WorldWideScience

Sample records for combined brain magnetic

  1. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography

    Directory of Open Access Journals (Sweden)

    Faranak Farzan

    2016-09-01

    Full Text Available The concurrent combination of transcranial magnetic stimulation (TMS with electroencephalography (TMS-EEG is a powerful technology for characterizing and modulating brain networks across developmental, behavioral and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.

  2. Characterizing and Modulating Brain Circuitry through Transcranial Magnetic Stimulation Combined with Electroencephalography.

    Science.gov (United States)

    Farzan, Faranak; Vernet, Marine; Shafi, Mouhsin M D; Rotenberg, Alexander; Daskalakis, Zafiris J; Pascual-Leone, Alvaro

    2016-01-01

    The concurrent combination of transcranial magnetic stimulation (TMS) with electroencephalography (TMS-EEG) is a powerful technology for characterizing and modulating brain networks across developmental, behavioral, and disease states. Given the global initiatives in mapping the human brain, recognition of the utility of this technique is growing across neuroscience disciplines. Importantly, TMS-EEG offers translational biomarkers that can be applied in health and disease, across the lifespan, and in humans and animals, bridging the gap between animal models and human studies. However, to utilize the full potential of TMS-EEG methodology, standardization of TMS-EEG study protocols is needed. In this article, we review the principles of TMS-EEG methodology, factors impacting TMS-EEG outcome measures, and the techniques for preventing and correcting artifacts in TMS-EEG data. To promote the standardization of this technique, we provide comprehensive guides for designing TMS-EEG studies and conducting TMS-EEG experiments. We conclude by reviewing the application of TMS-EEG in basic, cognitive and clinical neurosciences, and evaluate the potential of this emerging technology in brain research.

  3. The combination of neuronavigation with transcranial magnetic stimulation for treatment of opercular gliomas of the dominant brain hemisphere.

    Science.gov (United States)

    Shamov, T; Spiriev, T; Tzvetanov, P; Petkov, A

    2010-10-01

    The objective of this study is to investigate the application of transcranial magnetic stimulation combined with neuronavigation for preoperative mapping of the language area in neurosurgical interventions on the opercular area of the dominant hemisphere. Five patients were operated upon gliomas in the opercular area. For localization of the speech area a transcranial magnetic stimulator MEDTRONIC-MagPro was used. BrainLAB-VectorVision Neuronavigation system was utilized for precise planning of the operative approach. Gross total resection was achieved in all patients. Three-month postoperative follow-up was done. Three of the patients had a transient postoperative motor aphasia which resolved within 1 month. This method is useful for preoperative localization of the speech area, as well as preoperative planning of the operative approach and intra-operative planning of the direction of brain retraction and operative corridor. (c) 2010 Elsevier B.V. All rights reserved.

  4. Efficacy and safety of combining clozapine with electrical or magnetic brain stimulation in treatment-refractory schizophrenia.

    Science.gov (United States)

    Arumugham, Shyam Sundar; Thirthalli, Jagadisha; Andrade, Chittaranjan

    2016-09-01

    A substantial proportion (40-70%) of patients with treatment-resistant schizophrenia experience persistent symptoms despite an adequate clozapine trial. Brain stimulation techniques (BST) such as electroconvulsive therapy (ECT), repetitive transcranial magnetic stimulation (rTMS), and transcranial direct current stimulation (tDCS) have shown promise in medication-refractory schizophrenia. However, their co-administration with clozapine raises some safety concerns. We conducted a systematic literature search through Pubmed and cross-references for relevant publications evaluating the safety and efficacy of combining BST with clozapine. Expert commentary: Evidence from a randomized controlled trial and open-label trials suggest that ECT is an effective intervention in clozapine-refractory schizophrenia. There is limited evidence that the combination is safe. However, until sufficient data accumulate, it would be prudent to be vigilant against adverse effects related to lowered seizure threshold, cognitive impairment, and cardiovascular events. Both high frequency rTMS over the dorsolateral prefrontal cortex and low frequency rTMS over the temporoparietal cortex have been safely administered in patients receiving clozapine. However, rTMS efficacy in clozapine-refractory patients remains uncertain. The evidence for tDCS-clozapine combination is in the form of case reports and needs to be evaluated in controlled trials. Newer methods of brain stimulation and refinement of existing BSTs hold promise for the future.

  5. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Directory of Open Access Journals (Sweden)

    Saurav Z. K. Sajib

    2016-06-01

    Full Text Available Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  6. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In; Kim, Hyung Joong, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr; Woo, Eung Je, E-mail: bmekim@khu.ac.kr, E-mail: ejwoo@khu.ac.kr [Department of Biomedical Engineering, Kyung Hee University, Seoul 02447 (Korea, Republic of); Kyung, Eun Jung [Department of Pharmacology, Chung-Ang University, Seoul 06974 (Korea, Republic of); Kim, Hyun Bum [Department of East-West Medical Science, Kyung Hee University, Yongin 17104 (Korea, Republic of); Kwon, Oh In [Department of Mathematics, Konkuk University, Seoul 05029 (Korea, Republic of)

    2016-06-15

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At low frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.

  7. Magnetic Resonance Imaging (MRI): Brain (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español Magnetic Resonance Imaging (MRI): Brain KidsHealth / For Parents / Magnetic Resonance Imaging (MRI): Brain What's in this article? What It ...

  8. Magnetic resonance spectroscopy of the human brain

    Science.gov (United States)

    Strózik-Kotlorz, D.

    2014-01-01

    I give a brief description of the magnetic resonance spectroscopy (MRS) in the human brain examinations. MRS allows a noninvasive chemical analysis of the brain using a standard high field MR system. Nowadays, the dominant form of MR brain spectroscopy is proton spectroscopy. Two main techniques of MRS, which utilize the chemical shift of metabolites in the external magnetic field, are SVS (single voxel) and CSI (single slice). The major peaks in the spectrum of a normal brain include NAA, Cr, Cho and m-Ins, which are neuronal, energetic, membrane turnover and glial markers, respectively. In disease, two pathological metabolites can be found in the brain spectra: Lac, which is end product of anaerobic glycolysis and Lip, which is a marker of membrane breakdown, occurring in necrosis. The common way to analyze clinical spectra is to determine metabolite ratios, e.g. NAA/Cr, Cho/Cr, Cho/NAA. This analysis permits a safe and noninvasive examination of the brain tissue as each disease state has its own characteristic spectroscopic image. MRS is a valuable diagnostic tool in such clinical applications as detecting brain tumors and differentiating tumors from inflammatory and infectious processes. Proton MRS is also very helpful in diagnostic of ischemic lesions, Alzheimer's disease and hepatic encephalopathy. The MRS brain spectra should always be correlated with the Magnetic Resonance Imaging (MRI) results and alone cannot make neurological diagnosis.

  9. Bioavailability of magnetic nanoparticles to the brain

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.-R. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, P.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Graduate Institute of Biomedical Sciences, Chang-Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Taoyuan 333, Taiwan (China); Huang, C.-Y. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Jung, S.-M. [Department of Pathology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Ma, Y.-H. [Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China); Wu, Tony [Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University, College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China); Chen, J.-P. [Department of Chemical and Material Engineering, College of Medicine, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan 333, Taiwan (China)], E-mail: jpchen@mail.cgu.edu.tw; Wei, K.-C. [Department of Neurosurgery, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, 5 Fushing Street, Kweishan, Taoyuan 333, Taiwan (China)], E-mail: kuochenwei@adm.cgmh.org.tw

    2009-05-15

    This study investigates the bioavailability of carboxymethyl dextran-coated magnetic nanoparticles (CMD-MNP) to the brain. The cytotoxicity of CMD-MNP was assessed by co-culture with C6, a rat glioma cell line. To investigate the effects of an external magnetic field on the biodistribution of nanoparticles in a rat model, a magnet of 0.3 Tesla was applied externally over the cranium and the particles injected via the external jugular vein. Nanoparticles were also injected into rats implanted with C6 tumor cells. Staining of histological samples with Prussian blue to detect iron particles revealed that the external magnetic field enhanced the aggregation of nanoparticles in the rat brain; this enhancement was even more pronounced in the tumor region.

  10. Structural Magnetic Resonance Imaging of the Adolescent Brain

    National Research Council Canada - National Science Library

    GIEDD, JAY N

    2004-01-01

    A bstract : Magnetic resonance imaging (MRI) provides accurate anatomical brain images without the use of ionizing radiation, allowing longitudinal studies of brain morphometry during adolescent development...

  11. Functional Brain Activity Changes after 4 Weeks Supplementation with a Multi-Vitamin/Mineral Combination: A Randomized, Double-Blind, Placebo-Controlled Trial Exploring Functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during Working Memory.

    Science.gov (United States)

    White, David J; Cox, Katherine H M; Hughes, Matthew E; Pipingas, Andrew; Peters, Riccarda; Scholey, Andrew B

    2016-01-01

    This study explored the neurocognitive effects of 4 weeks daily supplementation with a multi-vitamin and -mineral combination (MVM) in healthy adults (aged 18-40 years). Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n = 32, 16 females) and Steady-State Visual Evoked Potential recordings (SSVEP; n = 39, 20 females) during working memory and continuous performance tasks at baseline and following 4 weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following 4 weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n = 16) demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP) within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with 4 weeks of daily treatment with a multi-vitamin and -mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.

  12. Functional brain activity changes after four weeks supplementation with a multi-vitamin/mineral combination: A randomized, double-blind, placebo-controlled trial exploring functional Magnetic Resonance Imaging and Steady-State Visual Evoked Potentials during working memory

    Directory of Open Access Journals (Sweden)

    David J White

    2016-12-01

    Full Text Available This study explored the neurocognitive effects of four weeks daily supplementation with a multivitamin and mineral combination (MVM in healthy adults (aged 18-40 years. Using a randomized, double-blind, placebo-controlled design, participants underwent assessments of brain activity using functional Magnetic Resonance Imaging (fMRI; n=32, 16 females and Steady-State Visual Evoked Potential recordings (SSVEP; n=39, 20 females during working memory and continuous performance tasks at baseline and following four weeks of active MVM treatment or placebo. There were several treatment-related effects suggestive of changes in functional brain activity associated with MVM administration. SSVEP data showed latency reductions across centro-parietal regions during the encoding period of a spatial working memory task following four weeks of active MVM treatment. Complementary results were observed with the fMRI data, in which a subset of those completing fMRI assessment after SSVEP assessment (n=16 demonstrated increased BOLD response during completion of the Rapid Visual Information Processing task (RVIP within regions of interest including bilateral parietal lobes. No treatment-related changes in fMRI data were observed in those who had not first undergone SSVEP assessment, suggesting these results may be most evident under conditions of fatigue. Performance on the working memory and continuous performance tasks did not significantly differ between treatment groups at follow-up. In addition, within the fatigued fMRI sample, increased RVIP BOLD response was correlated with the change in number of target detections as part of the RVIP task. This study provides preliminary evidence of changes in functional brain activity during working memory associated with four weeks of daily treatment with a multivitamin and mineral combination in healthy adults, using two distinct but complementary measures of functional brain activity.

  13. Magnetic resonance imaging of the fetal brain.

    Science.gov (United States)

    Tee, L Mf; Kan, E Yl; Cheung, J Cy; Leung, W C

    2016-06-01

    This review covers the recent literature on fetal brain magnetic resonance imaging, with emphasis on techniques, advances, common indications, and safety. We conducted a search of MEDLINE for articles published after 2010. The search terms used were "(fetal OR foetal OR fetus OR foetus) AND (MR OR MRI OR [magnetic resonance]) AND (brain OR cerebral)". Consensus statements from major authorities were also included. As a result, 44 relevant articles were included and formed the basis of this review. One major challenge is fetal motion that is largely overcome by ultra-fast sequences. Currently, single-shot fast spin-echo T2-weighted imaging remains the mainstay for motion resistance and anatomical delineation. Recently, a snap-shot inversion recovery sequence has enabled robust T1-weighted images to be obtained, which is previously a challenge for standard gradient-echo acquisitions. Fetal diffusion-weighted imaging, diffusion tensor imaging, and magnetic resonance spectroscopy are also being developed. With multiplanar capabilities, superior contrast resolution and field of view, magnetic resonance imaging does not have the limitations of sonography, and can provide additional important information. Common indications include ventriculomegaly, callosum and posterior fossa abnormalities, and twin complications. There are safety concerns about magnetic resonance-induced heating and acoustic damage but current literature showed no conclusive evidence of deleterious fetal effects. The American College of Radiology guideline states that pregnant patients can be accepted to undergo magnetic resonance imaging at any stage of pregnancy if risk-benefit ratio to patients warrants that the study be performed. Magnetic resonance imaging of the fetal brain is a safe and powerful adjunct to sonography in prenatal diagnosis. It can provide additional information that aids clinical management, prognostication, and counselling.

  14. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach.

    Science.gov (United States)

    Sollmann, Nico; Wildschuetz, Noémie; Kelm, Anna; Conway, Neal; Moser, Tobias; Bulubas, Lucia; Kirschke, Jan S; Meyer, Bernhard; Krieg, Sandro M

    2017-03-31

    OBJECTIVE Navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging fiber tracking (DTI FT) based on nTMS data are increasingly used for preoperative planning and resection guidance in patients suffering from motor-eloquent brain tumors. The present study explores whether nTMS-based DTI FT can also be used for individual preoperative risk assessment regarding surgery-related motor impairment. METHODS Data derived from preoperative nTMS motor mapping and subsequent nTMS-based tractography in 86 patients were analyzed. All patients suffered from high-grade glioma (HGG), low-grade glioma (LGG), or intracranial metastasis (MET). In this context, nTMS-based DTI FT of the corticospinal tract (CST) was performed at a range of fractional anisotropy (FA) levels based on an individualized FA threshold ([FAT]; tracking with 50%, 75%, and 100% FAT), which was defined as the highest FA value allowing for visualization of fibers (100% FAT). Minimum lesion-to-CST distances were measured, and fiber numbers of the reconstructed CST were assessed. These data were then correlated with the preoperative, postoperative, and follow-up status of motor function and the resting motor threshold (rMT). RESULTS At certain FA levels, a statistically significant difference in lesion-to-CST distances was observed between patients with HGG who had no impairment and those who developed surgery-related transient or permanent motor deficits (75% FAT: p = 0.0149; 100% FAT: p = 0.0233). In this context, no patient with a lesion-to-CST distance ≥ 12 mm suffered from any new surgery-related permanent paresis (50% FAT and 75% FAT). Furthermore, comparatively strong negative correlations were observed between the rMT and lesion-to-CST distances of patients with surgery-related transient paresis (Spearman correlation coefficient [rs]; 50% FAT: rs = -0.8660; 75% FAT: rs = -0.8660) or surgery-related permanent paresis (50% FAT: rs = -0.7656; 75% FAT: rs = -0.6763). CONCLUSIONS This is

  15. Retentive force and magnetic flux leakage of magnetic attachment in various keeper and magnetic assembly combinations.

    Science.gov (United States)

    Hasegawa, Mikage; Umekawa, Yoshitada; Nagai, Eiich; Ishigami, Tomohiko

    2011-04-01

    Magnetic attachments are commonly used for overdentures. However, it can be difficult to identify and provide the same type and size of magnetic assembly and keeper if a repair becomes necessary. Therefore, the size and type may not match. This study evaluated the retentive force and magnetic flux strength and leakage of magnetic attachments in different combinations of keepers and magnetic assemblies. For 6 magnet-keeper combinations using 4 sizes of magnets (GIGAUSS D400, D600, D800, and D1000) (n=5), retentive force was measured 5 times at a crosshead speed of 5 mm/min in a universal testing machine. Magnetic flux strength was measured using a Hall Effect Gaussmeter. Data were statistically analyzed using a 1-way ANOVA, and between-group differences were analyzed with Tukey's HSD post hoc test (α=.05). The mean retentive force of the same-size magnet-keeper combinations was 3.2 N for GIGAUSS D400 and 5.1 N for GIGAUSS D600, but was significantly reduced when using larger magnets (PMagnetic flux leakage was significantly lower for corresponding size combinations. Size differences influence the retentive force and magnetic flux strength of magnetic attachments. Retentive force decreased due to the closed field structure becoming incomplete and due to magnetic field leakage. Copyright © 2011 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  16. Magnetic resonance imaging in diffuse brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Hiroyuki; Yasuda, Kazuhiro; Mashiko, Kunihiro; Henmi, Hiroshi; Otsuka, Toshibumi; Kobayashi, Shiro; Nakazawa, Shozo (Nippon Medical School, Tokyo (Japan))

    1992-01-01

    Forty cases diagnosed as diffuse brain injury (DBI) were studied by magnetic resonance imaging (MRI) performed within 3 days after injury. These cases were divided into two groups, which were the concussion group and diffuse axonal injury (DAI) group established by Gennarelli. There were no findings on computerized tomography (CT) in the concussion group except for two cases which had a brain edema or subarachnoid hemorrhage. But on MRI, high intensity areas on T2 weighted imaging were demonstrated in the cerebral white matter in this group. Many lesions in this group were thought to be edemas of the cerebral white matter, because of the fact that on serial MRI, they were isointense. In mild types of DAI, the lesions on MRI were located only in the cerebral white matter, whereas, in the severe types of DAI, lesions were located in the basal ganglia, the corpus callosum, the dorsal part of the brain stem as well as in the cerebral white matter. As for CT findings, parenchymal lesions were not visualized especially in mild DAI. Our results suggested that the lesions in cerebral concussion were edemas in cerebral white matter. In mild DAI they were non-hemorrhagic contusion; and in severe DAI they were hemorrhagic contusions in the cerebral white matter, the basal ganglia, the corpus callosum or the dorsal part of the brain stem. (author).

  17. Brain MRI tumor image fusion combined with Shearlet and wavelet

    Science.gov (United States)

    Zhang, Changjiang; Fang, Mingchao

    2017-11-01

    In order to extract the effective information in different modalities of the tumor region in brain Magnetic resonance imaging (MRI) images, we propose a brain MRI tumor image fusion method combined with Shearlet and wavelet transform. First, the source images are transformed into Shearlet domain and wavelet domain. Second, the low frequency component of Shearlet domain is fused by Laplace pyramid decomposition. Then the low-frequency fusion image is obtained through inverse Shearlet transform. Third, the high frequency subimages in wavelet domain are fused. Then the high-frequency fusion image is obtained through inverse wavelet transform. Finally, the low-frequency fusion image and high-frequency fusion image are summated to get the final fusion image. Through experiments conducted on 10 brain MRI tumor images, the result shown that the proposed fusion algorithm has the best fusion effect in the evaluation indexes of spatial frequency, edge strength and average gradient. The main spatial frequency of 10 images is 29.22, and the mean edge strength and average gradient is 103.77 and 10.42. Compared with different fusion methods, we find that the proposed method effectively fuses the information of multimodal brain MRI tumor images and improves the clarity of the tumor area well.

  18. Mapping fetal brain development in utero using magnetic resonance imaging: the Big Bang of brain mapping.

    Science.gov (United States)

    Studholme, Colin

    2011-08-15

    The development of tools to construct and investigate probabilistic maps of the adult human brain from magnetic resonance imaging (MRI) has led to advances in both basic neuroscience and clinical diagnosis. These tools are increasingly being applied to brain development in adolescence and childhood, and even to neonatal and premature neonatal imaging. Even earlier in development, parallel advances in clinical fetal MRI have led to its growing use as a tool in challenging medical conditions. This has motivated new engineering developments encompassing optimal fast MRI scans and techniques derived from computer vision, the combination of which allows full 3D imaging of the moving fetal brain in utero without sedation. These promise to provide a new and unprecedented window into early human brain growth. This article reviews the developments that have led us to this point, examines the current state of the art in the fields of fast fetal imaging and motion correction, and describes the tools to analyze dynamically changing fetal brain structure. New methods to deal with developmental tissue segmentation and the construction of spatiotemporal atlases are examined, together with techniques to map fetal brain growth patterns.

  19. Electricity and Magnetism: Insights into the brain from multimodal imaging.

    Science.gov (United States)

    Cohen, M S

    2009-11-01

    The windows into brain function given us by the instruments of neuroimaging each are murky and their view is limited. Simultaneous collection of data from multiple modalities offers the potential to overcome the weaknesses of any tool alone. We argue that the combination of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) offers observations - and hypothesis testing - not possible using either single instrument. Because of their safety profiles and their non-invasive natures, EEG fMRI are among the best available devices for the study of human brain. These methods are complementary. EEG is fast, operating in a time domain comparable to single unit activity, but its localizing power is poor and the field of view is limited. While fMRI has the highest spatial resolution of any noninvasive imaging method and can reveal multiple centers of brain activity implicated in cognitive tasks, it is very slow compared to mental activity and is a poor choice for studying rapidly evolving processes. Here, we address theoretical models of the coupling between EEG and fMRI signals based on cellular physiology and energetics and argue that both tools observe principally synaptic activity. We discuss the technical problems of mutual interference then present several models of brain rhythms for which the joint EEG and fMRI observations provide significant evidence.

  20. Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging

    Science.gov (United States)

    2016-03-01

    Diagnosing Autism Spectrum Disorder through Brain Functional Magnetic Resonance Imaging THESIS MARCH 2016 Kyle A. Palko, Second Lieutenant, USAF AFIT...declared a work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM...PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AFIT-ENC-MS-16-M-123 DIAGNOSING AUTISM SPECTRUM DISORDER THROUGH BRAIN FUNCTIONAL MAGNETIC RESONANCE IMAGING Kyle

  1. Brain Biochemistry and Personality: A Magnetic Resonance Spectroscopy Study

    OpenAIRE

    Ryman, Sephira G.; Gasparovic, Chuck; Bedrick, Edward J.; Flores, Ranee A.; Marshall, Alison N.; Jung, Rex E.

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domai...

  2. Developments in deep brain stimulation using time dependent magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Crowther, L.J.; Nlebedim, I.C.; Jiles, D.C.

    2012-03-07

    The effect of head model complexity upon the strength of field in different brain regions for transcranial magnetic stimulation (TMS) has been investigated. Experimental measurements were used to verify the validity of magnetic field calculations and induced electric field calculations for three 3D human head models of varying complexity. Results show the inability for simplified head models to accurately determine the site of high fields that lead to neuronal stimulation and highlight the necessity for realistic head modeling for TMS applications.

