-clay interaction experiments, anaerobic steel corrosion with hydrogen formation, depletion of hydrogen by microbial activity, and finally, release of radionuclides into the bentonite buffer and the Opalinus Clay barrier. In the case of a spent fuel/high-level waste repository, the time considered in performance assessment for repository evolution is generally 1 million years, starting with a transient phase over the first 10,000 years and followed by an equilibrium phase. Experiments dealing with initial conditions, construction, and waste

  3. 2017 GTO Project review Laboratory Evaluation of EGS Shear Stimulation.

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Stephen J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    The objectives and purpose of this research has been to produce laboratory-based experimental and numerical analyses to provide a physics-based understanding of shear stimulation phenomena (hydroshearing) and its evolution during stimulation. Water was flowed along fractures in hot and stressed fractured rock, to promote slip. The controlled laboratory experiments provide a high resolution/high quality data resource for evaluation of analysis methods developed by DOE to assess EGS “behavior” during this stimulation process. Segments of the experimental program will provide data sets for model input parameters, i.e., material properties, and other segments of the experimental program will represent small scale physical models of an EGS system, which may be modeled. The coupled lab/analysis project has been a study of the response of a fracture in hot, water-saturated fractured rock to shear stress experiencing fluid flow. Under this condition, the fracture experiences a combination of potential pore pressure changes and fracture surface cooling, resulting in slip along the fracture. The laboratory work provides a means to assess the role of “hydroshearing” on permeability enhancement in reservoir stimulation. Using the laboratory experiments and results to define boundary and input/output conditions of pore pressure, thermal stress, fracture shear deformation and fluid flow, and models were developed and simulations completed by the University of Oklahoma team. The analysis methods are ones used on field scale problems. The sophisticated numerical models developed contain parameters present in the field. The analysis results provide insight into the role of fracture slip on permeability enhancement-“hydroshear” is to be obtained. The work will provide valuable input data to evaluate stimulation models, thus helping design effective EGS.

  4. [Our experience with outside laboratory quality control].

    Science.gov (United States)

    Dochev, D; Arakasheva, V; Nashkov, A; Tsachev, K

    1979-01-01

    The results from the national outside laboratory qualitative control of the clinical diagnostic laboratory investigations for the period September 1975 -- May 1977 were described. The following interlaboratory discrepancy was found on base of a systematic analysis of the data from the last two ring-like check-ups, November 1976 and May 1977, exressed by the variation coefficient (V.C. %); total protein, sodium, potassium and chlorides -- under 10%; cholesterol, urea and total fats -- between 10 and 20%; calcium, phosphorus, iron and creatinine -- over 20%. The highest per cent of admissible results are found with total protein -- to 85%; cholesterol -- to 70.38%; glucosa -- to 73.17%, urea -- to 69.23%, potassium -- to 59.46%, chlorides -- to 57.9%. With sodium, phosphorus, calcium, iron creatinine and uric acid the "admissibility" fluctuates about or under 50 per cent. The values of the qualitative-control indices discussed are comparable with the values obtained from them in the interlaboratory comparisons of other countries.

  5. Selection and Mode Effects in Risk Preference Elicitation Experiments

    DEFF Research Database (Denmark)

    von Gaudecker, Hans-Martin; van Soest, Arthur; Wengström, Erik Roland

    2008-01-01

    experiment is drastically below that of the representative sample in the Internet experiment, and average risk aversion is also lower. Considering the student-like subsample of the Internet subjects and comparing a traditional lab design with an Internet-like design in the lab gives two ways to decompose......We combine data from a risk preference elicitation experiment conducted on a representative sample via the Internet with laboratory data on students for the same experiment to investigate effects of implementation mode and of subject pool selection. We find that the frequency of errors in the lab...... shows that these processes are selective in selecting subjects who make fewer errors, but do not lead to biased conclusions on risk preferences. These findings point at the usefulness of the Internet survey as an alternative to a student pool in the laboratory if the ambition is to use the experiments...

  6. Model experiment and numerical simulation of drop impact response of multilayer-combinational container

    International Nuclear Information System (INIS)

    Xie Ruoze; Zhong Weizhou; Wan Qiang; Huang Xicheng; Zhang Fangju

    2015-01-01

    The drop impact process of multilayer-combinational container was simulated experimentally using a gas gun, and the normal impact and oblique impact of scaled models were tested. The experiments of scaled models were simulated numerically, and the stress distribution and plastic deformation in the tested structures during collision process were obtained. The results were compared with the experiment data. It was shown that the impact work mainly converted into plastic work due to the plastic deformation of the cushion wood and the plastic hinge in the buckled steel shell. The plastic deformation mainly happened at the collided end of the scaled models, and there was no plastic deformation found far from the collided end. The compressive stress-strain curve of the wood in texture direction can be used to simulate numerically the drop impact process of multilayer-combinational container. (authors)

  7. Remote Laboratory Collaboration Plan in Communications Engineering

    Directory of Open Access Journals (Sweden)

    Akram Ahmad Abu-aisheh

    2012-11-01

    Full Text Available Communications laboratories for electrical engineering undergraduates typically require that students perform practical experiments and document findings as part of their knowledge and skills development. Laboratory experiments are usally designed to support and reinforce theories presented in the classroom and foster independent thinking; however, the capital cost of equipment needed to sustain a viable laboratory environment is large and ongoing maintenance is an annual expense. Consequently, there is a need to identify and validate more economic solutions for engineering laboratories. This paper presents a remote laboratory collaboration plan for use in an elctrical engineering communications course.

  8. Tracking the train of thought from the laboratory into everyday life: An experience-sampling study of mind wandering across controlled and ecological contexts

    Science.gov (United States)

    McVay, Jennifer C.; Kane, Michael J.; Kwapil, Thomas R.

    2009-01-01

    In an experience-sampling study that bridged laboratory, ecological, and individual-differences approaches to mind-wandering research, 72 subjects completed an executive-control task with periodic thought probes (reported by McVay & Kane, 2009) and then carried PDAs for a week that signaled them 8 times daily to report immediately whether their thoughts were off-task. Subjects who reported more mind wandering during the laboratory task endorsed more mind-wandering experiences during everyday life (and were more likely to report worries as off-task thought content). We also conceptually replicated laboratory findings that mind wandering predicts task performance: subjects rated their daily-life performance to be impaired when they reported off-task thoughts, with greatest impairment when subjects’ mind wandering lacked meta-consciousness. The propensity to mind-wander appears to be a stable cognitive characteristic and seems to predict performance difficulties in daily life, just as it does in the laboratory. PMID:19815789

  9. Status of the GERDA Experiment at the Laboratori Nazionali del Gran Sasso

    Directory of Open Access Journals (Sweden)

    R. Brugnera

    2013-01-01

    Full Text Available The Germanium Detector Array (Gerda is a low background experiment at the Laboratori Nazionali del Gran Sasso (LNGS of the INFN designed to search for the rare neutrinoless double beta decay (0νββ of 76Ge. In its first phase, high purity germanium diodes inherited from the former Heidelberg-Moscow and Igex experiments are operated “bare” and immersed in liquid argon, with an overall background environment of 10−2 cts/(keV·kg·yr, a factor of ten better than its predecessors. Measurements on two-neutrino double beta decay (2νββ giving T1/22ν=(1.88±0.10×1021 yr and recently published background model and pulse shape performances of the detectors are discussed in the paper. A new result on 0νββ has been recently published with a half-life limit on 0νββ decay T1/20ν>2.1×1025 yr (90% C.L.. A second phase of the experiment is scheduled to start during the year 2014, after a major upgrade shutdown. Thanks to the increased detector mass with new designed diodes and to the introduction of liquid argon instrumentation techniques, the experiment aims to reduce further the expected background to about 10−3 cts/(keV·kg·yr and to improve the 0νββ sensitivity to about T1/20ν>1.5×1026 yr (90% C.L..

  10. Comprehensive Experiment--Clinical Biochemistry: Determination of Blood Glucose and Triglycerides in Normal and Diabetic Rats

    Science.gov (United States)

    Jiao, Li; Xiujuan, Shi; Juan, Wang; Song, Jia; Lei, Xu; Guotong, Xu; Lixia, Lu

    2015-01-01

    For second year medical students, we redesigned an original laboratory experiment and developed a combined research-teaching clinical biochemistry experiment. Using an established diabetic rat model to detect blood glucose and triglycerides, the students participate in the entire experimental process, which is not normally experienced during a…

  11. CIEMAT EXTERNAL DOSIMETRY SERVICE: ISO/IEC 17025 ACCREDITATION AND 3 Y OF OPERATIONAL EXPERIENCE AS AN ACCREDITED LABORATORY.

    Science.gov (United States)

    Romero, A M; Rodríguez, R; López, J L; Martín, R; Benavente, J F

    2016-09-01

    In 2008, the CIEMAT Radiation Dosimetry Service decided to implement a quality management system, in accordance with established requirements, in order to achieve ISO/IEC 17025 accreditation. Although the Service comprises the approved individual monitoring services of both external and internal radiation, this paper is specific to the actions taken by the External Dosimetry Service, including personal and environmental dosimetry laboratories, to gain accreditation and the reflections of 3 y of operational experience as an accredited laboratory. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Experience of radiation treatment of laboratory and farm animal feeds in Hungary

    International Nuclear Information System (INIS)

    Nadudvari, I.

    1979-01-01

    The testing of methods suitable for the disinfection and sterilization of farm and laboratory animal feeds, and research into the effects of the methods on feeds and animals, started in Hungary within the last decade. Altogether, 871 tonnes of feeds sterilized and disinfected by various methods were used in 1976 for the feeding of farm and laboratory animals. Gamma radiation was used for sterilization of approx. 90 tonnes. Feeds for SPF animals were sterilized mainly at 1.5 Mrad, but 2.0-2.5 Mrad levels were also used. Feeds for germ-free animals were sterilized at a level of 4.5 Mrad. Experience gained over the past ten years has shown that irradiation at levels between 1.5 and 2.5 Mrad is excellent for the sterilization of mouse, rat, guinea pig and poultry feeds. Quality deterioration of the feeds remained slight and only slight decomposition of vitamins A and E and among the essential amino acids of lysine was observed. The irradiated feeds were readily consumed by the animals. In some cases, e.g. mice and rats, it was observed that weight gain in groups receiving irradiated diets exceeded that in groups fed on untreated or autoclaved diets, and at the same time the daily feed consumption in the groups receiving irradiated feed also increased. No adverse effect on reproduction and health of the farm and laboratory animals fed on irradiated feeds was observed. In Hungary the widespread use of feeds sterilized by irradiation is hindered, in spite of several advantages over feeds sterilized by conventional methods, mainly by the high cost of the irradiation and the supplemental costs associated with special packing and delivery. Therefore only a modest increase in the utilization of irradiated feeds can be expected in the next few years. (author)

  13. Laboratory Experiment on Electrokinetic Remediation of Soil

    Science.gov (United States)

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  14. Remote Laboratory Collaboration Plan in Communications Engineering

    OpenAIRE

    Akram Ahmad Abu-aisheh; Tom Eppes

    2012-01-01

    Communications laboratories for electrical engineering undergraduates typically require that students perform practical experiments and document findings as part of their knowledge and skills development. Laboratory experiments are usally designed to support and reinforce theories presented in the classroom and foster independent thinking; however, the capital cost of equipment needed to sustain a viable laboratory environment is large and ongoing maintenance is an annual expense. Consequentl...

  15. Strategies for Solving Potential Problems Associated with Laboratory Diffusion and Batch Experiments - Part 1: An Overview of Conventional Test Methods

    International Nuclear Information System (INIS)

    Zhang, M.; Takeda, M.; Nakajima, H.

    2006-01-01

    Laboratory diffusion testing as well as batch experiments are well established and widely adopted techniques for characterizing the diffusive and adsorptive properties of geological, geotechnical, and synthetic materials in both scientific and applied fields, including geological disposal of radioactive waste. Although several types of diffusion test, such as the through- diffusion test, in-diffusion test, out-diffusion test, and column test, are currently available, different methods may have different advantages and disadvantages. In addition, traditional methods may have limitations, such as the need for relatively long test times, cumbersome test procedures, and the possibility of errors due to differences between analytical assumptions and actual test conditions. Furthermore, traditional batch experiments using mineral powders are known to overestimate the sorption coefficient. In part 1 of this report, we present a brief overview of laboratory diffusion and batch experiments. The advantages, disadvantages, limitations, and/or potential problems associated with individual tests were compared and summarized. This comprehensive report will provide practical references for reviewing the results obtained from relevant experiments, especially from the viewpoint of regulation. To solve and/or eliminate the potential problems associated with conventional methods, and to obtain the diffusion coefficient and rock capacity factor from a laboratory test both rapidly and accurately, part 2 of this study discusses possible strategies involving the development of rigorous solutions to some relevant test methods, and sensitivity analyses for the related tests that may be helpful to judge the accuracy of the two parameters to be determined from individual tests. (authors)

  16. Implementation of Software Tools for Hybrid Control Rooms in the Human Systems Simulation Laboratory

    International Nuclear Information System (INIS)

    Jokstad, Håkon; Berntsson, Olof; McDonald, Robert; Boring, Ronald; Hallbert, Bruce; Fitzgerald, Kirk

    2014-01-01

    The Institute for Energy Technology (IFE) and Idaho National Laboratory have designed, implemented, tested and installed a functioning prototype of a set of large screen overview and procedure support displays for the Generic Pressurized Water Reactor (GPWR) simulator in the U.S. Department of Energy's Human Systems Simulation Laboratory. The overview display is based on IFE's extensive experiences with large screen overview displays in the Halden Man-Machine Laboratory (HAMMLAB), and presents the main control room indicators on a combined three-screen display. The procedure support displays are designed and implemented to provide a compact but still comprehensive overview of the relevant process measurements and indicators to support operators' good situational awareness during the performance of various types of procedures and plant conditions.

