WorldWideScience

Sample records for combined nuclear magnetic

  1. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  2. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Ethier, R.; Melanson, D.; Peters, T.M.

    1983-01-01

    Ten years following computerized tomography, a new technique called nuclear magnetic resonance revolutionizes the field of diagnostic imaging. A major advantage of nuclear magnetic resonance is that the danger of radiation is non-existent as compared to computerized tomography. When parts of the human body are subject to radio-frequencies while in a fixed magnetic field, its most detailed structures are revealed. The quality of images, the applications, as well as the indications are forever increasing. Images obtained at the level of the brain and spinal cord through nuclear magnetic resonance supercede those obtained through computerized tomography. Hence, it is most likely that myelography, along with pneumoencephalography will be eliminated as a diagnostic means. It is without a doubt that nuclear magnetic resonance is tomorrow's computerized tomography [fr

  3. Nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Lambert, R.

    1991-01-01

    In order to include the effect of a magnetic object in a subject under investigation, Nuclear Magnetic Resonance (NMR) apparatus is operable at more than one radio frequency (RF) frequency. The apparatus allows normal practice as far as obtaining an NMR response or image from a given nuclear species is concerned, but, in addition, interrogates the nuclear spin system at a frequency which is different from the resonance frequency normally used for the given nuclear species, as determined from the applied magnetic field. The magnetic field close to a magnetised or magnetisable object is modified and the given nuclear species gives a response at the different frequency. Thus detection of a signal at the frequency indicates the presence of the chosen nuclei close to the magnetised or magnetisable object. Applications include validation of an object detection or automatic shape inspection system in the presence of magnetic impurities, and the detection of magnetic particles which affect measurement of liquid flow in a pipe. (author)

  4. Nuclear resonance apparatus including means for rotating a magnetic field

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1983-01-01

    A nuclear magnetic resonance apparatus including magnet apparatus for generating a homogeneous static magnetic field between its magnetic poles, shims of a magnetic substance mounted on the magnetic poles to apply a first gradient magnetic field intensity distribution in a direction orthogonal as to the direction of line of magnetic force of the static magnetic field, gradient magnetic field generating electromagnetic apparatus for generating a second gradient magnetic field having a gradient magnetic field intensity distribution in superimposition with the static magnetic field and for changing the magnetic field gradient of the first gradient magnetic field, an oscillator for generating an oscillating output having a frequency corresponding to the nuclear magnetic resonance condition of an atomic nucleus to be measured, a coil wound around a body to be examined for applying the output of said oscillator as electromagnetic waves upon the body, a receiver for detecting the nuclear magnetic resonance signals received by the coil, a gradient magnetic field controller making a magnetic field line equivalent to the combined gradient magnetic fields and for rotating the line along the section of the body to be examined by controlling said gradient magnetic field generating electromagnetic apparatus and devices for recording the nuclear magnetic resonance signals, for reconstructing the concentration distribution of the specific atomic nuclei in the section of the body, and a display unit for depicting the result of reconstruction

  5. Dynamic Nuclear Polarization and other magnetic ideas at EPFL.

    Science.gov (United States)

    Bornet, Aurélien; Milani, Jonas; Wang, Shutao; Mammoli, Daniele; Buratto, Roberto; Salvi, Nicola; Segaw, Takuya F; Vitzthum, Veronika; Miéville, Pascal; Chinthalapalli, Srinivas; Perez-Linde, Angel J; Carnevale, Diego; Jannin, Sami; Caporinia, Marc; Ulzega, Simone; Rey, Martial; Bodenhausen, Geoffrey

    2012-01-01

    Although nuclear magnetic resonance (NMR) can provide a wealth of information, it often suffers from a lack of sensitivity. Dynamic Nuclear Polarization (DNP) provides a way to increase the polarization and hence the signal intensities in NMR spectra by transferring the favourable electron spin polarization of paramagnetic centres to the surrounding nuclear spins through appropriate microwave irradiation. In our group at EPFL, two complementary DNP techniques are under investigation: the combination of DNP with magic angle spinning at temperatures near 100 K ('MAS-DNP'), and the combination of DNP at 1.2 K with rapid heating followed by the transfer of the sample to a high-resolution magnet ('dissolution DNP'). Recent applications of MAS-DNP to surfaces, as well as new developments of magnetization transfer of (1)H to (13)C at 1.2 K prior to dissolution will illustrate the work performed in our group. A second part of the paper will give an overview of some 'non-enhanced' activities of our laboratory in liquid- and solid-state NMR.

  6. Nuclear magnetic resonance and earth magnetic field

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Nuclear magnetic resonance concerns nuclei whose spin is different from 0. These nuclei exposed to a magnetic field is comparable to a peg top spinning around its axis while being moved by a precession movement called Larmor precession. This article presents an experiment whose aim is to reveal nuclear magnetism of nuclei by observing Larmor precession phenomena due to the earth magnetic field. The earth magnetic field being too weak, it is necessary to increase the magnetization of the sample during a polarization phase. First the sample is submitted to a magnetic field B perpendicular to the earth magnetic field B 0 , then B is cut off and the nuclei move back to their equilibrium position by executing a precession movement due to B 0 field. (A.C.)

  7. Nuclear signals in magnetically ordered media

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1993-01-01

    The book contains a review of theoretical and experimental investigations in the field of nuclear magnetism in magnetically ordered media. The semiclassical theory of nuclear spins motion is developed that takes into consideration three main features of magnetically ordered media: Suhl-Nakamura interaction, quadrupole interaction and microscopic inhomogeneity of nuclear frequencies. The detailed classification of nuclear spin echo signals is given for standard conditions of experiments, when the Suhl-Nakamura interaction is small in comparison with the NMR line width. The extremal states of the electron - nuclear magnetic system are described in detail: the coexistence of NMR and FMR, nuclear ferromagnetism and NMR at fast remagnetization of a ferromagnet. 157 refs., 20 figs

  8. Nuclear magnetic resonance gyroscope

    International Nuclear Information System (INIS)

    Grover, B.C.

    1984-01-01

    A nuclear magnetic resonance gyro using two nuclear magnetic resonance gases, preferably xenon 129 and xenon 131, together with two alkaline metal vapors, preferably rubidium, potassium or cesium, one of the two alkaline metal vapors being pumped by light which has the wavelength of that alkaline metal vapor, and the other alkaline vapor being illuminated by light which has the wavelength of that other alkaline vapor

  9. The nuclear magnetic resonance well logging

    International Nuclear Information System (INIS)

    Zhang Yumin; Shen Huitang

    2003-01-01

    In this paper, the characteristic of the nuclear magnetic resonance logging is described at first. Then its development and its principle is presented. Compared with the nuclear magnetic resonance spectrometer, the magnet techniques is the first question that we must solve in the manufacture of the NMR well logging

  10. Fourier transform nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Geick, R.

    1981-01-01

    This review starts with the basic principles of resonance phenomena in physical systems. Especially, the connection is shown between the properties of these systems and Fourier transforms. Next, we discuss the principles of nuclear magnetic resonance. Starting from the general properties of physical systems showing resonance phenomena and from the special properties of nuclear spin systems, the main part of this paper reviews pulse and Fourier methods in nuclear magnetic resonance. Among pulse methods, an introduction will be given to spin echoes, and, apart from the principle of Fourier transform nuclear magnetic resonance, an introduction to the technical problems of this method, e.g. resolution in the frequency domain, aliasing, phase and intensity errors, stationary state of the spin systems for repetitive measurements, proton decoupling, and application of Fourier methods to systems in a nonequilibrium state. The last section is devoted to special applications of Fourier methods and recent developments, e.g. measurement of relaxation times, solvent peak suppression, 'rapid scan'-method, methods for suppressing the effects of dipolar coupling in solids, two-dimensional Fourier transform nuclear magnetic resonance, and spin mapping or zeugmatography. (author)

  11. Nuclear magnetic resonance diagnostic apparatus

    International Nuclear Information System (INIS)

    Sugimoto, H.

    1985-01-01

    Nuclear magnetic resonance diagnostic apparatus including a coil for generating a gradient field in a plane perpendicular to a static magnetic field, means for controlling the operation of the coil to rotationally shift in angular steps the gradient direction of the gradient field at an angle pitch of some multiple of the unit index angle through a plurality of rotations to assume all the shift positions of the gradient direction, a rough image reconstructor for reconstructing a rough tomographic image on the basis of nuclear magnetic resonance signals acquired during a rotation of the second gradient magnetic field, a rough image display for depicting the rough tomographic image, a final image reconstructor for reconstructing a final tomographic image on the basis of all nuclear magnetic resonance signals corresponding to all of the expected rotation shift positions acquired during a plurality of rotations and a final image display for depicting the final tomographic image

  12. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Young, I.R.

    1984-01-01

    In a method of imaging a body in which nuclear magnetic resonance is excited in a region including part of the body, and the free induction decay signal is measured, a known quantity of a material of known nuclear magnetic resonance properties, for example a bag of water, is included in the region so as to enhance the measured free induction decay signal. This then reduces the generation of noise during subsequent processing of the signal. (author)

  13. Electron-nuclear magnetic resonance in the inverted state

    International Nuclear Information System (INIS)

    Ignatchenko, V.A.; Tsifrinovich, V.I.

    1975-01-01

    The paper considers the susceptibility of the electron-nucleus system of a ferromagnet when nuclear magnetization is inverted with respect to the hyperfine field direction. The inverted state is a situation in which nuclear magnetization is turned through π relative to its equilibrium orientation, whereas electron magnetization is in an equilibrium state with respect to an external magnetic field. The consideration is carried out for a thin plate magnetized in its plane. Amplification of a weak radiofrequency signal can be attained under the fulfilment of an additional inequality relating the interaction frequency with electron and nuclear relaxation parameters. The gain may exceed the gain for an inverted nuclear system in magnetically disordered substances. In the range of strong interaction between the frequencies of ferromagnetic (FMR) and nuclear magnetic (NMR) resonances the electron-nuclear magnetic resonance (ENMR) spectrum possesses a fine structure which is inverse to that obtained for the ENMR spectrum in a normal state. The inverted state ENMR line shape is analysed in detail for the case of so weak HF fields that the relaxation conditions may be regarded as stationary. The initial (linear) stages of a forced transient process arising in an electron-nuclear system under the effect of a strong HF field are briefly analysed

  14. The nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Goyer, Ph.

    1997-01-01

    The spectroscopy of nuclear magnetic resonance constitutes a major analytical technique in biological and organic analysis. This technique appears now in the programme of preparatory classes and its teaching is developed in the second year of DEUG. The following article reviews on the nuclear magnetic resonance and on the possibilities it offers to bring to the fore the physico-chemical properties of molecules. (N.C.)

  15. Nuclear reactions in ultra-magnetized supernovae

    International Nuclear Information System (INIS)

    Kondratyev, V.N.

    2002-06-01

    The statistical model is employed to investigate nuclear reactions in ultrastrong magnetic fields relevant for supernovae and neutron stars. For radiative capture processes the predominant mechanisms are argued to correspond to modifications of nuclear level densities, and γ-transition energies due to interactions of the field with magnetic moments of nuclei. The density of states reflects the nuclear structure and results in oscillations of reaction cross sections as a function of field strength, while magnetic interaction energy enhances radiative neutron capture process. Implications in the synthesis of r-process nuclei in supernova site are discussed. (author)

  16. Force detection of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Rugar, D.; Zueger, O.; Hoen, S.; Yannoni, C.S.; Vieth, H.M.; Kendrick, R.D.

    1994-01-01

    Micromechanical sensing of magnetic force was used to detect nuclear magnetic resonance with exceptional sensitivity and spatial resolution. With a 900 angstrom thick silicon nitride cantilever capable of detecting subfemtonewton forces, a single shot sensitivity of 1.6 x 10 13 protons was achieved for an ammonium nitrate sample mounted on the cantilever. A nearby millimeter-size iron particle produced a 600 tesla per meter magnetic field gradient, resulting in a spatial resolution of 2.6 micrometers in one dimension. These results suggest that magnetic force sensing is a viable approach for enhancing the sensitivity and spatial resolution of nuclear magnetic resonance microimaging

  17. Nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cremin, B.J.

    1981-01-01

    Recent advances in diagnostic imaging, have been the medical application of nuclear magnetic resonance (NMR). It's been used to study the structure of various compounds in chemistry and physics, and in the mid-1970 to produce images of rabbits and eventually of the human hand and head. The images are produced by making use of the nuclear magnetization of the hydrogen ion, or proton, that is present in biological material to record the density distribution of protons in cellular water and lipids. An exploration of the end-results of complicated free induction decay signals, that have been digitized and frequency-analysed by mathematical computerized techniques to produce an image of tissue density, is given. At present NMR produces images comparable to those of early computed tomography

  18. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Burl, M.; Young, I.R.

    1984-01-01

    A method and apparatus for determining the rate of flow of a liquid in a selected region of a body by nuclear magnetic resonance techniques are described. The method includes a sequence of applying a first magnetic pulse effective to excite nuclear magnetic resonance of a chosen nucleus within the liquid preferentially in a slice of the body which includes the selected region. A period of time (tsub(D)) is waited and then a second magnetic pulse is applied which is effective to excite nuclear magnetic resonance of the nuclei preferentially in the slice, and the free induction decay signal is measured. The whole sequence is repeated for different values of the period of time (tsub(D)). The variation in the value of the measured signal with tsub(D) is then related to the rate of flow of the liquid through the slice. (author)

  19. The statistic-thermodynamically calculations of magnetic thermodynamically functions for nuclear magnetic moments

    International Nuclear Information System (INIS)

    Zhu Zhenghe; Luo Deli; Feng Kaiming

    2013-01-01

    The present work is to calculate the magnetic thermodynamically functions, i.e. energy, the intensity of magnetization, enthalpy, entropy and Gibbs function for nuclear magnetic moments of T, D and neutron n at 2 T and 1, 50, 100 and 150 K from partition functions. It is shown that magnetic saturation of thermonuclear plasma does not easily occur for nuclear magneton is only of 10 -3 of Bohr magneton. The work done by magnetic field is considerable. (authors)

  20. Basis of the nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bahceli, S.

    1996-08-01

    The aim of this book which is translated from English language is to explain the physical and mathematical basis of nuclear magnetic resonance (NMR). There are nine chapters covering different aspects of NMR. In the firs chapter fundamental concepts of quantum mechanics are given at a level suitable for readers to understand NMR fully. The remaining chapters discuss the magnetic properties of nucleus, the interactions between atoms and molecules, continuous wave NMR, pulsed NMR, nuclear magnetic relaxation and NMR of liquids

  1. Rock-Magnetic Method for Post Nuclear Detonation Diagnostics

    Science.gov (United States)

    Englert, J.; Petrosky, J.; Bailey, W.; Watts, D. R.; Tauxe, L.; Heger, A. S.

    2011-12-01

    A magnetic signature characteristic of a Nuclear Electromagnetic Pulse (NEMP) may still be detectable near the sites of atmospheric nuclear tests conducted at what is now the Nevada National Security Site. This signature is due to a secondary magnetization component of the natural remanent magnetization of material containing traces of ferromagnetic particles that have been exposed to a strong pulse of magnetic field. We apply a rock-magnetic method introduced by Verrier et al. (2002), and tested on samples exposed to artificial lightning, to samples of rock and building materials (e.g. bricks, concrete) retrieved from several above ground nuclear test sites. The results of magnetization measurements are compared to NEMP simulations and historic test measurements.

  2. Nuclear magnetic ordering in PrNi5

    International Nuclear Information System (INIS)

    Kubota, M.

    1980-11-01

    The specific heat of the hyperfine enhanced nuclear magnetic system PrNi 5 has been measured from 0.2 mK to 100 mK and in magnetic fields up to 6 T. The system was found to order at (0.40+-0.02) mK. From the study of the measured thermodynamic quantities in various magnetic fields, we obtain various information, the order at T=0 K is ferromagnetic, the hyperfine enhancement factor 1+K=(12.2+-0.5), the enhanced nuclear magnetic moment is (0.027+-0.004)μsub(B) and a nuclear exchange parameter μsub(j)Ksup(N)sub(ij)/ksub(B)=(0.20+-0.04) mK. The nature of the interactions which cause the ordering is discussed, together with the magnetic properties of the system deduced from the analysis. (orig.)

  3. A magnet without a magnetic circuit, of high homogeneity, specially for nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Barjhoux, Yves.

    1981-01-01

    This invention concerns a high homogeneity, double access magnet without a magnetic circuit. It is specially adapted for nuclear magnetic resonance (N.M.R.) imagery. Another advantage worth stressing resides in the possibilities of NMR in biochemical analysis which will enable, for instance, cancerous tumours to be detected in vivo. In order to increase the NMR signal ratio over background noise, it is necessary to increase the homogeneity of the B 0 orientating magnetic field. This magnetic field must orientate the nuclear magnetic moments of the elementary particles which compose the body being examined and in particular the protons. It must therefore be relatively constant in intensity and direction in the entire domain of the examination [fr

  4. Nuclear magnetic resonance (NMR): principles and applications

    International Nuclear Information System (INIS)

    Quibilan, E.I.

    The basis for the phenomenon of nuclear magnetic resonance (NMR) is the ability of certain nuclei possessing both intrinsic angular momentum or ''spin'' I and magnetic moment to absorb electromagnetic energy in the radio frequency range. In principle, there are approximately 200 nuclei which may be investigated using the NMR technique. The NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum consists of intensity peaks along an axis calibrated in terms of the steady magnetic field or the frequency of the radiofrequency electromagnetic radiation. Analysis of the number, spacing, position and intensity of the lines in an NMR spectrum provides a variety of qualitative and quantitative analytical applications. The most obvious applications consist of the measurements of nuclear properties, such as spin number and nuclear magnetic moment. In liquids, the fine structure of resonance spectra provides a tool for chemical identification and molecular structure analysis. Other applications include the measurements of self-diffusion coefficients, magnetic fields and field homogeneity, inter-nuclear distances, and, in some cases, the water content of biological materials. (author)

  5. Enhanced nuclear magnetism: some novel features and prospective experiments

    International Nuclear Information System (INIS)

    Abragam, A.; Bleaney, B.

    1983-01-01

    It is shown that methods used for studying nuclear magnetism and nuclear magnetic ordering can be extended to 'enhanced nuclear magnetism'. These methods include the use of r.f. fields for adiabatic demagnetization in the rotating frame (a.d.r.f) and beams of neutrons whose spins interact with the nuclear spins. The 'enhancement' of the nuclear moment arises from the electronic magnetization M 1 induced through the hyperfine interaction. It is shown that the spatial distribution of M 1 is the same as that of The Van Vleck magnetization induced by an external field, provided that J is a good quantum number. The spatial distributions are not in general the same in Russell-Saunders coupling, eg. in the 3d group. The Bloch equations are extended to include anisotropic nuclear moments. The 'truncated' spin Hamiltonian is derived for spin-spin interaction between enhanced moments. A general cancellation theorem for second-order processes in spin-lattice relaxation is derived. The interactions of neutrons with the true nuclear moment, the Van Vleck moment, the 'pseudonuclear' moment and the 'pseudomagnetic' nuclear moment are discussed. Ordered states of enhanced nuclear moment systems are considered, together with the conditions under which they might be produced by a.d.r.f. following dynamic nuclear polarization. (U.K.)

  6. Nonlinear nuclear magnetic resonance in ferromagnets

    International Nuclear Information System (INIS)

    Nurgaliev, T.

    1988-01-01

    The properties of nonlinear nuclear magnetic resonance (NMR) have been studied theoretically by taking into account the interaction between NMR and FMR in the ferromagnets. The Landau-Lifshitz-Bloch equations, describing the electron and nuclear magnetization behaviour in ferromagnets are presented in an integral form for a weakly excited electronic system. The stationary solution of these equations has been analysed in the case of equal NMR and FMR frequencies: the criteria for the appearance of two stable dynamic states is found and the high-frequency magnetic susceptibility for these systems is investigated. 2 figs., 8 refs

  7. Theory of nuclear magnetic moments - LT-35

    Energy Technology Data Exchange (ETDEWEB)

    Kerman, A. K.

    1952-09-15

    The purpose of these notes is to give an account of some attempts at interpreting the observed values of nuclear magnetic moments. There is no attempt at a complete summary of the field as that would take much more space than is used here. In many cases the arguments are only outlined and references are given for those interested in further details. A discussion of the theory of nuclear magnetic moments necessitates many excursions into the details of the nuclear models because the magnetic moments have a direct bearing on the validity of these models. However the main emphasis here is on those features which tend to explain the magnetic moments and other evidence is not discussed unless it has a direct bearing on the problem. In the first part of the discussion the Shell Model of the nucleus is used, as this model seems to correlate a large body of data relating to the heavier nuclei. Included here are the modifications proposed to explain the fact that the experimental magnetic moments do not fit quantitatively with the exact predictions of the Shell Model. The next sections deal with some of the more drastic modifications introduced to explain the large nuclear quadrupole moments and the effect of these modifications on the magnetic moments. Finally we turn to more detailed investigations of the light nuclei, in particular the - Conjugate nuclei. (author)

  8. Nuclear magnetic resonance spectroscopy in organic chemistry. 2. ed.

    International Nuclear Information System (INIS)

    Zschunke, A.

    1977-01-01

    The fundamentals of nuclear magnetic resonance spectroscopy are discussed only briefly. The emphasis is laid on developing reader's ability to evaluate resonance spectra. The following topics are covered: principles of nuclear magnetic resonance spectroscopy; chemical shift and indirect nuclear spin coupling constants and their relation to the molecular structure; analysis of spectra; and uses for structural analysis and solution of kinetic problems, mainly with regard to organic compounds. Of interest to chemists and graduate students who want to make themselves acquainted with nuclear magnetic resonance spectroscopy

  9. Nuclear magnetic resonance scattering

    International Nuclear Information System (INIS)

    Young, I.R.

    1985-01-01

    A nuclear magnetic resonance apparatus is described including a magnet system which is capable of providing a steady magnetic field along an axis, and is constructed so as to define a plurality of regions along the axis in each of which the field is substantially homogeneous so that in each region an imaging operation may be separately carried out. Iron shields increase the field homogeneity. In use, each patient lies on a wheeled trolley which is provided with magnetic field gradient coils and an RF coil system, some of the coils being movable to facilitate positioning of the patient, and there are terminals for connection to a common computing and control facility. (author)

  10. Transition metal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Pregosin, P.S.

    1991-01-01

    Transition metal NMR spectroscopy has progressed enormously in recent years. New methods, and specifically solid-state methods and new pulse sequences, have allowed access to data from nuclei with relatively low receptivities with the result that chemists have begun to consider old and new problems, previously unapproachable. Moreover, theory, computational science in particular, now permits the calculation of not just 13 C, 15 N and other light nuclei chemical shifts, but heavy main-group element and transition metals as well. These two points, combined with increasing access to high field pulsed spectrometer has produced a wealth of new data on the NMR transition metals. A new series of articles concerned with measuring, understanding and using the nuclear magnetic resonance spectra of the metals of Group 3-12 is presented. (author)

  11. Effective Giromagnetic Ratios in Artifical Nuclear Magnetization Pumping of the Noble Gases Mix

    Directory of Open Access Journals (Sweden)

    Popov E.N.

    2015-01-01

    Full Text Available Dynamic of the nuclear magnetization of the two noble gases mix was studied in this research. Nuclear magnetization pumped along the induction of external magnetic field. Vector of nuclear magnetization is given a tilt by the week rotational magnetic field, which makes NMR for noble gases. Interaction between the nuclear magnetic moments of the different noble gases adducted to shifts at the frequency of nuclear moments precession in external magnetic field. Effective gyromagnetic ratios of the nuclear of noble gases is defined and it different from the tabulated value. There is theoretical calculation of effective gyromagnetic ratios in this research.

  12. Nuclear and magnetic correlations in a topologically frustrated elemental magnet

    International Nuclear Information System (INIS)

    Stewart, J.R.; Andersen, K.H.; Cywinski, R.

    1999-01-01

    β-Mn is an exchange enhanced paramagnetic metal on the verge of antiferromagnetic order. However, strong spin-fluctuations and topological frustration prevent the formation of static long-range order. We investigate the magnetic properties of the β-MnAl series of alloys in which short-range magnetic order is achieved at low temperature. We extract the short-range nuclear and magnetic correlations using a novel reverse Monte-Carlo procedure. (authors)

  13. Spatial localization in nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Keevil, Stephen F

    2006-01-01

    The ability to select a discrete region within the body for signal acquisition is a fundamental requirement of in vivo NMR spectroscopy. Ideally, it should be possible to tailor the selected volume to coincide exactly with the lesion or tissue of interest, without loss of signal from within this volume or contamination with extraneous signals. Many techniques have been developed over the past 25 years employing a combination of RF coil properties, static magnetic field gradients and pulse sequence design in an attempt to meet these goals. This review presents a comprehensive survey of these techniques, their various advantages and disadvantages, and implications for clinical applications. Particular emphasis is placed on the reliability of the techniques in terms of signal loss, contamination and the effect of nuclear relaxation and J-coupling. The survey includes techniques based on RF coil and pulse design alone, those using static magnetic field gradients, and magnetic resonance spectroscopic imaging. Although there is an emphasis on techniques currently in widespread use (PRESS, STEAM, ISIS and MRSI), the review also includes earlier techniques, in order to provide historical context, and techniques that are promising for future use in clinical and biomedical applications. (topical review)

  14. Capacitor-based detection of nuclear magnetization: nuclear quadrupole resonance of surfaces.

    Science.gov (United States)

    Gregorovič, Alan; Apih, Tomaž; Kvasić, Ivan; Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko; Strle, Drago; Muševič, Igor

    2011-03-01

    We demonstrate excitation and detection of nuclear magnetization in a nuclear quadrupole resonance (NQR) experiment with a parallel plate capacitor, where the sample is located between the two capacitor plates and not in a coil as usually. While the sensitivity of this capacitor-based detection is found lower compared to an optimal coil-based detection of the same amount of sample, it becomes comparable in the case of very thin samples and even advantageous in the proximity of conducting bodies. This capacitor-based setup may find its application in acquisition of NQR signals from the surface layers on conducting bodies or in a portable tightly integrated nuclear magnetic resonance sensor. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. NMR magnetic field controller for pulsed nuclear magnetic resonance experiments

    International Nuclear Information System (INIS)

    Scheler, G.; Anacker, M.

    1975-01-01

    A nuclear magnetic resonance controller for magnetic fields, which can also be used for pulsed NMR investigations, is described. A longtime stability of 10 -7 is achieved. The control signal is generated by a modified time sharing circuit with resonance at the first side band of the 2 H signal. An exact calibration of the magnetic field is achieved by the variation of the H 1 - or of the time-sharing frequency. (author)

  16. Enhanced nuclear magnetic resonance in a non-magnetic cubic doublet

    International Nuclear Information System (INIS)

    Veenendaal, E.J.

    1982-01-01

    In this thesis two lanthanide compounds are studied which show enhanced nuclear magnetism at low temperatures: Rb 2 NaHoF 6 and CsNaHoF 6 . Chapter II gives a description of the 4 He-circulating refrigerator, which was built to provide the low temperatures required for the polarization of the enhanced nuclear moments. This type of dilution refrigerator was chosen because of its simple design and large cooling power. Chapter III is devoted to a comparison of the different types of dilution refrigerators. A theoretical discussion is given of their performance, starting from the differential equations, which govern the temperature distribution in the refrigerator. In chapter IV the actual performance of the refrigerator, described in chapter II is discussed. In chapter V a description of the NMR-apparatus, developed for very-low-temperature NMR experiments is given. In chapter VI experimental results on the compound Rb 2 NaHoF 6 are presented. The CEF-ground state of this compound is probably the non-magnetic doublet GAMMA 3 , but at a temperature of 170 K a structural phase transition lowers the crystal symmetry from cubic to tetragonal and the doublet is split into two singlets. In chapter VII specific heat, (enhanced) nuclear magnetic resonance and magnetization measurements on the compound Cs 2 NaHoF 6 are presented which also has a GAMMA 3 -doublet ground state. In zero magnetic field the degeneracy of the doublet is removed at a temperature of 393 mK, where a phase transition is induced by quadrupolar interactions. (Auth.)

  17. Nuclear magnetic resonance in pulse radiolysis. Chemically induced dynamic nuclear polarization

    International Nuclear Information System (INIS)

    Trifunac, A.D.; Johnson, K.W.; Lowers, R.H.

    1976-01-01

    Nuclear magnetic resonance and chemically induced dynamic nuclear polarization (CIDNP) were applied to the study of pulse radiolysis. Samples were irradiated with a 3-MeV electron beam from the Argonne Van de Graaff accelerator in an EPR magnet (approximately 4000 G) which had axial holes for beam access. A fast flow system transferred the irradiated solution to the rotating 5-mm NMR sample tube. The NMR spectra of mixtures of sodium acetate and methanol were presented to demonstrate the features of the CIDNP in pulse radiolysis

  18. New Nuclear Magnetic Moment of 209Bi: Resolving the Bismuth Hyperfine Puzzle

    Science.gov (United States)

    Skripnikov, Leonid V.; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F.; Scheibe, Benjamin; Shabaev, Vladimir M.; Vogel, Michael; Volotka, Andrey V.

    2018-03-01

    A recent measurement of the hyperfine splitting in the ground state of Li-like 80+208Bi has established a "hyperfine puzzle"—the experimental result exhibits a 7 σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017), 10.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017), 10.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μI) of 209Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μI(209ipts>) and combine it with nuclear magnetic resonance measurements of Bi (NO3 )3 in nitric acid solutions and of the hexafluoridobismuthate(V) BiF6- ion in acetonitrile. The result clearly reveals that μI(209Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  19. New Nuclear Magnetic Moment of ^{209}Bi: Resolving the Bismuth Hyperfine Puzzle.

    Science.gov (United States)

    Skripnikov, Leonid V; Schmidt, Stefan; Ullmann, Johannes; Geppert, Christopher; Kraus, Florian; Kresse, Benjamin; Nörtershäuser, Wilfried; Privalov, Alexei F; Scheibe, Benjamin; Shabaev, Vladimir M; Vogel, Michael; Volotka, Andrey V

    2018-03-02

    A recent measurement of the hyperfine splitting in the ground state of Li-like ^{208}Bi^{80+} has established a "hyperfine puzzle"-the experimental result exhibits a 7σ deviation from the theoretical prediction [J. Ullmann et al., Nat. Commun. 8, 15484 (2017)NCAOBW2041-172310.1038/ncomms15484; J. P. Karr, Nat. Phys. 13, 533 (2017)NPAHAX1745-247310.1038/nphys4159]. We provide evidence that the discrepancy is caused by an inaccurate value of the tabulated nuclear magnetic moment (μ_{I}) of ^{209}Bi. We perform relativistic density functional theory and relativistic coupled cluster calculations of the shielding constant that should be used to extract the value of μ_{I}(^{209}Bi) and combine it with nuclear magnetic resonance measurements of Bi(NO_{3})_{3} in nitric acid solutions and of the hexafluoridobismuthate(V) BiF_{6}^{-} ion in acetonitrile. The result clearly reveals that μ_{I}(^{209}Bi) is much smaller than the tabulated value used previously. Applying the new magnetic moment shifts the theoretical prediction into agreement with experiment and resolves the hyperfine puzzle.

  20. Theoretical Study of H/D Isotope Effects on Nuclear Magnetic Shieldings Using an ab initio Multi-Component Molecular Orbital Method

    Directory of Open Access Journals (Sweden)

    Masanori Tachikawa

    2013-05-01

    Full Text Available We have theoretically analyzed the nuclear quantum effect on the nuclear magnetic shieldings for the intramolecular hydrogen-bonded systems of σ-hydroxy acyl aromatic species using the gauge-including atomic orbital technique combined with our multi-component density functional theory. The effect of H/D quantum nature for geometry and nuclear magnetic shielding changes are analyzed. Our study clearly demonstrated that the geometrical changes of hydrogen-bonds induced by H/D isotope effect (called geometrical isotope effect: GIE is the dominant factor of deuterium isotope effect on 13C chemical shift.

  1. Nuclear magnetic resonance imaging method

    International Nuclear Information System (INIS)

    Johnson, G.; MacDonald, J.; Hutchison, S.; Eastwood, L.M.; Redpath, T.W.T.; Mallard, J.R.

    1984-01-01

    A method of deriving three dimensional image information from an object using nuclear magnetic resonance signals comprises subjecting the object to a continuous, static magnetic field and carrying out the following set of sequential steps: 1) exciting nuclear spins in a selected volume (90deg pulse); 2) applying non-aligned first, second and third gradients of the magnetic field; 3) causing the spins to rephase periodically by reversal of the first gradient to produce spin echoes, and applying pulses of the second gradient prior to every read-out of an echo signal from the object, to differently encode the spin in the second gradient direction for each read-out signal. The above steps 1-3 are then successively repeated with different values of gradient of the third gradient, there being a recovery interval between the repetition of successive sets of steps. Alternate echoes only are read out, the other echoes being time-reversed and ignored for convenience. The resulting signals are appropriately sampled, set out in an array and subjected to three dimensional Fourier transformation. (author)

  2. Solid state nuclear magnetic resonance: investigating the spins of nuclear related materials

    International Nuclear Information System (INIS)

    Charpentier, Th.

    2007-10-01

    The author reviews his successive research works: his research thesis work on the Multiple Quantum Magic Angle Spinning (MQMAS) which is a quadric-polar nucleus multi-quanta correlation spectroscopy method, the modelling of NMR spectra of disordered materials, the application to materials of interest for the nuclear industry (notably the glasses used for nuclear waste containment). He presents the various research projects in which he is involved: storing glasses, nuclear magnetic resonance in paramagnetism, solid hydrogen storing matrices, methodological and instrument developments in high magnetic field and high resolution solid NMR, long range distance measurement by solid state Tritium NMR (observing the structure and dynamics of biological complex systems at work)

  3. Nuclear Magnetic Resonance Spectroscopy

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 1. Nuclear Magnetic Resonance Spectroscopy. Susanta Das. General Article Volume 9 Issue 1 January 2004 pp 34-49. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/01/0034-0049. Keywords.

  4. Force-detected nuclear magnetic resonance: recent advances and future challenges.

    Science.gov (United States)

    Poggio, M; Degen, C L

    2010-08-27

    We review recent efforts to detect small numbers of nuclear spins using magnetic resonance force microscopy. Magnetic resonance force microscopy (MRFM) is a scanning probe technique that relies on the mechanical measurement of the weak magnetic force between a microscopic magnet and the magnetic moments in a sample. Spurred by the recent progress in fabricating ultrasensitive force detectors, MRFM has rapidly improved its capability over the last decade. Today it boasts a spin sensitivity that surpasses conventional, inductive nuclear magnetic resonance detectors by about eight orders of magnitude. In this review we touch on the origins of this technique and focus on its recent application to nanoscale nuclear spin ensembles, in particular on the imaging of nanoscale objects with a three-dimensional (3D) spatial resolution better than 10 nm. We consider the experimental advances driving this work and highlight the underlying physical principles and limitations of the method. Finally, we discuss the challenges that must be met in order to advance the technique towards single nuclear spin sensitivity-and perhaps-to 3D microscopy of molecules with atomic resolution.

  5. Design of combined magnetic field system for magnetic-bottle time-of-flight spectrometer

    International Nuclear Information System (INIS)

    Wang Chao; Tian Jinshou; Zhang Meizhi; Kang Yifan

    2011-01-01

    Based on the primary requirement for the magnetic field system in magnetic-bottle time-of-flight spectrometer, an appropriate combined inhomogeneous magnetic field system is designed. The inhomogeneous higher magnetic field part, with the highest field of 1.2 T, is produced by the combination of a permanent magnet and a pole piece with optimized shape. The magnet,known as NdFeB magnet,is one of rare earth permanent magnets in N52. The guiding uniform magnetic field of 1.0 x 10 -3 T is provided by solenoid, with length of 3 m and radius of 3 cm. The pitch between the pole piece and the near end of used solenoid is determined to be 5 cm, which can satisfy the actual engineering needs. (authors)

  6. Nuclear magnetic resonance studies of lens transparency

    International Nuclear Information System (INIS)

    Beaulieu, C.F.

    1989-01-01

    Transparency of normal lens cytoplasm and loss of transparency in cataract were studied by nuclear magnetic resonance (NMR) methods. Phosphorus ( 31 P) NMR spectroscopy was used to measure the 31 P constituents and pH of calf lens cortical and nuclear homogenates and intact lenses as a function of time after lens enucleation and in opacification produced by calcium. Transparency was measured with laser spectroscopy. Despite complete loss of adenosine triphosphate (ATP) within 18 hrs of enucleation, the homogenates and lenses remained 100% transparent. Additions of calcium to ATP-depleted cortical homogenates produced opacification as well as concentration-dependent changes in inorganic phosphate, sugar phosphates, glycerol phosphorylcholine and pH. 1 H relaxation measurements of lens water at 200 MHz proton Larmor frequency studied temperature-dependent phase separation of lens nuclear homogenates. Preliminary measurements of T 1 and T 2 with non-equilibrium temperature changes showed a change in the slope of the temperature dependence of T 1 and T 2 at the phase separation temperature. Subsequent studies with equilibrium temperature changes showed no effect of phase separation on T 1 or T 2 , consistent with the phase separation being a low-energy process. 1 H nuclear magnetic relaxation dispersion (NMRD) studies (measurements of the magnetic field dependence of the water proton 1/T 1 relaxation rates) were performed on (1) calf lens nuclear and cortical homogenates (2) chicken lens homogenates, (3) native and heat-denatured egg white and (4) pure proteins including bovine γ-II crystallin bovine serum albumin (BSA) and myoglobin. The NMRD profiles of all samples exhibited decreases in 1/T 1 with increasing magnetic field

  7. Advanced Nuclear Magnetic Resonance

    OpenAIRE

    Alonso, Diego A.

    2014-01-01

    Transparencias en inglés de la asignatura "Resonancia Magnética Nuclear Avanzada" (Advanced Nuclear Magnetic Resonance) (36643) que se imparte en el Máster de Química Médica como asignatura optativa de 3 créditos ECTS. En esta asignatura se completa el estudio iniciado en la asignatura de quinto curso de la licenciatura en Química "Determinación estructural" (7448) y en la del Grado de Química de tercer curso "Determinación estructural de los compuestos orgánicos" (26030) en lo referente a té...

  8. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  9. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1979-01-01

    A lateral restraint and control systemm for a nuclear reactor core provides an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit is composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased by an amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  10. Magnet Design Considerations for Fusion Nuclear Science Facility

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kessel, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); El-Guebaly, L. [Univ. of Wisconsin, Madison, WI (United States) Fusion Technology Institute; Titus, P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2016-06-01

    The Fusion Nuclear Science Facility (FNSF) is a nuclear confinement facility that provides a fusion environment with components of the reactor integrated together to bridge the technical gaps of burning plasma and nuclear science between the International Thermonuclear Experimental Reactor (ITER) and the demonstration power plant (DEMO). Compared with ITER, the FNSF is smaller in size but generates much higher magnetic field, i.e., 30 times higher neutron fluence with three orders of magnitude longer plasma operation at higher operating temperatures for structures surrounding the plasma. Input parameters to the magnet design from system code analysis include magnetic field of 7.5 T at the plasma center with a plasma major radius of 4.8 m and a minor radius of 1.2 m and a peak field of 15.5 T on the toroidal field (TF) coils for the FNSF. Both low-temperature superconductors (LTS) and high-temperature superconductors (HTS) are considered for the FNSF magnet design based on the state-of-the-art fusion magnet technology. The higher magnetic field can be achieved by using the high-performance ternary restacked-rod process Nb3Sn strands for TF magnets. The circular cable-in-conduit conductor (CICC) design similar to ITER magnets and a high-aspect-ratio rectangular CICC design are evaluated for FNSF magnets, but low-activation-jacket materials may need to be selected. The conductor design concept and TF coil winding pack composition and dimension based on the horizontal maintenance schemes are discussed. Neutron radiation limits for the LTS and HTS superconductors and electrical insulation materials are also reviewed based on the available materials previously tested. The material radiation limits for FNSF magnets are defined as part of the conceptual design studies for FNSF magnets.

  11. QED Theory of the Nuclear Magnetic Shielding in Hydrogenlike Ions

    International Nuclear Information System (INIS)

    Yerokhin, V. A.; Pachucki, K.; Harman, Z.; Keitel, C. H.

    2011-01-01

    The shielding of the nuclear magnetic moment by the bound electron in hydrogenlike ions is calculated ab initio with inclusion of relativistic, nuclear, and quantum electrodynamics (QED) effects. The QED correction is evaluated to all orders in the nuclear binding strength parameter and, independently, to the first order in the expansion in this parameter. The results obtained lay the basis for the high-precision determination of nuclear magnetic dipole moments from measurements of the g factor of hydrogenlike ions.

  12. Application of dynamic and transition magnetic fields for determination of magnetic moments of short-lived nuclear states

    International Nuclear Information System (INIS)

    Burgov, N.A.

    1986-01-01

    Problem of measuring magnetic momenta of short-living nuclear states is discussed. Different methods for measuring magnetic momenta using interionic and transient magnetic fields were considered. Possibility for determining a value g by means of measuring correlation attenuation is investigated as well as measuring magnetic momenta by means of inclined foils. At present 2 + level magnetic momenta for many odd-odd nuclei have been determined by means of the above methods. The methods are only ones for determining magnetic momenta of nuclear levels with small lifetimes up to tenth and hundredth of shares of picoseconds

  13. Parahydrogen-enhanced zero-field nuclear magnetic resonance

    Science.gov (United States)

    Theis, T.; Ganssle, P.; Kervern, G.; Knappe, S.; Kitching, J.; Ledbetter, M. P.; Budker, D.; Pines, A.

    2011-07-01

    Nuclear magnetic resonance, conventionally detected in magnetic fields of several tesla, is a powerful analytical tool for the determination of molecular identity, structure and function. With the advent of prepolarization methods and detection schemes using atomic magnetometers or superconducting quantum interference devices, interest in NMR in fields comparable to the Earth's magnetic field and below (down to zero field) has been revived. Despite the use of superconducting quantum interference devices or atomic magnetometers, low-field NMR typically suffers from low sensitivity compared with conventional high-field NMR. Here we demonstrate direct detection of zero-field NMR signals generated through parahydrogen-induced polarization, enabling high-resolution NMR without the use of any magnets. The sensitivity is sufficient to observe spectra exhibiting 13C-1H scalar nuclear spin-spin couplings (known as J couplings) in compounds with 13C in natural abundance, without the need for signal averaging. The resulting spectra show distinct features that aid chemical fingerprinting.

  14. Evanescent Waves Nuclear Magnetic Resonance

    DEFF Research Database (Denmark)

    Halidi, El Mohamed; Nativel, Eric; Akel, Mohamad

    2016-01-01

    Nuclear Magnetic Resonance spectroscopy and imaging can be classified as inductive techniques working in the near- to far-field regimes. We investigate an alternative capacitive detection with the use of micrometer sized probes positioned at sub wavelength distances of the sample in order...

  15. Least Squares Magnetic-Field Optimization for Portable Nuclear Magnetic Resonance Magnet Design

    International Nuclear Information System (INIS)

    Paulsen, Jeffrey L; Franck, John; Demas, Vasiliki; Bouchard, Louis-S.

    2008-01-01

    Single-sided and mobile nuclear magnetic resonance (NMR) sensors have the advantages of portability, low cost, and low power consumption compared to conventional high-field NMR and magnetic resonance imaging (MRI) systems. We present fast, flexible, and easy-to-implement target field algorithms for mobile NMR and MRI magnet design. The optimization finds a global optimum in a cost function that minimizes the error in the target magnetic field in the sense of least squares. When the technique is tested on a ring array of permanent-magnet elements, the solution matches the classical dipole Halbach solution. For a single-sided handheld NMR sensor, the algorithm yields a 640 G field homogeneous to 16,100 ppm across a 1.9 cc volume located 1.5 cm above the top of the magnets and homogeneous to 32,200 ppm over a 7.6 cc volume. This regime is adequate for MRI applications. We demonstrate that the homogeneous region can be continuously moved away from the sensor by rotating magnet rod elements, opening the way for NMR sensors with adjustable 'sensitive volumes'

  16. Generation of nuclear magnetic resonance images

    International Nuclear Information System (INIS)

    Beckmann, N.X.

    1986-01-01

    Two generation techniques of nuclear magnetic resonance images, the retro-projection and the direct transformation method are studied these techniques are based on the acquisition of NMR signals which phases and frequency components are codified in space by application of magnetic field gradients. The construction of magnet coils is discussed, in particular a suitable magnet geometry with polar pieces and air gap. The obtention of image contrast by T1 and T2 relaxation times reconstructed from generated signals using sequences such as spin-echo, inversion-recovery and stimulated echo, is discussed. The mathematical formalism of matrix solution for Bloch equations is also presented. (M.C.K.)

  17. Proceedings of the nuclear magnetic resonance user meeting

    International Nuclear Information System (INIS)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.) [pt

  18. Nuclear magnetic resonance spectroscopy and imaging

    International Nuclear Information System (INIS)

    Jiang Weiping; Wang Qi; Zhou Xin

    2013-01-01

    This paper briefly introduces the basic principle of nuclear magnetic resonance (NMR). Protein's structures and functions and dynamics studied by liquid NMR are elaborated; methods for enhancing the resolution of solid state NMR and its applications are discussed; the principle of magnetic resonance imaging (MRI) is interpreted, and applications in different aspects are reviewed. Finally, the progress of NMR is commented. (authors)

  19. Effect of magnet/slot combination on triple-frequency magnetic force and vibration of permanent magnet motors

    Science.gov (United States)

    Huo, Mina; Wang, Shiyu; Xiu, Jie; Cao, Shuqian

    2013-10-01

    The relationship between magnet/slot combination and magnetic forces including unbalanced magnetic force (UMF) and cogging torque (CT) of permanent magnet (PM) motors is investigated by using superposition principle and mechanical and magnetic symmetries. The results show that magnetic force can be produced by all magnets passing a single slot, by all slots passing a single magnet, or by eccentricity, which respectively correspond to three frequency components. The results further show that net force/torque can be classified into three typical cases: UMF is suppressed and CT is excited, UMF excited and CT suppressed, and UMF and CT both suppressed, and consequently possible vibrations include three unique groups: rotational modes, translational modes, and balanced modes. The conclusion that combinations with the greatest common divisor (GCD) greater than unity can avoid UMF is mathematically verified, and at the same time lower CT harmonics are preliminarily addressed by the typical excitations. The above findings can create simple guidelines for the suppression of certain UMF and/or CT by using suitable combinations, which in turn can present approach to yield a more desirable response in high performance applications. The superposition effect and predicted relationship are verified by the transient magnetic Finite Element method. Since this work is motivated by symmetries, comparisons are made in order to give further insight into the inner force and vibration behaviors of general rotary power-transmission systems.

  20. Diagnostic apparatus employing nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Hoshino, K.; Yamada, N.; Yoshitome, E.; Matsuura, H.

    1987-01-01

    An NMR diagnostic apparatus is described comprising means for applying a primary magnetic field to a subject; means for applying RF pulses to the subject to give nuclear magnetic resonance to the nuclei of atoms in the subject; means for applying gradient magnetic fields to project an NMR signal of the nuclei at least in one direction; means for observing the NMR signal projected by the gradient magnetic fields applying means; and arithmetic means for constructing a distribution of information on resonance energy as an image from an output signal from the observing means; wherein the gradient magnetic fields applying means comprises means for applying the gradient magnetic fields at a predetermined time and for not applying the gradient magnetic fields at another predetermined time, during the time period of one view; and wherein the gradient magnetic fields applying means further comprises means for measuring the NMR signal during the predetermined time when the gradient magnetic fields are applied, and means for measuring the intensity of the primary magnetic field during the other predetermined time when no gradient magnetic fields are applied

  1. Magnetic nuclear core restraint and control

    International Nuclear Information System (INIS)

    Cooper, M.H.

    1978-01-01

    Disclosed is a lateral restraint and control system for a nuclear reactor core adaptable to provide an inherent decrease of core reactivity in response to abnormally high reactor coolant fluid temperatures. An electromagnet is associated with structure for radially compressing the core during normal reactor conditions. A portion of the structures forming a magnetic circuit are composed of ferromagnetic material having a curie temperature corresponding to a selected coolant fluid temperature. Upon a selected signal, or inherently upon a preselected rise in coolant temperature, the magnetic force is decreased a given amount sufficient to relieve the compression force so as to allow core radial expansion. The expanded core configuration provides a decreased reactivity, tending to shut down the nuclear reaction

  2. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rueterjans, H.

    1987-01-01

    Contributions by various authors who are working in the field of NMR imaging present the current status and the perspectives of in-vivo nuclear magnetic resonance spectroscopy, explaining not only the scientific and medical aspects, but also technical and physical principles as well as questions concerning practical organisation and training, and points of main interest for further research activities. (orig./TRV) [de

  3. Nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    1983-06-01

    This report summarises the aspects of nuclear magnetic resonance imaging (NMRI) considered by the National Health Technology Advisory Panel and makes recommendations on its introduction in Australia with particular regard to the need for thorough evaluation of its cost effectiveness. Topics covered are: principles of the technique, equipment required, installation, costs, reliability, performance parameters, clinical indications, training and staff requirements, and safety considerations

  4. Chiral discrimination in nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  5. Comparison of nuclear electric resonance and nuclear magnetic resonance in integer and fractional quantum Hall states

    International Nuclear Information System (INIS)

    Tomimatsu, Toru; Shirai, Shota; Hashimoto, Katsushi; Sato, Ken; Hirayama, Yoshiro

    2015-01-01

    Electric-field-induced nuclear resonance (NER: nuclear electric resonance) involving quantum Hall states (QHSs) was studied at various filling factors by exploiting changes in nuclear spins polarized at quantum Hall breakdown. Distinct from the magnetic dipole interaction in nuclear magnetic resonance, the interaction of the electric-field gradient with the electric quadrupole moment plays the dominant role in the NER mechanism. The magnitude of the NER signal strongly depends on whether electronic states are localized or extended. This indicates that NER is sensitive to the screening capability of the electric field associated with QHSs

  6. Fifty years of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Martinez Valderrama, Juan Crisostomo

    1997-01-01

    Short information about the main developments of nuclear magnetic resonance during their fifty existence years is presented. Beside two examples of application (HETCOR and INADEQUATE) to the structural determination of organic compounds are described

  7. COMPARATIVE ASSESSMENT OF NUCLEAR MAGNETIC RELAXATION CHARACTERISTICS OF SUNFLOWER AND RAPESEED LECITHIN

    OpenAIRE

    Lisovaya E. V.; Victorova E. P.; Agafonov O. S.; Kornen N. N.; Shahray T. A.

    2015-01-01

    The article presents a comparative assessment and peculiarities of nuclear magnetic relaxation characteristics of rapeseed and sunflower lecithin. It was established, that lecithin’s nuclear magnetic relaxation characteristics, namely, protons’ spin-spin relaxation time and amplitudes of nuclear magnetic relaxation signals of lecithin components, depend on content of oil’s fat acids and phospholipids, contained in the lecithin. Comparative assessment of protons’ spin-spin relaxation time of r...