  3. Magnetic Deposits of Iron Oxides in the Human Brain

    Directory of Open Access Journals (Sweden)

    Makohusová Miroslava

    2014-06-01

    Full Text Available Deposits of iron oxides in the human brain (globus pallidus are visible under electron microscopy as object of regular and or/irregular shape but giving sharp diffraction patterns in the transmission mode. The SQUID magnetometry reveals that the magnetization curves decline form an ideal Langevin function due to the dominating diamagnetism of organic tissue. The fitting procedure yields the quantitative characteristics of the overall magnetization curves that were further processed by statistical multivariate methods

  4. Modelling Brain Tissue using Magnetic Resonance Imaging

    DEFF Research Database (Denmark)

    Dyrby, Tim Bjørn

    2008-01-01

    Diffusion MRI, or diffusion weighted imaging (DWI), is a technique that measures the restricted diffusion of water molecules within brain tissue. Different reconstruction methods quantify water-diffusion anisotropy in the intra- and extra-cellular spaces of the neural environment. Fibre tracking...

  5. Brain magnetic resonance imaging of infants exposed prenatally to buprenorphine

    Energy Technology Data Exchange (ETDEWEB)

    Kahila, H.; Kivitie-Kallio, S.; Halmesmaki, E.; Valanne, L.; Autti, T. [Dept. of Obstetrics and Gynecology, Dept. of Pediatrics, and Helsinki Medical Imaging Center, Helsinki Univ. Central Hospital (Finland)

    2007-02-15

    Purpose: To evaluate the brains of newborns exposed to buprenorphine prenatally. Material and Methods: Seven neonates followed up antenatally in connection with their mothers' buprenorphine replacement therapy underwent 1.5T magnetic resonance imaging (MRI) of the brain before the age of 2 months. The infants were born to heavy drug abusers. Four mothers were hepatitis C positive, and all were HIV negative. All mothers smoked tobacco and used benzodiazepines. All pregnancies were full term, and no perinatal asphyxia occurred. All but one neonate had abstinence syndrome and needed morphine replacement therapy. Results: Neither structural abnormalities nor abnormalities in signal intensity were recorded. Conclusion: Buprenorphine replacement therapy does not seem to cause any major structural abnormalities of the brain, and it may prevent known hypoxic-ischemic brain changes resulting from uncontrolled drug abuse. Longitudinal studies are needed to assess possible abnormalities in the brain maturation process.

  6. Issues and Problems in Brain Magnetic Resonance Imaging: An Overview

    Directory of Open Access Journals (Sweden)

    Novanto Yudistira

    2008-04-01

    Full Text Available There are many issues and problems in the brain magnetic resonance imaging (MRI area that haven’t solved or reached satisfying result yet. This paper presents an overview of the various issues and problems of the segmentation, correction, optimization, description and their application in MRI. The overview is started by describing the segmentation properties that are the most important and challenging in MRI brain manipulation. Then correction for reconstructing the brain MRI cortex, classification is utilized to classify the segmented brain image, and also review the uses of description is the great prospecting issue while some neurologist need the information resulted from brain imaging process including their potential problems from application applied by each technique. In each case, it is provided some general background information.

  7. Magnetic Resonance, Functional (fMRI) -- Brain

    Science.gov (United States)

    ... parts of the body and determine the presence of certain diseases. The images can then be examined on a computer monitor, transmitted electronically, printed or copied to a CD or uploaded to a digital cloud server. Functional magnetic resonance imaging (fMRI) is ...

  8. Brain magnetic resonance imaging in adults with asthma.

    Science.gov (United States)

    Parker, J; Wolansky, L J; Khatry, D; Geba, G P; Molfino, N A

    2011-01-01

    In individuals with asthma, potential central nervous system changes can occur as a consequence of their asthma or therapy. Clinical trials of anti-asthmatic therapies might benefit from using magnetic resonance imaging (MRI) to assess potential brain abnormalities. As part of the clinical safety evaluation of a monoclonal antibody directed against interleukin-9 for the treatment of asthma, we assessed whether brain MRI is an appropriate screening tool to evaluate potential neurotoxicity. Brain MRIs were conducted as part of a prespecified safety evaluation in adults aged 19 to 47 years with mild to moderate asthma treated with either the investigational monoclonal antibody or placebo. An independent neuroradiologist performed a blinded review of brain MRI scans obtained at baseline before dosing and day 28 after dosing from two separate clinical studies. Fifteen brain MRI abnormalities were noted in 13 of 21 subjects with asthma (62%). Nonspecific deep white matter hyperintensities (24%), perivascular space (24%), and abnormal anatomic findings (14%) were noted either at baseline or follow-up. Only 8 of 21 subjects (38%) with asthma had normal brain MRI results. The high rate of incidental brain MRI findings suggests that these abnormalities are relatively common in patients with asthma. Thus, brain MRI may not be an appropriate screening tool to evaluate potential neurotoxicity in subjects during routine clinical studies without a baseline examination. Due to artifacts simulating lesions, an experienced radiologist should interpret all brain MRI results. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Brain pathology after mild traumatic brain injury: an exploratory study by repeated magnetic resonance examination.

    Science.gov (United States)

    Lannsjö, Marianne; Raininko, Raili; Bustamante, Mariana; von Seth, Charlotta; Borg, Jörgen

    2013-09-01

    To explore brain pathology after mild traumatic brain injury by repeated magnetic resonance examination. A prospective follow-up study. Nineteen patients with mild traumatic brain injury presenting with Glasgow Coma Scale (GCS) 14-15. The patients were examined on day 2 or 3 and 3-7 months after the injury. The magnetic resonance protocol comprised conventional T1- and T2-weighted sequences including fluid attenuated inversion recovery (FLAIR), two susceptibility-weighted sequences to reveal haemorrhages, and diffusion-weighted sequences. Computer-aided volume comparison was performed. Clinical outcome was assessed by the Rivermead Post-Concussion Symptoms Questionnaire (RPQ), Hospital Anxiety and Depression Scale (HADS) and Glasgow Outcome Scale Extended (GOSE). At follow-up, 7 patients (37%) reported ≥  3 symptoms in RPQ, 5 reported some anxiety and 1 reported mild depression. Fifteen patients reported upper level of good recovery and 4 patients lower level of good recovery (GOSE 8 and 7, respectively). Magnetic resonance pathology was found in 1 patient at the first examination, but 4 patients (21%) showed volume loss at the second examination, at which 3 of them reported brain volume, demonstrated by computer-aided magnetic resonance imaging volumetry, may be a feasible marker of brain pathology after mild traumatic brain injury.

  10. Normal feline brain: clinical anatomy using magnetic resonance imaging.

    Science.gov (United States)

    Mogicato, G; Conchou, F; Layssol-Lamour, C; Raharison, F; Sautet, J

    2012-04-01

    The purpose of this study was to provide a clinical anatomy atlas of the feline brain using magnetic resonance imaging (MRI). Brains of twelve normal cats were imaged using a 1.5 T magnetic resonance unit and an inversion/recovery sequence (T1). Fourteen relevant MRI sections were chosen in transverse, dorsal, median and sagittal planes. Anatomic structures were identified and labelled using anatomical texts and Nomina Anatomica Veterinaria, sectioned specimen heads, and previously published articles. The MRI sections were stained according to the major embryological and anatomical subdivisions of the brain. The relevant anatomical structures seen on MRI will assist clinicians to better understand MR images and to relate this neuro-anatomy to clinical signs. © 2011 Blackwell Verlag GmbH.

  11. Rock magnetism linked to human brain magnetite

    Science.gov (United States)

    Kirschvink, Joseph L.

    Magnetite has a long and distinguished career as one of the most important minerals in geophysics, as it is responsible for most of the remanent magnetization in marine sediments and the oceanic crust. It may come as a surprise to discover that it also ranks as the third or fourth most diverse mineral product formed biochemically by living organisms, and forms naturally in a variety of human tissues [Kirschvink et al., 1992].Magnetite was discovered in teeth of the Polyplacophora mollusks over 30 years ago, in magnetotactic bacteria nearly 20 years ago, in honey bees and homing pigeons nearly 15 years ago, but only recently in human tissue.

  12. Magnetic resonance imaging based noninvasive measurements of brain hemodynamics in neonates

    DEFF Research Database (Denmark)

    De Vis, Jill B; Alderliesten, Thomas; Hendrikse, Jeroen

    2016-01-01

    Perinatal disturbances of brain hemodynamics can have a detrimental effect on the brain's parenchyma with consequently adverse neurodevelopmental outcome. Noninvasive, reliable tools to evaluate the neonate's brain hemodynamics are scarce. Advances in magnetic resonance imaging have provided new...

  13. Combined cognitive-psychological-physical intervention induces reorganization of intrinsic functional brain architecture in older adults.

    Science.gov (United States)

    Zheng, Zhiwei; Zhu, Xinyi; Yin, Shufei; Wang, Baoxi; Niu, Yanan; Huang, Xin; Li, Rui; Li, Juan

    2015-01-01

    Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI) to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD) signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age.

  14. Combined Cognitive-Psychological-Physical Intervention Induces Reorganization of Intrinsic Functional Brain Architecture in Older Adults

    Directory of Open Access Journals (Sweden)

    Zhiwei Zheng

    2015-01-01

    Full Text Available Mounting evidence suggests that enriched mental, physical, and socially stimulating activities are beneficial for counteracting age-related decreases in brain function and cognition in older adults. Here, we used functional magnetic resonance imaging (fMRI to demonstrate the functional plasticity of brain activity in response to a combined cognitive-psychological-physical intervention and investigated the contribution of the intervention-related brain changes to individual performance in healthy older adults. The intervention was composed of a 6-week program of combined activities including cognitive training, Tai Chi exercise, and group counseling. The results showed improved cognitive performance and reorganized regional homogeneity of spontaneous fluctuations in the blood oxygen level-dependent (BOLD signals in the superior and middle temporal gyri, and the posterior lobe of the cerebellum, in the participants who attended the intervention. Intriguingly, the intervention-induced changes in the coherence of local spontaneous activity correlated with the improvements in individual cognitive performance. Taken together with our previous findings of enhanced resting-state functional connectivity between the medial prefrontal cortex and medial temporal lobe regions following a combined intervention program in older adults, we conclude that the functional plasticity of the aging brain is a rather complex process, and an effective cognitive-psychological-physical intervention is helpful for maintaining a healthy brain and comprehensive cognition during old age.

  15. Over-hydration detection in brain by magnetic induction spectroscopy

    Science.gov (United States)

    González, César A.; Pérez, María; Hevia, Nidiyare; Arámbula, Fernándo; Flores, Omar; Aguilar, Eliot; Hinojosa, Ivonne; Joskowicz, Leo; Rubinsky, Boris

    2010-04-01

    Detection and continuous monitoring of edema in the brain in early stages is useful for assessment of medical condition and treatment. We have proposed a solution in which the bulk measurements of the tissue electrical properties to detect edema or in general accumulation of fluids are made through measurement of the magnetic induction phase shift between applied and measured currents at different frequencies (Magnetic Induction Spectroscopy; MIS). Magnetic Resonant Imaging (MRI) has been characterized because its capability to detect different levels of brain tissue hydration by differences in diffusion-weighted (DW) sequences and it's involve apparent diffusion coefficient (ADC). The objective of this study was to explore the viability to use measurements of the bulk tissue electrical properties to detect edema or in general accumulation of fluids by MIS. We have induced a transitory and generalized tissue over-hydration condition in ten volunteers ingesting 1.5 to 2 liters of water in ten minutes. Basal and over-hydration conditions were monitored by MIS and MRI. Changes in the inductive phase shift at certain frequencies were consistent with changes in the brain tissue hydration level observed by DW-ADC. The results suggest that MIS has the potential to detect pathologies associated to changes in the content of fluids in brain tissue such as edema and hematomas.

  16. A Hybrid Hierarchical Approach for Brain Tissue Segmentation by Combining Brain Atlas and Least Square Support Vector Machine

    Science.gov (United States)

    Kasiri, Keyvan; Kazemi, Kamran; Dehghani, Mohammad Javad; Helfroush, Mohammad Sadegh

    2013-01-01

    In this paper, we present a new semi-automatic brain tissue segmentation method based on a hybrid hierarchical approach that combines a brain atlas as a priori information and a least-square support vector machine (LS-SVM). The method consists of three steps. In the first two steps, the skull is removed and the cerebrospinal fluid (CSF) is extracted. These two steps are performed using the toolbox FMRIB's automated segmentation tool integrated in the FSL software (FSL-FAST) developed in Oxford Centre for functional MRI of the brain (FMRIB). Then, in the third step, the LS-SVM is used to segment grey matter (GM) and white matter (WM). The training samples for LS-SVM are selected from the registered brain atlas. The voxel intensities and spatial positions are selected as the two feature groups for training and test. SVM as a powerful discriminator is able to handle nonlinear classification problems; however, it cannot provide posterior probability. Thus, we use a sigmoid function to map the SVM output into probabilities. The proposed method is used to segment CSF, GM and WM from the simulated magnetic resonance imaging (MRI) using Brainweb MRI simulator and real data provided by Internet Brain Segmentation Repository. The semi-automatically segmented brain tissues were evaluated by comparing to the corresponding ground truth. The Dice and Jaccard similarity coefficients, sensitivity and specificity were calculated for the quantitative validation of the results. The quantitative results show that the proposed method segments brain tissues accurately with respect to corresponding ground truth. PMID:24696800

  17. Lupus anticoagulant: correlation with magnetic resonance imaging of brain lesions.

    Science.gov (United States)

    Molad, Y; Sidi, Y; Gornish, M; Lerner, M; Pinkhas, J; Weinberger, A

    1992-04-01

    Brain magnetic resonance imaging (MRI) was performed in 21 patients with systemic lupus erythematosus (SLE) with and without lupus anticoagulant (LAC), one lupus-like patient and 5 patients with primary antiphospholipid antibody syndrome. Thirteen patients had white matter focal brain lesions on MRI, 10 of whom had LAC (p = 0.03). We found no correlation between these lesions and neurologic manifestations, nor any clinical or serologic indices of activity of SLE. Our MRI lesions were similar to those described in multiple sclerosis and may indicate a similar pathologic process.

  18. Brain magnetic resonance imaging examination in a patient with non-magnetic resonance conditional pacemaker

    Directory of Open Access Journals (Sweden)

    Toshiko Nakai, MD

    2017-10-01

    Full Text Available Clinical dilemmas arise when patients with a non-magnetic resonance (MR conditional pacemaker are required to undergo magnetic resonance imaging (MRI. We encountered a pacemaker patient with debilitating non-motor symptoms of Parkinson׳s disease, who required an MRI prior to deep brain stimulation (DBS surgery. MRI was performed safely without adverse events despite the presence of a conventional pacemaker.

  19. Brain magnetic resonance imaging and magnetic resonance spectroscopy findings of children with kernicterus

    OpenAIRE

    Sarı, Sahabettin; Yavuz, Alpaslan; Batur, Aabdussamet; Bora, Aydın; Caksen, Huseyin

    2015-01-01

    Summary Background The term kernicterus, or bilirubin encephalopathy, is used to describe pathological bilirubin staining of the basal ganglia, brain stem, and cerebellum, and is associated with hyperbilirubinemia. Kernicterus generally occurs in untreated hyperbilirubinemia or cases where treatment is delayed. Magnetic resonance imaging (MRI)-based studies have shown characteristic findings in kernicterus. The objective of our study was to describe the role of 1H magnetic resonance spectrosc...

  20. Combining non-invasive transcranial brain stimulation with neuroimaging and electrophysiology: Current approaches and future perspectives

    DEFF Research Database (Denmark)

    Bergmann, Til Ole; Karabanov, Anke; Hartwigsen, Gesa

    2016-01-01

    Non-invasive transcranial brain stimulation (NTBS) techniques such as transcranial magnetic stimulation (TMS) and transcranial current stimulation (TCS) are important tools in human systems and cognitive neuroscience because they are able to reveal the relevance of certain brain structures...... are technically demanding. We argue that the benefit from this combination is twofold. Firstly, neuroimaging and electrophysiology can inform subsequent NTBS, providing the required information to optimize where, when, and how to stimulate the brain. Information can be achieved both before and during the NTBS...... experiment, requiring consecutive and concurrent applications, respectively. Secondly, neuroimaging and electrophysiology can provide the readout for neural changes induced by NTBS. Again, using either concurrent or consecutive applications, both "online" NTBS effects immediately following the stimulation...

  1. Human brain somatic representation: a functional magnetic resonance mapping

    Science.gov (United States)

    Romero-Romo, Juan; Rojas, Rafael; Salgado, Perla; Sánchez-Cortázar, Julián; Vazquez-Vela, Arturo; Barrios, Fernando A.

    2001-10-01

    Central nervous system studies of injury and plasticity for the reorganization in the phantom limb sensation area presented. In particular functional magnetic resonance imaging (fMRI) mapping of the somatic and motor cortex of amputee patients, in the case of referred sensations. Using fMRI we can show the correlation between structure and functional field and study the reorganization due to plasticity in the brain.

  2. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  3. Brain magnetic resonance imaging findings in relapsing neuromyelitis optica.

    Science.gov (United States)

    Cabrera-Gómez, José A; Quevedo-Sotolongo, L; González-Quevedo, A; Lima, S; Real-González, Y; Cristófol-Corominas, M; Romero-García, K; Ugarte-Sánchez, C; Jordán-González, J; de la Nuez, J E González; Lahera, J García; Tellez, R; Pedroso-Ibañez, I; Roca, R Rodríguez; Cabrera-Núñez, A Y

    2007-03-01

    Some studies showed abnormalities in brain magnetic resonance imaging (MRI) of relapsing neuromyelitis optica (R-NMO) from 12 to 46%. These abnormalities are described as compatible/non-compatible with multiple sclerosis (MS). To describe the abnormal brain MRI lesions in R-NMO with imaging studies conducted with more sensitive white matter change techniques. Thirty patients with R-NMO were selected. All MRI brain studies were performed with a 1.5-T Siemens MRI system according to the Standardized MR Imaging Protocol for Multiple Sclerosis from the Consortium of MS Centers Consensus Guidelines. Brain MRI images were evaluated in 29 R-NMO cases because in one case the MRI images were not appropriate for the study. Of these 29 brain MRI studies, 19 cases (65.5%) had at least one or more lesions (1-57) and 10 were negative (34.4%). Brain MRI findings in 19 cases were characterized in T2/fluid-attenuated inversion-recovery (FLAIR) by the presence of subcortical/deep white matter lesions in 16 (84.2%) cases (1-50), most of them 3 mm, were observed in 4 (21.05%) cases without cerebellar involvement. T1 studies demonstrated absence of hypointense regions. Optic nerve enhancement was observed in 6/19 patients (31.5%). None of the brain MRI abnormalities observed were compatible with Barkhof et al. criteria of MS. This study, based on a Cuban patient population, with long duration of disease, good sample size and detailed characterization by MRI, demonstrated the brain MRI pattern of R-NMO patients, which is different from MS.

  4. Brain changes detected by functional magnetic resonance imaging and spectroscopy in patients with Crohn's disease.

    Science.gov (United States)

    Lv, Kun; Fan, Yi-Hong; Xu, Li; Xu, Mao-Sheng

    2017-05-28

    Crohn's disease (CD) is a chronic, non-specific granulomatous inflammatory disorder that commonly affects the small intestine and is a phenotype of inflammatory bowel disease (IBD). CD is prone to relapse, and its incidence displays a persistent increase in developing countries. However, the pathogenesis of CD is poorly understood, with some studies emphasizing the link between CD and the intestinal microbiota. Specifically, studies point to the brain-gut-enteric microbiota axis as a key player in the occurrence and development of CD. Furthermore, investigations have shown white-matter lesions and neurologic deficits in patients with IBD. Based on these findings, brain activity changes in CD patients have been detected by blood oxygenation level dependent functional magnetic resonance imaging (BOLD-fMRI). BOLD-fMRI functions by detecting a local increase in relative blood oxygenation that results from neurotransmitter activity and thus reflects local neuronal firing rates. Therefore, biochemical concentrations of neurotransmitters or metabolites may change in corresponding brain regions of CD patients. To further study this phenomenon, brain changes of CD patients can be detected non-invasively, effectively and accurately by BOLD-fMRI combined with magnetic resonance spectroscopy (MRS). This approach can further shed light on the mechanisms of the occurrence and development of neurological CD. Overall, this paper reviews the current status and prospects on fMRI and MRS for evaluation of patients with CD based on the brain-gut-enteric microbiota axis.

  5. Porous Silicon Nanocomposites with Combined Hard and Soft Magnetic Properties.

    Science.gov (United States)

    Rumpf, Klemens; Granitzer, Petra; Michor, Herwig

    2016-12-01

    Magnetic nanostructures of two ferromagnetic metals have been combined within porous silicon, and the magnetic switching behavior of the resulting porous silicon/metal nanocomposite has been modified by varying the arrangement. The two magnetic materials are Ni and Co, whereas Co is the magnetic harder one. These "hard/soft" magnetic nanocomposites have been achieved by two different routes. On the one hand, double-sided porous silicon has been used whereas one side has been filled with Ni nanostructures and the other one with Co nanostructures. On the other hand, Ni and Co have been deposited within one porous layer alternatingly. The filling of the pores has been carried out by electrodeposition with varying the deposition parameters. In systems which offer two distinct slopes of the hysteresis curves due to the different saturation behavior of the two types of deposited metal, magnetic exchange coupling is not present. For samples which show smooth hysteresis curves exchange, coupling between the Ni and Co nanostructures seems to be present. The aim is to control especially the structure size of the soft and the hard magnetic materials and the distance between them at the nanoscale to optimize exchange coupling resulting in a maximum energy product.

  6. Studies on magnetism and bioelectromagnetics for 45 years: from magnetic analog memory to human brain stimulation and imaging.

    Science.gov (United States)

    Ueno, Shoogo

    2012-01-01

    Forty-five years of studies on magnetism and bioelectromagnetics, in our laboratory, are presented. This article is prepared for the d'Arsonval Award Lecture. After a short introduction of our early work on magnetic analog memory, we review and discuss the following topics: (1) Magnetic nerve stimulation and localized transcranial magnetic stimulation (TMS) of the human brain by figure-eight coils; (2) Measurements of weak magnetic fields generated from the brain by superconducting quantum interference device (SQUID) systems, called magnetoencephalography (MEG), and its application in functional brain studies; (3) New methods of magnetic resonance imaging (MRI) for the imaging of impedance of the brain, called impedance MRI, and the imaging of neuronal current activities in the brain, called current MRI; (4) Cancer therapy and other medical treatments by pulsed magnetic fields; (5) Effects of static magnetic fields and magnetic control of cell orientation and cell growth; and (6) Effects of radio frequency magnetic fields and control of iron ion release and uptake from and into ferritins, iron cage proteins. These bioelectromagnetic studies have opened new horizons in magnetism and medicine, in particular for brain research and treatment of ailments such as depression, Parkinson's, and Alzheimer's diseases. Copyright © 2011 Wiley Periodicals, Inc.