  17. Implementation of Software Tools for Hybrid Control Rooms in the Human Systems Simulation Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Jokstad, Håkon [Halden Reactor Project, Halden (Norway); Berntsson, Olof [Halden Reactor Project, Halden (Norway); McDonald, Robert [Halden Reactor Project, Halden (Norway); Boring, Ronald [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Fitzgerald, Kirk [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-11-01

    The Institute for Energy Technology (IFE) and Idaho National Laboratory have designed, implemented, tested and installed a functioning prototype of a set of large screen overview and procedure support displays for the Generic Pressurized Water Reactor (GPWR) simulator in the U.S. Department of Energy’s Human Systems Simulation Laboratory. The overview display is based on IFE’s extensive experiences with large screen overview displays in the Halden Man-Machine Laboratory (HAMMLAB), and presents the main control room indicators on a combined three-screen display. The procedure support displays are designed and implemented to provide a compact but still comprehensive overview of the relevant process measurements and indicators to support operators' good situational awareness during the performance of various types of procedures and plant conditions.

  18. Zeroing of the TL signal of sediment undergoing fluvial transportation: a laboratory experiment

    International Nuclear Information System (INIS)

    Gemmell, A.M.D.

    1985-01-01

    Rates of bleaching of suspended sediment undergoing fluvial transportation in a closed laboratory flume beneath a u.v. lamp were measured. It was found that the speed of zeroing is inversely related to the speed of flow. This is attributed to the effects of flow turbulence in keeping sediment in suspension, thereby reducing the penetration of u.v. radiation, and to the re-entrainment of partially bleached or unbleached sediment into the flow. The time required to reduce TL to the residual levels indicated by sunlamp bleaching experiments are such as to suggest that at faster flows sediments in a heavily-laden stream may never attain a complete bleaching. (author)

  19. Laboratory experience in the analysis of orphan waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Kharkar, D.P.

    1986-01-01

    Energy related low level radioactive waste mixed with inorganic and organic hazardous waste derive from all stages of the fuel cycle. In order to comply with EPA and NRC regulations, prior to disposal this waste must be analyzed. For the analytical laboratory, the samples comprise both a potential radiation and chemical hazard. Screening procedures for handling such samples are described. Sophisticated instrumentation is necessary to identify the contaminants with the sensitivity required by the EPA and NRC. Aliquotting and dilution techniques have been adequate to reduce the activity levels sufficiently to allow operations in an uncontrolled laboratory and meet the minimum detection levels. Higher level samples are analyzed in a controlled area employing dedicated instrumentation and health physics precautions

  20. Microcontroller-based Feedback Control Laboratory Experiments

    Directory of Open Access Journals (Sweden)

    Chiu Choi

    2014-06-01

    Full Text Available this paper is a result of the implementation of the recommendations on enhancing hands-on experience of control engineering education using single chip, small scale computers such as microcontrollers. A set of microcontroller-based feedback control experiments was developed for the Electrical Engineering curriculum at the University of North Florida. These experiments provided hands-on techniques that students can utilize in the development of complete solutions for a number of servo control problems. Significant effort was devoted to software development of feedback controllers and the associated signal conditioning circuits interfacing between the microcontroller and the physical plant. These experiments have stimulated the interest of our students in control engineering.

  1. Thermal stability of morpholine, AMP and sarcosine in PWR secondary systems. Laboratory and loop experiments

    International Nuclear Information System (INIS)

    Feron, D.; Lambert, I.

    1991-01-01

    Laboratory and loop tests have been carried out in order to investigate the thermal stability of three amines (morpholine, AMP and sarcosine) in PWR secondary conditions. Laboratory experiments have been performed in a titanium autoclave at 300 deg C. The results pointed out high thermal decomposition rates of AMP and sarcosine. A decomposition mechanism is proposed for the 3 amines. Loop tests have been performed in order to compare steam cycle conditioning with ammonia, morpholine and AMP. The amine concentrations and the decomposition products such as acetate and formate have been followed around the secondary circuit of the ORION loop which reproduces the main physico-chemical characteristics of a PWR secondary circuit. These concentrations are reported together with the evolution of cationic conductivities. The influence of oxygen concentration on amine thermal stability has been observed. Results are expressed also in terms of decomposition rates and of relative volatility

  2. A Cryogenic High-Reynolds Turbulence Experiment at CERN

    CERN Document Server

    Bézaguet, Alain-Arthur; Knoops, S; Lebrun, P; Pezzetti, M; Pirotte, O; Bret, J L; Chabaud, B; Garde, G; Guttin, C; Hébral, B; Pietropinto, S; Roche, P; Barbier-Neyret, J P; Baudet, C; Gagne, Y; Poulain, C; Castaing, B; Ladam, Y; Vittoz, F

    2002-01-01

    The potential of cryogenic helium flows for studying high-Reynolds number turbulence in the laboratory has been recognised for a long time and implemented in several small-scale hydrodynamic experiments. With its large superconducting particle accelerators and detector magnets, CERN, the European Laboratory for Particle Physics, has become a major world center in helium cryogenics, with several large helium refrigerators having capacities up to 18 kW @ 4.5 K. Combining a small fraction of these resources with the expertise of three laboratories at the forefront of turbulence research, has led to the design, swift implementation, and successful operation of GReC (Grands Reynolds Cryogéniques) a large axisymmetric turbulent-jet experiment. With flow-rates up to 260 g/s of gaseous helium at ~ 5 K and atmospheric pressure, Reynolds numbers up to 107 have been achieved in a 4.6 m high, 1.4 m diameter cryostat. This paper presents the results of the first runs and describes the experimental set-up comprehensively ...

  3. Whole Class Laboratories: More Examples

    Science.gov (United States)

    Kouh, Minjoon

    2016-01-01

    Typically, introductory physics courses are taught with a combination of lectures and laboratories in which students have opportunities to discover the natural laws through hands-on activities in small groups. This article reports the use of Google Drive, a free online document-sharing tool, in physics laboratories for pooling experimental data…

  4. Laboratory Experiments Enabling Electron Beam use in Tenuous Space Plasmas

    Science.gov (United States)

    Miars, G.; Leon, O.; Gilchrist, B. E.; Delzanno, G. L.; Castello, F. L.; Borovsky, J.

    2017-12-01

    A mission concept is under development which involves firing a spacecraft-mounted electron beam from Earth's magnetosphere to connect distant magnetic field lines in real time. To prevent excessive spacecraft charging and consequent beam return, the spacecraft must be neutralized in the tenuous plasma environment of the magnetosphere. Particle-In-Cell (PIC) simulations suggest neutralization can be accomplished by emitting a neutral plasma with the electron beam. Interpretation of these simulations also led to an ion emission model in which ion current is emitted from a quasi-neutral plasma as defined by the space charge limit [1,2]. Experiments were performed at the University of Michigan's Plasmadynamics and Electric Propulsion Laboratory (PEPL) to help validate the ion emission model. A hollow cathode plasma contactor was used as a representative spacecraft and charged with respect to the chamber walls to examine the effect of spacecraft charging on ion emission. Retarding Potential Analyzer (RPA) measurements were performed to understand ion flow velocity as this parameter relates directly to the expected space charge limit. Planar probe measurements were also made to identify where ion emission primarily occurred and to determine emission current density levels. Evidence of collisions within the plasma (particularly charge exchange collisions) and a simple model predicting emitted ion velocities are presented. While a detailed validation of the ion emission model and of the simulation tools used in [1,2] is ongoing, these measurements add to the physical understanding of ion emission as it may occur in the magnetosphere. 1. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, J.D. Moulton, and E.A. MacDonald, J. Geophys. Res. Space Physics 120, 3647, 2015. 2. G.L. Delzanno, J.E. Borovsky, M.F. Thomsen, and J.D. Moulton, J. Geophys. Res. Space Physics 120, 3588, 2015. ________________________________ * This work is supported by Los Alamos National Laboratory.

  5. The influence of ground heterogeneity on the migration of radionuclides in the soil and soil-water system. Numerical and laboratory experiment

    International Nuclear Information System (INIS)

    Loxham, M.; van Meurs, G.A.M.; Weststrate, F.A.

    1989-01-01

    To assess the effects of macro scale soil structures, such as lenses and inclusions, on the migration patterns of leached components from a shallow burial trench for radioactive waste, a theoretical and experimental study has been carried out. In the study the unsaturated as well as the saturated zone has been considered. The objectives of the study are two-fold: 1. to assess the importance of macro-structure in the soil for typical parameter choices associated with a generic shallow burial site. 2. to examine various models for predicting the migration patterns in the light of the soil macro-structure. For the saturated aquifer pathways fully determinate calculations have been made, using the preverified numerical contaminant transport code VERA. Laboratory experiments on thin-slit models resulted in substantial qualitative and reasonable conformation of the numerical results. As for the unsaturated pathway no such determinate numerical model is available, several statistic and analytical models have been used to achieve the first objective. In this case the second objective cannot be achieved without recourse to an experimental program. The unsaturated thin-slit laboratory experiments, however, have not met with experimental success to date. The report presents the results of the theoretical and laboratory experiments. Furthermore a short analysis of the practical consequences of these results is given

  6. Measuring ignitability for in situ burning of oil spills weathered under Arctic conditions: From laboratory studies to large-scale field experiments

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan

    2011-01-01

    This paper compares the ignitability of Troll B crude oil weathered under simulated Arctic conditions (0%, 50% and 90% ice cover). The experiments were performed in different scales at SINTEF’s laboratories in Trondheim, field research station on Svalbard and in broken ice (70–90% ice cover......) in the Barents Sea. Samples from the weathering experiments were tested for ignitability using the same laboratory burning cell. The measured ignitability from the experiments in these different scales showed a good agreement for samples with similar weathering. The ice conditions clearly affected the weathering...... process, and 70% ice or more reduces the weathering and allows a longer time window for in situ burning. The results from the Barents Sea revealed that weathering and ignitability can vary within an oil slick. This field use of the burning cell demonstrated that it can be used as an operational tool...

  7. Investigation of the degradation mechanisms of a variety of organic photovoltaic devices by combination of imaging techniques—the ISOS-3 inter-laboratory collaboration

    DEFF Research Database (Denmark)

    Rösch, Roland; Tanenbaum, David; Jørgensen, Mikkel

    2012-01-01

    The investigation of degradation of seven distinct sets (with a number of individual cells of n $ 12) of state of the art organic photovoltaic devices prepared by leading research laboratories with a combination of imaging methods is reported. All devices have been shipped to and degraded at Risø...

  8. The Mochi LabJet Experiment for Measurements of Canonical Helicity Injection in a Laboratory Astrophysical Jet

    Science.gov (United States)

    You, Setthivoine; von der Linden, Jens; Sander Lavine, Eric; Carroll, Evan Grant; Card, Alexander; Quinley, Morgan; Azuara-Rosales, Manuel

    2018-06-01

    The Mochi device is a new pulsed power plasma experiment designed to produce long, collimated, stable, magnetized plasma jets when set up in the LabJet configuration. The LabJet configuration aims to simulate an astrophysical jet in the laboratory by mimicking an accretion disk threaded by a poloidal magnetic field with concentric planar electrodes in front of a solenoidal coil. The unique setup consists of three electrodes, each with azimuthally symmetric gas slits. Two of the electrodes are biased independently with respect to the third electrode to control the radial electric field profile across the poloidal bias magnetic field. This design approximates a shear azimuthal rotation profile in an accretion disk. The azimuthally symmetric gas slits provide a continuously symmetric mass source at the footpoint of the plasma jet, so any azimuthal rotation of the plasma jet is not hindered by a discrete number of gas holes. The initial set of diagnostics consists of current Rogowski coils, voltage probes, magnetic field probe arrays, an interferometer and ion Doppler spectroscopy, supplemented by a fast ion gauge and a retarding grid energy analyzer. The measured parameters of the first plasmas are ∼1022 m‑3, ∼0.4 T, and 5–25 eV, with velocities of ∼20–80 km s‑1. The combination of a controllable electric field profile, a flared poloidal magnetic field, and azimuthally symmetric mass sources in the experiment successfully produces short-lived (∼10 μs, ≳5 Alfvén times) collimated magnetic jets with a ∼10:1 aspect ratio and long-lived (∼100 μs, ≳40 Alfvén times) flow-stabilized, collimated, magnetic jets with a ∼30:1 aspect ratio.

  9. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.; Patterson, C. R [Climate and Space Science, University of Michigan, Ann Arbor, MI 48109 (United States); Hazak, G. [Physics Department, Nuclear Research Center-Negev (Israel); Frank, A.; Blackman, E. G. [Physics and Astronomy, University of Rochester, Rochester, NY 14611 (United States); Busquet, Michel, E-mail: rpdrake@umich.edu [ARTEP Incorporated, Ellicot City, MD 21042 (United States)

    2016-12-20

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  10. DESIGN OF LABORATORY EXPERIMENTS TO STUDY PHOTOIONIZATION FRONTS DRIVEN BY THERMAL SOURCES

    International Nuclear Information System (INIS)

    Drake, R. P.; Keiter, P. A.; Davis, J. S.; Patterson, C. R; Hazak, G.; Frank, A.; Blackman, E. G.; Busquet, Michel

    2016-01-01

    This paper analyzes the requirements of a photoionization-front experiment that could be driven in the laboratory, using thermal sources to produce the necessary flux of ionizing photons. It reports several associated conclusions. Such experiments will need to employ the largest available facilities, capable of delivering many kJ to MJ of energy to an X-ray source. They will use this source to irradiate a volume of neutral gas, likely of N, on a scale of a few mm to a few cm, increasing with source energy. For a gas pressure of several to ten atmospheres at room temperature, and a source temperature near 100 eV, one will be able to drive a photoionization front through a system of tens to hundreds of photon mean free paths. The front should make the familiar transition from the so-called R-Type to D-Type as the radiation flux diminishes with distance. The N is likely to reach the He-like state. Preheating from the energetic photons appears unlikely to become large enough to alter the essential dynamics of the front beyond some layer near the surface. For well-chosen experimental conditions, competing energy transport mechanisms are small.

  11. Diffusion and retention experiment at the Mont Terri underground rock laboratory in St. Ursanne

    International Nuclear Information System (INIS)

    Leupin, O.X.; Wersin, P.; Gimmi, Th.; Van Loon, L.; Eikenberg, J.; Baeyens, B.; Soler, J.M.; Dewonck, S.; Wittebroodt, C.; Samper, J.; Yi, S.; Naves, A.