  8. Features of the magnetic field of a rectangular combined function bending magnet

    International Nuclear Information System (INIS)

    Hwang, C.S.; National Chiao Tung Univ., Hsinchu; Chang, C.H.; Hwang, G.J.; Uen, T.M.; Tseng, P.K.; National Taiwan Univ., Taipei

    1996-01-01

    Magnetic field features of the combined function bending magnet with dipole and quadrupole field components are essential for the successful operation of the electron beam trajectory. These fields also dominate the photon beam quality. The vertical magnetic field B y (x,y) calculation is performed by a computer code MAGNET at the magnet center (s = 0). Those results are compared with the 2-D field measurement by the Hall probe mapping system. Also detailed survey has been made of the harmonic field strength and the main features of the fundamental integrated strength, effective length, magnetic symmetry, tilt of the pole face, offset of the field center and the fringe field. The end shims that compensate for the strong end negative sextupole field to increase the good field region for the entire integrated strength are discussed. An important physical feature of this combined function bending magnet is the constant ratio of dipole and quadrupole strength ∫Bds/∫Gds which is expressed as a function of excitation current in the energy range 0.6 to 1.5 GeV

  9. Principles of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Pykett, I.L.; Newhouse, J.H.; Buonanno, F.S.; Brady, T.J.; Goldman, M.R.; Kistler, J.P.; Pohost, G.M.

    1982-01-01

    The physical principles which underlie the phenomenon of nuclear magnetic resonance (NMR) are presented in this primer. The major scanning methods are reviewed, and the principles of technique are discussed. A glossary of NMR terms is included

  10. Nuclear reorientation in static and radio-frequency electro-magnetic fields

    International Nuclear Information System (INIS)

    Dubbers, D.

    1976-01-01

    Nuclear reorientation by external electromagnetic fields is treated using Fano's irreducible tensor formulation of the problem. Although the main purpose of this paper is the description of the effects of nuclear magnetic resonance (NMR) on an ensemble of oriented nuclei in the presence of a crystal electric field gradient (efg), the results are applicable to all types of nuclear or atomic orientation or angular correlation work. The theory is applied to a number of exemplary cases: magnetic field dependence of nuclear orientation in the presence of quadrupole interactions; sign determination in electric quadrupole coupling; line shapes of nuclear acoustic resonance (NAR) signals; quadrupole splitting and multiquantum transitions in NMR with oriented nuclei. (orig./WBU) [de

  11. High-resolution nuclear magnetic resonance studies of proteins.

    Science.gov (United States)

    Jonas, Jiri

    2002-03-25

    The combination of advanced high-resolution nuclear magnetic resonance (NMR) techniques with high-pressure capability represents a powerful experimental tool in studies of protein folding. This review is organized as follows: after a general introduction of high-pressure, high-resolution NMR spectroscopy of proteins, the experimental part deals with instrumentation. The main section of the review is devoted to NMR studies of reversible pressure unfolding of proteins with special emphasis on pressure-assisted cold denaturation and the detection of folding intermediates. Recent studies investigating local perturbations in proteins and the experiments following the effects of point mutations on pressure stability of proteins are also discussed. Ribonuclease A, lysozyme, ubiquitin, apomyoglobin, alpha-lactalbumin and troponin C were the model proteins investigated.

  12. Magnetic resonance imaging apparatus

    International Nuclear Information System (INIS)

    Ehnholm, G.J.

    1991-01-01

    This patent describes an electron spin resonance enhanced magnetic resonance (MR) imaging (ESREMRI) apparatus able to generate a primary magnetic field during periods of nuclear spin transition excitation and magnetic resonance signal detection. This allows the generation of ESREMRI images of a subject. A primary magnetic field of a second and higher value generated during periods of nuclear spin transition excitation and magnetic resonance signal detection can be used to generate conventional MR images of a subject. The ESREMRI and native MR images so generated may be combined, (or superimposed). (author)

  13. Experimental test of nuclear magnetization distribution and nuclear structure models

    International Nuclear Information System (INIS)

    Beirsdorfer, P; Crespo-Lopez-Urrutia, J R; Utter, S B.

    1999-01-01

    Models exist that ascribe the nuclear magnetic fields to the presence of a single nucleon whose spin is not neutralized by pairing it up with that of another nucleon; other models assume that the generation of the magnetic field is shared among some or all nucleons throughout the nucleus. All models predict the same magnetic field external to the nucleus since this is an anchor provided by experiments. The models differ, however, in their predictions of the magnetic field arrangement within the nucleus for which no data exist. The only way to distinguish which model gives the correct description of the nucleus would be to use a probe inserted into the nucleus. The goal of our project was to develop exactly such a probe and to use it to measure fundamental nuclear quantities that have eluded experimental scrutiny. The need for accurately knowing such quantities extends far beyond nuclear physics and has ramifications in parity violation experiments on atomic traps and the testing of the standard model in elementary particle physics. Unlike scattering experiments that employ streams of free particles, our technique to probe the internal magnetic field distribution of the nucleus rests on using a single bound electron. Quantum mechanics shows that an electron in the innermost orbital surrounding the nucleus constantly dives into the nucleus and thus samples the fields that exist inside. This sampling of the nucleus usually results in only minute shifts in the electron s average orbital, which would be difficult to detect. By studying two particular energy states of the electron, we can, however, dramatically enhance the effects of the distribution of the magnetic fields in the nucleus. In fact about 2% of the energy difference between the two states, dubbed the hyperfine splitting, is determined by the effects related to the distribution of magnetic fields in the nucleus, A precise measurement of this energy difference (better than 0.01%) would then allow us to place

  14. Nuclear magnetic ordering in silver

    International Nuclear Information System (INIS)

    Lefmann, K.

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of 109 Ag. The critical temperature is found to 700 pK, and the critical field is 100 μT. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs

  15. Electrical Initialization of Electron and Nuclear Spins in a Single Quantum Dot at Zero Magnetic Field.

    Science.gov (United States)

    Cadiz, Fabian; Djeffal, Abdelhak; Lagarde, Delphine; Balocchi, Andrea; Tao, Bingshan; Xu, Bo; Liang, Shiheng; Stoffel, Mathieu; Devaux, Xavier; Jaffres, Henri; George, Jean-Marie; Hehn, Michel; Mangin, Stephane; Carrere, Helene; Marie, Xavier; Amand, Thierry; Han, Xiufeng; Wang, Zhanguo; Urbaszek, Bernhard; Lu, Yuan; Renucci, Pierre

    2018-04-11

    The emission of circularly polarized light from a single quantum dot relies on the injection of carriers with well-defined spin polarization. Here we demonstrate single dot electroluminescence (EL) with a circular polarization degree up to 35% at zero applied magnetic field. The injection of spin-polarized electrons is achieved by combining ultrathin CoFeB electrodes on top of a spin-LED device with p-type InGaAs quantum dots in the active region. We measure an Overhauser shift of several microelectronvolts at zero magnetic field for the positively charged exciton (trion X + ) EL emission, which changes sign as we reverse the injected electron spin orientation. This is a signature of dynamic polarization of the nuclear spins in the quantum dot induced by the hyperfine interaction with the electrically injected electron spin. This study paves the way for electrical control of nuclear spin polarization in a single quantum dot without any external magnetic field.

  16. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.

    Science.gov (United States)

    Vogel, Michael W; Giorni, Andrea; Vegh, Viktor; Pellicer-Guridi, Ruben; Reutens, David C

    2016-01-01

    We studied the feasibility of generating the variable magnetic fields required for ultra-low field nuclear magnetic resonance relaxometry with dynamically adjustable permanent magnets. Our motivation was to substitute traditional electromagnets by distributed permanent magnets, increasing system portability. The finite element method (COMSOL®) was employed for the numerical study of a small permanent magnet array to calculate achievable magnetic field strength, homogeneity, switching time and magnetic forces. A manually operated prototype was simulated and constructed to validate the numerical approach and to verify the generated magnetic field. A concentric small permanent magnet array can be used to generate strong sample pre-polarisation and variable measurement fields for ultra-low field relaxometry via simple prescribed magnet rotations. Using the array, it is possible to achieve a pre-polarisation field strength above 100 mT and variable measurement fields ranging from 20-50 μT with 200 ppm absolute field homogeneity within a field-of-view of 5 x 5 x 5 cubic centimetres. A dynamic small permanent magnet array can generate multiple highly homogeneous magnetic fields required in ultra-low field nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) instruments. This design can significantly reduce the volume and energy requirements of traditional systems based on electromagnets, improving portability considerably.

  17. Magnetic resonance vs. computerized tomography, ultrasonic examinations and nuclear medicine

    International Nuclear Information System (INIS)

    Bruna, J.

    1985-01-01

    A symposium on magnetic resonance in nuclear medicine was held from 23rd to 27th January, 1985 in Munich and Garmisch-Partenkirchen. Discussed were suitable methods, the use of contrast media, the evaluation of results, the application of nuclear magnetic resonance in examining various body organs, and the latest apparatus. NMR achievements in medicine were compared to those by other diagnostic methods. (M.D.)

  18. Application of transient magnetic field to the measurement of nuclear magnetic moments

    International Nuclear Information System (INIS)

    Ribas, R.V.

    1987-01-01

    A review on: the mechanism for producing transient magnetic field; techniques for measuring nuclear gyromagnetic factor; and some examples of recent measurements using this technique is presented. (M.C.K.) [pt

  19. Nuclear magnetic ordering in silver

    Energy Technology Data Exchange (ETDEWEB)

    Lefmann, K

    1995-12-01

    Nuclear antiferromagnetic ordering has been observed by neutron diffraction in a single crystal of {sup 109}Ag. The critical temperature is found to 700 pK, and the critical field is 100 {mu}T. From the paramagnetic phase a second order phase transition leads into a type-I 1-k structure with long range order. The experiments have taken place at the Hahn-Meitner Institut in Berlin in collaboration with the low Temperature Laboratory in Helsinki, the Niels Bohr Institute in Copenhagen, and Risoe National Laboratory, Roskilde. The present report is a Ph.D. thesis which has been successfully defended at the Niels Bohr Institute. Besides the results of the nuclear ordering experiments the thesis contains a description of the theoretical background for nuclear magnetism and a review of earlier nuclear ordering experiments as well as theoretical work. The principles for studying polarized nuclei with use of polarized and unpolarized neutrons are presented, as well as the results of such experiments. (au) 11 tabs., 59 ills., 143 refs.

  20. Nuclear Magnetic Resonance Trackbed Moisture Sensor System

    Science.gov (United States)

    2018-02-01

    In this initial phase, conducted from March 2015 through December 2016, Vista Clara and its subcontractor Zetica Rail successfully developed and tested a man-portable, non-invasive spot-check nuclear magnetic resonance (NMR) moisture sensor that dire...

  1. Combining rotating-coil measurements of large-aperture accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2089510

    2016-10-05

    The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...

  2. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  3. Comparative analysis of nuclear magnetic resonance well logging and nuclear magnetic resonance mud logging

    International Nuclear Information System (INIS)

    Yuan Zugui

    2008-01-01

    The hydrogen atoms in oil and water are able to resonate and generate signals in the magnetic field, which is used by the NMR (nuclear magnetic resonance) technology in petroleum engineering to research and evaluate rock characteristics. NMR well logging was used to measure the physical property parameters of the strata in well bore, whereas NMR mud logging was used to analyze (while drilling) the physical property parameters of cores, cuttings and sidewall coring samples on surface (drilling site). Based on the comparative analysis of the porosity and permeability parameters obtained by NMR well logging and those from analysis of the cores, cuttings and sidewall coring samples by NMR mud logging in the same depth of 13 wells, these two methods are of certain difference, but their integral tendency is relatively good. (authors)

  4. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Science.gov (United States)

    Zhou, Zhiqiang

    2010-01-01

    The accuracy of spacecraft attitude control using magnetic actuators only is low and on the order of 0.4-5 degrees. The key reason is that the magnetic torque is two-dimensional and it is only in the plane perpendicular to the magnetic field vector. In this paper novel attitude control algorithms using the combination of magnetic actuators with Reaction Wheel Assembles (RWAs) or other types of actuators, such as thrusters, are presented. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for Nadir pointing, pitch and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude control accuracy is comparable with RWAs based attitude control. The algorithms are also useful for the RWAs based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode and the control accuracy can be maintained.

  5. Assessment of tumor energy and oxygenation status by bioluminescence, nuclear magnetic resonance spectroscopy, and cryospectrophotometry.

    Science.gov (United States)

    Mueller-Klieser, W; Schaefer, C; Walenta, S; Rofstad, E K; Fenton, B M; Sutherland, R M

    1990-03-15

    The energy and oxygenation status of tumors from two murine sarcoma lines (KHT, RIF-1) and two human ovarian carcinoma xenograft lines (MLS, OWI) were assessed using three independent techniques. Tumor energy metabolism was investigated in vivo by 31P nuclear magnetic resonance spectroscopy. After nuclear magnetic resonance measurements, tumors were frozen in liquid nitrogen to determine the tissue ATP concentration by imaging bioluminescence and to register the intracapillary oxyhemoglobin (HbO2) saturation using the cryospectrophotometric method. There was a positive correlation between the nucleoside triphosphate beta/total resonance ratio or a negative correlation between the Pi/total resonance ratio and the model ATP concentration obtained by bioluminescence, respectively. This was true for small tumors with no extended necrosis irrespective of tumor type. Moreover, a positive correlation was obtained between the HbO2 saturations and the ATP concentration measured with bioluminescence. The results demonstrate the potential of combined studies using noninvasive, integrating methods and high-resolution imaging techniques for characterizing the metabolic milieu in tumors.

  6. Water in Brain Edema : Observations by the Pulsed Nuclear Magnetic Resonance Technique

    NARCIS (Netherlands)

    GO, KG; Edzes, HT

    The state of water in three types of brain edema and in normal brain of the rat was studied by the pulsed nuclear magnetic resonance (NMR) technique. In cold-induced edema and in osmotic edema both in cortex and in white matter, the water protons have longer nuclear magnetic relaxation times than in

  7. Differentiation of Organically and Conventionally Grown Tomatoes by Chemometric Analysis of Combined Data from Proton Nuclear Magnetic Resonance and Mid-infrared Spectroscopy and Stable Isotope Analysis.

    Science.gov (United States)

    Hohmann, Monika; Monakhova, Yulia; Erich, Sarah; Christoph, Norbert; Wachter, Helmut; Holzgrabe, Ulrike

    2015-11-04

    Because the basic suitability of proton nuclear magnetic resonance spectroscopy ((1)H NMR) to differentiate organic versus conventional tomatoes was recently proven, the approach to optimize (1)H NMR classification models (comprising overall 205 authentic tomato samples) by including additional data of isotope ratio mass spectrometry (IRMS, δ(13)C, δ(15)N, and δ(18)O) and mid-infrared (MIR) spectroscopy was assessed. Both individual and combined analytical methods ((1)H NMR + MIR, (1)H NMR + IRMS, MIR + IRMS, and (1)H NMR + MIR + IRMS) were examined using principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), linear discriminant analysis (LDA), and common components and specific weight analysis (ComDim). With regard to classification abilities, fused data of (1)H NMR + MIR + IRMS yielded better validation results (ranging between 95.0 and 100.0%) than individual methods ((1)H NMR, 91.3-100%; MIR, 75.6-91.7%), suggesting that the combined examination of analytical profiles enhances authentication of organically produced tomatoes.

  8. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    International Nuclear Information System (INIS)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-01-01

    Highlights: → Rectangular YBCO bulks to realize a compact combination. → The gap effect was added to consider in the trapped flux density mapping. → The trapped-flux dependence between single and combined bulks is gap related. → It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65 Ba 2 Cu 3 O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  9. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z., E-mail: zgdeng@gmail.co [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan); Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M. [Laboratory of Applied Physics, Department of Marine Electronics and Mechanical Engineering, Tokyo University of Marine Science and Technology, Tokyo 135-8533 (Japan)

    2011-05-15

    Highlights: {yields} Rectangular YBCO bulks to realize a compact combination. {yields} The gap effect was added to consider in the trapped flux density mapping. {yields} The trapped-flux dependence between single and combined bulks is gap related. {yields} It is possible to estimate the total magnetic flux of bulk combinations. - Abstract: Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y{sub 1.65}Ba{sub 2}Cu{sub 3}O{sub 7-x} (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  10. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    Energy Technology Data Exchange (ETDEWEB)

    Goodson, Boyd McLean [Univ. of California, Berkeley, CA (United States)

    1999-12-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI.

  11. Nuclear magnetic resonance of laser-polarized noble gases in molecules, materials and organisms

    International Nuclear Information System (INIS)

    Goodson, Boyd M.

    1999-01-01

    Conventional nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) are fundamentally challenged by the insensitivity that stems from the ordinarily low spin polarization achievable in even the strongest NMR magnets. However, by transferring angular momentum from laser light to electronic and nuclear spins, optical pumping methods can increase the nuclear spin polarization of noble gases by several orders of magnitude, thereby greatly enhancing their NMR sensitivity. This dissertation is primarily concerned with the principles and practice of optically pumped nuclear magnetic resonance (OPNMR). The enormous sensitivity enhancement afforded by optical pumping noble gases can be exploited to permit a variety of novel NMR experiments across many disciplines. Many such experiments are reviewed, including the void-space imaging of organisms and materials, NMR and MRI of living tissues, probing structure and dynamics of molecules in solution and on surfaces, and zero-field NMR and MRI

  12. Nuclear magnetic resonance method and apparatus

    International Nuclear Information System (INIS)

    Young, I.R.

    1983-01-01

    In a method of investigating the distribution of a quantity in a chosen region of a body (E) by nuclear magnetic resonance techniques movement of the body during the investigation is monitored by probes (A, B C) (C extends orthogonally to A and B) attached to the body and responsive to magnetic fields applied to the body during the investigation. An apparatus for carrying out the method is also described. If movement is detected, due compensation may be made during processing of the collected data, or the latter may be re-ascertained after appropriate adjustment e.g. a change in the RF excitation frequency. (author)

  13. Proceedings of the nuclear magnetic resonance user meeting. Anais do Encontro de Usuarios de Ressonancia Magnetica Nuclear

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    Studies on utilization of nuclear magnetic resonance, such as: chemical analysis in complexes and organic compounds; structures and magnetic properties of solids; construction of images and; spectrometer designs, are presented. (M.C.K.).

  14. Gap-related trapped magnetic flux dependence between single and combined bulk superconductors

    Science.gov (United States)

    Deng, Z.; Miki, M.; Felder, B.; Tsuzuki, K.; Shinohara, N.; Uetake, T.; Izumi, M.

    2011-05-01

    Aiming at examining the trapped-flux dependence between single and combined bulk superconductors for field-pole applications, three rectangular Y 1.65Ba 2Cu 3O 7-x (YBCO) bulks with a possibly compact combination were employed to investigate the trapped-flux characteristics of single and combined bulks with a field-cooling magnetization (FCM) method. A gap-related dependence was found between them. At lower gaps of 1 mm and 5 mm, the peak trapped fields and total magnetic flux of combined bulks are both smaller than the additive values of each single bulk, which can be ascribed to the demagnetization influences of the field around the bulk generated by the adjacent ones. While, at larger gaps like 10 mm, the situation becomes reversed. The combined bulks can attain bigger peak trapped fields as well as total magnetic flux, which indicates that the magnetic field by the bulk combination can reach higher gaps, thanks to the bigger magnetic energy compared with the single bulk. The presented results show that, on one hand, it is possible to estimate the total trapped magnetic flux of combined bulks by an approximate additive method of each single bulk while considering a demagnetization factor; on the other hand, it also means that the performance of combined bulks will be superior to the addition of each single bulk at larger gaps, thus preferable for large-scaled magnet applications.

  15. Computer Assisted Instruction (Cain) For Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Jaturonrusmee, Wasna; Arthonvorakul, Areerat; Assateranuwat, Adisorn

    2005-10-01

    A computer assisted instruction program for nuclear magnetic resonance spectroscopy was developed by using Author ware 5.0, Adobe Image Styler 1.0, Adobe Photo shop 7.0 and Flash MX. The contents included the basic theory of 1H and 13C nuclear magnetic resonance (NMR) spectroscopy, the instrumentation of NMR spectroscopy, the two dimensional (2D) NMR spectroscopy and the interpretation of NMR spectra. The program was also provided examples, and exercises, with emphasis on NMR spectra interpretation to determine the structure of unknown compounds and solutions for self study. The questionnaire from students showed that they were very satisfied with the software

  16. Linear magnetic spring and spring/motor combination

    Science.gov (United States)

    Patt, Paul J. (Inventor); Stolfi, Fred R. (Inventor)

    1991-01-01

    A magnetic spring, or a spring and motor combination, providing a linear spring force characteristic in each direction from a neutral position, in which the spring action may occur for any desired coordinate of a typical orthogonal coordinate system. A set of magnets are disposed, preferably symmetrically about a coordinate axis, poled orthogonally to the desired force direction. A second set of magnets, respectively poled opposite the first set, are arranged on the sprung article. The magnets of one of the sets are spaced a greater distance apart than those of the other, such that an end magnet from each set forms a pair having preferably planar faces parallel to the direction of spring force, the faces being offset so that in a neutral position the outer edge of the closer spaced magnet set is aligned with the inner edge of the greater spaced magnet set. For use as a motor, a coil can be arranged with conductors orthogonal to both the magnet pole directions and the direction of desired spring force, located across from the magnets of one set and fixed with respect to the magnets of the other set. In a cylindrical coordinate system having axial spring force, the magnets are radially poled and motor coils are concentric with the cylinder axis.

  17. Prospects for sub-micron solid state nuclear magnetic resonance imaging with low-temperature dynamic nuclear polarization.

    Science.gov (United States)

    Thurber, Kent R; Tycko, Robert

    2010-06-14

    We evaluate the feasibility of (1)H nuclear magnetic resonance (NMR) imaging with sub-micron voxel dimensions using a combination of low temperatures and dynamic nuclear polarization (DNP). Experiments are performed on nitroxide-doped glycerol-water at 9.4 T and temperatures below 40 K, using a 30 mW tunable microwave source for DNP. With DNP at 7 K, a 0.5 microL sample yields a (1)H NMR signal-to-noise ratio of 770 in two scans with pulsed spin-lock detection and after 80 db signal attenuation. With reasonable extrapolations, we infer that (1)H NMR signals from 1 microm(3) voxel volumes should be readily detectable, and voxels as small as 0.03 microm(3) may eventually be detectable. Through homonuclear decoupling with a frequency-switched Lee-Goldburg spin echo technique, we obtain 830 Hz (1)H NMR linewidths at low temperatures, implying that pulsed field gradients equal to 0.4 G/d or less would be required during spatial encoding dimensions of an imaging sequence, where d is the resolution in each dimension.

  18. Nuclear magnetic resonance studies of lipoproteins

    International Nuclear Information System (INIS)

    Hamilton, J.A.; Morrisett, J.D.

    1986-01-01

    Several nuclei in lipoproteins are magnetically active and are thus potential NMR probes of lipoprotein structure. Table I lists the magnetic isotopes preset in the covalent structures of the molecular constituents of lipoproteins: lipids, proteins, and carbohydrates. Every type of nucleus that is part of the endogenous structure of these molecules has at least one magnetic isotope. Each magnetic nucleus represents an intrinsic and completely nonperturbing probe (when at the natural abundance level) of local molecular motion and magnetic environment. The NMR experiment itself is also nonperturbing and nondestructive. Table I also lists for each nucleus its nuclear spin, its natural isotopic abundance, its sensitivity, and its resonance frequency at two commonly employed magnetic in the low field range (21.14 kG or 2.11 Tesla) and the other in the high field range (47.0 kG or 4.70 Tesla). Of the nuclei listed in Table I, /sup 1/H, /sup 13/C, and /sup 31/P have been the primary ones studied in lipoproteins. The general advantages and disadvantages afforded by these and other nuclei as probes of lipoprotein structure are discussed. /sup 13/C NMR spectroscopy, the method which has had the most extensive application (and probably has the greatest future potential) to lipoproteins, is treated in greatest detail, but many of the principles described apply to other nuclei as well

  19. The origins and future of nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Wehrli, F.W.

    1992-01-01

    What began as a curiosity of physics has become the preeminent method of diagnostic medical imaging and may displace x-ray-based techniques in the 21st century. During the past two decades nuclear magnetic resonance has revolutionized chemistry, biochemistry, biology and, more recently, diagnostic medicine. Nuclear magnetic resonance imaging, (MRI) as it is commonly called, is fundamentally different from x-ray-based techniques in terms of the principles of spatial encoding and mechanisms of signal and contrast generation involved. MRI has a far richer ultimate potential than any other imaging technique known today, and its technology and applications are still far from maturation, which may not occur until early in the 21st century. 23 refs., 6 figs

  20. External magnetic field induced anomalies of spin nuclear dynamics in thin antiferromagnetic films

    International Nuclear Information System (INIS)

    Tarasenko, S.V.

    1995-01-01

    It is shown that if the thickness of homogeneously magnetized plate of high-axial antiferromagnetic within H external magnetic field becomes lower the critical one, then the effect of dynamic magnetoelastic interaction on Soul-Nakamura exchange of nuclear spins results in formation of qualitatively new types of spreading nuclear spin waves no else compared neither within the model of unrestricted magnetic nor at H = 0 in case of thin plate of high-axial antiferromagnetic. 10 refs

  1. Development of moving alternating magnetic filter using permanent magnet for removal of radioactive corrosion product from nuclear power plant

    International Nuclear Information System (INIS)

    Song, M. C.; Kim, S. I.; Lee, K. J.

    2002-01-01

    Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). Flow rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters

  2. Method and apparatus for measuring nuclear magnetic properties

    Science.gov (United States)

    Weitekamp, Daniel P.; Bielecki, Anthony; Zax, David B.; Zilm, Kurt W.; Pines, Alexander

    1987-01-01

    A method for studying the chemical and structural characteristics of materials is disclosed. The method includes placement of a sample material in a high strength polarizing magnetic field to order the sample nucleii. The condition used to order the sample is then removed abruptly and the ordering of the sample allowed to evolve for a time interval. At the end of the time interval, the ordering of the sample is measured by conventional nuclear magnetic resonance techniques.

  3. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  4. 13. Nuclear magnetic resonance users meeting. Extended abstracts book

    International Nuclear Information System (INIS)

    2011-01-01

    This annual meeting, held in Brazil from May 2 - 6, 2011 comprised seventeen lectures, given by invited speakers from Brazil and other countries, about the use of nuclear magnetic resonance for various analytical purposes; results from ninety five research works, most being carried out by scientific groups from various Brazilian R and D institutions, presented as congress panels/posters. A General Assembly meeting of AUREMN, the Brazilian Association of Nuclear Magnetic Resonance Users, also took place during the event. Main topics of the research works presented at this meeting were thus distributed: 54% in analytical chemistry (mainly organic chemistry, both experimental and theoretical works), 18% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 15% in materials science (including nanostructures, petroleum and alternative fuels), 10% in mathematical methods and computing for the interpretation of NMR data, and the remaining 3% in improvements in instrumentation interfaces or magnetic field configurations.

  5. Nuclear Magnetic Resonance Imaging of Li-ion Battery

    Directory of Open Access Journals (Sweden)

    D. Ohno

    2010-12-01

    Full Text Available Nuclear magnetic resonance (NMR imaging has high sensitivity to proton (1H and lithium (7Li. It is a useful measurement for electrolyte in Li-ion battery. 1H NMR images of lithium ion battery which is composed of LiMn2O4 / LiClO4 + propylene carbonate (PC / Li-metal have been studied. 1H NMR images of electrolyte near cathode material (LiMn2O4 showed anomalous intensity distribution, which was quite inhomogeneous. From NMR images as a function of repetition time (TR, it was concluded that the anomalous intensity distribution was not due to change of relaxation time but an indirect (spatial para-magnetization effect from cathode material. The paramagnetization induced by high magnetic field distorts linearity of magnetic gradient field, leading to apparent intensity variance. This functional image is an easy diagnostic measurement for magnetization of cathode material, which allows the possibility to check uniformity of cathode material and change of magnetization under electrochemical process.

  6. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary; Hussain, Muhammad Mustafa; Emwas, Abdul-Hamid M.; Agarwal, Praveen; Archer, Lynden A.

    2010-01-01

    using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core

  7. The effect of a neutrino magnetic moment on nuclear excitation processes

    International Nuclear Information System (INIS)

    Dodd, A.C.; Papageorgiu, E.; Ranfone, S.

    1991-01-01

    We discuss the sensitivity of magnetic transitions in nuclei like 12 C, to a small neutrino magnetic moment, and its implications for current and future experiments. We also point out that coherent neutrino-nuclear elastic scattering in low-temperature detectors, might improve the present laboratory bounds on the neutrino magnetic moment by an order of magnitude. (orig.)

  8. Principles of nuclear magnetic resonance imaging using an inhomogeneous polarizing field

    International Nuclear Information System (INIS)

    Briguet, A.; Chaillout, J.; Goldman, M.

    1985-01-01

    In this paper, it is indicated how to reconstruct nuclear magnetic resonance images acquired in an inhomogeneous static magnetic field without the previous knowledge of its spatial distribution. The method provides also the map of the static magnetic field through the sample volume; furthermore it allows the use of non uniform but spatially controlled encoding gradients [fr

  9. Nuclear magnetic resonance imaging in pharmaceutical research

    International Nuclear Information System (INIS)

    Sarkar, S.K.

    1991-01-01

    Nuclear magnetic resonance imaging has important applications in pharmaceutical research since it allows specific tissue and disease characterization in animal models noninvasively with excellent anatomical resolution and therefore provides improved ability to monitor the efficacy of novel drugs. The utility of NMR imaging in renal studies to monitor the mechanism of drug action and renal function in rats is described. The extension of the resolution of an NMR image to microscopic domain at higher magnetic field strengths and the utility of NMR microimaging in cerebrovascular and tumour metastasis studies in mice are discussed. (author). 40 refs., 14 figs

  10. Hyperfine structure, nuclear spins and magnetic moments of some cesium isotopes

    International Nuclear Information System (INIS)

    Ekstroem, C.; Ingelman, S.; Wannberg, G.

    1977-03-01

    Using an atomic-beam magnetic resonance apparatus connected on-line with the ISOLDE isotope separator, CERN, hyperfine structure measurements have been performed in the 2 Ssub(1/2) electronic ground state of some cesium isotopes. An on-line oven system which efficiently converts a mass separated ion-beam of alkali isotopes to an atomic beam is described in some detail. Experimentally determined nuclear spins of sup(120, 121, 121m, 122, 122m, 123, 124, 126, 128, 130m, 135m)Cs and magnetic moments of sup(122, 123, 124, 126, 128, 130)Cs are reported and discussed in terms of different nuclear models. The experimental data indicate deformed nuclear shapes of the lightest cesium isotopes. (Auth.)

  11. Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach

    International Nuclear Information System (INIS)

    Amniai, Laziza; Lippens, Guy; Landrieu, Isabelle

    2011-01-01

    Highlights: → pThr231 of the Tau protein is necessary for the binding of the AT180 antibody. → pSer235 of the Tau protein does not interfere with the AT180 recognition of pThr231. → Epitope mapping is efficiently achieved by combining NMR and FRET spectroscopy. -- Abstract: We present here the characterization of the epitope recognized by the AT180 monoclonal antibody currently used to define an Alzheimer's disease (AD)-related pathological form of the phosphorylated Tau protein. Some ambiguity remains as to the exact phospho-residue(s) recognized by this monoclonal: pThr231 or both pThr231 and pSer235. To answer this question, we have used a combination of nuclear magnetic resonance (NMR) and fluorescence spectroscopy to characterize in a qualitative and quantitative manner the phospho-residue(s) essential for the epitope recognition. Data from the first step of NMR experiments are used to map the residues bound by the antibodies, which were found to be limited to a few residues. A fluorophore is then chemically attached to a cystein residue introduced close-by the mapped epitope, at arginine 221, by mutagenesis of the recombinant protein. The second step of Foerster resonance energy transfer (FRET) between the AT180 antibody tryptophanes and the phospho-Tau protein fluorophore allows to calculate a dissociation constant Kd of 30 nM. We show that the sole pThr231 is necessary for the AT180 recognition of phospho-Tau and that phosphorylation of Ser235 does not interfere with the binding.

  12. Pulsed magnetic field generation suited for low-field unilateral nuclear magnetic resonance systems

    Science.gov (United States)

    Gaunkar, Neelam Prabhu; Selvaraj, Jayaprakash; Theh, Wei-Shen; Weber, Robert; Mina, Mani

    2018-05-01

    Pulsed magnetic fields can be used to provide instantaneous localized magnetic field variations. In presence of static fields, pulsed field variations are often used to apply torques and in-effect to measure behavior of magnetic moments in different states. In this work, the design and experimental performance of a pulsed magnetic field generator suited for low static field nuclear magnetic resonance (NMR) applications is presented. One of the challenges of low bias field NMR measurements is low signal to noise ratio due to the comparable nature of the bias field and the pulsed field. Therefore, a circuit is designed to apply pulsed currents through an inductive load, leading to generation of pulsed magnetic fields which can temporarily overpower the effect of the bias field on magnetic moments. The designed circuit will be tuned to operate at the precession frequency of 1H (protons) placed in a bias field produced by permanent magnets. The designed circuit parameters may be tuned to operate under different bias conditions. Therefore, low field NMR measurements can be performed for different bias fields. Circuit simulations were used to determine design parameters, corresponding experimental measurements will be presented in this work.

  13. The measurement of magnetic moments of nuclear states of high angular momentum

    International Nuclear Information System (INIS)

    Goldring, G.

    1978-01-01

    Two problems related to the measurement of the g-factor of relevant nuclear levels and their circumvention are discussed: a) the very high magnetic fields required for the measurements, available only as a hyperfine field of electrons or other charged particles moving very close to the nucleus; b) the large angular momentum of those nuclear states. The nuclei considered are those recoiling from a nuclear reaction at high speeds in either vacuum or gas. The environment of these nuclei are the isolated ions with which they are associated. The hyperfine interaction with such ions is primarily magnetic. (B.G.)

  14. Fits combining hyperon semileptonic decays and magnetic moments and CVC

    International Nuclear Information System (INIS)

    Bohm, A.; Kielanowski, P.

    1982-10-01

    We have performed a test of CVC by determining the baryon charges and magnetic moments from the hyperon semileptonic data. Then CVC was applied in order to make a joint fit of all baryon semileptonic decay data and baryon magnetic moments for the spectrum generating group (SG) model as well as for the conventional (cabibbo and magnetic moments in nuclear magnetons) model. The SG model gives a very good fit with chi 2 /n/sub D/ = 25/20 approximately equals 21% C.L. whereas the conventional model gives a fit with chi 2 /n/sub D/ = 244/20

  15. Radioimmunotherapy of human lymphoma in athymic, nude mice as monitored by 31P nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Adams, D.A.; DeNardo, G.L.; DeNardo, S.J.; Matson, G.B.; Epstein, A.L.; Bradbury, E.M.

    1985-01-01

    Human B cell lymphoma (Raji) growing in athymic, nude mice has been successfully treated with a single pulse dose of 131 I-labeled monoclonal antibody (Lym-1) specific for this tumor. Sequential in vivo measurements of phosphate metabolites in the tumors by 31 P surface coil nuclear magnetic resonance showed a significant initial decrease of phosphocreatine following radioimmunotherapy. Diminution of relative ATP to Pi peak area ratio suggesting tissue damage occurred within 3-4 days. The sequence of alterations of nuclear magnetic resonance spectra from tumors of treated mice were strikingly different from sequential nuclear magnetic resonance spectra obtained from tumors of control mice. These observations lead us to conclude that 31 P surface coil nuclear magnetic resonance is a promising non-invasive method for assessing and predicting the efficacy of radioimmunotherapy. Further spatial discrimination of the region of tissue observed by the surface coil nuclear magnetic resonance experiment is under exploration in an effort to increase the utility of these methods

  16. Detection of molecules and cells using nuclear magnetic resonance with magnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Rümenapp, Christine, E-mail: ruemenapp@tum.de [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Gleich, Bernhard [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany); Mannherz, Hans Georg [Abteilung für Anatomie und Molekulare Embryologie, Ruhr Universität Bochum, Bochum (Germany); Haase, Axel [Zentralinstitut für Medizintechnik (IMETUM), Technische Universität München, Garching (Germany)

    2015-04-15

    For the detection of small molecules, proteins or even cells in vitro, functionalised magnetic nanoparticles and nuclear magnetic resonance measurements can be applied. In this work, magnetic nanoparticles with the size of 5–7 nm were functionalised with antibodies to detect two model systems of different sizes, the protein avidin and Saccharomyces cerevisiae as the model organism. The synthesised magnetic nanoparticles showed a narrow size distribution, which was determined using transmission electron microscopy and dynamic light scattering. The magnetic nanoparticles were functionalised with the according antibodies via EDC/NHS chemistry. The binding of the antigen to magnetic nanoparticles was detected through the change in the NMR T{sub 2} relaxation time at 0.5 T (≈21.7 MHz). In case of a specific binding the particles cluster and the T{sub 2} relaxation time of the sample changes. The detection limit in buffer for FITC-avidin was determined to be 1.35 nM and 10{sup 7} cells/ml for S. cerevisiae. For fluorescent microscopy the avidin molecules were labelled with FITC and for the detection of S. cerevisiae the magnetic nanoparticles were additionally functionalised with rhodamine. The binding of the particles to S. cerevisiae and the resulting clustering was also seen by transmission electron microscopy.

  17. Nuclear magnetic resonance and medicine. Present applications

    International Nuclear Information System (INIS)

    1984-01-01

    At the workshop on nuclear magnetic resonance and medicine held at Saclay, the following topics were presented: physical principles of NMR; NMR spectroscopy signal to noise ratio; principles of NMR imaging; methods of NMR imaging; image options in NMR; biological significance of contrast in proton NMR imaging; measurement and significance of relaxation times in cancers; NMR contrast agents; NMR for in-vivo biochemistry; potential effects and hazards of NMR applications in Medicine; difficulties of NMR implantation in Hospitals; NMR imaging of brain tumors and diseases of the spinal cord; NMR and Nuclear Medicine in brain diseases [fr

  18. Nuclear magnetic resonance detection and spectroscopy of single proteins using quantum logic.

    Science.gov (United States)

    Lovchinsky, I; Sushkov, A O; Urbach, E; de Leon, N P; Choi, S; De Greve, K; Evans, R; Gertner, R; Bersin, E; Müller, C; McGuinness, L; Jelezko, F; Walsworth, R L; Park, H; Lukin, M D

    2016-02-19

    Nuclear magnetic resonance spectroscopy is a powerful tool for the structural analysis of organic compounds and biomolecules but typically requires macroscopic sample quantities. We use a sensor, which consists of two quantum bits corresponding to an electronic spin and an ancillary nuclear spin, to demonstrate room temperature magnetic resonance detection and spectroscopy of multiple nuclear species within individual ubiquitin proteins attached to the diamond surface. Using quantum logic to improve readout fidelity and a surface-treatment technique to extend the spin coherence time of shallow nitrogen-vacancy centers, we demonstrate magnetic field sensitivity sufficient to detect individual proton spins within 1 second of integration. This gain in sensitivity enables high-confidence detection of individual proteins and allows us to observe spectral features that reveal information about their chemical composition. Copyright © 2016, American Association for the Advancement of Science.

  19. Nuclear Magnetic Dipole and Electric Quadrupole Moments: Their Measurement and Tabulation as Accessible Data

    Energy Technology Data Exchange (ETDEWEB)

    Stone, N. J., E-mail: n.stone@physics.ox.ac.uk [Department of Physics and Astronomy, University of Tennessee, Knoxville Tennessee 37996 (United States)

    2015-09-15

    The most recent tabulations of nuclear magnetic dipole and electric quadrupole moments have been prepared and published by the Nuclear Data Section of the IAEA, Vienna [N. J. Stone, Report No. INDC(NDS)-0650 (2013); Report No. INDC(NDS)-0658 (2014)]. The first of these is a table of recommended quadrupole moments for all isotopes in which all experimental results are made consistent with a limited number of adopted standards for each element; the second is a combined listing of all measurements of both moments. Both tables cover all isotopes and energy levels. In this paper, the considerations relevant to the preparation of both tables are described, together with observations as to the importance and (where appropriate) application of necessary corrections to achieve the “best” values. Some discussion of experimental methods is included with emphasis on their precision. The aim of the published quadrupole moment table is to provide a standard reference in which the value given for each moment is the best available and for which full provenance is given. A table of recommended magnetic dipole moments is in preparation, with the same objective in view.

  20. Two-dimensional nuclear magnetic resonance of quadrupolar systems

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shuanhu [Univ. of California, Berkeley, CA (United States)

    1997-09-01

    This dissertation describes two-dimensional nuclear magnetic resonance theory and experiments which have been developed to study quadruples in the solid state. The technique of multiple-quantum magic-angle spinning (MQMAS) is extensively reviewed and expanded upon in this thesis. Specifically, MQMAS is first compared with another technique, dynamic-angle spinning (DAS). The similarity between the two techniques allows us to extend much of the DAS work to the MQMAS case. Application of MQMAS to a series of aluminum containing materials is then presented. The superior resolution enhancement through MQMAS is exploited to detect the five- and six-coordinated aluminum in many aluminosilicate glasses. Combining the MQMAS method with other experiments, such as HETCOR, greatly expands the possibility of the use of MQMAS to study a large range of problems and is demonstrated in Chapter 5. Finally, the technique switching-angle spinning (SAS) is applied to quadrupolar nuclei to fully characterize a quadrupolar spin system in which all of the 8 NMR parameters are accurately determined. This dissertation is meant to demonstrate that with the combination of two-dimensional NMR concepts and new advanced spinning technologies, a series of multiple-dimensional NMR techniques can be designed to allow a detailed study of quadrupolar nuclei in the solid state.

  1. Hairpin structures in DNA containing arabinofuranosylcytosine. A combination of nuclear magnetic resonance and molecular dynamics

    International Nuclear Information System (INIS)

    Pieters, J.M.L.; de Vroom, E.; van der Marel, G.A.; van Boom, J.H.; Altona, C.; Koning, T.H.G.; Kaptein, R.

    1990-01-01

    Nuclear magnetic resonance (NMR) and model-building studies were carried out on the hairpin form of the octamer d(CG a CTAGCG) ( a C = arabinofuranosylcytosine), referred to as the TA compound. The nonexchangeable protons of the TA compound were assigned by means of nuclear Overhauser effect spectroscopy (NOESY) and correlated spectroscopy (COSY). Form a detailed analysis of the coupling data and of the NOESY spectra the following conclusions are reached: (i) the hairpin consists of a stem of three Watson-Crick type base pairs, and the two remaining residues, T(4) and dA(5), participate in a loop. (ii) All sugar rings show conformational flexibility although a strong preference for the S-type (C2'-endo) conformer is observed. (iii) The thymine does not stack upon the 3' side of the stem as expected, but swings into the minor groove. (iv) At the 5'-3' loop-stem junction a stacking discontinuity occurs as a consequence of a sharp turn in that part of the backbone, caused by the unusual β + and γ t torsion angles in residue dG(6). (v) The A base slides over the 5' side of the stem to stack upon the a C(3) residue at the 3' side of the stem in an antiparallel fashion. On the basis of J couplings and a set approximate proton-proton distances from NOE cross peaks, a model for the hairpin was constructed

  2. Spacecraft Attitude Tracking and Maneuver Using Combined Magnetic Actuators

    Science.gov (United States)

    Zhou, Zhiqiang

    2012-01-01

    A paper describes attitude-control algorithms using the combination of magnetic actuators with reaction wheel assemblies (RWAs) or other types of actuators such as thrusters. The combination of magnetic actuators with one or two RWAs aligned with different body axis expands the two-dimensional control torque to three-dimensional. The algorithms can guarantee the spacecraft attitude and rates to track the commanded attitude precisely. A design example is presented for nadir-pointing, pitch, and yaw maneuvers. The results show that precise attitude tracking can be reached and the attitude- control accuracy is comparable with RWA-based attitude control. When there are only one or two workable RWAs due to RWA failures, the attitude-control system can switch to the control algorithms for the combined magnetic actuators with the RWAs without going to the safe mode, and the control accuracy can be maintained. The attitude-control algorithms of the combined actuators are derived, which can guarantee the spacecraft attitude and rates to track the commanded values precisely. Results show that precise attitude tracking can be reached, and the attitude-control accuracy is comparable with 3-axis wheel control.

  3. Nuclear magnetic resonance method and apparatus for reducing motion artifacts

    International Nuclear Information System (INIS)

    Bailes, D.R.

    1988-01-01

    A nuclear magnetic resonance apparatus for imaging a region of a body in which part of the region is moving with a motion such that its displacement with respect to time is a nonmonotonic function during a time period over which a plurality of NMR data signals, which together define an image, are collected. The apparatus is described comprising: excitation means arranged to excite nuclear magnetic spins preferentially in the region; encoding means arranged to encode the magnetic spins; data collection means arranged to collect data signals representative of encoded magnetic spins; display means responsive to collected data signals to display an image of the region; measuring means arranged to produce an output indicative of the displacement of the moving part of the region; and control means for controlling the encoding means during the time period in dependence on the output of the measuring means so that data signals collected during the time period are collected in an order dependent on the motion such that motion artifacts are reduced

  4. Nuclear magnetic resonance imaging in patients with hypertrophic and dilated cardiomyopathy

    International Nuclear Information System (INIS)

    Boisvieux, A.

    1987-01-01

    Patients with hypertrophic and dilated cardiomyopathy and normal subjects were investigated with nuclear magnetic resonance imaging. To evaluate the NMR scanner possibilities, the results were compared with the echocardiographic investigation of the same patients. The capabilities of NMR imaging to provide information about intracardiac anatomy are emphasized. This study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of the techniques used to obtain NMR images and a review of the clinical use of NMR imaging for cardiac diagnosis [fr

  5. Neutron studies of nuclear magnetism at ultralow temperature

    DEFF Research Database (Denmark)

    Siemensmeyer, K.; Clausen, K.N.; Lefmann, K.

    1997-01-01

    Nuclear magnetic order in copper and silver has been investigated by neutron diffraction. Antiferromagnetic order is observed in these simple, diamagnetic metals at temperatures below 50 nK and 560 pK, respectively. Both crystallize in the FCC-symmetry which is fully frustrated for nearest...

  6. Principles of nuclear magnetic resonance (NMR) - current state of the art

    International Nuclear Information System (INIS)

    Lerski, R.A.

    1985-01-01

    Nuclear magnetic resonance (NMR) imaging has progressed rapidly from laboratory curiosity to commercial exploitation and clinical application in the space of only three years. The physical principles underlying the technique are described and the equipment requirements outlined. The question of optimal magnetic field strength is discussed. (author)

  7. Nuclear magnetic resonance apparatus having semitoroidal RF coil for use in topical NMR and NMR imaging

    International Nuclear Information System (INIS)

    Fukushima, E.; Assink, R.A.; Roeder, S.B.W.; Gibson, A.A.V.

    1984-01-01

    An improved nuclear magnetic resonance (NMR) apparatus for use in topical magnetic resonance (TMR) spectroscopy and other remote sensing NMR applications includes a semitoroidal radio frequency (rf) coil. The semitoroidal rf coil produces an effective alternating magnetic field at a distance from the poles of the coil, to enable NMR measurements to be taken from selected regions inside an object, particularly human and other living subjects. The semitoroidal rf coil is relatively insensitive to magnetic interference from metallic objects located behind the coil, thereby rendering the coil particularly suited for use in both conventional and superconducting NMR magnets. The semitoroidal NMR coil can be constructed so that it emits little or no excess rf electric field associated with the rf magnetic field, thus avoiding adverse effects due to dielectric heating of the sample or to any other electric field interactions. The coil may be combined with a like orthogonal coil and suitably driven to provide a circularly polarised field; or it may be used in conjunction with a concentrically nested smaller semitoroidal coil to move the maximum field further from the coil assembly. (author)

  8. Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant

    International Nuclear Information System (INIS)

    Conklin, Jim; Forsberg, Charles W.

    2007-01-01

    A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR

  9. Line broadening interference for high-resolution nuclear magnetic resonance spectra under inhomogeneous magnetic fields

    International Nuclear Information System (INIS)

    Wei, Zhiliang; Yang, Jian; Lin, Yanqin; Chen, Zhong; Chen, Youhe

    2015-01-01

    Nuclear magnetic resonance spectroscopy serves as an important tool for analyzing chemicals and biological metabolites. However, its performance is subject to the magnetic-field homogeneity. Under inhomogeneous fields, peaks are broadened to overlap each other, introducing difficulties for assignments. Here, we propose a method termed as line broadening interference (LBI) to provide high-resolution information under inhomogeneous magnetic fields by employing certain gradients in the indirect dimension to interfere the magnetic-field inhomogeneity. The conventional spectral-line broadening is thus interfered to be non-diagonal, avoiding the overlapping among adjacent resonances. Furthermore, an inhomogeneity correction algorithm is developed based on pattern recognition to recover the high-resolution information from LBI spectra. Theoretical deductions are performed to offer systematic and detailed analyses on the proposed method. Moreover, experiments are conducted to prove the feasibility of the proposed method for yielding high-resolution spectra in inhomogeneous magnetic fields

  10. Nuclear structure studies by means of magnetic moments of excited states

    International Nuclear Information System (INIS)

    Kaeubler, L.; Prade, H.; Schneider, L.; Brinckmann, H.F.; Stary, F.

    1981-09-01

    Experimental arrangements installed at the cyclotron U-120 and the tandem accelerator EGP-10 for the in-beam measurement of magnetic moments of excited nuclear states are discribed. The Perturbed-Angular-Distribution-method (PAD) has been used. A new evaluation method has been developed for the unique determination of the Larmor frequency from spin-procession spectra R(t) with less than half of an oscillation period between consecutive particle pulses. Magnetic moments in transitional nuclei or in nuclei near closed shells ( 103 Pd, 105 Ag, 117 Sb, 117 Te, 121 Te, 121 I, 143 Pm and 207 Bi) were measured. The results are discussed with the aim to get information about the nuclear structure of the corresponding isomeric states in connection with complex spectroscopic investigations. Therefore, the experimental values are compared to the results of model calculations (core-polarization, core-particle-coupling, Nilsson, particle-rotation-coupling or shell-model) or to the estimates on the basis of the additivity of effective magnetic moments. Single-particle aspects are discussed in connection with the magnetic moments of hsub(11/2)-, dsub(5/2)- and gsub(7/2)-neutron (ν) and proton (π) states in the nuclei 103 Pd, 117 Te, 121 Te and 143 Pm, respectively. The configurations of (π) 3 and (π)(ν) 2 -three-particle states in 105 Ag, 117 Sb, 121 I and 207 Bi could be determined using the additivity rule. The experimental magnetic moments of states in 143 Pm agree very well with the results of shell-model calculations, which have firstly been carried out also for negative-parity states in this mass region. Considering magnetic moments in 117 Te and 121 Te we could demonstrate the influence of different nuclear deformations on the magnetic moments in transitional nuclei. (author)

  11. Nuclear magnetic resonance in ferromagnetic terbium metal

    International Nuclear Information System (INIS)

    Cha, C.L.T.

    1974-01-01

    The magnetic properties of terbium were studied by the method of zero field nuclear magnetic resonance at 1.5 to 4 and 85 to 160 0 K. Two unconventional experimental techniques have been employed: the swept frequency and the swept temperature technique. Near 4 0 K, triplet resonance line structures were found and interpreted in terms of the magnetic domain and wall structures of ferromagnetic terbium. In the higher temperature range, temperature dependence of the resonance frequency and the quadrupole splitting were measured. The former provides a measurement of the temperature dependence of the magnetization M, and it agrees with bulk M measurements as well as the latest spin wave theory of M(T) (Brooks 1968). The latter agrees well with a calculation using a very general single ion density matrix for collective excitations (Callen and Shtrikman 1965). In addition, the small temperature-independent contribution to the electric field gradient at the nucleus due to the lattice and conduction electrons was untangled from the P(T) data. Also an anomalous and unexplained relaxation phenomenon was also observed

  12. Correlation between magnetic properties and nuclear magnetic resonance observations in Sr2FeMoO6 double perovskite

    International Nuclear Information System (INIS)

    Colis, S.; Pourroy, G.; Panissod, P.; Meny, C.; Dinia, A.