  7. Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal?

    Science.gov (United States)

    Freitas, Catarina; Farzan, Faranak; Pascual-Leone, Alvaro

    2013-01-01

    Sustaining brain and cognitive function across the lifespan must be one of the main biomedical goals of the twenty-first century. We need to aim to prevent neuropsychiatric diseases and, thus, to identify and remediate brain and cognitive dysfunction before clinical symptoms manifest and disability develops. The brain undergoes a complex array of changes from developmental years into old age, putatively the underpinnings of changes in cognition and behavior throughout life. A functionally “normal” brain is a changing brain, a brain whose capacity and mechanisms of change are shifting appropriately from one time-point to another in a given individual's life. Therefore, assessing the mechanisms of brain plasticity across the lifespan is critical to gain insight into an individual's brain health. Indexing brain plasticity in humans is possible with transcranial magnetic stimulation (TMS), which, in combination with neuroimaging, provides a powerful tool for exploring local cortical and brain network plasticity. Here, we review investigations to date, summarize findings, and discuss some of the challenges that need to be solved to enhance the use of TMS measures of brain plasticity across all ages. Ultimately, TMS measures of plasticity can become the foundation for a brain health index (BHI) to enable objective correlates of an individual's brain health over time, assessment across diseases and disorders, and reliable evaluation of indicators of efficacy of future preventive and therapeutic interventions. PMID:23565072

  8. Assessing brain plasticity across the lifespan with transcranial magnetic stimulation: why, how, and what is the ultimate goal?

    Science.gov (United States)

    Freitas, Catarina; Farzan, Faranak; Pascual-Leone, Alvaro

    2013-01-01

    Sustaining brain and cognitive function across the lifespan must be one of the main biomedical goals of the twenty-first century. We need to aim to prevent neuropsychiatric diseases and, thus, to identify and remediate brain and cognitive dysfunction before clinical symptoms manifest and disability develops. The brain undergoes a complex array of changes from developmental years into old age, putatively the underpinnings of changes in cognition and behavior throughout life. A functionally "normal" brain is a changing brain, a brain whose capacity and mechanisms of change are shifting appropriately from one time-point to another in a given individual's life. Therefore, assessing the mechanisms of brain plasticity across the lifespan is critical to gain insight into an individual's brain health. Indexing brain plasticity in humans is possible with transcranial magnetic stimulation (TMS), which, in combination with neuroimaging, provides a powerful tool for exploring local cortical and brain network plasticity. Here, we review investigations to date, summarize findings, and discuss some of the challenges that need to be solved to enhance the use of TMS measures of brain plasticity across all ages. Ultimately, TMS measures of plasticity can become the foundation for a brain health index (BHI) to enable objective correlates of an individual's brain health over time, assessment across diseases and disorders, and reliable evaluation of indicators of efficacy of future preventive and therapeutic interventions.

  9. Simulated driving and brain imaging: combining behavior, brain activity, and virtual reality.

    Science.gov (United States)

    Carvalho, Kara N; Pearlson, Godfrey D; Astur, Robert S; Calhoun, Vince D

    2006-01-01

    Virtual reality in the form of simulated driving is a useful tool for studying the brain. Various clinical questions can be addressed, including both the role of alcohol as a modulator of brain function and regional brain activation related to elements of driving. We reviewed a study of the neural correlates of alcohol intoxication through the use of a simulated-driving paradigm and wished to demonstrate the utility of recording continuous-driving behavior through a new study using a programmable driving simulator developed at our center. Functional magnetic resonance imaging data was collected from subjects while operating a driving simulator. Independent component analysis (ICA) was used to analyze the data. Specific brain regions modulated by alcohol, and relationships between behavior, brain function, and alcohol blood levels were examined with aggregate behavioral measures. Fifteen driving epochs taken from two subjects while also recording continuously recorded driving variables were analyzed with ICA. Preliminary findings reveal that four independent components correlate with various aspects of behavior. An increase in braking while driving was found to increase activation in motor areas, while cerebellar areas showed signal increases during steering maintenance, yet signal decreases during steering changes. Additional components and significant findings are further outlined. In summary, continuous behavioral variables conjoined with ICA may offer new insight into the neural correlates of complex human behavior.

  10. Magnetic resonance imaging safety of deep brain stimulator devices.

    Science.gov (United States)

    Oluigbo, Chima O; Rezai, Ali R

    2013-01-01

    Magnetic resonance imaging (MRI) has become the standard of care for the evaluation of different neurological disorders of the brain and spinal cord due to its multiplanar capabilities and excellent soft tissue resolution. With the large and increasing population of patients with implanted deep brain stimulation (DBS) devices, a significant proportion of these patients with chronic neurological diseases require evaluation of their primary neurological disease processes by MRI. The presence of an implanted DBS device in a magnetic resonance environment presents potential hazards. These include the potential for induction of electrical currents or heating in DBS devices, which can result in neurological tissue injury, magnetic field-induced device migration, or disruption of the operational aspects of the devices. In this chapter, we review the basic physics of potential interactions of the MRI environment with implanted DBS devices, summarize results from phantom studies and clinical series, and discuss present recommendations for safe MRI in patients with implanted DBS devices. © 2013 Elsevier B.V. All rights reserved.

  11. Classification of MR brain images by combination of multi-CNNs for AD diagnosis

    Science.gov (United States)

    Cheng, Danni; Liu, Manhua; Fu, Jianliang; Wang, Yaping

    2017-07-01

    Alzheimer's disease (AD) is an irreversible neurodegenerative disorder with progressive impairment of memory and cognitive functions. Its early diagnosis is crucial for development of future treatment. Magnetic resonance images (MRI) play important role to help understand the brain anatomical changes related to AD. Conventional methods extract the hand-crafted features such as gray matter volumes and cortical thickness and train a classifier to distinguish AD from other groups. Different from these methods, this paper proposes to construct multiple deep 3D convolutional neural networks (3D-CNNs) to learn the various features from local brain images which are combined to make the final classification for AD diagnosis. First, a number of local image patches are extracted from the whole brain image and a 3D-CNN is built upon each local patch to transform the local image into more compact high-level features. Then, the upper convolution and fully connected layers are fine-tuned to combine the multiple 3D-CNNs for image classification. The proposed method can automatically learn the generic features from imaging data for classification. Our method is evaluated using T1-weighted structural MR brain images on 428 subjects including 199 AD patients and 229 normal controls (NC) from Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Experimental results show that the proposed method achieves an accuracy of 87.15% and an AUC (area under the ROC curve) of 92.26% for AD classification, demonstrating the promising classification performances.

  12. Exploring Cortical Plasticity and Oscillatory Brain Dynamics via Transcranial Magnetic Stimulation and Resting-State Electroencephalogram.

    Science.gov (United States)

    Noh, Nor Azila

    2016-07-01

    Transcranial magnetic stimulation (TMS) is a non-invasive, non-pharmacological technique that is able to modulate cortical activity beyond the stimulation period. The residual aftereffects are akin to the plasticity mechanism of the brain and suggest the potential use of TMS for therapy. For years, TMS has been shown to transiently improve symptoms of neuropsychiatric disorders, but the underlying neural correlates remain elusive. Recently, there is evidence that altered connectivity of brain network dynamics is the mechanism underlying symptoms of various neuropsychiatric illnesses. By combining TMS and electroencephalography (EEG), the functional connectivity patterns among brain regions, and the causal link between function or behaviour and a specific brain region can be determined. Nonetheless, the brain network connectivity are highly complex and involve the dynamics interplay among multitude of brain regions. In this review article, we present previous TMS-EEG co-registration studies, which explore the functional connectivity patterns of human cerebral cortex. We argue the possibilities of neural correlates of long-term potentiation/depression (LTP-/LTD)-like mechanisms of synaptic plasticity that drive the TMS aftereffects as shown by the dissociation between EEG and motor evoked potentials (MEP) cortical output. Here, we also explore alternative explanations that drive the EEG oscillatory modulations post TMS. The precise knowledge of the neurophysiological mechanisms underlying TMS will help characterise disturbances in oscillatory patterns, and the altered functional connectivity in neuropsychiatric illnesses.

  13. Amide Proton Transfer (APT) MR imaging and Magnetization Transfer (MT) MR imaging of pediatric brain development

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Kang, Huiying; Peng, Yun [Beijing Children' s Hospital, Capital Medical University, Imaging Center, Department of Radiology, Beijing (China); Zhao, Xuna [Philips Healthcare, Beijing (China); Jiang, Shanshan; Zhang, Yi; Zhou, Jinyuan [Johns Hopkins University, Division of MR Research, Department of Radiology, Baltimore, MD (United States)

    2016-10-15

    To quantify the brain maturation process during childhood using combined amide proton transfer (APT) and conventional magnetization transfer (MT) imaging at 3 Tesla. Eighty-two neurodevelopmentally normal children (44 males and 38 females; age range, 2-190 months) were imaged using an APT/MT imaging protocol with multiple saturation frequency offsets. The APT-weighted (APTW) and MT ratio (MTR) signals were quantitatively analyzed in multiple brain areas. Age-related changes in MTR and APTW were evaluated with a non-linear regression analysis. The APTW signals followed a decreasing exponential curve with age in all brain regions measured (R{sup 2} = 0.7-0.8 for the corpus callosum, frontal and occipital white matter, and centrum semiovale). The most significant changes appeared within the first year. At maturation, larger decreases in APTW and lower APTW values were found in the white matter. On the contrary, the MTR signals followed an increasing exponential curve with age in the same brain regions measured, with the most significant changes appearing within the initial 2 years. There was an inverse correlation between the MTR and APTW signal intensities during brain maturation. Together with MT imaging, protein-based APT imaging can provide additional information in assessing brain myelination in the paediatric population. (orig.)

  14. Magnetic Nanoparticles Cross the Blood-Brain Barrier: When Physics Rises to a Challenge

    Directory of Open Access Journals (Sweden)

    Maria Antònia Busquets

    2015-12-01

    Full Text Available The blood-brain barrier is a physical and physiological barrier that protects the brain from toxic substances within the bloodstream and helps maintain brain homeostasis. It also represents the main obstacle in the treatment of many diseases of the central nervous system. Among the different approaches employed to overcome this barrier, the use of nanoparticles as a tool to enhance delivery of therapeutic molecules to the brain is particularly promising. There is special interest in the use of magnetic nanoparticles, as their physical characteristics endow them with additional potentially useful properties. Following systemic administration, a magnetic field applied externally can mediate the capacity of magnetic nanoparticles to permeate the blood-brain barrier. Meanwhile, thermal energy released by magnetic nanoparticles under the influence of radiofrequency radiation can modulate blood-brain barrier integrity, increasing its permeability. In this review, we present the strategies that use magnetic nanoparticles, specifically iron oxide nanoparticles, to enhance drug delivery to the brain.

  15. Gadolinium-enhanced magnetic resonance angiography in brain death

    Science.gov (United States)

    Luchtmann, M.; Beuing, O.; Skalej, M.; Kohl, J.; Serowy, S.; Bernarding, J.; Firsching, R.

    2014-01-01

    Confirmatory tests for the diagnosis of brain death in addition to clinical findings may shorten observation time required in some countries and may add certainty to the diagnosis under specific circumstances. The practicability of Gadolinium-enhanced magnetic resonance angiography to confirm cerebral circulatory arrest was assessed after the diagnosis of brain death in 15 patients using a 1.5 Tesla MRI scanner. In all 15 patients extracranial blood flow distal to the external carotid arteries was undisturbed. In 14 patients no contrast medium was noted within intracerebral vessels above the proximal level of the intracerebral arteries. In one patient more distal segments of the anterior and middle cerebral arteries (A3 and M3) were filled with contrast medium. Gadolinium-enhanced MRA may be considered conclusive evidence of cerebral circulatory arrest, when major intracranial vessels fail to fill with contrast medium while extracranial vessels show normal blood flow.

  16. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Science.gov (United States)

    Ryman, Sephira G; Gasparovic, Chuck; Bedrick, Edward J; Flores, Ranee A; Marshall, Alison N; Jung, Rex E

    2011-01-01

    To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1)H-MRS). Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females). Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI). We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho), Creatine (Cre), and N-acetylaspartate (NAA) in regions both within (i.e., posterior cingulate cortex) and white matter underlying (i.e., precuneus) the Default Mode Network (DMN). These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  17. Brain biochemistry and personality: a magnetic resonance spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Sephira G Ryman

    Full Text Available To investigate the biochemical correlates of normal personality we utilized proton magnetic resonance spectroscopy ((1H-MRS. Our sample consisted of 60 subjects ranging in age from 18 to 32 (27 females. Personality was assessed with the NEO Five-Factor Inventory (NEO-FFI. We measured brain biochemistry within the precuneus, the cingulate cortex, and underlying white matter. We hypothesized that brain biochemistry within these regions would predict individual differences across major domains of personality functioning. Biochemical models were fit for all personality domains including Neuroticism, Extraversion, Openness, Agreeableness, and Conscientiousness. Our findings involved differing concentrations of Choline (Cho, Creatine (Cre, and N-acetylaspartate (NAA in regions both within (i.e., posterior cingulate cortex and white matter underlying (i.e., precuneus the Default Mode Network (DMN. These results add to an emerging literature regarding personality neuroscience, and implicate biochemical integrity within the default mode network as constraining major personality domains within normal human subjects.

  18. Fetal magnetic resonance imaging (MRI) of ischemic brain injury.

    Science.gov (United States)

    de Laveaucoupet, J; Audibert, F; Guis, F; Rambaud, C; Suarez, B; Boithias-Guérot, C; Musset, D

    2001-09-01

    The aim of the present study was to demonstrate the usefulness of fetal magnetic resonance imaging (MRI) in ischemic brain injury. We report seven cases of fetal brain ischemia prenatally suspected on ultrasound (US) and confirmed by fetal MRI. Sonographic abnormalities included ventricular dilatation (n=3), microcephaly (n=1), twin pregnancy with in utero death of a twin and suspected cerebral lesion in the surviving co-twin (n=3). MRI was performed with a 1.0 T unit using half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequences between 28 and 35 weeks of gestation. US and MRI images were compared with pathologic findings or postnatal imaging. MRI diagnosed hydranencephaly (n=1), porencephaly (n=2), multicystic encephalomalacia (n=2), unilateral capsular ischemia (n=1), corpus callosum and cerebral atrophy (n=1). In comparison with US, visualization of fetal brain anomalies was superior with MRI. The present cases demonstrate that MRI is a valuable complementary means of investigation when a brain pathology is discovered or suspected during prenatal US. Copyright 2001 John Wiley & Sons, Ltd.

  19. Anatomical Brain Magnetic Resonance Imaging of Typically Developing Children and Adolescents

    Science.gov (United States)

    Giedd, Jay N.; Lalonde, Francois M.; Celano, Mark J.; White, Samantha L.; Wallace, Gregory L.; Lee, Nancy R.; Lenroot, Rhoshel K.

    2009-01-01

    Methodological issues relevant to magnetic resonance imaging studies of brain anatomy are discussed along with the findings on the neuroanatomic changes during childhood and adolescence. The development of the brain is also discussed.

  20. Combined passive magnetic bearing element and vibration damper

    Science.gov (United States)

    Post, Richard F.

    2001-01-01

    A magnetic bearing system contains magnetic subsystems which act together to support a rotating element in a state of dynamic equilibrium and dampen transversely directed vibrations. Mechanical stabilizers are provided to hold the suspended system in equilibrium until its speed has exceeded a low critical speed where dynamic effects take over, permitting the achievement of a stable equilibrium for the rotating object. A state of stable equilibrium is achieved above a critical speed by use of a collection of passive elements using permanent magnets to provide their magnetomotive excitation. In a improvement over U.S. Pat. No. 5,495,221, a magnetic bearing element is combined with a vibration damping element to provide a single upper stationary dual-function element. The magnetic forces exerted by such an element, enhances levitation of the rotating object in equilibrium against external forces, such as the force of gravity or forces arising from accelerations, and suppresses the effects of unbalance or inhibits the onset of whirl-type rotor-dynamic instabilities. Concurrently, this equilibrium is made stable against displacement-dependent drag forces of the rotating object from its equilibrium position.

  1. Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner, Florian, E-mail: e0425375@gmail.com [Vienna University of Technology, Institute of Solid State Physics (Austria); Vogler, Christoph; Bergmair, Bernhard; Huber, Thomas; Fuger, Markus; Suess, Dieter [Vienna University of Technology, Institute of Solid State Physics (Austria); Feischl, Michael; Fuehrer, Thomas; Page, Marcus; Praetorius, Dirk [Vienna University of Technology, Institute for Analysis and Scientific Computing (Austria)

    2013-10-15

    Magnetostatic Maxwell equations and the Landau–Lifshitz–Gilbert (LLG) equation are combined to a multiscale method, which allows to extend the problem size of traditional micromagnetic simulations. By means of magnetostatic Maxwell equations macroscopic regions can be handled in an averaged and stationary sense, whereas the LLG allows to accurately describe domain formation as well as magnetization dynamics in some microscopic subregions. The two regions are coupled by means of their strayfield and the combined system is solved by an optimized time integration scheme. - Highlights: • Coupling LLG and magnetostatic Maxwell equations. • Optimized time-integration. • Simulation of transfer curve of GMR read head with macroscopic shields.

  2. Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations

    Science.gov (United States)

    Bruckner, Florian; Vogler, Christoph; Bergmair, Bernhard; Huber, Thomas; Fuger, Markus; Suess, Dieter; Feischl, Michael; Fuehrer, Thomas; Page, Marcus; Praetorius, Dirk

    2013-10-01

    Magnetostatic Maxwell equations and the Landau-Lifshitz-Gilbert (LLG) equation are combined to a multiscale method, which allows to extend the problem size of traditional micromagnetic simulations. By means of magnetostatic Maxwell equations macroscopic regions can be handled in an averaged and stationary sense, whereas the LLG allows to accurately describe domain formation as well as magnetization dynamics in some microscopic subregions. The two regions are coupled by means of their strayfield and the combined system is solved by an optimized time integration scheme.

  3. Combining micromagnetism and magnetostatic Maxwell equations for multiscale magnetic simulations☆

    Science.gov (United States)

    Bruckner, Florian; Vogler, Christoph; Bergmair, Bernhard; Huber, Thomas; Fuger, Markus; Suess, Dieter; Feischl, Michael; Fuehrer, Thomas; Page, Marcus; Praetorius, Dirk

    2013-01-01

    Magnetostatic Maxwell equations and the Landau–Lifshitz–Gilbert (LLG) equation are combined to a multiscale method, which allows to extend the problem size of traditional micromagnetic simulations. By means of magnetostatic Maxwell equations macroscopic regions can be handled in an averaged and stationary sense, whereas the LLG allows to accurately describe domain formation as well as magnetization dynamics in some microscopic subregions. The two regions are coupled by means of their strayfield and the combined system is solved by an optimized time integration scheme. PMID:24092951

  4. Magnetic resonance imaging and angiography of the brain in embolic left atrial myxoma

    Energy Technology Data Exchange (ETDEWEB)

    Marazuela, M.; Yebra, M.; Diego, J.; Durantez, A.; Garcia-Merino, A.; Brasa, J.M.

    1989-05-01

    A case of left atrial myxoma presenting exclusively with neurological symptoms, studies with magnetic resonance imaging (MRI) combined with cerebral angiography and computed tomography (CT) is reported. Typical angiographic findings suggested the diagnosis of myxoma. MRI showed multiple ischemic lesions disseminated throughout the entire brain, some of which had been clinically asymptomatic. Because of its sensitivity in identifying small cerebral infarcts, MRI should prove in the future to be a first-choice technique in the evaluation of the presence of an extent of cerebral involvement in embolic left atrial myxoma.

  5. Magnetic resonance electric property imaging of brain tissues.

    Science.gov (United States)

    Zhang, Xiaotong; Zhu, Shanan; He, Bin

    2009-01-01

    The electric properties (EPs) of brain tissues, i.e., the electric conductivity and permittivity, can provide important information for diagnosis of various brain disorders. A high-field MRI system is accompanied by significant wave propagation effects, and the radio frequency (RF) radiation is dependent on EPs of the biological tissue. Based on the measurement of the active transverse magnetic component of the applied RF field (known as B1-mapping technique), we have developed a dual-excitation algorithm, which uses two sets of measured B1 data, to noninvasively reconstruct the biological tissue's electric properties. A series of computer simulations were conducted to evaluate the feasibility and performance of the proposed method on a 3-D head model within a birdcage coil and a transverse electromagnetic coil. Compared with other B1-mapping based reconstruction algorithms, our approach provides superior performance without the need for iterative computations. The present simulation results indicate good reconstruction of electric properties of brain tissues from noninvasive MRI B1 mapping.

  6. Sensing Noncollinear Magnetism at the Atomic Scale Combining Magnetic Exchange and Spin-Polarized Imaging.

    Science.gov (United States)

    Hauptmann, Nadine; Gerritsen, Jan W; Wegner, Daniel; Khajetoorians, Alexander A

    2017-09-13

    Storing and accessing information in atomic-scale magnets requires magnetic imaging techniques with single-atom resolution. Here, we show simultaneous detection of the spin-polarization and exchange force with or without the flow of current with a new method, which combines scanning tunneling microscopy and noncontact atomic force microscopy. To demonstrate the application of this new method, we characterize the prototypical nanoskyrmion lattice formed on a monolayer of Fe/Ir(111). We resolve the square magnetic lattice by employing magnetic exchange force microscopy, demonstrating its applicability to noncollinear magnetic structures for the first time. Utilizing distance-dependent force and current spectroscopy, we quantify the exchange forces in comparison to the spin-polarization. For strongly spin-polarized tips, we distinguish different signs of the exchange force that we suggest arises from a change in exchange mechanisms between the probe and a skyrmion. This new approach may enable both nonperturbative readout combined with writing by current-driven reversal of atomic-scale magnets.