    2010-01-01

    Document available in extended abstract form only. Because of their favourable hydraulic and retention properties that limit the migration of radionuclides, indurated clays are being considered as potential host rocks for radioactive waste disposal. Migration of radionuclides by diffusion and retention is thereby one of the main concerns for safety assessment and therefore carefully investigated at different scales. The transfer from dispersed sorption batch and diffusion data from lab experiments to field scale is however not always straightforward. Thus, combined sorption and diffusion experiments at both lab and field scale are instrumental for a critical verification of the applicability of such sorption and diffusion data. The present migration field experiment 'DR' (Diffusion and Retention experiment) at the Mont Terri Rock Laboratory (Switzerland) is the continuation of a series of successful diffusion experiments. The design is based on these previous diffusion experiments and has been extended to two diffusion chambers in a single borehole drilled perpendicular to the bedding plane. The radionuclides were injected as a pulse in both upper and lower loops where artificial pore water is circulating. The injected tracers were tritium, iodide, bromide, sodium-22, strontium-85, caesium (stable) for the lower diffusion chamber and deuterium caesium-137, barium-133, cobalt-60, europium-152, selenium (stable) and selenium-75 for the lower diffusion chamber. Their decrease in the circulation fluid - as they diffuse into the clay - is continuously monitored by online?-detection and regular sampling. The goals are fourfold (i) obtain diffusion and retention data for moderately to strongly sorbing tracers and to verify the corresponding data obtained on small-scale lab samples, (ii) improve diffusion data for the rock anisotropy, (iii) quantify effects of the borehole-disturbed zone for non-reactive tracers and (iv) improve data for long term diffusion. The

  12. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Fresneau, A.; Mrad, N. Abou; LS d’Hendecourt, L.; Duvernay, F.; Chiavassa, T.; Danger, G. [Aix-Marseille Université, PIIM UMR-CNRS 7345, F-13397 Marseille (France); Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R., E-mail: gregoire.danger@univ-amu.fr [Université Grenoble Alpes, CNRS, IPAG, Grenoble F-38000 (France)

    2017-03-10

    We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.

  13. Argonne National Laboratory high performance network support of APS experiments

    International Nuclear Information System (INIS)

    Knot, M.J.; McMahon, R.J.

    1996-01-01

    Argonne National Laboratory is currently positioned to provide access to high performance regional and national networks. Much of the impetus for this effort is the anticipated needs of the upcoming experimental program at the APS. Some APS collaborative access teams (CATs) are already pressing for network speed improvements and security enhancements. Requirements range from the need for high data rate, secure transmission of experimental data, to the desire to establish a open-quote open-quote virtual experimental environment close-quote close-quote at their home institution. In the near future, 155 megabit/sec (Mb/s) national and regional asynchronous transfer mode (ATM) networks will be operational and available to APS users. Full-video teleconferencing, virtual presence operation of experiments, and high speed, secure transmission of data are being tested and, in some cases, will be operational. We expect these efforts to enable a substantial improvement in the speed of processing experimental results as well as an increase in convenience to the APS experimentalist. copyright 1996 American Institute of Physics

  14. Cometary Materials Originating from Interstellar Ices: Clues from Laboratory Experiments

    Science.gov (United States)

    Fresneau, A.; Abou Mrad, N.; d'Hendecourt, L. LS; Duvernay, F.; Flandinet, L.; Orthous-Daunay, F.-R.; Vuitton, V.; Thissen, R.; Chiavassa, T.; Danger, G.

    2017-03-01

    We use laboratory experiments to derive information on the chemistry occurring during the evolution of astrophysical ices from dense molecular clouds to interplanetary objects. Through a new strategy that consists of coupling very high resolution mass spectrometry and infrared spectroscopy (FT-IR), we investigate the molecular content of the organic residues synthesized from different initial ice compositions. We also obtain information on the evolution of the soluble part of the residues after their over-irradiation. The results give insight into the role of water ice as a trapping and diluting agent during the chemical evolution. They also give information about the importance of the amount of ammonia in such ices, particularly regarding its competition with the carbon chemistry. All of these results allow us to build a first mapping of the evolution of soluble organic matter based on its chemical and physical history. Furthermore, our results suggest that interstellar ices should lead to organic materials enriched in heteroatoms that present similarities with cometary materials but strongly differ from meteoritic organic material, especially in their C/N ratios.

  15. A heating experiment in the argillites in the Meuse/Haute-Marne underground research laboratory

    International Nuclear Information System (INIS)

    Wileveau, Yannick; Su, Kun; Ghoreychi, Mehdi

    2007-01-01

    A heating experiment named TER is being conducted with the objectives to identify the thermal properties, as well as to enhance the knowledge on THM processes in the Callovo-Oxfordian clay at the Meuse/Haute Marne Underground Research Laboratory (France). The in situ experiment has being switched on from early 2006. The heater, 3 m length, is designed to inject the power in the undisturbed zone at 6 m from the gallery wall. A heater packer is inflated in a metallic tubing. During the experiment, numerous sensors are emplaced in the surrounding rock and are experienced to monitor the evolution in temperature, pore-water pressure and deformation. The models and numerical codes applied should be validated by comparing the modeling results with the measurements. In parallel, some lab testing have been achieved in order to compare the results given with two different scales (cm up to meter scale). In this paper, we present a general description of the TER experiment with installation of the heater equipment and the surrounding instrumentation. Details of the in situ measurements of temperature, pore-pressure and strain evolutions are given for the several heating and cooling phases. The thermal conductivity and some predominant parameters in THM processes (as linear thermal expansion coefficient and permeability) will be discussed. (authors)

  16. ISOTHERMAL AIR INGRESS VALIDATION EXPERIMENTS AT IDAHO NATIONAL LABORATORY: DESCRIPTION AND SUMMARY OF DATA

    International Nuclear Information System (INIS)

    Oh, Chang H.; Kim, Eung S.

    2010-01-01

    Idaho National Laboratory performed air ingress experiments as part of validating computational fluid dynamics code (CFD). An isothermal stratified flow experiment was designed and set to understand stratified flow phenomena in the very high temperature gas cooled reactor (VHTR) and to provide experimental data for validating computer codes. The isothermal experiment focused on three flow characteristics unique in the VHTR air-ingress accident: stratified flow in the horizontal pipe, stratified flow expansion at the pipe and vessel junction, and stratified flow around supporting structures. Brine and sucrose were used as heavy fluids and water was used as light fluids. The density ratios were changed between 0.87 and 0.98. This experiment clearly showed that a stratified flow between heavy and light fluids is generated even for very small density differences. The code was validated by conducting blind CFD simulations and comparing the results to the experimental data. A grid sensitivity study was also performed based on the Richardson extrapolation and the grid convergence index method for modeling confidence. As a result, the calculated current speed showed very good agreement with the experimental data, indicating that the current CFD methods are suitable for predicting density gradient stratified flow phenomena in the air-ingress accident.

  17. A Simple LIBS (Laser-Induced Breakdown Spectroscopy) Laboratory Experiment to Introduce Undergraduates to Calibration Functions and Atomic Spectroscopy

    Science.gov (United States)

    Chinni, Rosemarie C.

    2012-01-01

    This laboratory experiment introduces students to a different type of atomic spectroscopy: laser-induced breakdown spectroscopy (LIBS). LIBS uses a laser-generated spark to excite the sample; once excited, the elemental emission is spectrally resolved and detected. The students use LIBS to analyze a series of standard synthetic silicate samples…

  18. The G0 experiment at Jefferson laboratory: Measurement of the weak neutral form factors of the nucleon

    International Nuclear Information System (INIS)

    Furget, C.

    2005-01-01

    The G0 experiment aims to measure parity-violating asymmetries in elastic electron-proton and quasi-elastic electron-deuteron scattering. This experimental program allows to perform the separation of the electric and magnetic weak neutral and axial form factors for three different momentum transfers 0.3, 0.5 and 0.8 (GeV/c)2. The first part of the experiment has been performed in Hall C of Jefferson Laboratory with a commissioned setup. A preliminary analysis of the data has provided a first estimate of the main systematic uncertainties. The analysis to determine the actual physics asymmetries is proceeding

  19. Coagulation-flocculation studies of laboratory wastewater using different combinations

    International Nuclear Information System (INIS)

    Butt, M. T.; Khan, R. A.; Khokar, A.; Iqbal, K.

    2013-01-01

    This study was conducted on the wastewater of PCSIR Laboratories complex Lahore. Both single as well as blended form was used in order to achieve maximum results and to reduce the cost. These experiments were conducted in Hudson Jars of one liter capacity using the coagulation technique for the removal of total suspended solids (TSS) and turbidity. The pH range was 6-8 and 4-10 for treatment. Four coagulants were used such as FeCl 3 , AlCl 3 . Alum and FeSO 4 , to remove the turbidity in single and blended form. Results of single coagulant are FeCl 3 from 39.7 to 11.51 NTU; AlCl 3 from 47.48 to 11.8 NTU. Alum 43 to 25.3NTU.FeSO 4 showed increasing trend in turbidity 53 to 120 NTU. The blended set of coagulants AlCl 3 +Alum turbidity from 45 to 18.55 NTU. The AlCl 3 and FeCl 3 showed almost similar results but after overnight settling results were excellent and alum showed also good results. The turbidity was removed from 54 to 27 NTU, 48 to 22 NTU, 44 to 17 NTU, and after overnight settling 33 to 4 NTU. The results of blended coagulants FeCl 3 +AlCl 3 after one, two and three hours settling were also studied and found best and blend AlCl3+Alum showed also similar trend and the blend of Alum+FeCl 3 after overnight settling was excellent. The same coagulants and its blended form were used for TSS removal and results are 278 to 7 mg/L, in blended form AlCl 3 +Alum show similar results but Alum + FeCl 3 showed excellent results. The TSS and turbidity removal was 87%, 97.5%. (author)

  20. Plasma experiments with 1.06-μm lasers at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.; Holzrichter, J.F.; Manes, K.R.; Storm, E.K.; Boyle, M.J.; Brooks, K.M.; Haas, R.A.; Phillion, D.W.; Rupert, V.C.

    1976-01-01

    Recent laser fusion experiments at the Lawrence Livermore Laboratory have provided basic data concerning: laser beam propagation and absorption in high temperature plasmas, electron energy transport processes that transfer the absorbed laser energy to the high-density ablation region, the general fluid dynamic expansion and compression of the heated plasma, and the processes responsible for the production of 14-MeV neutrons during implosion experiments. Irradiation experiments were performed with Nd:YAG glass laser systems: the two-beam Janus (less than or equal to40 J/100 ps, approx.0.4 TW) and Argus (less than or equal to140 J, 35 ps, approx.4 TW), and the single beam Cyclops (less than or equal to70 J/100 ps, approx.0.7 TW). Two classes of targets have been used: glass microshells (approx.40 to 120 μm in diameter with approx.0.75-μm-thick walls) filled with an equimolar deuterium-tritium mixture, and disks (approx.160 to 600 μm in diameter and approx. 10 μm thick) of several compositions. The targets were supported in vacuum (pressure less than or equal to10 -5 Torr) by thin glass stalks. This paper reports on results related to the propagation, absorption, and scattering of laser light by both spherical and planar targets

  1. Insight into subdecimeter fracturing processes during hydraulic fracture experiment in Äspö hard rock laboratory, Sweden

    Science.gov (United States)

    Kwiatek, Grzegorz; Martínez-Garzón, Patricia; Plenkers, Katrin; Leonhardt, Maria; Zang, Arno; Dresen, Georg; Bohnhoff, Marco

    2017-04-01

    We analyze the nano- and picoseismicity recorded during a hydraulic fracturing in-situ experiment performed in Äspö Hard Rock Laboratory, Sweden. The fracturing experiment included six fracture stages driven by three different water injection schemes (continuous, progressive and pulse pressurization) and was performed inside a 28 m long, horizontal borehole located at 410 m depth. The fracturing process was monitored with two different seismic networks covering a wide frequency band between 0.01 Hz and 100000 Hz and included broadband seismometers, geophones, high-frequency accelerometers and acoustic emission sensors. The combined seismic network allowed for detection and detailed analysis of seismicity with moment magnitudes MW<-4 (source sizes approx. on cm scale) that occurred solely during the hydraulic fracturing and refracturing stages. We relocated the seismicity catalog using the double-difference technique and calculated the source parameters (seismic moment, source size, stress drop, focal mechanism and seismic moment tensors). The physical characteristics of induced seismicity are compared to the stimulation parameters and to the formation parameters of the site. The seismic activity varies significantly depending on stimulation strategy with conventional, continuous stimulation being the most seismogenic. We find a systematic spatio-temporal migration of microseismic events (propagation away and towards wellbore injection interval) and temporal transitions in source mechanisms (opening - shearing - collapse) both being controlled by changes in fluid injection pressure. The derived focal mechanism parameters are in accordance with the local stress field orientation, and signify the reactivation of pre-existing rock flaws. The seismicity follows statistical and source scaling relations observed at different scales elsewhere, however, at an extremely low level of seismic efficiency.

  2. [Professor LAI Xinsheng's experience of acupuncture combined with medication for epilepsy].

    Science.gov (United States)

    Fang, Yajing; Wu, Peilong; Wang, Yumei; He, Kejie; Zhang, Sujuan; Lai, Xinsheng

    2018-04-12

    Professor LAI Xinsheng 's experience of acupuncture combined with medication for epilepsy is summarized, which is explained from epilepsy's etiology and pathogenesis, diagnosis and treatment of acupuncture and medication, respectively. Besides, the theoretical foundation and use instruction of acupuncture technique " tong - yuan " for epilepsy are introduced. Professor LAI highly values the adherence to etiology and pathogenesis, pays attention to syndrome differentiation and searches for the primary disease cause. He proposes the wind, phlegm, stasis and deficiency are the pathogenesis of epilepsy, and points out acupuncture could be applied during attack stage and remittent stage, but electroacupuncture should be used with caution. Regulating spirit is the key for treating epilepsy. The combination of acupuncture and medication could regulate the governor vessel and guide qi to the origin, which have significant curative effect.

  3. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    Science.gov (United States)

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  4. Nuclear Physics Laboratory annual report 1982

    International Nuclear Information System (INIS)

    1982-06-01

    This Annual Report describes the activities of the Nuclear Physics Laboratory of the University of Washington for the year ending approximately April 30, 1982. As in previous years we report here on a strong nuclear physics research program based upon use of the Laboratory's principal facility, an FN tandem and injector accelerator system. Other major elements of the Laboratory's current program include the hydrogen parity mixing experiment, intermediate-energy experiments conducted at Los Alamos and elsewhere, an accelerator mass spectrometry program emphasizing 10 Be and 14 C measurements on environmental materials, and a number of researches carried out by Laboratory members working collaboratively at other institutions both in this country and abroad

  5. Extraction and [superscript 1]H NMR Analysis of Fats from Convenience Foods: A Laboratory Experiment for Organic Chemistry

    Science.gov (United States)

    Hartel, Aaron M.; Moore, Amy C.