    2004-01-01

    We present the influence of the sintering temperature on the magnetic properties of Sr 2 FeMoO 6 double perovskite, on the basis of magnetization and nuclear magnetic resonance (NMR) measurements. Interestingly, the saturation magnetization originating mainly from the Fe moments is correlated with the amount of Mo magnetic moments observed by NMR measurements. We show that there is an optimum temperature of 1000 deg. C for which the reaction leading to the double perovskite becomes more advanced and/or the number of antisite defects is minimum

  13. Nuclear Magnetic Resonance: new applications in the quantification and assessment of polysaccharide-based vaccine intermediates

    International Nuclear Information System (INIS)

    Garrido, Raine; Velez, Herman; Verez, Vicente

    2013-01-01

    Nuclear Magnetic Resonance has become the choice for structural studies, identity assays and simultaneous quantification of active pharmaceutical ingredient of different polysaccharide-based vaccine. In the last two decades, the application of quantitative Nuclear Magnetic Resonance had an increasing impact to support several quantification necessities. The technique involves experiments with several modified parameters in order to obtain spectra with quantifiable signals. The present review is supported by some recent relevant reports and it discusses several applications of NMR in carbohydrate-based vaccines. Moreover, it emphasizes and describes several parameters and applications of quantitative Nuclear Magnetic Resonance

  14. Magnetic pseudo-fields in a rotating electron-nuclear spin system

    Science.gov (United States)

    Wood, A. A.; Lilette, E.; Fein, Y. Y.; Perunicic, V. S.; Hollenberg, L. C. L.; Scholten, R. E.; Martin, A. M.

    2017-11-01

    Analogous to the precession of a Foucault pendulum observed on the rotating Earth, a precessing spin observed in a rotating frame of reference appears frequency-shifted. This can be understood as arising from a magnetic pseudo-field in the rotating frame that nevertheless has physically significant consequences, such as the Barnett effect. To detect these pseudo-fields, a rotating-frame sensor is required. Here we use quantum sensors, nitrogen-vacancy (NV) centres, in a rapidly rotating diamond to detect pseudo-fields in the rotating frame. Whereas conventional magnetic fields induce precession at a rate proportional to the gyromagnetic ratio, rotation shifts the precession of all spins equally, and thus primarily affect 13C nuclear spins in the sample. We are thus able to explore these effects via quantum sensing in a rapidly rotating frame, and define a new approach to quantum control using rotationally induced nuclear spin-selective magnetic fields. This work provides an integral step towards realizing precision rotation sensing and quantum spin gyroscopes.

  15. Nuclear magnetic shielding tensors of 207Pb2+ in Pb(NO3)2

    International Nuclear Information System (INIS)

    Lutz, O.; Nolle, A.

    1980-01-01

    The NMR signals of 207 Pb were observed in a single crystal of Pb(NO 3 ) 2 and could be assigned to the four different Pb 2+ sites by the dependence of the linewidths on the orientation. Four different nuclear magnetic shielding tensors with equal principal values but with different characteristic vectors could be determined. The symmetry of the shielding tensors is in agreement with the symmetry at the Pb 2+ sites. It is shown, that intermolecular contributions can not account for the anisotropy of the nuclear magnetic shielding, which is 3 0 / 00 of the isotropic absolute magnetic shielding. (orig.)

  16. Nuclear orientation experiments on the magnetic moments of europium and gadolinium nuclei

    International Nuclear Information System (INIS)

    Berg, F.G. van den.

    1984-01-01

    In this thesis, experimental results on the ground state nuclear magnetic moments of europium and gadolinium isotopes are presented. The nuclear orientation experiments were performed on europium and gadolinium nuclei embedded in several host lattices. Attention is paid to the hyperfine interactions of the ions. Nuclear moments are discussed in the context of nuclear shell model. The theoretical framework is described for nuclear structure and low temperature nuclear orientation. Furthermore, the experimental techniques, the technical arrangement of the orientation apparatus, the methods for radiative detection and the use of nuclear orientation thermometry are described. (Auth.)

  17. 76 FR 81994 - UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit...

    Science.gov (United States)

    2011-12-29

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy; Combined License Application for Calvert Cliffs Nuclear Power Plant, Unit 3; Exemption 1.0 Background: UniStar Nuclear Energy (UNE) submitted to the U.S. Nuclear Regulatory Commission (NRC or the Commission ) a...

  18. Proceedings of the 9. Meeting of the nuclear magnetic resonance users. Abstracts

    International Nuclear Information System (INIS)

    2003-01-01

    Nuclear magnetic resonance spectroscopy has been one of the methods more powerful for characterizing and identifying substances, because it allows a detailed evaluation on internal molecular dynamics as well as clarifying its molecular and electronic structures. This meeting has presented a widespread variety of NMR techniques, as well as, advances in the use of this techniques in studies of the structure of liquids and solids. Theoretical and experimental papers are presented, covering the following subjects: nuclear magnetic resonance, structural chemical analysis, chemical shift and NMR spectrometers

  19. Influence of intramolecular f-f interactions on nuclear spin driven quantum tunneling of magnetizations in quadruple-decker phthalocyanine complexes containing two terbium or dysprosium magnetic centers.

    Science.gov (United States)

    Fukuda, Takamitsu; Matsumura, Kazuya; Ishikawa, Naoto

    2013-10-10

    Nuclear spin driven quantum tunneling of magnetization (QTM) phenomena, which arise from admixture of more than two orthogonal electronic spin wave functions through the couplings with those of the nuclear spins, are one of the important magnetic relaxation processes in lanthanide single molecule magnets (SMMs) in the low temperature range. Although recent experimental studies have indicated that the presence of the intramolecular f-f interactions affects their magnetic relaxation processes, little attention has been given to their mechanisms and, to the best of our knowledge, no rational theoretical models have been proposed for the interpretations of how the nuclear spin driven QTMs are influenced by the f-f interactions. Since quadruple-decker phthalocyanine complexes with two terbium or dysprosium ions as the magnetic centers show moderate f-f interactions, these are appropriate to investigate the influence of the f-f interactions on the dynamic magnetic relaxation processes. In the present paper, a theoretical model including ligand field (LF) potentials, hyperfine, nuclear quadrupole, magnetic dipolar, and the Zeeman interactions has been constructed to understand the roles of the nuclear spins for the QTM processes, and the resultant Zeeman plots are obtained. The ac susceptibility measurements of the magnetically diluted quadruple-decker monoterbium and diterbium phthalocyanine complexes, [Tb-Y] and [Tb-Tb], have indicated that the presence of the f-f interactions suppresses the QTMs in the absence of the external magnetic field (H(dc)) being consistent with previous reports. On the contrary, the faster magnetic relaxation processes are observed for [Tb-Tb] than [Tb-Y] at H(dc) = 1000 Oe, clearly demonstrating that the QTMs are rather enhanced in the presence of the external magnetic field. Based on the calculated Zeeman diagrams, these observations can be attributed to the enhanced nuclear spin driven QTMs for [Tb-Tb]. At the H(dc) higher than 2000 Oe, the

  20. Magnetic signature surveillance of nuclear fuel

    International Nuclear Information System (INIS)

    Bernatowicz, H.; Schoenig, F.C.

    1981-01-01

    Typical nuclear fuel material contains tramp ferromagnetic particles of random size and distribution. Also, selected amounts of paramagnetic or ferromagnetic material can be added at random or at known positions in the fuel material. The fuel material in its non-magnetic container is scanned along its length by magnetic susceptibility detecting apparatus whereby susceptibility changes along its length are obtained and provide a unique signal waveform of the container of fuel material as a signature thereof. The output signature is stored. At subsequent times in its life the container is again scanned and respective signatures obtained which are compared with the initially obtained signature, any differences indicating alteration or tampering with the fuel material. If the fuel material includes a paramagnetic additive by taking two measurements along the container the effects thereof can be cancelled out. (author)

  1. Use of the image by nuclear magnetic resonance (nucleography) in obstetrical aspects. Part 1. Emprego da imagem por ressonancia magnetica nuclear (nucleografia) em obstetricia. Parte 1

    Energy Technology Data Exchange (ETDEWEB)

    Lacreta, O [Sao Paulo Univ., SP (Brazil). Faculdade de Medicina

    1987-09-01

    Nuclear magnetic resonance (nucleography) is a new method to study human body. In this paper the physical principles on nuclear magnetic resonance and its applications to the pregnant women are presented. (author).

  2. Nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Rabenstein, D.L.; Guo, W.

    1988-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is one of the most widely used instrumental methods, with applications ranging from the characterization of pure compounds by high-resolution NMR to the diagnosis of disease by magnetic resonance imaging (MRI). To give some idea of the wide-spread use of NMR, a computer search for the period 1985-1987 turned up over 500 books and review articles and over 7000 literature citations, not including papers in which NMR was used together with other spectroscopic methods for the routine identification of organic compounds. Consequently, they have by necessity been somewhat selective in the topics they have chosen to cover and in the articles they have cited. In this review, which covers the published literature for the approximate period Sept 1985-Aug 1987, they have focused on new developments and applications of interest to the chemist. First they review recent developments in instrumentation and techniques. Although there have not been any major break-throughs in NMR instrumentation during the past two years, significant refinements have been reported which optimize instrumentation for the demanding multiple pulse experiments in routine use today. Next they review new developments in methods for processing NMR data, followed by reviews of one-dimensional and two-dimensional NMR experiments

  3. Ga nuclear magnetic resonance study of UTGa5(T = Ni,Pt)

    International Nuclear Information System (INIS)

    Kato, Harukazu; Sakai, Hironori; Tokunaga, Yo; Tokiwa, Yoshihumi; Ikeda, Shugo; Onuki, Yoshichika; Kambe, Shinsaku; Walstedt, Russell E

    2003-01-01

    Ga nuclear magnetic resonance measurements have been carried out for the 5f antiferromagnets UNiGa 5 and UPtGa 5 . The transferred field at the Ga nuclei has been evaluated. The magnetic structure in the antiferromagnetic region has been confirmed from the microscopic point of view. The mechanism of the hyperfine interaction is discussed

  4. Combined analysis of magnetic and gravity anomalies using normalized source strength (NSS)

    Science.gov (United States)

    Li, L.; Wu, Y.

    2017-12-01

    Gravity field and magnetic field belong to potential fields which lead inherent multi-solution. Combined analysis of magnetic and gravity anomalies based on Poisson's relation is used to determinate homology gravity and magnetic anomalies and decrease the ambiguity. The traditional combined analysis uses the linear regression of the reduction to pole (RTP) magnetic anomaly to the first order vertical derivative of the gravity anomaly, and provides the quantitative or semi-quantitative interpretation by calculating the correlation coefficient, slope and intercept. In the calculation process, due to the effect of remanent magnetization, the RTP anomaly still contains the effect of oblique magnetization. In this case the homology gravity and magnetic anomalies display irrelevant results in the linear regression calculation. The normalized source strength (NSS) can be transformed from the magnetic tensor matrix, which is insensitive to the remanence. Here we present a new combined analysis using NSS. Based on the Poisson's relation, the gravity tensor matrix can be transformed into the pseudomagnetic tensor matrix of the direction of geomagnetic field magnetization under the homologous condition. The NSS of pseudomagnetic tensor matrix and original magnetic tensor matrix are calculated and linear regression analysis is carried out. The calculated correlation coefficient, slope and intercept indicate the homology level, Poisson's ratio and the distribution of remanent respectively. We test the approach using synthetic model under complex magnetization, the results show that it can still distinguish the same source under the condition of strong remanence, and establish the Poisson's ratio. Finally, this approach is applied in China. The results demonstrated that our approach is feasible.

  5. Study on VCSEL laser heating chip in nuclear magnetic resonance gyroscope

    Science.gov (United States)

    Liang, Xiaoyang; Zhou, Binquan; Wu, Wenfeng; Jia, Yuchen; Wang, Jing

    2017-10-01

    In recent years, atomic gyroscope has become an important direction of inertial navigation. Nuclear magnetic resonance gyroscope has a stronger advantage in the miniaturization of the size. In atomic gyroscope, the lasers are indispensable devices which has an important effect on the improvement of the gyroscope performance. The frequency stability of the VCSEL lasers requires high precision control of temperature. However, the heating current of the laser will definitely bring in the magnetic field, and the sensitive device, alkali vapor cell, is very sensitive to the magnetic field, so that the metal pattern of the heating chip should be designed ingeniously to eliminate the magnetic field introduced by the heating current. In this paper, a heating chip was fabricated by MEMS process, i.e. depositing platinum on semiconductor substrates. Platinum has long been considered as a good resistance material used for measuring temperature The VCSEL laser chip is fixed in the center of the heating chip. The thermometer resistor measures the temperature of the heating chip, which can be considered as the same temperature of the VCSEL laser chip, by turning the temperature signal into voltage signal. The FPGA chip is used as a micro controller, and combined with PID control algorithm constitute a closed loop control circuit. The voltage applied to the heating resistor wire is modified to achieve the temperature control of the VCSEL laser. In this way, the laser frequency can be controlled stably and easily. Ultimately, the temperature stability can be achieved better than 100mK.

  6. Contribution to the study of nuclear resonance in magnetic media (1963)

    International Nuclear Information System (INIS)

    Hartmann-Boutron, F.

    1963-06-01

    An attempt is made to interpret the results of nuclear magnetic resonance experiments made by various workers on ferro and ferrimagnetic compounds of the iron group. The problems encountered are the following: effects of the dipolar fields and the hyperfine structure anisotropy; signal intensity; frequency pulling due to the Suhl-Nakamura interaction between nuclear spins ; nuclear relaxation and ferrimagnetic resonance in single domain samples of impure YIG; nuclear relaxation in the Bloch walls of insulators. The results of our calculations are generally in good agreement with experiment. (author) [fr

  7. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  8. The design of photoelectric signal processing system for a nuclear magnetic resonance gyroscope based on FPGA

    Science.gov (United States)

    Zhang, Xian; Zhou, Binquan; Li, Hong; Zhao, Xinghua; Mu, Weiwei; Wu, Wenfeng

    2017-10-01

    Navigation technology is crucial to the national defense and military, which can realize the measurement of orientation, positioning, attitude and speed for moving object. Inertial navigation is not only autonomous, real-time, continuous, hidden, undisturbed but also no time-limited and environment-limited. The gyroscope is the core component of the inertial navigation system, whose precision and size are the bottleneck of the performance. However, nuclear magnetic resonance gyroscope is characteristic of the advantage of high precision and small size. Nuclear magnetic resonance gyroscope can meet the urgent needs of high-tech weapons and equipment development of new generation. This paper mainly designs a set of photoelectric signal processing system for nuclear magnetic resonance gyroscope based on FPGA, which process and control the information of detecting laser .The photoelectric signal with high frequency carrier is demodulated by in-phase and quadrature demodulation method. Finally, the processing system of photoelectric signal can compensate the residual magnetism of the shielding barrel and provide the information of nuclear magnetic resonance gyroscope angular velocity.

  9. Nuclear magnetic and electric dipole moments of neon-19

    International Nuclear Information System (INIS)

    MacArthur, D.W.

    1983-01-01

    This thesis presents a detailed discussion of a series of experiments designed to measure the magnetic and electric dipole moments of the β-emitting nucleus 19 Ne. The 19 Ne is generated in the reaction 19 F(p,n) 19 Ne and is polarized by a ''stern-Gerlach'' magnet in a rare gas atomic beams machine. The atoms are stored in a cell for many seconds without depolarizing. The parity violating asymmetry in the β angular distribution is used to monitor the nuclear polarization. The polarized atoms are stored in a cell in a uniform magnetic field. The β-asymmetry is monitored by a pair of β-detectors located on either side of the cell. Transitions between the M/sub J/ = +1/2 and M/sub J/ = -1/2 spin states are induced by an rf field generated by a small Helmholtz coil pair surrounding the cell. Nuclear magnetic resonance lines are observed and the magnetic moment of 19 Ne measured to be μ( 19 Ne) = -1.88542(8)μ/sub N/. A new magnet, cell and detectors were designed to give narrow resonance lines. The equipment is described in detail and several resonance line shapes are discussed. The narrowest resonance line achieved with this system was 0.043 Hz FWHM. This width is primarily due to the 19 Ne lifetime. Pulsed NMR lineshapes were also observed. The narrow NMR lines observed in the previous experiment were then used as a probe to look for an electric dipole moment (EDM) in 19 Ne. Any shift in the resonance frequency correlated with changes in an externally applied electric field would be evidence for an EDM. The EDM of the 19 Ne atom was measured to (7.2 +/- 6.2 X 10 -22 e-cm. This experiment and possible improvements are discussed in detail

  10. Nuclear magnetic relaxation and origins of RMN signals from GdAl2

    International Nuclear Information System (INIS)

    Santos Oliveira Junior, I. dos.

    1988-12-01

    The intermetallic compound GdAl 2 crystallizes in the cubic Laves phase C15. It is a simple ferromagnet below 176K. The easy direction of magnetization in this compound is such that the Al ions are distributed among two magnetically inequivalent sites. The pulsed NMR technique was used to study the origin of the signals from these two sites and the nuclear magnetic relaxation. (author) [pt

  11. Microwave-gated dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bornet, Aurélien; Pinon, Arthur; Jhajharia, Aditya

    2016-01-01

    Dissolution dynamic nuclear polarization (D-DNP) has become a method of choice to enhance signals in nuclear magnetic resonance (NMR). Recently, we have proposed to combine cross-polarization (CP) with D-DNP to provide high polarization P((13)C) in short build-up times. In this paper, we show...

  12. Dynamic Nuclear Polarization at low temperature and high magnetic eld for biomedical applications in Magnetic Resonance Spectroscopic Imaging

    International Nuclear Information System (INIS)

    Goutailler, Florent

    2011-01-01

    The aim of this thesis work was to design, build and optimize a large volume multi-samples DNP (Dynamic Nuclear Polarization) polarizer dedicated to Magnetic Resonance Spectroscopic Imaging applications. The experimental system is made up of a high magnetic field magnet (3,35 T) in which takes place a cryogenic system with a pumped bath of liquid helium ("4He) allowing temperatures lower than 1,2 K. A set of inserts is used for the different steps of DNP: irradiation of the sample by a microwave field (f=94 GHz and P=50 mW), polarization measurement by Nuclear Magnetic Resonance... With this system, up to three samples of 1 mL volume can be polarized to a rate of few per-cents. The system has a long autonomy of four hours, so it can be used for polarizing molecules with a long time constant of polarization. Finally, the possibility to get quasi-simultaneously, after dissolution, several samples with a high rate of polarization opens the way of new applications in biomedical imaging. (author) [fr

  13. Monte Carlo Simulation of Adiabatic Cooling and Nuclear Magnetism

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker; Viertiö, H. E.; Mouritsen, Ole G.

    1988-01-01

    in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are reduced by less than 10% relative to those calculated by mean-field theory. The dynamics of the ordering process following...

  14. The effect of a neutrino magnetic moment on nuclear excitation processes

    International Nuclear Information System (INIS)

    Dodd, A.C.; Papageorgiu, E.; Ranfone, S.

    1991-01-01

    It is shown that the MeV-range neutrinos with a magnetic moment of ≅ 10 -11 Bohr magnetons would excite nuclei, like 12 C, with cross sections comparable to those obtained in the Standard Model. This implies the possibility of improving the present experimental bounds on the magnetic moment of any flavour of neutrinos by one order of magnitude. Such a magnetic moment would also enhance the coherent neutrino-nuclear scattering in low-temperature detectors, enabling them to set comparable limits. (author)

  15. Nuclear magnetic resonance. Present results and its application to renal pathology. Experimental study of hydronephrosis

    International Nuclear Information System (INIS)

    Bertrand, P.

    1987-01-01

    Results of proton nuclear magnetic resonance imaging and relaxation time measurement of experimental hydronephrosis in mice are presented. The study is preceded by a description of the physical principles underlying the phenomenon of nuclear magnetic resonance and of its biomedical applications and with a review of the clinical use of NMR imaging in renal pathology [fr

  16. Application of nuclear magnetic resonance in osteoporosis evaluation; Aplicacoes de ressonancia magnetica nuclear na avaliacao de osteoporose

    Energy Technology Data Exchange (ETDEWEB)

    Giannoni, Ricardo A., E-mail: giannoni@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Montrazi, Elton T.; Bonagamba, Tito J., E-mail: elton.montrazi@gmail.com, E-mail: tito@ifsc.usp.br [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Inst. de Fisica; Cesar, Reinaldo, E-mail: reinaldofisica@gmail.com [Universidade de Sao Paulo (EESC/USP), Sao Carlos, SP (Brazil). Escola de Engenharia

    2013-07-01

    In this work, initially ceramic samples of known porosity were used. These ceramic samples were saturated with water. The nuclear magnetic resonance signal due to relaxation processes that the hydrogen nucleus water contained in the pores of this ceramic material was measured. Then these samples were subjected to a process of drying and measures successively. As the water contained in pores greater evaporates the intensity of signal decreases and shows the sign because of the smaller pores. The analysis of this drying process gives a qualitative assessment of the pore size of the material. In a second step, bones of animals of unknown porosity underwent the same methodology for evaluating osteoporosis. Also a sample of human vertebra in a unique manner, with the same purpose was measured. Combined with other techniques is a quantitative evaluation of the possible porosity.

  17. Nuclear magnetic resonance spectroscopy in food applications: a critical appraisal

    International Nuclear Information System (INIS)

    Divakar, S.

    1998-01-01

    Usefulness of Nuclear Magnetic Resonance (NMR) spectroscopy in food applications is presented in this review. Some of the basic concepts of NMR pertaining to one-dimensional and two-dimensional techniques, solid-state NMR and Magnetic Resonance Imaging (MRI) are discussed. Food applications dealt with encompass such diverse areas like nature and state of water in foods, detection and quantitation of important constituents of foods, intact food systems and NMR related to food biology. (author)

  18. Rotating-frame gradient fields for magnetic resonance imaging and nuclear magnetic resonance in low fields

    Science.gov (United States)

    Bouchard, Louis-Serge; Pines, Alexander; Demas, Vasiliki

    2014-01-21

    A system and method for Fourier encoding a nuclear magnetic resonance (NMR) signal is disclosed. A static magnetic field B.sub.0 is provided along a first direction. An NMR signal from the sample is Fourier encoded by applying a rotating-frame gradient field B.sub.G superimposed on the B.sub.0, where the B.sub.G comprises a vector component rotating in a plane perpendicular to the first direction at an angular frequency .omega.in a laboratory frame. The Fourier-encoded NMR signal is detected.

  19. Investigation of Condensed Media in Weak Fields by the Method of Nuclear Magnetic Resonance

    Science.gov (United States)

    Davydov, V. V.; Myazin, N. S.; Dudkin, V. I.; Velichko, E. N.

    2018-05-01

    A compact design of a rapid-response nuclear magnetic spectrometer for investigation of condensed media in weak fields is reported. As a result of investigation of different condensed media, special features of recording a nuclear magnetic resonance (NMR) signal in a weak magnetic field from a small volume of the medium under study are established. For the first time the NMR absorption spectra of condensed media in a weak field are collected. Based on the results of experimental studies, the potential of using a compact NMR-spectrometer for condensed media monitoring in a rapid response mode is determined.

  20. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: esm041@mail.harvard.edu

    2016-01-18

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  1. On the Fer expansion: Applications in solid-state nuclear magnetic resonance and physics

    International Nuclear Information System (INIS)

    Mananga, Eugene Stephane

    2016-01-01

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Fer expansion that is helpful to describe the evolution of the spin system in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics based on the Fer expansion which provides procedures to control and describe the spin dynamics in solid-state NMR. Significant applications of the Fer expansion are illustrated in NMR and in physics such as classical physics, nonlinear dynamics systems, celestial mechanics and dynamical astronomy, hydrodynamics, nuclear, atomic, molecular physics, and quantum mechanics, quantum field theory, high energy physics, electromagnetism. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics.

  2. Nuclear magnetic resonance - from molecules to man

    OpenAIRE

    Wüthrich, Kurt

    2017-01-01

    Initial observations of the physical phenomenon of nuclear magnetic resonance (NMR) date back to the late 1940s. In the following two decades high-resolution NMR in solution became an indispensible analytical tool in chemistry, and solid state NMR had an increasingly important role in physics. Some of the potentialities of the method for investigations of complex biological systems had also long been anticipated, and initial experiments with biological specimens were described already 30 year...

  3. Effects of strain and quantum confinement in optically pumped nuclear magnetic resonance in GaAs: Interpretation guided by spin-dependent band structure calculations

    Science.gov (United States)

    Wood, R. M.; Saha, D.; McCarthy, L. A.; Tokarski, J. T.; Sanders, G. D.; Kuhns, P. L.; McGill, S. A.; Reyes, A. P.; Reno, J. L.; Stanton, C. J.; Bowers, C. R.

    2014-10-01

    A combined experimental-theoretical study of optically pumped nuclear magnetic resonance (OPNMR) has been performed in a GaAs /A l0.1G a0.9As quantum well film epoxy bonded to a Si substrate with thermally induced biaxial strain. The photon energy dependence of the Ga OPNMR signal was recorded at magnetic fields of 4.9 and 9.4 T at a temperature of 4.8-5.4 K. The data were compared to the nuclear spin polarization calculated from the electronic structure and differential absorption to spin-up and spin-down states of the electron conduction band using a modified k .p model based on the Pidgeon-Brown model. Comparison of theory with experiment facilitated the assignment of features in the OPNMR energy dependence to specific interband Landau level transitions. The results provide insight into how effects of strain and quantum confinement are manifested in optical nuclear polarization in semiconductors.

  4. The Nuclear Magnetic Resonance and its utilization in image formation

    International Nuclear Information System (INIS)

    Bonagamba, T.J.; Tannus, A.; Panepucci, H.

    1987-01-01

    Some aspects about Nuclear Magnetic Resonance (as Larmor Theorem, radio frequency pulse, relaxation of spins system) and its utilization in two dimensional image processing with the necessity of a tomography plane are studied. (C.G.C.) [pt

  5. Real-time high-resolution X-ray imaging and nuclear magnetic resonance study of the hydration of pure and Na-doped C3A in the presence of sulfates

    KAUST Repository

    Kirchheim, A. P.; Dal Molin, Denise Carpena Coitinho; Fischer, Peter J.; Emwas, Abdul-Hamid M.; Provis, John L.; Monteiro, Paulo José Meleragno

    2011-01-01

    window, combined with solution analysis by 27Al nuclear magnetic resonance (NMR) spectroscopy, was used to capture information regarding the mechanism of C3A hydration during the early stages. There are differences in the hydration mechanism between

  6. Selection of planes in nuclear magnetic resonance tomography

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1986-01-01

    A prototype aiming to obtain images in nuclear magnetic resonance tomography was developed, by adjusting NMR spectrometer in the IFQSC Laboratory. The techniques for selecting planes were analysed by a set of computer codes, which were elaborated from Bloch equation solutions to simulate the spin system behaviour. Images were obtained using planes with thickness inferior to 1 cm. (M.C.K.)

  7. Apparatus and method for nuclear magnetic resonance scanning and mapping

    International Nuclear Information System (INIS)

    Damadian, R.V.

    1983-01-01

    An improved apparatus and method is disclosed for analyzing the chemical and structural composition of a specimen including whole-body specimens which may include, for example, living mammals, utilizing nuclear magnetic resonance (NMR) techniques. A magnetic field space necessary to obtain an NMR signal characteristic of the chemical structure of the specimen is focused to provide a resonance domain of selectable size, which may then be moved in a pattern with respect to the specimen to scan the specimen

  8. NUCLEAR-MAGNETIC MINI-RELAXOMETER FOR LIQUID AND VISCOUS MEDIA CONTROL

    Directory of Open Access Journals (Sweden)

    V. V. Davydov

    2015-01-01

    Full Text Available The paper deals with a new method for registration of nuclear magnetic resonance signal of small volume liquid and viscous media being studied (0.5 ml in a weak magnetic field (0.06 –0.08 T, and measuring of longitudinal T1 and transverse T2 relaxation constants. A new construction of NMR mini-relaxometer magnetic system is developed for registration of NMR signal. The nonuniformity of a magnetic field in a pole where registration coil is located is 0,410–3 sm–1 (the induction is В0 = 0.079 T. An electrical circuit of autodyne receiver (weak fluctuations generator has been developed with usage of low noise differential amplifier and NMR signal operating and control scheme (based on microcontroller STM32 for measuring of relaxation constants of liquid and viscous media in automatic operating mode. New technical decisions made it possible to improve relaxometer response time and dynamic range of measurements for relaxation constants T1 and T2 in comparison with small sized nuclear-magnetic spectrometer developed by the authors earlier (with accuracy characteristics conservation. The developed schemes for self-tuning of registration frequency, generating amplitude of magnetic field H1 in registration coil, and amplitude and frequency of modulating field provide measuring of T1 and T2 with error less than 0.5 % and signal to noise ratio about 1.2 in temperature range from 3 to 400 C. A new construction of mini-relaxometer reduced the weight of the device to 4 kg (with independent supply unit and increased transportability and operating convenience.

  9. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters.

  10. 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2008-01-01

    The Report consist of abstracts of 63 communications presented during the 41 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 1-2, 2008 in Cracow. Presentations cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  11. Quantification of aquifer properties with surface nuclear magnetic resonance in the Platte River valley, central Nebraska, using a novel inversion method

    Science.gov (United States)

    Irons, Trevor P.; Hobza, Christopher M.; Steele, Gregory V.; Abraham, Jared D.; Cannia, James C.; Woodward, Duane D.

    2012-01-01

    Surface nuclear magnetic resonance, a noninvasive geophysical method, measures a signal directly related to the amount of water in the subsurface. This allows for low-cost quantitative estimates of hydraulic parameters. In practice, however, additional factors influence the signal, complicating interpretation. The U.S. Geological Survey, in cooperation with the Central Platte Natural Resources District, evaluated whether hydraulic parameters derived from surface nuclear magnetic resonance data could provide valuable input into groundwater models used for evaluating water-management practices. Two calibration sites in Dawson County, Nebraska, were chosen based on previous detailed hydrogeologic and geophysical investigations. At both sites, surface nuclear magnetic resonance data were collected, and derived parameters were compared with results from four constant-discharge aquifer tests previously conducted at those same sites. Additionally, borehole electromagnetic-induction flowmeter data were analyzed as a less-expensive surrogate for traditional aquifer tests. Building on recent work, a novel surface nuclear magnetic resonance modeling and inversion method was developed that incorporates electrical conductivity and effects due to magnetic-field inhomogeneities, both of which can have a substantial impact on the data. After comparing surface nuclear magnetic resonance inversions at the two calibration sites, the nuclear magnetic-resonance-derived parameters were compared with previously performed aquifer tests in the Central Platte Natural Resources District. This comparison served as a blind test for the developed method. The nuclear magnetic-resonance-derived aquifer parameters were in agreement with results of aquifer tests where the environmental noise allowed data collection and the aquifer test zones overlapped with the surface nuclear magnetic resonance testing. In some cases, the previously performed aquifer tests were not designed fully to characterize

  12. Combined development of international nuclear fusion test reactors

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    Ambassadors of the four most important partners (Common Market, Japan, USA and USSR) in the IAEA sponsored INTOR project, met on the 15 and 16 March 1987 in Vienna under the auspices of the IAEA. A press release was issued acknowledging the considerable technical progress made in magnetic nuclear fusion research. Future design concepts, assistance in research and development work and other activities towards the provision of an international experimental thermonuclear reactor were discussed. (G.T.H.)

  13. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Jeffry Todd [Univ. of California, Berkeley, CA (United States)

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I = 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an

  14. Nuclear magnetic resonance studies of quadrupolar nuclei and dipolar field effects

    International Nuclear Information System (INIS)

    Urban, Jeffry Todd

    2004-01-01

    Experimental and theoretical research conducted in two areas in the field of nuclear magnetic resonance (NMR) spectroscopy is presented: (1) studies of the coherent quantum-mechanical control of the angular momentum dynamics of quadrupolar (spin I > 1/2) nuclei and its application to the determination of molecular structure; and (2) applications of the long-range nuclear dipolar field to novel NMR detection methodologies.The dissertation is organized into six chapters. The first two chapters and associated appendices are intended to be pedagogical and include an introduction to the quantum mechanical theory of pulsed NMR spectroscopy and the time dependent theory of quantum mechanics. The third chapter describes investigations of the solid-state multiple-quantum magic angle spinning (MQMAS) NMR experiment applied to I 5/2 quadrupolar nuclei. This work reports the use of rotary resonance-matched radiofrequency irradiation for sensitivity enhancement of the I = 5/2 MQMAS experiment. These experiments exhibited certain selective line narrowing effects which were investigated theoretically.The fourth chapter extends the discussion of multiple quantum spectroscopy of quadrupolar nuclei to a mostly theoretical study of the feasibility of enhancing the resolution of nitrogen-14 NMR of large biomolecules in solution via double-quantum spectroscopy. The fifth chapter continues to extend the principles of multiple quantum NMR spectroscopy of quadrupolar nuclei to make analogies between experiments in NMR/nuclear quadrupolar resonance (NQR) and experiments in atomic/molecular optics (AMO). These analogies are made through the Hamiltonian and density operator formalism of angular momentum dynamics in the presence of electric and magnetic fields.The sixth chapter investigates the use of the macroscopic nuclear dipolar field to encode the NMR spectrum of an analyte nucleus indirectly in the magnetization of a sensor nucleus. This technique could potentially serve as an encoding

  15. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.

    Science.gov (United States)

    Terada, Y; Kono, S; Ishizawa, K; Inamura, S; Uchiumi, T; Tamada, D; Kose, K

    2013-05-01

    We adopted a combination of pieces of permanent magnets and a single-channel (SC) shim coil to shim the magnetic field in a magnetic resonance imaging system dedicated for skeletal age assessment of children. The target magnet was a 0.3-T open and compact permanent magnet tailored to the hand imaging of young children. The homogeneity of the magnetic field was first improved by shimming using pieces of permanent magnets. The residual local inhomogeneity was then compensated for by shimming using the SC shim coil. The effectiveness of the shimming was measured by imaging the left hands of human subjects and evaluating the image quality. The magnetic resonance images for the child subject clearly visualized anatomical structures of all bones necessary for skeletal age assessment, demonstrating the usefulness of combined shimming. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Recommendations concerning magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    1986-01-01

    In medicine the technique of nuclear magnetic resonance (NMR) is applied in the form of in vivo nuclear magnetic resonance spectroscopy (MRS). In vivo MRS can be carried out non-invasively. The committee of the Dutch Health Council briefly discusses the qualities and potentialities of the nuclei that will probably be used in future clinical spectroscopy: 31 P, 13 C, 1 H (and possibly 19 F and 23 Na). The committee discusses several possibilities of combining imaging and spectroscopy. The imaging of nuclei other than protons is also possible with MRS. Potential applications are considered in oncology, cardiology, neurology and hepatology. (Auth.)

  17. Nuclear magnetic resonance of D(-)-α-amino-benzyl penicillin

    International Nuclear Information System (INIS)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S.; Menezes, Sonia M.C.

    1995-01-01

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-α-amino-benzyl penicillin were analysed using 13 C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed

  18. A combined hydro-nuclear-solar project for electric power production

    International Nuclear Information System (INIS)

    Yiftah, S.

    1985-01-01

    Some of the main, general-perspective themes of Dr. Alvin Weinberg's leadership and long and varied work are: the effect of present and future nuclear energy projects on society, not only in the United States but throughout the world; analysis, comparison, and combination of various sources of energy; extensive multiple use of nuclear energy complexes (so-called NUPLEX, for nuclear complex) for various areas of the world; and use of ''Big Technology'' and ''Big Science'' for solving, or helping to solve, political problems. A combined hydro-nuclear-solar project for electric power production is discussed, as well as two other energy-related engineering projects. Some of the projects originated or were inspired by work done at the Oak Ridge National Laboratory under the leadership of Dr. Alvin Weinberg. Also reported are the technical characteristics and interrelationships of the three components of the envisaged hydronuclear-solar project

  19. Measurement of specific heat and specific absorption rate by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Gultekin, David H., E-mail: david.gultekin@aya.yale.edu [Department of Electrical Engineering, Yale University, New Haven, CT 06520 (United States); Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States); Gore, John C. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37232 (United States); Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN 37232 (United States); Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 (United States); Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37232 (United States); Institute of Imaging Science, Vanderbilt University, Nashville, TN 37232 (United States)

    2010-05-20

    We evaluate a nuclear magnetic resonance (NMR) method of calorimetry for the measurement of specific heat (c{sub p}) and specific absorption rate (SAR) in liquids. The feasibility of NMR calorimetry is demonstrated by experimental measurements of water, ethylene glycol and glycerol using any of three different NMR parameters (chemical shift, spin-spin relaxation rate and equilibrium nuclear magnetization). The method involves heating the sample using a continuous wave laser beam and measuring the temporal variation of the spatially averaged NMR parameter by non-invasive means. The temporal variation of the spatially averaged NMR parameter as a function of thermal power yields the ratio of the heat capacity to the respective nuclear thermal coefficient, from which the specific heat can be determined for the substance. The specific absorption rate is obtained by subjecting the liquid to heating by two types of radiation, radiofrequency (RF) and near-infrared (NIR), and by measuring the change in the nuclear spin phase shift by a gradient echo imaging sequence. These studies suggest NMR may be a useful tool for measurements of the thermal properties of liquids.

  20. Bipolar programmable current supply for superconducting nuclear magnetic resonance magnets

    Science.gov (United States)

    Koivuniemi, Jaakko; Luusalo, Reeta; Hakonen, Pertti

    1998-09-01

    In high resolution continuous-wave nuclear magnetic resonance (NMR) work well-reproducible, linear sweeps of current are needed. We have developed a microcontroller based programmable current supply, tested with superconducting magnets with inductance of 10 mH and 10 H. We achieved a resolution and noise of 4 ppm. The supply has an internal sweep with programmable ramping rate and a possibility for remote operation from a computer with either GPIB or RS232 interface. It is based on an 18-bit D/A converter. The maximum output current is ±10 A, the sweep rate can be set between 1 μA/s-140 mA/s, and the maximum output voltage is ±2.5 V. In work at ultralow temperatures, especially in superconducting quantum interference device NMR, all rf interference to the experiment should be avoided. One of the sources of this kind of unwanted input is the digital switching noise of fast logic devices. We discuss this problem in the context of our design.

  1. Magnetic properties of strongly asymmetric nuclear matter

    International Nuclear Information System (INIS)

    Kutschera, M.; Wojcik, W.

    1988-01-01

    We investigate stability of neutron matter containing a small proton admixture with respect to spin fluctuations. We establish conditions under which strongly asymmetric nuclear matter could acquire a permanent magnetization. It is shown that if the protons are localized, the system becomes unstable to spin fluctuations for arbitrarily weak proton-neutron spin interactions. For non-localized protons there exists a threshold value of the spin interaction above which the system can develop a spontaneous polarization. 12 refs., 2 figs. (author)

  2. A magnetically responsive nanocomposite scaffold combined with Schwann cells promotes sciatic nerve regeneration upon exposure to magnetic field

    Directory of Open Access Journals (Sweden)

    Liu ZY

    2017-10-01

    Full Text Available Zhongyang Liu,1,* Shu Zhu,1,* Liang Liu,2,* Jun Ge,3,4,* Liangliang Huang,1 Zhen Sun,1 Wen Zeng,5 Jinghui Huang,1 Zhuojing Luo1 1Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, 2Department of Orthopedics, No 161 Hospital of PLA, Wuhan, Hubei, 3Department of Orthopedics, No 323 Hospital of PLA, Xi’an, Shaanxi, 4Department of Anatomy, Fourth Military Medical University, Xi’an, Shaanxi, 5Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shaanxi, People’s Republic of China *These authors contributed equally to this work Abstract: Peripheral nerve repair is still challenging for surgeons. Autologous nerve transplantation is the acknowledged therapy; however, its application is limited by the scarcity of available donor nerves, donor area morbidity, and neuroma formation. Biomaterials for engineering artificial nerves, particularly materials combined with supportive cells, display remarkable promising prospects. Schwann cells (SCs are the absorbing seeding cells in peripheral nerve engineering repair; however, the attenuated biologic activity restricts their application. In this study, a magnetic nanocomposite scaffold fabricated from magnetic nanoparticles and a biodegradable chitosan–glycerophosphate polymer was made. Its structure was evaluated and characterized. The combined effects of magnetic scaffold (MG with an applied magnetic field (MF on the viability of SCs and peripheral nerve injury repair were investigated. The magnetic nanocomposite scaffold showed tunable magnetization and degradation rate. The MGs synergized with the applied MF to enhance the viability of SCs after transplantation. Furthermore, nerve regeneration and functional recovery were promoted by the synergism of SCs-loaded MGs and MF. Based on the current findings, the combined application of MGs and SCs with applied MF is a promising therapy for the engineering of peripheral

  3. Evaluation of nuclear magnetic resonance spectroscopy variability

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, Felipe Rodrigues; Salmon, Carlos Ernesto Garrido, E-mail: garrido@ffclrp.usp.br [Universidade de Sao Paulo (FFCLRP/USP), Ribeirao Preto, SP (Brazil). Fac. de Filisofia, Ciencias e Letras; Otaduy, Maria Concepcion Garcia [Universidade de Sao Paulo (FAMUS/USP), Sao Paulo, SP (Brazil). Fac. de Medicina. Departamento de Radiologia

    2014-11-01

    Introduction: the intrinsically high sensitivity of Magnetic Resonance Spectroscopy (MRS) causes considerable variability in metabolite quantification. In this study, we evaluated the variability of MRS in two research centers using the same model of magnetic resonance image scanner. Methods: two metabolic phantoms were created to simulate magnetic resonance spectra from in vivo hippocampus. The phantoms were filled with the same basic solution containing the following metabolites: N-acetyl-aspartate, creatine, choline, glutamate, glutamine and inositol. Spectra were acquired over 15 months on 26 acquisition dates, resulting in a total of 130 spectra per center. Results: the phantoms did not undergo any physical changes during the 15-month period. Temporal analysis from both centers showed mean metabolic variations of 3.7% in acquisitions on the same day and of 8.7% over the 15-month period. Conclusion: The low deviations demonstrated here, combined with the high specificity of Magnetic Resonance Spectroscopy, confirm that it is feasible to use this technique in multicenter studies in neuroscience research. (author)

  4. Ferromagnetic nuclear resonance investigation of the surface magnetization in iron sheets

    International Nuclear Information System (INIS)

    Varga, L.; Tompa, K.

    1977-09-01

    The role of the domain structure and domain properties in ferromagnetic nuclear resonance (FNR) experiments is reconsidered. Using the FNR signal intensity as a measure of surface domain wall volume, it is found that the behaviour of the surface magnetization differs from that of the bulk magnetization of iron sheets. Namely, a critical field below which the FNR signal remains unchanqed is observed in the surface magnetization. This lag of surface domain wall annihilation is sensitive to the given surface conditions and in particular to the rolling deformation. Considering the small skin depth, FNR as a surface testing method is discussed. (D.P.)

  5. USING MAGNETIC MOMENTS TO UNVEIL THE NUCLEAR STRUCTURE OF LOW-SPIN NUCLEAR STATES

    Directory of Open Access Journals (Sweden)

    Diego A. Torres

    2011-07-01

    Full Text Available The experimental study of magnetic moments for nuclear states near the ground state, I ≤ 2, provides a powerful tool to test nuclear structure models. Traditionally, the use of Coulomb excitation reactions has been used to study low spin states, mostly I = 2. The use of alternative reaction channels, such as α transfer, for the production of radioactive species that, otherwise, will be only produced in future radioactive beam facilities has proved to be an alternative to measure not only excited states with I > 2, but to populate and study long-live radioactive nuclei. This contribution will present the experimental tools and challenges for the use of the transient field technique for the measurement of g factors in nuclear states with I ≤ 2, using Coulomb excitation and α-transfer reactions. Recent examples of experimental results near the N = 50 shell closure, and the experimental challenges for future implementations with radioactive beams, will be discussed.

  6. [Synergetic killing effects of external magnetic fields combined with porphyrin-dextran magnetic nanoparticles on the human bladder cancer cells].

    Science.gov (United States)

    Luo, Dao-sheng; Mi, Qi-wu; Meng, Xiang-jun; Gao, Yong; Dai, Yu-ping; Deng, Chun-hua

    2012-08-18

    To study the synergetic killing effects of external magnetic fields combined with the photodynamic action of porphyrin-dextran iron oxide magnetic nanoparticles (PDMN) on human bladder cancer cells in vitro. The PDMN were produced by using the chemical co-precipitation and redox process and the physicochemical properties were characterized. Methyl thiazolyl tetrazolium (MTT) and flow cytometry were used to determine the effects of photodynamic therapy of PDMN combined with external pulsed electromagnetic fields (5 mT) on killing human bladder cancer BIU-87 cells respectively. The diameters of PDMN were 10-15 nm and the saturation magnetization was 0.20 emu/g. Effective diameter of PDMN was 94.8 nm. PDMN could remarkably inhibit the proliferation and induce the obvious apoptosis of BIU-87 cells, and the rates of growth inhibition and apoptosis were (17.61±2.73)% and (24.53±5.74)% respectively. Moreover, external pulsed electromagnetic fields (5 mT) could also suppress the proliferation and induce apoptosis of BIU-87 cells. Furthermore, the photodynamic action of PDMN combined with external magnetic fields significantly inhibited the proliferation and promote apoptosis of BIU-87 cells, and the rates of growth inhibition and apoptosis was (28.11±4.25)% and (24.53±5.74)%, respectively, which were significantly higher than those of other groups (Peffectively inhibit proliferation and induce apoptosis of BIU-87 cells. Moreover, these effects on BIU-87 cells could be strengthened by the combination with external magnetic fields.

  7. Towards a beyond 1 GHz solid-state nuclear magnetic resonance: External lock operation in an external current mode for a 500 MHz nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Takahashi, Masato; Maeda, Hideaki; Ebisawa, Yusuke; Tennmei, Konosuke; Yanagisawa, Yoshinori; Nakagome, Hideki; Hosono, Masami; Takasugi, Kenji; Hase, Takashi; Miyazaki, Takayoshi; Fujito, Teruaki; Kiyoshi, Tsukasa; Yamazaki, Toshio

    2012-01-01

    Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb 3 Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a 7 Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm/3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

  8. Nuclear relaxation in semiconductors doped with magnetic impurities

    International Nuclear Information System (INIS)

    Mel'nichuk, S.V.; Tovstyuk, N.K.

    1984-01-01

    The temperature and concentration dependences are investigated of the nuclear spin-lattice relaxation time with account of spin diffusion for degenerated and non-degenerated semicon- ductors doped with magnetic impurities. In case of the non-degenerated semiconductor the time is shown to grow with temperature, while in case of degenerated semiconductor it is practically independent of temperature. The impurity concentration growth results in decreasing the spin-lattice relaxation time

  9. Communication patterns in the field of nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Tomov, D.; Filipov, F.; Kolev, N.

    1986-01-01

    A scientometric analysis of publications presented in four secondary information sources on the problem of nuclear magnetic resonance in physics, biomedicine and technology was carried out. A dynamic growth of the number of articles in biomedicine over 1982 to 1984 was established. Secondary publications play an important role in scientific communications as revealed by citation analysis. (author)

  10. Nuclear magnetic resonance common laboratory, quadrennial report

    International Nuclear Information System (INIS)

    1994-01-01

    This quadrennial report of the nuclear magnetic resonance common laboratory gives an overview of the main activities. Among the different described activities, only one is interesting for the INIS database: it concerns the Solid NMR of cements used for radioactive wastes storage. In this case, the NMR is used to characterize the structure of the material and the composition, structure and kinetics of formation of the alteration layer which is formed at the surface of concrete during water leaching conditions. The NMR methodology is given. (O.M.)

  11. 19F-nuclear magnetic resonance spectroscopy as a tool to ...

    African Journals Online (AJOL)

    19F-nuclear magnetic resonance spectroscopy as a tool to investigate host-guest complexation of some antidepressant drugs with natural and modified cyclodextrins. Leila Shafiee Dastjerdi1* and Mojtaba Shamsipur2. 1Faculty of Science, Roudehen Branch, Islamic Azad University, Tehran, 2Department of Chemistry, ...

  12. Filtering techniques for efficient inversion of two-dimensional Nuclear Magnetic Resonance data

    Science.gov (United States)

    Bortolotti, V.; Brizi, L.; Fantazzini, P.; Landi, G.; Zama, F.

    2017-10-01

    The inversion of two-dimensional Nuclear Magnetic Resonance (NMR) data requires the solution of a first kind Fredholm integral equation with a two-dimensional tensor product kernel and lower bound constraints. For the solution of this ill-posed inverse problem, the recently presented 2DUPEN algorithm [V. Bortolotti et al., Inverse Problems, 33(1), 2016] uses multiparameter Tikhonov regularization with automatic choice of the regularization parameters. In this work, I2DUPEN, an improved version of 2DUPEN that implements Mean Windowing and Singular Value Decomposition filters, is deeply tested. The reconstruction problem with filtered data is formulated as a compressed weighted least squares problem with multi-parameter Tikhonov regularization. Results on synthetic and real 2D NMR data are presented with the main purpose to deeper analyze the separate and combined effects of these filtering techniques on the reconstructed 2D distribution.

  13. Angstrom-Resolution Magnetic Resonance Imaging of Single Molecules via Wave-Function Fingerprints of Nuclear Spins

    Science.gov (United States)

    Ma, Wen-Long; Liu, Ren-Bao

    2016-08-01

    Single-molecule sensitivity of nuclear magnetic resonance (NMR) and angstrom resolution of magnetic resonance imaging (MRI) are the highest challenges in magnetic microscopy. Recent development in dynamical-decoupling- (DD) enhanced diamond quantum sensing has enabled single-nucleus NMR and nanoscale NMR. Similar to conventional NMR and MRI, current DD-based quantum sensing utilizes the "frequency fingerprints" of target nuclear spins. The frequency fingerprints by their nature cannot resolve different nuclear spins that have the same noise frequency or differentiate different types of correlations in nuclear-spin clusters, which limit the resolution of single-molecule MRI. Here we show that this limitation can be overcome by using "wave-function fingerprints" of target nuclear spins, which is much more sensitive than the frequency fingerprints to the weak hyperfine interaction between the targets and a sensor under resonant DD control. We demonstrate a scheme of angstrom-resolution MRI that is capable of counting and individually localizing single nuclear spins of the same frequency and characterizing the correlations in nuclear-spin clusters. A nitrogen-vacancy-center spin sensor near a diamond surface, provided that the coherence time is improved by surface engineering in the near future, may be employed to determine with angstrom resolution the positions and conformation of single molecules that are isotope labeled. The scheme in this work offers an approach to breaking the resolution limit set by the "frequency gradients" in conventional MRI and to reaching the angstrom-scale resolution.