  7. The value of multimodal magnetic resonance imaging in the differential diagnosis of glioma recurrence and radiation brain injury

    Directory of Open Access Journals (Sweden)

    Guang-zhi GE

    2015-11-01

    Full Text Available Objective  To explore the application of a combination of diFFusion weighted imaging (DWI, perfusion weighted imaging (PWI and magnetic resonance spectroscopy (MRS in the differential diagnosis of glioma recurrence and radiation brain injury. Methods The clinical and imaging data of 32 patients were retrospectively analyzed, including 15 cases of glioma recurrence and 17 cases of radiation brain injury, admitted from Jan. 2011 to Dec. 2013 in General Hospital of Beijing Command. The DWI, PWI and MRS data of the 32 patients were retrospectively analyzed. The following values were compared between abnormal enhancement area and contralateral normal area: magnetic resonance apparent diFFusion coeFFcient (ADC, relative cerebral blood flow (rCBF, relative cerebral blood volume (rCBV, relative mean transit time (rMTT, choline/creatine (Cho/Cr and choline/N-acetyl aspartate (Cho/ NAA ratio. Results No statistical significance of ADC and rMTT values was found between glioma recurrence group and radiation brain injury group (P>0.05; The maximum and average rCBF and rCBV values were significantly higher in glioma recurrence group than in radiation brain injury group (P0.05. The ratios of Cho/Cr and Cho/NAA were higher in glioma recurrence group than in radiation brain injury group (P<0.05. The diagnostic sensitivity of PWI to glioma recurrence was 80.0%, of MRS was 73.3%, and of PWI combined with MRS was 93.3%. The diagnostic sensitivity of PWI to radiation brain injury was 82.4%, of MRS was 70.6%, and of PWI combined with MRS was 88.2%. Conclusion Combined application of multimodal magnetic resonance imaging technology may improve the diagnostic accuracy to glioma recurrence and radiation brain injury, thus provide a good guidance for clinical treatment. DOI: 10.11855/j.issn.0577-7402.2015.11.13

  8. Toward Epileptic Brain Region Detection Based on Magnetic Nanoparticle Patterning

    Directory of Open Access Journals (Sweden)

    Maysam Z. Pedram

    2015-09-01

    Full Text Available Resection of the epilepsy foci is the best treatment for more than 15% of epileptic patients or 50% of patients who are refractory to all forms of medical treatment. Accurate mapping of the locations of epileptic neuronal networks can result in the complete resection of epileptic foci. Even though currently electroencephalography is the best technique for mapping the epileptic focus, it cannot define the boundary of epilepsy that accurately. Herein we put forward a new accurate brain mapping technique using superparamagnetic nanoparticles (SPMNs. The main hypothesis in this new approach is the creation of super-paramagnetic aggregates in the epileptic foci due to high electrical and magnetic activities. These aggregates may improve tissue contrast of magnetic resonance imaging (MRI that results in improving the resection of epileptic foci. In this paper, we present the mathematical models before discussing the simulation results. Furthermore, we mimic the aggregation of SPMNs in a weak magnetic field using a low-cost microfabricated device. Based on these results, the SPMNs may play a crucial role in diagnostic epilepsy and the subsequent treatment of this disease.

  9. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy

    Energy Technology Data Exchange (ETDEWEB)

    Zajac-Spychala, Olga; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek [Poznan University of Medical Sciences, Department of Pediatric Oncology, Hematology and Transplantology, Poznan (Poland); Pawlak, Mikolaj A. [Poznan University of Medical Sciences, Department of Neurology and Cerebrovascular Disorders, Poznan (Poland); Karmelita-Katulska, Katarzyna [Poznan University of Medical Sciences, Department of Neuroradiology, Poznan (Poland)

    2017-02-15

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy. (orig.)

  10. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy.

    Science.gov (United States)

    Zając-Spychała, Olga; Pawlak, Mikołaj A; Karmelita-Katulska, Katarzyna; Pilarczyk, Jakub; Derwich, Katarzyna; Wachowiak, Jacek

    2017-02-01

    The aim of this study was to assess the long-term side effects of central nervous system prophylaxis (high-dose chemotherapy alone vs chemotherapy and CNS radiotherapy) according to the ALL IC-BFM 2002. Thirty-tree children aged 6.7-19.9 years have been studied. The control group consisted of 12 children newly diagnosed with acute lymphoblastic leukemia. We assessed subcortical gray matter volume using automatic MRI segmentation and cognitive performance to identify differences between two therapeutic schemes and patients prior to treatment. Patients treated with chemotherapy and CNS radiotherapy had smaller hippocampi than two other subgroups and lower IQ score than patients treated with chemotherapy alone. Both treated groups, whether with chemotherapy only or in combination with CNS radiotherapy, had significantly lower volumes of caudate nucleus and performed significantly worse on measures of verbal fluency in comparison with patients prior to treatment. There were no differences in the mean volumes of total white matter, total gray matter, thalamus, putamen, and amygdala between the studied groups. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment was observed, especially in children who received chemotherapy in combination with reduced dose CNS radiotherapy. In all children treated according to the ALL IC-BFM 2002 with high-dose chemotherapy, both decreased volume of selected subcortical structures and cognitive impairment were observed, especially in children who received chemotherapy in combination with CNS radiotherapy.

  11. Conventional Computed Tomography and Magnetic Resonance in Brain Concussion.

    Science.gov (United States)

    Useche, Juan Nicolas; Bermudez, Sonia

    2018-02-01

    Conventional neuroimaging is still the mainstay in the assessment of the acute, follow-up, and chronic settings of concussion and mild traumatic brain injury (mTBI). Computed tomography (CT) is preferred for the initial assessment of acute mTBI, repeat evaluation in acute mTBI with neurologic deterioration, and cautious use in children with mTBI. Clinical rules have been developed to identify pediatric and adult patients with mTBI who can safely forego CT. Magnetic resonance (MR) imaging is mostly used in patients with acute mTBI when initial or follow-up CT is normal and there are persistent neurologic findings and in subacute or chronic mTBI. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Topology-preserving tissue classification of magnetic resonance brain images.

    Science.gov (United States)

    Bazin, Pierre-Louis; Pham, Dzung L

    2007-04-01

    This paper presents a new framework for multiple object segmentation in medical images that respects the topological properties and relationships of structures as given by a template. The technique, known as topology-preserving, anatomy-driven segmentation (TOADS), combines advantages of statistical tissue classification, topology-preserving fast marching methods, and image registration to enforce object-level relationships with little constraint over the geometry. When applied to the problem of brain segmentation, it directly provides a cortical surface with spherical topology while segmenting the main cerebral structures. Validation on simulated and real images characterises the performance of the algorithm with regard to noise, inhomogeneities, and anatomical variations.

  13. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging.

    Science.gov (United States)

    Anbeek, Petronella; Vincken, Koen L; Groenendaal, Floris; Koeman, Annemieke; van Osch, Matthias J P; van der Grond, Jeroen

    2008-02-01

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and inversion recovery (IR) scans. The method uses a K nearest neighbor (KNN) classification technique with features derived from spatial information and voxel intensities. Probabilistic segmentations of each tissue type were generated. By applying thresholds on these probability maps, binary segmentations were obtained. These final segmentations were evaluated by comparison with a gold standard. The sensitivity, specificity, and Dice similarity index (SI) were calculated for quantitative validation of the results. High sensitivity and specificity with respect to the gold standard were reached: sensitivity >0.82 and specificity >0.9 for all tissue types. Tissue volumes were calculated from the binary and probabilistic segmentations. The probabilistic segmentation volumes of all tissue types accurately estimated the gold standard volumes. The KNN approach offers valuable ways for neonatal brain segmentation. The probabilistic outcomes provide a useful tool for accurate volume measurements. The described method is based on routine diagnostic magnetic resonance imaging (MRI) and is suitable for large population studies.

  14. Features of magnetic resonance imaging brain in eclampsia: clinicoradiologic correlation

    Directory of Open Access Journals (Sweden)

    Mubarak F

    2012-08-01

    Full Text Available Fatima Mubarak, Muhammad Idris, Quratulain HadiDepartment of Radiology, Aga Khan University Hospital, Karachi, PakistanObjective: Eclampsia is a gestational hypertensive condition that typically occurs after 20 weeks of pregnancy and is characterized by hypertension, peripheral edema, proteinuria, and seizures. Magnetic resonance imaging (MRI plays a vital role in the diagnosis and management of these patients, so it is essential to describe features of the brain MRI in these cases.Methods: MRI was performed on eleven consecutive patients with eclampsia. All patients underwent follow-up neurologic examinations until all symptoms resolved. Nine of those eleven patients underwent follow-up MRI. The clinical signs and symptoms were correlated with findings on initial and follow-up MRI.Results: MRI typically demonstrated bilateral hyperintense lesions on T2-weighted images and hypointense lesions on T1-weighted images without diffusion restriction. MRI abnormalities are most commonly located in the distribution of the posterior cerebral circulation mainly in occipital and parietal lobes, and are associated with visual disturbances and dizziness. Almost all lesions seen at MRI in patients with eclampsia were reversible in our series of patients.Conclusion: Involvement of the parietal and occipital lobes is common in patients with eclampsia, and the signal abnormalities on MRI are reversible if recognized and treated early.Keywords: pregnancy, seizures, hypertension, brain, MRI findings, reversible

  15. Using Functional Magnetic Resonance Imaging to Detect Preserved Function in a Preterm Infant with Brain Injury.

    Science.gov (United States)

    Herzmann, Charlotte; Zubiaurre-Elorza, Leire; Wild, Conor J; Linke, Annika C; Han, Victor K; Lee, David S C; Cusack, Rhodri

    2017-10-01

    We studied developmental plasticity using functional magnetic resonance imaging (fMRI) in a preterm infant with brain injury on structural MRI. fMRI showed preserved brain function and subsequent neurodevelopment was within the normal range. Multimodal neuroimaging including fMRI can improve understanding of neural plasticity after preterm birth and brain injury. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. [Possibilities of magnetic-laser therapy in comprehensive treatment of patients with brain concussion in acute period].

    Science.gov (United States)

    Zubkova, O V; Samosiuk, I Z; Polishchuk, O V; Shul'ga, N M; Samosiuk, N I

    2012-01-01

    The efficacy of magnetic-laser therapy used according to the method developed by us was studied in patients having the brain concussion (BC) in an acute period. The study was based on the dynamics of values of the evoked vestibular potentials and the disease clinical course. It was shown that following the magnetic-laser therapy in combination with traditional pharmacotherapy in BC acute period, the statistically significant positive changes were registered in the quantitative characteristics of the evoked vestibular brain potentials that correlated with the dynamics of the disease clinical course. The data obtained substantiate the possibility of using the magnetic-laser therapy in patients with a mild craniocereblal injury in an acute period.

  17. A Nested Phosphorus and Proton Coil Array for Brain Magnetic Resonance Imaging and Spectroscopy

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Parasoglou, Prodromos

    2015-01-01

    A dual-nuclei radiofrequency coil array was constructed for phosphorus and proton magnetic resonance imaging and spectroscopy of the human brain at 7 Tesla. An eight-channel transceive degenerate birdcage phosphorus module was implemented to provide whole-brain coverage and significant sensitivity improvement over a standard dual-tuned loop coil. A nested eight-channel proton module provided adequate sensitivity for anatomical localization without substantially sacrificing performance on the phosphorus module. The developed array enabled phosphorus spectroscopy, a saturation transfer technique to calculate the global creatine kinase forward reaction rate, and single-metabolite whole-brain imaging with 1.4 cm nominal isotropic resolution in 15 min (2.3 cm actual resolution), while additionally enabling 1 mm isotropic proton imaging. This study demonstrates that a multi-channel array can be utilized for phosphorus and proton applications with improved coverage and/or sensitivity over traditional single-channel coils. The efficient multi-channel coil array, time-efficient pulse sequences, and the enhanced signal strength available at ultra-high fields can be combined to allow volumetric assessment of the brain and could provide new insights into the underlying energy metabolism impairment in several neurodegenerative conditions, such as Alzheimer’s and Parkinson’s diseases, as well as mental disorders such as schizophrenia. PMID:26375209

  18. Three-Dimensional Magnetic Resonance Spectroscopic Imaging of Brain and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    John Kurhanewicz

    2000-01-01

    Full Text Available Clinical applications of magnetic resonance spectroscopic imaging (MRSI for the study of brain and prostate cancer have expanded significantly over the past 10 years. Proton MRSI studies of the brain and prostate have demonstrated the feasibility of noninvasively assessing human cancers based on metabolite levels before and after therapy in a clinically reasonable amount of time. MRSI provides a unique biochemical “window” to study cellular metabolism noninvasively. MRSI studies have demonstrated dramatic spectral differences between normal brain tissue (low choline and high N-acetyl aspartate, NAA and prostate (low choline and high citrate compared to brain (low NAA, high choline and prostate (low citrate, high choline tumors. The presence of edema and necrosis in both the prostate and brain was reflected by a reduction of the intensity of all resonances due to reduced cell density. MRSI was able to discriminate necrosis (absence of all metabolites, except lipids and lactate from viable normal tissue and cancer following therapy. The results of current MRSI studies also provide evidence that the magnitude of metabolic changes in regions of cancer before therapy as well as the magnitude and time course of metabolic changes after therapy can improve our understanding of cancer aggressiveness and mechanisms of therapeutic response. Clinically, combined MRI/MRSI has already demonstrated the potential for improved diagnosis, staging and treatment planning of brain and prostate cancer. Additionally, studies are under way to determine the accuracy of anatomic and metabolic parameters in providing an objective quantitative basis for assessing disease progression and response to therapy.

  19. Segmentation of brain tumor images using in vivo spectroscopy, relaxometry and diffusometry by magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Martin L, M. [Universidad Central de Venezuela, A.P. 47586, Caracas 1041-A (Venezuela)

    2006-07-01

    A new methodology is developed for the segmentation of brain tumor images using information obtained by different magnetic resonance techniques such as in vivo spectroscopy, relaxometry and diffusometry. In vivo spectroscopy is used as a sort of virtual biopsy to characterize the different tissue types present in the lesion (active tumor, necrotic tissue or edema and normal or non-affected tissue). Due to the fact that in vivo spectroscopy information lacks the spatial resolution for treatment considerations, this information has to be combined or fused with images obtained by relaxometry and diffusometry with excellent spatial resolution. Some segmentation schemes are presented and discussed, using the high spatial resolution techniques individually or combined. The results show that segmentation done in this way is highly reliable for the application of future therapies such as radiosurgery or radiotherapy. (Author)

  20. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies.

    Science.gov (United States)

    Scarapicchia, Vanessa; Brown, Cassandra; Mayo, Chantel; Gawryluk, Jodie R

    2017-01-01

    Although blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS) has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1) provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2) review existing combined fMRI-fNIRS recording studies; and (3) discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function.

  1. Computational analysis of transcranial magnetic stimulation in the presence of deep brain stimulation probes

    Science.gov (United States)

    Syeda, F.; Holloway, K.; El-Gendy, A. A.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is an emerging non-invasive treatment for depression, Parkinson's disease, and a variety of other neurological disorders. Many Parkinson's patients receive the treatment known as Deep Brain Stimulation, but often require additional therapy for speech and swallowing impairment. Transcranial Magnetic Stimulation has been explored as a possible treatment by stimulating the mouth motor area of the brain. We have calculated induced electric field, magnetic field, and temperature distributions in the brain using finite element analysis and anatomically realistic heterogeneous head models fitted with Deep Brain Stimulation leads. A Figure of 8 coil, current of 5000 A, and frequency of 2.5 kHz are used as simulation parameters. Results suggest that Deep Brain Stimulation leads cause surrounding tissues to experience slightly increased E-field (Δ Emax =30 V/m), but not exceeding the nominal values induced in brain tissue by Transcranial Magnetic Stimulation without leads (215 V/m). The maximum temperature in the brain tissues surrounding leads did not change significantly from the normal human body temperature of 37 °C. Therefore, we ascertain that Transcranial Magnetic Stimulation in the mouth motor area may stimulate brain tissue surrounding Deep Brain Stimulation leads, but will not cause tissue damage.

  2. Electromagnetic Design of a Magnetically-Coupled Spatial Power Combiner

    Science.gov (United States)

    Bulcha, B.; Cataldo, G.; Stevenson, T. R.; U-Yen, K.; Moseley, S. H.; Wollack, E. J.

    2017-01-01

    The design of a two-dimensional beam-combining network employing a parallel-plate superconducting waveguide with a mono-crystalline silicon dielectric is presented. This novel beam-combining network structure employs an array of magnetically coupled antenna elements to achieve high coupling efficiency and full sampling of the intensity distribution while avoiding diffractive losses in the multi-mode region defined by the parallel-plate waveguide. These attributes enable the structures use in realizing compact far-infrared spectrometers for astrophysical and instrumentation applications. When configured with a suitable corporate-feed power-combiner, this fully sampled array can be used to realize a low-sidelobe apodized response without incurring a reduction in coupling efficiency. To control undesired reflections over a wide range of angles in the finite-sized parallel-plate waveguide region, a wideband meta-material electromagnetic absorber structure is implemented. This adiabatic structure absorbs greater than 99 of the power over the 1.7:1 operational band at angles ranging from normal (0 degree) to near parallel (180 degree) incidence. Design, simulations, and application of the device will be presented.

  3. Coupling of transient near infrared photonic with magnetic nanoparticle for potential dissipation-free biomedical application in brain

    Science.gov (United States)

    Sagar, Vidya; Atluri, V. S. R.; Tomitaka, A.; Shah, P.; Nagasetti, A.; Pilakka-Kanthikeel, S.; El-Hage, N.; McGoron, A.; Takemura, Y.; Nair, M.

    2016-07-01

    Combined treatment strategies based on magnetic nanoparticles (MNPs) with near infrared ray (NIR) biophotonic possess tremendous potential for non-invasive therapeutic approach. Nonetheless, investigations in this direction have been limited to peripheral body region and little is known about the potential biomedical application of this approach for brain. Here we report that transient NIR exposure is dissipation-free and has no adverse effect on the viability and plasticity of major brain cells in the presence or absence superparamagnetic nanoparticles. The 808 nm NIR laser module with thermocouple was employed for functional studies upon NIR exposure to brain cells. Magnetic nanoparticles were characterized using transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic laser scattering (DLS), and vibrating sample magnetometer (VSM). Brain cells viability and plasticity were analyzed using electric cell-substrate impedance sensing system, cytotoxicity evaluation, and confocal microscopy. When efficacious non-invasive photobiomodulation and neuro-therapeutical targeting and monitoring to brain remain a formidable task, the discovery of this dissipation-free, transient NIR photonic approach for brain cells possesses remarkable potential to add new dimension.

  4. Optimal Magnetic Field for Crossing Super-Para-Magnetic Nanoparticles through the Brain Blood Barrier: A Computational Approach

    Directory of Open Access Journals (Sweden)

    Maysam Z. Pedram

    2016-06-01

    Full Text Available This paper scrutinizes the magnetic field effect to deliver the superparamagnetic nanoparticles (SPMNs through the Blood Brain Barrier (BBB. Herein we study the interaction between the nanoparticle (NP and BBB membrane using Molecular Dynamic (MD techniques. The MD model is used to enhance our understanding of the dynamic behavior of SPMNs crossing the endothelial cells in the presence of a gradient magnetic field. Actuation of NPs under weak magnetic field offers the great advantage of a non-invasive drug delivery without the risk of causing injury to the brain. Furthermore, a weak magnetic portable stimulator can be developed using low complexity prototyping techniques. Based on MD simulation results in this paper, SPMNs can cross the cell membrane while experiencing very weak mechanical forces in the range of pN. This study also derives guidelines for the design of the SPMNs dedicated to crossing the BBB using external magnetic fields.

  5. Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods

    Energy Technology Data Exchange (ETDEWEB)

    Keating, Kristina [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Slater, Lee [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Ntarlagiannis, Dimitris [Rutgers Univ., Newark, NJ (United States). Dept. of Earth and Environmental Sciences; Williams, Kenneth H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division

    2015-02-24

    This documents contains the final report for the project "Integrated Geophysical Measurements for Bioremediation Monitoring: Combining Spectral Induced Polarization, Nuclear Magnetic Resonance and Magnetic Methods" (DE-SC0007049) Executive Summary: Our research aimed to develop borehole measurement techniques capable of monitoring subsurface processes, such as changes in pore geometry and iron/sulfur geochemistry, associated with remediation of heavy metals and radionuclides. Previous work has demonstrated that geophysical method spectral induced polarization (SIP) can be used to assess subsurface contaminant remediation; however, SIP signals can be generated from multiple sources limiting their interpretation value. Integrating multiple geophysical methods, such as nuclear magnetic resonance (NMR) and magnetic susceptibility (MS), with SIP, could reduce the ambiguity of interpretation that might result from a single method. Our research efforts entails combining measurements from these methods, each sensitive to different mineral forms and/or mineral-fluid interfaces, providing better constraints on changes in subsurface biogeochemical processes and pore geometries significantly improving our understanding of processes impacting contaminant remediation. The Rifle Integrated Field Research Challenge (IFRC) site was used as a test location for our measurements. The Rifle IFRC site is located at a former uranium ore-processing facility in Rifle, Colorado. Leachate from spent mill tailings has resulted in residual uranium contamination of both groundwater and sediments within the local aquifer. Studies at the site include an ongoing acetate amendment strategy, native microbial populations are stimulated by introduction of carbon intended to alter redox conditions and immobilize uranium. To test the geophysical methods in the field, NMR and MS logging measurements were collected before, during, and after acetate amendment. Next, laboratory NMR, MS, and SIP measurements

  6. Adrenomyeloneuropathy, a dynamic progressive disorder: brain magnetic resonance imaging of two cases

    Energy Technology Data Exchange (ETDEWEB)

    Mo, Yuan-Heng; Chen, Ya-Fang; Liu, Hon-Man [Department of Medical Imaging, National Taiwan University Hospital, 7 Chung-Shan South Road, 100, Taipei (Taiwan)

    2004-04-01

    Adrenomyeloneuropathy (AMN) is a phenotype variant of X-linked adrenoleukodystrophy. We present two patients with adult-onset AMN who were initially suspected to have demyelinating disorders radiologically and finally diagnosed on the basis of laboratory data. The brain magnetic resonance images showed abnormal signal intensity at pyramidal tracts and cerebellar hemisphere bilaterally with abnormal enhancement after contrast medium administration. Review of the literature shows that the brain magnetic resonance findings of adrenomyeloneuropathy may include normal brain, tract demyelination, white matter demyelination, or brain atrophy. Disease progression was demonstrated by follow-up imaging. (orig.)

  7. Magnetic resonance imaging and cell-based neurorestorative therapy after brain injury

    Directory of Open Access Journals (Sweden)

    Quan Jiang

    2016-01-01

    Full Text Available Restorative cell-based therapies for experimental brain injury, such as stroke and traumatic brain injury, substantially improve functional outcome. We discuss and review state of the art magnetic resonance imaging methodologies and their applications related to cell-based treatment after brain injury. We focus on the potential of magnetic resonance imaging technique and its associated challenges to obtain useful new information related to cell migration, distribution, and quantitation, as well as vascular and neuronal remodeling in response to cell-based therapy after brain injury. The noninvasive nature of imaging might more readily help with translation of cell-based therapy from the laboratory to the clinic.