    2014-01-01

    The extraction and analysis of fats from convenience foods (crackers, cookies, chips, candies) has been developed as an experiment for a second-year undergraduate organic chemistry laboratory course. Students gravimetrically determine the fat content per serving and then perform a [superscript 1]H NMR analysis of the recovered fat to determine the…

  6. Synthesis and Metalation of a Ligand: An Interdisciplinary Laboratory Experiment for Second-Year Organic and Introductory Inorganic Chemistry Students

    Science.gov (United States)

    Kasting, Benjamin J.; Bowser, Andrew K.; Anderson-Wile, Amelia M.; Wile, Bradley M.

    2015-01-01

    An interdisciplinary laboratory experiment involving second-year undergraduate organic chemistry and introductory inorganic chemistry undergraduate students is described. Organic chemistry students prepare a series of amine-bis(phenols) via a Mannich reaction, and characterize their products using melting point; FTIR; and [superscript 1]H,…

  7. Advanced technologies related to a high temperature superconductor for small laboratory experiments

    International Nuclear Information System (INIS)

    Ogawa, Yuichi; Mito, Toshiyuki; Yanagi, Nagato

    2006-01-01

    Advanced technologies related to a high temperature superconductor materials and small refrigerator are reviewed. Mini-RT/RT-1 is designed and constructed as a plasma examination device. The element technology of low temperature apparatus, the results of performance tests and application examples are explained. The superconductors such as Bi 2 Sr 2 CaCu 2 O 8 (Bi-2212) for the low temperature phase, Bi 2 Sr 2 Ca 2 Cu 3 O 10 (Bi-2223) for the high temperature phase, and YBa 2 Cu 3 O y (YBCO or Y123) are described. Advanced 4K-Giford-Mcmahon (GM) refrigerator on the market put superconductor coil made of low temperature superconductor metals to practical use and extends its application field. Small laboratory is able to experiment on the high temperature superconductor materials. (S.Y.)

  8. Research combines with public outreach on a cruise ship

    Science.gov (United States)

    Williams, Elizabeth; Prager, Ellen; Wilson, Doug

    An innovative partnership among academia, government, and private industry has created a unique opportunity for oceanographic and meteorological research on a cruise ship. The University of Miami's Rosenstiel School of Marine and Atmospheric Science, Royal Caribbean International, the National Oceanic and Atmospheric Administration's Atlantic Oceanographic and Meteorological Laboratory the National Science Foundation, and the U.S. Office of Naval Research have collaborated to establish two modern laboratories for oceanic and atmospheric research on the 142,000-ton Royal Caribbean ship Explorer of the Seas.The Explorer of the Seas combines extensive research capabilities with public outreach. Hundreds of passengers experience the planet's atmosphere-ocean systems through laboratory tours and presentations given by experienced guest scientists and graduate students. In addition to weekly public lectures, guided tours of the ocean and atmospheric laboratories are available, and ocean-related films are shown during selected afternoons. Two interactive eco-learning areas onboard are equipped with a series of interactive displays and large informational touch screens that illustrate marine and atmospheric concepts as well as the onboard research program.

  9. Laboratory development and testing of spacecraft diagnostics

    Science.gov (United States)

    Amatucci, William; Tejero, Erik; Blackwell, Dave; Walker, Dave; Gatling, George; Enloe, Lon; Gillman, Eric

    2017-10-01

    The Naval Research Laboratory's Space Chamber experiment is a large-scale laboratory device dedicated to the creation of large-volume plasmas with parameters scaled to realistic space plasmas. Such devices make valuable contributions to the investigation of space plasma phenomena under controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. However, in addition to investigations such as plasma wave and instability studies, such devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this talk, we will describe how the laboratory simulation of space plasmas made this development path possible. Work sponsored by the US Naval Research Laboratory Base Program.

  10. The Master level optics laboratory at the Institute of Optics

    Science.gov (United States)

    Adamson, Per

    2017-08-01

    The master level optics laboratory is a biannual, intensive laboratory course in the fields of geometrical, physical and modern optics. This course is intended for the master level student though Ph.D. advisors which often recommend it to their advisees. The students are required to complete five standard laboratory experiments and an independent project during a semester. The goals of the laboratory experiments are for the students to get hands-on experience setting up optical laboratory equipment, collecting and analyzing data, as well as to communicate key results. The experimental methods, analysis, and results of the standard experiments are submitted in a journal style report, while an oral presentation is given for the independent project.

  11. Application of the results of excavation response experiments at climax and the Colorado School of Mines to the development of an experiment for the underground research laboratory

    International Nuclear Information System (INIS)

    Ubbes, W.F.; Yow, J.L. Jr.; Hustrulid, W.A.

    1988-01-01

    Large-scale underground experiment programs to examine excavation response have been performed at the Climax facility in Nevada and at the Colorado School of Mines. These two programs provided fundamental information on the behavior of rock and the effects of excavation; on instrument performance and configuration; and on the relationship between test geometry and test behavior. This information is being considered in the development of a major excavation response experiment to be carried out in the Canadian Underground Research Laboratory. 11 refs., 3 figs

  12. Some relevant parameters for assessing fire hazards of combustible mine materials using laboratory scale experiments.

    Science.gov (United States)

    Litton, Charles D; Perera, Inoka E; Harteis, Samuel P; Teacoach, Kara A; DeRosa, Maria I; Thomas, Richard A; Smith, Alex C

    2018-04-15

    When combustible materials ignite and burn, the potential for fire growth and flame spread represents an obvious hazard, but during these processes of ignition and flaming, other life hazards present themselves and should be included to ensure an effective overall analysis of the relevant fire hazards. In particular, the gases and smoke produced both during the smoldering stages of fires leading to ignition and during the advanced flaming stages of a developing fire serve to contaminate the surrounding atmosphere, potentially producing elevated levels of toxicity and high levels of smoke obscuration that render the environment untenable. In underground mines, these hazards may be exacerbated by the existing forced ventilation that can carry the gases and smoke to locations far-removed from the fire location. Clearly, materials that require high temperatures (above 1400 K) and that exhibit low mass loss during thermal decomposition, or that require high heat fluxes or heat transfer rates to ignite represent less of a hazard than materials that decompose at low temperatures or ignite at low levels of heat flux. In order to define and quantify some possible parameters that can be used to assess these hazards, small-scale laboratory experiments were conducted in a number of configurations to measure: 1) the toxic gases and smoke produced both during non-flaming and flaming combustion; 2) mass loss rates as a function of temperature to determine ease of thermal decomposition; and 3) mass loss rates and times to ignition as a function of incident heat flux. This paper describes the experiments that were conducted, their results, and the development of a set of parameters that could possibly be used to assess the overall fire hazard of combustible materials using small scale laboratory experiments.

  13. Fluid Mechanics Experiments as a Unifying Theme in the Physics Instrumentation Laboratory Course

    Science.gov (United States)

    Borrero-Echeverry, Daniel

    2017-11-01

    We discuss the transformation of a junior-level instrumentation laboratory course from a sequence of cookbook lab exercises to a semester-long, project-based course. In the original course, students conducted a series of activities covering the usual electronics topics (amplifiers, filters, oscillators, logic gates, etc.) and learned basic LabVIEW programming for data acquisition and analysis. Students complained that these topics seemed disconnected and not immediately applicable to ``real'' laboratory work. To provide a unifying theme, we restructured the course around the design, construction, instrumentation of a low-cost Taylor-Couette cell where fluid is sheared between rotating coaxial cylinders. The electronics labs were reworked to guide students from fundamental electronics through the design and construction of a stepper motor driver, which was used to actuate the cylinders. Some of the legacy labs were replaced with a module on computer-aided design (CAD) in which students designed parts for the apparatus, which they then built in the departmental machine shop. Signal processing topics like spectral analysis were introduced in the context of time-series analysis of video data acquired from flow visualization. The course culminated with a capstone project in which students conducted experiments of their own design on a variety of topics in rheology and nonlinear dynamics.

  14. An investigative, cooperative learning approach to the general microbiology laboratory.

    Science.gov (United States)

    Seifert, Kyle; Fenster, Amy; Dilts, Judith A; Temple, Louise

    2009-01-01

    Investigative- and cooperative-based learning strategies have been used effectively in a variety of classrooms to enhance student learning and engagement. In the General Microbiology laboratory for juniors and seniors at James Madison University, these strategies were combined to make a semester-long, investigative, cooperative learning experience involving culture and identification of microbial isolates that the students obtained from various environments. To assess whether this strategy was successful, students were asked to complete a survey at the beginning and at the end of the semester regarding their comfort level with a variety of topics. For most of the topics queried, the students reported that their comfort had increased significantly during the semester. Furthermore, this group of students thought that the quality of this investigative lab experience was much better than that of any of their previous lab experiences.

  15. FIRST EXPERIENCE OF CYMEVEN IN THE COMBINED THERAPY OF RHEUMATOID ARTHRITIS

    Directory of Open Access Journals (Sweden)

    R M Balabanova

    2001-01-01

    Full Text Available Ummary Objective. To reveal J'reguency of accompaning virus infection and possibility to use antivirus therapy together in therapy RA. Material. 40 patients with RA at the age of 17-45 were studied. The duration of disease was not more than 6 months; patients had 2-3 degrees of activity. Every one had a positive rheumatoid factor. Results. 78,2% of the examined patients connected the beginning of the illness with virus infection they have had. The most difficalt variant of RA course and uneffectiveness of basic therapy were registerd among the patients with combination HSV and CMV infection. Inclusion of Cymevene in complex therapy RA has exerted positive influence on clinical-laboratory, signs stregthened effect of basic therapy. Conclusion. The most difficult variant of RA course was registered among the patients with virus infection. Inclusion of antivirus drugs had a positive influence on effectiveness of basic therapy.

  16. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    Science.gov (United States)

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  17. A new method of measuring gravitational acceleration in an undergraduate laboratory program

    Science.gov (United States)

    Wang, Qiaochu; Wang, Chang; Xiao, Yunhuan; Schulte, Jurgen; Shi, Qingfan

    2018-01-01

    This paper presents a high accuracy method to measure gravitational acceleration in an undergraduate laboratory program. The experiment is based on water in a cylindrical vessel rotating about its vertical axis at a constant speed. The water surface forms a paraboloid whose focal length is related to rotational period and gravitational acceleration. This experimental setup avoids classical source errors in determining the local value of gravitational acceleration, so prevalent in the common simple pendulum and inclined plane experiments. The presented method combines multiple physics concepts such as kinematics, classical mechanics and geometric optics, offering the opportunity for lateral as well as project-based learning.

  18. Laboratory experiment on the 3D tide-induced Lagrangian residual current using the PIV technique

    Science.gov (United States)

    Chen, Yang; Jiang, Wensheng; Chen, Xu; Wang, Tao; Bian, Changwei

    2017-12-01

    The 3D structure of the tide-induced Lagrangian residual current was studied using the particle image velocimetry (PIV) technique in a long shallow narrow tank in the laboratory. At the mouth of the tank, a wave generator was used to make periodic wave which represents the tide movement, and at the head of the tank, a laterally sloping topography with the length of one fifth of the water tank was installed, above which the tide-induced Lagrangian residual current was studied. Under the weakly nonlinear condition in the present experiment setup, the results show that the Lagrangian residual velocity (LRV) field has a three-layer structure. The residual current flows inwards (towards the head) in the bottom layer and flows outwards in the middle layer, while in the surface layer, it flows inwards along the shallow side of the sloping topography and outwards along the deep side. The depth-averaged and breadth-averaged LRV are also analyzed based on the 3D LRV observations. Our results are in good agreement with the previous experiment studies, the analytical solutions with similar conditions and the observational results in real bays. Moreover, the volume flux comparison between the Lagrangian and Eulerian residual currents shows that the Eulerian residual velocity violates the mass conservation law while the LRV truly represents the inter-tidal water transport. This work enriches the laboratory studies of the LRV and offers valuable references for the LRV studies in real bays.

  19. Experience of Brazilian safeguards analytical laboratory in DA analysis

    International Nuclear Information System (INIS)

    Bezerra, J.H.B.; Araujo, R.M.S.; Pereira, J.C.A.

    2001-01-01

    Full text: The Brazilian Safeguards Analytical Laboratory, inaugurated in September 1983, performs uranium analysis in samples of nuclear materials taken during national safeguards inspections as well as in samples taken during ABACC's inspections performed in Argentina. The Laboratory analyzes Intercomparison samples provided by IAEA, NBL, ABACC, CEN and EQRAIN. The method used to perform uranium analysis is the Davies and Gray/NBL. All the steps of the analytical procedures, such as chemical kinetics of the reactions and instrumental parameters, are rigorously controlled. An internal Quality Control of the measurements is made by means of analysis of Certified Reference Materials and the performance of the results meets the ESARDA's Target Values for Random and Systematic Components both in Intercomparison Samples and in samples taken during inspections. The typical precision, expressed as relative standard deviation, and accuracy obtained in a routine basis for nuclear grade materials is 0.1% and 0.14% respectively. The performance of the results obtained are comparable to the best international laboratories which perform uranium analysis in nuclear materials for safeguards purposes. (author)

  20. Field experiments and laboratory study of plasma turbulence and effects on EM wave propagation

    International Nuclear Information System (INIS)

    Lee, M.C.; Kuo, S.P.