  14. Quantum information processing and nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cummins, H.K.

    2001-01-01

    Quantum computers are information processing devices which operate by and exploit the laws of quantum mechanics, potentially allowing them to solve problems which are intractable using classical computers. This dissertation considers the practical issues involved in one of the more successful implementations to date, nuclear magnetic resonance (NMR). Techniques for dealing with systematic errors are presented, and a quantum protocol is implemented. Chapter 1 is a brief introduction to quantum computation. The physical basis of its efficiency and issues involved in its implementation are discussed. NMR quantum information processing is reviewed in more detail in Chapter 2. Chapter 3 considers some of the errors that may be introduced in the process of implementing an algorithm, and high-level ways of reducing the impact of these errors by using composite rotations. Novel general expressions for stabilising composite rotations are presented in Chapter 4 and a new class of composite rotations, tailored composite rotations, presented in Chapter 5. Chapter 6 describes some of the advantages and pitfalls of combining composite rotations. Experimental evaluations of the composite rotations are given in each case. An actual implementation of a quantum information protocol, approximate quantum cloning, is presented in Chapter 7. The dissertation ends with appendices which contain expansions of some equations and detailed calculations of certain composite rotation results, as well as spectrometer pulse sequence programs. (author)

  15. Development of high yield strength non-magnetic steels for the equipments of nuclear fusion research

    International Nuclear Information System (INIS)

    Matsuoka, Hidenori; Mukai, Tetsuya; Ohtani, Hiroo; Tsuruki, Takanori; Okada, Yasutaka

    1979-01-01

    Recently, activity of nuclear fusion research and so forth increase the demand of non-magnetic materials for various equipments and structures. For these usage, very low magnetic permeability as well as high strength are required under high magnetic field. Based on fundamental research, middle C-17% Cr-7% Ni-N non-magnetic steel has been developed. The developed steel shows more stable austenite phase and possesses higher yield strength and endurance limit of more than 10 kg/mm 2 , compared with 18% Cr-8% Ni austenitic steel. Also the developed steel has good ductility and toughness in spite of the high yield strength and shows better machinability than usual high Mn non- magnetic steels. The large forgings of this newly developed steel are manufactured in the works for the equipments of nuclear fusion research and confirmed good mechanical properties, high fatigue strength and low permeability. (author)

  16. Nuclear magnetic relaxation in aqueous praseodymium and europium solutions

    International Nuclear Information System (INIS)

    Lopez, J.L.; Diaz, D.

    1991-01-01

    A general theory for the relaxation of the nuclear spin in paramagnetic complexes where the electronic spin is within a slow-movement regime was presented by Benetis et al. and applied to d-group elements (Ni 2+ , Co 2+ ). This paper show the possibility to apply such formalism to f-group elements and it was developed for S=3(Eu 3+ ). A group of magnitudes characterizing the microstructure and dynamics of these solutions is reported with the approximations used. The dispersion of the nuclear magnetic relaxation (NMRD) for the proton of the variable field was also assessed which had a similar behaviour to what was experimentally reported

  17. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT

    International Nuclear Information System (INIS)

    2004-01-01

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results

  18. Generation of high magnetic fields using superconducting magnets

    International Nuclear Information System (INIS)

    Kiyoshi, T.; Otsuka, A.; Kosuge, M.; Yuyama, M.; Nagai, H.; Matsumoto, F.

    2006-01-01

    High-field superconducting magnets have opened new frontiers for several kinds of applications, such as fusion reactors, particle accelerators, and nuclear magnetic resonance (NMR) spectrometers. The present record for the highest field in a fully superconducting state is 23.4 T. It was achieved with a combination of NbTi, Nb 3 Sn, and Bi-2212 conductors in 1999. Since high T c (critical temperature) superconductors (HTS) have sufficiently high critical current density even in excess of 30 T, they are promising for use as high-field superconducting magnets. However, several problems still remain to be resolved for practical applications, and the use of HTS coils will be limited to the inner part of a high-field magnet system in the near future. The required technologies to develop a high-field superconducting magnet with a field of up to 28 T have already been established. Such a magnet is certain to provide information to all leading research areas

  19. Nuclear magnetic resonance tomography in Hallervorden-Spatz's syndrome

    International Nuclear Information System (INIS)

    Vogl, T.; Bauer, M.; Seiderer, M.; Rath, M.

    1984-01-01

    Two patients (mother and son) with Hallervorden-Spatz's syndrome were examined both via CT and Nuclear Magnetic Resonance (NMR), using different measuring modes. In the patient with progressing disease pathological findings were seen in the right and left putamen with CT and NMR. All examinations in the mother with a less progressive syndrome were without any result. Information obtained via NMR did not yield significantly more relevant data than computed tomography. (orig.) [de

  20. Nuclear magnetic resonance imaging and brain functional exploration

    International Nuclear Information System (INIS)

    Le Bihan, D.; CEA, 91 - Orsay

    1997-01-01

    The utilization of nuclear magnetic resonance imaging for functional analysis of the brain is presented: the oxygenated and deoxygenated blood flowing in the brain do not have the same effect on NMR images; the oxygenated blood, related to brain activity, may be detected and the corresponding activity zone in the brain, identified; functional NMR imaging could be used to gain a better understanding of functional troubles linked to neurological or psychiatric diseases

  1. Magnetic moment of 33Cl

    International Nuclear Information System (INIS)

    Matsuta, K.; Arimura, K.; Nagatomo, T.; Akutsu, K.; Iwakoshi, T.; Kudo, S.; Ogura, M.; Takechi, M.; Tanaka, K.; Sumikama, T.; Minamisono, K.; Miyake, T.; Minamisono, T.; Fukuda, M.; Mihara, M.; Kitagawa, A.; Sasaki, M.; Kanazawa, M.; Torikoshi, M.; Suda, M.; Hirai, M.; Momota, S.; Nojiri, Y.; Sakamoto, A.; Saihara, M.; Ohtsubo, T.; Alonso, J.R.; Krebs, G.F.; Symons, T.J.M.

    2004-01-01

    The magnetic moment of 33 Cl (Iπ=3/2+, T1/2=2.51s) has been re-measured precisely by β-NMR method. The obtained magnetic moment |μ|=0.7549(3)μN is consistent with the old value 0.7523(16)μN, but is 5 times more accurate. The value is well reproduced by the shell model calculation, μSM=0.70μN. Combined with the magnetic moment of the mirror partner 33 S, the nuclear matrix elements , , , and were derived

  2. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    International Nuclear Information System (INIS)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G.; Heinen, U.; Reitmeier, A.

    2015-01-01

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  3. Combined preclinical magnetic particle imaging and magnetic resonance imaging. Initial results in mice

    Energy Technology Data Exchange (ETDEWEB)

    Kaul, M.G.; Mummert, T.; Jung, C.; Raabe, N.; Ittrich, H.; Adam, G. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Weber, O. [Philips Medical Systems DMC GmbH, Hamburg (Germany); Heinen, U. [Bruker BioSpin MRI GmbH, Ettlingen (Germany); Reitmeier, A. [Medical Center Hamburg-Eppendorf, Hamburg (Germany). Animal Facility; Knopp, T. [University Medical Center Hamburg-Eppendorf, Hamburg (Germany). Dept. of Diagnostic and Interventional Radiology; Hamburg University of Technology, Hamburg (Germany)

    2015-05-15

    Magnetic particle imaging (MPI) is a new radiologic imaging modality. For the first time, a commercial preclinical scanner is installed. The goal of this study was to establish a workflow between MPI and magnetic resonance imaging (MRI) scanners for a complete in vivo examination of a mouse and to generate the first co-registered in vivo MR-MP images. The in vivo examination of five mice were performed on a preclinical MPI scanner and a 7 Tesla preclinical MRI system. MRI measurements were used for anatomical referencing and validation of the injection of superparamagnetic iron oxide (SPIO) particles during a dynamic MPI scan. We extracted MPI data of the injection phase and co-registered it with MRI data. A workflow process for a combined in vivo MRI and MPI examination was established. A successful injection of ferucarbotran was proven in MPI and MRI. MR-MPI co-registration allocated the SPIOs in the inferior vena cava and the heart during and shortly after the injection. The acquisition of preclinical MPI and MRI data is feasible and allows the combined analysis of MR-MPI information.

  4. Nuclear magnetic resonance applications in biological systems

    International Nuclear Information System (INIS)

    Jiang Ling; Liu Maili

    2011-01-01

    Nuclear magnetic resonance (NMR) spectroscopy is a state-of-the-art technology which has been widely applied in biological systems over the past decades. It is a powerful tool for macromolecular structure determination in solution, and has the unique advantage of being capable of elucidating the structure and dynamic behavior of proteins during vital biomedical processes. In this review, we introduce the recent progress in NMR techniques for studying the structure, interaction and dynamics of proteins. The methods for NMR based drug discovery and metabonomics are also briefly introduced. (authors)

  5. Nuclear magnetic resonance studies of intracellular ions in perfused from heart

    International Nuclear Information System (INIS)

    Burnstein, D.; Fossel, E.T.

    1987-01-01

    Intracellular sodium, potassium, and lithium were observed in a perfused frog heart by nuclear magnetic resonance (NMR) spectroscopy. A perfusate buffer containing the shift reagent, dysprosium tripolyphosphate, was used in combination with mathematical filtering or presaturation of the extracellular resonance to separate the intra- and extracellular sodium NMR signals. Addition of 10 μM ouabain to the perfusate, perfusion with a zero potassium, low-calcium buffer, and replacement of 66% of the perfusate sodium with lithium resulted in changes in the intracellular sodium levels. An increase of 45% in the intracellular sodium was observed when changing the pacing rate from 0 to 60 beats/min (with proportional changes for intermediate pacing rates). The ratio of intracellular potassium to sodium concentration was determined to be 2.3 by NMR, indicating that a substantial amount of the intracellular potassium is undetectable with these NMR method. In addition, intracellular lithium was observed during perfusion with a lithium-containing perfusate

  6. Backwards time travel induced by combined magnetic and gravitational fields

    International Nuclear Information System (INIS)

    Novello, M.; Svaiter, N.F.; Guimaraes, M.E.X.

    1990-01-01

    We analyse the behaviour of an elementary microscopic particle submitted to combined Magnetic and Gravitational Fields on Goedel's Universe. The exam is made in a local Gaussian system of coordinates. (author)

  7. Small-scale instrumentation for nuclear magnetic resonance of porous media

    International Nuclear Information System (INIS)

    Bluemich, Bernhard; Casanova, Federico; Dabrowski, Martin; Danieli, Ernesto; Haber, Agnes; Van Landeghem, Maxime; Haber-Pohlmeier, Sabina; Olaru, Alexandra; Perlo, Juan; Sucre, Oscar; Evertz, Loribeth

    2011-01-01

    The investigation of fluids confined to porous media is the oldest topic of investigation with small-scale nuclear magnetic resonance (NMR) instruments, as such instruments are mobile and can be moved to the site of the object, such as the borehole of an oil well. While the analysis was originally restricted by the inferior homogeneity of the employed magnets to relaxation measurements, today, portable magnets are available for all types of NMR measurements concerning relaxometry, imaging and spectroscopy in two types of geometries. These geometries refer to closed magnets that surround the sample and open magnets, which are brought close to the object for measurement. The current state of the art of portable, small-scale NMR instruments is reviewed and recent applications of such instruments are featured. These include the porosity analysis and description of diesel particulate filters, the determination of the moisture content in walls from gray concrete, new approaches to analyze the pore space and moisture migration in soil, and the constitutional analysis of the mortar base of ancient wall paintings.

  8. Fluorine nuclear magnetic resonance study of enrichment effects in gaseous, liquid and solid uranium hexafluoride

    International Nuclear Information System (INIS)

    Ursu, I.; Demco, D.E.; Simplaceanu, V.; Valcu, N.

    1977-01-01

    The nuclear magnetic resonance method is able to provide information concerning the isotopic content of 235 U in UF 6 by means of measuring the nuclear magnetic transverse relaxation time (T,L2) of 19 F nuclei in liquid UF 6 . In this work, the sources of errors in the T 2 measurements have been analysed and methods for reducing them are dicussed. Typical errors in T 2 determinations are below 2%. The enrichment estimations made by using the linear calibration curves had a deviation of less than 2% with some exceptions. It was found that the chemical impurities may significantly affect the enrichment estimations. 19 F NMR spectra of liquid and gaseous UF 6 at low pressures did not reveal any structure or enrichment effect. The longitudinal nuclear magnetic relaxation of 19 F nuclei in low pressure, gaseous and solid UF 6 showed no enrichment dependence, nor the dipolar relaxation time in solid UF 6 did. (author)

  9. Nuclear magnetic resonance spectroscopy of living systems : Applications in comparative physiology

    NARCIS (Netherlands)

    VanDenThillart, G; VanWaarde, A

    The most attractive feature of nuclear magnetic resonance spectroscopy (MRS) is the noninvasive and nondestructive measurement of chemical compounds in intact tissues. MRS already has many applications in comparative physiology, usually based on observation of P-31, since the levels of phosphorus

  10. A combined Preisach–Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Soheil [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hojjat, Yousef, E-mail: yhojjat@modares.ac.ir [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghodsi, Mojtaba [Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat (Oman); Karafi, Mohammad Reza [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mirzamohammadi, Shahed [Department of Mechanical Engineering, Shahid Rajaee University, Tehran (Iran, Islamic Republic of)

    2015-12-15

    This study presents a new model using the combination of Preisach and Hyperbolic Tangent models, to predict the magnetic hysteresis of Terfenol-D at different frequencies. Initially, a proper experimental setup was fabricated and used to obtain different magnetic hysteresis curves of Terfenol-D; such as major, minor and reversal loops. Then, it was shown that the Hyperbolic Tangent model is precisely capable of modeling the magnetic hysteresis of the Terfenol-D for both rate-independent and rate-dependent cases. Empirical equations were proposed with respect to magnetic field frequency which can calculate the non-dimensional coefficients needed by the model. These empirical equations were validated at new frequencies of 100 Hz and 300 Hz. Finally, the new model was developed through the combination of Preisach and Hyperbolic Tangent models. In the combined model, analytical relations of the Hyperbolic Tangent model for the first order reversal loops determined the weighting function of the Preisach model. This model reduces the required experiments and errors due to numerical differentiations generally needed for characterization of the Preisach function. In addition, it can predict the rate-dependent hysteresis as well as rate-independent hysteresis. - Highlights: • Different hysteresis curves of Terfenol-D are experimentally obtained at 0–200 Hz. • A new model is presented using combination of Preisach and Hyperbolic Tangent models. • The model predicts both rate-independent and rate-dependent hystereses of Terfenol-D. • The analytical model reduces the numerical errors and number of required experiments.

  11. Consideration on nuclear fusion in plasma by the magnetic confinement as a heat engine

    International Nuclear Information System (INIS)

    Tsuji, Yoshio

    1990-01-01

    In comparing nuclear fusion in plasma by the magnetic confinement with nuclear fission and chemical reactions, the power density and the function of a heat engine are discussed using a new parameter G introduced as an eigenvalue of a reaction and the value of q introduced to estimate the thermal efficiency of a heat engine. It is shown that the fusion reactor by the magnetic confinement is very difficult to be a modern heat engine because of the lack of some indispensable functions as a modern heat engine. The value of G and q have the important role in the consideration. (author)

  12. Magnetic stirring welding method applied to nuclear power plant

    International Nuclear Information System (INIS)

    Hirano, Kenji; Watando, Masayuki; Morishige, Norio; Enoo, Kazuhide; Yasuda, Yuuji

    2002-01-01

    In construction of a new nuclear power plant, carbon steel and stainless steel are used as base materials for the bottom linear plate of Reinforced Concrete Containment Vessel (RCCV) to achieve maintenance-free requirement, securing sufficient strength of structure. However, welding such different metals is difficult by ordinary method. To overcome the difficulty, the automated Magnetic Stirring Welding (MSW) method that can demonstrate good welding performance was studied for practical use, and weldability tests showed the good results. Based on the study, a new welding device for the MSW method was developed to apply it weld joints of different materials, and it practically used in part of a nuclear power plant. (author)

  13. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France)

    International Nuclear Information System (INIS)

    Lecoanet, H.; Leveque, F.; Ambrosi, J.-P.

    2003-01-01

    Biplots combining magnetic parameters allow identification of different pollutant emission sources. - Biplots combining magnetic parameters allow to identification and differentiation different pollutant emission sources. A major problem in soil pollution is the characterization of the relative contributions of different anthropogenic particles sources. This paper demonstrates the efficiency of magnetic techniques to provide identification and differentiation of contaminating emission sources. About 100 soil samples were collected across a mixed agricultural and industrial area (Crau plain/Berre-Fos basin) in southern France. Nine soil profiles were realized. They are aligned along a transect, from the Mediterranean cost to the north. Measurements of initial magnetic susceptibility (χ) and remanent magnetization (ARM, IRM) have been carried out at room temperature. Several ratios of magnetic parameters were calculated and tested. Bivariate analyses allow to characterize different pollution sources and graphic results suggest three dominant contributions originated from road traffic, airport and steel industry. Moreover, magnetic grain-size discrimination between surface-soil samples and bottom-soil samples is obtained. An increase of hard magnetic components from topsoil towards the bottom of the profiles is evidenced

  14. DC superconducting quantum interference device usable in nuclear quadrupole resonance and zero field nuclear magnetic spectrometers

    Science.gov (United States)

    Fan, Non Q.; Clarke, John

    1993-01-01

    A spectrometer for measuring the nuclear quadrupole resonance spectra or the zero-field nuclear magnetic resonance spectra generated by a sample is disclosed. The spectrometer uses an amplifier having a dc SQUID operating in a flux-locked loop for generating an amplified output as a function of the intensity of the signal generated by the sample. The flux-locked loop circuit includes an integrator. The amplifier also includes means for preventing the integrator from being driven into saturation. As a result, the time for the flux-locked loop to recover from the excitation pulses generated by the spectrometer is reduced.

  15. Mechanical design parameters for detection of nuclear signals by magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Moore, G.J.; Hanlon, J.A.; Lamartine, B.; Hawley, M.; Solem, J.C.; Signer, S.; Jarmer, J.J.; Penttila, S.; Sillerud, L.O.; Pryputniewicz, R.J.

    1993-01-01

    Recent theoretical work has shown that mechanical detection of magnetic resonance from a single nuclear spin is in principle possible. This theory has recently been experimentally validated by the mechanical detection of electron spin resonance signals using microscale cantilevers. Currently we are extending this technology in an attempt to detect nuclear signals which are extending this technology in an attempt to detect nuclear signals which are three orders of magnitude lower in intensity than electron signals. In order to achieve the needed thousand-fold improvement in sensitivity we have undertaken the development of optimized mechanical cantilevers and highly polarized samples. Finite element modeling is used as a tool to simulate cantilever beam dynamics and to optimize the mechanical properties including Q, resonant frequency, amplitude of vibration and spring constant. Simulations are compared to experiments using heterodyne hologram interferometry. Nanofabrication of optimized cantilevers via ion milling will be directed by the outcome of these simulations and experiments. Highly polarized samples are developed using a three-fold approach: (1) high magnetic field strength (2.5T), (2) low temperature (1K), and (3) use of samples polarized by dynamic nuclear polarization. Our recent experiments have demonstrated nuclear polarizations in excess of 50% in molecules of toulene

  16. Resonant cell of a double nuclear electron resonance spectrometer for performance in a 120-350 Gs magnetic field

    International Nuclear Information System (INIS)

    Baldin, V.I.; Stepanov, A.P.

    1976-01-01

    Spectrometer double-frequency resonance cell construction of a double nuclear electron resonance for operation in 120-350 Gs magnetic fields is described. The cell has been developed from a special decimeter resonator with a concentrated capacitance. The electric and magnetic components of a high frequency field are efficiently divided in the separator. Therefore, the insertion of a measuring coil and a sample in the maximum of the magnetic component of the field does not practically affect the distribution and parameters of the high-frequency field. The double-frequency resonance cell proposed provides for a higher accuracy of measuring amplifications of the nuclear magnetic resonance signals when there is the overhauzer effect for 120-350 Gs magnetic fields

  17. Novel uses of magnetic separation in the nuclear industry

    International Nuclear Information System (INIS)

    Coe, B.T.

    1999-08-01

    High Gradient Magnetic Separation (HGMS) has been investigated in the nuclear industry, for the application of advanced technology in present and future nuclear environments within BNFL. Previous applications of HGMS have been reviewed and future novel applications investigated. The two most promising applications were then chosen as the focus of the PhD. In the first project, HGMS has been used to selectively recover biologically precipitated iron sulphide (Fe 1-x S) particles containing heavy metal ions, from a BNFL soil remediation effluent stream. The uptake of the ions is believed to be a consequence of the bacterial metabolism and the adsorptive properties of the iron sulphide. Biologically precipitated iron sulphide is known to differ in structure to its chemically precipitated equivalent and as such has certain advantages, for example, increased adsorbent properties and magnetic properties. The HGMS system was optimised and its performance investigated as a function of the magnetic field, the flow rate and the concentration of the biological particles in solution, with time. Results have shown that an efficiency of over 95% can be obtained, proving that HGMS is a valuable method for the concentration of metal ions from contaminated soils, especially when the adsorbed heavy metals are toxic or even radioactive and difficult to handle by other means. In the second project, the removal out of solution of radioactive technetium, in the form of the pertechnate ion [TcO 4 - ] was investigated. This was achieved using ion exchange techniques, Liquid Scintillation Counting LSC and HGMS. (author)

  18. Meso-scale magnetic signatures for nuclear reactor steel irradiation embrittlement monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Suter, J. D., E-mail: pradeep.ramuhalli@pnnl.gov; Ramuhalli, P., E-mail: pradeep.ramuhalli@pnnl.gov; Hu, S.; Li, Y.; Jiang, W.; Edwards, D. J.; Schemer-Kohrn, A. L.; Johnson, B. R. [Pacific Northwest National Laboratory, 902 Battelle Blvd, Richland, WA 99352 (United States); McCloy, J. S., E-mail: john.mccloy@wsu.edu; Xu, K., E-mail: john.mccloy@wsu.edu [Washington State University, PO Box 642920, Pullman, WA 99164 (United States)

    2015-03-31

    Verifying the structural integrity of passive components in light water and advanced reactors will be necessary to ensure safe, long-term operations of the existing U.S. nuclear fleet. This objective can be achieved through nondestructive condition monitoring techniques, which can be integrated with plant operations to quantify the “state of health” of structural materials in real-time. While nondestructive methods for monitoring many classes of degradation (such as fatigue or stress corrosion cracking) are relatively advanced, this is not the case for degradation caused by irradiation. The development of nondestructive evaluation technologies for these types of degradation will require advanced materials characterization techniques and tools that enable comprehensive understanding of nuclear reactor material microstructural and behavioral changes under extreme operating environments. Irradiation-induced degradation of reactor steels causes changes in their microstructure that impacts their micro-magnetic properties. In this paper, we describe preliminary results of integrating advanced material characterization techniques with meso-scale computational models. In the future, this will help to provide an interpretive understanding of the state of degradation in structural materials. Microstructural data are presented from monocrystalline Fe and are correlated with variable-field magnetic force microscopy and micro-magnetic measurements. Ongoing research is focused on extending the measurements and models on thin films to gain insights into the structural state of irradiated materials and the resulting impact on magnetic properties. Preliminary conclusions from these correlations are presented, and next steps described.

  19. SQUID-detected magnetic resonance imaging in microtesla magnetic fields

    International Nuclear Information System (INIS)

    McDermott, Robert; Kelso, Nathan; Lee, SeungKyun; Moessle, Michael; Mueck, Michael; Myers, Whittier; Haken, Bernard ten; Seton, H.C.; Trabesinger, Andreas H.; Pines, Alex; Clarke, John

    2003-01-01

    We describe studies of nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) of liquid samples at room temperature in microtesla magnetic fields. The nuclear spins are prepolarized in a strong transient field. The magnetic signals generated by the precessing spins, which range in frequency from tens of Hz to several kHz, are detected by a low-transition temperature dc SQUID (Superconducting QUantum Interference Device) coupled to an untuned, superconducting flux transformer configured as an axial gradiometer. The combination of prepolarization and frequency-independent detector sensitivity results in a high signal-to-noise ratio and high spectral resolution (∼1 Hz) even in grossly inhomogeneous magnetic fields. In the NMR experiments, the high spectral resolution enables us to detect the 10-Hz splitting of the spectrum of protons due to their scalar coupling to a 31P nucleus. Furthermore, the broadband detection scheme combined with a non-resonant field-reversal spin echo allows the simultaneous observation of signals from protons and 31P nuclei, even though their NMR resonance frequencies differ by a factor of 2.5. We extend our methodology to MRI in microtesla fields, where the high spectral resolution translates into high spatial resolution. We demonstrate two-dimensional images of a mineral oil phantom and slices of peppers, with a spatial resolution of about 1 mm. We also image an intact pepper using slice selection, again with 1-mm resolution. In further experiments we demonstrate T1-contrast imaging of a water phantom, some parts of which were doped with a paramagnetic salt to reduce the longitudinal relaxation time T1. Possible applications of this MRI technique include screening for tumors and integration with existing multichannel SQUID systems for brain imaging

  20. On the Floquet–Magnus expansion: Applications in solid-state nuclear magnetic resonance and physics

    Energy Technology Data Exchange (ETDEWEB)

    Mananga, Eugene Stephane, E-mail: emananga@gradcenter.cuny.edu [Harvard Medical School and Massachusetts General Hospital, Center for Advanced Medical Imaging Sciences, Division of Nuclear Medicine and Molecular Imaging Physics, Department of Radiology, 55 Fruit Street, Boston, Massachusetts 02114 (United States); Charpentier, Thibault, E-mail: thibault.charpentier@cea.fr [Commissariat à l’Energie Atomique, IRAMIS, Service interdisciplinaire sur les systèmes moléculaires et matériaux, CEA/CNRS UMR 3299, 91191, Gif-sur-Yvette (France)

    2016-01-22

    Theoretical approaches are useful and powerful tools for more accurate and efficient spin dynamics simulation to understand experiments and devising new RF pulse sequence in nuclear magnetic resonance. Solid-state NMR is definitely a timely topic or area of research, and not many papers on the respective theories are available in the literature of nuclear magnetic resonance or physics reports. This report presents the power and the salient features of the promising theoretical approach called Floquet–Magnus expansion that is helpful to describe the time evolution of the spin system at all times in nuclear magnetic resonance. The report presents a broad view of algorithms of spin dynamics, based on promising and useful theory of Floquet–Magnus expansion. This theory provides procedures to control and describe the spin dynamics in solid-state NMR. Major applications of the Floquet–Magnus expansion are illustrated by simple solid-state NMR and physical applications such as in nuclear, atomic, molecular physics, and quantum mechanics, NMR, quantum field theory and high energy physics, electromagnetism, optics, general relativity, search of periodic orbits, and geometric control of mechanical systems. The aim of this report is to bring to the attention of the spin dynamics community, the bridge that exists between solid-state NMR and other related fields of physics and applied mathematics. This review article also discusses future potential theoretical directions in solid-state NMR.

  1. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: Application to the detection of breast cancer

    International Nuclear Information System (INIS)

    Gu Haiwei; Pan Zhengzheng; Xi Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel

    2011-01-01

    Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, 1 H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology.

  2. Principal component directed partial least squares analysis for combining nuclear magnetic resonance and mass spectrometry data in metabolomics: application to the detection of breast cancer.

    Science.gov (United States)

    Gu, Haiwei; Pan, Zhengzheng; Xi, Bowei; Asiago, Vincent; Musselman, Brian; Raftery, Daniel

    2011-02-07

    Nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) are the two most commonly used analytical tools in metabolomics, and their complementary nature makes the combination particularly attractive. A combined analytical approach can improve the potential for providing reliable methods to detect metabolic profile alterations in biofluids or tissues caused by disease, toxicity, etc. In this paper, (1)H NMR spectroscopy and direct analysis in real time (DART)-MS were used for the metabolomics analysis of serum samples from breast cancer patients and healthy controls. Principal component analysis (PCA) of the NMR data showed that the first principal component (PC1) scores could be used to separate cancer from normal samples. However, no such obvious clustering could be observed in the PCA score plot of DART-MS data, even though DART-MS can provide a rich and informative metabolic profile. Using a modified multivariate statistical approach, the DART-MS data were then reevaluated by orthogonal signal correction (OSC) pretreated partial least squares (PLS), in which the Y matrix in the regression was set to the PC1 score values from the NMR data analysis. This approach, and a similar one using the first latent variable from PLS-DA of the NMR data resulted in a significant improvement of the separation between the disease samples and normals, and a metabolic profile related to breast cancer could be extracted from DART-MS. The new approach allows the disease classification to be expressed on a continuum as opposed to a binary scale and thus better represents the disease and healthy classifications. An improved metabolic profile obtained by combining MS and NMR by this approach may be useful to achieve more accurate disease detection and gain more insight regarding disease mechanisms and biology. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.J. (Glasgow Western Infirmary (UK))

    1984-09-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin.

  4. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    International Nuclear Information System (INIS)

    Prabhu Gaunkar, N.; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C.; Bulu, I.; Ganesan, K.; Song, Y. Q.

    2015-01-01

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors

  5. Analysis of ringing effects due to magnetic core materials in pulsed nuclear magnetic resonance circuits

    Energy Technology Data Exchange (ETDEWEB)

    Prabhu Gaunkar, N., E-mail: neelampg@iastate.edu; Bouda, N. R. Y.; Nlebedim, I. C.; Hadimani, R. L.; Mina, M.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Bulu, I.; Ganesan, K.; Song, Y. Q. [Schlumberger-Doll Research, Cambridge, Massachusetts 02139 (United States)

    2015-05-07

    This work presents investigations and detailed analysis of ringing in a non-resonant pulsed nuclear magnetic resonance (NMR) circuit. Ringing is a commonly observed phenomenon in high power switching circuits. The oscillations described as ringing impede measurements in pulsed NMR systems. It is therefore desirable that those oscillations decay fast. It is often assumed that one of the causes behind ringing is the role of the magnetic core used in the antenna (acting as an inductive load). We will demonstrate that an LRC subcircuit is also set-up due to the inductive load and needs to be considered due to its parasitic effects. It is observed that the parasitics associated with the inductive load become important at certain frequencies. The output response can be related to the response of an under-damped circuit and to the magnetic core material. This research work demonstrates and discusses ways of controlling ringing by considering interrelationships between different contributing factors.

  6. Study on economic potential of nuclear-gas combined cycle power generation in Chinese market

    International Nuclear Information System (INIS)

    Zhou Zhiwei; Bian Zhiqiang; Yang Mengjia

    2004-01-01

    Facing the challenges of separation of electric power plant and grid, and the deregulation of Chinese electricity supplying market in near future, nuclear power plants mainly operated as based load at the present regulated market should look for new operation mode. The economics of electric generation with nuclear-natural gas combined cycle is studied based on current conditions of natural gas and nuclear power plants in China. The results indicate that the technology development of nuclear-natural gas combined cycle for power generation is of potential prospects in Chinese electric market. (authors)

  7. A Neutron Diffraction Study of the Nuclear and Magnetic Structure of MnNb2O6

    DEFF Research Database (Denmark)

    Nielsen, Oliver Vindex; Lebech, Bente; Krebs Larsen, F.

    1976-01-01

    A neutron diffraction study was made of the nuclear and the magnetic structure of MnNb2O6 single crystals. The thirteen nuclear parameters (space group Pbcn) were determined from 304 reflections at room temperature. The antiferromagnetic structure (Neel temperature=4.4K), determined at 1.2K, is a......, is a superposition of G- and A-type structures of the form 0.90 Gx+0.34 Gy+0.28 Az. The corresponding magnetic space group is P2'1/c....

  8. Development and applications of NMR [nuclear magnetic resonance] in low fields and zero field

    International Nuclear Information System (INIS)

    Bielecki, A.

    1987-05-01

    This dissertation is about nuclear magnetic resonance (NMR) spectroscopy in the absence of applied magnetic fields. NMR is usually done in large magnetic fields, often as large as can be practically attained. The motivation for going the opposite way, toward zero field, is that for certain types of materials, particularly powdered or polycrystalline solids, the NMR spectra in zero field are easier to interpret than those obtained in high field. 92 refs., 60 figs., 1 tab

  9. DIFFERENTIATION OF AURANTII FRUCTUS IMMATURUS AND FRUCTUS PONICIRI TRIFOLIATAE IMMATURUS BY FLOW-INJECTION WITH ULTRAVIOLET SPECTROSCOPIC DETECTION AND PROTON NUCLEAR MAGNETIC RESONANCE USING PARTIAL LEAST-SQUARES DISCRIMINANT ANALYSIS.

    Science.gov (United States)

    Zhang, Mengliang; Zhao, Yang; Harrington, Peter de B; Chen, Pei

    2016-03-01

    Two simple fingerprinting methods, flow-injection coupled to ultraviolet spectroscopy and proton nuclear magnetic resonance, were used for discriminating between Aurantii fructus immaturus and Fructus poniciri trifoliatae immaturus . Both methods were combined with partial least-squares discriminant analysis. In the flow-injection method, four data representations were evaluated: total ultraviolet absorbance chromatograms, averaged ultraviolet spectra, absorbance at 193, 205, 225, and 283 nm, and absorbance at 225 and 283 nm. Prediction rates of 100% were achieved for all data representations by partial least-squares discriminant analysis using leave-one-sample-out cross-validation. The prediction rate for the proton nuclear magnetic resonance data by partial least-squares discriminant analysis with leave-one-sample-out cross-validation was also 100%. A new validation set of data was collected by flow-injection with ultraviolet spectroscopic detection two weeks later and predicted by partial least-squares discriminant analysis models constructed by the initial data representations with no parameter changes. The classification rates were 95% with the total ultraviolet absorbance chromatograms datasets and 100% with the other three datasets. Flow-injection with ultraviolet detection and proton nuclear magnetic resonance are simple, high throughput, and low-cost methods for discrimination studies.

  10. A Unique Master's Program in Combined Nuclear Technology and Nuclear Chemistry at Chalmers University of Technology, Sweden

    International Nuclear Information System (INIS)

    Skarnemark, Gunnar; Allard, Stefan; Ekberg, Christian; Nordlund, Anders

    2009-01-01

    The need for engineers and scientists who can ensure safe and secure use of nuclear energy is large in Sweden and internationally. Chalmers University of Technology is therefore launching a new 2-year master's program in Nuclear Engineering, with start from the autumn of 2009. The program is open to Swedish and foreign students. The program starts with compulsory courses dealing with the basics of nuclear chemistry and physics, radiation protection, nuclear power and reactors, nuclear fuel supply, nuclear waste management and nuclear safety and security. There are also compulsory courses in nuclear industry applications and sustainable energy futures. The subsequent elective courses can be chosen freely but there is also a possibility to choose informal tracks that concentrate on nuclear chemistry or reactor technology and physics. The nuclear chemistry track comprises courses in e.g. chemistry of lanthanides, actinides and transactinides, solvent extraction, radioecology and radioanalytical chemistry and radiopharmaceuticals. The program is finished with a one semester thesis project. This is probably a unique master program in the sense of its combination of deep courses in both nuclear technology and nuclear chemistry.

  11. Structures of peptide families by nuclear magnetic resonance spectroscopy and distance geometry

    Energy Technology Data Exchange (ETDEWEB)

    Pease, J.H.

    1989-12-01

    The three dimensional structures of several small peptides were determined using a combination of {sup 1}H nuclear magnetic resonance (NMR) and distance geometry calculations. These techniques were found to be particularly helpful for analyzing structural differences between related peptides since all of the peptides' {sup 1}H NMR spectra are very similar. The structures of peptides from two separate classes are presented. Peptides in the first class are related to apamin, an 18 amino acid peptide toxin from honey bee venom. The {sup 1}H NMR assignments and secondary structure determination of apamin were done previously. Quantitative NMR measurements and distance geometry calculations were done to calculate apamin's three dimensional structure. Peptides in the second class are 48 amino acid toxins from the sea anemone Radianthus paumotensis. The {sup 1}H NMR assignments of toxin II were done previously. The {sup 1}H NMR assignments of toxin III and the distance geometry calculations for both peptides are presented.

  12. Clinical applications of nuclear magnetic resonance spectroscopy: a review

    International Nuclear Information System (INIS)

    Newman, R.J.

    1984-01-01

    The advantages and present limitations of the clinical applications of nuclear magnetic resonance spectroscopy are reviewed in outline, with passing references to skeletal muscular studies, in particular a group of children with advanced Duchenne dystrophy, and the applications to the study of cerebral metabolism of neonates, excised kidneys, biopsy studies of breast and axillary lymph node samples, and NMR spectroscopy performed during chemotherapy of a secondary rhabdomyosarcoma in the skin. (U.K.)

  13. Nuclear Magnetic Resonance, a Powerful Tool in Cultural Heritage

    OpenAIRE

    Noemi Proietti; Donatella Capitani; Valeria Di Tullio

    2018-01-01

    In this paper five case studies illustrating applications of NMR (Nuclear Magnetic Resonance) in the field of cultural heritage, are reported. Different issues were afforded, namely the investigation of advanced cleaning systems, the quantitative mapping of moisture in historic walls, the investigation and evaluation of restoration treatments on porous stones, the stratigraphy of wall paintings, and the detection of CO2 in lapis lazuli. Four of these case studies deal with the use of portable...

  14. Nuclear magnetic resonance analogs of the Greenberger-Horne-Zeilinger experiment

    International Nuclear Information System (INIS)

    Lloyd, S.

    1998-01-01

    It has been recently shown that analogs of the Greenberger-Horne-Zeilinger experiment, which demonstrates the impossibility of certain types of local hidden variable theories in quantum mechanics, can be performed using nuclear magnetic resonance on spins in molecules at finite temperature. This paper examines the role of decoherence in the microscopic 'measurements' used to perform the NMR experiments. (author)

  15. Development of Metallic Magnetic Calorimeters for Nuclear Safeguards Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bates, Cameron Russell [Univ. of California, Berkeley, CA (United States)

    2015-03-11

    Many nuclear safeguards applications could benefit from high-resolution gamma-ray spectroscopy achievable with metallic magnetic calorimeters. This dissertation covers the development of a system for these applications based on gamma-ray detectors developed at the University of Heidelberg. It demonstrates new calorimeters of this type, which achieved an energy resolution of 45.5 eV full-width at half-maximum at 59.54 keV, roughly ten times better than current state of the art high purity germanium detectors. This is the best energy resolution achieved with a gamma-ray metallic magnetic calorimeter at this energy to date. In addition to demonstrating a new benchmark in energy resolution, an experimental system for measuring samples with metallic magnetic calorimeters was constructed at Lawrence Livermore National Laboratory. This system achieved an energy resolution of 91.3 eV full-width at half-maximum at 59.54 keV under optimal conditions. Using this system it was possible to characterize the linearity of the response, the count-rate limitations, and the energy resolution as a function of temperature of the new calorimeter. With this characterization it was determined that it would be feasible to measure 242Pu in a mixed isotope plutonium sample. A measurement of a mixed isotope plutonium sample was performed over the course of 12 days with a single two-pixel metallic magnetic calorimeter. The relative concentration of 242Pu in comparison to other plutonium isotopes was determined by direct measurement to less than half a percent accuracy. This is comparable with the accuracy of the best-case scenario using traditional indirect methods. The ability to directly measure the relative concentration of 242Pu in a sample could enable more accurate accounting and detection of indications of undeclared activities in nuclear safeguards, a better constraint on source material in forensic samples containing plutonium, and improvements in verification in a future plutonium

  16. Combined nuclear and digital subtraction contrast arthrography in painful knee prosthesis

    International Nuclear Information System (INIS)

    Namasivayam, J.; Forrester, A.; Poon, F.W.; Cuthbert, G.F.; McKillop, J.H.; Bryan, A.S.

    1992-01-01

    The evaluation of a painful knee prosthesis remains a difficult problem for both orthopaedic surgeons and radiologists. We have compared digital subtraction arthrography with nuclear-arthrography in 7 patients with a painful knee prosthesis. Three patients showed a loose tibial component, demonstrated by both digital subtraction and nuclear arthrography. All 3 underwent revision of their prosthesis. One patient had an equivocal digital subtraction arthrogram and negative nuclear arthrogram, while both studies were negative in the 3 remaining patients. Nuclear arthrography is a simple procedure and can provide useful additional information when combined with digital subtraction arthrography. (orig.)

  17. Superconducting magnets for model ship propulsion and for material tests of a nuclear fusion reactor

    International Nuclear Information System (INIS)

    Horiuchi, T.; Matsumoto, K.; Monju, Y.; Tatara, I.; Hamada, M.

    1982-01-01

    Nuclear fusion reactors, magnetically levitated trains, and MHD generators, etc., all need a very high magnetic field; which in order to be attained a means the application of superconductors is inevitable. This paper describes the development of ''CRYOZITT'', a superconductor featuring high current density and high mechanical strength. CRYOZITT has already been used in the manufacture of two race-track shaped superconducting magnets, and delivered to highly satisfied customers. (author)

  18. Thermal-CFD Analysis of Combined Solar-Nuclear Cycle Systems.

    Energy Technology Data Exchange (ETDEWEB)

    Fathi, Nima [Univ. of New Mexico, Albuquerque, NM (United States); McDaniel, Patrick [Univ. of New Mexico, Albuquerque, NM (United States); Vorobieff, Peter [Univ. of New Mexico, Albuquerque, NM (United States); de Oliveira, Cassiano [Univ. of New Mexico, Albuquerque, NM (United States); Rodriguez, Salvador B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Aleyasin, Seyed Sobhan [Univ. of Manitoba (Canada)

    2015-09-01

    The aim of this paper is evaluating the efficiency of a novel combined solar-nuclear cycle. CFD-Thermal analysis is performed to apply the available surplus heat from the nuclear cycle and measure the available kinetic energy of air for the turbine of a solar chimney power plant system (SCPPS). The presented idea helps to decrease the thermal pollution and handle the water shortage supply for water plant by replacing the cooling tower by solar chimney power plant to get the surplus heat from the available warm air in the secondary loop of the reactor. By applying this idea to a typical 1000 MW nuclear power plant with a 0.33 thermal efficiency, we can increase it to 0.39.

  19. Ultrasonic-resonator-combined apparatus for purifying nuclear aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Suxia; Zhang, Quanhu; Li, Sufen; Chen, Chen; Su, Xianghua [Xi' an Hi-Tech Institute, Xi' an (China)

    2017-12-15

    The radiation hazards of radionuclides in the air arising from the storage room of nuclear devices to the operators cannot be ignored. A new ultrasonic-resonator-combined method for purifying nuclear aerosol particles is introduced. To remove particles with diameters smaller than 0.3 μm, an ultrasonic chamber is induced to agglomerate these submicron particles. An apparatus which is used to purify the nuclear aerosol particles is described in the article. The apparatus consists of four main parts: two filtering systems, an ultrasonic chamber and a high-pressure electrostatic precipitator system. Finally, experimental results demonstrated the effectiveness of the implementation of the ultrasonic resonators. The feasibility of the method is proven by its application to the data analysis of the experiments.

  20. A holmium(III)-based single-molecule magnet with pentagonal-bipyramidal geometry

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, Takashi [Department of Chemistry, Faculty of Science, Nara Women' s University (Japan)

    2017-09-11

    The right environment: The remarkable properties of a recently reported holmium(III)-based single-ion magnet have been ascribed to the hyperfine interactions with the half-integer nuclear spin in combination with the pentagonal-bipyramidal coordination environment. These results provide insight into the complicated magnetic properties of nanosized magnetic materials. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Nuclear medicine in oncology 1: Lymphoma, and cancer of the lung ...

    African Journals Online (AJOL)

    Nuclear medicine provides an opportunity to image pathophysiology, while radiology mainly shows morphology. Over the last few decades hybrid imaging modalities have been developed in which nuclear medicine instrumentation has been combined with computed tomography (CT) and, more recently, with magnetic ...

  2. Quantitative determination of Quarternary alicyclic carbon atoms in coal and oil using nuclear magnetic resonance /sup 13/C method

    Energy Technology Data Exchange (ETDEWEB)

    Afonina, T.V.; Kushnarev, D.F.; Randin, O.I.; Shishkov, V.F.; Kalabin, G.A.

    1986-09-01

    Possibility is indicated for utilizing nuclear magnetic resonance spectroscopy for quantitative determination of Quarternary aliphatic carbon atoms in heavy hydrocarbon fractions of oil and coal extracts. C/sub n/, CH, CH/sub 2/ and CH/sub 3/ content in coal and oil samples are determined and corresponding resonance lines are referred to individual structural fragments (on the basis of nuclear magnetic resonance /sup 13/C spectra) of known saturated hydrocarbons. Tests were carried out on chloroform extracts of Irsha-Borodinsk coal, Mungunsk coal and paraffin and cycloparaffin of Sivinsk oil (b.p. over 550 C) fractions. Nuclear magnetic resonance spectra were obtained using Burker WP 200 spectrometer (50.13 MHz frequency). Results of the tests are given. 11 references.

  3. Science and history explored by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baias, Maria Antoaneta

    2009-01-01

    Nuclear Magnetic Resonance was chosen as the main tool for investigating different biological and chemical systems, as it is unique in providing the information details about the morphology and molecular structures and conformations by which the fundamental properties of these biological and chemical systems can be understood. Proton spin-diffusion experiments combined with 13 C CPMAS spectroscopy were successfully applied to characterize the changes that occur during the thermal denaturation of keratin fibers from wool and hair. A model describing both the effect of thermal denaturation and the effect of different chemical treatments on keratin fibers is presented. Proton NMR spectroscopy was used for studying the proton exchange in Sulfonated Polyether Ether Ketone proton exchange membranes revealing that the water exchange processes in hydrated SPEEK-silica membranes are more efficient when low concentrations of polyethoxysiloxane (PEOS) are used for the membrane preparation. Proton 1D exchange spectroscopy combined with transverse relaxation measurements offered good insight in the state of water in hydrated SPEEK/SiO 2 membranes revealing that concentrations of 5%-10% wt. PEOS could enhance the electrical conductivity of PEM. Hyperpolarized 129 Xe NMR spectroscopy was successfully applied for monitoring the free radical polymerization reactions of methyl methacrylate, methyl acrylate and the copolymerization of methyl methacrylate and methyl acrylate. The observation of Xe chemical shift and linewidths during the reactions reveal information about the polymer chain growths during the polymerizations. The successful application of the NMR-MOUSE to visualise the different anatomical layers with varying proton densities opens the possibility of its use in clinical studies such as osteoporosis for bone density measurements. The NMR-MOUSE was also successfully applied for the analysis of violins and bows and a classification of the violins and bows as a function of

  4. Updated methodology for nuclear magnetic resonance characterization of shales

    Science.gov (United States)

    Washburn, Kathryn E.; Birdwell, Justin E.

    2013-08-01

    Unconventional petroleum resources, particularly in shales, are expected to play an increasingly important role in the world's energy portfolio in the coming years. Nuclear magnetic resonance (NMR), particularly at low-field, provides important information in the evaluation of shale resources. Most of the low-field NMR analyses performed on shale samples rely heavily on standard T1 and T2 measurements. We present a new approach using solid echoes in the measurement of T1 and T1-T2 correlations that addresses some of the challenges encountered when making NMR measurements on shale samples compared to conventional reservoir rocks. Combining these techniques with standard T1 and T2 measurements provides a more complete assessment of the hydrogen-bearing constituents (e.g., bitumen, kerogen, clay-bound water) in shale samples. These methods are applied to immature and pyrolyzed oil shale samples to examine the solid and highly viscous organic phases present during the petroleum generation process. The solid echo measurements produce additional signal in the oil shale samples compared to the standard methodologies, indicating the presence of components undergoing homonuclear dipolar coupling. The results presented here include the first low-field NMR measurements performed on kerogen as well as detailed NMR analysis of highly viscous thermally generated bitumen present in pyrolyzed oil shale.

  5. Proton nuclear magnetic resonance in paramagnetic CoCl2.6H2O

    International Nuclear Information System (INIS)

    Oravcova, J.; Murin, J.; Rakos, M.; Olcak, D.

    1978-01-01

    Nuclear magnetic resonance (NMR) is studied of protons of the crystal water of paramagnetic CoCl 2 .6H 2 O. The measurements were carried out on powdered samples at room temperature, for values of the external magnetic field ranging from 0.3 to 1.0 T. The NMR signals of protons of the crystal water exhibit asymmetric shape which changes with the applied external magnetic field. We found that the second moment of the resonance line shows a linear dependence on the square of the induction of the externally applied magnetic field. The cause of the asymmetry of the NMR line of protons of the crystal water and the dependence of the second moment of the resonance line on the induction of external magnetic field are interpreted. (author)

  6. A personal computer-based nuclear magnetic resonance spectrometer

    Science.gov (United States)

    Job, Constantin; Pearson, Robert M.; Brown, Michael F.

    1994-11-01

    Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

  7. Nuclear magnetic resonance system with continuous flow of polarized water to obtain the traceability to static magnetic fields; Sistema de ressonancia magnetica nuclear com fluxo continuo de agua polarizada para obtencao da rastreabilidade para campos magneticos estaticos

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Ramon Valls; Nazarre, Diego Joriro, E-mail: ramon@ipt.br [Instituto de Pesquisas Tecnologicas (IPT), Sao Paulo, SP (Brazil)

    2013-07-01

    We have developed a system to obtain the traceability of field or magnetic induction intensity in the range of 2 μT up to 2 T, even in the presence of magnetic field gradients or noisy environments. The system is based on a nuclear magnetic resonance magnetometer, built in streaming water. The calibration procedure of a coil for magnetic field generation is described, as well as the results obtained and the estimated uncertainty (author)

  8. Nuclear-magnetic-resonance quantum calculations of the Jones polynomial

    International Nuclear Information System (INIS)

    Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.

    2010-01-01

    The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.

  9. Nuclear magnetic resonance studies of epithelial metabolism and function

    International Nuclear Information System (INIS)

    Balaban, R.S.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a noninvasive technique for studying cellular metabolism and function. In this review the general applications and advantages of NMR will be discussed with specific reference to epithelial tissues. Phosphorus NMR investigations have been performed on epithelial tissues in vivo and in vitro; however, other detectable nuclei have not been utilized to date. Several new applications of phosphorus NMR to epithelial tissues are also discussed, including studies on isolated renal tubules and sheet epithelia

  10. Two-dimensional nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Bax, A.; Lerner, L.

    1986-01-01

    Great spectral simplification can be obtained by spreading the conventional one-dimensional nuclear magnetic resonance (NMR) spectrum in two independent frequency dimensions. This so-called two-dimensional NMR spectroscopy removes spectral overlap, facilitates spectral assignment, and provides a wealth of additional information. For example, conformational information related to interproton distances is available from resonance intensities in certain types of two-dimensional experiments. Another method generates 1 H NMR spectra of a preselected fragment of the molecule, suppressing resonances from other regions and greatly simplifying spectral appearance. Two-dimensional NMR spectroscopy can also be applied to the study of 13 C and 15 N, not only providing valuable connectivity information but also improving sensitivity of 13 C and 15 N detection by up to two orders of magnitude. 45 references, 10 figures

  11. Nuclear magnetic resonance data of C36H30Br2OSb2

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  12. Nuclear magnetic resonance data of C36H30Cl2OSb2

    Science.gov (United States)

    Mikhova, B. M.

    This document is part of Part 6 `Organic Metalloid Compounds' of Subvolume D 'Chemical Shifts and Coupling Constants for Carbon-13' of Landolt-Börnstein III/35 'Nuclear Magnetic Resonance Data', Group III 'Condensed Matter'.

  13. Recursive polarization of nuclear spins in diamond at arbitrary magnetic fields

    International Nuclear Information System (INIS)

    Pagliero, Daniela; Laraoui, Abdelghani; Henshaw, Jacob D.; Meriles, Carlos A.

    2014-01-01

    We introduce an alternate route to dynamically polarize the nuclear spin host of nitrogen-vacancy (NV) centers in diamond. Our approach articulates optical, microwave, and radio-frequency pulses to recursively transfer spin polarization from the NV electronic spin. Using two complementary variants of the same underlying principle, we demonstrate nitrogen nuclear spin initialization approaching 80% at room temperature both in ensemble and single NV centers. Unlike existing schemes, our approach does not rely on level anti-crossings and is thus applicable at arbitrary magnetic fields. This versatility should prove useful in applications ranging from nanoscale metrology to sensitivity-enhanced NMR

  14. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

    Directory of Open Access Journals (Sweden)

    Miriam Jaafar

    2011-09-01

    Full Text Available The most outstanding feature of scanning force microscopy (SFM is its capability to detect various different short and long range interactions. In particular, magnetic force microscopy (MFM is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures. It is a usual procedure to separate the topography and the magnetic signal by scanning at a lift distance of 25–50 nm such that the long range tip–sample interactions dominate. Nowadays, MFM is becoming a valuable technique to detect weak magnetic fields arising from low dimensional complex systems such as organic nanomagnets, superparamagnetic nanoparticles, carbon-based materials, etc. In all these cases, the magnetic nanocomponents and the substrate supporting them present quite different electronic behavior, i.e., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force microscopy (KPFM and MFM. The KPFM technique allows us to compensate in real time the electrostatic forces between the tip and the sample by minimizing the electrostatic contribution to the frequency shift signal. This is a great challenge in samples with low magnetic moment. In this work we studied an array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample.