  8. Combined passive and active shimming for in vivo MR spectroscopy at high magnetic fields

    Science.gov (United States)

    Juchem, Christoph; Muller-Bierl, Bernd; Schick, Fritz; Logothetis, Nikos K.; Pfeuffer, Josef

    2006-12-01

    The use of high magnetic fields increases the sensitivity and spectral dispersion in magnetic resonance spectroscopy (MRS) of brain metabolites. Practical limitations arise, however, from susceptibility-induced field distortions, which are increased at higher magnetic field strengths. Solutions to this problem include optimized shimming, provided that active, i.e., electronic, shimming can operate over a sufficient range. To meet our shim requirements, which were an order of magnitude greater than the active shim capacity of our 7 T MR system, we developed a combined passive and active shim approach. Simple geometries of ferromagnetic shim elements were derived and numerically optimized to generate a complete set of second-order spherical harmonic shim functions in a modular manner. The major goals of the shim design were maximization of shim field accuracy and ease of practical implementation. The theoretically optimized ferro-shim geometries were mounted on a cylindrical surface and placed inside the magnet bore, surrounding the subject's head and the RF coil. Passive shimming generated very strong shim fields and eliminated the worst of the field distortions, after which the field was further optimized by flexible and highly accurate active shimming. Here, the passive-shimming procedure was first evaluated theoretically, then applied in phantom studies and subsequently validated for in vivo1H MRS in the macaque visual cortex. No artifacts due to the passive shim setup were observed; adjustments were reproducible between sessions. The modularity and the reduction to two pieces per shim term in this study is an important simplification that makes the method applicable also for passive shimming within single sessions. The feasibility of very strong, flexible and high-quality shimming via a combined approach of passive and active shimming is of great practical relevance for MR imaging and spectroscopy at high field strengths where shim power is limited or where

  9. Clinical application of magnetic resonance in acute traumatic brain injury

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Dionei F.; Gaia, Felipe F.P. [Hospital de Base de Sao Jose do Rio Preto, SP (Brazil). Servico de Neurocirurgia]. E-mail: centro@cerebroecoluna.com.br; Spotti, Antonio R.; Tognola, Waldir A. [Faculdade de Medicina de Sao Jose do Rio Preto (FAMERP), SP (Brazil). Dept. de Ciencias Neurologicas; Andrade, Almir F. [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Dept. de Neurocirurgia da Emergencia

    2008-07-01

    Purpose: To evaluate the clinical applications of magnetic resonance imaging (MRI) in patients with acute traumatic brain injury (TBI): to identify the type, quantity, severity; and improvement clinical-radiological correlation. Method: Assessment of 55 patients who were imaged using CT and MRI, 34 (61.8%) males and 21 (38.2%) females, with acute (0 to 5 days) and closed TBI. Results: Statistical significant differences (McNemar test): occurred fractures were detected by CT in 29.1% and by MRI in 3.6% of the patients; subdural hematoma by CT in 10.9% and MRI in 36.4 %; diffuse axonal injury (DAI) by CT in 1.8% and MRI in 50.9%; cortical contusions by CT in 9.1% and MRI in 41.8%; subarachnoid hemorrhage by CT in 18.2% and MRI in 41.8%. Conclusion: MRI was superior to the CT in the identification of DAI, subarachnoid hemorrhage, cortical contusions, and acute subdural hematoma; however it was inferior in diagnosing fractures. The detection of DAI was associated with the severity of acute TBI. (author)

  10. Parkinson's disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy study.

    Science.gov (United States)

    Rango, Mario; Bonifati, Cristiana; Bresolin, Nereo

    2006-02-01

    In spite of several evidences for a mitochondrial impairment in Parkinson's disease (PD), so far it has not been possible to show in vivo mitochondrial dysfunction in the human brain of PD patients. The authors used the high temporal and spatial resolution 31 phosphorus magnetic resonance spectroscopy (31P MRS) technique, which they have previously developed in normal subjects and in patients with mitochondrial diseases to study mitochondrial function by observing high-energy phosphates (HEPs) and intracellular pH (pH) in the visual cortex of 20 patients with PD and 20 normal subjects at rest, during, and after visual activation. In normal subjects, HEPs remained unchanged during activation, but rose significantly (by 16%) during recovery, and pH increased during visual activation with a slow return to rest values. In PD patients, HEPs were within the normal range at rest and did not change during activation, but fell significantly (by 36%) in the recovery period; pH did not reveal a homogeneous pattern with a wide spread of values. Energy unbalance under increased oxidative metabolism requirements, that is, the postactivation phase, discloses a mitochondrial dysfunction that is present in the brain of patients with PD even in the absence of overt clinical manifestations, as in the visual cortex. This is in agreement with our previous findings in patients with mitochondrial disease without clinical central nervous system (CNS) involvement. The heterogeneity of the physicochemical environment (i.e., pH) suggests various degrees of subclinical brain involvement in PD. The combined use of MRS and brain activation is fundamental for the study of brain energetics in patients with PD and may prove an important tool for diagnostic purposes and, possibly, to monitor therapeutic interventions.

  11. High permeability cores to optimize the stimulation of deeply located brain regions using transcranial magnetic stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, R; Miranda, P C [Institute of Biophysics and Biomedical Engineering, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon (Portugal); Roth, Y [Advanced Technology Center, Sheba Medical Center, Tel-Hashomer (Israel); Zangen, A [Neurobiology Department, Weizmann Institute of Science, Rehovot 76100 (Israel)], E-mail: rnsalvador@fc.ul.pt

    2009-05-21

    Efficient stimulation of deeply located brain regions with transcranial magnetic stimulation (TMS) poses many challenges, arising from the fact that the induced field decays rapidly and becomes less focal with depth. We propose a new method to improve the efficiency of TMS of deep brain regions that combines high permeability cores, to increase focality and field intensity, with a coil specifically designed to induce a field that decays slowly with increasing depth. The performance of the proposed design was investigated using the finite element method to determine the total electric field induced by this coil/core arrangement on a realistically shaped homogeneous head model. The calculations show that the inclusion of the cores increases the field's magnitude by as much as 25% while also decreasing the field's decay with depth along specific directions. The focality, as measured by the area where the field's norm is greater than 1/{radical}2 of its maximum value, is also improved by as much as 15% with some core arrangements. The coil's inductance is not significantly increased by the cores. These results show that the presence of the cores might make this specially designed coil even more suited for the effective stimulation of deep brain regions.

  12. Magnetic field-induced acceleration of the accumulation of magnetic iron oxide nanoparticles by cultured brain astrocytes.

    Science.gov (United States)

    Lamkowsky, Marie-Christin; Geppert, Mark; Schmidt, Maike M; Dringen, Ralf

    2012-02-01

    Magnetic iron oxide nanoparticles (Fe-NPs) are considered for various biomedical and neurobiological applications that involve the presence of external magnetic fields. However, little is known on the effects of a magnetic field on the uptake of such particles by brain cells. Cultured brain astrocytes accumulated dimercaptosuccinate-coated Fe-NP in a time-, temperature-, and concentration-dependent manner. This accumulation was strongly enhanced by the presence of the magnetic field generated by a permanent neodymium iron boron magnet that had been positioned below the cells. The magnetic field-induced acceleration of the accumulation of Fe-NP increased almost proportional to the strength of the magnetic field applied, increasing the cellular-specific iron content from an initial 10 nmol/mg protein within 4 h of incubation at 37°C to up to 12,000 nmol/mg protein. However, presence of a magnetic field also increased the amounts of iron that attached to the cells during incubation with Fe-NP at 4°C. These results suggest that the presence of an external magnetic field promotes in cultured astrocytes both the binding of Fe-NP to the cell membrane and the internalization of Fe-NP. Copyright © 2011 Wiley Periodicals, Inc.

  13. Brain functional magnetic resonance imaging response to glucose and fructose infusions in humans

    Science.gov (United States)

    Objective: In animals, intracerebroventricular glucose and fructose have opposing effects on appetite and weight regulation. In humans, functional brain magnetic resonance imaging (fMRI) studies during carbohydrate ingestion suggest that glucose may regulate HT signaling but are potentially confoun...

  14. Combined radiotherapy and chemotherapy for high-grade brain tumours

    Science.gov (United States)

    Barazzuol, Lara

    Glioblastoma (GBM) is the most common primary brain tumour in adults and among the most aggressive of all tumours. For several decades, the standard care of GBM was surgical resection followed by radiotherapy alone. In 2005, a landmark phase III clinical trial coordinated by the European Organization for Research and Treatment of Cancer (EORTC) and the National Cancer Institute of Canada (NCIC) demonstrated the benefit of radiotherapy with concomitant and adjuvant temozolomide (TMZ) chemotherapy. With TMZ, the median life expectancy in optimally managed patients is still only 12-14 months, with only 25% surviving 24 months. There is an urgent need for new therapies in particular in those patients whose tumour has an unmethylated methylguanine methyltransferase gene (MGMT) promoter, which is a predictive factor of benefit from TMZ. In this dissertation, the nature of the interaction between TMZ and radiation is investigated using both a mathematical model, based on in vivo population statistics of survival, and in vitro experimentation on a panel of human GBM cell lines. The results show that TMZ has an additive effect in vitro and that the population-based model may be insufficient in predicting TMZ response. The combination of TMZ with particle therapy is also investigated. Very little preclinical data exists on the effects of charged particles on GBM cell lines as well as on the concomitant application of chemotherapy. In this study, human GBM cells are exposed to 3 MeV protons and 6 MeV alpha particles in concomitance with TMZ. The results suggest that the radiation quality does not affect the nature of the interaction between TMZ and radiation, showing reproducible additive cytotoxicity. Since TMZ and radiation cause DNA damage in cancer cells, there has been increased attention to the use of poly(ADP-ribose) polymerase (PARP) inhibitors. PARP is a family of enzymes that play a key role in the repair of DNA breaks. In this study, a novel PARP inhibitor, ABT-888

  15. Inductive Magnetic Footpoint Tracking by Combining the Minimum ...

    Indian Academy of Sciences (India)

    Abstract. Time-dependent magneto-hydrodynamic simulations of active region coronal magnetic field require the underlying photospheric magnetic footpoint velocities. The minimum energy fit (MEF) is a new velocity inversion technique to infer the photospheric magnetic footpoint velocities using a pair of vector ...

  16. Reconfigurable Magnetic Logic Combined with Nonvolatile Memory Writing

    KAUST Repository

    Luo, Zhaochu

    2016-11-16

    In the magnetic logic, four basic Boolean logic operations can be programmed by a magnetic bit at room temperature with a high output ratio (>103%). In the same clock cycle, benefiting from the built-in spin Hall effect, logic results can be directly written into magnetic bits using an all-electric method.

  17. Brain magnetic resonance imaging and magnetic resonance spectroscopy findings of children with kernicterus.

    Science.gov (United States)

    Sarı, Sahabettin; Yavuz, Alpaslan; Batur, Aabdussamet; Bora, Aydın; Caksen, Huseyin

    2015-01-01

    The term kernicterus, or bilirubin encephalopathy, is used to describe pathological bilirubin staining of the basal ganglia, brain stem, and cerebellum, and is associated with hyperbilirubinemia. Kernicterus generally occurs in untreated hyperbilirubinemia or cases where treatment is delayed. Magnetic resonance imaging (MRI)-based studies have shown characteristic findings in kernicterus. The objective of our study was to describe the role of (1)H magnetic resonance spectroscopy (MRS) in demonstrating these metabolic changes and to review conventional MRI findings of kernicterus. Forty-eight pediatric cases with kernicterus were included in this study. MRI and MRS examinations were performed on variable dates (10-29 days after birth). NAA, Cr, Cho, NAA/Cr, NAA/Cho, and Cho/Cr values were evaluated visually and by computer analysis. There was no statistically significant difference between the NAA and Cho levels in the acute kernicterus patients and the control group (healthy patients), whereas both were significantly elevated in the chronic kernicterus patients. Both the mean NAA/Cr and Cho/Cr ratio values were significantly higher in the acute and chronic cases compared to the control group. The NAA/Cho ratio value was statistically lower in the acute cases than in the control group while it was similar in the chronic cases. Conventional MR imaging and (1)H-MRS are important complementary tools in the diagnostics of neonatal bilirubin encephalopathy. This study provided important information for applying these MR modalities in the evaluation of neonates with bilirubin encephalopathy.

  18. Admission criteria to the Danish Brain Cancer Program are moderately associated with magnetic resonance imaging findings

    DEFF Research Database (Denmark)

    Hill, Thomas Winther; Nielsen, Mie Kiszka; Nepper-Rasmussen, Jørgen

    2013-01-01

    The objective of this study was to evaluate the Danish Brain Cancer Program by examining the criteria for admission to the program and the results of magnetic resonance imaging (MRI) of the brain in 359 patients referred to the program at the Odense University Hospital during one year...

  19. Language Development and Brain Magnetic Resonance Imaging Characteristics in Preschool Children with Cerebral Palsy

    Science.gov (United States)

    Choi, Ja Young; Choi, Yoon Seong; Park, Eun Sook

    2017-01-01

    Purpose: The purpose of this study was to investigate characteristics of language development in relation to brain magnetic resonance imaging (MRI) characteristics and the other contributing factors to language development in children with cerebral palsy (CP). Method: The study included 172 children with CP who underwent brain MRI and language…

  20. Pharmacologic resuscitation for hemorrhagic shock combined with traumatic brain injury

    DEFF Research Database (Denmark)

    Jin, Guang; Duggan, Michael; Imam, Ayesha

    2012-01-01

    We have previously demonstrated that valproic acid (VPA), a histone deacetylase inhibitor, can improve survival after hemorrhagic shock (HS), protect neurons from hypoxia-induced apoptosis, and attenuate the inflammatory response. We have also shown that administration of 6% hetastarch (Hextend [...... [Hex]) after traumatic brain injury (TBI) decreases brain swelling, without affecting size of the lesion. This study was performed to determine whether addition of VPA to Hex would decrease the lesion size in a clinically relevant large animal model of TBI + HS....

  1. How does transcranial magnetic stimulation modify neuronal activity in the brain? Implications for studies of cognition

    DEFF Research Database (Denmark)

    Siebner, Hartwig R; Hartwigsen, Gesa; Kassuba, Tanja

    2009-01-01

    Transcranial magnetic stimulation (TMS) uses a magnetic field to "carry" a short lasting electrical current pulse into the brain where it stimulates neurones, particularly in superficial regions of cerebral cortex. TMS can interfere with cognitive functions in two ways. A high intensity TMS pulse...

  2. In vivo magnetic resonance diffusion measurement in the brain of patients with multiple sclerosis

    DEFF Research Database (Denmark)

    Larsson, H B; Thomsen, C; Frederiksen, J

    1992-01-01

    Measurement of water self-diffusion in the brain in 25 patients with multiple sclerosis was performed by magnetic resonance imaging. Quantitative diffusion measurements were obtained using single spin-echo pulse sequences with pulsed magnetic field gradients of different magnitude. Twenty...

  3. Residual stress reduction by combined treatment of pulsed magnetic field and pulsed current

    Energy Technology Data Exchange (ETDEWEB)

    Cai Zhipeng, E-mail: czpdme@gmail.com [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China); Huang Xinquan [Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)

    2011-07-25

    Highlights: {yields} The combination of magnetic field and current releases stress significantly. {yields} Both magneto and electro-plasticity may exit in the combined treatment. {yields} Stress increase caused by current should be studied later. - Abstract: This paper reports a significant decrease on residual stress by combined treatment of a pulsed magnetic field and a pulse current on steel samples with pre-induced residual stress conditions, compared to a separately single treatment by either the pulsed magnetic field or the pulsed current. Briefly, 10% stress decrease by pulsed magnetic field treatment and 20% increase by pulsed current treatment were observed respectively. While 60% stress release is achieved by the combined treatments, in which the same magnetic field and current parameters were applied. It is supposed that the magnetic field facilitates dislocations depinning and pulsed current provides conduction electrons to drive dislocations to move further and faster. The combined effects lead to electro-magneto-plasticity and further residual stress release.

  4. Diffusion tensor and volumetric magnetic resonance imaging findings in the brains of professional musicians.

    Science.gov (United States)

    Acer, Niyazi; Bastepe-Gray, Serap; Sagiroglu, Ayse; Gumus, Kazim Z; Degirmencioglu, Levent; Zararsiz, Gokmen; Ozic, Muhammet Usame

    2018-03-01

    Professional musicians represent an ideal model to study the training-induced brain plasticity. The current study aimed to investigate the brain volume and diffusion characteristics of musicians using structural magnetic resonance and diffusion tensor imaging (DTI). The combined use of volumetric and diffusion methods in studying musician brain has not been done in literature. Our study group consisted of seven male musicians playing an instrument and seven age- and gender-matched non-musicians. We evaluated the volumes of gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) and calculated total intracranial volume (TIV) and measured the fractional anisotropy (FA) of pre-selected WM bundles: corpus callosum (CC), corticospinal tract (CST), superior longitudinal fasciculus (SLF), forceps major (ForMaj), forceps minor (ForMin), and arcuate fasciculus (AF). The mean WM/TIV volume in musicians was higher compared to non-musicians. The mean FA was lower in CC, SLF, ForMaj, ForMin, and right AF but higher in right CST in the musicians. The mean value of the total number of fibers was larger in the CST, SLF, left AF, and ForMaj in the musicians. The observed differences were not statistically significant between the groups (p>0.05). However, increased GM volume was found in the musicians compared to the non-musicians in the right and left cerebellum and supramarginal and angular gyrus, left superior and inferior parietal lobule and as well as left middle temporal gyrus. Our findings suggest differing brain structure in musicians and the confirmation of the results on a larger population. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Advanced techniques in magnetic resonance imaging of the brain in children with ADHD

    Energy Technology Data Exchange (ETDEWEB)

    Pastura, Giuseppe, E-mail: giuseppe.pastura@terra.com.b [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Pediatria; Mattos, Paulo [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Psiquiatria; Gasparetto, Emerson Leandro [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Radiologia; Araujo, Alexandra Prufer de Queiroz Campos [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Puericultura e Pediatria Martagao Gesteira. Dept. de Neuropediatria

    2011-04-15

    Attention deficit hyperactivity disorder (ADHD) affects about 5% of school-aged child. Previous published works using different techniques of magnetic resonance imaging (MRI) have demonstrated that there may be some differences between the brain of people with and without this condition. This review aims at providing neurologists, pediatricians and psychiatrists an update on the differences between the brain of children with and without ADHD using advanced techniques of magnetic resonance imaging such as diffusion tensor imaging, brain volumetry and cortical thickness, spectroscopy and functional MRI. Data was obtained by a comprehensive, non-systematic review of medical literature. The regions with a greater number of abnormalities are splenium of the corpus callosum, cingulated gyrus, caudate nucleus, cerebellum, striatum, frontal and temporal cortices. The brain regions where abnormalities are observed in studies of diffusion tensor, volumetry, spectroscopy and cortical thickness are the same involved in neurobiological theories of ADHD coming from studies with functional magnetic resonance imaging. (author)

  6. Functional Magnetic Resonance Imaging and Functional Near-Infrared Spectroscopy: Insights from Combined Recording Studies

    Directory of Open Access Journals (Sweden)

    Vanessa Scarapicchia

    2017-08-01

    Full Text Available Although blood oxygen level dependent (BOLD functional magnetic resonance imaging (fMRI is a widely available, non-invasive technique that offers excellent spatial resolution, it remains limited by practical constraints imposed by the scanner environment. More recently, functional near infrared spectroscopy (fNIRS has emerged as an alternative hemodynamic-based approach that possesses a number of strengths where fMRI is limited, most notably in portability and higher tolerance for motion. To date, fNIRS has shown promise in its ability to shed light on the functioning of the human brain in populations and contexts previously inaccessible to fMRI. Notable contributions include infant neuroimaging studies and studies examining full-body behaviors, such as exercise. However, much like fMRI, fNIRS has technical constraints that have limited its application to clinical settings, including a lower spatial resolution and limited depth of recording. Thus, by combining fMRI and fNIRS in such a way that the two methods complement each other, a multimodal imaging approach may allow for more complex research paradigms than is feasible with either technique alone. In light of these issues, the purpose of the current review is to: (1 provide an overview of fMRI and fNIRS and their associated strengths and limitations; (2 review existing combined fMRI-fNIRS recording studies; and (3 discuss how their combined use in future research practices may aid in advancing modern investigations of human brain function.

  7. Two is More Than One: How to Combine Brain Stimulation Rehabilitative Training for Functional Recovery?

    Science.gov (United States)

    Koganemaru, Satoko; Fukuyama, Hidenao; Mima, Tatsuya

    2015-01-01

    A number of studies have shown that non-invasive brain stimulation has an additional effect in combination with rehabilitative therapy to enhance functional recovery than either therapy alone. The combination enhances use-dependent plasticity induced by repetitive training. The neurophysiological mechanism of the effects of this combination is based on associative plasticity. However, these effects were not reported in all cases. We propose a list of possible strategies to achieve an effective association between rehabilitative training with brain stimulation for plasticity: (1) control of temporal aspect between stimulation and task execution; (2) the use of a shaped task for the combination; (3) the appropriate stimulation of neuronal circuits where use-dependent plastic changes occur; and (4) phase synchronization between rhythmically patterned brain stimulation and task-related patterned activities of neurons. To better utilize brain stimulation in neuro-rehabilitation, it is important to develop more effective techniques to combine them. PMID:26617497

  8. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  9. Combination of brain-computer interface training and goal-directed physical therapy in chronic stroke: a case report.

    Science.gov (United States)

    Broetz, Doris; Braun, Christoph; Weber, Cornelia; Soekadar, Surjo R; Caria, Andrea; Birbaumer, Niels

    2010-09-01

    There is no accepted and efficient rehabilitation strategy to reduce focal impairments for patients with chronic stroke who lack residual movements. A 67-year-old hemiplegic patient with no active finger extension was trained with a brain-computer interface (BCI) combined with a specific daily life-oriented physiotherapy. The BCI used electrical brain activity (EEG) and magnetic brain activity (MEG) to drive an orthosis and a robot affixed to the patient's affected upper extremity, which enabled him to move the paralyzed arm and hand driven by voluntary modulation of micro-rhythm activity. In addition, the patient practiced goal-directed physiotherapy training. Over 1 year, he completed 3 training blocks. Arm motor function, gait capacities (using Fugl-Meyer Assessment, Wolf Motor Function Test, Modified Ashworth Scale, 10-m walk speed, and goal attainment score), and brain reorganization (functional MRI, MEG) were repeatedly assessed. The ability of hand and arm movements as well as speed and safety of gait improved significantly (mean 46.6%). Improvement of motor function was associated with increased micro-oscillations in the ipsilesional motor cortex. This proof-of-principle study suggests that the combination of BCI training with goal-directed, active physical therapy may improve the motor abilities of chronic stroke patients despite apparent initial paralysis.