    1990-01-01

    Both active experiments in space and laboratory experiments with plasma chambers have been planned to investigate plasma turbulence and effects on electromagnetic wave propagation. Plasma turbulence can be generated by intense waves or occur inherently with the production of plasmas. The turbulence effects to be singled out for investigation include nonlinear mode conversion process and turbulence scattering of electromagnetic waves by plasma density fluctuations. The authors have shown theoretically that plasma density fluctuations can render the nonlinear mode conversion of electromagnetic waves into lower hybrid waves, leading to anomalous absorption of waves in magnetoplasmas. The observed spectral broadening of VLF waves is the evidence of the occurrence of this process. Since the density fluctuations may have a broad range of scale lengths, this process is effective in weakening the electromagnetic waves in a wideband. In addition, plasma density fluctuations can scatter waves and diversify the electromagnetic energy. Schemes of generating plasma turbulence and the diagnoses of plasma effects are discussed

  1. The DOSIS -Experiment onboard the Columbus Laboratory of the International Space Station -Overview and first mission results

    Science.gov (United States)

    Reitz, Guenther; Berger, Thomas; Kürner, Christine; Burmeister, Sünke; Hajek, Michael; Bilski, Pawel; Horwacik, Tomasz; Vanhavere, Filip; Spurny, Frantisek; Jadrnickova, Iva; Pálfalvi, József K.; O'Sullivan, Denis; Yasuda, Nakahiro; Uchihori, Yukio; Kitamura, Hisashi; Kodaira, Satoshi; Yukihara, Eduardo; Benton, Eric; Zapp, Neal; Gaza, Ramona; Zhou, Dazhuang; Semones, Edward; Roed, Yvonne; Boehme, Matthias; Haumann, Lutz

    Besides the effects of the microgravity environment, and the psychological and psychosocial problems encountered in confined spaces, radiation is the main health detriment for long dura-tion human space missions. The radiation environment encountered in space differs in nature from that on earth, consisting mostly of high energetic ions from protons up to iron, resulting in radiation levels far exceeding the ones encountered on earth for occupational radiation workers. Accurate knowledge of the physical characteristics of the space radiation field in dependence on the solar activity, the orbital parameters and the different shielding configurations of the International Space Station ISS is therefore needed. The DOSIS (Dose Distribution inside the ISS) experiment, under the project and science lead of DLR, aims for the spatial and tempo-ral measurement of the radiation field parameters inside the European Columbus laboratory onboard the International Space Station. This goal is achieved by applying a combination of passive (Thermo-and Optical luminescence detectors and Nuclear track etch detectors) and active (silicon telescope) radiation detectors. The passive radiation detectors -so called pas-sive detector packages (PDP) are mounted at eleven positions within the Columbus laboratory -aiming for a spatial dose distribution measurement of the absorbed dose, the linear energy transfer spectra and the dose equivalent with an average exposure time of six months. Two active silicon telescopes -so called Dosimetry Telescopes (DOSTEL 1 and DOSTEL 2) together with a Data and Power Unit (DDPU) are mounted within the DOSIS Main Box at a fixed loca-tion beneath the European Physiology Module (EPM) rack. The DOSTEL 1 and DOSTEL 2 detectors are positioned at a 90 angle to each other for a precise measurement of the temporal and spatial variation of the radiation field, especially during crossing of the South Atlantic Anomaly (SAA). The DOSIS hardware was launched with the

  2. Challenges in small screening laboratories: implementing an on-demand laboratory information management system.

    Science.gov (United States)

    Lemmon, Vance P; Jia, Yuanyuan; Shi, Yan; Holbrook, S Douglas; Bixby, John L; Buchser, William

    2011-11-01

    The Miami Project to Cure Paralysis, part of the University of Miami Miller School of Medicine, includes a laboratory devoted to High Content Analysis (HCA) of neurons. The goal of the laboratory is to uncover signaling pathways, genes, compounds, or drugs that can be used to promote nerve growth. HCA permits the quantification of neuronal morphology, including the lengths and numbers of axons. HCA of various libraries on primary neurons requires a team-based approach, a variety of process steps and complex manipulations of cells and libraries to obtain meaningful results. HCA itself produces vast amounts of information including images, well-based data and cell-based phenotypic measures. Documenting and integrating the experimental workflows, library data and extensive experimental results is challenging. For academic laboratories generating large data sets from experiments involving thousands of perturbagens, a Laboratory Information Management System (LIMS) is the data tracking solution of choice. With both productivity and efficiency as driving rationales, the Miami Project has equipped its HCA laboratory with an On Demand or Software As A Service (SaaS) LIMS to ensure the quality of its experiments and workflows. The article discusses how the system was selected and integrated into the laboratory. The advantages of a SaaS based LIMS over a client-server based system are described. © 2011 Bentham Science Publishers

  3. Thermodynamics Fundamental Equation of a "Non-Ideal" Rubber Band from Experiments

    Science.gov (United States)

    Ritacco, Herna´n A.; Fortunatti, Juan C.; Devoto, Walter; Ferna´ndez-Miconi, Eugenio; Dominguez, Claudia; Sanchez, Miguel D.

    2014-01-01

    In this paper, we describe laboratory and classroom exercises designed to obtain the "fundamental" equation of a rubber band by combining experiments and theory. The procedure shows students how classical thermodynamics formalism can help to obtain empirical equations of state by constraining and guiding in the construction of the…

  4. [REPORTING CRITICAL LAB RESULTS, A CHALLENGE FOR THE LAB AND THE PHYSICIAN - A SUMMARY OF FOUR YEARS OF EXPERIENCE IN MEIR MEDICAL CENTER LABORATORIES].

    Science.gov (United States)

    Rashid, Gloria; Goldman, Jacob; Weinstein, Doron; Tohami, Tali; Neumark, Eran; Weiss, Eli

    2015-08-01

    Critical laboratory results require prompt reporting to the attending physician, as they may indicate that a patient is in a life-threatening condition. Although this important subject has been covered in many publications, it needs more attention from our healthcare organizations, which have no official policy on the subject. Matching expectations between the doctor and the laboratory needs to be better defined. The aim of this work was to inform the community of doctors and laboratories about the multiple problems concerning the reporting of critical laboratory results, to create a platform for exchanging views and ideas, and to build an extensive infrastructure for developing a unified plan to address this important issue. We present the results of four years of experience of reporting critical laboratory values at the Meir Medical Center Laboratories. The idea leading this work was to present the relatively low rate of critical results reported by the laboratories in 2010, sharing the problems discovered while investigating the situation in depth, and presenting the solutions that enabled us to obtain the desired results within four years. Gradual implementation of these improvements resulted in critical value reporting increasing from 55% in 2010 to 95% currently. We suggest a model for improving critical laboratory values reporting based on our 4-year experience, which emphasizes: (1) The importance of selecting proper tests and values for critical results; (2) The significance of using technology and computerized measures to support the process; and (3) Developing quick procedures for monitoring and controlling the process.

  5. Determination of Total Arsenic and Speciation in Apple Juice by Liquid Chromatography-Inductively Coupled Plasma Mass Spectrometry: An Experiment for the Analytical Chemistry Laboratory

    Science.gov (United States)

    He, Ping; Colon, Luis A.; Aga, Diana S.

    2016-01-01

    A two-part laboratory experiment was designed for upper-level analytical chemistry students to provide hands-on experience in the use of high performance liquid chromatography (HPLC) for separation and inductively coupled plasma mass spectrometry (ICP-MS) for detection. In the first part of the experiment, the students analyze total arsenic in…

  6. Culham Laboratory

    International Nuclear Information System (INIS)

    1980-06-01

    The report contains summaries of work carried out under the following headings: fusion research experiments; U.K. contribution to the JET project; supporting studies; theoretical plasma physics, computational physics and computing; fusion reactor studies; engineering and technology; contract research; external relations; staff, finance and services. Appendices cover main characteristics of Culham fusion experiments, staff, extra-mural projects supported by Culham Laboratory, and a list of papers written by Culham staff. (U.K.)

  7. Doing Textiles Experiments in Game-Based Virtual Reality: A Design of the Stereoscopic Chemical Laboratory (SCL) for Textiles Education

    Science.gov (United States)

    Lau, Kung Wong; Kan, Chi Wai; Lee, Pui Yuen

    2017-01-01

    Purpose: The purpose of this paper is to discuss the use of stereoscopic virtual technology in textile and fashion studies in particular to the area of chemical experiment. The development of a designed virtual platform, called Stereoscopic Chemical Laboratory (SCL), is introduced. Design/methodology/approach: To implement the suggested…

  8. Constraints on behaviour of a mining‐induced earthquake inferred from laboratory rock mechanics experiments

    Science.gov (United States)

    McGarr, Arthur F.; Johnston, Malcolm J.; Boettcher, M.; Heesakkers, V.; Reches, Z.

    2013-01-01

    On December 12, 2004, an earthquake of magnitude 2.2, located in the TauTona Gold Mine at a depth of about 3.65 km in the ancient Pretorius fault zone, was recorded by the in-mine borehole seismic network, yielding an excellent set of ground motion data recorded at hypocentral distances of several km. From these data, the seismic moment tensor, indicating mostly normal faulting with a small implosive component, and the radiated energy were measured; the deviatoric component of the moment tensor was estimated to be M0 = 2.3×1012 N·m and the radiated energy ER = 5.4×108 J. This event caused extensive damage along tunnels within the Pretorius fault zone. What rendered this earthquake of particular interest was the underground investigation of the complex pattern of exposed rupture surfaces combined with laboratory testing of rock samples retrieved from the ancient fault zone (Heesakkers et al.2011a, 2011b). Event 12/12 2004 was the result of fault slip across at least four nonparallel fault surfaces; 25 mm of slip was measured at one location on the rupture segment that is most parallel with a fault plane inferred from the seismic moment tensor, suggesting that this segment accounted for much of the total seismic deformation. By applying a recently developed technique based on biaxial stick-slip friction experiments (McGarr2012, 2013) to the seismic results, together with the 25 mm slip observed underground, we estimated a maximum slip rate of at least 6.6 m/s, which is consistent with the observed damage to tunnels in the rupture zone. Similarly, the stress drop and apparent stress were found to be correspondingly high at 21.9 MPa and 6.6 MPa, respectively. The ambient state of stress, measured at the approximate depth of the earthquake but away from the influence of mining, in conjunction with laboratory measurements of the strength of the fault zone cataclasites, indicates that during rupture of the M 2.2 event, the normal stress acting on the large-slip fault

  9. Utilizing an Artificial Outcrop to Scaffold Learning Between Laboratory and Field Experiences in a College-Level Introductory Geology Course

    Science.gov (United States)

    Wilson, Meredith

    Geologic field trips are among the most beneficial learning experiences for students as they engage the topic of geology, but they are also difficult environments to maximize learning. This action research study explored one facet of the problems associated with teaching geology in the field by attempting to improve the transition of undergraduate students from a traditional laboratory setting to an authentic field environment. Utilizing an artificial outcrop, called the GeoScene, during an introductory college-level non-majors geology course, the transition was studied. The GeoScene was utilized in this study as an intermediary between laboratory and authentic field based experiences, allowing students to apply traditional laboratory learning in an outdoor environment. The GeoScene represented a faux field environment; outside, more complex and tangible than a laboratory, but also simplified geologically and located safely within the confines of an educational setting. This exploratory study employed a mixed-methods action research design. The action research design allowed for systematic inquiry by the teacher/researcher into how the students learned. The mixed-methods approach garnered several types of qualitative and quantitative data to explore phenomena and support conclusions. Several types of data were collected and analyzed, including: visual recordings of the intervention, interviews, analytic memos, student reflections, field practical exams, and a pre/post knowledge and skills survey, to determine whether the intervention affected student comprehension and interpretation of geologic phenomena in an authentic field environment, and if so, how. Students enrolled in two different sections of the same laboratory course, sharing a common lecture, participated in laboratory exercises implementing experiential learning and constructivist pedagogies that focused on learning the basic geological skills necessary for work in a field environment. These laboratory

  10. ANDES: An Underground Laboratory in South America

    Science.gov (United States)

    Dib, Claudio O.

    ANDES (Agua Negra Deep Experiment Site) is an underground laboratory, proposed to be built inside the Agua Negra road tunnel that will connect Chile (IV Region) with Argentina (San Juan Province) under the Andes Mountains. The Laboratory will be 1750 meters under the rock, becoming the 3rd deepest underground laboratory of this kind in the world, and the first in the Southern Hemisphere. ANDES will be an international Laboratory, managed by a Latin American consortium. The laboratory will host experiments in Particle and Astroparticle Physics, such as Neutrino and Dark Matter searches, Seismology, Geology, Geophysics and Biology. It will also be used for the development of low background instrumentation and related services. Here we present the general features of the proposed laboratory, the current status of the proposal and some of its opportunities for science.

  11. Characterization of blocks impacts from acoustic emissions: insights from laboratory experiments

    Science.gov (United States)

    Farin, Maxime; Mangeney, Anne; de Rosny, Julien; Toussaint, Renaud; Shapiro, Nikolaï

    2014-05-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very dangerous. Recent studies showed that gravitational instabilities can be detected and characterized (volume, duration,...) thanks to the seismic signal they generate. In an avalanche, individual block bouncing and rolling on the ground are expected to generated signals of higher frequencies than the main flow spreading. The identification of the time/frequency signature of individual blocks in the recorded signal remains however difficult. Laboratory experiments were conducted to investigate the acoustic signature of diverse simple sources corresponding to grains falling over thin plates of plexiglas and glass and over rock blocks. The elastic energy emitted by a single bouncing bead into the support was first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We obtained simple scaling laws relating the impactor characteristics (size, height of fall, material,...) to the elastic energy and spectral content. Next, we consider the collapse of granular columns made of steel spherical beads onto hard substrates. Initially, these columns were held by a magnetic field allowing to suppress suddenly the cohesion between the beads, and thus to minimize friction effects that would arise from side walls. We varied systematically the column volume, the column aspect ratio (height over length) and the grain size. This is shown to affect the signal envelope and frequency content. In the experiments, accelerometers (1 Hz to 56 kHz) were used to record the signals in a wide frequency range. The experiments were also monitored optically using fast cameras. Eventually, we looked at what types of features in the signal are affected by individual impacts, rolling of beads or by the large scale geometry of the avalanche.

  12. Performance of Kiestra total laboratory automation combined with MS in clinical microbiology practice

    NARCIS (Netherlands)

    Mutters, Nico T.; Hodiamont, Caspar J.; de Jong, Menno D.; Overmeijer, Hendri P. J.; van den Boogaard, Mandy; Visser, Caroline E.