  15. A combined gas cooled nuclear reactor and fuel cell cycle

    Science.gov (United States)

    Palmer, David J.

    Rising oil costs, global warming, national security concerns, economic concerns and escalating energy demands are forcing the engineering communities to explore methods to address these concerns. It is the intention of this thesis to offer a proposal for a novel design of a combined cycle, an advanced nuclear helium reactor/solid oxide fuel cell (SOFC) plant that will help to mitigate some of the above concerns. Moreover, the adoption of this proposal may help to reinvigorate the Nuclear Power industry while providing a practical method to foster the development of a hydrogen economy. Specifically, this thesis concentrates on the importance of the U.S. Nuclear Navy adopting this novel design for its nuclear electric vessels of the future with discussion on efficiency and thermodynamic performance characteristics related to the combined cycle. Thus, the goals and objectives are to develop an innovative combined cycle that provides a solution to the stated concerns and show that it provides superior performance. In order to show performance, it is necessary to develop a rigorous thermodynamic model and computer program to analyze the SOFC in relation with the overall cycle. A large increase in efficiency over the conventional pressurized water reactor cycle is realized. Both sides of the cycle achieve higher efficiencies at partial loads which is extremely important as most naval vessels operate at partial loads as well as the fact that traditional gas turbines operating alone have poor performance at reduced speeds. Furthermore, each side of the cycle provides important benefits to the other side. The high temperature exhaust from the overall exothermic reaction of the fuel cell provides heat for the reheater allowing for an overall increase in power on the nuclear side of the cycle. Likewise, the high temperature helium exiting the nuclear reactor provides a controllable method to stabilize the fuel cell at an optimal temperature band even during transients helping

  16. Combination of 1H nuclear magnetic resonance spectroscopy and principal component analysis to evaluate the lipid fluidity of flutamide-encapsulated lipid nanoemulsions.

    Science.gov (United States)

    Takegami, Shigehiko; Ueyama, Keita; Konishi, Atsuko; Kitade, Tatsuya

    2018-06-06

    The lipid fluidity of various lipid nanoemulsions (LNEs) without and with flutamide (FT) and containing one of two neutral lipids, one of four phosphatidylcholines as a surfactant, and sodium palmitate as a cosurfactant was investigated by the combination of 1 H nuclear magnetic resonance (NMR) spectroscopy and principal component analysis (PCA). In the 1 H NMR spectra, the peaks from the methylene groups of the neutral lipids and surfactants for all LNE preparations showed downfield shifts with increasing temperature from 20 to 60 °C. PCA was applied to the 1 H NMR spectral data obtained for the LNEs. The PCA resulted in a model in which the first two principal components (PCs) extracted 88% of the total spectral variation; the first PC (PC-1) axis and second PC (PC-2) axis accounted for 73 and 15%, respectively, of the total spectral variation. The Score-1 values for PC-1 plotted against temperature revealed the existence of two clusters, which were defined by the neutral lipid of the LNE preparations. Meanwhile, the Score-2 values decreased with rising temperature and reflected the increase in lipid fluidity of each LNE preparation, consistent with fluorescence anisotropy measurements. In addition, the changes of Score-2 values with temperature for LNE preparations with FT were smaller than those for LNE preparations without FT. This indicates that FT encapsulated in LNE particles markedly suppressed the increase in lipid fluidity of LNE particles with rising temperature. Thus, PCA of 1 H NMR spectra will become a powerful tool to analyze the lipid fluidity of lipid nanoparticles. Graphical abstract ᅟ.

  17. High-resolution nuclear magnetic resonance measurements in inhomogeneous magnetic fields: A fast two-dimensional J-resolved experiment

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yuqing; Cai, Shuhui; Yang, Yu; Sun, Huijun; Lin, Yanqin, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn; Chen, Zhong, E-mail: linyq@xmu.edu.cn, E-mail: chenz@xmu.edu.cn [Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005 (China); Lin, Yung-Ya [Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095 (United States)

    2016-03-14

    High spectral resolution in nuclear magnetic resonance (NMR) is a prerequisite for achieving accurate information relevant to molecular structures and composition assignments. The continuous development of superconducting magnets guarantees strong and homogeneous static magnetic fields for satisfactory spectral resolution. However, there exist circumstances, such as measurements on biological tissues and heterogeneous chemical samples, where the field homogeneity is degraded and spectral line broadening seems inevitable. Here we propose an NMR method, named intermolecular zero-quantum coherence J-resolved spectroscopy (iZQC-JRES), to face the challenge of field inhomogeneity and obtain desired high-resolution two-dimensional J-resolved spectra with fast acquisition. Theoretical analyses for this method are given according to the intermolecular multiple-quantum coherence treatment. Experiments on (a) a simple chemical solution and (b) an aqueous solution of mixed metabolites under externally deshimmed fields, and on (c) a table grape sample with intrinsic field inhomogeneity from magnetic susceptibility variations demonstrate the feasibility and applicability of the iZQC-JRES method. The application of this method to inhomogeneous chemical and biological samples, maybe in vivo samples, appears promising.

  18. Materials of the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications - Abstracts

    International Nuclear Information System (INIS)

    2006-01-01

    The Report comprises abstracts of 78 communications presented during the 39 Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on November, 30 - December, 2006 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  19. 43. Polish Seminar on Nuclear Magnetic Resonance and its Applications. Cracow. Abstracts

    International Nuclear Information System (INIS)

    2010-12-01

    42 Polish Seminar on Nuclear Magnetic Resonance and its Applications, held on 1-2 December 2010 in Cracow (Poland), was devoted to the development of different magnetic resonance techniques and application of such techniques as crucial part of the studies. The Report contains 58 short descriptions of the contributions submitted by the participants of the Seminar. They cover all areas of the NMR application in major branches of basic chemistry, structural biology, medicine and materials science. Also recent results of the quantum chemical calculations of the NMR parameters are presented.

  20. Scaling of transverse nuclear magnetic relaxation due to magnetic nanoparticle aggregation

    International Nuclear Information System (INIS)

    Brown, Keith A.; Vassiliou, Christophoros C.; Issadore, David; Berezovsky, Jesse; Cima, Michael J.; Westervelt, R.M.

    2010-01-01

    The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T 2 CP of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T 2 CP and details of the aggregate. We find that in the motional averaging regime T 2 CP scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T 2 CP ∝Ν -0.44 for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T 2 CP is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.

  1. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Iles, R A; Hind, A J; Chalmers, R A

    1986-12-15

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.). 18 refs.; 4 figs.; 3 tabs.

  2. Methylmalonic aciduria and propionic acidaemia studied by proton nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Iles, R.A.; Hind, A.J.; Chalmers, R.A.

    1986-01-01

    Proton nuclear magnetic resonance spectroscopy has been used to monitor changes in urinary metabolites in a patient with propionic acidaemia over a period of 10 months and in a patient with methylmalonic aciduria over a period of 11 days. Results could be obtained within 5-10 min of sample receipt. In the spectra on the patient with propionic acidaemia not only could fluctuations in 3-hydroxypropionate and propionylglycine excretion be followed, but also variations in creatine, glycine and betaine, which were often present at millimolar concentrations. The patient with methylmalonic aciduria had an acute episode of severe ketoacidosis during which the glycine excretion fell but creatine excretion rose and then fell on recovery from the episode. The changes in the creatine excretion may reflect disorders in intracellular energy supply. Nuclear magnetic resonance is a powerful technique for monitoring metabolic perturbations in the organic acidurias in 'real-time', allowing the planning and evaluation of therapy. (Auth.)

  3. Measurements of nuclear polarization and nuclear magnetic moment of 170Tm in 170Tm:SrF2 by optical pumping

    International Nuclear Information System (INIS)

    Shimomura, K.

    1988-01-01

    Significant nuclear polarization of unstable 170 Tm in Tm 2+ :SrF 2 was for the first time achieved with β-ray radiation detected optical pumping in solids, providing a new powerful method to measure magnetic moments of unstable nuclei. (author)

  4. Mechanism of nuclear cross-relaxation in magnetically ordered media

    Energy Technology Data Exchange (ETDEWEB)

    Buishvili, L L; Volzhan, E B; Giorgadze, N P [AN Gruzinskoj SSR, Tbilisi. Inst. Fiziki

    1975-09-01

    A mechanism of two-step nuclear relaxation in magnetic ordered dielectrics is proposed. The case is considered where the energy conservation in the cross relaxation (CR) process is ensured by the lattice itself without spin-spin interactions. Expressions have been obtained describing the temperature dependence of the CR rate. For a nonuniform broadened NMR line it has been shown that the spin-lattice relaxation time for a spin packet taken out from the equilibrium may be determined by the CR time owing to the mechanism suggested. When the quantization axes for electron and nuclear spins coincide, the spin-lattice relaxation is due to the three-magnon mechanism. The cross-relaxation stage has been shown to play a significant role in the range of low temperatures (T<10 deg K) and to become negligible with a temperature increase.

  5. Problems of the processing of nuclear magnetic logging signals (identification of fluid-containing strata from a number of measurements)

    International Nuclear Information System (INIS)

    Aliev, T.M.; Orlov, G.L.; Lof, V.M.; Mityushin, E.M.; Ragimova, E.K.

    1978-01-01

    Problems of the processing of nuclear magnetic logging signals to identification of fluid-containing strata from a number of measurements. Problems of application statistical decision theory to discovery of fluid-containing beds from a number of measurements are considered. Using the technique possibilities of nuclear magnetic logging method the necessary volume of samples is motivated, the rational algorithm for processing of sequential measurements is obtained

  6. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué , Kamal H.; Emwas, Abdul-Hamid M.; Power, William P.

    2010-01-01

    on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry

  7. Pancreatic cancer screening employing noncontrast magnetic resonance imaging combined with ultrasonography

    International Nuclear Information System (INIS)

    Kuroki-Suzuki, Seiko; Nagashima, Chieko; Machida, Minoru; Muramatsu, Yukio; Moriyama, Noriyuki; Kuroki, Yoshifumi; Nasu, Katsuhiro

    2011-01-01

    We have conducted an initial evaluation on the potential of combining noncontrast magnetic resonance imaging (MRI) and ultrasonography (US) to screen for pancreatic cancer. An independent ethics committee approved this study. A total of 2511 patients who underwent US were enrolled. Among them, noncontrast MRI was performed in patients in whom the entire pancreas was difficult to depict or in those with US-suspected pancreatic lesions. In total, using 1.5-T MRI, T1- and T2-weighted imaging, magnetic resonance cholangiopancreatography, and diffusion-weighted imaging, we acquired a variety of images. The efficacy of US and MRI in screening for pancreatic lesions, including pancreatic cancer, was evaluated. Of 2511 patients, 184 underwent MRI, and the pancreas was demonstrated in all of them. Among the 2511, five pancreatic cancers were detected by MRI combined with US (detection rate 0.20%). Of the five pancreatic cancers, three were detected by US (detection rate 0.12%) and two by MRI. Four of the five pancreatic cancers were resectable. By combining noncontrast MRI with US, pancreatic cancer can be detected with high accuracy. Other pancreatic lesions that require follow-up, including intraductal papillary mucinous neoplasms, can also be detected. Thus, pancreatic cancer screening with a combination of US and MRI is suggested. (author)

  8. [Acupuncture combined with magnetic therapy for treatment of temple-jaw joint dysfunction].

    Science.gov (United States)

    Wang, Xiao-Hui; Zhang, Wen

    2009-04-01

    To compare clinical therapeutic effects of acupuncture combined with magnetic therapy and simple magnetic therapy on temple-jaw joint dysfunction. Eighty-two cases were randomly divided into an observation group (n = 52) and a control group (n = 30). The observation group was treated with acupuncture at Xiaguan (ST 7), Jiache (ST 6), Hegu (LI 4), etc. and AL-2 low frequency electromagnetic comprehensive treatment instrument; the control group was treated with AL-2 low frequency electromagnetic comprehensive treatment instrument. The cured and markedly effective rate of 90.4% in the observation group was significantly better than 66.7% in the control group (P magnetic therapy is significantly better than that of the simple magnetic therapy on temple-jaw joint dysfunction.

  9. Nuclear magnetic resonance imaging of the knee: examples of normal anatomy and pathology.

    Science.gov (United States)

    Kean, D M; Worthington, B S; Preston, B J; Roebuck, E J; McKim-Thomas, H; Hawkes, R C; Holland, G N; Moore, W S

    1983-06-01

    Nuclear magnetic resonance images of the knee were obtained from three normal volunteers and from two patients. The pathology included an osteosarcoma of the distal femur and a fracture of the tibia. Steady State Free Precession (SSFP) techniques were used with a 0.15 Tesla resistive type magnet. Normal anatomy was well displayed and the size of the osteosarcoma was accurately predicted. Using SSFP techniques, the blood in the knee joint was not visualised, but the underlying tibial fracture was clearly outlined.

  10. Combined backscatter and transmission method for nuclear density gauge

    Directory of Open Access Journals (Sweden)

    Golgoun Seyed Mohammad

    2015-01-01

    Full Text Available Nowadays, the use of nuclear density gauges, due to the ability to work in harsh industrial environments, is very common. In this study, to reduce error related to the ρ of continuous measuring density, the combination of backscatter and transmission are used simultaneously. For this reason, a 137Cs source for Compton scattering dominance and two detectors are simulated by MCNP4C code for measuring the density of 3 materials. Important advantages of this combined radiometric gauge are diminished influence of μ and therefore improving linear regression.

  11. Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids

    International Nuclear Information System (INIS)

    Callaghan, Paul T.

    1999-01-01

    The application of nuclear magnetic resonance methods to the study of complex fluids under shearing and extensional flows is reviewed. Both NMR velocimetry and spectroscopy approaches are discussed while specific systems studied include polymer melts, rigid rod and random coil polymers in solution, lyotropic and thermotropic liquid crystals and liquid crystalline polymers, and wormlike micelles. Reference is made to food systems. (author)

  12. Hazards and hazard combinations relevant for the safety of nuclear power plants

    Science.gov (United States)

    Decker, Kurt; Brinkman, Hans; Raimond, Emmanuel

    2017-04-01

    The potential of the contemporaneous impact of different, yet causally related, hazardous events and event cascades on nuclear power plants is a major contributor to the overall risk of nuclear installations. In the aftermath of the Fukushima accident, which was caused by a combination of severe ground shaking by an earthquake, an earthquake-triggered tsunami and the disruption of the plants from the electrical grid by a seismically induced landslide, hazard combinations and hazard cascades moved into the focus of nuclear safety research. We therefore developed an exhaustive list of external hazards and hazard combinations which pose potential threats to nuclear installations in the framework of the European project ASAMPSAE (Advanced Safety Assessment: Extended PSA). The project gathers 31 partners from Europe, North Amerika and Japan. The list comprises of exhaustive lists of natural hazards, external man-made hazards, and a cross-correlation matrix of these hazards. The hazard list is regarded comprehensive by including all types of hazards that were previously cited in documents by IAEA, the Western European Nuclear Regulators Association (WENRA), and others. 73 natural hazards and 24 man-made external hazards are included. Natural hazards are grouped into seismotectonic hazards, flooding and hydrological hazards, extreme values of meteorological phenomena, rare meteorological phenomena, biological hazards / infestation, geological hazards, and forest fire / wild fire. The list of external man-made hazards includes industry accidents, military accidents, transportation accidents, pipeline accidents and other man-made external events. The large number of different hazards results in the extremely large number of 5.151 theoretically possible hazard combinations (not considering hazard cascades). In principle all of these combinations are possible to occur by random coincidence except for 82 hazard combinations that - depending on the time scale - are mutually

  13. Bony vibration stimulation test combined with magnetic resonance imaging. Can discography be replaced?

    Science.gov (United States)

    Yrjämä, M; Tervonen, O; Kurunlahti, M; Vanharanta, H

    1997-04-01

    The results of two noninvasive methods, magnetic resonance imaging and a bony vibration test, were compared with discographic pain provocation findings. To evaluate whether the combination of magnetic resonance imaging and vibration pain provocation tests could be used to replace discography in low back pain diagnostics. Magnetic resonance imaging gives a wealth of visual information on anatomic changes of the spine with often unknown clinical significance. Discographic examination of the spine is still the only widely accepted diagnostic method that can relate the pathoanatomic changes to the patient's clinical pain. Internal anular rupture has been shown to be one of the sources of back pain. The bony vibration test of the spinal processes has been shown correlate well with discographic pain provocation tests in cases of internal anular rupture. The three lowest lumbar discs of 33 patients with back pain were examined by means of magnetic resonance imaging and a bony vibration stimulation test, and the results were compared with those from computed tomography-discography. In cases of intradiscal magnetic resonance imaging findings, the vibration provocation test showed a sensitivity of 0.88 and a specificity of 0.50 compared with the discographic pain provocation test. If the patients with previous back surgery were excluded, the specificity was 0.75. In the cases of total anular rupture, the sensitivity was 0.50, and the specificity was 0.33. The combination of the two noninvasive methods, vibration stimulation and magnetic resonance imaging, gives more information on the origin of the back pain than magnetic resonance imaging alone. The pathoanatomic changes seen in magnetic resonance imaging can be correlated with the patient's disorder more reliably using the vibration provocation test in the cases of partial anular ruptures. The use of discography can be limited mostly to cases with total anular ruptures detected by magnetic resonance imaging.

  14. Study of biological fluids by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Kriat, M.; Vion-Dury, J.; Confort-Gouny, S.; Sciaky, M.; Cozzone, P.J.

    1991-01-01

    The use of nuclear magnetic resonance (NMR) spectroscopy in the study of biofluids is rapidly developing and might soon constitute a new major medical application of this technique which benefits from technological and methodological progress such as higher magnetic fields, new probe design, solvent suppression sequences and advanced data processing routines. In this overview, the clinical and pharmacological impact of this new approach is examined, with emphasis on the NMR spectroscopy of plasma, cerebrospinal fluid and urine. Applications to pharmacokinetics and toxicology are illustrated. Interestingly, a number of biochemical components of fluids which are not usually assayed by conventional biochemical methods are readily detected by NMR spectroscopy which is clearly a new competitive entrant among the techniques used in clinical biology. Its ease-of-use, cost effectiveness and high informational content might turn it into a major diagnostic tool in the years to come [fr

  15. Nuclear magnetic resonance of D(-)-{alpha}-amino-benzyl penicillin; Ressonancia magnetica nuclear da D(-)-{alpha}-amino-benzil penicilina

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Monica R.M.P.; Gemal, Andre L.; San Gil, Rosane A.S. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Menezes, Sonia M.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1995-12-31

    The development of new drugs from penicillins has induced the study of this substances by nuclear magnetic resonance. Several samples of D(-)-{alpha}-amino-benzyl penicillin were analysed using {sup 13} C NMR techniques in aqueous solution and solid state. Spectral data of this compounds were shown and the results were presented and analysed 7 figs., 4 tabs.

  16. Display of cross sectional anatomy by nuclear magnetic resonance imaging

    International Nuclear Information System (INIS)

    Hinshaw, W.S.; Andrew, E.R.; Bottomley, P.A.; Holland, G.N.; Moore, W.S.; Worthington, B.S.

    1978-01-01

    High definition cross-sectional images produced by a new nuclear magnetic resonace (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique. (author)

  17. Display of cross sectional anatomy by nuclear magnetic resonance imaging.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1978-04-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  18. Quantification of lipoprotein profiles by nuclear magnetic resonance spectroscopy and multivariate data analysis

    DEFF Research Database (Denmark)

    Aru, Violetta; Lam, Chloie; Khakimov, Bekzod

    2017-01-01

    Lipoproteins and their subfraction profiles have been associated to diverse diseases including Cardio Vascular Disease (CVD). There is thus a great demand for measuring and quantifying the lipoprotein profile in an efficient and accurate manner. Nuclear Magnetic Resonance (NMR) spectroscopy is un...

  19. Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe.

    Science.gov (United States)

    Zhukov, E A; Kirstein, E; Kopteva, N E; Heisterkamp, F; Yugova, I A; Korenev, V L; Yakovlev, D R; Pawlis, A; Bayer, M; Greilich, A

    2018-05-16

    The coherent spin dynamics of fluorine donor-bound electrons in ZnSe induced by pulsed optical excitation is studied in a perpendicular applied magnetic field. The Larmor precession frequency serves as a measure for the total magnetic field exerted onto the electron spins and, surprisingly, does not increase linearly with the applied field, but shows a step-like behavior with pronounced plateaus, given by multiples of the laser repetition rate. This discretization occurs by a feedback mechanism in which the electron spins polarize the nuclear spins, which in turn generate a local Overhauser field adjusting the total magnetic field accordingly. Varying the optical excitation power, we can control the plateaus, in agreement with our theoretical model. From this model, we trace the observed discretization to the optically induced Stark field, which causes the dynamic nuclear polarization.

  20. Nuclear magnetic resonance imaging of the thorax

    International Nuclear Information System (INIS)

    Gamsu, G.; Webb, W.R.; Sheldon, P.; Kaufman, L.; Crooks, L.E.; Birnberg, F.A.; Goodman, P.; Hinchcliffe, W.A.; Hedgecock, M.

    1983-01-01

    Nuclear magnetic resonance (NMR) images of the thorax were obtained in ten normal volunteers, nine patients with advanced bronchogenic carcinoma, and three patients with benign thoracic abnormalities. In normal volunteers, mediastinal and hilar structures were seen with equal frequency on NMR images and computed tomographic scans. The hila were especially well displayed on spin-echo images. Spin-echo images showed mediastinal invasion by tumor, vascular and bronchial compression and invasion, and hilar and mediastinal adenopathy. Tumor and benign abnormalities could be separated from mediastinal and hilar fat because of their longer T1 times. Lung masses and nodules as small as 1.5 cm could be seen on the spin-echo images. NMR imaging shows promise for assessment of benign and malignant mediastinal, hilar, and lung abnormalities

  1. Geochemical Controls on Nuclear Magnetic Resonance Measurements

    International Nuclear Information System (INIS)

    Knight, Rosemary; Prasad, Manika; Keating, Kristina

    2003-01-01

    OAK-B135 Our research objectives are to determine, through an extensive set of laboratory experiments, the effect of the specific mineralogic form of iron and the effect of the distribution of iron on proton nuclear magnetic resonance (NMR) relaxation mechanisms. In the first nine months of this project, we have refined the experimental procedures to be used in the acquisition of the laboratory NMR data; have ordered, and conducted preliminary measurements on, the sand samples to be used in the experimental work; and have revised and completed the theoretical model to use in this project. Over the next year, our focus will be on completing the first phase of the experimental work where the form and distribution of the iron in the sands in varied

  2. Properties of the cathode lens combined with a focusing magnetic/immersion-magnetic lens

    International Nuclear Information System (INIS)

    Konvalina, I.; Muellerova, I.

    2011-01-01

    The cathode lens is an electron optical element in an emission electron microscope accelerating electrons from the sample, which serves as a source for a beam of electrons. Special application consists in using the cathode lens first for retardation of an illuminating electron beam and then for acceleration of reflected as well as secondary electrons, made in the directly imaging low energy electron microscope or in its scanning version discussed here. In order to form a real image, the cathode lens has to be combined with a focusing magnetic lens or a focusing immersion-magnetic lens, as used for objective lenses of some commercial scanning electron microscopes. These two alternatives are compared with regards to their optical properties, in particular with respect to predicted aberration coefficients and the spot size, as well as the optimum angular aperture of the primary beam. The important role of the final aperture size on the image resolution is also presented.

  3. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to 13C nuclear magnetic resonance pattern recognition

    International Nuclear Information System (INIS)

    Oettl, Sarah K.; Hubert, Jane; Nuzillard, Jean-Marc; Stuppner, Hermann; Renault, Jean-Hugues; Rollinger, Judith M.

    2014-01-01

    Highlights: • The major depsides of a lichen extract were directly identified within mixtures. • The initial extract was rapidly fractionated by CPC in the pH-zone refining mode. • Hierarchical clustering of 13 C NMR signals resulted in the identification of depside molecular skeletons. • 13 C chemical shift clusters were assigned to structures using a 13 C NMR database. • Six depsides were unambiguously identified by this approach. - Abstract: Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or C-C-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After 13 C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of 13 C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house 13 C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5), and olivetonide (6)

  4. Can magneto-plasmonic nanohybrids efficiently combine photothermia with magnetic hyperthermia?

    Science.gov (United States)

    Espinosa, Ana; Bugnet, Mathieu; Radtke, Guillaume; Neveu, Sophie; Botton, Gianluigi A.; Wilhelm, Claire; Abou-Hassan, Ali

    2015-11-01

    Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched shell with tunable plasmonic properties in the NIR region, for photothermal therapy) which impressively enhanced heat generation, in suspension or in vivo in tumours, opening up exciting new therapeutic perspectives.Multifunctional hybrid-design nanomaterials appear to be a promising route to meet the current therapeutics needs required for efficient cancer treatment. Herein, two efficient heat nano-generators were combined into a multifunctional single nanohybrid (a multi-core iron oxide nanoparticle optimized for magnetic hyperthermia, and a gold branched shell with tunable plasmonic properties in the NIR region, for photothermal therapy) which impressively enhanced heat generation, in suspension or in vivo in tumours, opening up exciting new therapeutic perspectives. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06168g

  5. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Nuclear resonant scattering of synchrotron radiation: Applications in magnetism of layered structures

    International Nuclear Information System (INIS)

    Schlage, Kai; Röhlsberger, Ralf

    2013-01-01

    Highlights: •Depth-resolved determination of magnetic spin structures. •Isotopic probe layers allow for probing selected depths in the sample. •High sensitivity to magnetic domain patterns via diffuse scattering. -- Abstract: Nuclear resonant scattering of synchrotron radiation has become an established tool within condensed-matter research. Synchrotron radiation with its outstanding brilliance, transverse coherence and polarization has opened this field for many unique studies, for fundamental research in the field of light-matter interaction as well as for materials science. This applies in particular for the electronic and magnetic structure of very small sample volumes like micro- and nano-structures and samples under extreme conditions of temperature and pressure. This article is devoted to the application of the technique to nanomagnetic systems such as thin films and multilayers. After a basic introduction into the method, a number of our experiments are presented to illustrate how magnetic spin structures within such layer systems can be revealed

  7. Carbon nuclear magnetic resonance spectroscopic fingerprinting of commercial gasoline: pattern-recognition analyses for screening quality control purposes.

    Science.gov (United States)

    Flumignan, Danilo Luiz; Boralle, Nivaldo; Oliveira, José Eduardo de

    2010-06-30

    In this work, the combination of carbon nuclear magnetic resonance ((13)C NMR) fingerprinting with pattern-recognition analyses provides an original and alternative approach to screening commercial gasoline quality. Soft Independent Modelling of Class Analogy (SIMCA) was performed on spectroscopic fingerprints to classify representative commercial gasoline samples, which were selected by Hierarchical Cluster Analyses (HCA) over several months in retails services of gas stations, into previously quality-defined classes. Following optimized (13)C NMR-SIMCA algorithm, sensitivity values were obtained in the training set (99.0%), with leave-one-out cross-validation, and external prediction set (92.0%). Governmental laboratories could employ this method as a rapid screening analysis to discourage adulteration practices. Copyright 2010 Elsevier B.V. All rights reserved.

  8. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2011-04-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to late 2010. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  9. Table of Nuclear Magnetic Dipole and Electric Quadrupole Moments

    International Nuclear Information System (INIS)

    Stone, N.J.

    2014-02-01

    This Table is a compilation of experimental measurements of static magnetic dipole and electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. The literature search covers the period to early 2014. Many of the entries prior to 1988 follow those in Raghavan P., Atomic and Nuclear Data Tables 42, 189 (1989). (author)

  10. Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Wang Chuan; Hao Liang; Zhao Lian-Jie

    2011-01-01

    We present a modified protocol for the realization of a quantum private query process on a classical database. Using one-qubit query and CNOT operation, the query process can be realized in a two-mode database. In the query process, the data privacy is preserved as the sender would not reveal any information about the database besides her query information, and the database provider cannot retain any information about the query. We implement the quantum private query protocol in a nuclear magnetic resonance system. The density matrix of the memory registers are constructed. (general)

  11. Applications of Nuclear Magnetic Resonance Sensors to Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2014-04-01

    Full Text Available In recent years nuclear magnetic resonance (NMR sensors have been increasingly applied to investigate, characterize and monitor objects of cultural heritage interest. NMR is not confined to a few specific applications, but rather its use can be successfully extended to a wide number of different cultural heritage issues. A breakthrough has surely been the recent development of portable NMR sensors which can be applied in situ for non-destructive and non-invasive investigations. In this paper three studies illustrating the potential of NMR sensors in this field of research are reported.

  12. Properties of K,Rb-intercalated C60 encapsulated inside carbon nanotubes called peapods derived from nuclear magnetic resonance

    KAUST Repository

    Mahfouz, Remi; Bouhrara, M.; Kim, Y.; Wå gberg, T.; Goze-Bac, C.; Abou-Hamad, Edy

    2015-01-01

    We present a detailed experimental study on how magnetic and electronic properties of Rb,K-intercalated C60 encapsulated inside carbon nanotubes called peapods can be derived from 13C nuclear magnetic resonance investigations. Ring currents do play

  13. Determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method in combination with magnetic spectrometers

    Energy Technology Data Exchange (ETDEWEB)

    Doncel, M. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Royal Institute of Technology, Department of Physics, Stockholm (Sweden); University of Liverpool, Department of Physics, Oliver Lodge Laboratory, Liverpool (United Kingdom); Gadea, A. [CSIC-University of Valencia, Istituto de Fisica Corpuscular, Valencia (Spain); Valiente-Dobon, J.J. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); Quintana, B. [Universidad de Salamanca, Laboratorio de Radiaciones Ionizantes, Salamanca (Spain); Modamio, V. [INFN, Laboratori Nazionali di Legnaro, Legnaro (Italy); University of Oslo, Oslo (Norway); Mengoni, D. [Dipartimento di Fisica e Astronomia, Universita di Padova, Padova (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova (Italy); Moeller, O.; Pietralla, N. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany); Dewald, A. [Institut fuer Kernphysik, Universitaet Koeln (Germany)

    2017-10-15

    The current work presents the determination of lifetimes of nuclear excited states using the Recoil Distance Doppler Shift Method, in combination with spectrometers for ion identification, normalizing the intensity of the peaks by the ions detected in the spectrometer as a valid technique that produces results comparable to the ones obtained by the conventional shifted-to-unshifted peak ratio method. The technique has been validated using data measured with the γ-ray array AGATA, the PRISMA spectrometer and the Cologne plunger setup. In this paper a test performed with the AGATA-PRISMA setup at LNL and the advantages of this new approach with respect to the conventional Recoil Distance Doppler Shift Method are discussed. (orig.)

  14. In situ nuclear magnetic resonance study of defect dynamics during deformation of materials

    NARCIS (Netherlands)

    Murty, K.L.; Detemple, K.; Kanert, O.; Peters, G; de Hosson, J.T.M.

    1996-01-01

    Nuclear magnetic resonance techniques can be used to monitor in situ the dynamical behaviour of point and line defects in materials during deformation. These techniques are non-destructive and non-invasive. We report here the atomic transport, in particular the enhanced diffusion during deformation

  15. Magnetic field sensor based on the magnetic-fluid-clad combined with singlemode-multimode-singlemode fiber and large core-offset splicing structure

    Science.gov (United States)

    Lv, Ri-qing; Qian, Jun-kai; Zhao, Yong

    2018-03-01

    A simple, compact optical fiber magnetic field sensor is proposed and experimentally demonstrated in this paper. It is based on the magnetic-fluid-clad combined with singlemode-multimode-singlemode fiber structure and large core-offset splicing structure. It was protected by a section of capillary tube and was sealed by UV glue. A sensing property study of the combined optical fiber structure and the proposed sensor were carried out. The experimental results show that the sensitivity of the refractive index of the optical fiber sensing structure is up to 156.63 nm/RIU and the magnetic field sensitivity of the proposed sensor is up to -97.24 pm/Oe in the range from 72.4 Oe to 297.8 Oe. The proposed sensor has several other advantages, such as simple structure, small size, easy fabrication and low cost.

  16. Nuclear magnetic resonance. Applications to medicine and biology

    International Nuclear Information System (INIS)

    Berdugo, M.; Fauchet, M.; Menasche, P.; Grall, Y.; Piwnica, A.

    1982-01-01

    Nuclear magnetic resonance (NMR) is a non-invasive exploratory technique based on a principle radically different from those of radiography, radionuclide exploration and ultrasonography. Signals coming from atomic nuclei and reflecting their density and chemical/biochemical environment are collected, thus providing information on the physiological and pathological state of tissues. The technique has multiple applications, either practical (tomographic imaging of the brain, thyroid gland and liver) or in the field of research, e.g. investigating ischaemic myocardial areas and pathological fluid composition, measuring intracellular pH, diagnosing the nature of a tumour and, broadly speaking, understanding the biochemical changes associated with malignant degeneration [fr

  17. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    Energy Technology Data Exchange (ETDEWEB)

    Dvinskikh, Sergey V.; Furo, Istvan (Industrial NMR Centre and Div. of Physical Chemistry, Dept. of Chemistry, Royal Institute of Technology, Stockholm (Sweden))

    2009-09-15

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl{sub 2} in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  18. Magnetic resonance imaging and nuclear magnetic resonance investigations of bentonite systems

    International Nuclear Information System (INIS)

    Dvinskikh, Sergey V.; Furo, Istvan

    2009-09-01

    This report summarizes results from a set of magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) experiments performed on Ca and Na montmorillonite samples interacting with water. The primary goal with these studies was to provide, in a non-invasive manner, a quantitative measure of bentonite distribution in extended samples during and after different physical processes such as swelling and sedimentation and on the time scale from minutes to years. Additionally, we also studied the distribution of foreign particles (such as native minerals as well as magnetic model particles) within bentonite systems and performed some diffusion NMR experiments with the aim of characterizing the state of colloids that form after clay dissolution. Both natural montmorillonites and purified and ion-exchanged montmorillonite clays were investigated. The primary variables were clay composition and water ionic strength. Bulk samples confined in a vertical tube and in a horizontal channel were investigated. A critical issue for the stability of clay buffer layer in deep underground repository is to prevent or minimize the release of clay particles into the water phase. In our experiments, the most significant particle losses were found for Na-MX80 clay exposed to water with low ionic strength. With increasing the concentration of CaCl 2 in the water phase both swelling and particle release are slowed down but not completely eliminated due probably to gradual change of water ion content via ion exchange with the clay itself. For natural MX80 samples, in spite of significant swelling expansion, no clay particle release above the sensitivity limit of 0.001 volume% was observed. Ca-MX80 exhibited the smallest expansion and no trace of clay particle released into the aqueous phase

  19. Magnetic imaging: a new tool for UK national nuclear security.

    Science.gov (United States)

    Darrer, Brendan J; Watson, Joe C; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-22

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  20. Magnetic Imaging: a New Tool for UK National Nuclear Security

    Science.gov (United States)

    Darrer, Brendan J.; Watson, Joe C.; Bartlett, Paul; Renzoni, Ferruccio

    2015-01-01

    Combating illicit trafficking of Special Nuclear Material may require the ability to image through electromagnetic shields. This is the case when the trafficking involves cargo containers. Thus, suitable detection techniques are required to penetrate a ferromagnetic enclosure. The present study considers techniques that employ an electromagnetic based principle of detection. It is generally assumed that a ferromagnetic metallic enclosure will effectively act as a Faraday cage to electromagnetic radiation and therefore screen any form of interrogating electromagnetic radiation from penetrating, thus denying the detection of any eventual hidden material. In contrast, we demonstrate that it is actually possible to capture magnetic images of a conductive object through a set of metallic ferromagnetic enclosures. This validates electromagnetic interrogation techniques as a potential detection tool for National Nuclear Security applications.

  1. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Melenev, Petr, E-mail: melenev@icmm.ru [Ural Federal University, 4, Turgeneva str., 620000 Ekaterinburg (Russian Federation); Institute of Continuous Media Mechanics, 1, Koroleva str., 614013 Perm (Russian Federation)

    2017-06-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces. - Highlights: • The combination of molecular dynamics and lattice Boltzmann method is utilized for the reveal of the role of hydrodynamic interaction in rotational dynamics of colloid particles. • The verification of the model parameters is done based on the comparison with the results of Langevin dynamics. • For the task of free rotational diffusion of the pair of colloid particles the influence of the hydrodynamic interactions on the relaxation time is examined in the case of nonmagnetic particles and at the presence of weak dipolar interaction.

  2. Nuclear moments

    CERN Document Server

    Kopferman, H; Massey, H S W

    1958-01-01

    Nuclear Moments focuses on the processes, methodologies, reactions, and transformations of molecules and atoms, including magnetic resonance and nuclear moments. The book first offers information on nuclear moments in free atoms and molecules, including theoretical foundations of hyperfine structure, isotope shift, spectra of diatomic molecules, and vector model of molecules. The manuscript then takes a look at nuclear moments in liquids and crystals. Discussions focus on nuclear paramagnetic and magnetic resonance and nuclear quadrupole resonance. The text discusses nuclear moments and nucl

  3. Magnetic moments in present relativistic nuclear theories: a mean-field problem

    International Nuclear Information System (INIS)

    Desplanques, B.

    1986-07-01

    We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs

  4. ARC: A compact, high-field, fusion nuclear science facility and demonstration power plant with demountable magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sorbom, B.N., E-mail: bsorbom@mit.edu; Ball, J.; Palmer, T.R.; Mangiarotti, F.J.; Sierchio, J.M.; Bonoli, P.; Kasten, C.; Sutherland, D.A.; Barnard, H.S.; Haakonsen, C.B.; Goh, J.; Sung, C.; Whyte, D.G.

    2015-11-15

    Highlights: • ARC reactor designed to have 500 MW fusion power at 3.3 m major radius. • Compact, simplified design allowed by high magnetic fields and jointed magnets. • ARC has innovative plasma physics solutions such as inboardside RF launch. • High temperature superconductors allow high magnetic fields and jointed magnets. • Liquid immersion blanket and jointed magnets greatly simplify tokamak reactor design. - Abstract: The affordable, robust, compact (ARC) reactor is the product of a conceptual design study aimed at reducing the size, cost, and complexity of a combined fusion nuclear science facility (FNSF) and demonstration fusion Pilot power plant. ARC is a ∼200–250 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has rare earth barium copper oxide (REBCO) superconducting toroidal field coils, which have joints to enable disassembly. This allows the vacuum vessel to be replaced quickly, mitigating first wall survivability concerns, and permits a single device to test many vacuum vessel designs and divertor materials. The design point has a plasma fusion gain of Q{sub p} ≈ 13.6, yet is fully non-inductive, with a modest bootstrap fraction of only ∼63%. Thus ARC offers a high power gain with relatively large external control of the current profile. This highly attractive combination is enabled by the ∼23 T peak field on coil achievable with newly available REBCO superconductor technology. External current drive is provided by two innovative inboard RF launchers using 25 MW of lower hybrid and 13.6 MW of ion cyclotron fast wave power. The resulting efficient current drive provides a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing fluorine lithium beryllium (FLiBe) molten salt. The liquid blanket is low-risk technology and provides effective neutron moderation and shielding, excellent

  5. Comparative mass spectrometry & nuclear magnetic resonance metabolomic approaches for nutraceuticals quality control analysis: a brief review.

    Science.gov (United States)

    Farag, Mohamed A

    2014-01-01

    The number of botanical dietary supplements in the market has recently increased primarily due to increased health awareness. Standardization and quality control of the constituents of these plant extracts is an important topic, particularly when such ingredients are used long term as dietary supplements, or in cases where higher doses are marketed as drugs. The development of fast, comprehensive, and effective untargeted analytical methods for plant extracts is of high interest. Nuclear magnetic resonance spectroscopy and mass spectrometry are the most informative tools, each of which enables high-throughput and global analysis of hundreds of metabolites in a single step. Although only one of the two techniques is utilized in the majority of plant metabolomics applications, there is a growing interest in combining the data from both platforms to effectively unravel the complexity of plant samples. The application of combined MS and NMR in the quality control of nutraceuticals forms the major part of this review. Finally I will look at the future developments and perspectives of these two technologies for the quality control of herbal materials.

  6. Aspects of the engineering design of whole-body nuclear magnetic resonance machines

    International Nuclear Information System (INIS)

    Young, I.R.; Collins, A.G.; Hall, A.S.; Harman, R.R.; Butson, P.C.; Gilderdale, D.J.

    1987-01-01

    The paper on whole-body nuclear magnetic resonance machines reviews the basic physics very briefly, then examines the design requirements and engineering constraints for the major components of such a system. The paper concludes with a brief resume of the techniques used, and a short presentation of the type of results that are achieved. (author)

  7. 8. Nuclear magnetic resonance users meeting; 1. Luso-Brazilian NMR meeting. Abstracts

    International Nuclear Information System (INIS)

    2001-01-01

    The NMR Users Meeting is held every year in Brazil and its eighth edition took place from May 7 - 11, 2001 together with the first Luso-Brazilian Meeting on Nuclear Magnetic Resonance. The extended abstracts book comprise: ten major conferences, four plenary lectures delivered by enterprise representatives (three from USA and one from Germany), six talks about the state-of-the-art of NMR methods (especially bi and tri-dimensional new techniques) and summaries of results from one hundred and twenty four research works. Among these research results which have been discussed, one hundred and sixteen were presented as congress panels/posters and eight as oral communications. The major topics of the scientific and technological research works are thus distributed: 63% in chemical sciences (mainly structural elucidation and stereochemistry of organic compounds and dynamical studies of chemical reactions), 19% in materials science (including petroleum), 8% in applied life sciences (agricultural and food sciences, biological sciences and medicine), 8% about theoretical aspects related to nuclear magnetic resonance and 2% regarding improvements in NMR instrumental techniques

  8. Performances of nuclear power plants for combined production of electricity and hot water for district heating

    International Nuclear Information System (INIS)

    Bronzen, S.

    The possibilities for using nuclear power plants for combined production of heat and power seem to be very good in the future. With the chosen 600 MWsub (e) BWR plant a heat output up to 1200 MW can be arranged. An alternative, consisting of steam extractions from the low-pressure turbine, offers a flexible solution for heat and power generation. With this alternative the combined plant can use components from normal condensing nuclear power plants. The flexible extraction design also offers a real possibility for using the combined plant in electric peak generation. However, urban siting requires long distance heat transmission and the pipe design for this transmission is a major problem when planning and optimizing the whole nuclear combined heat and power plant. (author)

  9. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy

    International Nuclear Information System (INIS)

    Costa, Paula de M.; Tavares, Maria I.B.

    2005-01-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  10. Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Matjaz Rozman

    2017-04-01

    Full Text Available This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR and a strongly-coupled magnetic resonance (SCMR, for better wireless power transmission (WPT. This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.

  11. Combining chemical and electric-nuclear propulsion for high speed flight

    International Nuclear Information System (INIS)

    Murthy, S.N.B.; Froning, H.D.

    1991-01-01

    In the development of propulsion for the high speed (greater than Mach 8) regime of a SSTO vehicle, an alternative to a combination of scramjets and conventional chemical rockets is a nuclear system such as the dense plasma fusion engine operated with aneutronic fuels. Several variants are then possible in the manner of energizing the working fluid. An attempt has been made to compare the effectiveness of nuclear and scramjet engines with respect to weights and utilization of energy availability. It is shown that nuclear engines can be as effective as the optimized combustion engines, and will yield a considerable reduction in GTOW in earth-based missions, and have a special use in other planetary atmospheres in which combustion may be difficult but collection and processing of working fluid is feasible. 9 refs

  12. Contributed Review: Nuclear magnetic resonance core analysis at 0.3 T

    International Nuclear Information System (INIS)

    Mitchell, Jonathan; Fordham, Edmund J.

    2014-01-01

    Nuclear magnetic resonance (NMR) provides a powerful toolbox for petrophysical characterization of reservoir core plugs and fluids in the laboratory. Previously, there has been considerable focus on low field magnet technology for well log calibration. Now there is renewed interest in the study of reservoir samples using stronger magnets to complement these standard NMR measurements. Here, the capabilities of an imaging magnet with a field strength of 0.3 T (corresponding to 12.9 MHz for proton) are reviewed in the context of reservoir core analysis. Quantitative estimates of porosity (saturation) and pore size distributions are obtained under favorable conditions (e.g., in carbonates), with the added advantage of multidimensional imaging, detection of lower gyromagnetic ratio nuclei, and short probe recovery times that make the system suitable for shale studies. Intermediate field instruments provide quantitative porosity maps of rock plugs that cannot be obtained using high field medical scanners due to the field-dependent susceptibility contrast in the porous medium. Example data are presented that highlight the potential applications of an intermediate field imaging instrument as a complement to low field instruments in core analysis and for materials science studies in general

  13. GHz nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Cross, T.A.; Drobny, G.; Trewhella, J.

    1994-12-01

    For the past dozen years, 500- and 600-MHz spectrometers have become available in many laboratories. The first 600-MHz NMR spectrometer (at Carnegie Mellon University) was commissioned more than 15 years ago and, until 1994, represented the highest field available for high-resolution NMR. This year, we have witnessed unprecedented progress in the development of very high field magnets for NMR spectroscopy, including the delivery of the first commercial 750-MHz NMR spectrometers. In addition, NMR signals have been obtained from 20-Tesla magnets (850 MHz for {sup 1}H`s) at both Los Alamos National Laboratory and Florida State University in the NHMFL (National High Magnetic Field Laboratory). These preliminary experiments have been performed in magnets with 100-ppm homogeneity, but a 20-Tesla magnet developed for the NHMFL will be brought to field this year with a projected homogeneity of 0.1 ppm over a 1-cm-diam spherical volume.

  14. Solid-state 27Al nuclear magnetic resonance investigation of three aluminum-centered dyes

    KAUST Repository

    Mroué, Kamal H.

    2010-02-01

    We report the first solid-state 27Al NMR study of three aluminum phthalocyanine dyes: aluminum phthalocyanine chloride, AlPcCl (1); aluminum-1,8,15,22-tetrakis(phenylthio)-29H,31H-phthalocyanine chloride, AlPc(SPh)4Cl (2); and aluminum-2,3-naphthalocyanine chloride, AlNcCl (3). Each of these compounds contains Al3+ ions coordinating to four nitrogen atoms and a chlorine atom. Solid-state 27Al NMR spectra, including multiple-quantum magic-angle spinning (MQMAS) spectra and quadrupolar Carr-Purcell-Meiboom-Gill (QCPMG) spectra of stationary powdered samples have been acquired at multiple high magnetic field strengths (11.7, 14.1, and 21.1 T) to determine their composition and number of aluminum sites, which were analyzed to extract detailed information on the aluminum electric field gradient (EFG) and nuclear magnetic shielding tensors. The quadrupolar parameters for each 27Al site were determined from spectral simulations, with quadrupolar coupling constants (CQ) ranging from 5.40 to 10.0 MHz and asymmetry parameters (η) ranging from 0.10 to 0.50, and compared well with the results of quantum chemical calculations of these tensors. We also report the largest 27Al chemical shielding anisotropy (CSA), with a span of 120 ± 10 ppm, observed directly in a solid material. The combination of MQMAS and computational predictions are used to interpret the presence of multiple aluminum sites in two of the three samples.

  15. Programmable quantum-state discriminator by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Gopinath, T.; Das, Ranabir; Kumar, Anil

    2005-01-01

    A programmable quantum-state discriminator is implemented by using nuclear magnetic resonance. We use a two-qubit spin-1/2 system, one for the data qubit and one for the ancilla (program) qubit. This device does the unambiguous (error-free) discrimination of a pair of states of the data qubit that are symmetrically located about a fixed state. The device is used to discriminate both linearly polarized states and elliptically polarized states. The maximum probability of successful discrimination is achieved by suitably preparing the ancilla qubit. It is also shown that the probability of discrimination depends on the angle of the unitary operator of the protocol and ellipticity of the data qubit state

  16. Nuclear Magnetic Resonance Study of Nanoscale Ionic Materials

    KAUST Repository

    Oommen, Joanna Mary

    2010-08-13

    Nanoscale ionic materials (NIMs) are a new class of nanomaterials that exhibit interesting properties including negligible vapor pressures and tunable physical states, among others. In this study, we analyzed the temperature-wise performance of NIMs using nuclear magnetic resonance (NMR) spectroscopy. NIMs are relatively stable over a temperature range from 300 to 383 K, rendering them usable in high temperature applications. We confirmed the presence of covalent bonds between the SiO2 core and the sulfonate group and determined relative concentrations of aromatic and aliphatic hydrocarbons. These findings serve as first hand proof-of-concept for the usefulness of NMR analyses in further studies on the diffusive properties of NIMs. © 2010 The Electrochemical Society.

  17. Assessment of a magnet system combining the advantages of cable-in-conduit forced-flow and pool-boiling magnets

    International Nuclear Information System (INIS)

    Slack, D.; Hassenzahl, W.; Felker, B.; Chaplin, M.

    1993-01-01

    This paper presents an idea for a magnet system that could be used to advantage in tokamaks and other fusion engineering devices. Higher performance designs, specifically newer tokamaks such as those for the international Tokamak Engineering Reactor (ITER) and Tokamak Physics Experiment (TPX) use Cable in Conduit Conductor (CICC) forced flow coils to advantage to meet field and current density requirements. Pool boiling magnets lack structural integrity to resist high magnetic forces since helium cooling areas must surround each conductor. A second problem is that any leak can threaten the voltage standoff integrity of the magnet system. This is because a leak can result in low-pressure helium gas becoming trapped by limited conductance in the magnet bundle and low-pressure helium has poor dielectric strength. The system proposed here is basically a CICC system, with it's inherent advantages, but bathed in higher pressure supercritical helium to eliminate the leak and voltage break-down problems. Schemes to simplify helium coolant plumbing with the proposed system are discussed. A brief historical review of related magnet systems is included. The advantages and disadvantages of using higher pressure, supercritical helium in combination with solid electrical insulation in a CICC system are discussed. Related electrical data from some previous works are compiled and discussed

  18. Calculations of atomic magnetic nuclear shielding constants based on the two-component normalized elimination of the small component method

    Science.gov (United States)

    Yoshizawa, Terutaka; Zou, Wenli; Cremer, Dieter

    2017-04-01

    A new method for calculating nuclear magnetic resonance shielding constants of relativistic atoms based on the two-component (2c), spin-orbit coupling including Dirac-exact NESC (Normalized Elimination of the Small Component) approach is developed where each term of the diamagnetic and paramagnetic contribution to the isotropic shielding constant σi s o is expressed in terms of analytical energy derivatives with regard to the magnetic field B and the nuclear magnetic moment 𝝁 . The picture change caused by renormalization of the wave function is correctly described. 2c-NESC/HF (Hartree-Fock) results for the σiso values of 13 atoms with a closed shell ground state reveal a deviation from 4c-DHF (Dirac-HF) values by 0.01%-0.76%. Since the 2-electron part is effectively calculated using a modified screened nuclear shielding approach, the calculation is efficient and based on a series of matrix manipulations scaling with (2M)3 (M: number of basis functions).