  10. Magnetic nanoparticles: an emerging technology for malignant brain tumor imaging and therapy

    Science.gov (United States)

    Wankhede, Mamta; Bouras, Alexandros; Kaluzova, Milota; Hadjipanayis, Costas G

    2012-01-01

    Magnetic nanoparticles (MNPs) represent a promising nanomaterial for the targeted therapy and imaging of malignant brain tumors. Conjugation of peptides or antibodies to the surface of MNPs allows direct targeting of the tumor cell surface and potential disruption of active signaling pathways present in tumor cells. Delivery of nanoparticles to malignant brain tumors represents a formidable challenge due to the presence of the blood–brain barrier and infiltrating cancer cells in the normal brain. Newer strategies permit better delivery of MNPs systemically and by direct convection-enhanced delivery to the brain. Completion of a human clinical trial involving direct injection of MNPs into recurrent malignant brain tumors for thermotherapy has established their feasibility, safety and efficacy in patients. Future translational studies are in progress to understand the promising impact of MNPs in the treatment of malignant brain tumors. PMID:22390560

  11. The electrically detected magnetic resonance microscope: combining conductive atomic force microscopy with electrically detected magnetic resonance.

    Science.gov (United States)

    Klein, Konrad; Hauer, Benedikt; Stoib, Benedikt; Trautwein, Markus; Matich, Sonja; Huebl, Hans; Astakhov, Oleksandr; Finger, Friedhelm; Bittl, Robert; Stutzmann, Martin; Brandt, Martin S

    2013-10-01

    We present the design and implementation of a scanning probe microscope, which combines electrically detected magnetic resonance (EDMR) and (photo-)conductive atomic force microscopy ((p)cAFM). The integration of a 3-loop 2-gap X-band microwave resonator into an AFM allows the use of conductive AFM tips as a movable contact for EDMR experiments. The optical readout of the AFM cantilever is based on an infrared laser to avoid disturbances of current measurements by absorption of straylight of the detection laser. Using amorphous silicon thin film samples with varying defect densities, the capability to detect a spatial EDMR contrast is demonstrated. Resonant current changes as low as 20 fA can be detected, allowing the method to realize a spin sensitivity of 8×10(6)spins/√Hz at room temperature.

  12. Comparing implementations of magnetic-resonance-guided fluorescence molecular tomography for diagnostic classification of brain tumors

    Science.gov (United States)

    Davis, Scott C.; Samkoe, Kimberley S.; O'Hara, Julia A.; Gibbs-Strauss, Summer L.; Paulsen, Keith D.; Pogue, Brian W.

    2010-09-01

    Fluorescence molecular tomography (FMT) systems coupled to conventional imaging modalities such as magnetic resonance imaging (MRI) and computed tomography provide unique opportunities to combine data sets and improve image quality and content. Yet, the ideal approach to combine these complementary data is still not obvious. This preclinical study compares several methods for incorporating MRI spatial prior information into FMT imaging algorithms in the context of in vivo tissue diagnosis. Populations of mice inoculated with brain tumors that expressed either high or low levels of epidermal growth factor receptor (EGFR) were imaged using an EGF-bound near-infrared dye and a spectrometer-based MRI-FMT scanner. All data were spectrally unmixed to extract the dye fluorescence from the tissue autofluorescence. Methods to combine the two data sets were compared using student's t-tests and receiver operating characteristic analysis. Bulk fluorescence measurements that made up the optical imaging data set were also considered in the comparison. While most techniques were able to distinguish EGFR(+) tumors from EGFR(-) tumors and control animals, with area-under-the-curve values=1, only a handful were able to distinguish EGFR(-) tumors from controls. Bulk fluorescence spectroscopy techniques performed as well as most imaging techniques, suggesting that complex imaging algorithms may be unnecessary to diagnose EGFR status in these tissue volumes.

  13. Classification of brain disease in magnetic resonance images using two-stage local feature fusion

    Science.gov (United States)

    Li, Tao; Li, Wu; Yang, Yehui

    2017-01-01

    Background Many classification methods have been proposed based on magnetic resonance images. Most methods rely on measures such as volume, the cerebral cortical thickness and grey matter density. These measures are susceptible to the performance of registration and limited in representation of anatomical structure. This paper proposes a two-stage local feature fusion method, in which deformable registration is not desired and anatomical information is represented from moderate scale. Methods Keypoints are firstly extracted from scale-space to represent anatomical structure. Then, two kinds of local features are calculated around the keypoints, one for correspondence and the other for representation. Scores are assigned for keypoints to quantify their effect in classification. The sum of scores for all effective keypoints is used to determine which group the test subject belongs to. Results We apply this method to magnetic resonance images of Alzheimer's disease and Parkinson's disease. The advantage of local feature in correspondence and representation contributes to the final classification. With the help of local feature (Scale Invariant Feature Transform, SIFT) in correspondence, the performance becomes better. Local feature (Histogram of Oriented Gradient, HOG) extracted from 16×16 cell block obtains better results compared with 4×4 and 8×8 cell block. Discussion This paper presents a method which combines the effect of SIFT descriptor in correspondence and the representation ability of HOG descriptor in anatomical structure. This method has the potential in distinguishing patients with brain disease from controls. PMID:28207873

  14. TREATMENT OF SINGLE BRAIN METASTASIS - RADIOTHERAPY ALONE OR COMBINED WITH NEUROSURGERY

    NARCIS (Netherlands)

    VECHT, CJ; HAAXMAREICHE, H; NOORDIJK, EM; PADBERG, GW; VOORMOLEN, JHC; HOEKSTRA, FH; TANS, JTJ; LAMBOOIJ, N; METSAARS, JAL; WATTENDORFF, AR; BRAND, R; HERMANS, J

    Most patients treated for single or multiple brain metastases die from progression of extracranial tumor activity. This makes it uncertain whether the combination of neurosurgery and radiotherapy for treatment of single brain metastasis will lead to better results than less invasive treatment with

  15. Micro-device combining electrophysiology and optical imaging for functional brain monitoring in freely moving animals

    Science.gov (United States)

    Miao, Peng; Wang, Qihong; Zhang, Lingke; Li, Miao; Thakor, Nitish V.

    2017-02-01

    Monitoring brain activities in awake and freely moving status is very important in physiological and pathological studies of brain functions. In this study, we developed a new standalone micro-device combining electrophysiology and optical imaging for monitoring the cerebral blood flow and neural activities with more feasibility for freely moving animals.

  16. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation.

    Science.gov (United States)

    Pashut, Tamar; Magidov, Dafna; Ben-Porat, Hana; Wolfus, Shuki; Friedman, Alex; Perel, Eli; Lavidor, Michal; Bar-Gad, Izhar; Yeshurun, Yosef; Korngreen, Alon

    2014-01-01

    Although transcranial magnetic stimulation (TMS) is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.

  17. Patch-clamp recordings of rat neurons from acute brain slices of the somatosensory cortex during magnetic stimulation

    Directory of Open Access Journals (Sweden)

    Tamar ePashut

    2014-06-01

    Full Text Available Although transcranial magnetic stimulation (TMS is a popular tool for both basic research and clinical applications, its actions on nerve cells are only partially understood. We have previously predicted, using compartmental modeling, that magnetic stimulation of central nervous system neurons depolarized the soma followed by initiation of an action potential in the initial segment of the axon. The simulations also predict that neurons with low current threshold are more susceptible to magnetic stimulation. Here we tested these theoretical predictions by combining in vitro patch-clamp recordings from rat brain slices with magnetic stimulation and compartmental modeling. In agreement with the modeling, our recordings demonstrate the dependence of magnetic stimulation-triggered action potentials on the type and state of the neuron and its orientation within the magnetic field. Our results suggest that the observed effects of TMS are deeply rooted in the biophysical properties of single neurons in the central nervous system and provide a framework both for interpreting existing TMS data and developing new simulation-based tools and therapies.

  18. A combined theoretical and in vitro modeling approach for predicting the magnetic capture and retention of magnetic nanoparticles in vivo

    Science.gov (United States)

    David, Allan E.; Cole, Adam J.; Chertok, Beata; Park, Yoon Shin; Yang, Victor C.

    2011-01-01

    Magnetic nanoparticles (MNP) continue to draw considerable attention as potential diagnostic and therapeutic tools in the fight against cancer. Although many interacting forces present themselves during magnetic targeting of MNP to tumors, most theoretical considerations of this process ignore all except for the magnetic and drag forces. Our validation of a simple in vitro model against in vivo data, and subsequent reproduction of the in vitro results with a theoretical model indicated that these two forces do indeed dominate the magnetic capture of MNP. However, because nanoparticles can be subject to aggregation, and large MNP experience an increased magnetic force, the effects of surface forces on MNP stability cannot be ignored. We accounted for the aggregating surface forces simply by measuring the size of MNP retained from flow by magnetic fields, and utilized this size in the mathematical model. This presumably accounted for all particle-particle interactions, including those between magnetic dipoles. Thus, our “corrected” mathematical model provided a reasonable estimate of not only fractional MNP retention, but also predicted the regions of accumulation in a simulated capillary. Furthermore, the model was also utilized to calculate the effects of MNP size and spatial location, relative to the magnet, on targeting of MNPs to tumors. This combination of an in vitro model with a theoretical model could potentially assist with parametric evaluations of magnetic targeting, and enable rapid enhancement and optimization of magnetic targeting methodologies. PMID:21295085

  19. The use of high-field intra-operative magnetic resonance imaging combined with language functional neuronavigation in glioma surgery

    OpenAIRE

    Yan ZHAO; Xiao-lei CHEN; Fei WANG; Guo-chen SUN; Yu-bo WANG; Zhi-jun SONG; Bai-nan XU

    2011-01-01

    Objective To explore the effect of high-field intra-operative magnetic resonance imaging(iMRI) combined with language functional neuronavigation in resection of glioma in language area of dominant hemisphere of the brain.Methods Twenty right handed patients(12 males and 8 females,aged from 20 to 61 years with mean of 43.6 years) with glioma close to arcuate fasciculus were involved in present study,and they were stratified into normal group(n=9) and aphasia group(n=11) according to the preope...

  20. A combined MR and CT study for precise quantitative analysis of the avian brain

    Czech Academy of Sciences Publication Activity Database

    Jirák, D.; Janáček, Jiří; Kear, B. P.

    2015-01-01

    Roč. 5, Oct 30 (2015), s. 16002 ISSN 2045-2322 R&D Projects: GA ČR(CZ) GAP302/12/1207 Institutional support: RVO:67985823 Keywords : avian brain * magnetic resonance imaging * computed tomography * Fakir probe Subject RIV: EA - Cell Biology Impact factor: 5.228, year: 2015

  1. Proton magnetic resonance spectroscopy of the brain in pediatric patients

    Energy Technology Data Exchange (ETDEWEB)

    Scarabino, Tommaso; Popolizio, Teresa; Bertolino, Alessandro; Salvolini, Ugo

    1999-05-01

    H1-MRS is a non-invasive technique which provides different levels of information on brain tissue: the N-acetyl aspartate (NAA) is an indicator of neuronal development, the choline containing compound peak (Cho) provides information on myelination and on cell membrane turnover and gliosis, inositol (Ins) is considered a marker of neuronal degeneration. Lactate may be detected in presence of defective energy metabolism. In the perineonatal period, the brain is apt to be insulted by a variety of events including asphyxia, hypoxemia, hemorrhage, which may subsequently cause delay in development. It is clinically important to assess the degree of brain damage and to obtain the prognostic information in the neonatal and early infantile period. MRS has become available for clinical examinations of the brain during development and these techniques can be used to document improvement or the progression towards irreversible damage.

  2. BOLD imaging in the mouse brain using a turboCRAZED sequence at high magnetic fields.

    Science.gov (United States)

    Schneider, Johannes T; Faber, Cornelius

    2008-10-01

    Functional MRI (fMRI) based on the detection of intermolecular double-quantum coherences (iDQC) has previously been shown to provide pronounced activation signal. For fMRI in small animals at very high magnetic fields, the essential fast gradient echo-based readout methods become problematic. Here, rapid intermolecular double-quantum coherence (iDQC) imaging was implemented, combining the iDQC preparation sequence with a Turbo spin echo-like readout. Four-step phase cycling and a novel intensity-ordered k-space encoding scheme with separate acquisition of odd and even echoes were essential to optimize signal to noise ratio efficiency. Compared with a single echo readout of iDQC signal, acceleration of factor 16 was achieved in phantoms using the novel method at 17.6 Tesla. In vivo, echo trains consisting of 32 echoes were possible and images of the mouse brain were obtained in 30 s. The blood oxygen level dependent (BOLD) effect in the mouse brain upon change of breathing gas was observed as average signal change of (6.3 +/- 1.1)% in iDQC images. Signal changes in conventional multi spin echo images were (4.4 +/- 2.3)% and (8.3 +/- 3.8)% with gradient echo methods. Combination of T(2)*-weighting with the fast iDQC sequence may yield higher signal changes than with either method alone, and establish fast iDQC imaging a robust tool for high field fMRI in small animals. (c) 2008 Wiley-Liss, Inc.

  3. Tuberculoma of the brain - A diagnostic dilemma: Magnetic resonance spectroscopy a new ray of hope

    Directory of Open Access Journals (Sweden)

    Subhasis Mukherjee

    2015-01-01

    Full Text Available Tuberculoma of the brain is an important clinical entity. The main challenge in the management of brain tuberculoma is its diagnosis. Appearance in computed tomography (CT scan of brain is common and consists of solitary or multiple ring-enhancing lesions with moderate perilesional edema, but these are not specific for tuberculoma as neurocysticercosis (NCC, coccidiomycosis, toxoplasmosis, metastasis and few other diseases may also have similar appearance on CT scan brain. Cerebrospinal fluid examination is often normal and biopsy and tissue culture from the lesion though the diagnosis of choice is technically too demanding and not feasible in most of the times. All these put the clinicians in a great dilemma as regard to a confidant diagnosis of tuberculoma of the brain. With advancement of imaging techniques, magnetic resonance imaging (MRI of brain with magnetic resonance spectroscopy (MRS has shown a great hope in this context as MRS shows a specific lipid peak in cases of tuberculoma which is not seen in any other differential diagnoses of tuberculoma. This review article is written to have an overview regarding the current diagnostic approach for brain tuberculoma with special emphasis on the role of MRS. Extensive literature review of the articles published in English was conducted using Google search, Google Scholar, PubMed and Medline using the keywords such as ring-enhancing lesions, etiology, tuberculoma, NCC, CT scan brain, MRI, MRS, images.

  4. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    OpenAIRE

    Giedd Jay N; Raznahan Armin; Mills Kathryn L; Lenroot Rhoshel K

    2012-01-01

    Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI) literature of male/female brain differences with emphasi...

  5. Magnetic fields and brain tumour risks in UK electricity supply workers.

    Science.gov (United States)

    Sorahan, T

    2014-04-01

    To investigate whether brain tumour risks are related to occupational exposure to low-frequency magnetic fields. Brain tumour risks experienced by 73 051 employees of the former Central Electricity Generating Board of England and Wales were investigated for the period 1973-2010. All employees were hired in the period 1952-82 and were employed for at least 6 months with some employment in the period 1973-82. Detailed calculations had been performed by others to enable an assessment to be made of exposures to magnetic fields. Poisson regression was used to calculate relative risks (rate ratios) of developing a brain tumour (or glioma or meningioma) for categories of lifetime, distant (lagged) and recent (lugged) exposure. Findings for glioma and for the generality of all brain tumours were unexceptional; risks were close to (or below) unity for all exposure categories and there was no suggestion of risks increasing with cumulative (or recent or distant) magnetic field exposures. There were no statistically significant dose-response effects shown for meningioma, but there was some evidence of elevated risks in the three highest exposure categories for exposures received >10 years ago. This study found no evidence to support the hypothesis that exposure to magnetic fields is a risk factor for gliomas, and the findings are consistent with the hypotheses that both distant and recent magnetic field exposures are not causally related to gliomas. The limited positive findings for meningioma may be chance findings; national comparisons argue against a causal interpretation.

  6. Acquired brain injury: combining social psychological and neuropsychological perspectives.

    Science.gov (United States)

    Walsh, R Stephen; Fortune, Donal G; Gallagher, Stephen; Muldoon, Orla T

    2014-01-01

    This theoretical paper reviews an emerging literature which attempts to bring together an important area of social psychology and neuropsychology. The paper presents a rationale for the integration of the social identity and clinical neuropsychological approaches in the study of acquired brain injury (ABI). The paper begins by reviewing the social and neuropsychological perspectives of ABI. Subsequently, theoretical and empirical studies that demonstrate the social influences on neuropsychology and the inherently social nature of mind are considered. Neuropsychological understandings of social identities and their potential relationships to the variability in ABIs are also discussed. The values of these understandings to ABI rehabilitation are then examined. The paper concludes by suggesting an agenda for future research that integrates the social identity and neuropsychological paradigms so that psychology might grow in its store of applicable knowledge to enhance support and rehabilitation for those with ABI.

  7. Combined neutron and synchrotron studies of magnetic films

    Indian Academy of Sciences (India)

    uncompensated magnetization close to the Co/FeF2 interface provides a natural explanation for the experimental observation that an antiferromagnet must exceed a critical thickness, before bias is produced. In a previous study of the influence of crystalline quality of FeF2 films on exchange bias, exchange bias was found ...

  8. Multi circular-cavity surface coil for magnetic resonance imaging of monkey's brain at 4 Tesla

    Science.gov (United States)

    Osorio, A. I.; Solis-Najera, S. E.; Vázquez, F.; Wang, R. L.; Tomasi, D.; Rodriguez, A. O.

    2014-11-01

    Animal models in medical research has been used to study humans diseases for several decades. The use of different imaging techniques together with different animal models offers a great advantage due to the possibility to study some human pathologies without the necessity of chirurgical intervention. The employ of magnetic resonance imaging for the acquisition of anatomical and functional images is an excellent tool because its noninvasive nature. Dedicated coils to perform magnetic resonance imaging experiments are obligatory due to the improvement on the signal-to-noise ratio and reduced specific absorption ratio. A specifically designed surface coil for magnetic resonance imaging of monkey's brain is proposed based on the multi circular-slot coil. Numerical simulations of the magnetic and electric fields were also performed using the Finite Integration Method to solve Maxwell's equations for this particular coil design and, to study the behavior of various vector magnetic field configurations and specific absorption ratio. Monkey's brain images were then acquired with a research-dedicated magnetic resonance imaging system at 4T, to evaluate the anatomical images with conventional imaging sequences. This coil showed good quality images of a monkey's brain and full compatibility with standard pulse sequences implemented in research-dedicated imager.

  9. An unusual finding of brain magnetic resonance imaging in a hypertensive patient

    Directory of Open Access Journals (Sweden)

    Harris A. Ngow

    2009-05-01

    Full Text Available Brain edema in patients with hypertensive encephalopathy frequently affects the parieto-occipital white matter. Hypertensive encephalopathy is thus included as a differential diagnosis in reversible posterior leukoencephalopathy syndrome. Diffuse white matter involvement rarely occurs. We report a 41-year old woman with hypertensive encephalopathy with diffuse and non-enhancing white matter hyper-intensities throughout the whole brain on magnetic resonance imaging (MRI. These hyperintensities spared the grey matter on T2-weighted and FLAIR sequence. These unusual finding on brain MRI was attributed to severe vasogenic cerebral edema resulting from accelerated hypertension.

  10. Probabilistic brain tissue segmentation in neonatal magnetic resonance imaging

    NARCIS (Netherlands)

    Anbeek, Petronella; Vincken, Koen L.; Groenendaal, Floris; Koeman, Annemieke; Van Osch, Matthias J. P.; Van der Grond, Jeroen

    A fully automated method has been developed for segmentation of four different structures in the neonatal brain: white matter (WM), central gray matter (CEGM), cortical gray matter (COGM), and cerebrospinal fluid (CSF). The segmentation algorithm is based on information from T2-weighted (T2-w) and

  11. Psychosis and autism: magnetic resonance imaging study of brain anatomy

    NARCIS (Netherlands)

    Toal, Fiona; Bloemen, Oswald J. N.; Deeley, Quinton; Tunstall, Nigel; Daly, Eileen M.; Page, Lisa; Brammer, Michael J.; Murphy, Kieran C.; Murphy, Declan G. M.

    2009-01-01

    BACKGROUND: Autism-spectrum disorder is increasingly recognised, with recent studies estimating that 1% of children in South London are affected. However, the biology of comorbid mental health problems in people with autism-spectrum disorder is poorly understood. AIMS: To investigate the brain

  12. Technical and experimental features of Magnetic Resonance Spectroscopy of brain glycogen metabolism.

    Science.gov (United States)

    Soares, Ana Francisca; Gruetter, Rolf; Lei, Hongxia

    2017-07-15

    In the brain, glycogen is a source of glucose not only in emergency situations but also during normal brain activity. Altered brain glycogen metabolism is associated with energetic dysregulation in pathological conditions, such as diabetes or epilepsy. Both in humans and animals, brain glycogen levels have been assessed non-invasively by Carbon-13 Magnetic Resonance Spectroscopy (13C-MRS) in vivo. With this approach, glycogen synthesis and degradation may be followed in real time, thereby providing valuable insights into brain glycogen dynamics. However, compared to the liver and muscle, where glycogen is abundant, the sensitivity for detection of brain glycogen by 13C-MRS is inherently low. In this review we focus on strategies used to optimize the sensitivity for 13C-MRS detection of glycogen. Namely, we explore several technical perspectives, such as magnetic field strength, field homogeneity, coil design, decoupling, and localization methods. Furthermore, we also address basic principles underlying the use of 13C-labeled precursors to enhance the detectable glycogen signal, emphasizing specific experimental aspects relevant for obtaining kinetic information on brain glycogen. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. A combined MR and CT study for precise quantitative analysis of the avian brain

    Science.gov (United States)

    Jirak, Daniel; Janacek, Jiri; Kear, Benjamin P.