    2014-01-01

    Microbiological laboratories seek technologically innovative solutions to cope with large numbers of samples and limited personnel and financial resources. One platform that has recently become available is the Kiestra Total Laboratory Automation (TLA) system (BD Kiestra B.V., the Netherlands). This

  13. A laboratory experiment assessing the effect of sea ice on wave dumping

    Science.gov (United States)

    Cavaliere, Claudio; Alberello, Alberto; Bennetts, Luke; Meylan, Mike; Babanin, Alexander; Malavasi, Stefano; Toffoli, Alessandro

    2014-05-01

    Wave-ice interaction is a critical factor in the dynamics of the marginal ice zone (MIZ), the region between open ocean and an expanse of ice floes of varying size and shape. This interaction works both ways: while waves cause the fractures of ice floes, the presence of ice floes affects waves through scattering and various dissipative processes. In order to assess the latter, a laboratory experiment has been carried out in the coastal directional basin at Plymouth University. Sea ice has been simulated with two deformable plates: 1mX1m plastic sheet with variable thickness of polypropylene, which holds the same density (~0.9 g/cm3) of ice, and PVC Forex, which hold the same mechanical property of ice. Experiments have been conducted using monochromatic as well as random wave fields with different steepness and wavelengths (both shorter and larger than the floe). The wave field has been monitored before and after the simulated ice floe with a number of wave probes deployed along the basin, including a 6-probe array to track directional properties. On the whole, results show a substantial scattering and dissipation of the wave field, which appears to be dependent on the amount of overwash on the ice floe.

  14. The effect of filtration on radon daughter atmospheres: Laboratory and field experiments

    International Nuclear Information System (INIS)

    Jonassen, N.; Jensen, B.

    1987-01-01

    Airborne radon daughters may be removed from the air by internal filtration using mechanical or electrofilters. The effect of the filtration may be evaluated in absolute measure by the decrease in the potential alpha energy concentration (or equivalent equilibrium concentration) or relatively by the decrease in the equilibrium factor. The filtration, however, may also change the distribution of airborne radon daughter activity between the unattached and the aerosol-attached state in a way to increase the radiological dose corresponding to a given potential alpha energy concentration. The paper describes a series of laboratory and field experiments which indicate that it is possible by the use of household electrofilters with filtration rates of 2-3 h -1 to lower the radon daughter concentrations to about 20 -30 % and the average radiological dose to about 50-60 % of the value in unfiltered air

  15. Princeton Plasma Physics Laboratory:

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, C.A. (ed.)

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  16. Princeton Plasma Physics Laboratory:

    International Nuclear Information System (INIS)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations

  17. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    Science.gov (United States)

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  18. Evaluation of cage designs and feeding regimes for honey bee (Hymenoptera: Apidae) laboratory experiments.

    Science.gov (United States)

    Huang, Shao Kang; Csaki, Tamas; Doublet, Vincent; Dussaubat, Claudia; Evans, Jay D; Gajda, Anna M; Gregorc, Alex; Hamilton, Michele C; Kamler, Martin; Lecocq, Antoine; Muz, Mustafa N; Neumann, Peter; Ozkirim, Asli; Schiesser, Aygün; Sohr, Alex R; Tanner, Gina; Tozkar, Cansu Ozge; Williams, Geoffrey R; Wu, Lyman; Zheng, Huoqing; Chen, Yan Ping

    2014-02-01

    The aim of this study was to improve cage systems for maintaining adult honey bee (Apis mellifera L.) workers under in vitro laboratory conditions. To achieve this goal, we experimentally evaluated the impact of different cages, developed by scientists of the international research network COLOSS (Prevention of honey bee COlony LOSSes), on the physiology and survival of honey bees. We identified three cages that promoted good survival of honey bees. The bees from cages that exhibited greater survival had relatively lower titers of deformed wing virus, suggesting that deformed wing virus is a significant marker reflecting stress level and health status of the host. We also determined that a leak- and drip-proof feeder was an integral part of a cage system and a feeder modified from a 20-ml plastic syringe displayed the best result in providing steady food supply to bees. Finally, we also demonstrated that the addition of protein to the bees' diet could significantly increase the level ofvitellogenin gene expression and improve bees' survival. This international collaborative study represents a critical step toward improvement of cage designs and feeding regimes for honey bee laboratory experiments.

  19. A Remote PLC Laboratory (RLab) for Distance Practical Work of Industrial Automation

    Science.gov (United States)

    Haritman, E.; Somantri, Y.; Wahyudin, D.; Mulyana, E.

    2018-02-01

    A laboratory is an essential equipment for engineering students to do a useful practical work. Therefore, universities should provide an adequate facility for practical work. On the other hand, industrial automation laboratory would offer students beneficial experience by using various educational PLC kits. This paper describes the development of Web-based Programmable Logic Controller (PLC) remote laboratory called RLab. It provides an environment for learners to study PLC application to control the level of the non-interacting tank. The RLab architecture is based on a Moodle and Remote Desktop, which also manages the booking system of the schedule of practical work in the laboratory. The RLab equipped by USB cameras providing a real-time view of PLC environment. To provide a secured system, the RLab combines Moodle and Remote Desktop application for the authentication system and management of remote users. Moodle will send PartnerID and password to connect to TeamViewer. It has been examined that the laboratory requirement, time and flexibility restrictions constitute a significant obstacle facing traditional students desiring to finish the course. A remote access laboratory can be eliminating time and flexibility restrictions. The preliminary study of RLab usability proved that such system is adequate to give the learners a distance practical work environment.

  20. [60]Fullerene Displacement from (Dihapto-Buckminster-Fullerene) Pentacarbonyl Tungsten(0): An Experiment for the Inorganic Chemistry Laboratory, Part II

    Science.gov (United States)

    Cortes-Figueroa, Jose E.; Moore-Russo, Deborah A.

    2006-01-01

    The kinetics experiments on the ligand-C[subscript 60] exchange reactions on (dihapto-[60]fullerene) pentacarbonyl tungsten(0), ([eta][superscript 2]-C[subscript 60])W(CO)[subscript 5], form an educational activity for the inorganic chemistry laboratory that promotes graphical thinking as well as the understanding of kinetics, mechanisms, and the…

  1. Activity of safety review for the facilities using nuclear material (2). Safety review results and maintenance experiences for hot laboratories

    International Nuclear Information System (INIS)

    Amagai, Tomio; Fujishima, Tadatsune; Mizukoshi, Yasutaka; Sakamoto, Naoki; Ohmori, Tsuyoshi

    2009-01-01

    In the site of O-arai Research and Development Center of Japan Atomic Energy Agency (JAEA), five hot laboratories for post-irradiation examination and development of plutonium fuels are operated more than 30 years. A safety review method for preventive maintenance on these hot laboratories includes test facilities and devices are established in 2003. After that, the safety review of these facilities and devices are done and taken the necessary maintenance based on the results in each year. In 2008, 372 test facilities and devices in these hot laboratories were checked and reviewed by this method. As a results of the safety review, repair issues of 38 facilities of above 372 facilities were resolved. This report shows the review results and maintenance experiences based on the results. (author)

  2. Syndromic surveillance using veterinary laboratory data: algorithm combination and customization of alerts.

    Science.gov (United States)

    Dórea, Fernanda C; McEwen, Beverly J; McNab, W Bruce; Sanchez, Javier; Revie, Crawford W

    2013-01-01

    Syndromic surveillance research has focused on two main themes: the search for data sources that can provide early disease detection; and the development of efficient algorithms that can detect potential outbreak signals. This work combines three algorithms that have demonstrated solid performance in detecting simulated outbreak signals of varying shapes in time series of laboratory submissions counts. These are: the Shewhart control charts designed to detect sudden spikes in counts; the EWMA control charts developed to detect slow increasing outbreaks; and the Holt-Winters exponential smoothing, which can explicitly account for temporal effects in the data stream monitored. A scoring system to detect and report alarms using these algorithms in a complementary way is proposed. The use of multiple algorithms in parallel resulted in increased system sensitivity. Specificity was decreased in simulated data, but the number of false alarms per year when the approach was applied to real data was considered manageable (between 1 and 3 per year for each of ten syndromic groups monitored). The automated implementation of this approach, including a method for on-line filtering of potential outbreak signals is described. The developed system provides high sensitivity for detection of potential outbreak signals while also providing robustness and flexibility in establishing what signals constitute an alarm. This flexibility allows an analyst to customize the system for different syndromes.

  3. Underground laboratories in Europe

    International Nuclear Information System (INIS)

    Coccia, E

    2006-01-01

    The only clear evidence today for physics beyond the standard model comes from underground experiments and the future activity of underground laboratories appears challenging and rich. I review here the existing underground research facilities in Europe. I present briefly the main characteristics, scientific activity and perspectives of these Laboratories and discuss the present coordination actions in the framework of the European Union

  4. Large-scale laboratory testing of bedload-monitoring technologies: overview of the StreamLab06 Experiments

    Science.gov (United States)

    Marr, Jeffrey D.G.; Gray, John R.; Davis, Broderick E.; Ellis, Chris; Johnson, Sara; Gray, John R.; Laronne, Jonathan B.; Marr, Jeffrey D.G.

    2010-01-01

    A 3-month-long, large-scale flume experiment involving research and testing of selected conventional and surrogate bedload-monitoring technologies was conducted in the Main Channel at the St. Anthony Falls Laboratory under the auspices of the National Center for Earth-surface Dynamics. These experiments, dubbed StreamLab06, involved 25 researchers and volunteers from academia, government, and the private sector. The research channel was equipped with a sediment-recirculation system and a sediment-flux monitoring system that allowed continuous measurement of sediment flux in the flume and provided a data set by which samplers were evaluated. Selected bedload-measurement technologies were tested under a range of flow and sediment-transport conditions. The experiment was conducted in two phases. The bed material in phase I was well-sorted siliceous sand (0.6-1.8 mm median diameter). A gravel mixture (1-32 mm median diameter) composed the bed material in phase II. Four conventional bedload samplers – a standard Helley-Smith, Elwha, BLH-84, and Toutle River II (TR-2) sampler – were manually deployed as part of both experiment phases. Bedload traps were deployed in study Phase II. Two surrogate bedload samplers – stationarymounted down-looking 600 kHz and 1200 kHz acoustic Doppler current profilers – were deployed in experiment phase II. This paper presents an overview of the experiment including the specific data-collection technologies used and the ambient hydraulic, sediment-transport and environmental conditions measured as part of the experiment. All data collected as part of the StreamLab06 experiments are, or will be available to the research community.

  5. Laboratory automation and LIMS in forensics

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Hansen, Anders Johannes; Morling, Niels

    2013-01-01

    . Furthermore, implementation of automated liquid handlers reduces the risk of sample misplacement. A LIMS can efficiently control the sample flow through the laboratory and manage the results of the conducted tests for each sample. Integration of automated liquid handlers with a LIMS provides the laboratory......Implementation of laboratory automation and LIMS in a forensic laboratory enables the laboratory, to standardize sample processing. Automated liquid handlers can increase throughput and eliminate manual repetitive pipetting operations, known to result in occupational injuries to the technical staff...... with the tools required for setting up automated production lines of complex laboratory processes and monitoring the whole process and the results. Combined, this enables processing of a large number of samples. Selection of the best automated solution for an individual laboratory should be based on user...

  6. Teaching chemistry and other sciences to blind and low-vision students through hands-on learning experiences in high school science laboratories

    Science.gov (United States)

    Supalo, Cary Alan

    2010-11-01

    Students with blindness and low vision (BLV) have traditionally been underrepresented in the sciences as a result of technological and attitudinal barriers to equal access in science laboratory classrooms. The Independent Laboratory Access for the Blind (ILAB) project developed and evaluated a suite of talking and audible hardware/software tools to empower students with BLV to have multisensory, hands-on laboratory learning experiences. This dissertation focuses on the first year of ILAB tool testing in mainstream science laboratory classrooms, and comprises a detailed multi-case study of four students with BLV who were enrolled in high school science classes during 2007--08 alongside sighted students. Participants attended different schools; curricula included chemistry, AP chemistry, and AP physics. The ILAB tools were designed to provide multisensory means for students with BLV to make observations and collect data during standard laboratory lessons on an equivalent basis with their sighted peers. Various qualitative and quantitative data collection instruments were used to determine whether the hands-on experiences facilitated by the ILAB tools had led to increased involvement in laboratory-goal-directed actions, greater peer acceptance in the students' lab groups, improved attitudes toward science, and increased interest in science. Premier among the ILAB tools was the JAWS/Logger Pro software interface, which made audible all information gathered through standard Vernier laboratory probes and visually displayed through Logger Pro. ILAB tools also included a talking balance, a submersible audible light sensor, a scientific talking stopwatch, and a variety of other high-tech and low-tech devices and techniques. While results were mixed, all four participating BLV students seemed to have experienced at least some benefit, with the effect being stronger for some than for others. Not all of the data collection instruments were found to reveal improvements for all

  7. Taking Science Online: Evaluating Presence and Immersion through a Laboratory Experience in a Virtual Learning Environment for Entomology Students

    Science.gov (United States)

    Annetta, Leonard; Klesath, Marta; Meyer, John

    2009-01-01

    A 3-D virtual field trip was integrated into an online college entomology course and developed as a trial for the possible incorporation of future virtual environments to supplement online higher education laboratories. This article provides an explanation of the rationale behind creating the virtual experience, the Bug Farm; the method and…

  8. The Consequence of Combined Pain and Stress on Work Ability in Female Laboratory Technicians: A Cross-Sectional Study.

    Science.gov (United States)

    Jay, Kenneth; Friborg, Maria Kristine; Sjøgaard, Gisela; Jakobsen, Markus Due; Sundstrup, Emil; Brandt, Mikkel; Andersen, Lars Louis

    2015-12-11

    Musculoskeletal pain and stress-related disorders are leading causes of impaired work ability, sickness absences and disability pensions. However, knowledge about the combined detrimental effect of pain and stress on work ability is lacking. This study investigates the association between pain in the neck-shoulders, perceived stress, and work ability. In a cross-sectional survey at a large pharmaceutical company in Denmark 473 female laboratory technicians replied to questions about stress (Perceived Stress Scale), musculoskeletal pain intensity (scale 0-10) of the neck and shoulders, and work ability (Work Ability Index). General linear models tested the association between variables. In the multi-adjusted model, stress (p pain (p stress by pain interaction (p = 0.32). Work ability decreased gradually with both increased stress and pain. Workers with low stress and low pain had the highest Work Ability Index score (44.6 (95% CI 43.9-45.3)) and workers with high stress and high pain had the lowest score (32.7 (95% CI 30.6-34.9)). This cross-sectional study indicates that increased stress and musculoskeletal pain are independently associated with lower work ability in female laboratory technicians.