  19. 78 FR 4467 - UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3...

    Science.gov (United States)

    2013-01-22

    ... NUCLEAR REGULATORY COMMISSION [Docket No. 52-016; NRC-2008-0250] UniStar Nuclear Energy, Combined License Application for Calvert Cliffs Power Plant, Unit 3, Exemption 1.0 Background UniStar Nuclear Energy (UNE), on behalf of Calvert Cliffs Nuclear Project, LLC and UniStar Nuclear Operating Services...

  20. Damage dosimetry and embrittlement monitoring of nuclear pressure vessels in real time by magnetic properties measurement. Final report

    International Nuclear Information System (INIS)

    Ougouag, A.M.; Stubbins, J.F.; Williams, J.F.; Shong, Wei-Ja.

    1995-04-01

    This program developed a nondestructive technique for gauging the progress of embrittlement of nuclear pressure vessel steels (PVS) by means of monitoring radiation-induced changes in magnetic properties. The technique was developed by running a series of experiments in reactor on typical nuclear pressure vessel steels and weldment material. Following irradiation, changes in magnetic properties were measured and correlated with irradiation dose and with mechanical properties changes, where possible. The changes in magnetic properties were unique to the irradiation environment, and were much larger than those produce by thermal aging in the absence of irradiation. Special techniques for magnetic properties change measurement were developed and complimented by more standard magnetic properties measurement techniques including SQUID measurements. The results of the experiments revealed that magnetic properties were very sensitive to irradiation. Changes in microstructurally-related magnetic properties of as much as 40% were noted after irradiation exposure of as little as 10 17 n/cm 2 (E > 0.1 MeV). The magnetic properties changes plateaued out after doses of around as 10 18 n/cm 2 (E > 0.1 MeV). It is unclear whether further changes would be noted at higher doses which would also be useful for tracking the embrittlement phenomenon. This is recommended for further study. The work supported here resulted in several publications in the open scientific literature

  1. A Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon

    OpenAIRE

    Berman, G. P.; Doolen, G. D.; Tsifrinovich, V. I.

    2000-01-01

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines the well-developed silicon technology with expected advances in MRFM.

  2. Method and apparatus for imaging substances in biological samples by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Shaw, D.

    1984-01-01

    A method of determining the distribution of non-proton nuclei having a magnetic moment in a biological sample is described. It comprises subjecting the sample to a magnetic field, irradiating the sample with RF radiation at a proton magnetic resonance frequency and deriving a first NMR signal, indicative of electromagnetic absorption of the sample at the proton magnetic resonance frequency. A second such NMR signal at the proton resonance frequency is then derived from the sample in the presence of RF radiation at the nuclear magnetic resonance frequency of the non-proton nuclei so as to decouple protons in the sample from the non-proton nuclei. By applying an imaging technique, an image indicative of the spatial variation of the difference between the first and second signals can be produced. Imaging may be performed on the difference between the two NMR signals, or on each NMR signal followed by subtraction of the images. The method can be used to trace how a 13 C-labelled material introduced into a patient, and its breakdown products, become distributed. (author)

  3. A procedure for combining rotating-coil measurements of large-aperture accelerator magnets

    Energy Technology Data Exchange (ETDEWEB)

    Köster, Oliver, E-mail: oliver.koester@cern.ch; Fiscarelli, Lucio, E-mail: lucio.fiscarelli@cern.ch; Russenschuck, Stephan, E-mail: stephan.russenschuck@cern.ch

    2016-05-11

    The rotating search coil is a precise and widely used tool for measuring the magnetic field harmonics of accelerator magnets. This paper deals with combining several such multipole measurements, in order to cover magnet apertures largely exceeding the diameter of the available search coil. The method relies on the scaling laws for multipole coefficients and on the method of analytic continuation along zero-homotopic paths. By acquiring several measurements of the integrated magnetic flux density at different transverse positions within the bore of the accelerator magnet, the uncertainty on the field harmonics can be reduced at the expense of tight tolerances on the positioning. These positioning tolerances can be kept under control by mounting the rotating coil and its motor-drive unit on precision alignment stages. Therefore, the proposed technique is able to yield even more precise results for the higher-order field components than a dedicated rotating search coil of larger diameter. Moreover, the versatility of the measurement bench is enhanced by avoiding the construction of rotating search coils of different measurement radii.

  4. Dereplication of depsides from the lichen Pseudevernia furfuracea by centrifugal partition chromatography combined to {sup 13}C nuclear magnetic resonance pattern recognition

    Energy Technology Data Exchange (ETDEWEB)

    Oettl, Sarah K. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Hubert, Jane, E-mail: jane.hubert@univ-reims.fr [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Nuzillard, Jean-Marc [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Stuppner, Hermann [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria); Renault, Jean-Hugues [Institut de Chimie Moléculaire de Reims (UMR CNRS 7312), SFR CAP' sANTE, UFR de Pharmacie, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex 2 (France); Rollinger, Judith M. [Institute of Pharmacy/Pharmacognosy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innrain 80–82, 6020 Innsbruck (Austria)

    2014-10-10

    Highlights: • The major depsides of a lichen extract were directly identified within mixtures. • The initial extract was rapidly fractionated by CPC in the pH-zone refining mode. • Hierarchical clustering of {sup 13}C NMR signals resulted in the identification of depside molecular skeletons. • {sup 13}C chemical shift clusters were assigned to structures using a {sup 13}C NMR database. • Six depsides were unambiguously identified by this approach. - Abstract: Lichens produce a diversity of secondary metabolites, among them depsides comprised of two or more hydroxybenzoic acid units linked by ester, ether, or C-C-bonds. During classic solid support-based purification processes, depsides are often hydrolyzed and in many cases time, consuming procedures result only in the isolation of decomposition products. In an attempt to avoid extensive purification steps while maintaining metabolite structure integrity, we propose an alternative method to identify the major depsides of a lichen crude extract (Pseudevernia furfuracea var. ceratea (Ach.) D. Hawksw., Parmeliaceae) directly within mixtures. Exploiting the acidic character of depsides and differences in polarity, the extract was fractionated by centrifugal partition chromatography in the pH-zone refining mode resulting in twelve simplified mixtures of depsides. After {sup 13}C nuclear magnetic resonance analysis of the produced fractions, the major molecular structures were directly identified within the fraction series by using a recently developed pattern recognition method, which combines spectral data alignment and hierarchical clustering analysis. The obtained clusters of {sup 13}C chemical shifts were assigned to their corresponding molecular structures with the help of an in-house {sup 13}C NMR chemical shift database, resulting in six unambiguously identified compounds, namely methyl β-orcinolcarboxylate (1), atranorin (2), 5-chloroatranorin (3), olivetol carboxylic acid (4), olivetoric acid (5

  5. Applications of nuclear magnetic resonance spectroscopy to certifiable food colors

    International Nuclear Information System (INIS)

    Marmion, D.M.

    Nuclear magnetic resonance spectroscopy was found suitable for the identification of individual colours, for distinguishing individual colours from colour mixtures, for the identification and semi-quantitative determination of the individual colours in mixtures and for proofs of the adulteration of certified colours adding noncertified colours. The method is well suited for observing the purity of colours and may also be used as the control method in the manufacture of colours and in assessing their stability and their resistance to increased temperature and light. (M.K.)

  6. Electromagnetic properties of inner double walled carbon nanotubes investigated by nuclear magnetic resonance

    KAUST Repository

    Bouhrara, M.; Abou-Hamad, E.; Alabedi, G.; Al-Taie, I.; Kim, Y.; Wagberg, T.; Goze-Bac, C.

    2013-01-01

    The nuclear magnetic resonance (NMR) analytical technique was used to investigate the double walled carbon nanotubes (DWNTs) electromagnetic properties of inner walls. The local magnetic and electronic properties of inner nanotubes in DWNTs were analyzed using 25% 13C enriched C 60 by which the effect of dipolar coupling could be minimized. The diamagnetic shielding was determined due to the ring currents on outer nanotubes in DWNTs. The NMR chemical shift anisotropy (CSA) spectra and spin-lattice relaxation studies reveal the metallic properties of the inner nanotubes with a signature of the spin-gap opening below 70 K.

  7. Second Born approximation in elastic-electron scattering from nuclear static electro-magnetic multipoles

    International Nuclear Information System (INIS)

    Al-Khamiesi, I.M.; Kerimov, B.K.

    1988-01-01

    Second Born approximation corrections to electron scattering by nuclei with arbitrary spin are considered. Explicit integral expressions for the charge, magnetic dipole and interference differential cross sections are obtained. Magnetic and interference relative corrections are then investigated in the case of backward electron scattering using shell model form factors for nuclear targets 9 Be, 10 B, and 14 N. To understand exponential growth of these corrections with square of the electron energy K 0 2 , the case of electron scattering by 6 Li is considered using monopole model charge form factor with power-law asymptotics. 11 refs., 2 figs. (author)

  8. Nuclear magnetic resonance applied to the study of polymeric nano composites

    International Nuclear Information System (INIS)

    Tavares, Maria Ines Bruno

    2011-01-01

    Polymers and nanoparticles based nano composites were prepared by intercalation by solution. The obtained nano composites were characterized mainly by the nuclear magnetic spectroscopy (NMR), applying the analysis of carbon-13 (polymeric matrix), silicon-29 (nanoparticle), and by determination of spin-lattice relaxation of the hydrogen nucleus (T 1 H) (polymeric matrix). The NMR have presented a promising technique in the characterization of the nano charge dispersion in the studied polymeric matrixes.

  9. Display of cross sectional anatomy by nuclear magnetic resonance imaging. 1978.

    Science.gov (United States)

    Hinshaw, W S; Andrew, E R; Bottomley, P A; Holland, G N; Moore, W S

    1995-12-01

    High definition cross-sectional images produced by a new nuclear magnetic resonance (NMR) technique are shown. The images are a series of thin section scans in the coronal plane of the head of a rabbit. The NMR images are derived from the distribution of the density of mobile hydrogen atoms. Various tissue types can be distinguished and a clear registration of gross anatomy is demonstrated. No known hazards are associated with the technique.

  10. Magnetic resonance imaging (MRI)

    OpenAIRE

    Takavar A

    1993-01-01

    Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I), a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D.) factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  11. The combination of four analytical methods to explore skeletal muscle metabolomics: Better coverage of metabolic pathways or a marketing argument?

    Science.gov (United States)

    Bruno, C; Patin, F; Bocca, C; Nadal-Desbarats, L; Bonnier, F; Reynier, P; Emond, P; Vourc'h, P; Joseph-Delafont, K; Corcia, P; Andres, C R; Blasco, H

    2018-01-30

    Metabolomics is an emerging science based on diverse high throughput methods that are rapidly evolving to improve metabolic coverage of biological fluids and tissues. Technical progress has led researchers to combine several analytical methods without reporting the impact on metabolic coverage of such a strategy. The objective of our study was to develop and validate several analytical techniques (mass spectrometry coupled to gas or liquid chromatography and nuclear magnetic resonance) for the metabolomic analysis of small muscle samples and evaluate the impact of combining methods for more exhaustive metabolite covering. We evaluated the muscle metabolome from the same pool of mouse muscle samples after 2 metabolite extraction protocols. Four analytical methods were used: targeted flow injection analysis coupled with mass spectrometry (FIA-MS/MS), gas chromatography coupled with mass spectrometry (GC-MS), liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS), and nuclear magnetic resonance (NMR) analysis. We evaluated the global variability of each compound i.e., analytical (from quality controls) and extraction variability (from muscle extracts). We determined the best extraction method and we reported the common and distinct metabolites identified based on the number and identity of the compounds detected with low analytical variability (variation coefficient<30%) for each method. Finally, we assessed the coverage of muscle metabolic pathways obtained. Methanol/chloroform/water and water/methanol were the best extraction solvent for muscle metabolome analysis by NMR and MS, respectively. We identified 38 metabolites by nuclear magnetic resonance, 37 by FIA-MS/MS, 18 by GC-MS, and 80 by LC-HRMS. The combination led us to identify a total of 132 metabolites with low variability partitioned into 58 metabolic pathways, such as amino acid, nitrogen, purine, and pyrimidine metabolism, and the citric acid cycle. This combination also showed

  12. 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications. Cracow, 3-4 December 2007. Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    The Report comprises abstracts of 59 communications presented during the 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 3-4, 2007 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters.

  13. 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications. Cracow, 3-4 December 2007. Abstracts

    International Nuclear Information System (INIS)

    2007-01-01

    The Report comprises abstracts of 59 communications presented during the 40. Polish Seminar on Nuclear Magnetic Resonance and Its Applications, held on December 3-4, 2007 in Cracow (PL). They cover a variety of research fields, including magnetic resonance imaging in vivo, applications of NMR spectroscopy to medical diagnosis, studies on molecular properties of different materials as well as quantum chemical calculations of NMR parameters

  14. Proceedings of the 4. Meeting of the nuclear magnetic resonance users; Anais do 4. Encontro de usuarios de ressonancia magnetica nuclear

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    This book shows the papers presented in the 4. Meeting of Nuclear Magnetic Resonance Users which took place in Rio de Janeiro, Brazil, 1993. The main topics discussed were: solid state NMR; structural and conformational structure determination by NMR; perspectives for NMR in Brazil; recent achievements in NMR

  15. Highly stable and finely tuned magnetic fields generated by permanent magnet assemblies.

    Science.gov (United States)

    Danieli, E; Perlo, J; Blümich, B; Casanova, F

    2013-05-03

    Permanent magnetic materials are the only magnetic source that can be used to generate magnetic fields without power consumption or maintenance. Such stand-alone magnets are very attractive for many scientific and engineering areas, but they suffer from poor temporal field stability, which arises from the strong sensitivity of the magnetic materials and mechanical support to temperature variation. In this work, we describe a highly efficient method useful to cancel the temperature coefficient of permanent magnet assemblies in a passive and accurate way. It is based on the combination of at least two units made of magnetic materials with different temperature coefficients arranged in such a way that the ratio of the fields generated by each unit matches the ratio of their effective temperature coefficients defined by both the magnetic and mechanical contributions. Although typically available magnetic materials have negative temperature coefficients, the cancellation is achieved by aligning the fields generated by each unit in the opposite direction. We demonstrate the performance of this approach by stabilizing the field generated by a dipolar Halbach magnet, recently proposed to achieve high field homogeneity. Both the field drift and the homogeneity are monitored via nuclear magnetic resonance spectroscopy experiments. The results demonstrate the compatibility of the thermal compensation approach with existing strategies useful to fine-tune the spatial dependence of the field generated by permanent magnet arrays.

  16. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Leonardo B. de [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900 (Brazil); Primo, Fernando L. [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Nanophoton Company, SUPERA Innovation and Technology Park, Av. Doutora Nadir de Aguiar, 1805, Universidade de São Paulo, Ribeirão Preto, P 14056-680 (Brazil); Pinto, Marcelo R. [Departamento de Química, Laboratório de Enzimologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Morais, Paulo C. [Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); and others

    2015-04-15

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×10{sup 13} or 1.50×10{sup 13} particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×10{sup 13} or 1.50×10{sup 13} magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments. - Highlights: • Current protocols in nanotechnology allow for biocompatible magnetic nanoparticles being associated with photosensitizer photoactive drugs, which could lead to perfectly controlled drug release. • The combination of the HPT and PDT therapies can be useful to develop further protocols for both advanced in vitro and in vivo assays. • Magnetic nanodevices associated with therapies have led to the decreased of proliferation of cell population that provides a favorable environment for tumor progression.

  17. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    International Nuclear Information System (INIS)

    Paula, Leonardo B. de; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.

    2015-01-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×10 13 or 1.50×10 13 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×10 13 or 1.50×10 13 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments. - Highlights: • Current protocols in nanotechnology allow for biocompatible magnetic nanoparticles being associated with photosensitizer photoactive drugs, which could lead to perfectly controlled drug release. • The combination of the HPT and PDT therapies can be useful to develop further protocols for both advanced in vitro and in vivo assays. • Magnetic nanodevices associated with therapies have led to the decreased of proliferation of cell population that provides a favorable environment for tumor progression

  18. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    Science.gov (United States)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  19. Analysis and reduction of thermal magnetic noise in liquid-He dewar for sensitive low-field nuclear magnetic resonance measurements

    International Nuclear Information System (INIS)

    Hwang, S. M.; Yu, K. K.; Lee, Y. H.; Kang, C. S.; Kim, K.; Lee, S. J.

    2013-01-01

    For sensitive measurements of micro-Tesla nuclear magnetic resonance (μT-NMR) signal, a low-noise superconducting quantum interference device (SQUID) system is needed. We have fabricated a liquid He dewar for an SQUID having a large diameter for the pickup coil. The initial test of the SQUID system showed much higher low-frequency magnetic noise caused by the thermal magnetic noise of the aluminum plates used for the vapor-cooled thermal shield material. The frequency dependence of the noise spectrum showed that the noise increases with the decrease of frequency. This behavior could be explained from a two-layer model; one generating the thermal noise and the other one shielding the thermal noise by eddy-current shielding. And the eddy-current shielding effect is strongly dependent on the frequency through the skin-depth. To minimize the loop size for the fluctuating thermal noise current, we changed the thermal shield material into insulated thin Cu mesh. The magnetic noise of the SQUID system became flat down to 0.1 Hz with a white noise of 0.3 fT√ Hz, including the other noise contributions such as SQUID electronics and magnetically shielded room, etc, which is acceptable for low-noise μT-NMR experiments.

  20. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    Science.gov (United States)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  1. RF and magnets

    International Nuclear Information System (INIS)

    Hutcheon, R.M.

    1986-01-01

    Examples of how applied radiofrequency and magnet technology are used, and could be used, in the nuclear medical field are presented. Specific examples are: 1) the THERAC 25 electron accelerator project; 2) large, high field magnet systems for nuclear magnetic resonance (NMR); 3) the superconducting cyclotron; and 4. hyperthermia treatment. Emphasis is placed on the example of hyperthermia treatment

  2. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Berman, Gennady P [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bishop, Alan R [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Chernobrod, Boris M [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hawley, Marilyn E [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Brown, Geoffrey W [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tsifrinovich, Vladimir I [Polytechnic University, Brooklyn, NY 11201 (United States)

    2006-05-15

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution.

  3. Measurement of single electron and nuclear spin states based on optically detected magnetic resonance

    International Nuclear Information System (INIS)

    Berman, Gennady P; Bishop, Alan R; Chernobrod, Boris M; Hawley, Marilyn E; Brown, Geoffrey W; Tsifrinovich, Vladimir I

    2006-01-01

    A novel approach for measurement of single electron and nuclear spin states is suggested. Our approach is based on optically detected magnetic resonance in a nano-probe located at the apex of an AFM tip. The method provides single electron spin sensitivity with nano-scale spatial resolution

  4. Solid state nuclear magnetic resonance studies of prion peptides and proteins

    Energy Technology Data Exchange (ETDEWEB)

    Heller, Jonathan [Univ. of California, Berkeley, CA (United States)

    1997-08-01

    High-resolution structural studies using x-ray diffraction and solution nuclear magnetic resonance (NMR) are not feasible for proteins of low volubility and high tendency to aggregate. Solid state NMR (SSNMR) is in principle capable of providing structural information in such systems, however to do this efficiently and accurately, further SSNMR tools must be developed This dissertation describes the development of three new methods and their application to a biological system of interest, the priori protein (PrP).

  5. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    International Nuclear Information System (INIS)

    Modarress, H.; Shekaari, H.

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo 3 ) and electron donor benzylcyanide (C 6 H 5 -CH 2 -C≡N) in solvent ethyleneglycol [(CH 2 OH) 2 ] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 d ig C . The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the appropriate formation constant should be expressed in terms of activities. Also an equation have been derived to eliminate the undesirable effects on the nuclear magnetic resonance measured chemical shifts in calculating the constant. The selection of concentration domains and its effect on the calculated formation constant has been discussed and the new equation is modified to be independent of the concentration domains. In this equation the solution nationalised, by considering coefficients, have been taken in to account

  6. Nuclear Magnetic Resonance, a Powerful Tool in Cultural Heritage

    Directory of Open Access Journals (Sweden)

    Noemi Proietti

    2018-01-01

    Full Text Available In this paper five case studies illustrating applications of NMR (Nuclear Magnetic Resonance in the field of cultural heritage, are reported. Different issues were afforded, namely the investigation of advanced cleaning systems, the quantitative mapping of moisture in historic walls, the investigation and evaluation of restoration treatments on porous stones, the stratigraphy of wall paintings, and the detection of CO2 in lapis lazuli. Four of these case studies deal with the use of portable NMR sensors which allow non-destructive and non-invasive investigation in situ. The diversity among cases reported demonstrates that NMR can be extensively applied in the field of cultural heritage.

  7. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Gomez, Sergio S.

    2006-01-01

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown

  8. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  9. Sc-45 nuclear magnetic resonance analysis of precipitation in dilute Al-Sc alloys

    NARCIS (Netherlands)

    Celotto, S; Bastow, TJ

    Nuclear magnetic resonance (NMR) with Sc-45 is used to determine the solid solubility of scandium in aluminium and to follow the precipitation of Al3Sc during the ageing of an Al-0.06 at.% Sc alloy via the two fully resolved peaks, corresponding to Sc in the solid solution Al matrix and to Sc in the

  10. Development of Superconducting Combined Function Magnets for the Proton Transport Line for the J-PARC Neutrino Experiments

    CERN Document Server

    Nakamoto, Tatsushi; Anerella, Michael; Escallier, John; Fujii, T; Fukui, Yuji; Ganetis, George; Gupta, Ramesh C; Harrison, Michael; Hashiguchi, E; Higashi, Norio; Ichikawa, Atsuko; Iwamoto, Yosuke; Jain, Animesh K; Kanahara, T; Kimura, Nobuhiro; Kobayashi, Takashi; Makida, Yasuhiro; Muratore, Joseph F; Obana, Tetsuhiro; Ogitsu, T; Ohhata, Hirokatsu; Okamura, T; Orikasa, T; Parker, Brett; Sasaki, Ken Ichi; Takasaki, Minoru; Tanaka, Ken Ichi; Terashima, Akio; Tomaru, Takayuki; Wanderer, Peter; Yamamoto, Akira

    2005-01-01

    A second generation of long-baseline neutrino oscillation experiments has been proposed as one of the main projects at J-PARC jointly built by JAERI and KEK. Superconducting combined function magnets, SCFMs, will be utilized for the 50 GeV, 750 kW proton beam line for the neutrino experiment and an R&D program is in underway at KEK. The magnet is designed to provide a combined function of a dipole field of 2.6 T with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm. A series of 28 magnets in the beam line will be operated DC in supercritical helium cooling below 5 K. A design feature of the SCFM is the left-right asymmetry of the coil cross section: current distributions for superimposed dipole- and quadrupole- fields are combined in a single layer coil. Another design feature is the adoption of glass-fiber reinforced phenolic plastic spacers to replace the conventional metallic collars. To evaluate this unique design, fabrication of full-scale prototype magnets is in progress at KEK and the fi...

  11. Magnetic resonance imaging (MRI

    Directory of Open Access Journals (Sweden)

    Takavar A

    1993-04-01

    Full Text Available Basic physical principles of nuclear magnetic resonance imaging (N.M.R.I, a nonionizing medical imaging technique, are described. Principles of NMRI with other conventional imaging methods, ie, isotope scanning, ultrasonography and radiography have been compared. T1 and T2 and spin density (S.D. factors and different image construction techniques based on their different combinations is discussed and at the end physical properties of some N.M.R images is mentioned.

  12. Photodetachment electron flux of H− in combined electric and magnetic fields with arbitrary orientation

    International Nuclear Information System (INIS)

    Wang, De-hua

    2013-01-01

    Highlights: •On the basis of the semiclassical theory, the photodetachment electron flux of H − in combined electric field and magnetic field with arbitrary orientation has been studied for the first time. •Our calculation results suggest that the electron flux distributions on the detector plane is not only related to the angle between the electric and magnetic fields, but also related to the electron energy. •Our studies may guide the future experimental researches in the photodetachment microscopy of some more complex negative ions in the presence of external fields. -- Abstract: On the basis of the semi-classical theory, we calculate the photodetachment electron flux of H − in combined electric field and magnetic field with arbitrary orientation. Our results suggest that the electron flux distributions on the detector plane is not only related to the angle between the electric and magnetic fields, but also related to the electron energy. With the increase of the angle between the electric and magnetic field, the oscillating region in the electron flux distributions becomes smaller. In addition, we find with the increase of the detached electron's energy, the oscillating structure in the flux distributions becomes much more complicated. Therefore, the oscillation in the detached electron flux distributions can be controlled by adjusting the angle between the electric and magnetic field and the detached electron's energy. We hope that our studies may guide the future experimental researches in the photodetachment microscopy of negative ion in the presence of external fields

  13. Validated ¹H and 13C Nuclear Magnetic Resonance Methods for the Quantitative Determination of Glycerol in Drug Injections.

    Science.gov (United States)

    Lu, Jiaxi; Wang, Pengli; Wang, Qiuying; Wang, Yanan; Jiang, Miaomiao

    2018-05-15

    In the current study, we employed high-resolution proton and carbon nuclear magnetic resonance spectroscopy (¹H and 13 C NMR) for quantitative analysis of glycerol in drug injections without any complex pre-treatment or derivatization on samples. The established methods were validated with good specificity, linearity, accuracy, precision, stability, and repeatability. Our results revealed that the contents of glycerol were convenient to calculate directly via the integration ratios of peak areas with an internal standard in ¹H NMR spectra, while the integration of peak heights were proper for 13 C NMR in combination with an external calibration of glycerol. The developed methods were both successfully applied in drug injections. Quantitative NMR methods showed an extensive prospect for glycerol determination in various liquid samples.

  14. Study of local correlations of magnetic and multiferroic compounds

    CERN Multimedia

    Alves, E J

    We propose to study magnetic and multiferroic strongly correlated electron materials using radioactive nuclear probe techniques, at ISOLDE . Following the strategy of a previous project, IS390, our aim is to provide local and element selective information on some of the mechanisms that rule structural, charge and orbital correlations, electronic and magnetic interactions and the coupling of the associated degrees of freedom. The main technique used is Perturbed Angular Correlations (PAC), which allows combined magnetic and electric hyperfine studies. This study is complemented by the use of conventional characterisation techniques, and the investigation of relevant macroscopic properties.

  15. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    International Nuclear Information System (INIS)

    Eisenbach, Markus; Perera, Meewanage Dilina N.; Landau, David P; Nicholson, Don M.; Yin, Junqi; Brown, Greg

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  16. Theory and applications of maps on SO(3) in nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cho, H.M.

    1987-02-01

    Theoretical approaches and experimental work in the design of multiple pulse sequences in Nuclear Magnetic Resonance (NMR) are the subjects of this dissertation. Sequences of discrete pulses which reproduce the nominal effect of single pulses, but over substantially broader, narrower, or more selective ranges of transition frequencies, radiofrequency field amplitudes, and spin-spin couplings than the single pulses they replace, are developed and demonstrated. 107 refs., 86 figs., 6 tabs

  17. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Baltisberger, J.H.

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the 87 Rb and 85 Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem

  18. Quantitative analysis by nuclear magnetic resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wainai, T; Mashimo, K [Nihon Univ., Tokyo. Coll. of Science and Engineering

    1976-04-01

    Recent papers on the practical quantitative analysis by nuclear magnetic resonance spectroscopy (NMR) are reviewed. Specifically, the determination of moisture in liquid N/sub 2/O/sub 4/ as an oxidizing agent for rocket propulsion, the analysis of hydroperoxides, the quantitative analysis using a shift reagent, the analysis of aromatic sulfonates, and the determination of acids and bases are reviewed. Attention is paid to the accuracy. The sweeping velocity and RF level in addition to the other factors must be on the optimal condition to eliminate the errors, particularly when computation is made with a machine. Higher sweeping velocity is preferable in view of S/N ratio, but it may be limited to 30 Hz/s. The relative error in the measurement of area is generally 1%, but when those of dilute concentration and integrated, the error will become smaller by one digit. If impurities are treated carefully, the water content on N/sub 2/O/sub 4/ can be determined with accuracy of about 0.002%. The comparison method between peak heights is as accurate as that between areas, when the uniformity of magnetic field and T/sub 2/ are not questionable. In the case of chemical shift movable due to content, the substance can be determined by the position of the chemical shift. Oil and water contents in rape-seed, peanuts, and sunflower-seed are determined by measuring T/sub 1/ with 90 deg pulses.

  19. Magnetic domain structure investigation of Bi: YIG-thin films by combination of AFM and cantilever-based aperture SNOM

    International Nuclear Information System (INIS)

    Vysokikh, Yu E; Shevyakov, V I; Krasnoborodko, S Yu; Shelaev, A V; Prokopov, A R

    2016-01-01

    We present the results of magnetic domain structure investigation by combination of atomic force microscopy (AFM) and scanning near-field optical microscopy (SNOM). Special hollow-pyramid AFM cantilevers with aperture was used. This combination allows us use same probe for both topography and domain structure visualization of Bi -substituted ferrite garnet films of micro- and nano-meter thickness. Samples were excited through aperture by tightly focused linearly polarized laser beam. Magneto-optical effect rotates polarization of transmitted light depend on domain orientation. Visualization of magnetic domains was performed by detecting cross polarized component of transmitted light. SNOM allows to obtain high resolution magnetic domain image and prevent sample from any disturbance by magnetic probe. Same area SNOM and MFM images are presented. (paper)

  20. Phosphorus-doped thin silica films characterized by magic-angle spinning nuclear magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Jacobsen, H.J.; Skibsted, J.; Kristensen, Martin

    2001-01-01

    Magic-angle spinning nuclear magnetic resonance spectra of 31P and 29Si have been achieved for a thin silica film doped with only 1.8% 31P and deposited by plasma enhanced chemical vapor deposition on a pure silicon wafer. The observation of a symmetric 31P chemical shift tensor is consistent...

  1. Magnetic resonance force microscopy quantum computer with tellurium donors in silicon.

    Science.gov (United States)

    Berman, G P; Doolen, G D; Hammel, P C; Tsifrinovich, V I

    2001-03-26

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations.

  2. Magnetic Resonance Force Microscopy Quantum Computer with Tellurium Donors in Silicon

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2001-01-01

    We propose a magnetic resonance force microscopy (MRFM)-based nuclear spin quantum computer using tellurium impurities in silicon. This approach to quantum computing combines well-developed silicon technology and expected advances in MRFM. Our proposal does not use electrostatic gates to realize quantum logic operations

  3. Nuclear magnetic resonance characterization of apple juice containing enzyme preparations

    International Nuclear Information System (INIS)

    Prestes, Rosilene A.; Almeida, Denise Milleo; Barison, Andersson; Pinheiro, Luis Antonio; Wosiacki, Gilvan

    2012-01-01

    In this work, 1 H nuclear magnetic resonance ( 1 H NMR) was employed to evaluate changes in apple juice in response to the addition of Panzym Yieldmash and Ultrazym AFP-L enzymatic complexes and compare it with premium apple juice. The juice was processed at different temperatures and concentrations of enzymatic complexes. The differences in the results were attributed mainly to the enzyme concentrations, since temperature did not cause any variation. A quantitative analysis indicated that the concentration of fructose increased while the concentrations of sucrose and glucose decreased in response to increasing concentrations of the enzymatic complexes. (author)

  4. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    Energy Technology Data Exchange (ETDEWEB)

    Breese, M.B.H. E-mail: m.breese@surrey.ac.uk; Grime, G.W.; Linford, W.; Harold, M

    1999-09-02

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations.

  5. An extended magnetic quadrupole lens for a high-resolution nuclear microprobe

    International Nuclear Information System (INIS)

    Breese, M.B.H.; Grime, G.W.; Linford, W.; Harold, M.

    1999-01-01

    This paper describes the design requirements and initial performance of a new style of magnetic quadrupole lens for use in a high-resolution nuclear microprobe, which is presently being constructed in Oxford. Such a microprobe necessitates the use of a small image distance from the exit face of the final quadrupole lens to the image plane in order to produce a large demagnification. This means that the final lens should be as close to the sample chamber as possible. However, with conventional magnetic quadrupoles the current-carrying coils protrude by a typical distance of 10-20 mm beyond the pole face, thereby significantly limiting the minimum image distance. The approach taken here is to recess the coils into the body of the lens, so that they are almost flush with the pole pieces and lens yoke, enabling an image distance of 55 mm. Three-dimensional magnetic field calculations within this lens structure predict that the field in the extended pole piece 'nose' region is only slightly less than that in the main lens body. Experimental field profiles, measured using a Hall probe, are used to confirm these calculations

  6. A Unilateral Nuclear Magnetic Resonance Sensor for Nondestructive Wood Moisture Measurements

    Directory of Open Access Journals (Sweden)

    YU Deng-jie

    2017-12-01

    Full Text Available An unilateral nuclear magnetic resonance (UMR sensor was designed to measure wood moisture nondestructively. The sensor consisted of a unilateral magnet, an anti-eddy current module, a radiofrequency (RF coil and an impedance matching and tuning circuit. The sensor produced a static magnetic field of 71.1 mT (resonant frequency:3.027 MHz in a 50 mm×50 mm plane locating 75 mm above the sensor's surface. Preliminary nondestructive measurement of wood moisture was carried out with the sensor. The moisture distribution in the radical direction of a cylindrical wood sample was scanned. Variations in transverse relaxation time (T2 from the bark to core were obtained. Evaporation of moisture during wood drying was also measured with the UMR sensor. Experimental results showed that:the peak of long T2 component in the T2 spectrum moved to left and the peak integral area decreased gradually during drying. The integral area was proportional to the moisture content of the sample. The work presents a portable UMR device for wood research which may potentially be used for nondestructive moisture measurement on living trees in situ.

  7. Advantages and disadvantages of nuclear magnetic resonance spectroscopy as a hyphenated technique

    International Nuclear Information System (INIS)

    Silva Elipe, Maria Victoria

    2003-01-01

    A general overview of the advancements and applications of nuclear magnetic resonance (NMR) hyphenated with other analytical techniques is given from a practical point of view. Details on the advantages and disadvantages of the hyphenation of NMR with liquid chromatography as LC-NMR and also with mass spectrometry as LC-MS-NMR are demonstrated with two examples. Current developments of NMR with other analytical separation techniques, especially with capillary liquid chromatography (capLC) are discussed

  8. Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy

    International Nuclear Information System (INIS)

    Berman, G. P.; Doolen, G. D.; Hammel, P. C.; Tsifrinovich, V. I.

    2000-01-01

    We propose a nuclear-spin quantum computer based on magnetic resonance force microscopy (MRFM). It is shown that an MRFM single-electron spin measurement provides three essential requirements for quantum computation in solids: (a) preparation of the ground state, (b) one- and two-qubit quantum logic gates, and (c) a measurement of the final state. The proposed quantum computer can operate at temperatures up to 1 K. (c) 2000 The American Physical Society

  9. High resolution spectroscopy in solids by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bonagamba, T.J.

    1991-07-01

    The nuclear magnetic resonance (NMR) techniques for High Resolution Spectroscopy in Solids are described. Also the construction project of a partially home made spectrometer and its applications in the characterization of solid samples are shown in detail. The high resolution spectrometer used is implemented with the double resonance multiple pulses sequences and magic angle spinning (MAS) and can be used with solid and liquid samples. The maximum spinning frequency for the MAS experiment is in excess of 5 Khz, the double resonance sequences can be performed with any type of nucleus, in the variable temperature operating range with nitrogen gas: -120 0 C to +160 0 C, and is fully controlled by a Macintosh IIci microcomputer. (author)

  10. Phosphorus nuclear magnetic resonance in isolated perfused rat pancreas

    International Nuclear Information System (INIS)

    Matsumoto, Takehisa; Kanno, Tomio; Seo, Yoshiteru; Murakami, Masataka; Watari, Hiroshi

    1988-01-01

    Phosphorus nuclear magnetic resonance spectroscopy was applied to measure phosphorus energy metabolites in isolated perfused rat pancreas. The gland was perfused with a modified Krebs-Henseleit solution at room temperature (25 degree C). 31 P resonances of creatine phosphate (PCr), ATP, ADP, inorganic phosphate (P i ) and phosphomonoesters (PMEs) were observed in all the preparations of pancreas. In different individual preparations, the resonance of PCr varied, but those of ATP were almost the same. The initial levels of PCr and ATP in individual preparations, however, remained almost unchanged during perfusion with the standard solution for 2 h. When the perfusion was stopped, the levels of ATP and PCr decreased, while the levels of PME and P i increased. At that time, the P i resonance shfted to a higher magnetic field, indicating that the tissue pH decreased. On reperfusion, the tissue levels of phosphorus compounds and the tissue pH were restored to their initial resting levels. Continuous infusion of 0.1 μM acetylcholine caused marked and sustained increases in the flow of pancreatic juice and protein output. During the stimulation the tissue levels of phosphorus compounds remained unchanged, while the tissue pH was decreased slightly

  11. Electric field gradient in FeTiO3 by nuclear magnetic resonance and ab initio calculations.

    Science.gov (United States)

    Procházka, V; Stěpánková, H; Chlan, V; Tuček, J; Cuda, J; Kouřil, K; Filip, J; Zbořil, R

    2011-05-25

    Temperature dependence of nuclear magnetic resonance (NMR) spectra of (47)Ti and (49)Ti in polycrystalline ilmenite FeTiO(3) was measured in the range from 5 to 300 K under an external magnetic field of 9.401 T. NMR spectra collected between 300 and 77 K exhibit a resolved quadrupole splitting. The electric field gradient (EFG) tensor was evaluated for Ti nuclei and the ratio of (47)Ti and (49)Ti nuclear quadrupole moments was refined during the fitting procedure. Below 77 K, the fine structure of quadrupole splitting disappears due to the enormous increase of anisotropy. As a counterpart, ab initio calculations were performed using full potential augmented plane waves + local orbitals. The calculated EFG tensors for Ti and Fe were compared to the experimental ones evaluated from NMR and the Mössbauer spectroscopy experiments.

  12. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    Science.gov (United States)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  13. Nuclear magnetic resonance and the question of 5F electron localization in the actinides

    International Nuclear Information System (INIS)

    Fradin, F.Y.

    1976-01-01

    Nuclear magnetic resonance results are presented for a number of NaCl-type compounds and cubic Laves-phase type compounds of uranium, neptunium, and plutonium. Special emphasis is placed on the Knight shift and spin-lattice relaxation time measurements and their interpretation in terms of localized or itinerant pictures of the 5Line integral electrons

  14. Densimetry in compressed fluids by combining hydrostatic weighing and magnetic levitation

    International Nuclear Information System (INIS)

    Masui, R.; Haynes, W.M.; Chang, R.F.; Davis, H.A.; Sengers, J.M.H.L.

    1984-01-01

    A magnetic suspension densimeter is described that has been built for measuring the density of compressed liquids at pressures up to 15 MPa in the temperature range 20 0 --200 0 C with an uncertainty of 0.1%. The densimeter combines the principle of magnetic levitation of a buoy with that of liquid density determination by hydrostatic weighing. To accomplish this, the support coil is suspended from an electronic balance, and the balance readings are recorded (1) with the buoy at rest, and (2) with the buoy in magnetic suspension. Details are given of the construction of the cell, coil, buoy, and thermostat. The procedure is described by which cell and buoy are aligned so that the suspended buoy does not touch the cell wall. Test data on the densities of seven different liquids were obtained at room temperature. They agree with reliable literature values to within 0.1%. In a separate experiment, the bulk thermal expansion coefficient of the buoy material was determined. This experiment and its results are also given here

  15. 76 FR 11522 - In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear...

    Science.gov (United States)

    2011-03-02

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-029-COL, 52-030-COL] In the Matter of Progress Energy Florida, Inc. (Combined License Application, Levy County Nuclear Power Plant, Units 1 and 2... by the Nuclear Regulatory Commission staff in this case. Mr. Dehmel has not previously performed any...

  16. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    International Nuclear Information System (INIS)

    Kohlrautz, Jonas

    2017-01-01

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T 1 measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T 1 was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu 2 (BO 3 ) 2 . Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa 2 CuO 4+δ for underdoped, optimally doped, and overdoped materials revealed

  17. Nuclear magnetic resonance. Advanced concepts and applications to quantum materials

    Energy Technology Data Exchange (ETDEWEB)

    Kohlrautz, Jonas

    2017-05-22

    In this thesis, three separate topics were presented. These include the development of novel experimental NMR methods and data analysis, as well as their application to current topics of condensed matter research. The first part concerns NMR at the highest magnetic fields, i.e., in time-dependent pulsed high-field magnets. After a discussion of consequences for NMR, a method to acquire broad spectra was presented. Here, an intensity-correction for off-resonance effects was applied and the Fourier transform was modified to use time-dependent base functions. Subsequently, the method was tested with a Knight shift measurement of metallic aluminum using a second compound as a shift reference. It could be shown that signal averaging of a weak signal is possible, even across multiple field pulses. Thus, in principle, the signal-to-noise ratio can always be increased at the cost of measurement time, despite the inherently limited reproducibility of subsequent field high-field pulses. In another set of experiments, the feasibility of T{sub 1} measurements was shown. Here, a weak radio frequency field was used to perform an adiabatic inversion of the spin system in the time-dependent field. Ensuing small-angle RF pulses monitored the relaxation process. Using a mathematical model, T{sub 1} was then determined. Finally, this method was applied for the investigation of the spin-dimer antiferromagnet SrCu{sub 2}(BO{sub 3}){sub 2}. Evidence for a field-induced change in the ground state of the material was found. This appears to be the first convincing observation of a field-induced phenomenon with pulsed field NMR. It proves that nuclear magnetic resonance spectroscopy at the highest fields is able to produce unique insights into quantum materials. The second part of the thesis concerns NMR investigations and analysis of cuprate high-temperature superconductors in conventional static field measurements. Results on HgBa{sub 2}CuO{sub 4+δ} for underdoped, optimally doped, and

  18. A biofilm microreactor system for simultaneous electrochemical and nuclear magnetic resonance techniques

    International Nuclear Information System (INIS)

    Renslow, Ryan S.; Babauta, Jerome T.; Majors, Paul D.; Mehta, Hardeep S.; Ewing, R. James; Ewing, Thomas; Mueller, Karl T.; Beyenal, Haluk

    2014-01-01

    In order to fully understand electrochemically active biofilms and the limitations to their scale-up in industrial biofilm reactors, a complete picture of the microenvironments inside the biofilm is needed. Nuclear magnetic resonance (NMR) techniques are ideally suited for the study of biofilms and for probing their microenvironments because these techniques allow for non-invasive interrogation and in situ monitoring with high resolution. By combining NMR with simultaneous electrochemical techniques, it is possible to sustain and study live electrochemically active biofilms. Here, we introduce a novel biofilm microreactor system that allows for simultaneous electrochemical and NMR techniques (EC-NMR) at the microscale. Microreactors were designed with custom radiofrequency resonator coils, which allowed for NMR measurements of biofilms growing on polarized gold electrodes. For an example application of this system, we grew Geobacter sulfurreducens biofilms. NMR was used to investigate growth media flow velocities, which were compared to simulated laminar flow, and electron donor concentrations inside the biofilms. We use Monte Carlo error analysis to estimate standard deviations of the electron donor concentration measurements within the biofilm. The EC-NMR biofilm microreactor system can ultimately be used to correlate extracellular electron transfer rates with metabolic reactions and explore extracellular electron transfer mechanisms

  19. A nuclear magnetic relaxation study on internal motion of polyelectrolytes in solution

    International Nuclear Information System (INIS)

    Schriever, J.

    1977-01-01

    The aim of this thesis is to investigate the significance and the amount of information which can be extracted from the study of frequency dependence of magnetic relaxation rates in solutions of a synthetic macromolecule. Solutions of poly(methacrylic acid), PMA, in water were chosen as the object of the present work. A short survey of nuclear magnetic relaxation in solutions of simple macromolecules is presented. Results obtained by continuous wave experiments on PMA solutions are shown (viz. the information about the transverse relaxation from line width analysis of 60 MHz proton spectra). Water enriched in 17 O is used in magnetic relaxation studies; the results of the determination of hydrogen lifetimes in aqueous solutions of acetic acid and poly(methacrylic acid) are given. The possibility of obtaining information about the dynamics of deuterons in the acid side groups of weak polyacids by measuring deuteron relaxation in heavy water solutions of those acids is considered. The use of deuteron relaxation rate experiments on solutions of selectively methylene deuterated poly(methacrylic acid), [-CD 2 -CCH 3 COOH-]n, is demonstrated and the backbone methylene C-atom motion is charachterized. The magne-tic relaxation of nuclei in the side groups of methylene deuterated PMA, viz. protons in the methyland deuterons in the acid side groups is presented

  20. Nuclear magnetic resonance study of charge transfer complex formation between Silver Nitrate and Benzylcyanide in Solvent Ethylene Glycol

    CERN Document Server

    Modarress, H

    2003-01-01

    The formation constant for charge transfer complexes between electron acceptor (AgNo sub 3) and electron donor benzylcyanide (C sub 6 H sub 5 -CH sub 2 -C ident to N) in solvent ethyleneglycol [(CH sub 2 OH) sub 2] has been evaluated by using the nuclear magnetic resonance chemical shifts of aromatic group of benzylcyanide measured against external references, tetramethylsilane, hexamethyldisilane and cyclohexane at 20 sup d ig sup C. The external referencing procedure eliminated the interference of internal reference in the course of complexation. The necessary bulk magnetic susceptibility corrections on the measured chemical shifts have been made. The solution nationalised and their effects on the formation constant have been considered and a new equation has been suggested to obtain the main ionic activity coefficient of AgNO sub 3 from nuclear magnetic resonance results. The mean ionic activity coefficient has been taken into account in the formation constant calculations. The results indicated that the a...

  1. Substitution effect in nuclear magnetic resonance of C-13: α methoxicyclohexanones

    International Nuclear Information System (INIS)

    Lopez Holland, M.A.G.

    1984-01-01

    Eletronic and steric interactions between the carbonyl and methoxyl groups in α-methoxicyclohexanones by H-1 and C-13 nuclear magnetic resonance spectroscopy (n.m.r) is studied. Interpretation of H-1 n.m.r measurements based on the carbonyl group anisotropy is made. The asigment of spectral lines to specific nuclear by Lanthanide Shift Reagent Experiments is confirmed. Interpretation of C-13 n.m.r. spectra with respect to molecular effects and emphirical relationships associated with the substituent was analysed. The C-13 chemical shift asignment by comparison with results of partially (SFORD) and fully decompled spectra and also by relating the measured chemical shift with values cited in the literature for similar compounds are made. A qualitative study using I.R. spectroscopy in attempt to evaluate the predominance of one the conformers of the studied compounds in solutions of n-hexan and chloroform is made. (M.J.C.) [pt

  2. [Modulating effect of weak combined magnetic fields on duration of mealworm beetle Tenebrio molitor metamorphosis stage].

    Science.gov (United States)

    Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E

    2014-01-01

    It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.

  3. {sup 29}Si nuclear magnetic resonance study of URu{sub 2}Si{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shirer, K.R., E-mail: krshirer@ucdavis.edu [Department of Physics, University of California, Davis, CA 95616 (United States); Dioguardi, A.P.; Bush, B.T.; Crocker, J.; Lin, C.H.; Klavins, P. [Department of Physics, University of California, Davis, CA 95616 (United States); Cooley, J.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B. [Department of Physics and Institute for Pure and Applied Physical Sciences, University of California, San Diego, La Jolla, CA 92093-0319 (United States); Chang, K.B.; Poeppelmeier, K.R. [Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 (United States); Curro, N.J. [Department of Physics, University of California, Davis, CA 95616 (United States)

    2016-01-15

    We report {sup 29}Si nuclear magnetic resonance measurements of single crystals and aligned powders of URu{sub 2}Si{sub 2} under pressure in the hidden order and paramagnetic phases. We find that the Knight shift decreases with applied pressure, consistent with previous measurements of the static magnetic susceptibility. Previous measurements of the spin lattice relaxation time revealed a partial suppression of the density of states below 30 K. This suppression persists under pressure, and the onset temperature is mildly enhanced.

  4. S100 lathe bed pulse generator applied to pulsed nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Cernicchiaro, G.R.C.; Rudge, M.G.; Albuquerque, M.P.

    1989-01-01

    The project and construction of four channel pulse generator in the S100 standard plate and its control software for microcomputer are described. The microcomputer has total control on the pulse generator, which has seven programable parameters, defining the position of four pulses and the width for the three first ones. This pulse generator is controlled by a software developed in c language, and is used in pulsed nuclear magnetic resonance experiences. (M.C.K.) [pt

  5. Zero Quantum Nuclear Magnetic Resonance experiments utilizing a toroid cell and coil

    OpenAIRE

    Bebout, William Roach

    1989-01-01

    Over the past ten to fifteen years the area of Nuclear Magnetic Resonance (NMR) Spectroscopy has seen tremendous growth. For example, in conjunction with multiple quantum NMR, molecular structural mapping of a compound can be easily performed in a two dimensional (2D) experiment. However, only two kinds of detector coils have been typically used in NMR studies. These are the solenoid coil and the Helmholtz coil. The solenoid coil was very popular with the permanent and e...

  6. Effect of magnetic quadrupole lens alignment on a nuclear microprobe resolution

    International Nuclear Information System (INIS)

    Kolinko, S.V.; Ponomarev, A.G.

    2016-01-01

    The paper reports the research trends in developing probe-forming systems with high demagnification and analysis factors that limit a nuclear microprobe resolution. Parasitic aberrations caused by tilts and offsets of magnetic quadrupoles are studied in terms of their effect on probe parameters on a target. The most common arrangements of probe-forming systems such as a triplet and “Russian quadruplet” with separated geometry are considered. The accuracy prerequisites for the positioning of the quadrupoles are defined, and practical guidelines for alignment of probe-forming systems with high demagnification factors are suggested.

  7. Recent Advances in Computational Methods for Nuclear Magnetic Resonance Data Processing

    KAUST Repository

    Gao, Xin

    2013-01-11

    Although three-dimensional protein structure determination using nuclear magnetic resonance (NMR) spectroscopy is a computationally costly and tedious process that would benefit from advanced computational techniques, it has not garnered much research attention from specialists in bioinformatics and computational biology. In this paper, we review recent advances in computational methods for NMR protein structure determination. We summarize the advantages of and bottlenecks in the existing methods and outline some open problems in the field. We also discuss current trends in NMR technology development and suggest directions for research on future computational methods for NMR.

  8. Use of nuclear magnetic resonance of hydrogen in the characterization of saturated hydrocarbonic chains

    International Nuclear Information System (INIS)

    Costa Neto, A.; Soares, V.L.P.; Costa Neto, C.