    2015-10-01

    Brain size is widely used as a measure of behavioural complexity and sensory-locomotive capacity in avians but has largely relied upon laborious dissections, endoneurocranial tissue displacement, and physical measurement to derive comparative volumes. As an alternative, we present a new precise calculation method based upon coupled magnetic resonance (MR) imaging and computed tomography (CT). Our approach utilizes a novel interactive Fakir probe cross-referenced with an automated CT protocol to efficiently generate total volumes and surface areas of the brain tissue and endoneurocranial space, as well as the discrete cephalic compartments. We also complemented our procedures by using sodium polytungstate (SPT) as a contrast agent. This greatly enhanced CT applications but did not degrade MR quality and is therefore practical for virtual brain tissue reconstructions employing multiple imaging modalities. To demonstrate our technique, we visualized sex-based brain size differentiation in a sample set of Ring-necked pheasants (Phasianus colchicus). This revealed no significant variance in relative volume or surface areas of the primary brain regions. Rather, a trend towards isometric enlargement of the total brain and endoneurocranial space was evidenced in males versus females, thus advocating a non-differential sexually dimorphic pattern of brain size increase amongst these facultatively flying birds.

  14. Magnetization behavior of nanocrystalline systems combining ferromagnetic and antiferromagnetic phases

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, J.; Wagner, W.; Svygenhoven, H. van [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Meier, J.; Doudin, B.; Ansermet, J.P. [Ecole Polytechnique Federale, Lausanne (Switzerland)

    1997-09-01

    The magnetic properties of nanostructured materials on the basis of Fe and Ni have been investigated with a SQUID magnetometer, complementary to the small-angle neutron scattering study reported in the same volume. Measurements of the coercive field in a temperature range from 5 to 300 K confirm the validity of the random anisotropy model for our nanostructured systems. Furthermore, we obtain information about the presence and distribution of the antiferromagnetic oxides, joining the ferromagnetic grains. (author) 2 figs., 3 refs.

  15. Repetitive peripheral magnetic neurostimulation of multifidus muscles combined with motor training influences spine motor control and chronic low back pain.

    Science.gov (United States)

    Massé-Alarie, Hugo; Beaulieu, Louis-David; Preuss, Richard; Schneider, Cyril

    2017-03-01

    The study tested whether combining repetitive peripheral magnetic stimulation (RPMS) and motor training of the superficial multifidus muscle (MF) better improved the corticomotor control of spine than training alone in chronic low back pain (CLBP). Twenty-one participants with CLBP were randomly allocated to [RPMS+training] and [Sham+training] groups for three sessions (S1-S3) over a week where MF was stimulated before training (volitional contraction). Training was also home-practiced twice a day. Changes were tested at S1 and S3 for anticipatory postural adjustments (APAs) of MF and semi-tendinosus (ST), MF EMG activation, cortical motor plasticity (transcranial magnetic stimulation) and pain/disability. The RPMS group showed immediate decrease of pain at S1, then improvement of MF activation, ST APA, M1 facilitation, and pain/disability at S3. Changes were larger when brain excitability was lower at baseline. Disability index remained improved one month later. Combining RPMS with training of MF in CLBP impacted motor planning, MF and lumbopelvic spine motor control and pain/disability one week after the onset of protocol. Brain plasticity might have favoured motor learning and improved daily lumbopelvic spine control without pain generation. Clinically, RPMS impacted the function by improving the gains beyond those reached by training alone in CLBP. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  16. Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy-magnetic force microscopy combination

    National Research Council Canada - National Science Library

    Jaafar, Miriam; Iglesias-Freire, Oscar; Serrano-Ramón, Luis; Ibarra, Manuel Ricardo; de Teresa, Jose Maria; Asenjo, Agustina

    2011-01-01

    .... In particular, magnetic force microscopy (MFM) is used to characterize the domain configuration in ferromagnetic materials such as thin films grown by physical techniques or ferromagnetic nanostructures...

  17. Two is More Than One: How to Combine Brain Stimulation Rehabilitative Training for Functional Recovery?

    OpenAIRE

    Koganemaru, Satoko; Fukuyama, Hidenao; Mima, Tatsuya

    2015-01-01

    A number of studies have shown that non-invasive brain stimulation has an additional effect in combination with rehabilitative therapy to enhance functional recovery than either therapy alone. The combination enhances use-dependent plasticity induced by repetitive training. The neurophysiological mechanism of the effects of this combination is based on associative plasticity. However, these effects were not reported in all cases. We propose a list of possible strategies to achieve an effectiv...

  18. Brain Activation during Semantic Processing in Autism Spectrum Disorders via Functional Magnetic Resonance Imaging

    Science.gov (United States)

    Harris, Gordon J.; Chabris, Christopher F.; Clark, Jill; Urban, Trinity; Aharon, Itzhak; Steele, Shelley; McGrath, Lauren; Condouris, Karen; Tager-Flusberg, Helen

    2006-01-01

    Language and communication deficits are core features of autism spectrum disorders (ASD), even in high-functioning adults with ASD. This study investigated brain activation patterns using functional magnetic resonance imaging in right-handed adult males with ASD and a control group, matched on age, handedness, and verbal IQ. Semantic processing in…

  19. Advanced magnetic resonance imaging of the brain : MRI of the brain

    African Journals Online (AJOL)

    while deoxyhaemoglobin is paramagnetic; these different magnetic properties give rise to contrast in magnetic resonance images. Coupling of the haemodynamic changes to neuronal activation is still poorly understood due to an incomplete appreciation for the mechanisms responsible for regulation of local cerebral blood ...

  20. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2014-09-01

    26:349–354. Nagamoto-Combs K, McNeal DW, Morecraft RJ, Combs CK. 2007. Pro- longed microgliosis in the rhesus monkey central nervous system after...of whole brain networks, they reported reduced overall strength in connectivity and increased “small- worldness ” of TBI pa- tients at 3 months after...syringe (two smallest air bubbles were excluded from this study, owing to the limitation in volume estimation of small objects; details are provided in

  1. Proton magnetic resonance spectroscopy: clinical applications in patients with brain lesions

    Directory of Open Access Journals (Sweden)

    Sérgio Luiz Ramin

    Full Text Available CONTEXT: Proton spectroscopy has been recognized as a safe and noninvasive diagnostic method that, coupled with magnetic resonance imaging techniques, allows for the correlation of anatomical and physiological changes in the metabolic and biochemical processes occurring within previously-determined volumes in the brain. There are two methods of proton magnetic resonance spectroscopy: single voxel and chemical shift imaging OBJECTIVE: The present work focused on the clinical applications of proton magnetic resonance spectroscopy in patients with brain lesions. CONCLUSIONS: In vivo proton spectroscopy allows the detection of certain metabolites in brain tissue, such as N-acetyl aspartate, creatine, choline, myoinositol, amino acids and lipids, among others. N-acetyl aspartate is a neuronal marker and, as such, its concentration will decrease in the presence of aggression to the brain. Choline increase is the main indicator of neoplastic diseases. Myoinositol is raised in patients with Alzheimer's disease. Amino acids are encountered in brain abscesses. The presence of lipids is related to necrotic processes.

  2. Taking tests in the magnet: Brain mapping standardized tests.

    Science.gov (United States)

    Rubin, David C; Li, Dawei; Hall, Shana A; Kragel, Philip A; Berntsen, Dorthe

    2017-11-01

    Standardized psychometric tests are sophisticated, well-developed, and consequential instruments; test outcomes are taken as facts about people that impact their lives in important ways. As part of an initial demonstration that human brain mapping techniques can add converging neural-level evidence to understanding standardized tests, our participants completed items from standardized tests during an fMRI scan. We compared tests for diagnosing posttraumatic stress disorder (PTSD) and the correlated measures of Neuroticism, Attachment, and Centrality of Event to a general-knowledge baseline test. Twenty-three trauma-exposed participants answered 20 items for each of our five tests in each of the three runs for a total of 60 items per test. The tests engaged different neural processes; which test a participant was taking was accurately predicted from other participants' brain activity. The novelty of the application precluded specific anatomical predictions; however, the interpretation of activated regions using meta-analyses produced encouraging results. For instance, items on the Attachment test engaged regions shown to be more active for tasks involving judgments of others than judgments of the self. The results are an initial demonstration of a theoretically and practically important test-taking neuroimaging paradigm and suggest specific neural processes in answering PTSD-related tests. Hum Brain Mapp 38:5706-5725, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Prospective analysis on brain magnetic resonance imaging in children.

    Science.gov (United States)

    Biebl, Ariane; Frechinger, Bettina; Fellner, Christine Maria; Ehrenmüller, Margit; Povysil, Brigitte; Fellner, Franz; Schmitt, Klaus; Furthner, Dieter

    2015-05-01

    Previous studies have addressed the prevalence of incidental findings in adult populations. There are few studies following paediatric patients, most of data were retrieved retrospectively. We conducted a prospective study to determine the prevalence of incidental, pathologic and normal findings in a symptomatic paediatric population. The subjects of this prospective single centre study are 436 children aged 0-18 years with clinical symptoms and subsequent first brain MRI. Normal, incidental as well as pathologic MRI findings are documented in association with age, gender, neurological examination and previous investigations (CCT, EEG). Secondary outcome parameters are defined as MRI results and their implications. Two board-certified radiologists prospectively analysed MR images without knowing the result from each other. The 436 patients with brain MRI were categorized into three groups as follows: 155 (35.5%) patients had normal findings, 163 (37.4%) had incidental findings and 118 (27.1%) had pathological findings in brain MRI. When adding patients with pathologic and incidental findings we report even more (47.9%). We analysed the correlation between neurologic examination and MRI result and it was significant (p-value 0.0008). The p-value for concordance of both radiology reports was MRI in symptomatic children. Incidental findings are common in paediatric patients but we report the highest prevalence. Our data may help guiding management decision in a consistent and clinically appropriate manner. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  4. Magnetic resonance imaging of the brain in congenital cytomegalovirus infection

    Energy Technology Data Exchange (ETDEWEB)

    Boesch, C.; Issakainen, J.; Kewitz, G.; Kikinis, R.; Martin, E.; Boltshauser, E.

    1989-01-01

    The children (age 2 months to 8 years) with a congenital cytomegalovirus (CMV) infection were studied by magnetic resonance imaging (MRI) using a 2.35 Tesla magnet. CMV infection was confirmed by serological investigations and virus culture in the neonatal period. Nine children had severe mental retardation and cerebral palsy, 1 patient suffered from microcephaly, ataxia and deafness. The cranial MRI examination showed the following abnormalities (N): Dilated lateral ventricles (10) and subarachnoid space (8), oligo/pacgyria (8), delayed/pathological myelination (7), paraventricular cysts (6), intra-cerebral calcification (1). This lack of sensitivity for calcification is explainable by the basic principles of MRI. The paraventricular cystic lesions were adjacent ot the occipital horns of the lateral ventricles and separated only by a thin membrane. This finding might represent a 'new sign' for congenital CMV infection in MRI examinations, being characteristic but nevertheless nonspecific, like calcification in CT.

  5. Noninvasive detection of temozolomide in brain tumor xenografts by magnetic resonance spectroscopy

    DEFF Research Database (Denmark)

    Kato, Y.; Holm, David Alberg; Okollie, B.

    2010-01-01

    detection of drug directly in the tumor can be critically important for accessing, predicting, and eventually improving effectiveness of therapy. In this study, in vivo magnetic resonance spectroscopy (MRS) was used to detect an anticancer agent, temozolomide (TMZ), in vivo in murine xenotransplants of U87......MG human brain cancer. Dynamic magnetic resonance imaging (MRI) with the low-molecular-weight contrast agent, gadolinium diethylenetriaminepentaacetic acid (GdDTPA), was used to evaluate tumor vascular parameters. Carbon-13-labeled TMZ ([C-13]TMZ, 99%) was intraperitoneally administered at a dose...... experiments demonstrated slower recovery of MRI signal following an intravenous bolus injection of GdDTPA, higher vascular flow and volume obtained by T-2*-weighted MRI, as well as enhanced uptake of the contrast agent in the brain tumor compared with normal brain detected by T-1-weighted MRI. These data...

  6. Surgical leg rotation: cortical neuroplasticity assessed through brain mapping using transcranial magnetic stimulation

    Science.gov (United States)

    Benedetti, Maria Grazia; Rota, Viviana; Manfrini, Marco; Perucca, Laura; Caronni, Antonio

    2014-01-01

    Rotationplasty (Borggreve-Van Nes operation) is a rare limb salvage procedure, most often applied to children presenting with sarcoma of the distal femur. In type A1 operation, the distal thigh is removed and the proximal tibia is axially rotated by 180°, remodeled, grafted onto the femoral stump, and then prosthetized. The neurovascular bundle is spared. The rotated ankle then works as a knee. The foot plantar and dorsal flexors act as knee extensors and flexors, respectively. Functional results may be excellent. Cortical neuroplasticity was studied in three men (30–31 years) who were operated on the left lower limb at ages between 7 and 11 years and were fully autonomous with a custom-made prosthesis, as well as in three age–sex matched controls. The scalp stimulation coordinates, matching the patients’ brain MRI spots, were digitized through a ‘neuronavigation’ optoelectronic system, in order to guide the transcranial magnetic stimulation coil, thus ensuring spatial precision during the procedure. Through transcranial magnetic stimulation driven by neuronavigation, the cortical representations of the contralateral soleus and vastus medialis muscles were studied in terms of amplitude of motor evoked potentials (MEPs) and centering and width of the cortical areas from which the potentials could be evoked. Map centering on either hemisphere did not differ substantially across muscles and participants. In the operated patients, MEP amplitudes, the area from which MEPs could be evoked, and their product (volume) were larger for the muscles of the unaffected side compared with both the rotated soleus muscle (average effect size 0.75) and the muscles of healthy controls (average effect size 0.89). In controls, right–left differences showed an effect size of 0.38. In no case did the comparisons reach statistical significance (P>0.25). Nevertheless, the results seem consistent with cortical plasticity reflecting strengthening of the unaffected leg and a

  7. Magnetic resonance diffusion tractography of the preterm infant brain: a systematic review.

    Science.gov (United States)

    Pannek, Kerstin; Scheck, Simon M; Colditz, Paul B; Boyd, Roslyn N; Rose, Stephen E

    2014-02-01

    Preterm birth is associated with an increased risk of adverse neurodevelopmental outcomes. Diffusion magnetic resonance imaging (dMRI) combined with tractography can be used to assess non-invasively white matter microstructure and brain development in preterm infants. Our aim was to conduct a systematic review of the current evidence obtained from tractography studies of preterm infants in whom MRI was performed up to term-equivalent age. Databases were searched for dMRI tractography studies of preterm infants. Twenty-two studies were assessed. The most frequently assessed tracts included the corticospinal tract, the corpus callosum, and the optic radiations. The superior longitudinal fasciculus, and the anterior and superior thalamic radiations were investigated less frequently. A clear relationship exists between diffusion metrics and postmenstrual age at the time of scanning, although the evidence of an effect of gestational age at birth and white matter injury is conflicting. Sex and laterality may play an important role in the relationship between diffusion metrics, early clinical assessment, and outcomes. Studies involving infants of all gestational ages are required to elucidate the relationship between gestational age and diffusion metrics, and to establish the utility of tractography as a predictive tool. There is a need for more robust acquisition and analysis methods to improve the accuracy of assessing development of white matter pathways. © 2013 Mac Keith Press.

  8. Transcranial Magnetic Stimulation and Deep Brain Stimulation in the treatment of alcohol dependence.

    Science.gov (United States)

    Alba-Ferrara, L; Fernandez, F; Salas, R; de Erausquin, G A

    2014-12-01

    Alcohol dependence is a major social, economic, and public health problem. Alcoholism can lead to damage of the gastrointestinal, nervous, cardiovascular, and respiratory systems and it can be lethal, costing hundreds of billions to the health care system. Despite the existence of cognitive-behavioral therapy, psychosocial interventions, and spiritually integrated treatment to treat it, alcohol dependence has a high relapse rate and poor prognosis, albeit with high interindividual variability. In this review, we discuss the use of two neuromodulation techniques, namely repetitive transcranial magnetic stimulation (rTMS) and deep brain stimulation (DBS), and their advantages and disadvantages compared to first-line pharmacological treatment for alcohol dependence. We also discuss rTMS and DBS targets for alcohol dependence treatment, considering experimental animal and human evidence, with careful consideration of methodological issues preventing the identification of feasible targets for neuromodulation treatments, as well as inter-individual variability factors influencing alcoholism prognosis. Lastly, we anticipate future research aiming to tailor the treatment to each individual patient by combining neurofunctional, neuroanatomical and neurodisruptive techniques optimizing the outcome.

  9. Combined influence of azimuthal and axial magnetic fields on resonant electron acceleration in plasma

    Science.gov (United States)

    Singh, Arvinder; Rajput, Jyoti; Kant, Niti

    2017-11-01

    Resonant enhancement in electron acceleration due to a circularly polarized laser pulse in plasma, under the combined influence of external azimuthal and axial magnetic fields, is studied. We have investigated direct electron acceleration in plasma by employing a relativistic single particle simulation. The plasma is magnetized with an azimuthal magnetic field applied in the perpendicular plane and an axial magnetic field applied along the direction of laser beam propagation. Resonance takes place between electron and electric field of the laser pulse for the optimum value of the combined magnetic field, which supports electron acceleration to higher energies, up to the betatron resonance point. The optimum value of these magnetic fields is highly sensitive to laser initial intensity and laser initial spot size. The effects of laser intensity, initial spot size, and laser pulse duration are taken into consideration in optimizing the magnetic field for efficient electron acceleration. Higher electron energy gain, of the order of GeV, is observed by employing terawatt circularly polarized laser pulses in plasma under the influence of combined magnetic field of about 10 MG.

  10. In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.

    Science.gov (United States)

    Zhao, Lingyun; Huo, Meijun; Liu, Jiayi; Yao, Zhu; Li, Danye; Zhao, Zhiwei; Tang, Jintian

    2013-02-01

    Cancer comprehensive treatment has been fully recognized as it can provide an effective multimodality approach for fighting cancers. In therapeutic oncology, hyperthermic adjuvant chemotherapy termed as thermochemotherapy plays an increasing role in multimodality cancer treatment. Currently, targeted nanothermotherapy is one of the effective hyperthermia approach based on magnetic nanoparticles (MNPs), which can be achieved by applying biocompatible nanoscaled metallic particles that convert electromagnetic energy into heat, for instance, magnetic fluid hyperthermia (MFH) mediated by superparamagnetic iron oxide nanoparticles (SPIONs). Upon exposure under alternative magnetic field (AMF), SPIONs can generate heat through oscillation of their magnetic moment. Nowadays, clinical trials at phase II are now under investigations for MFH on patients in Germany and Japan and demonstrate very inspiring for cancer therapy. In this work we explore the feasibility and effectiveness of magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate, an anti-cancer drug, for breast cancer comprehensive treatment. Amino silane coated MNPs as agent of MFH were prepared by the chemical precipitation method. Physiochemical characterizations on MNPs have been systematically carried out by various instrumental analyses. Inductive heating property of the MNPs was evaluated by monitoring the temperature increase of the MNPs suspension under AMF. The in-vitro cytotoxicity results on human breast cancer cell MCF-7 by CCK-8 assay indicated the bi-modal cancer treatment approach for combined MFH and chemotherapy is more effective than mono-modal treatment, indicating a thermal enhancement effect of hyperthermia on drug cytocoxicity. The magnetic thermochemotherapy mediated by MNPs combined with methotrexate can realize cancer comprehensive treatment thus has great potential in clinical application.

  11. Functional Magnetic Resonance Study of Non-conventional Morphological Brains: malnourished rats

    Directory of Open Access Journals (Sweden)

    Martin R.

    2015-08-01

    Full Text Available Malnutrition during brain development can cause serious problems that can be irreversible. Dysfunctional patterns of brain activity can be detected with functional MRI. We used BOLD functional Magnetic Resonance Imaging (fMRI to investigate region differences of brain activity between control and malnourished rats. The food-competition method was applied to a rat model to induce malnutrition during lactation. A 7T magnet was used to detect changes of the BOLD signal associated with changes in brain activity caused by the trigeminal nerve stimulation in malnourished and control rats. Major neuronal activation was observed in malnourished rats in several brain regions, including cerebellum, somatosensory cortex, hippocampus, and hypothalamus. Statistical analysis of the BOLD signals from various brain areas revealed significant differences in somatosensory cortex between the control and experimental groups, as well as a significant difference between the cerebellum and other structures in the experimental group. This study, particularly in malnourished rats, demonstrates increased BOLD activation in the cerebellum.

  12. Magnetic resonance spectroscopy for assessment of brain injury in the rat model of sepsis.

    Science.gov (United States)

    Wen, Miaoyun; Lian, Zhesi; Huang, Linqiang; Zhu, Senzhi; Hu, Bei; Han, Yongli; Deng, Yiyu; Zeng, Hongke

    2017-11-01

    The diagnostic value of magnetic resonance spectroscopy (MRS), T2-weighted imaging (T2WI) and serum markers of brain injury in a rat model of sepsis were investigated. Rats were randomly divided into the control group and 6, 12 and 24 h after lipopolysaccharide-injection groups. Brain morphology and metabolism were assessed with T2WI magnetic resonance imaging (MRI) and MRS. Serum and brain tissue samples were then collected to examine the concentrations of neuron-specific enolase (NSE) and S100-β protein. Brain T2WI showed no differences between the groups. N-acetylaspartate/choline (NAA/Cr) ratio measured by MRS showed different degrees of decrease in the sepsis groups, and serum NSE and S100-β concentrations were increased compared with the control group. Apoptosis rates were measured in the right hippocampal area, and there were statistically significant differences between the indicated groups and the control group (p<0.05). The correlation between apoptosis rate and NAA/Cr ratio was closer than that between apoptosis rate and NSE or S100-β (-0.925 vs. 0.434 vs. 0.517, respectively). In conclusion, MRS is a sensitive, non-invasive method to investigate complications of brain injury in septic rats, which may be utilized for the early diagnosis of brain injury caused by sepsis.

  13. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain.