  9. Using VISIR: Experiments, Subjects and Students

    Directory of Open Access Journals (Sweden)

    Diego Lopez-de-Ipina

    2011-10-01

    Full Text Available The paper presents the results of applying the VISIR (Virtual Instrument Systems in Reality system at the course of analog electronics for various degrees of the Faculty of Engineering of the University of Deusto (Spain. The efficiency of the VISIR had been monitored during past three years. Students’ feedback was collected and analyzed. The research shows: 1 VISIR system is functional and useful learning instrument; 2 teacher experience at VISIR plays crucial role in its integration into student experimentation activities; 3 students get best knowledge and skills in the analog electronics from combination of experiments at traditional laboratory and remote lab/ VISIR.

  10. Open-source sensors system for doing simple physics experiments

    Directory of Open Access Journals (Sweden)

    César Llamas Bello

    2018-04-01

    Full Text Available An open-source platform to be used in high school or university laboratories has been developed. The platform permits the performance of dynamics experiments in a simple and affordable way, combining measurements of different sensors in the platform. The sensors are controlled by an Arduino microcontroller, which can be wirelessly accessed with smartphones or tablets. The platform constitutes an economical sensing alternative to commercial configurations and can easily be extended by including new sensors that broaden the range of covered experiments.

  11. Combined Effects of Temperature and Salinity on Larval Development of the Mangrove Crab Parasesarma catenata Ortman, 1897 (Brachyura: Sesarmidae)

    OpenAIRE

    Mwaluma, J.; Nogueira Mendes, R.; Raedig, C.; Emmerson, W.; Paula, J.

    2003-01-01

    The larval stages of the mangrove crab Parasesarma catenata were reared in the laboratory from eggs of females collected in the Mgazana estuary, South Africa. Survival and duration of larval stages were tested for the combined effects of temperature and salinity in a factorial design experiment, using three females each with two replicates of 15 larvae per combination. Combinations were made from five temperature (15, 20, 25, 30 and 35 ºC) and four salinity values (15, 25, 35 a...

  12. TRAC-PF1/MOD3 calculations of Savannah River Laboratory Rig FA single-annulus heated experiments

    International Nuclear Information System (INIS)

    Fischer, S.R.; McDaniel, C.K.

    1992-01-01

    This paper presents the results of TRAC-PF1/MOD3 benchmarks of the Rig FA experiments performed at the Savannah River Laboratory to simulate prototypic reactor fuel assembly behavior over a range of fluid conditions typical of the emergency cooling system (ECS) phase of a loss-of-coolant accident (LOCA). The primary purpose of this work was to use the SRL Rig FA tests to qualify the TRAC-PF1/MOD3 computer code and models for computing Mark-22 fuel assembly LOCA/ECS power limits. This qualification effort was part of a larger effort undertaken by the Los Alamos National Laboratory for the US Department of Energy to independently confirm power limits for the Savannah River Site K Reactor. The results of this benchmark effort as discussed in this paper demonstrate that TRAC/PF1/MOD3 coupled with proper modeling is capable of simulating thermal-hydraulic phenomena typical of that encountered in Mark-22 fuel assembly during LOCA/ECS conditions

  13. The Laboratory of the Dramaturge and Studies on Theatrical Genetics: experiments

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Rabetti

    2011-11-01

    Full Text Available This study is situated in the field of Theatrical Genetics and deals with the presence of the dramaturge in action. It assesses the relevance and uniqueness of the process of textual migration toward the theatrical scene caused by the combined exercises of translation and dramaturgy developed between the years 1985 and 1991 by Companhia de Encenação Teatral from the city of Rio de Janeiro. It updates and comments on accumulated experiences in the creation of a number of spectacles as a result of a long and continuous creative process. Theoretically, therefore, this text aims to understand Theatrical Genetics through the eyes of the dramaturge, the theatre historian.

  14. Logs, blogs and pods: smart electronic laboratory notebooks

    OpenAIRE

    Frey, Jeremy G.

    2009-01-01

    The Southampton experiences in developing a semantic electronic laboratory notebook for synthetic organic chemistry and a web 2.0 style laboratory Blog Book are introduced and discussed in the context of the Smart Laboratory.

  15. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    Directory of Open Access Journals (Sweden)

    Grujić Bojana

    2017-12-01

    Full Text Available The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  16. Numerical modelling of the reinforced concrete influence on a combined system of tunnel support

    Science.gov (United States)

    Grujić, Bojana; Jokanović, Igor; Grujić, Žarko; Zeljić, Dragana

    2017-12-01

    The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.

  17. Laboratory simulation of space plasma phenomena*

    Science.gov (United States)

    Amatucci, B.; Tejero, E. M.; Ganguli, G.; Blackwell, D.; Enloe, C. L.; Gillman, E.; Walker, D.; Gatling, G.

    2017-12-01

    Laboratory devices, such as the Naval Research Laboratory's Space Physics Simulation Chamber, are large-scale experiments dedicated to the creation of large-volume plasmas with parameters realistically scaled to those found in various regions of the near-Earth space plasma environment. Such devices make valuable contributions to the understanding of space plasmas by investigating phenomena under carefully controlled, reproducible conditions, allowing for the validation of theoretical models being applied to space data. By working in collaboration with in situ experimentalists to create realistic conditions scaled to those found during the observations of interest, the microphysics responsible for the observed events can be investigated in detail not possible in space. To date, numerous investigations of phenomena such as plasma waves, wave-particle interactions, and particle energization have been successfully performed in the laboratory. In addition to investigations such as plasma wave and instability studies, the laboratory devices can also make valuable contributions to the development and testing of space plasma diagnostics. One example is the plasma impedance probe developed at NRL. Originally developed as a laboratory diagnostic, the sensor has now been flown on a sounding rocket, is included on a CubeSat experiment, and will be included on the DoD Space Test Program's STP-H6 experiment on the International Space Station. In this presentation, we will describe several examples of the laboratory investigation of space plasma waves and instabilities and diagnostic development. *This work supported by the NRL Base Program.

  18. Measuring Heterogeneous Reaction Rates with ATR-FTIR Spectroscopy to Evaluate Chemical Fates in an Atmospheric Environment: A Physical Chemistry and Environmental Chemistry Laboratory Experiment

    Science.gov (United States)

    Roberts, Jason E.; Zeng, Guang; Maron, Marta K.; Mach, Mindy; Dwebi, Iman; Liu, Yong

    2016-01-01

    This paper reports an undergraduate laboratory experiment to measure heterogeneous liquid/gas reaction kinetics (ozone-oleic acid and ozone-phenothrin) using a flow reactor coupled to an attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectrometer. The experiment is specially designed for an upper-level undergraduate Physical…

  19. Effect of virtual analytical chemistry laboratory on enhancing student research skills and practices

    Directory of Open Access Journals (Sweden)

    Boris Bortnik

    2017-12-01

    Full Text Available This article aims to determine the effect of a virtual chemistry laboratory on university student achievement. The article describes a model of a laboratory course that includes a virtual component. This virtual component is viewed as a tool of student pre-lab autonomous learning. It presents electronic resources designed for a virtual laboratory and outlines the methodology of e-resource application. To find out how virtual chemistry laboratory affects student scientific literacy, research skills and practices, a pedagogical experiment has been conducted. Student achievement was compared in two learning environments: traditional – in-class hands-on – learning (control group and blended learning – online learning combined with in-person learning (experimental group. The effectiveness of integrating an e-lab in the laboratory study was measured by comparing student lab reports of the two groups. For that purpose, a set of 10 criteria was developed. The experimental and control student groups were also compared in terms of test results and student portfolios. The study showed that the adopted approach blending both virtual and hands-on learning environments has the potential to enhance student research skills and practices in analytical chemistry studies.

  20. Laboratory Guide for Residual Stress Sample Alignment and Experiment Planning-October 2011 Version

    Energy Technology Data Exchange (ETDEWEB)

    Cornwell, Paris A [ORNL; Bunn, Jeffrey R [ORNL; Schmidlin, Joshua E [ORNL; Hubbard, Camden R [ORNL

    2012-04-01

    The December 2010 version of the guide, ORNL/TM-2008/159, by Jeff Bunn, Josh Schmidlin, Camden Hubbard, and Paris Cornwell, has been further revised due to a major change in the GeoMagic Studio software for constructing a surface model. The Studio software update also includes a plug-in module to operate the FARO Scan Arm. Other revisions for clarity were also made. The purpose of this revision document is to guide the reader through the process of laser alignment used by NRSF2 at HFIR and VULCAN at SNS. This system was created to increase the spatial accuracy of the measurement points in a sample, reduce the use of neutron time used for alignment, improve experiment planning, and reduce operator error. The need for spatial resolution has been driven by the reduction in gauge volumes to the sub-millimeter level, steep strain gradients in some samples, and requests to mount multiple samples within a few days for relating data from each sample to a common sample coordinate system. The first step in this process involves mounting the sample on an indexer table in a laboratory set up for offline sample mounting and alignment in the same manner it would be mounted at either instrument. In the shared laboratory, a FARO ScanArm is used to measure the coordinates of points on the sample surface ('point cloud'), specific features and fiducial points. A Sample Coordinate System (SCS) needs to be established first. This is an advantage of the technique because the SCS can be defined in such a way to facilitate simple definition of measurement points within the sample. Next, samples are typically mounted to a frame of 80/20 and fiducial points are attached to the sample or frame then measured in the established sample coordinate system. The laser scan probe on the ScanArm can then be used to scan in an 'as-is' model of the sample as well as mounting hardware. GeoMagic Studio 12 is the software package used to construct the model from the point cloud the

  1. Laboratory Guide for Residual Stress Sample Alignment and Experiment Planning-October 2011 Version

    International Nuclear Information System (INIS)

    Cornwell, Paris A.; Bunn, Jeffrey R.; Schmidlin, Joshua E.; Hubbard, Camden R.

    2012-01-01

    The December 2010 version of the guide, ORNL/TM-2008/159, by Jeff Bunn, Josh Schmidlin, Camden Hubbard, and Paris Cornwell, has been further revised due to a major change in the GeoMagic Studio software for constructing a surface model. The Studio software update also includes a plug-in module to operate the FARO Scan Arm. Other revisions for clarity were also made. The purpose of this revision document is to guide the reader through the process of laser alignment used by NRSF2 at HFIR and VULCAN at SNS. This system was created to increase the spatial accuracy of the measurement points in a sample, reduce the use of neutron time used for alignment, improve experiment planning, and reduce operator error. The need for spatial resolution has been driven by the reduction in gauge volumes to the sub-millimeter level, steep strain gradients in some samples, and requests to mount multiple samples within a few days for relating data from each sample to a common sample coordinate system. The first step in this process involves mounting the sample on an indexer table in a laboratory set up for offline sample mounting and alignment in the same manner it would be mounted at either instrument. In the shared laboratory, a FARO ScanArm is used to measure the coordinates of points on the sample surface ('point cloud'), specific features and fiducial points. A Sample Coordinate System (SCS) needs to be established first. This is an advantage of the technique because the SCS can be defined in such a way to facilitate simple definition of measurement points within the sample. Next, samples are typically mounted to a frame of 80/20 and fiducial points are attached to the sample or frame then measured in the established sample coordinate system. The laser scan probe on the ScanArm can then be used to scan in an 'as-is' model of the sample as well as mounting hardware. GeoMagic Studio 12 is the software package used to construct the model from the point cloud the scan arm creates. Once

  2. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    Science.gov (United States)

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  3. Fracture propagation in sandstone and slate – Laboratory experiments, acoustic emissions and fracture mechanics

    Directory of Open Access Journals (Sweden)

    Ferdinand Stoeckhert

    2015-06-01

    Full Text Available Fracturing of highly anisotropic rocks is a problem often encountered in the stimulation of unconventional hydrocarbon or geothermal reservoirs by hydraulic fracturing. Fracture propagation in isotropic material is well understood but strictly isotropic rocks are rarely found in nature. This study aims at the examination of fracture initiation and propagation processes in a highly anisotropic rock, specifically slate. We performed a series of tensile fracturing laboratory experiments under uniaxial as well as triaxial loading. Cubic specimens with edge lengths of 150 mm and a central borehole with a diameter of 13 mm were prepared from Fredeburg slate. An experiment using the rather isotropic Bebertal sandstone as a rather isotropic rock was also performed for comparison. Tensile fractures were generated using the sleeve fracturing technique, in which a polymer tube placed inside the borehole is pressurized to generate tensile fractures emanating from the borehole. In the uniaxial test series, the loading was varied in order to observe the transition from strength-dominated fracture propagation at low loading magnitudes to stress-dominated fracture propagation at high loading magnitudes.

  4. A Required Rotation in Clinical Laboratory Management for Pathology Residents: Five-Year Experience at Hofstra Northwell School of Medicine.

    Science.gov (United States)

    Rishi, Arvind; Hoda, Syed T; Crawford, James M

    2016-01-01

    Leadership and management training during pathology residency have been identified repeatedly by employers as insufficient. A 1-month rotation in clinical laboratory management (CLM) was created for third-year pathology residents. We report on our experience and assess the value of this rotation. The rotation was one-half observational and one-half active. The observational component involved being a member of department and laboratory service line leadership, both at the departmental and institutional level. Observational participation enabled learning of both the content and principles of leadership and management activities. The active half of the rotation was performance of a project intended to advance the strategic trajectory of the department and laboratory service line. In our program that matriculates 4 residents per year, 20 residents participated from April 2010 through December 2015. Their projects either activated a new priority area or helped propel an existing strategic priority forward. Of the 16 resident graduates who had obtained their first employment or a fellowship position, 9 responded to an assessment survey. The majority of respondents (5/9) felt that the rotation significantly contributed to their ability to compete for a fellowship or their first employment position. The top reported benefits of the rotation included people management; communication with staff, departmental, and institutional leadership; and involvement in department and institutional meetings and task groups. Our 5-year experience demonstrates both the successful principles by which the CLM rotation can be established and the high value of this rotation to residency graduates.

  5. Development of a Portable Motor Learning Laboratory (PoMLab).

    Science.gov (United States)

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  6. Development of a Portable Motor Learning Laboratory (PoMLab.