    1979-01-01

    Alkanes and cycloalkanes are characterized by a methyl-methylene-methine groups proportion, the percentual absorption in prefixed regions and the pattern of the spectrum of nuclear magnetic resonance of hydrogen. The GPI is calculated from the contribution of the areas corresponding to prefixed regions of the hydrogen magnetic resonance spectra (60 Mc). These regions are (for the saturated hydrocarbons): 0,5-1,05ppm (X), 1,05ppm (Y) and 1,50-2,00ppm (Z). The validity of the index was verified for the homologous series of linear hydrocarbons and methyl-, dimethyl-, ethyl-, cyclopentyl- and cyclohexyl-branched hydrocarbons. Its application to shale oil chemistry (xistoquimica) is discussed. (author) [pt

  9. High-Throughput Screening by Nuclear Magnetic Resonance (HTS by NMR) for the Identification of PPIs Antagonists.

    Science.gov (United States)

    Wu, Bainan; Barile, Elisa; De, Surya K; Wei, Jun; Purves, Angela; Pellecchia, Maurizio

    2015-01-01

    In recent years the ever so complex field of drug discovery has embraced novel design strategies based on biophysical fragment screening (fragment-based drug design; FBDD) using nuclear magnetic resonance spectroscopy (NMR) and/or structure-guided approaches, most often using X-ray crystallography and computer modeling. Experience from recent years unveiled that these methods are more effective and less prone to artifacts compared to biochemical high-throughput screening (HTS) of large collection of compounds in designing protein inhibitors. Hence these strategies are increasingly becoming the most utilized in the modern pharmaceutical industry. Nonetheless, there is still an impending need to develop innovative and effective strategies to tackle other more challenging targets such as those involving protein-protein interactions (PPIs). While HTS strategies notoriously fail to identify viable hits against such targets, few successful examples of PPIs antagonists derived by FBDD strategies exist. Recently, we reported on a new strategy that combines some of the basic principles of fragment-based screening with combinatorial chemistry and NMR-based screening. The approach, termed HTS by NMR, combines the advantages of combinatorial chemistry and NMR-based screening to rapidly and unambiguously identify bona fide inhibitors of PPIs. This review will reiterate the critical aspects of the approach with examples of possible applications.

  10. 78 FR 77508 - Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined...

    Science.gov (United States)

    2013-12-23

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Duke Energy Carolinas, LLC; William States Lee III Nuclear Station, Units 1 and 2; Combined Licenses Application Review AGENCY: Nuclear Regulatory Commission. ACTION: Final environmental impact statement; availability...

  11. Advances and applications of dynamic-angle spinning nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Baltisberger, Jay Harvey [Univ. of California, Berkeley, CA (United States)

    1993-06-01

    This dissertation describes nuclear magnetic resonance experiments and theory which have been developed to study quadrupolar nuclei (those nuclei with spin greater than one-half) in the solid state. Primarily, the technique of dynamic-angle spinning (DAS) is extensively reviewed and expanded upon in this thesis. Specifically, the improvement in both the resolution (two-dimensional pure-absorptive phase methods and DAS angle choice) and sensitivity (pulse-sequence development), along with effective spinning speed enhancement (again through choice of DAS conditions or alternative multiple pulse schemes) of dynamic-angle spinning experiment was realized with both theory and experimental examples. The application of DAS to new types of nuclei (specifically the {sup 87}Rb and {sup 85}Rb nuclear spins) and materials (specifically amorphous solids) has also greatly expanded the possibilities of the use of DAS to study a larger range of materials. This dissertation is meant to demonstrate both recent advances and applications of the DAS technique, and by no means represents a comprehensive study of any particular chemical problem.

  12. Remote detection of oil spilled under ice and snow using nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Nedwed, T.; Srnka, L.; Thomann, H.

    2008-01-01

    The technical challenge of detecting oil that has been accidentally spilled under ice and snow was discussed with particular reference to the tools used to characterize the molecular composition of liquids and solids. One such tool is nuclear magnetic resonance (NMR) which works by releasing electromagnetic energy. The NMR signals from oil and water can be differentiated based on the inherent differences in the NMR signal responses from different fluid types. The method can also use the Earth's magnetic field as the static magnetic field and thereby eliminate the complexity and cost of generating an independent magnetic field for remotely detecting fluids below a surface. This study examined the feasibility of altering existing surface-based instruments and placing them in a helicopter for aerial monitoring. The goal of this research was to develop a tool for remote detection of oil under ice in a marine environment, or for detection of oil under snow on land using an inexpensive tool that can quickly inspect large areas. The proposed tool and technique produces a direct hydrocarbon signal that may not have interference from ice and snow. 9 refs., 6 figs

  13. High field nuclear magnetic resonance application to polysaccharide chemistry

    International Nuclear Information System (INIS)

    Vincendon, Marc

    1972-01-01

    Nuclear magnetic resonance has been applied to polysaccharide chemistry using time averaging technique and high fields (100 and 250 MHz). The three methyl signals of methyl cellulose and cellulose triacetate are separated, and the C-6 substituent has been identified. Biosynthesis of bacterial cellulose has been performed using deuterium labelled D-glucose and Acetobacter xylinum. Per-acetylated derivative of bacterial cellulose has been studied by NMR; this study permitted us to determine the quantity of deuterium on each position of the anhydro-glucose unit in the polymer. NMR has also been used to see the anomeric end chain of cellulose and amylose derivatives and to show the fixation of bromine and t-butyl group on the free anomeric end chain of cellulose triacetate. (author) [fr

  14. Nuclear magnetic resonance imaging characteristics of gallstones in vitro

    International Nuclear Information System (INIS)

    Moon, K.L. Jr.; Hricak, H.; Margulis, A.R.; Bernhoft, R.; Way, L.W.; Filly, R.A.; Crooks, L.E.

    1983-01-01

    The nuclear magnetic resonance (NMR) imaging characteristics of gallstones of various composition from 36 patients were studied in vitro using a spin-echo imaging technique. The majority of gallstones (83%) produced no measurable NMR signal despite having a mean water content of 12% and a mean cholesterol content of 61%. Six (17%) of the stones had a weak but measurable signal in the center of the stone, which was thought to represent signal from water in clefts or pores within the stones. The mean water and cholesterol content of the stones with measurable signal did not differ significantly from that of stones with no signal. A possible explanation for these findings, based on the known NMR characteristics of solid materials, is offered

  15. Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K.

    Science.gov (United States)

    Thurber, Kent R; Potapov, Alexey; Yau, Wai-Ming; Tycko, Robert

    2013-01-01

    We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier, but also includes a corrugated waveguide for transmission of microwaves from below the probe to the sample. With a 30 mW circularly polarized microwave source at 264 GHz, MAS at 6.8 kHz, and 21 K sample temperature, greater than 25-fold enhancements of cross-polarized (13)C NMR signals are observed in spectra of frozen glycerol/water solutions containing the triradical dopant DOTOPA-TEMPO when microwaves are applied. As demonstrations, we present DNP-enhanced one-dimensional and two-dimensional (13)C MAS NMR spectra of frozen solutions of uniformly (13)C-labeled l-alanine and melittin, a 26-residue helical peptide that we have synthesized with four uniformly (13)C-labeled amino acids. Published by Elsevier Inc.

  16. Effect of resonance line shape on precision measurements of nuclear magnetic resonance shifts

    International Nuclear Information System (INIS)

    Kachurin, A.M.; Smelyanskij, A.Ya.

    1986-01-01

    Effect of resonance line shape on the systematic error of precision measurements of nuclear magnetic resonance (NMR) shifts of high resolution (on the center of NMR dispersion line) is analysed. Effect of the device resonance line form-function asymmetry is evaluated; the form-function is determined by configuration of the spectrometer magnetic field and enters the convolution, which describes the resonance line form. It is shown that with the increase of the relaxation line width the form-function effect on the measurement error yields to zero. The form-function effect on measurements and correction of a phase angle of NMR detection is evaluated. The method of semiquantitative evaluation of resonance line and NMR spectrometer parameters, guaranteeing the systematic error of the given infinitesimal, is presented

  17. Nuclear magnetic resonance of randomly diluted magnetic materials

    International Nuclear Information System (INIS)

    Magon, C.J.

    1985-01-01

    The temperature dependence of the nuclear relaxation rates and line shapes of the F O resonance in the diluted antiferromagnet Fe x Zn 1-x F 2 and Mn x Zn 1-x F 2 are studied over a large temperature range T N 1 ) of the F O nuclei, which are not transfer hyperfine coupled to the Fe (or Mn) spins, have been measured and calculated as a function of the concentration x. Good agreement with experiment is found for the theoretical results, which have been obtained in the range 0.1 ≤ x ≤ 0.8. The temperature dependence of 1/T 1 for T N 1 data near T N was used to study Random Field Effects on the critical behavior of Mn .65 Zn . 3 5 F 2 , for fields applied parallel and perpendicular to the easy (C) axis. It was found that the transition temperature T N depressed substantially with field only for H o || C. The experimental results are in general accord with the theory for Random Field Effects in disordered, anisotropic antiferromagnets. The critical divergence of the inhomogeneously broadened F O NMR was studied in Fe .6 Zn .4 F 2 above T N . The experimental results agree with Heller's calculation of the NMR line broadening by Random Field Effects. With H o || C the line shape changes from Gaussian towards Lozentzian for t -2 and below T N its line width increase qualitatively following the increase in the sublattice magnetization. (author)

  18. Evaluating the accuracy of uranium isotope amount ratio measurements performed by a quadrupole and a multi-collector magnetic sector inductively coupled plasma mass spectrometers for nuclear safeguards

    International Nuclear Information System (INIS)

    Pereira de Oliveira, O. Jr.; Sarkis, J.E.S.; Ponzevera, E.; Alonso, A.; De Bolle, W.; Quetel, C.

    2008-01-01

    The n(U 235 )/n(U 238 ) isotope amount ratio in a set of samples was measured using two modern analytical techniques: quadrupole inductively coupled plasma mass spectrometry (ICP-QMS) and multi-collector magnetic sector inductively coupled plasma mass spectrometry (MC-ICPMS). The measured ratios were compared to the certified ratios provided by the high accuracy gas source mass spectrometry (GSMS). The components of the uncertainty were identified and their contribution to the combined standard uncertainty was estimated using the recommendations of the ISO-GUM guide. The values of the measurement uncertainty and bias were determined and then compared to the International Target Values for Measurement Uncertainties in Safeguarding Nuclear Materials. It appears that only the measurements performed by MC-ICPMS can meet the stringent requirements of international nuclear safeguards. (authors)

  19. A Noninvasive Method to Study Regulation of Extracellular Fluid Volume in Rats Using Nuclear Magnetic Resonance

    Science.gov (United States)

    Time-domain nuclear magnetic resonance (TD-NMR)-based measurement of body composition of rodents is an effective method to quickly and repeatedly measure proportions of fat, lean, and fluid without anesthesia. TD-NMR provides a measure of free water in a living animal, termed % f...

  20. Two-dimensional J-resolved nuclear magnetic resonance spectral study of two bromobenzene glutathione conjugates

    Energy Technology Data Exchange (ETDEWEB)

    Ferretti, J.A.; Highet, R.J.; Pohl, L.R.; Monks, T.J.; Hinson, J.A.

    1985-09-01

    The application of two-dimensional J-resolved nuclear magnetic resonance spectroscopy to determine the structure of two bile metabolites isolated from rats injected interperitoneally with bromobenzene is described. The structures of the two molecules are obtained unambiguously from the proton-proton spin coupling constants. The paper discusses the fundamentals of the technique and demonstrates the resolution of small long-range coupling constants.

  1. Metamaterial Combining Electric- and Magnetic-Dipole-Based Configurations for Unique Dual-Band Signal Enhancement in Ultrahigh-Field Magnetic Resonance Imaging.

    Science.gov (United States)

    Schmidt, Rita; Webb, Andrew

    2017-10-11

    Magnetic resonance imaging and spectroscopy (MRI and MRS) are both widely used techniques in medical diagnostics and research. One of the major thrusts in recent years has been the introduction of ultrahigh-field magnets in order to boost the sensitivity. Several MRI studies have examined further potential improvements in sensitivity using metamaterials, focusing on single frequency applications. However, metamaterials have yet to reach a level that is practical for routine MRI use. In this work, we explore a new metamaterial implementation for MRI, a dual-nuclei resonant structure, which can be used for both proton and heteronuclear magnetic resonance. Our approach combines two configurations, one based on a set of electric dipoles for the low frequency band, and the second based on a set of magnetic dipoles for the high frequency band. We focus on the implementation of a dual-nuclei metamaterial for phosphorus and proton imaging and spectroscopy at an ultrahigh-field strength of 7 T. In vivo scans using this flexible and compact structure show that it locally enhances both the phosphorus and proton transmit and receive sensitivities.

  2. Space nuclear-power reactor design based on combined neutronic and thermal-fluid analyses

    International Nuclear Information System (INIS)

    Koenig, D.R.; Gido, R.G.; Brandon, D.I.

    1985-01-01

    The design and performance analysis of a space nuclear-power system requires sophisticated analytical capabilities such as those developed during the nuclear rocket propulsion (Rover) program. In particular, optimizing the size of a space nuclear reactor for a given power level requires satisfying the conflicting requirements of nuclear criticality and heat removal. The optimization involves the determination of the coolant void (volume) fraction for which the reactor diameter is a minimum and temperature and structural limits are satisfied. A minimum exists because the critical diameter increases with increasing void fraction, whereas the reactor diameter needed to remove a specified power decreases with void fraction. The purpose of this presentation is to describe and demonstrate our analytical capability for the determination of minimum reactor size. The analysis is based on combining neutronic criticality calculations with OPTION-code thermal-fluid calculations

  3. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution.

    Science.gov (United States)

    Xin, Ouyang; Yitong, Han; Xi, Cao; Jiawei, Chen

    2017-03-01

    Biochar has been developed in recent years for the removal of contaminants such as Cr (VI) in water. The enhancement of the adsorption capacity of biochar and its recyclable use are still challenges. In this study, magnetic biochar derived from corncobs and peanut hulls was synthesized under different pyrolysis temperatures after pretreating the biomass with a low concentration of 0.5 M FeCl 3 solution. The morphology, specific surface area, saturation magnetization and Fourier transform infrared spectroscopy (FT-IR) spectra were characterized for biochar. The magnetic biochar performed well in combining adsorption and separation recycle for the removal of Cr (VI) in water. The Cr (VI) adsorbance of the biochar was increased with the increase in pyrolysis temperature, and the magnetic biochar derived from corncobs showed better performance for both magnetization and removal of Cr (VI) than that from peanut hulls. The Langmuir model was used for the isothermal adsorption and the maximum Cr (VI) adsorption capacity of corncob magnetic biochar pyrolyzed at 650 °C reached 61.97 mg/g. An alkaline solution (0.1 M NaOH) favored the desorption of Cr (VI) from the magnetic biochar, and the removal of Cr (VI) still remained around 77.6% after four cycles of adsorption-desorption. The results showed that corncob derived magnetic biochar is a potentially efficient and recoverable adsorbent for remediation of heavy metals in water.

  4. Advanced nuclear reactor and nuclear fusion power generation

    International Nuclear Information System (INIS)

    2000-04-01

    This book comprised of two issues. The first one is a advanced nuclear reactor which describes nuclear fuel cycle and advanced nuclear reactor like liquid-metal reactor, advanced converter, HTR and extra advanced nuclear reactors. The second one is nuclear fusion for generation energy, which explains practical conditions for nuclear fusion, principle of multiple magnetic field, current situation of research on nuclear fusion, conception for nuclear fusion reactor and economics on nuclear fusion reactor.

  5. Ionization and acoustical instability of a low temperature magnetized plasma in a combined (direct and alternating) electrical field

    International Nuclear Information System (INIS)

    Andropov, V.G.; Sinkevich, O.A.

    1983-01-01

    It is shown that the ionization front which moves through a gas along a magnetic field in a combined electrical field, which lies in the plane of the front, may be unstable, as a result of the development of an ionization instability in the plasma behind the front. The criterion of instability of the ionization front does not greatly differ from the criterion of instability of an infinite plasma. The ionization front in the magnetic field is stable only in an electrical field of circular polarization or in a combined field in which the direct and alternating electrical fields are orthogonal and the Joule heat liberation from them is equal. The generation of sound is possible in a magnetized plasma in an alternating electrical field orthogonal to a magnetic due to the parametric acoustical instability at the frequency of the external electrical field. 8 refs

  6. Nuclear magnetic resonance tomography of the cervical canal

    Energy Technology Data Exchange (ETDEWEB)

    Terwey, B.; Koschorek, F.; Jensen, H.P.

    1985-12-01

    170 patients with suspected lesions of the cervical part of the medulla were examined using nuclear magnetic resonance (NMR) tomography. 27 cases revealed no pathological changes in the regions of the cervical medulla, the cervical canal and of the cervical spine. 143 cases produced pathological findings whose diagnoses determined therapeutical approach. Verified pathological changes comprised anomalies of the cranio-cervical junction like basilar impression and Arnold-Chiari malformation, various types of cavity formation in the cervical medulla (syringomyelia, hydromyelia), demyelinization processes, intramedullary and extramedullary tumours, intervertebral disk degeneration processes, dislocation of intervertebral disks and spondylophytes with spinal stenoses. Sagittal sections in different functional positions allowed to demonstrate the biomechanical effects of extramedullary masses on the cervical medulla. However, proven tumours could not be differentiated successfully using histological methods. Nevertheless, NMR tomography will replace invasive methods like conventional cervical myelography and CT myelography in diagnostic clarification of diseases of the cervical medulla.

  7. Evaluation of magnetic fluid hyperthermia (MFH) combined with external radiation in an orthotopic rat model of prostate cancer

    International Nuclear Information System (INIS)

    Johannsen, M.; Thiesen, B.; Taymoorian, K.; Gneveckow, U.; Waldoefner, N.; Koch, M.; Scholz, R.; Lein, M.; Jung, K.; Loening, S.A.; Jordan, A.

    2005-01-01

    Full text: Magnetic fluid hyperthermia (MFH) is a new concept of cancer treatment based on AC magnetic field-induced excitation of biocompatible superparamagnetic nanoparticles. Preliminary studies of MFH using nanoscaled aminosilan-coated magnetites have demonstrated the feasibility of minimally invasive MFH in the Dunning tumor model. Here we evaluated the effect of two sequential MFH treatments, combined with external radiation, in an orthotopic Dunning R3327-MatLyLu prostate cancer model. MFH led to a significant growth inhibition in this orthotopic model of the aggressive MatLyLu tumor variant. Furthermore, combined MFH and radiation with 20 Gy equally effective in inhibiting tumor growth as radiation with 60 Gy, suggesting a significant synergistic effect. Intratumoral deposition of magnetic fluids was found to be stable, allowing for serial MFH treatments without repeated injection. The optimal treatment schedules of this combination regarding temperatures, sequencing and fractionation need to be defined in further experimental studies. (author)

  8. Hepatic Metabolism of Perfluorinated Carboxylic Acids: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1995-01-17

    Reo, C. M. Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic...SUBTITLE 7C 5. FUNDING NUMBERS" Hepatic Metabolism of Perfluorinated Carboxylic Acids : A Nuclear Magnetic Resonance Investigation in Vivo G-AFOSR-90-0148 6...octanoic acid (PFOA) and perfluoro-n-decanoic acid (PFDA). These Air Force chemicals belong to a class of CU’. compounds known as peroxisome

  9. Resolution Improvement in Multidimensional Nuclear Magnetic Resonance Spectroscopy of Proteins

    International Nuclear Information System (INIS)

    Duma, L.

    2004-01-01

    The work presented in this thesis is concerned with both liquid-state and solid-state nuclear magnetic resonance (NMR) spectroscopy. Most of this work is devoted to the investigation by solid-state NMR of C 13 -enriched compounds with the principal aim of presenting techniques devised for further improving the spectral resolution in multidimensional NMR of microcrystalline proteins. In fully C 13 -labelled compounds, the J-coupling induces a broadening of the carbon lineshapes. We show that spin-state-selective technique called IPAP can be successfully combined with standard polarisation transfer schemes in order to remove the J-broadening in multidimensional solid-state NMR correlation experiments of fully C 13 -enriched proteins. We present subsequently two techniques tailored for liquid-state NMR spectroscopy. The carbon directly detected techniques provide chemical shift information for all backbone hetero-nuclei. They are very attracting for the study of large bio-molecular systems or for the investigation of paramagnetic proteins. In the last part of this thesis, we study the spin-echo J-modulation for homonuclear two-spin 1/2 systems. Under magic-angle spinning, the theory of J-induced spin-echo modulation allows to derive a set of modulation regimes which give a spin-echo modulation exactly equal to the J-coupling. We show that the chemical-shift anisotropy and the dipolar interaction tend to stabilize the spin-echo J-modulation. The theoretical conclusions are supported by numerical simulations and experimental results obtained for three representative samples containing C 13 spin pairs. (author)

  10. Sealed magic angle spinning nuclear magnetic resonance probe and process for spectroscopy of hazardous samples

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Herman M.; Washton, Nancy M.; Mueller, Karl T.; Sears, Jr., Jesse A.; Townsend, Mark R.; Ewing, James R.

    2016-06-14

    A magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) probe is described that includes double containment enclosures configured to seal and contain hazardous samples for analysis. The probe is of a modular design that ensures containment of hazardous samples during sample analysis while preserving spin speeds for superior NMR performance and convenience of operation.

  11. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Visser, Ilona, E-mail: ilona.visser@unilever.com [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands); Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, PO box 114, 3130 AC Vlaardingen (Netherlands)

    2009-11-03

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  12. Identification and quantification of polycarboxylates in detergent products using off-line size exclusion chromatography-nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Visser, Ilona; Klinkenberg, Monique; Hoos, Peter; Janssen, Hans-Gerd; Duynhoven, John van

    2009-01-01

    The performance of many contemporary detergent products critically depends on polymers. Water-soluble polycarboxylates represent an important class of detergent polymers, and their quantitative assessment in detergent matrices stands as a considerable challenge. The presence of high levels of surfactants is a major complication, due to the strong tendency of surfactants to form micelles and to interact with the polymers. First, we addressed critical steps in the subsequent combined use of liquid extraction and off-line size exclusion chromatography-nuclear magnetic resonance (SEC-NMR) for identification and quantification of polycarboxylates in detergent products. Next, the different steps in the off-line SEC-NMR procedure were optimized with respect to precision and accuracy. This resulted in recoveries of more than 80% for maleic acid/acrylic acid copolymers; in detergent products a proportional bias of 30% is achieved. The method showed good precision with a relative standard deviation of within-laboratory reproducibility between 5% and 14%.

  13. Selectivity in multiple quantum nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Warren, W.S.

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible

  14. Selectivity in multiple quantum nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Warren Sloan [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials Sciences Division

    1980-11-01

    The observation of multiple-quantum nuclear magnetic resonance transitions in isotropic or anisotropic liquids is shown to give readily interpretable information on molecular configurations, rates of motional processes, and intramolecular interactions. However, the observed intensity of high multiple-quantum transitions falls off dramatically as the number of coupled spins increases. The theory of multiple-quantum NMR is developed through the density matrix formalism, and exact intensities are derived for several cases (isotropic first-order systems and anisotropic systems with high symmetry) to shown that this intensity decrease is expected if standard multiple-quantum pulse sequences are used. New pulse sequences are developed which excite coherences and produce population inversions only between selected states, even though other transitions are simultaneously resonant. One type of selective excitation presented only allows molecules to absorb and emit photons in groups of n. Coherent averaging theory is extended to describe these selective sequences, and to design sequences which are selective to arbitrarily high order in the Magnus expansion. This theory and computer calculations both show that extremely good selectivity and large signal enhancements are possible.

  15. Nuclear magnetic resonance studies of metabolic regulation

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Han, C.H.; Whaley, T.W.

    1983-01-01

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/10 6 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/10 6 cells as monitored by free-glycerol appearance in the medium. 13 C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  16. Nuclear Magnetic Resonance structural studies of peptides and proteins from the vaso-regulatory System

    International Nuclear Information System (INIS)

    Sizun, Philippe

    1991-01-01

    The aim of the present work is to show how Nuclear Magnetic Resonance (NMR) allows to determine the 3D structure of peptides and proteins in solution. A comparative study of peptides involved in the vaso-regulatory System (form small hormonal peptide to the 65 amido-acid protein hirudin) has allowed to design most efficient NMR 1D and 2D strategies. It rapidly appeared that the size of the peptide plays a key role in the structuration of the molecule, smallest peptides being weakly structured owing to the lack of cooperative effects. As the molecular size increases or if conformational locks are present (disulfide bridges) the probability of stable secondary structure increases. For the protein hirudin, a combination of ail available NMR parameters deduced form dedicated experiments (chemical shifts, coupling constants, overhauser effects, accessibility of amide protons) and molecular modelling under constraints allows a clear 3D structure to be proposed for this protein in solution. Finally, a comparative study of the experimental structures and of those deduced form prediction rules has shed light on the concept of structural predisposition, the latter being of high value for a better understanding of structure-activity relationships. (author) [fr

  17. Basement characterization and crustal structure beneath the Arabia-Eurasia collision (Iran): A combined gravity and magnetic study

    Science.gov (United States)

    Mousavi, Naeim; Ebbing, Jörg

    2018-04-01

    We present a study on the depth to basement and magnetic crustal domains beneath the Iranian Plateau by modeling aeromagnetic and gravity data. First, field processing of the aeromagnetic data was undertaken to estimate the general characteristics of the magnetic basement. Afterwards, inverse modeling of aeromagnetic data was carried out to estimate the depth to basement. The obtained model of basement was refined using combined gravity and magnetic forward modeling. Hereby, we were able to distinguish different magnetic domains in the uppermost crust (10-20 km depths) influencing the medium to long wavelength trends of the magnetic anomalies. Magnetic basement mapping shows that prominent shallow magnetic features are furthermore located in the volcanic areas, e.g. the Urumieh Dokhtar Magmatic Assemblage. The presence of ophiolite outcrops in SE Iran implies that shallow oceanic crust (with high magnetization) is the main source of one of the biggest magnetic anomalies in entire Iran area located north of the Makran.

  18. A Magnetic Resonance Measurement Technique for Rapidly Switched Gradient Magnetic Fields in a Magnetic Resonance Tomograph

    Directory of Open Access Journals (Sweden)

    K. Bartušek

    2003-01-01

    Full Text Available This paper describes a method for measuring of the gradient magnetic field in Nuclear Magnetic Resonance (NMR tomography, which is one of the modern medical diagnostic methods. A very important prerequisite for high quality imaging is a gradient magnetic field in the instrument with exactly defined properties. Nuclear magnetic resonance enables us to measure the pulse gradient magnetic field characteristics with high accuracy. These interesting precise methods were designed, realised, and tested at the Institute of Scientific Instruments (ISI of the Academy of Sciences of the Czech Republic. The first of them was the Instantaneous Frequency (IF method, which was developed into the Instantaneous Frequency of Spin Echo (IFSE and the Instantaneous Frequency of Spin Echo Series (IFSES methods. The above named methods are described in this paper and their a comparison is also presented.

  19. Performance of combination of a Venturi and nuclear fraction meter in SAGD production operations

    Energy Technology Data Exchange (ETDEWEB)

    Hompoth, D.; Khun, N. [Suncor Energy, Calgary, AB (Canada); Pinguet, B.G.; Guerra, E. [Schlumberger Canada Ltd., Edmonton, AB (Canada)

    2008-07-01

    This paper described a multiphase flow meter (MFM) that used a Venturi and nuclear fraction meter combination for steam assisted gravity drainage (SAGD) well production testing. The device was designed by re-engineering a flow model and fluid property package to measure the steam phases. The meter was designed to improve pump monitoring processes in SAGD operations. The technology combined 2 basic measurement steps. The first was a nuclear multi Gamma-ray fraction meters which measured the fraction of each constituent at the Venturi tube's throat at high frequencies. Fractions were then determined from the solution of 3 simultaneous equations related to the Gamma ray attenuation, and a fraction balance equation. Pressure and temperature measurements were used to predict the fluid properties at line conditions. Primary outputs were based on nuclear measurements, gas fractions, water liquid ratios, and mixture densities. Secondary outputs from the meter included volumetric flow rates. Stability, dynamic responses, and reproducibility rates of the MFM were also presented. 9 refs., 6 tabs., 17 figs.

  20. Pulsed-field gradient nuclear magnetic resonance study of transport properties of fluid catalytic cracking catalysts

    Czech Academy of Sciences Publication Activity Database

    Kortunov, P.; Vasenkov, S.; Kärger, J.; Fé Elía, M.; Perez, M.; Stöcker, M.; Papadopoulos, G. K.; Theodorou, D.; Drescher, B.; McElhiney, G.; Bernauer, B.; Krystl, V.; Kočiřík, Milan; Zikánová, Arlette; Jirglová, Hana; Berger, C.; Gläser, R.; Weitkamp, J.; Hansen, E. W.

    2005-01-01

    Roč. 23, č. 2 (2005), s. 233-237 ISSN 0730-725X Grant - others:TROCAT project - European Community(DE) G5RD-CT-2001-00520 Institutional research plan: CEZ:AV0Z40400503 Keywords : pulsed-field gradient * nuclear magnetic resonance * fluid catalytic cracking catalyst Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.361, year: 2005

  1. Structural and conformational study of polysaccharides by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Bossennec, Veronique

    1989-01-01

    As some natural polysaccharides are involved in important biological processes, the use of nuclear magnetic resonance appears to be an adapted mean to determine their structure-activity relationship and is therefore the object of this research thesis. By using bi-dimensional proton-based NMR techniques, it is possible to identify minority saccharide units, to determine their conformation, and to identify units which they are bound to. The author reports the application of these methods to swine mucosa heparin, and to heparins displaying a high and low anticoagulant activity. The dermatan sulphate has also been studied, and the NMR analysis allowed some polymer structure irregularities to be identified. A molecular modelling of dermatan sulphate has been performed [fr

  2. Determination of scutellarin in breviscapine preparations using quantitative proton nuclear magnetic resonance spectroscopy

    Directory of Open Access Journals (Sweden)

    Zhenzuo Jiang

    2016-04-01

    Full Text Available The objective of the present study was to develop the selection criteria of proton signals for the determination of scutellarin using quantitative nuclear magnetic resonance (qNMR, which is the main bioactive compound in breviscapine preparations for the treatment of cerebrovascular disease. The methyl singlet signal of 3-(trimethylsilylpropionic-2,2,3,3-d4 acid sodium salt was selected as the internal standard for quantification. The molar concentration of scutellarin was determined by employing different proton signals. To obtain optimum proton signals for the quantification, different combinations of proton signals were investigated according to two selection criteria: the recovery rate of qNMR method and quantitative results compared with those obtained with ultra-performance liquid chromatography. As a result, the chemical shift of H-2′ and H-6′ at δ 7.88 was demonstrated as the most suitable signal with excellent linearity range, precision, and recovery for determining scutellarin in breviscapine preparations from different manufacturers, batch numbers, and dosage forms. Hierarchical cluster analysis was employed to evaluate the determination results. The results demonstrated that the selection criteria of proton signals established in this work were reliable for the qNMR study of scutellarin in breviscapine preparations.

  3. Concealed nuclear material identification via combined fast-neutron/γ-ray computed tomography (FNGCT): a Monte Carlo study

    Science.gov (United States)

    Licata, M.; Joyce, M. J.

    2018-02-01

    The potential of a combined and simultaneous fast-neutron/γ-ray computed tomography technique using Monte Carlo simulations is described. This technique is applied on the basis of a hypothetical tomography system comprising an isotopic radiation source (americium-beryllium) and a number (13) of organic scintillation detectors for the production and detection of both fast neutrons and γ rays, respectively. Via a combination of γ-ray and fast neutron tomography the potential is demonstrated to discern nuclear materials, such as compounds comprising plutonium and uranium, from substances that are used widely for neutron moderation and shielding. This discrimination is achieved on the basis of the difference in the attenuation characteristics of these substances. Discrimination of a variety of nuclear material compounds from shielding/moderating substances (the latter comprising lead or polyethylene for example) is shown to be challenging when using either γ-ray or neutron tomography in isolation of one another. Much-improved contrast is obtained for a combination of these tomographic modalities. This method has potential applications for in-situ, non-destructive assessments in nuclear security, safeguards, waste management and related requirements in the nuclear industry.

  4. 10 CFR Appendix N to Part 52 - Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate...

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Standardization of Nuclear Power Plant Designs: Combined Licenses To Construct and Operate Nuclear Power Reactors of Identical Design at Multiple Sites N Appendix N... FOR NUCLEAR POWER PLANTS Pt. 52, App. N Appendix N to Part 52—Standardization of Nuclear Power Plant...

  5. 76 FR 79228 - Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy...

    Science.gov (United States)

    2011-12-21

    ... NUCLEAR REGULATORY COMMISSION [Docket Nos. 52-018 and 52-019; NRC-2008-0170] Combined Licenses at William States Lee III Nuclear Station Site, Units 1 and 2; Duke Energy Carolinas, LLC AGENCY: Nuclear.... SUMMARY: Notice is hereby given that the U.S. Nuclear Regulatory Commission (NRC) and the U.S. Army Corps...

  6. Nuclear magnetic resonance on a single quantum dot and a quantum dot in a nanowire system: quantum photonics and opto-mechanical coupling

    OpenAIRE

    Wüst, Gunter Johannes

    2015-01-01

    Self-assembled semiconductor quantum dots (QD) are excellent single photon sources and possible hosts for electron spin qubits, which can be initialized, manipulated and read-out optically. The nuclear spins in nano-structured semiconductors play a central role in quantum applications. The nuclear spins represent a useful resource for generating local magnetic fields but nuclear spin noise represents a major source of dephasing for spin qubits. Controlling the nuclear spins enhances the resou...

  7. Terawatt power division and combination using self-magnetically insulated transmission lines

    International Nuclear Information System (INIS)

    Crow, J.T.; Peterson, G.D.

    1980-01-01

    Self-magnetically insulated transmission lines are necessary for the efficient transport of the terawatt pulses used in electron and ion accelerators. For some applications it is desirable to divide one transmission line into two, or to combine outputs of two or more lines into one, by means of self-magnetically insulated convolutes. Tests have been made on a coaxial-to-triaxial convolute in which connections between negative inner and outer lines are made by pins passing through holes in the intermediate positive conductor. Measurements in the 2 MV, 400 kA, 40 ns pulse Mite facility indicate virtually 100% current transport through the convolute and the ability to vary the division of current between the inner and outer lines of the triax by choice of inner line impedance. These measurements, and results obtained with this convolute connected to the ion diode for which it was designed, will be presented

  8. Advances in magnetic resonance 12

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 12, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains six chapters and begins with a discussion of diffusion and self-diffusion measurements by nuclear magnetic resonance. This is followed by separate chapters on spin-lattice relaxation time in hydrogen isotope mixtures; the principles of optical detection of nuclear spin alignment and nuclear quadropole resonance; and the spin-1 behavior, including the relaxation of the quasi-invariants of the motion of a system of pairs of dipolar coupled spin-1/2 nu

  9. Sunflower oil ozonation. Following of the reaction by proton Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Diaz Gomez, Maritza F.

    2005-01-01

    Previous studies have demonstrated that the technique of Proton Nuclear Magnetic Resonance can be used for the pursuit of the reaction between the ozone and the unsaturated fatty acids. It's carried out the sunflower oil ozonization to different applied dose of ozone and the index of peroxides and the concentration of aldehydes are determined. The main reaction products were identified by Proton Nuclear Magnetic Resonance Spectroscopy (NMR 1 H). The intensities of the signs were used to follow the advance of the reaction between the ozone and the sunflower oil. It is was carried out until obtaining an index of peroxides of 1 202 mmol-equiv/kg. The intensities of the signs of the olefinic protons diminish with a gradual increment in the dose of applied ozone, but without ending up disappearing completely. The ozonides of Criegee obtained to applied dose of ozone of 107,1 mg/g were approximately bigger 7,4 times that those obtained at the beginning from the reaction to applied dose of ozone of 15,3 mg/g. The aldehydes protons were observed as a sign of weak intensity in all the spectra. The signs belonging to the olenifics protons of the hydroperoxides in d = 5,55 ppm increases with the increment of the applied dose of ozone. You concludes that to higher applied dose of ozone, haggler is the advance of the ozonization reaction, what belongs together with a bigger formation of oxygenated compounds

  10. Combined conditioning in the high-temperature experimental nuclear reactor (AVR) at Juelich

    International Nuclear Information System (INIS)

    Nieder, R.; Vey, K.; Ivens, G.

    1984-01-01

    The high temperature experimental nuclear reactor (AVR) is the first nuclear power plant in which combined cycle operation has been introduced. The water-steam cycle has been operated for about 15 years according to the alkali method of working with ammonia and hydrazine. The VGB-guidelines have been adhered to througout. Since January 1983 cobined cycle operation has been employed, and in this process a pH-value of about 8.5 and an oxygen concentration of about 200 μg/kg in the feedwater have been used. A distinct reduction of tritium concentration in the water-steam cycle was the outstanding new result. (orig.) [de

  11. Magnetic measurements at Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Green, M.I.; Barale, P.; Callapp, L.; Case-Fortier, M.; Lerner, D.; Nelson, D.; Schermer, R.; Skipper, G.; Van Dyke, D.; Cork, C.; Halbach, K.; Hassenzahl, W.; Hoyer, E.; Marks, S.; Harten, T.; Luchini, K.; Milburn, J.; Tanabe, J.; Zucca, F.; Keller, R.; Selph, F.; Gilbert, W.; Green, M.A.; O'Neil, J.; Schafer, R.; Taylor, C.; Greiman, W.; Hall, D.; MacFarlane, J.

    1991-08-01

    Recent magnetic measurement activities at LBL have been concentrated in two separate areas, electro-magnets and permanent magnets for the Advanced Light Source (ALS), and superconducting magnets for the Superconducting Super Collider Laboratory (SSCL). A survey of the many different measurement systems is presented. These include: AC magnetic measurements of an ALS booster dipole engineering model magnet, dipole moment measurements of permanent magnet blocks for ALS wigglers and undulators, permeability measurements of samples destined for wiggler and undulator poles, harmonic error analysis of SSC one meter model dipoles and quadrupoles and five meter long SSC prototype quadrupoles, harmonic error analysis of ALS dipoles, quadrupoles, and sextupoles, precision Hall probe mapping of ALS storage ring combined function magnets, and the design of the ALS insertion device magnets mapping system. We also describe a new UNIX based data acquisition system that is being developed for the SSC. Probes used for magnetic measurements include Helmholtz coils, integral coils, point coils, and bucking harmonic analysis coils, several different types of Hall probes, and nuclear magnetic resonance magnetometers. Both analog and digital integrators are used with the coils. Some problems that occurred and their rectification is described. The mechanisms used include rotating systems with optical encoders, X-Y mapping systems with optical encoders and a laser position measuring device. 10 refs., 3 figs., 1 tab

  12. Proceedings of the 37. Polish Seminar on Nuclear Magnetic Resonance and its Applications

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-11-01

    37. Polish Seminar on Nuclear Magnetic Resonance and Its Applications is Cyclically organised forum for discussing the actual problems, achievements and perspectives of methodology and interpretation of NMR. At presenting edition the problems of NMR imaging in medicine diagnostics, studies of biologically important organic molecules as well as inorganic compounds being interesting for microelectronics and catalysis have been especially emphasized. The progress in computerized simulation for NMR spectra interpretation has been also performed in numerous presentations.

  13. Proceedings of the 37. Polish Seminar on Nuclear Magnetic Resonance and its Applications

    International Nuclear Information System (INIS)

    2004-11-01

    37. Polish Seminar on Nuclear Magnetic Resonance and Its Applications is Cyclically organised forum for discussing the actual problems, achievements and perspectives of methodology and interpretation of NMR. At presenting edition the problems of NMR imaging in medicine diagnostics, studies of biologically important organic molecules as well as inorganic compounds being interesting for microelectronics and catalysis have been especially emphasized. The progress in computerized simulation for NMR spectra interpretation has been also performed in numerous presentations

  14. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Science.gov (United States)

    Windl, Roman; Abert, Claas; Bruckner, Florian; Huber, Christian; Vogler, Christoph; Weitensfelder, Herbert; Suess, Dieter

    2017-11-01

    Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  15. Contactless and absolute linear displacement detection based upon 3D printed magnets combined with passive radio-frequency identification

    Directory of Open Access Journals (Sweden)

    Roman Windl

    2017-11-01

    Full Text Available Within this work a passive and wireless magnetic sensor, to monitor linear displacements, is proposed. We exploit recent advances in 3D printing and fabricate a polymer bonded magnet with a spatially linear magnetic field component corresponding to the length of the magnet. Regulating the magnetic compound fraction during printing allows specific shaping of the magnetic field distribution. A giant magnetoresistance magnetic field sensor is combined with a radio-frequency identification tag in order to passively monitor the exerted magnetic field of the printed magnet. Due to the tailored magnetic field, a displacement of the magnet with respect to the sensor can be detected within the sub-mm regime. The sensor design provides good flexibility by controlling the 3D printing process according to application needs. Absolute displacement detection using low cost components and providing passive operation, long term stability, and longevity renders the proposed sensor system ideal for structural health monitoring applications.

  16. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  17. Nuclear magnetic resonance investigation of the heavy fermion system Ce2CoAl7Ge4

    Science.gov (United States)

    Dioguardi, A. P.; Guzman, P.; Rosa, P. F. S.; Ghimire, N. J.; Eley, S.; Brown, S. E.; Thompson, J. D.; Bauer, E. D.; Ronning, F.

    2017-12-01

    We present nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements performed on single crystalline Ce2CoAl7Ge4 , a member of a recently discovered family of heavy fermion materials Ce2M Al7Ge4 (M =Co , Ir, Ni, or Pd). Previous measurements indicated a strong Kondo interaction as well as magnetic order below TM=1.8 K . Our NMR spectral measurements show that the Knight shift K is proportional to the bulk magnetic susceptibility χ at high temperatures. A clear Knight shift anomaly (K ¬∝χ ) is observed at coherence temperatures T*˜17.5 K for H0∥c ̂ and 10 K for H0∥a ̂ at the 59Co site, and T*˜12.5 K at the 27Al(3) site for H0∥a ̂ characteristic of the heavy fermion nature of this compound. At high temperatures, the 59Co NMR spin-lattice relaxation rate T1-1 is dominated by spin fluctuations of the 4 f local moments with a weak metallic background. The spin fluctuations probed by 59Co NMR are anisotropic and larger in the basal plane than in the c direction. Furthermore, we find (T1T K ) -1∝T-1 /2 at the 59Co site as expected for a Kondo system for T >T* and T >TK . 59Co NQR T1-1 measurements at low temperatures indicate slowing down of spin fluctuations above the magnetic ordering temperature TM˜1.8 K . A weak ferromagnetic character of fluctuations around q =0 is evidenced by an increase of χ T versus T above the magnetic ordering temperature. We also find good agreement between the observed and calculated electric field gradients at all observed sites.

  18. Nuclear magnetic relaxation of methyl group in liquids

    International Nuclear Information System (INIS)

    Blicharska, B.

    1986-01-01

    The theoretical description of the relaxation process of methyl group in liquids and some results of the measurements of relaxation function and relaxation times for cryoprotective solutions are presented. Starting from the application of the operator formalism the general equation for spin operators e.g. components of the nuclear spin and magnetization is founded. Next, the spin Hamiltonian is presented as contraction of the symmetry adapted spherical tensors as well as the correlation functions and spectral densities. On the basis of extended and modified Woessner model of motion the correlation functions and spectral densities are calculated for methyl group in liquids. Using these functions the relaxation matrix elements, the spin-spin and spin-lattice relaxation times can be expressed. The prediction of the theory agrees with author's previous experiments on cryoprotective solutions. The observed dependence on temperature, frequency and isotopic dilution in methanol-water, methanol-dimethyl sulfoxide (DMSO) and DMSO-water solutions is in a satisfactory agreement with theoretical equations. 34 refs. (author)

  19. Nuclear magnetic resonance tomography of the cervical canal

    International Nuclear Information System (INIS)

    Terwey, B.; Koschorek, F.; Jensen, H.P.

    1985-01-01

    170 patients with suspected lesions of the cervical part of the medulla were examined using nuclear magnetic resonance (NMR) tomography. 27 cases revealed no pathological changes in the regions of the cervical medulla, the cervical canal and of the cervical spine. 143 cases produced pathological findings whose diagnoses determined therapeutical approach. Verified pathological changes comprised anomalies of the cranio-cervical junction like basilar impression and Arnold-Chiari malformation, various types of cavity formation in the cervical medulla (syringomyelia, hydromyelia), demyelinization processes, intramedullary and extramedullary tumours, intervertebral disk degeneration processes, dislocation of intervertebral disks and spondylophytes with spinal stenoses. Sagittal sections in different functional positions allowed to demonstrate the biomechanical effects of extramedullary masses on the cervical medulla. However, proven tumours could not be differentiated successfully using histological methods. Nevertheless, NMR tomography will replace invasive methods like conventional cervical myelography and CT myelography in diagnostic clarification of diseases of the cervical medulla. (orig.) [de

  20. Calibration of an analyzing magnet using the 12C(d, p0)13C nuclear reaction with a thick carbon target

    Science.gov (United States)

    Andrade, E.; Canto, C. E.; Rocha, M. F.

    2017-09-01

    The absolute energy of an ion beam produced by an accelerator is usually determined by an electrostatic or magnetic analyzer, which in turn must be calibrated. Various methods for accelerator energy calibration are extensively reported in the literature, like nuclear reaction resonances, neutron threshold, and time of flight, among others. This work reports on a simple method to calibrate the magnet associated to a vertical 5.5 MV Van de Graaff accelerator. The method is based on bombarding with deuteron beams a thick carbon target and measuring with a surface barrier detector the particle energy spectra produced. The analyzer magnetic field is measured for each spectrum and the beam energy is deduced by the best fit of the simulation of the spectrum with the SIMNRA code that includes 12C(d,p0)13C nuclear cross sections.

  1. Boosted Hyperthermia Therapy by Combined AC Magnetic and Photothermal Exposures in Ag/Fe3O4 Nanoflowers.

    Science.gov (United States)

    Das, R; Rinaldi-Montes, N; Alonso, J; Amghouz, Z; Garaio, E; García, J A; Gorria, P; Blanco, J A; Phan, M H; Srikanth, H

    2016-09-28

    Over the past two decades, magnetic hyperthermia and photothermal therapy are becoming very promising supplementary techniques to well-established cancer treatments such as radiotherapy and chemotherapy. These techniques have dramatically improved their ability to perform controlled treatments, relying on the procedure of delivering nanoscale objects into targeted tumor tissues, which can release therapeutic killing doses of heat either upon AC magnetic field exposure or laser irradiation. Although an intense research effort has been made in recent years to study, separately, magnetic hyperthermia using iron oxide nanoparticles and photothermal therapy based on gold or silver plasmonic nanostructures, the full potential of combining both techniques has not yet been systematically explored. Here we present a proof-of-principle experiment showing that designing multifunctional silver/magnetite (Ag/Fe3O4) nanoflowers acting as dual hyperthermia agents is an efficient route for enhancing their heating ability or specific absorption rate (SAR). Interestingly, the SAR of the nanoflowers is increased by at least 1 order of magnitude under the application of both an external magnetic field of 200 Oe and simultaneous laser irradiation. Furthermore, our results show that the synergistic exploitation of the magnetic and photothermal properties of the nanoflowers reduces the magnetic field and laser intensities that would be required in the case that both external stimuli were applied separately. This constitutes a key step toward optimizing the hyperthermia therapy through a combined multifunctional magnetic and photothermal treatment and improving our understanding of the therapeutic process to specific applications that will entail coordinated efforts in physics, engineering, biology, and medicine.

  2. Nuclear spin circular dichroism

    International Nuclear Information System (INIS)

    Vaara, Juha; Rizzo, Antonio; Kauczor, Joanna; Norman, Patrick; Coriani, Sonia

    2014-01-01

    Recent years have witnessed a growing interest in magneto-optic spectroscopy techniques that use nuclear magnetization as the source of the magnetic field. Here we present a formulation of magnetic circular dichroism (CD) due to magnetically polarized nuclei, nuclear spin-induced CD (NSCD), in molecules. The NSCD ellipticity and nuclear spin-induced optical rotation (NSOR) angle correspond to the real and imaginary parts, respectively, of (complex) quadratic response functions involving the dynamic second-order interaction of the electron system with the linearly polarized light beam, as well as the static magnetic hyperfine interaction. Using the complex polarization propagator framework, NSCD and NSOR signals are obtained at frequencies in the vicinity of optical excitations. Hartree-Fock and density-functional theory calculations on relatively small model systems, ethene, benzene, and 1,4-benzoquinone, demonstrate the feasibility of the method for obtaining relatively strong nuclear spin-induced ellipticity and optical rotation signals. Comparison of the proton and carbon-13 signals of ethanol reveals that these resonant phenomena facilitate chemical resolution between non-equivalent nuclei in magneto-optic spectra

  3. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in vito

    Science.gov (United States)

    1994-01-06

    L. Narayanan. and B. M. Jamot. ’Effects of Peulluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus Metabolism in...pathways and examined the impact of perfluorocarboxylic acid exposure. This investigative strategy will delineate the metabolic effices exerted by...Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo Principal Investigator: Nicholas V. Reo

  4. Interaction between adrenaline and dibenzo-18-crown-6: Electrochemical, nuclear magnetic resonance, and theoretical study

    Science.gov (United States)

    Yu, Zhang-Yu; Liu, Tao; Wang, Xue-Liang

    2014-12-01

    The interaction between adrenaline (Ad) and dibenzo-18-crown-6 (DB18C6) was studied by cyclic voltammetry, nuclear magnetic resonance spectroscopy, and the theoretical calculations, respectively. The results show that DB18C6 will affect the electron transfer properties of Ad. DB18C6 can form stable supramolecular complexes with Ad through ion-dipole and hydrogen bond interactions.

  5. Novel scintillators and silicon photomultipliers for nuclear physics and applications

    International Nuclear Information System (INIS)

    Jenkins, David

    2015-01-01

    Until comparatively recently, scintillator detectors were seen as an old-fashioned tool of nuclear physics with more attention being given to areas such as gamma-ray tracking using high-purity germanium detectors. Next-generation scintillator detectors, such as lanthanum bromide, which were developed for the demands of space science and gamma- ray telescopes, are found to have strong applicability to low energy nuclear physics. Their excellent timing resolution makes them very suitable for fast timing measurements and their much improved energy resolution compared to conventional scintillators promises to open up new avenues in nuclear physics research which were presently hard to access. Such 'medium-resolution' spectroscopy has broad interest across several areas of contemporary interest such as the study of nuclear giant resonances. In addition to the connections to space science, it is striking that the demands of contemporary medical imaging have strong overlap with those of experimental nuclear physics. An example is the interest in PET-MRI combined imaging which requires putting scintillator detectors in a high magnetic field environment. This has led to strong advances in the area of silicon photomultipliers, a solid-state replacement for photomultiplier tubes, which are insensitive to magnetic fields. Broad application to nuclear physics of this technology may be foreseen. (paper)

  6. Motor circuit computer model based on studies of functional Nuclear Magnetic Resonance

    International Nuclear Information System (INIS)

    Garcia Ramo, Karla Batista; Rodriguez Rojas, Rafael; Carballo Barreda, Maylen

    2012-01-01

    The basal ganglia are a complex network of subcortical nuclei involved in motor control, sensorimotor integration, and cognitive processes. Their functioning and interaction with other cerebral structures remains as a subject of debate. The aim of the present work was to simulate the basal ganglia-thalamus-cortex circuitry interaction in motor program selection, supported by functional connectivity pattern obtained by functional nuclear magnetic resonance imaging. Determination of connections weights between neural populations by functional magnetic resonance imaging, contributed to a more realistic formulation of the model; and consequently to obtain similar results to clinical and experimental data. The network allowed to describe the participation of the basal ganglia in motor program selection and the changes in Parkinson disease. The simulation allowed to demonstrate that dopamine depletion above to 40 % leads to a loss of action selection capability, and to reflect the system adaptation ability to compensate dysfunction in Parkinson disease, coincident with experimental and clinical studies

  7. Low-temperature nuclear orientation

    International Nuclear Information System (INIS)

    Stone, N.J.; Postma, H.