    Directory of Open Access Journals (Sweden)

    Ken Takiyama

    Full Text Available Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the

  7. Experiential learning in control systems laboratories and engineering project management

    Science.gov (United States)

    Reck, Rebecca Marie

    Experiential learning is a process by which a student creates knowledge through the insights gained from an experience. Kolb's model of experiential learning is a cycle of four modes: (1) concrete experience, (2) reflective observation, (3) abstract conceptualization, and (4) active experimentation. His model is used in each of the three studies presented in this dissertation. Laboratories are a popular way to apply the experiential learning modes in STEM courses. Laboratory kits allow students to take home laboratory equipment to complete experiments on their own time. Although students like laboratory kits, no previous studies compared student learning outcomes on assignments using laboratory kits with existing laboratory equipment. In this study, we examined the similarities and differences between the experiences of students who used a portable laboratory kit and students who used the traditional equipment. During the 2014- 2015 academic year, we conducted a quasi-experiment to compare students' achievement of learning outcomes and their experiences in the instructional laboratory for an introductory control systems course. Half of the laboratory sections in each semester used the existing equipment, while the other sections used a new kit. We collected both quantitative data and qualitative data. We did not identify any major differences in the student experience based on the equipment they used. Course objectives, like research objectives and product requirements, help provide clarity and direction for faculty and students. Unfortunately, course and laboratory objectives are not always clearly stated. Without a clear set of objectives, it can be hard to design a learning experience and determine whether students are achieving the intended outcomes of the course or laboratory. In this study, I identified a common set of laboratory objectives, concepts, and components of a laboratory apparatus for undergraduate control systems laboratories. During the summer of

  8. Clinical and laboratory experience of chorionic villous sampling in ...

    African Journals Online (AJOL)

    2013-12-14

    Dec 14, 2013 ... clinical and laboratory procedures, including general characteristics of women, indications and outcome, .... quality assurance, accuracy and reliability of results. ... controls for confirmation of results, while negative control.

  9. Remote Systems Experience at the Oak Ridge National Laboratory--A Summary of Lessons Learned

    International Nuclear Information System (INIS)

    Noakes, Mark W.; Burgess, Thomas W.; Rowe, John C.

    2011-01-01

    Oak Ridge National Laboratory (ORNL) has a long history in the development of remote systems to support the nuclear environment. ORNL, working in conjunction with Central Research Laboratories, created what is believed to be the first microcomputer-based implementation of dual-arm master-slave remote manipulation. As part of the Consolidated Fuel Reprocessing Program, ORNL developed the dual-arm advanced servomanipulator focusing on remote maintainability for systems exposed to high radiation fields. ORNL also participated in almost all of the various technical areas of the U.S. Department of Energy s Robotics Technology Development Program, while leading the Decontamination and Decommissioning and Tank Waste Retrieval categories. Over the course of this involvement, ORNL has developed a substantial base of working knowledge as to what works when and under what circumstances for many types of remote systems tasks as well as operator interface modes, control bandwidth, and sensing requirements to name a few. By using a select list of manipulator systems that is not meant to be exhaustive, this paper will discuss history and outcome of development, field-testing, deployment, and operations from a lessons learned perspective. The final outcome is a summary paper outlining ORNL experiences and guidelines for transition of developmental remote systems to real-world hazardous environments.

  10. Biogeochemical Reactive Transport Model of the Redox Zone Experiment of the sp Hard Rock Laboratory in Sweden

    International Nuclear Information System (INIS)

    Molinero-Huguet, Jorge; Samper-Calvete, F. Javier; Zhang, Guoxiang; Yang, Changbing

    2004-01-01

    Underground facilities are being operated by several countries around the world for performing research and demonstration of the safety of deep radioactive waste repositories. The ''sp'' Hard Rock Laboratory is one such facility launched and operated by the Swedish Nuclear Fuel and Waste Management Company where various in situ experiments have been performed in fractured granites. One such experiment is the redox zone experiment, which aimed at evaluating the effects of the construction of an access tunnel on the hydrochemical conditions of a fracture zone. Dilution of the initially saline groundwater by fresh recharge water is the dominant process controlling the hydrochemical evolution of most chemical species, except for bicarbonate and sulfate, which unexpectedly increase with time. We present a numerical model of water flow, reactive transport, and microbial processes for the redox zone experiment. This model provides a plausible quantitatively based explanation for the unexpected evolution of bicarbonate and sulfate, reproduces the breakthrough curves of other reactive species, and is consistent with previous hydrogeological and solute transport models

  11. Excitation and propagation of electromagnetic fluctuations with ion-cyclotron range of frequency in magnetic reconnection laboratory experiment

    International Nuclear Information System (INIS)

    Inomoto, Michiaki; Tanabe, Hiroshi; Ono, Yasushi; Kuwahata, Akihiro

    2013-01-01

    Large-amplitude electromagnetic fluctuations of ion-cyclotron-frequency range are detected in a laboratory experiment inside the diffusion region of a magnetic reconnection with a guide field. The fluctuations have properties similar to kinetic Alfvén waves propagating obliquely to the guide field. Temporary enhancement of the reconnection rate is observed during the occurrence of the fluctuations, suggesting a relationship between the modification in the local magnetic structure given by these fluctuations and the intermittent fast magnetic reconnection

  12. Combining risk analysis and operating experience

    International Nuclear Information System (INIS)

    1986-10-01

    In recent years there has been an increasing interest in the systematic utilization of operating experience in the decision making process concerning large industrial facilities. Even before the advent of Probabilistic Safety Assessment (PSA), operating experience had always played an important role in such decisions. Of course, operating experience has always been an input to PSA also; however, as PSA becomes more mature and the quality and quantity of operating experience improve, greater emphasis is now being placed on the use of operating experience to update and validate PSA and thereby provide a more rational basis for decision making. This report outlines the ways in which data are collected, processed using mathematical techniques and utilized in decision making. It is not intended to provide details of the methods and procedures to be used in these areas, but is rather intended as an introduction to these topics and some of the relevant literature. The meeting presentations were divided into three sessions devoted to the following topics: evaluation of nuclear power plants operational experience (5 papers); uncertainties (2 papers); probabilistic safety assessment studies in Member States (7 papers). A separate abstract was prepared for each of these papers

  13. Frictional heating processes during laboratory earthquakes

    Science.gov (United States)

    Aubry, J.; Passelegue, F. X.; Deldicque, D.; Lahfid, A.; Girault, F.; Pinquier, Y.; Escartin, J.; Schubnel, A.

    2017-12-01

    Frictional heating during seismic slip plays a crucial role in the dynamic of earthquakes because it controls fault weakening. This study proposes (i) to image frictional heating combining an in-situ carbon thermometer and Raman microspectrometric mapping, (ii) to combine these observations with fault surface roughness and heat production, (iii) to estimate the mechanical energy dissipated during laboratory earthquakes. Laboratory earthquakes were performed in a triaxial oil loading press, at 45, 90 and 180 MPa of confining pressure by using saw-cut samples of Westerly granite. Initial topography of the fault surface was +/- 30 microns. We use a carbon layer as a local temperature tracer on the fault plane and a type K thermocouple to measure temperature approximately 6mm away from the fault surface. The thermocouple measures the bulk temperature of the fault plane while the in-situ carbon thermometer images the temperature production heterogeneity at the micro-scale. Raman microspectrometry on amorphous carbon patch allowed mapping the temperature heterogeneities on the fault surface after sliding overlaid over a few micrometers to the final fault roughness. The maximum temperature achieved during laboratory earthquakes remains high for all experiments but generally increases with the confining pressure. In addition, the melted surface of fault during seismic slip increases drastically with confining pressure. While melting is systematically observed, the strength drop increases with confining pressure. These results suggest that the dynamic friction coefficient is a function of the area of the fault melted during stick-slip. Using the thermocouple, we inverted the heat dissipated during each event. We show that for rough faults under low confining pressure, less than 20% of the total mechanical work is dissipated into heat. The ratio of frictional heating vs. total mechanical work decreases with cumulated slip (i.e. number of events), and decreases with

  14. Touring the Tomato: A Suite of Chemistry Laboratory Experiments

    Science.gov (United States)

    Sarkar, Sayantani; Chatterjee, Subhasish; Medina, Nancy; Stark, Ruth E.

    2013-01-01

    An eight-session interdisciplinary laboratory curriculum has been designed using a suite of analytical chemistry techniques to study biomaterials derived from an inexpensive source such as the tomato fruit. A logical

  15. Correlation of pre-earthquake electromagnetic signals with laboratory and field rock experiments

    Directory of Open Access Journals (Sweden)

    T. Bleier

    2010-09-01

    Full Text Available Analysis of the 2007 M5.4 Alum Rock earthquake near San José California showed that magnetic pulsations were present in large numbers and with significant amplitudes during the 2 week period leading up the event. These pulsations were 1–30 s in duration, had unusual polarities (many with only positive or only negative polarities versus both polarities, and were different than other pulsations observed over 2 years of data in that the pulse sequence was sustained over a 2 week period prior to the quake, and then disappeared shortly after the quake. A search for the underlying physics process that might explain these pulses was was undertaken, and one theory (Freund, 2002 demonstrated that charge carriers were released when various types of rocks were stressed in a laboratory environment. It was also significant that the observed charge carrier generation was transient, and resulted in pulsating current patterns. In an attempt to determine if this phenomenon occurred outside of the laboratory environment, the authors scaled up the physics experiment from a relatively small rock sample in a dry laboratory setting, to a large 7 metric tonne boulder comprised of Yosemite granite. This boulder was located in a natural, humid (above ground setting at Bass Lake, Ca. The boulder was instrumented with two Zonge Engineering, Model ANT4 induction type magnetometers, two Trifield Air Ion Counters, a surface charge detector, a geophone, a Bruker Model EM27 Fourier Transform Infra Red (FTIR spectrometer with Sterling cycle cooler, and various temperature sensors. The boulder was stressed over about 8 h using expanding concrete (Bustartm, until it fractured into three major pieces. The recorded data showed surface charge build up, magnetic pulsations, impulsive air conductivity changes, and acoustical cues starting about 5 h before the boulder actually broke. These magnetic and air conductivity pulse signatures resembled both the laboratory

  16. Commercialization of a DOE Laboratory

    International Nuclear Information System (INIS)

    Stephenson, Barry A.

    2008-01-01

    capabilities as a niche market play to success. The niche was further defined by preservation of the ability to handle samples contaminated with radiological materials and those with classification concerns. These decisions enabled early marketing plans to be built on existing clientele and provided an identifiable group to which future marketing could be expanded. Finally, recruitment of key players with commercial laboratory experience proved to be a key factor for success. This experience base was valuable in avoiding early mistakes in the laboratory startup phase and provided some connection to a commercial client base. As the business has grown, professionals with commercial laboratory experience have been recruited and offered ownership in the business as an incentive for joining the group. If the process were to be repeated, early involvement of an individual with commercial sales experience would be helpful in broadening the base of commercial clients. An increased emphasis on research funding such as funding received from Small Business Innovative Research (SBIR) sources would be used to form a portion of the economic base for the business. More partnerships with businesses whose services compliment those of the laboratory would expand available client base. More flexible staffing arrangements would be negotiated early on as a cost-control measure. In conclusion, the re-industrialization concept can be successful. Candidates for re-industrialization must be chosen by matching services to be offered to market needs. Implementation is best accomplished by entrepreneurs who personally profit from a successful operation of the business

  17. Calgary Laboratory Services

    Directory of Open Access Journals (Sweden)

    James R. Wright MD, PhD

    2015-12-01

    Full Text Available Calgary Laboratory Services provides global hospital and community laboratory services for Calgary and surrounding areas (population 1.4 million and global academic support for the University of Calgary Cumming School of Medicine. It developed rapidly after the Alberta Provincial Government implemented an austerity program to address rising health care costs and to address Alberta’s debt and deficit in 1994. Over roughly the next year, all hospital and community laboratory test funding within the province was put into a single budget, fee codes for fee-for-service test billing were closed, roughly 40% of the provincial laboratory budget was cut, and roughly 40% of the pathologists left the province of Alberta. In Calgary, in the face of these abrupt changes in the laboratory environment, private laboratories, publicly funded hospital laboratories and the medical school department precipitously and reluctantly merged in 1996. The origin of Calgary Laboratory Services was likened to an “unhappy shotgun marriage” by all parties. Although such a structure could save money by eliminating duplicated services and excess capacity and could provide excellent city-wide clinical service by increasing standardization, it was less clear whether it could provide strong academic support for a medical school. Over the past decade, iterations of the Calgary Laboratory Services model have been implemented or are being considered in other Canadian jurisdictions. This case study analyzes the evolution of Calgary Laboratory Services, provides a metric-based review of academic performance over time, and demonstrates that this model, essentially arising as an unplanned experiment, has merit within a Canadian health care context.

  18. Astrophysical radiative shocks: From modeling to laboratory experiments

    Czech Academy of Sciences Publication Activity Database

    Gonzales, N.; Stehlé, C.; Audit, E.; Busquet, M.; Rus, Bedřich; Thais, F.; Acef, O.; Barroso, P.; Bar-Shalom, A.; Bauduin, D.; Kozlová, Michaela; Lery, T.; Madouri, A.; Mocek, Tomáš; Polan, Jiří

    2006-01-01

    Roč. 24, - (2006), s. 535-540 ISSN 0263-0346 EU Projects: European Commission(XE) 506350 - LASERLAB-EUROPE; European Commission(XE) 5592 - JETSET Grant - others:CNRS(FR) PNPS Institutional research plan: CEZ:AV0Z10100523 Keywords : laboratory astrophysics * laser plasmas * radiative shock waves * radiative transfer Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.958, year: 2006

  19. Annual Report 2002 of Warsaw University, Heavy Ion Laboratory

    International Nuclear Information System (INIS)

    2003-01-01

    The Annual Report of Warsaw University Heavy Ion Laboratory is the overview of the Laboratory and assembly of scientific activities of the team especially in the range of instrumental development, experiments and experimental set-ups and experiments using outside facilities of Warsaw Cyclotron

  20. Scientific work as done at the Rutherford-Appleton laboratory

    International Nuclear Information System (INIS)

    Ulehla, I.

    1983-01-01

    The former Rutherford Laboratory founded in 1957 has undergone significant changes. In 1977 the Appleton Laboratory was added. The role of the laboratory in British research is brought out not only by the financial allocations but also by the equipment and staff which now number 1500. At the centre of scientific activity is the physics of elementary particles (high energy physics). In 1982 the laboratory conducted 57 experiments in cooperation with institutions of higher education and other institutions. The Rutherford Laboratory has gained an important position especially in the field of automatic processing of experimental data and in the control and self-control of experiments. (J.P.)