    1986-01-01

    This book comprehensively surveys the many aspects of the low temperature nuclear orientation method. The angular distribution of radioactive emissions from nuclei oriented by hyperfine interactions in solids, is treated experimentally and theoretically. A general introductory chapter is followed by formal development of the theory of the orientation process and the anisotropic emission of decay products from oriented nuclei, applied to radioactive decay and to reactions. Five chapters on applications to nuclear physics cover experimental studies of alpha, beta and gamma emission, nuclear moment measurement and level structure information. Nuclear orientation studies of parity non-conservation and time reversal asymmetry are fully described. Seven chapters cover aspects of hyperfine interactions, magnetic and electric, in metals, alloys and insulating crystals, including ordered systems. Relaxation phenomena and the combined technique of NMR detection using oriented nuclei are treated at length. Chapters on the major recent development of on-line facilities, giving access to short lived nuclei far from stability, on the use of nuclear orientation for thermometry below 1 Kelvin and on technical aspects of the method complete the main text. Extensive appendices, table of relevant parameters and over 1000 references are included to assist the design of future experiments. (Auth.)

  8. Para-hydrogen raser delivers sub-millihertz resolution in nuclear magnetic resonance

    Science.gov (United States)

    Suefke, Martin; Lehmkuhl, Sören; Liebisch, Alexander; Blümich, Bernhard; Appelt, Stephan

    2017-06-01

    The precision of nuclear magnetic resonance spectroscopy (NMR) is limited by the signal-to-noise ratio, the measurement time Tm and the linewidth Δν = 1/(πT2). Overcoming the T 2 limit is possible if the nuclear spins of a molecule emit continuous radio waves. Lasers and masers are self-organized systems which emit coherent radiation in the optical and micro-wave regime. Both are based on creating a population inversion of specific energy states. Here we show continuous oscillations of proton spins of organic molecules in the radiofrequency regime (raser). We achieve this by coupling a population inversion created through signal amplification by reversible exchange (SABRE) to a high-quality-factor resonator. For the case of 15N labelled molecules, we observe multi-mode raser activity, which reports different spin quantum states. The corresponding 1H-15N J-coupled NMR spectra exhibit unprecedented sub-millihertz resolution and can be explained assuming two-spin ordered quantum states. Our findings demonstrate a substantial improvement in the frequency resolution of NMR.

  9. Multinuclear solid-state nuclear magnetic resonance of inorganic materials

    CERN Document Server

    MacKenzie, Kenneth J D

    2002-01-01

    Techniques of solid state nuclear magnetic resonance (NMR) spectroscopy are constantly being extended to a more diverse range of materials, pressing into service an ever-expanding range of nuclides including some previously considered too intractable to provide usable results. At the same time, new developments in both hardware and software are being introduced and refined. This book covers the most important of these new developments. With sections addressed to non-specialist researchers (providing accessible answers to the most common questions about the theory and practice of NMR asked by novices) as well as a more specialised and up-to-date treatment of the most important areas of inorganic materials research to which NMR has application, this book should be useful to NMR users whatever their level of expertise and whatever inorganic materials they wish to study.

  10. NUCLEAR MAGNETIC RESONANCE THE GELLED PRODUCT OF CANNIZZARO REACTION

    Directory of Open Access Journals (Sweden)

    Lilia Fernández-Sánchez

    2015-03-01

    Full Text Available The paper presents the nuclear magnetic resonance (NMR of proton 1H, carbon 13C and two dimensional spectrums, product of a green organic synthesis of redox on the Cannizzaro reaction. The product was reported as a tribochemical gel (heterogeneous mixture and confirmed by Infrared Spectroscopy IR, X-ray and scanning electron microscope (SEM. The results in this paper confirm its structure through various techniques of NMR and evaluate the content of sodium benzoate and benzyl alcohol in the spectroscopy sample, examining the values of the integrals on 1H NMR signals. The result of analysis indicates that benzyl alcohol (dispersed phase is in 33.44% mol in comparison with sodium benzoate content (continuous phase. These results confirm that the gel structure over time loses the dispersed phase of the benzyl alcohol producing a xerogel.

  11. An interferometric complementarity experiment in a bulk nuclear magnetic resonance ensemble

    International Nuclear Information System (INIS)

    Peng Xinhua; Zhu Xiwen; Fang Ximing; Feng Mang; Liu Maili; Gao Kelin

    2003-01-01

    We have experimentally demonstrated the interferometric complementarity, which relates the distinguishability D quantifying the amount of which-way (WW) information to the fringe visibility V characterizing the wave feature of a quantum entity, in a bulk ensemble by nuclear magnetic resonance (NMR) techniques. We are primarily concerned about the intermediate cases: partial fringe visibility and incomplete WW information. We propose a quantitative measure of D by an alternative geometric strategy and investigate the relation between D and entanglement. By measuring D and V independently, it turns out that the duality relation D 2 + V 2 = 1 holds for pure quantum states of the markers

  12. Time domain-nuclear magnetic resonance study of chars from southern hardwoods

    International Nuclear Information System (INIS)

    Elder, Thomas; Labbe, Nicole; Harper, David; Rials, Timothy

    2006-01-01

    Chars from the thermal degradation of silver maple (Acer saccharinum), red maple (Acer rubrum), sugar maple (Acer saccharum), and white oak (Quercus spp.), performed at temperatures from 250 to 350 o C, were examined using time domain-nuclear magnetic resonance spectroscopy. Prior to analysis, the chars were equilibrated under conditions insuring the presence of bound water only and both bound water and free water. Transverse relaxation times were found to be related to the moisture content of the chars, which varied with temperature. At elevated temperatures the number of signals assigned to free water decreased, indicative of an increase in pore size within the chars

  13. Alteration of the magnitude of the proton magnetic moment in nuclear magnetons in connection with the changes in the atomic mass values

    Energy Technology Data Exchange (ETDEWEB)

    Mamyrin, B.A.; Aruev, N.N.; Alekseenko, S.A.

    1983-06-01

    In connection with the revision of the table values of the atomic masses and the forthcoming coordination of the values of the fundamental physical constants, the result of measurement of the proton magnetic moment in nuclear Magnetons obtained in 1971 is re-examined by taking into account recent data. With the atomic masses recognized in 1982 the proton magnetic moment expressed in nuclear magnetons without a correction for diamagnetic screening of the proton in a water molecule is found to be ..mu..sub(p)'/..mu..sub(n)=2.7927729+-0.0000012 (4.3x10/sup -5/%).

  14. Analyses of magnetic structures and nuclear-density distribution by the structure-refinement and three-dimensional visualization systems RIETAN-FP-VENUS

    International Nuclear Information System (INIS)

    Izumi, Fujio; Momma, Koichi

    2010-01-01

    We have been developing a multi-purpose pattern-fitting system RIETAN-FP and a three-dimensional visualization system VENUS, which have been extensively used for structure refinements of various metal and inorganic materials from neutron powder diffraction data. At first, their outlines and the history of their developments are shortly looked back. The second part describes procedures for analyzing collinear magnetic structures with the combination of VESTA in the VENUS system and RIETAN-FP by taking BiCoO 3 for instance. Finally, a new C++ program, Dysnomia, for the maximum entropy method is introduced with emphasis on its new features. Dysnomia excels its predecessor, PRIMA, in computation speed, memory efficiency, scalability, and reliability. In particular, addition of a normal-distribution constraint is effective in obtaining nuclear-density distribution that is physically and chemically reasonable. (author)

  15. Evaluation of poly(vinylpyrrolidone) and collagen by Low Field Nuclear Magnetic Resonance Spectroscopy; Avaliacao da polivinilpirrolidona e do colageno por ressonancia magnetica nuclear de baixo campo

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Paula de M.; Tavares, Maria I.B. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano]. E-mail: pmcosta@ima.ufrj.br

    2005-07-01

    Blends of natural and synthetic polymers represent a new class of materials with better mechanical properties and biocompatibility than those of the single components. Collagen and poly(vinylpyrrolidone) are well known for their important biological properties. The blending of collagen with poly(vinylpyrrolidone) makes it possible to obtain new materials in which strong interactions between the synthetic and biological components occur. Do to the excellent biocompatibility of these polymers, this blend has been much studied intending biomedical applications. And a one technique that can provide important information on molecular mobility, compatibility and even evaluate the interactions that can occur with these polymers is the Low Field Nuclear Magnetic Resonance Spectroscopy. Thus, the purpose of this work is to evaluate collagen and poly(vinylpyrrolidone) by Low Field Nuclear Magnetic Resonance Spectroscopy. From the values of relaxation times obtained, we can conclude that these materials have different interactions, and different mobility domains, confirming the heterogeneity and complexity of these materials. (author)

  16. Novel maglev pump with a combined magnetic bearing.

    Science.gov (United States)

    Onuma, Hiroyuki; Murakami, Michiko; Masuzawa, Toru

    2005-01-01

    The newly developed pump is a magnetically levitated centrifugal blood pump in which active and passive magnetic bearings are integrated to construct a durable ventricular assist device. The developed maglev centrifugal pump consists of an active magnetic bearing, a passive magnetic bearing, a levitated impeller, and a motor stator. The impeller is set between the active magnetic bearing and the motor stator. The active magnetic bearing uses four electromagnets to control the tilt and the axial position of the impeller. The radial movement of the levitated impeller is restricted with the passive stability dependent upon the top stator and the passive permanent magnetic bearing to reduce the energy consumption and the control system complexity. The top stator was designed based upon a magnetic field analysis to develop the maglev pump with sufficient passive stability in the radial direction. By implementing this analysis design, the oscillating amplitude of the impeller in the radial direction was cut in half when compared with the simple shape stator. This study concluded that the newly developed maglev centrifugal pump displayed excellent levitation performance and sufficient pump performance as a ventricular assist device.

  17. Continuous monitoring of the zinc-phosphate acid-base cement setting reaction by proton nuclear magnetic relaxation

    International Nuclear Information System (INIS)

    Apih, T.; Lebar, A.; Pawlig, O.; Trettin, R.

    2001-01-01

    Proton nuclear magnetic relaxation is a well-established technique for continuous and non destructive monitoring of hydration of conventional Portland building cements. Here, we demonstrate the feasibility of nuclear magnetic resonance (NMR) monitoring of the setting reaction of zinc-phosphate acid-base dental cements, which harden in minutes as compared to days, as in the case of Portland cements. We compare the setting of cement powder (mainly, zinc oxide) prepared with clinically used aluminum-modified orthophosphoric acid solution with the setting of a model system where cement powder is mixed with pure orthophosphoric acid solution. In contrast to previously published NMR studies of setting Portland cements, where a decrease of spin-lattice relaxation time is attributed to enhanced relaxation at the growing internal surface, spin-lattice relaxation time T 1 increases during the set of clinically used zinc-phosphate cement. Comparison of these results with a detailed study of diffusion, viscosity, and magnetic-field dispersion of T 1 in pure and aluminum-modified orthophosphoric acid demonstrates that the increase of T 1 in the setting cement is connected with the increase of molecular mobility in the residual phosphoric acid solution. Although not taken into account so far, such effects may also significantly influence the relaxation times in setting Portland cements, particularly when admixtures with an effect on water viscosity are used. [copyright] 2001 American Institute of Physics

  18. Combined analysis of fourteen nuclear genes refines the Ursidae phylogeny.

    Science.gov (United States)

    Pagès, Marie; Calvignac, Sébastien; Klein, Catherine; Paris, Mathilde; Hughes, Sandrine; Hänni, Catherine

    2008-04-01

    Despite numerous studies, questions remain about the evolutionary history of Ursidae and additional independent genetic markers were needed to elucidate these ambiguities. For this purpose, we sequenced ten nuclear genes for all the eight extant bear species. By combining these new sequences with those of four other recently published nuclear markers, we provide new insights into the phylogenetic relationships of the Ursidae family members. The hypothesis that the giant panda was the first species to diverge among ursids is definitively confirmed and the precise branching order within the Ursus genus is clarified for the first time. Moreover, our analyses indicate that the American and the Asiatic black bears do not cluster as sister taxa, as had been previously hypothesised. Sun and sloth bears clearly appear as the most basal ursine species but uncertainties about their exact relationships remain. Since our larger dataset did not enable us to clarify this last question, identifying rare genomic changes in bear genomes could be a promising solution for further studies.

  19. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review

    International Nuclear Information System (INIS)

    Chalbot, Marie-Cecile G.; Kavouras, Ilias G.

    2014-01-01

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole. - Highlights: • Organic aerosol composition by 1 H- and 13 C-NMR spectroscopy. • NMR fingerprints of specific sources, types and sizes of organic aerosol. • Source reconciliation and apportionment using NMR spectroscopy. • Research priorities towards understanding organic aerosol composition and origin. - This review presents the recent advances on the characterization of organic aerosol composition using nuclear magnetic resonance spectroscopy

  20. Comparing flowmeter, aquifer test, and surface nuclear magnetic resonance data in Central Nebraska

    Science.gov (United States)

    Irons, T.; Abraham, J. D.; Cannia, J. C.; Steele, G.; Hobza, C. M.; Li, Y.; McKenna, J. R.

    2011-12-01

    Traditionally the only means of estimating the hydraulic properties of aquifers has involved drilling boreholes. The logistical and economic requirements of aquifer tests has limited the ability of hydrologists to construct the detailed groundwater models needed for resource management. As such, water policy decisions are often based on sparse aquifer tests combined with geologic interpretation and extrapolation. When dealing with complicated groundwater systems these extrapolations are often not accurate at the scale required to characterize the groundwater system, and additional information is needed to make better informed resource decisions. Surface nuclear magnetic resonance (SNMR) is a geophysical technique which allows for non-invasive estimates of hydraulic permeability and transmissivity. Protons in a volume of liquid water form a weak bulk magnetic moment as they align and precess about the earth's magnetic field. This moment is too small to be measured directly but may be observed by tipping it away from equilibrium using radio-frequency pulses oscillating at the same frequency as its precession (the Larmor frequency). After a short tipping pulse, the moment continues to precess around the static field, although at a tipped angle, slowly returning to its equilibrium state. The decay of these spinning magnetic moments can be observed inductively using loops of wire on the surface of the earth. In the simplest experiment a time series is recorded after a single tipping pulse. By varying the strength of the tipping pulse, different regions of the subsurface can be probed. The amplitude of the signal is directly proportional to the amount of water in the investigated volume. The decay rate of the signal is related to pore geometry and interconnectivity and can be used to estimate hydraulic conductivity. However, this relationship cannot be universally defined as it is affected by additional factors including the mineralogy of the host rock and homogeneity of

  1. 13C nuclear magnetic resonance study of the complexation of calcium by taurine

    International Nuclear Information System (INIS)

    Irving, C.S.; Hammer, B.E.; Danyluk, S.S.; Klein, P.D.

    1980-01-01

    13 C Nuclear magnetic resonance chemical shifts, 1 J/sub c-c/ scalar coupling constants, spin-lattice relaxation times, and nuclear Overhauser effects were determined for taurine-[1, 2 13 C] and a taurine-[1 13 C] and taurine-[2 13 C] mixture in the presence and absence of calcium. Comparison of taurine titration shifts to values for related compounds reveals some unusual electronic properties of the taurine molecule. Stability constants of 1:1 calcium complexes with taurine zwitterions and anions, as well as their 13 C chemical shifts, were obtained by least squares analysis of titration curves measured in the presence of calcium. The stability constants of calcium-taurine complexes were significantly lower than previous values and led to estimates that only approximately one percent of intracellular calcium of mammalian myocardial cells would exist in a taurine complex

  2. Nuclear magnetic resonance experiments with dc SQUID amplifiers

    International Nuclear Information System (INIS)

    Heaney, M.B.

    1990-11-01

    The development and fabrication of dc SQUIDs (Superconducting QUantum Interference Devices) with Nb/Al 2 O 3 /Nb Josephson junctions is described. A theory of the dc SQUID as a radio-frequency amplifier is presented, with an optimization strategy that accounts for the loading and noise contributions of the postamplifier and maximizes the signal-to-noise ratio of the total system. The high sensitivity of the dc SQUID is extended to high field NMR. A dc SQUID is used as a tuned radio-frequency amplifier to detect pulsed nuclear magnetic resonance at 32 MHz from a metal film in a 3.5 Tesla static field. A total system noise temperature of 11 K has been achieved, at a bath temperature of 4.2 K. The minimum number of nuclear Bohr magnetons observable from a free precession signal after a single pulse is about 2 x 10 17 in a bandwidth of 25 kHz. In a separate experiment, a dc SQUID is used as a rf amplifier in a NQR experiment to observe a new resonance response mechanism. The net electric polarization of a NaClO 3 crystal due to the precessing electric quadrupole moments of the Cl nuclei is detected at 30 MHz. The sensitivity of NMR and NQR spectrometers using dc SQUID amplifiers is compared to the sensitivity of spectrometers using conventional rf amplifiers. A SQUID-based spectrometer has a voltage sensitivity which is comparable to the best achieved by a FET-based spectrometer, at these temperatures and operating frequencies

  3. Molecular Dynamics of Water in Wood Studied by Fast Field Cycling Nuclear Magnetic Resonance Relaxometry

    Directory of Open Access Journals (Sweden)

    Xinyu Li

    2016-01-01

    Full Text Available Water plays a very important role in wood and wood products. The molecular motion of water in wood is susceptible to thermal activation. Thermal energy makes water molecules more active and weakens the force between water and wood; therefore, the water molecules dynamic properties are greatly influenced. Molecular dynamics study is important for wood drying; this paper therefore focuses on water molecular dynamics in wood through fast field cycling nuclear magnetic resonance relaxometry techniques. The results show that the spin-lattice relaxation rate decreases with the Larmor frequency. Nuclear magnetic resonance dispersion profiles at different temperatures could separate the relaxation contribution of water in bigger pores and smaller pores. The T1 distribution from wide to narrow at 10 MHz Larmor frequency reflects the shrinkage of pore size with the higher temperature. The dependence of spin-lattice relaxation rate on correlation time for water molecular motion based on BPP (proposed by Bloembergen, Purcell, and Pound theory shows that water correlation time increases with higher temperature, and its activation energy, calculated using the Arrhenius transformation equation, is 9.06±0.53 kJ/mol.

  4. Parametric Investigation and Thermoeconomic Optimization of a Combined Cycle for Recovering the Waste Heat from Nuclear Closed Brayton Cycle

    Directory of Open Access Journals (Sweden)

    Lihuang Luo

    2016-01-01

    Full Text Available A combined cycle that combines AWM cycle with a nuclear closed Brayton cycle is proposed to recover the waste heat rejected from the precooler of a nuclear closed Brayton cycle in this paper. The detailed thermodynamic and economic analyses are carried out for the combined cycle. The effects of several important parameters, such as the absorber pressure, the turbine inlet pressure, the turbine inlet temperature, the ammonia mass fraction, and the ambient temperature, are investigated. The combined cycle performance is also optimized based on a multiobjective function. Compared with the closed Brayton cycle, the optimized power output and overall efficiency of the combined cycle are higher by 2.41% and 2.43%, respectively. The optimized LEC of the combined cycle is 0.73% lower than that of the closed Brayton cycle.

  5. Shimming a superconducting nuclear-magnetic-resonance imaging magnet with steel

    International Nuclear Information System (INIS)

    Hoult, D.I.; Lee, D.

    1985-01-01

    Using a recently published paper as a basis, the magnetic field produced by steel bars inserted in a superconducting NMR imaging magnet is analyzed in a spherically harmonic basis set. A description is then given of how such bars were used to improve the homogeneity of the field within the magnet's imaging volume from 1.2 parts per thousand to about 10 ppm. The poor homogeneity was caused by the magnet's being placed in a steel-laden environment, a situation normally shunned by investigators, and it is the author's contention that the results obtained abrogate the main objection to NMR equipment's being installed in an ordinary hospital building. To facilitate the latter, the equations developed may also be used to estimate, prior to installation, the effects of the proposed environment on field homogeneity

  6. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    Science.gov (United States)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the

  7. Materials presented at the 26. All-Polish Seminar on the Nuclear Magnetic Resonance and its application

    International Nuclear Information System (INIS)

    Hennel, J.W.

    1994-01-01

    In this report the contributions to the 26. All-Polish seminar on the Nuclear Magnetic Resonance and its Application are presented. They cover wide range of problems as NMR instrumentation, the NMR and spin relaxation theory, image analysis and computerized control systems for NMR spectrometers. The results of investigation using NMR on different scientific fields are also presented

  8. Materials presented at the 27 All-Polish Seminar on the Nuclear Magnetic Resonance and its application

    International Nuclear Information System (INIS)

    Hennel, J.W.

    1995-01-01

    In this report the contributions to the 27 All-Polish seminar on the Nuclear Magnetic Resonance and its Application are presented. They cover wide range of problems as NMR instrumentation, the NMR and spin relaxation theory, image analysis and computerized control systems for NMR spectrometers. The results of investigation using NMR on different scientific fields are also presented

  9. Two-stage nuclear refrigeration with enhanced nuclear moments

    International Nuclear Information System (INIS)

    Hunik, R.

    1979-01-01

    Experiments are described in which an enhanced nuclear system is used as a precoolant for a nuclear demagnetisation stage. The results show the promising advantages of such a system in those circumstances for which a large cooling power is required at extremely low temperatures. A theoretical review of nuclear enhancement at the microscopic level and its macroscopic thermodynamical consequences is given. The experimental equipment for the implementation of the nuclear enhanced refrigeration method is described and the experiments on two-stage nuclear demagnetisation are discussed. With the nuclear enhanced system PrCu 6 the author could precool a nuclear stage of indium in a magnetic field of 6 T down to temperatures below 10 mK; this resulted in temperature below 1 mK after demagnetisation of the indium. It is demonstrated that the interaction energy between the nuclear moments in an enhanced nuclear system can exceed the nuclear dipolar interaction. Several experiments are described on pulsed nuclear magnetic resonance, as utilised for thermometry purposes. It is shown that platinum NMR-thermometry gives very satisfactory results around 1 mK. The results of experiments on nuclear orientation of radioactive nuclei, e.g. the brute force polarisation of 95 NbPt and 60 CoCu, are presented, some of which are of major importance for the thermometry in the milli-Kelvin region. (Auth.)

  10. Advances in magnetic resonance 11

    CERN Document Server

    Waugh, John S

    2013-01-01

    Advances in Magnetic Resonance, Volume 11, presents a variety of contributions to the theory and practice of magnetic resonance. The book contains three chapters and begins with a discussion of the principles and applications of dynamic nuclear polarization, with emphasis on molecular motions and collisions, intermolecular couplings, and chemical interactions. Subsequent chapters focus on the assessment of a proposed broadband decoupling method and studies of time-domain (or Fourier transform) multiple-quantum nuclear magnetic resonance.

  11. Reversal of multidrug resistance in xenograft nude-mice by magnetic Fe(3)O(4) nanoparticles combined with daunorubicin and 5-bromotetrandrine.

    Science.gov (United States)

    Wu, Ya-Nan; Chen, Bao-An; Cheng, Jian; Gao, Feng; Xu, Wen-Lin; Ding, Jia-Hua; Gao, Chong; Sun, Xin-Chen; Li, Guo-Hong; Chen, Wen-Ji; Liu, Li-Jie; Li, Xiao-Mao; Wang, Xue-Mei

    2009-02-01

    This study was aimed to investigate the reversal effect of 5-bromotetrandrine (5-BrTet) and magnetic nanoparticle of Fe(3)O(4) (Fe(3)O(4)-MNPs) combined with DNR in vivo. The xenograft leukemia model with stable multiple drug resistance in nude mice was established. The two sub-clones of K562 and K562/A02 cells were respectively inoculated subcutaneously into back of athymic nude mice (1 x 10(7) cells/each) to establish the leukemia xenograft models. Drug resistant and the sensitive tumor-bearing nude mice were both assigned randomly into 5 groups: group A was treated with NS; group B was treated with DNR; group C was treated with nanoparticle of Fe(3)O(4) combined with DNR; group D was treated with 5-BrTet combined with DNR; group E was treated with 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR. The incidence of tumor formation, growth characteristics, weight and volume of tumor were observed. The histopathologic examination of tumors and organs were carried out. The protein levels of BCL-2, BAX, and Caspase-3 in resistant tumors were detected by Western blot. The results indicated that 5-BrTet and magnetic nanoparticle of Fe(3)O(4) combined with DNR significantly suppressed growth of K562/A02 cell xenograft tumor, histopathologic examination of tumors showed the tumors necrosis obviously. Application of 5-BrTet and magnetic nanoparticle of Fe(3)O(4) inhibited the expression of BCL-2 protein and up-regulated the expression of BAX, and Caspase-3 protein in K562/A02 cell xenograft tumor. It is concluded that 5-bromotetrandrine and magnetic nanoparticle of Fe(3)O(4) combined with DNR have significant tumor-suppressing effect on MDR leukemia cell xenograft model.

  12. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation

    International Nuclear Information System (INIS)

    Kutzelnigg, Werner; Liu Wenjian

    2009-01-01

    The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.

  13. Nuclear magnetic moment of 69As from on-line β-NMR on oriented nuclei

    International Nuclear Information System (INIS)

    Golovko, V.V.; Kraev, I.S.; Phalet, T.; Severijns, N.; Delaure, B.; Beck, M.; Kozlov, V.Yu.; Lindroth, A.; Coeck, S.; Zakoucky, D.; Venos, D.; Srnka, D.; Honusek, M.; Herzog, P.; Tramm, C.; Koester, U.

    2005-01-01

    A precise value for the magnetic moment of the 69 As 5/2 - ground state has been obtained from nuclear magnetic resonance on oriented nuclei (NMR/ON) using the NICOLE 3 He- 4 He dilution refrigerator setup at ISOLDE/CERN. The NMR/ON signal was observed by monitoring the anisotropy of the 69 As β particles. The center frequency ν[B ext =0.0994(10)T]=169.98(9) MHz corresponds to μ[ 69 As]=+1.6229(16)μ N . This result differs considerably from the πf 5/2 single-particle value obtained with g factors for a free proton but is in reasonable agreement with the value obtained with effective g factors and with values from a core polarization calculation and from calculations in the framework of the interacting boson-fermion model. Assuming a single exponential spin-lattice relaxation behavior a relaxation time T 1 ' =10(25) s was observed for 69 AsFe -bar at a temperature of about 20 mK in a magnetic field B=0.1 T

  14. Multi-dimensional Inversion Modeling of Surface Nuclear Magnetic Resonance (SNMR Data for Groundwater Exploration

    Directory of Open Access Journals (Sweden)

    Warsa

    2014-07-01

    Full Text Available Groundwater is an important economic source of water supply for drinking water and irrigation water for agriculture. Surface nuclear magnetic resonance (SNMR sounding is a relatively new geophysical method that can be used to determine the presence of culturally and economically important substances, such as subsurface water or hydrocarbon distribution. SNMR sounding allows the determination of water content and pore size distribution directly from the surface. The SNMR method is performed by stimulating an alternating current pulse through an antenna at the surface in order to confirm the existence of water in the subsurface. This paper reports the development of a 3-D forward modeling code for SNMR amplitudes and decay times, after which an improved 2-D and 3-D inversion algorithm is investigated, consisting of schemes for regularizing model parameterization. After briefly reviewing inversion schemes generally used in geophysics, the special properties of SNMR or magnetic resonance sounding (MRS inversion are evaluated. We present an extension of MRS to magnetic resonance tomography (MRT, i.e. an extension for 2-D and 3-D investigation, and the appropriate inversions.

  15. Cardiovascular nuclear medicine and MRI

    International Nuclear Information System (INIS)

    Reiber, J.H.C.; Wall, E.E. van der

    1992-01-01

    This book is based on a meeting of the Working Group on Nuclear Cardiology, which held March 22-23,1991 under the auspices of the European Society of Cardiology and the Interuniversity Cardiology Institute of the Netherlands, and on the Second International Symposium on Computer Applications in Nuclear Medicine and Cardiac Magnetic Resonance Imaging, which was held March 20-22,1991 in Rotterdam, the Netherlands. It covers almost every aspect of quantitative cardio-vascular nuclear medicine and magnetic resonance imaging. The main topics are: single photon emission computed tomography (technical aspects); new development in cardiovascular nuclear medicine; advances in cardiovascular imaging; cardiovascular clinical applications; and cardiac magnetic resonance imaging. (A.S.). refs.; figs.; tabs

  16. Effects of the application of different window functions and projection methods on processing of 1H J-resolved nuclear magnetic resonance spectra for metabolomics

    International Nuclear Information System (INIS)

    Tiziani, Stefano; Lodi, Alessia; Ludwig, Christian; Parsons, Helen M.; Viant, Mark R.

    2008-01-01

    Two dimensional (2D) homonuclear 1 H J-resolved (JRES) nuclear magnetic resonance spectroscopy is increasingly used in metabolomics. This approach visualises metabolite chemical shifts and scalar couplings along different spectral dimensions, thereby increasing peak dispersion and facilitating spectral assignments and accurate quantification. Here, we optimise the processing of 2D JRES spectra by evaluating different window functions, a traditional sine-bell (SINE) and a combined sine-bell-exponential (SEM) function. Furthermore, we evaluate different projection methods for generating 1D projected spectra (pJRES). Spectra were recorded from three disparate types of biological samples and evaluated in terms of sensitivity, reproducibility and resolution. Overall, the SEM window function yielded considerably higher sensitivity and comparable spectral reproducibility and resolution compared to SINE, for both 1D pJRES and 2D JRES datasets. Furthermore, for pJRES spectra, the highest spectral quality was obtained using SEM combined with skyline projection. These improvements lend further support to utilising 2D J-resolved spectroscopy in metabolomics

  17. Cellular applications of 31P and 13C nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Shulman, R.G.; Brown, T.R.; Ugurbil, K.; Ogawa, S.; Cohen, S.M.; den Hollander, J.A.

    1979-01-01

    High-resolution nuclear magnetic resonance (NMR) studies of cells and purified mitochondria are discussed to show the kind of information that can be obtained in vivo. In suspensions of Escherichia coli both phosphorus-31 and carbon-13 NMR studies of glycolysis of bioenergetics are presented. In rat liver cells the pathways of gluconeogenesis from carbon-13-labeled glycerol are followed by carbon-13 NMR. In the intact liver cells cytosolic and mitochondrial pH's were separately measured by phosphorus-31 NMR. In purified mitochondria the internal and external concentrations of inorganic phosphate, adenosine diphosphate, and adenosine triphosphate were determined by phosphorus-31 while the pH difference across the membrane was measured simultaneously

  18. Analytical calculation of geometric and chromatic aberrations in a bi-potential electrostatic and bell-shaped magnetic combined lens

    International Nuclear Information System (INIS)

    Ximen Jiye; Liu Zhixiong

    2000-01-01

    In the present paper, Gaussian optical property in the bi-potential electrostatic and the bell-shaped magnetic combined lens - a new theoretical model first proposed in electron optics - has been thoroughly studied. Meanwhile, based on electron optical canonical aberration theory, analytical formulas of third-order geometrical and first-order chromatic aberration coefficients and their computational results have first been derived for this bi-potential electrostatic and bell-shaped magnetic combined lens. It is to emphasized that this theoretical study can be used to estimate third-order geometric and first-order chromatic aberrations and to provide a theoretical criterion for numerical computation in a rotationally symmetric electromagnetic lens

  19. Hyperfine interactions measured by nuclear orientation technique

    International Nuclear Information System (INIS)

    Brenier, R.

    1982-01-01

    This report concerns the use of hyperfine interaction to magnetism measurements and to the determination of the nuclear structure of Terbium isotopes by the low temperature nuclear orientation technique. In the first part we show that the rhodium atom does not support any localized moment in the chromium matrix. The hyperfine magnetic field at the rhodium nuclear site follows the Overhauser distribution, and the external applied magnetic field supports a negative Knight shift of 16%. In the second part we consider the structure of neutron deficient Terbium isotopes. We introduce a coherent way of evaluation and elaborate a new nuclear thermometer. The magnetic moments allows to strike on the studied states configuration. The analysis of our results shows a decrease of the nuclear deformation for the lighter isotopes [fr

  20. Determining phenols in coal conversion products by nuclear magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Kanitskaya, L.V.; Kushnarev, D.F.; Polonov, V.M.; Kalabin, G.A.

    1985-03-01

    Possibility of using nuclear magnetic resonance spectra of the hydrogen 1 (/sup 1/H) isotope for a qualitative and quantitative evaluation of the hydroxyl groups in the products of coal processing is investigated. The basis of the method is the fact that in NMR spectra of the /sup 1/H in organic compounds with acid protons, the latter are unprotected when strong bases are used as solvents because of intermolecular hydrogen bonds. The resin from the medium-temperature semicoking of Cheremkhovskii coals, its hydrogenate, and phenol fraction of the hydrogenate were used for the investigation. The results were compared with the results of other NMR spectroscopy methods. The high solubility of hexamethanol and the fact that the products can be analyzed in the natural state, are some advantages of the method. 18 references.

  1. Estimation of isotropic nuclear magnetic shieldings in the CCSD(T) and MP2 complete basis set limit using affordable correlation calculations

    DEFF Research Database (Denmark)

    Kupka, Teobald; Stachów, Michal; Kaminsky, Jakub

    2013-01-01

    , estimated from calculations with the family of polarizationconsistent pcS-n basis sets is reported. This dependence was also supported by inspection of profiles of deviation between CBS estimated nuclear shieldings and obtained with significantly smaller basis sets pcS-2 and aug-cc-pVTZ-J for the selected......A linear correlation between isotropic nuclear magnetic shielding constants for seven model molecules (CH2O, H2O, HF, F2, HCN, SiH4 and H2S) calculated with 37 methods (34 density functionals, RHF, MP2 and CCSD(T) ), with affordable pcS-2 basis set and corresponding complete basis set results...... set of 37 calculation methods. It was possible to formulate a practical approach of estimating the values of isotropic nuclear magnetic shielding constants at the CCSD(T)/CBS and MP2/CBS levels from affordable CCSD(T)/pcS-2, MP2/pcS-2 and DFT/CBS calculations with pcS-n basis sets. The proposed method...

  2. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    Science.gov (United States)

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  3. Magnetic spectrometer Grand Raiden

    International Nuclear Information System (INIS)

    Fujiwara, M.; Akimune, H.; Daito, I.; Fujimura, H.; Fujita, Y.; Hatanaka, K.; Ikegami, H.; Katayama, I.; Nagayama, K.; Matsuoka, N.; Morinobu, S.; Noro, T.; Yoshimura, M.; Sakaguchi, H.; Sakemi, Y.; Tamii, A.; Yosoi, M.

    1999-01-01

    A high-resolution magnetic spectrometer called 'Grand Raiden' is operated at the RCNP ring cyclotron facility in Osaka for nuclear physics studies at intermediate energies. This magnetic spectrometer has excellent ion-optical properties. In the design of the spectrometer, the second-order dispersion matching condition has been taken into account, and almost all the aberration terms such as (x vertical bar θ 3 ), (x vertical bar θφ 2 ), (x vertical bar θ 2 δ) and (x vertical bar θδ 2 ) in a third-order matrix calculation are optimized. A large magnetic rigidity of the spectrometer (K = 1400 MeV) gives a great advantage to measure the charge-exchange ( 3 He, t) reactions at 450 MeV. The ability of the high-resolution measurement has been demonstrated. Various coincidence measurements are performed to study the nuclear structures of highly excited states through decay properties of nuclear levels following nuclear reactions at intermediate energies

  4. The Effect of Combined Magnetic Geometries on Thermally Driven Winds. I. Interaction of Dipolar and Quadrupolar Fields

    Energy Technology Data Exchange (ETDEWEB)

    Finley, Adam J.; Matt, Sean P., E-mail: af472@exeter.ac.uk [University of Exeter (UK), Department of Physics and Astronomy, Stoker Road, Devon, Exeter, EX4 4QL (United Kingdom)

    2017-08-10

    Cool stars with outer convective envelopes are observed to have magnetic fields with a variety of geometries, which on large scales are dominated by a combination of the lowest-order fields such as the dipole, quadrupole, and octupole modes. Magnetized stellar wind outflows are primarily responsible for the loss of angular momentum from these objects during the main sequence. Previous works have shown the reduced effectiveness of the stellar wind braking mechanism with increasingly complex but singular magnetic field geometries. In this paper, we quantify the impact of mixed dipolar and quadrupolar fields on the spin-down torque using 50 MHD simulations with mixed fields, along with 10 each of the pure geometries. The simulated winds include a wide range of magnetic field strength and reside in the slow-rotator regime. We find that the stellar wind braking torque from our combined geometry cases is well described by a broken power-law behavior, where the torque scaling with field strength can be predicted by the dipole component alone or the quadrupolar scaling utilizing the total field strength. The simulation results can be scaled and apply to all main-sequence cool stars. For solar parameters, the lowest-order component of the field (dipole in this paper) is the most significant in determining the angular momentum loss.

  5. Low-temperature nuclear magnetic resonance investigation of systems frustrated by competing exchange interactions

    Science.gov (United States)

    Roy, Beas

    This doctoral thesis emphasizes on the study of frustrated systems which form a very interesting class of compounds in physics. The technique used for the investigation of the magnetic properties of the frustrated materials is Nuclear Magnetic Resonance (NMR). NMR is a very novel tool for the microscopic study of the spin systems. NMR enables us to investigate the local magnetic properties of any system exclusively. The NMR experiments on the different systems yield us knowledge of the static as well as the dynamic behavior of the electronic spins. Frustrated systems bear great possibilities of revelation of new physics through the new ground states they exhibit. The vandates AA'VO(PO4)2 [AA' ≡ Zn2 and BaCd] are great prototypes of the J1-J2 model which consists of magnetic ions sitting on the corners of a square lattice. Frustration is caused by the competing nearest-neighbor (NN) and next-nearest neighbor (NNN) exchange interactions. The NMR investigation concludes a columnar antiferromagnetic (AFM) state for both the compounds from the sharp peak of the nuclear spin-lattice relaxation rate (1/T1) and a sudden broadening of the 31P-NMR spectrum. The important conclusion from our study is the establishment of the first H-P-T phase diagram of BaCdVO(PO4)2. Application of high pressure reduces the saturation field (HS) in BaCdVO(PO4)2 and decreases the ratio J2/J1, pushing the system more towards a questionable boundary (a disordered ground state) between the columnar AFM and a ferromagnetic ground state. A pressure up to 2.4 GPa will completely suppress HS. The Fe ions in the `122' iron-arsenide superconductors also sit on a square lattice thus closely resembling the J1-J2 model. The 75As-NMR and Nuclear Quadrupole Resonance (NQR) experiments are conducted in the compound CaFe2As2 prepared by two different heat treatment methods (`as-grown' and `annealed'). Interestingly the two samples show two different ground states. While the ground state of the `as

  6. Reconfigurable Magnetic Logic Combined with Nonvolatile Memory Writing

    KAUST Repository

    Luo, Zhaochu

    2016-11-16

    In the magnetic logic, four basic Boolean logic operations can be programmed by a magnetic bit at room temperature with a high output ratio (>103%). In the same clock cycle, benefiting from the built-in spin Hall effect, logic results can be directly written into magnetic bits using an all-electric method.

  7. Reconfigurable Magnetic Logic Combined with Nonvolatile Memory Writing

    KAUST Repository

    Luo, Zhaochu; Lu, Ziyao; Xiong, Chengyue; Zhu, Tao; Wu, Wei; Zhang, Qiang; Wu, Huaqiang; Zhang, Xixiang; Zhang, Xiaozhong

    2016-01-01

    In the magnetic logic, four basic Boolean logic operations can be programmed by a magnetic bit at room temperature with a high output ratio (>103%). In the same clock cycle, benefiting from the built-in spin Hall effect, logic results can be directly written into magnetic bits using an all-electric method.

  8. Superconducting magnets for accelerators

    International Nuclear Information System (INIS)

    Denisov, Yu.N.

    1979-01-01

    Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru

  9. Hepatic Metabolism of Perfluorinated Carboxylic Acids and Polychlorotrifluoroethylene: A Nuclear Magnetic Resonance Investigation in Vivo

    Science.gov (United States)

    1994-01-05

    Goecke, L. Narayanan, and B. M. Jarnot. "Effects of Perfluoro-n- octanoic Acid , Perfluoro-n-decanoic Acid , and Clofibrate on Hepatic Phosphorus L...Carboxylic Acids and 4Polychiorotrifluoroethylene: A Nuclear Magnetic Resonance G-AFOSR-90-0148 Investigation in Vivo ,IIC 6. AUTHOR(S a Nicholas V. Reo...Maxim um 200 words) This report outlines our research progress regarding toxicological investigations of perifluoro- n-octanoic acid (PFOA) and

  10. Educational simulator app and web page for exploring Nuclear and Compass Magnetic Resonance

    DEFF Research Database (Denmark)

    Hanson, Lars G.

    experimentation that improves understanding of basic MR phenomena. The simulator is used to introduce and explore electromagnetism, magnetic dipoles, static and radiofrequency fields, Compass MR, the free induction decay (FID), relaxation, the Fourier transform (FFT), the resonance condition, spin, precession......, the Larmor equation, Nuclear MR, resonant excitation (linear and quadrature), and off-resonance effects. Methods and implementation: The simulator is a complete HTML5/JavaScript[1,2] rewrite of the JavaCompass[3] so it now executes in modern browsers with no additional software needed. Spin dynamics...

  11. Development of Nuclear Magnetic Resonance Imaging/spectroscopy for improved petroleum recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Barrufet, M.A.; Flumerfelt, F.W.; Walsh, M.P.; Watson, A.T.

    1994-04-01

    The overall objectives of this program are to develop and apply Nuclear Magnetic Resonance Imaging (NMRI) and CT X-Ray Scanning methods for determining rock, fluid, and petrophysical properties and for fundamental studies of multiphase flow behavior in porous media. Specific objectives are divided into four subtasks: (1) development of NMRI and CT scanning for the determination of rock-fluid and petrophysical properties; (2) development of NMRI and CT scanning for characterizing conventional multiphase displacement processes; (3) development of NMR and CT scanning for characterizing dispersed phase processes; and (4) miscible displacement studies.

  12. Static magnetic Faraday rotation spectroscopy combined with a differential scheme for OH detection

    Science.gov (United States)

    Zhao, Weixiong; Deng, Lunhua; Qian, Xiaodong; Fang, Bo; Gai, Yanbo; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    The hydroxyl (OH) radical plays a critical role in atmospheric chemistry due to its high reactivity with volatile organic compounds (VOCs) and other trace gaseous species. Because of its very short life time and very low concentration in the atmosphere, interference-free high sensitivity in-situ OH monitoring by laser spectroscopy represents a real challenge. Faraday rotation spectroscopy (FRS) relies on the particular magneto-optic effect observed for paramagnetic species, which makes it capable of enhancing the detection sensitivity and mitigation of spectral interferences from diamagnetic species in the atmosphere. When an AC magnetic field is used, the Zeeman splitting of the molecular absorption line (and thus the magnetic circular birefringence) is modulated. This provides an 'internal modulation' of the sample, which permits to suppress the external noise like interference fringes. An alternative FRS detection scheme is to use a static magnetic field (DC-field) associated with laser wavelength modulation to effectively modulate the Zeeman splitting of the absorption lines. In the DC field case, wavelength modulation of the laser frequency can provide excellent performance compared to most of the sensing systems based on direct absorption and wavelength modulation spectroscopy. The dimension of the DC solenoid is not limited by the resonant frequency of the RLC circuit, which makes large dimension solenoid coil achievable and the absorption base length could be further increased. By employing a combination of the environmental photochemical reactor or smog chamber with multipass absorption cell, one can lower the minimum detection limit for high accuracy atmospheric chemistry studies. In this paper, we report on the development of a DC field based FRS in conjunction with a balanced detection scheme for OH radical detection at 2.8 μm and the construction of OH chemistry research platform which combined a large dimension superconducting magnetic coil with the

  13. Nuclear Magnetic Resonance-Based Metabolomics Approach to Evaluate the Prevention Effect of Camellia nitidissima Chi on Colitis-Associated Carcinogenesis

    Directory of Open Access Journals (Sweden)

    Ming-Hui Li

    2017-07-01

    Full Text Available Colorectal cancer (CRC is one of the most common malignant tumors worldwide, occurring in the colon or rectum portion of large intestine. With marked antioxidant, anti-inflammation and anti-tumor activities, Camellia nitidissima Chi has been used as an effective treatment of cancer. The azoxymethane/dextran sodium sulfate (AOM/DSS induced CRC mice model was established and the prevention effect of C. nitidissima Chi extracts on the evolving of CRC was evaluated by examination of neoplastic lesions, histopathological inspection, serum biochemistry analysis, combined with nuclear magnetic resonance (NMR-based metabolomics and correlation network analysis. C. nitidissima Chi extracts could significantly inhibit AOM/DSS induced CRC, relieve the colonic pathology of inflammation and ameliorate the serum biochemistry, and could significantly reverse the disturbed metabolic profiling toward the normal state. Moreover, the butanol fraction showed a better efficacy than the water-soluble fraction of C. nitidissima Chi. Further development of C. nitidissima Chi extracts as a potent CRC inhibitor was warranted.

  14. Early postoperative magnet application combined with hydrocolloid dressing for the treatment of earlobe keloids.

    Science.gov (United States)

    Park, Tae Hwan; Chang, Choong Hyun

    2013-04-01

    To prevent the recurrence of earlobe keloids after surgical removal, a reliable and safe postoperative treatment method is critical. To the authors' knowledge, no studies have elucidated the most effective postoperative dressing method for preventing the recurrence of earlobe keloids. This study aimed to compare keloid recurrence rates in patients whose keloids were dressed using conventional methods (plain gauze or a polyvinyl alcohol sponge) with those of a matched cohort of patients whose keloids were dressed using magnets combined with hydrocolloid materials. This observational case-control study compared a retrospective cohort of patients whose keloids were dressed using conventional methods with a matched prospective cohort of patients whose keloids were dressed using magnets combined with hydrocolloid materials. The study included patients with pathologically confirmed earlobe keloids that were surgically excised with primary closure. Patients 8 years of age or older underwent adjuvant pressure therapy with magnets at the study hospital. Patients were excluded from the study if they were unavailable for follow-up evaluation, if they had received additional adjuvant therapy during treatment, or if histologic confirmation of a keloid was not obtained. Matched-pair analysis was performed using the McNemar test. Treatment outcome was evaluated as recurrence or nonrecurrence. Overall, 9 (11.2%) of the 80 study patients experienced recurrence. The recurrence rate was significantly lower in the matched case group (2 of 40, 5%) than in the matched control group (7 of 40, 17.5%) during the follow-up period of 18 months (p=0.0253). The authors' novel dressing of magnets and hydrocolloid materials appears to be effective in reducing earlobe keloid recurrence. This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to

  15. Magnetic fusion technology

    CERN Document Server

    Dolan, Thomas J

    2014-01-01

    Magnetic Fusion Technology describes the technologies that are required for successful development of nuclear fusion power plants using strong magnetic fields. These technologies include: ? magnet systems, ? plasma heating systems, ? control systems, ? energy conversion systems, ? advanced materials development, ? vacuum systems, ? cryogenic systems, ? plasma diagnostics, ? safety systems, and ? power plant design studies. Magnetic Fusion Technology will be useful to students and to specialists working in energy research.

  16. N-acetylated metabolites in urine: proton nuclear magnetic resonance spectroscopic study on patients with inborn errors of metabolism.

    NARCIS (Netherlands)

    Engelke, U.F.H.; Liebrand-van Sambeek, M.L.F.; Jong, J.G.N. de; Leroy, J.G.; Morava, E.; Smeitink, J.A.M.; Wevers, R.A.

    2004-01-01

    BACKGROUND: There is no comprehensive analytical technique to analyze N-acetylated metabolites in urine. Many of these compounds are involved in inborn errors of metabolism. In the present study, we examined the potential of proton nuclear magnetic resonance ((1)H-NMR) spectroscopy as a tool to

  17. Magnetic shielding for MRI superconducting magnets

    International Nuclear Information System (INIS)

    Ishiyama, A.; Hirooka, H.

    1991-01-01

    This paper describes an optimal design of a highly homogeneous superconducting coil system with magnetic shielding for Magnetic Resonance Imaging (MRI). The presented optimal design method; which is originally proposed in our earlier papers, is a combination of the hybrid finite element and boundary element method for analysis of an axially symmetric nonlinear open boundary magnetic field problem, and the mathematical programming method for solving the corresponding optimization problem. In this paper, the multi-objective goal programming method and the nonlinear least squares method have been adopted. The optimal design results of 1.5- and 4.7-Tesla-magnet systems with different types of magnetic shielding for whole-body imaging are compared and the advantages of a combination of active and yoke shields are shown

  18. Neutron-diffraction studies of the nuclear magnetic phase diagram of copper

    DEFF Research Database (Denmark)

    Annila, A.J.; Clausen, Kurt Nørgaard; Oja, A.S.

    1992-01-01

    We have studied the spontaneous antiferromagnetic (AF) order in the nuclear spin system of copper by use of neutron-diffraction experiments at nanokelvin temperatures. Copper is an ideal model system as a nearest-neighbor-dominated spin-3/2 fcc antiferromagnet. The phase diagram has been investig......We have studied the spontaneous antiferromagnetic (AF) order in the nuclear spin system of copper by use of neutron-diffraction experiments at nanokelvin temperatures. Copper is an ideal model system as a nearest-neighbor-dominated spin-3/2 fcc antiferromagnet. The phase diagram has been...... investigated by measuring the magnetic-field dependence of the (100) reflection, characteristic of a type-I AF structure, and of a Bragg peak at (0 2/3 2/3). The results suggest the presence of high-field (100) phases at 0.12 less-than-or-equal-to B less-than-or-equal-to B(c) almost-equal-to 0.26 mT, for B...... compared with results of earlier susceptibility measurements in order to identify the translational periods of the three previously found antiferromagnetic phases for B parallel-to [100]. Recent theoretical work has yielded results in agreement with our experimental data....

  19. Nuclear magnetic resonance with dc SQUID [Super-conducting QUantum Interference Device] preamplifiers

    International Nuclear Information System (INIS)

    Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.

    1988-08-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by 35 Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10 16 nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35 Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119 Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10 18 nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195 Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs

  20. Combined therapeutic potential of nuclear receptors with receptor tyrosine kinase inhibitors in lung cancer

    International Nuclear Information System (INIS)

    Wairagu, Peninah M.; Park, Kwang Hwa; Kim, Jihye; Choi, Jong-Whan; Kim, Hyun-Won; Yeh, Byung-Il; Jung, Soon-Hee; Yong, Suk-Joong; Jeong, Yangsik

    2014-01-01

    Highlights: • The 48 NR genes and 48 biological anti-cancer targets are profiled in paired-cells. • Growth inhibition by NR ligands or TKIs is target receptor level-dependent. • T0901317 with gefitinib/PHA665752 shows additive growth inhibition in lung cells. - Abstract: Cancer heterogeneity is a big hurdle in achieving complete cancer treatment, which has led to the emergence of combinational therapy. In this study, we investigated the potential use of nuclear receptor (NR) ligands for combinational therapy with other anti-cancer drugs. We first profiled all 48 NRs and 48 biological anti-cancer targets in four pairs of lung cell lines, where each pair was obtained from the same patient. Two sets of cell lines were normal and the corresponding tumor cell lines while the other two sets consisted of primary versus metastatic tumor cell lines. Analysis of the expression profile revealed 11 NRs and 15 cancer targets from the two pairs of normal versus tumor cell lines, and 9 NRs and 9 cancer targets from the primary versus metastatic tumor cell lines had distinct expression patterns in each category. Finally, the evaluation of nuclear receptor ligand T0901317 for liver X receptor (LXR) demonstrated its combined therapeutic potential with tyrosine kinase inhibitors. The combined treatment of cMET inhibitor PHA665752 or EGFR inhibitor gefitinib with T0901317 showed additive growth inhibition in both H2073 and H1993 cells. Mechanistically, the combined treatment suppressed cell cycle progression by inhibiting cyclinD1 and cyclinB expression. Taken together, this study provides insight into the potential use of NR ligands in combined therapeutics with other biological anti-cancer drugs