    Science.gov (United States)

    Zhang, Zhan-Chi; Luan, Feng; Xie, Chun-Yan; Geng, Dan-Dan; Wang, Yan-Yong; Ma, Jun

    2015-06-01

    In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz) ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers), to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz) increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  14. Low-frequency transcranial magnetic stimulation is beneficial for enhancing synaptic plasticity in the aging brain

    Directory of Open Access Journals (Sweden)

    Zhan-chi Zhang

    2015-01-01

    Full Text Available In the aging brain, cognitive function gradually declines and causes a progressive reduction in the structural and functional plasticity of the hippocampus. Transcranial magnetic stimulation is an emerging and novel neurological and psychiatric tool used to investigate the neurobiology of cognitive function. Recent studies have demonstrated that low-frequency transcranial magnetic stimulation (≤1 Hz ameliorates synaptic plasticity and spatial cognitive deficits in learning-impaired mice. However, the mechanisms by which this treatment improves these deficits during normal aging are still unknown. Therefore, the current study investigated the effects of transcranial magnetic stimulation on the brain-derived neurotrophic factor signal pathway, synaptic protein markers, and spatial memory behavior in the hippocampus of normal aged mice. The study also investigated the downstream regulator, Fyn kinase, and the downstream effectors, synaptophysin and growth-associated protein 43 (both synaptic markers, to determine the possible mechanisms by which transcranial magnetic stimulation regulates cognitive capacity. Transcranial magnetic stimulation with low intensity (110% average resting motor threshold intensity, 1 Hz increased mRNA and protein levels of brain-derived neurotrophic factor, tropomyosin receptor kinase B, and Fyn in the hippocampus of aged mice. The treatment also upregulated the mRNA and protein expression of synaptophysin and growth-associated protein 43 in the hippocampus of these mice. In conclusion, brain-derived neurotrophic factor signaling may play an important role in sustaining and regulating structural synaptic plasticity induced by transcranial magnetic stimulation in the hippocampus of aging mice, and Fyn may be critical during this regulation. These responses may change the structural plasticity of the aging hippocampus, thereby improving cognitive function.

  15. Structural Image Analysis of the Brain in Neuropsychology Using Magnetic Resonance Imaging (MRI) Techniques.

    Science.gov (United States)

    Bigler, Erin D

    2015-09-01

    Magnetic resonance imaging (MRI) of the brain provides exceptional image quality for visualization and neuroanatomical classification of brain structure. A variety of image analysis techniques provide both qualitative as well as quantitative methods to relate brain structure with neuropsychological outcome and are reviewed herein. Of particular importance are more automated methods that permit analysis of a broad spectrum of anatomical measures including volume, thickness and shape. The challenge for neuropsychology is which metric to use, for which disorder and the timing of when image analysis methods are applied to assess brain structure and pathology. A basic overview is provided as to the anatomical and pathoanatomical relations of different MRI sequences in assessing normal and abnormal findings. Some interpretive guidelines are offered including factors related to similarity and symmetry of typical brain development along with size-normalcy features of brain anatomy related to function. The review concludes with a detailed example of various quantitative techniques applied to analyzing brain structure for neuropsychological outcome studies in traumatic brain injury.

  16. Development of Magnetic Resonance Imaging Biomarkers for Traumatic Brain Injury

    Science.gov (United States)

    2013-07-01

    of imaging may provide a means for monitor- ing longitudinal changes in iron content in dementia, multiple sclerosis , traumatic brain injury, and...criteria: Patients aged 18 or older with an initial Glasgow Coma Scale (GCS) score of 3 13-15 in ED with any period of loss of consciousness less than 30...n=18), 61% 8 were men and 39% women, and the average patient age was 34.83±14.30 years. There 9 was no age difference between patient and controls

  17. Magnetic resonance spectroscopy reveals an impaired brain metabolic profile in mice resistant to cerebral malaria infected with Plasmodium berghei ANKA.

    Science.gov (United States)

    Penet, Marie-France; Kober, Frank; Confort-Gouny, Sylviane; Le Fur, Yann; Dalmasso, Christiane; Coltel, Nicolas; Liprandi, Agnès; Gulian, Jean-Marc; Grau, Georges E; Cozzone, Patrick J; Viola, Angèle

    2007-05-11

    Malaria is a major cause of morbidity and mortality with an annual death toll exceeding one million. Severe malaria is a complex multisystem disorder, including one or more of the following complications: cerebral malaria, anemia, acidosis, jaundice, respiratory distress, renal insufficiency, coagulation anomalies, and hyperparasitemia. Using a combined in vivo/in vitro metabolic-based approach, we investigated the putative pathogenic effects of Plasmodium berghei ANKA on brain, in a mouse strain developing malaria but resistant to cerebral malaria. The purpose was to determine whether the infection could cause a brain dysfunction distinct from the classic cerebral syndrome. Mice resistant to cerebral malaria were infected with P. berghei ANKA and explored during both the symptomless and the severe stage of the disease by using in vivo brain magnetic resonance imaging and spectroscopy. The infected mice did not present the lesional and metabolic hallmarks of cerebral malaria. However, brain dysfunction caused by anemia, parasite burden, and hepatic damage was evidenced. We report an increase in cerebral blood flow, a process allowing temporary maintenance of oxygen supply to brain despite anemia. Besides, we document metabolic anomalies affecting choline-derived compounds, myo-inositol, glutamine, glycine, and alanine. The choline decrease appears related to parasite proliferation. Glutamine, myo-inositol, glycine, and alanine variations together indicate a hepatic encephalopathy, a finding in agreement with the liver damage detected in mice, which is also a feature of the human disease. These results reveal the vulnerability of brain to malaria infection at the severe stage of the disease even in the absence of cerebral malaria.

  18. Treatment of brain metastases of renal cell cancer with combined hypofractionated stereotactic radiotherapy and whole brain radiotherapy with hippocampal sparing.

    Science.gov (United States)

    Vrána, David; Študentová, Hana; Matzenauer, Marcel; Vlachová, Zuzana; Cwiertka, Karel; Gremlica, David; Kalita, Ondřej

    2016-06-01

    Renal cell cancer patients with brain metastatic disease generally have poor prognosis. Treatment options include surgery, radiotherapy, targeted therapy or best supportive care with respect to disease burden, patient preference and performance status. In the present case report the radiotherapy technique combining whole brain radiotherapy with hippocampal sparing (hippocampal avoidance whole brain radiotherapy HA-WBRT) and hypofractionated stereotactic radiotherapy (SRT) of the brain metastases is performed in a patient with metastatic renal cell carcinoma. HA-WBRT was administered to 30 Gy in 10 fractions with sparing of the hippocampal structures and SRT of 21 Gy in 3 fractions to brain metastases which has preceded the HA-WBRT. Two single arc volumetric modulated arc radiotherapy (VMAT) plans were prepared using Monaco planning software. The HA-WBRT treatment plan achieved the following results: D2=33.91 Gy, D98=25.20 Gy, D100=14.18 Gy, D50=31.26 Gy. The homogeneity index was calculated as a deduction of the minimum dose in 2% and 98% of the planning target volume (PTV), divided by the minimum dose in 50% of the PTV. The maximum dose to the hippocampus was 17.50 Gy and mean dose was 11.59 Gy. The following doses to organs at risk (OAR) were achieved: Right opticus Dmax, 31.96 Gy; left opticus Dmax, 30.96 Gy; chiasma D max, 32,76 Gy. The volume of PTV for stereotactic radiotherapy was 3,736 cm3, with coverage D100=20.95 Gy and with only 0.11% of the PTV being irradiated to dose below the prescribed dose. HA-WBRT with SRT represents a feasible technique for radiotherapy of brain metastatic disease, however this technique is considerably demanding on departmental equipment and staff time/experience.

  19. Soap bubble appearance in brain magnetic resonance imaging: cryptococcal meningoencephalitis.

    Science.gov (United States)

    Vieira, Marcelo Adriano da Cunha e Silva; Costa, Carlos Henrique Nery; Ribeiro, José Carlos Castelo Branco; Nunes-Filho, Lucídio Portella; Rabelo, Marcos Glebson Gomes; Almeida-Neto, Walfrido Salmito de

    2013-01-01

    Although cryptococcal infections begin in the lungs, meningoencephalitis is the most frequently encountered manifestation of cryptococcosis among individuals with advanced immunosuppression. As the infection progresses along the Virchow-Robin spaces, these structures may become dilated with mucoid material produced by the capsule of the organism. We report a case of a 24-year-old man with cryptococcal meningoencephalitis in which magnetic resonance imaging showed clusters of gelatinous pseudocysts in the periventricular white matter, basal ganglia, mammillary bodies, midbrain peduncles and nucleus dentatus with a soap bubble appearance.

  20. Soap bubble appearance in brain magnetic resonance imaging: cryptococcal meningoencephalitis

    Directory of Open Access Journals (Sweden)

    Marcelo Adriano da Cunha e Silva Vieira

    2013-09-01

    Full Text Available Although cryptococcal infections begin in the lungs, meningoencephalitis is the most frequently encountered manifestation of cryptococcosis among individuals with advanced immunosuppression. As the infection progresses along the Virchow-Robin spaces, these structures may become dilated with mucoid material produced by the capsule of the organism. We report a case of a 24-year-old man with cryptococcal meningoencephalitis in which magnetic resonance imaging showed clusters of gelatinous pseudocysts in the periventricular white matter, basal ganglia, mammillary bodies, midbrain peduncles and nucleus dentatus with a soap bubble appearance.

  1. Regional magnetic resonance spectroscopy of the brain in autistic individuals

    Energy Technology Data Exchange (ETDEWEB)

    Hisaoka, S.; Harada, M.; Nishitani, H. [Dept. of Radiology, School of Medicine, University of Tokushima (Japan); Mori, K. [Dept. of Paediatrics, School of Medicine, University of Tokushima (Japan)

    2001-06-01

    We studied the variations in the concentration of metabolites with brain region and age in autistic individuals and normal controls using multiple analysis of covariance. We examined 55 autistic individuals (2-21 years old, 47 male and eight female) and 51 normal children (3 months-15 years old, 26 boys and 25 girls). Single volumes of interest were placed in the frontal, parietal and temporal region on both sides, the brain stem and cingulate gyrus. The concentration of each metabolite was quantified by the water reference method. The concentration of N-acetylaspartate in the temporal regions (Brodmann's areas 41 and 42) in the autistic individuals were significantly lower than those in the controls (P < 0.05), but concentrations in other regions were not significantly different between the autistic individuals and controls. This suggests low density or dysfunction of neurones in Brodmann's areas 41 and 42 in autistic individual, which might be related to the disturbances of the sensory speech centre (Wernicke's area) in autism. (orig.)

  2. In vivo detection of brain Krebs cycle intermediate by hyperpolarized magnetic resonance.

    Science.gov (United States)

    Mishkovsky, Mor; Comment, Arnaud; Gruetter, Rolf

    2012-12-01

    The Krebs (or tricarboxylic acid (TCA)) cycle has a central role in the regulation of brain energy regulation and metabolism, yet brain TCA cycle intermediates have never been directly detected in vivo. This study reports the first direct in vivo observation of a TCA cycle intermediate in intact brain, namely, 2-oxoglutarate, a key biomolecule connecting metabolism to neuronal activity. Our observation reveals important information about in vivo biochemical processes hitherto considered undetectable. In particular, it provides direct evidence that transport across the inner mitochondria membrane is rate limiting in the brain. The hyperpolarized magnetic resonance protocol designed for this study opens the way to direct and real-time studies of TCA cycle kinetics.

  3. Demyelinating and ischemic brain diseases: detection algorithm through regular magnetic resonance images

    Science.gov (United States)

    Castillo, D.; Samaniego, René; Jiménez, Y.; Cuenca, L.; Vivanco, O.; Rodríguez-Álvarez, M. J.

    2017-09-01

    This work presents the advance to development of an algorithm for automatic detection of demyelinating lesions and cerebral ischemia through magnetic resonance images, which have contributed in paramount importance in the diagnosis of brain diseases. The sequences of images to be used are T1, T2, and FLAIR. Brain demyelination lesions occur due to damage of the myelin layer of nerve fibers; and therefore this deterioration is the cause of serious pathologies such as multiple sclerosis (MS), leukodystrophy, disseminated acute encephalomyelitis. Cerebral or cerebrovascular ischemia is the interruption of the blood supply to the brain, thus interrupting; the flow of oxygen and nutrients needed to maintain the functioning of brain cells. The algorithm allows the differentiation between these lesions.

  4. Application of magnetic resonance spectroscopy in the differentiation of high-grade brain neoplasm and inflammatory brain lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz-Filho, Jose Roberto Lopes; Santana-Netto, Pedro Vieira; Sgnolf, Aline [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Image Dept.], e-mail: jrl.ferraz@terra.com.br; Rocha-Filho, Jose Alves; Mauad, Fernando [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Radiology Dept.; Sanches, Rafael Angelo [FAMERP Medical School, Sao Jose do Rio Preto SP (Brazil). Imaging Dept.

    2009-06-15

    This study aims at evaluating the application of magnetic resonance spectroscopy (MRS) in the differential diagnosis of brain tumors and inflammatory brain lesions. The examinations of 81 individuals, who performed brain MRS and were retrospectively analyzed. The patients with ages between 10 and 80 years old, were divided into two groups. Group A consisted of 42 individuals with diagnoses of cerebral toxoplasmosis and Group B was formed of 39 individuals with diagnosis of glial neoplasms. On analyzing the ROC curve, the discriminatory boundary for the Cho/Cr ratio between inflammatory lesions and tumors was 1.97 and for the NAA/Cr ratio it was 1.12. RMS is an important method useful in the distinction of inflammatory brain lesions and high-degree tumors when the Cho/Cr ratio is greater than 1.97 and the NAA/Cr ratio is less than 1.12. And so this method is important in the planning of treatment and monitoring of the therapeutic efficiency. (author)

  5. Targeting Neuronal Networks with Combined Drug and Stimulation Paradigms Guided by Neuroimaging to Treat Brain Disorders.

    Science.gov (United States)

    Faingold, Carl L; Blumenfeld, Hal

    2015-10-01

    Improved therapy of brain disorders can be achieved by focusing on neuronal networks, utilizing combined pharmacological and stimulation paradigms guided by neuroimaging. Neuronal networks that mediate normal brain functions, such as hearing, interact with other networks, which is important but commonly neglected. Network interaction changes often underlie brain disorders, including epilepsy. "Conditional multireceptive" (CMR) brain areas (e.g., brainstem reticular formation and amygdala) are critical in mediating neuroplastic changes that facilitate network interactions. CMR neurons receive multiple inputs but exhibit extensive response variability due to milieu and behavioral state changes and are exquisitely sensitive to agents that increase or inhibit GABA-mediated inhibition. Enhanced CMR neuronal responsiveness leads to expression of emergent properties--nonlinear events--resulting from network self-organization. Determining brain disorder mechanisms requires animals that model behaviors and neuroanatomical substrates of human disorders identified by neuroimaging. However, not all sites activated during network operation are requisite for that operation. Other active sites are ancillary, because their blockade does not alter network function. Requisite network sites exhibit emergent properties that are critical targets for pharmacological and stimulation therapies. Improved treatment of brain disorders should involve combined pharmacological and stimulation therapies, guided by neuroimaging, to correct network malfunctions by targeting specific network neurons. © The Author(s) 2015.

  6. Human in-vivo brain magnetic resonance current density imaging (MRCDI)

    DEFF Research Database (Denmark)

    Göksu, Cihan; Hanson, Lars G.; Siebner, Hartwig R

    2017-01-01

    Magnetic resonance current density imaging (MRCDI) and MR electrical impedance tomography (MREIT) are two emerging modalities, which combine weak time-varying currents injected via surface electrodes with magnetic resonance imaging (MRI) to acquire information about the current flow and ohmic......-FID measurements, we demonstrate a strong influence of magnetic stray fields on the ΔBz,c images, caused by non-ideal paths of the electrode cables, and validate a correction method. Finally, we perform measurements with two different current injection profiles in five subjects. We demonstrate reliable recordings...... conductivity distribution at high spatial resolution. The injected current flow creates a magnetic field in the head, and the component of the induced magnetic field ΔBz,c parallel to the main scanner field causes small shifts in the precession frequency of the magnetization. The measured MRI signal...

  7. Perfusion magnetic resonance imaging in pediatric brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Dallery, F.; Michel, D.; Constans, J.M.; Gondry-Jouet, C. [University Hospital, Department of Radiology, Amiens (France); Bouzerar, R.; Promelle, V.; Baledent, O. [University Hospital, Department of Imaging and Biophysics, Amiens (France); Attencourt, C. [University Hospital, Departement of Pathology, Amiens (France); Peltier, J. [University Hospital, Departement of Neurosurgery, Amiens (France)

    2017-11-15

    The use of DSC-MR imaging in pediatric neuroradiology is gradually growing. However, the number of studies listed in the literature remains limited. We propose to assess the perfusion and permeability parameters in pediatric brain tumor grading. Thirty children with a brain tumor having benefited from a DSC-MR perfusion sequence have been retrospectively explored. Relative CBF and CBV were computed on the ROI with the largest lesion coverage. Assessment of the lesion's permeability was also performed through the semi-quantitative PSR parameter and the K2 model-based parameter on the whole-lesion ROI and a reduced ROI drawn on the permeability maps. A statistical comparison of high- and low-grade groups (HG, LG) as well as a ROC analysis was performed on the histogram-based parameters. Our results showed a statistically significant difference between LG and HG groups for mean rCBV (p < 10{sup -3}), rCBF (p < 10{sup -3}), and for PSR (p = 0.03) but not for the K2 factor (p = 0.5). However, the ratio K2/PSR was shown to be a strong discriminating factor between the two groups of lesions (p < 10{sup -3}). For rCBV and rCBF indicators, high values of ROC AUC were obtained (> 0.9) and mean value thresholds were observed at 1.07 and 1.03, respectively. For K2/PSR in the reduced area, AUC was also superior to 0.9. The implementation of a dynamic T2* perfusion sequence provided reliable results using an objective whole-lesion ROI. Perfusion parameters as well as a new permeability indicator could efficiently discriminate high-grade from low-grade lesions in the pediatric population. (orig.)

  8. Magnetic basement and crustal structure in the Arabia-Eurasia collision zone from a combined gravity and magnetic model

    Science.gov (United States)

    Mousavi, Naeim; Ebbing, Jörg

    2017-04-01

    In this study, we investigate the magnetic basement and crustal structure in the region of Iran by inverse and forward modeling of aeromagnetic data and gravity data. The main focus is on the definition of the magnetic top basement. The combination of multiple shallow magnetic sources and an assumed shallow Curie isotherm depth beneath the Iranian Plateau creates a complex magnetic architecture over the area. Qualitative analysis, including pseudo gravity, wavelength filtering and upward continuation allowed a first separation of probable deep and shallow features, like the Sanandaj Sirjan zone, Urumieh Dokhtar Magmatic Assemblage, Kopet Dagh structural unit and Central Iran domain. In the second step, we apply inverse modeling to generate an estimate of the top basement geometry. The initial model was established from top basement to (a) constant depth of 25 km and (b) Moho depth. The inversion result was used as starting model for more detailed modelling in 3D to evaluate the effect of susceptibility heterogeneities in the crust. Subsequently, the model was modified with respect to tectonic and geological characterization of the region. Further modification of model in regards more details of susceptibility distribution was led to separating upper crust to different magnetic domains. In addition, we refined the top basement geometry by using terrestrial gravity observation as well. The best fitting model is consistent with the Curie isotherm depth as the base of magnetization. The Curie isotherm was derived from independent geophysical-petrological model.

  9. Auto-context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging.

    Science.gov (United States)

    Salehi, Seyed Sadegh Mohseni; Erdogmus, Deniz; Gholipour, Ali

    2017-06-28

    Brain extraction or whole brain segmentation is an important first step in many of the neuroimage analysis pipelines. The accuracy and robustness of brain extraction, therefore, is crucial for the accuracy of the entire brain analysis process. State-of-the-art brain extraction techniques rely heavily on the accuracy of alignment or registration between brain atlases and query brain anatomy, and/or make assumptions about the image geometry; therefore have limited success when these assumptions do not hold or image registration fails. With the aim of designing an accurate, learning-based, geometry-independent and registration-free brain extraction tool in this study, we present a technique based on an auto-context convolutional neural network (CNN), in which intrinsic local and global image features are learned through 2D patches of different window sizes. We consider two different architectures: 1) a voxelwise approach based on three parallel 2D convolutional pathways for three different directions (axial, coronal, and sagittal) that implicitly learn 3D image information without the need for computationally expensive 3D convolutions, and 2) a fully convolutional network based on the U-net architecture. Posterior probability maps generated by the networks are used iteratively as context information along with the original image patches to learn the local shape and connectedness of the brain to extract it from non-brain tissue. The brain extraction results we have obtained from our CNNs are superior to the recently reported results in the literature on two publicly available benchmark datasets, namely LPBA40 and OASIS, in which we obtained Dice overlap coefficients of 97.73% and 97.62%, respectively. Significant improvement was achieved via our auto-context algorithm. Furthermore, we evaluated the performance of our algorithm in the challenging problem of extracting arbitrarily-oriented fetal brains in reconstructed fetal brain magnetic resonance imaging (MRI

  10. Quantitative Magnetization Transfer Imaging as a Biomarker for Effects of Systemic Inflammation on the Brain.

    Science.gov (United States)

    Harrison, Neil A; Cooper, Ella; Dowell, Nicholas G; Keramida, Georgia; Voon, Valerie; Critchley, Hugo D; Cercignani, Mara

    2015-07-01

    Systemic inflammation impairs brain function and is increasingly implicated in the etiology of common mental illnesses, particularly depression and Alzheimer's disease. Immunotherapies selectively targeting proinflammatory cytokines demonstrate efficacy in a subset of patients with depression. However, efforts to identify patients most vulnerable to the central effects of inflammation are hindered by insensitivity of conventional structural magnetic resonance imaging. We used quantitative magnetization transfer (qMT) imaging, a magnetic resonance imaging technique that enables quantification of changes in brain macromolecular density, together with experimentally induced inflammation to investigate effects of systemic inflammatory challenge on human brain microstructure. Imaging with qMT was performed in 20 healthy participants after typhoid vaccination and saline control injection. An additional 20 participants underwent fluorodeoxyglucose positron emission tomography following the same inflammatory challenge. The qMT data demonstrated that inflammation induced a rapid change in brain microstructure, reflected in increased magnetization exchange from free (water) to macromolecular-bound protons, within a discrete region of insular cortex implicated in representing internal physiologic states including inflammation. The functional significance of this change in insular microstructure was demonstrated by correlation with inflammation-induced fatigue and fluorodeoxyglucose positron emission tomography imaging, which revealed increased resting glucose metabolism within this region following the same inflammatory challenge. Together these observations highlight a novel structural biomarker of the central physiologic and behavioral effects of mild systemic inflammation. The widespread clinical availability of magnetic resonance imaging supports the viability of qMT imaging as a clinical biomarker in trials of immunotherapeutics, both to identify patients vulnerable to

  11. Composite nanoplatelets combining soft-magnetic iron oxide with hard-magnetic barium hexaferrite

    Science.gov (United States)

    Primc, D.; Makovec, D.

    2015-01-01

    By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the supersaturation of the precipitating species was enabled by the controlled release of the Fe3+ ions from the nitrate complex with urea ([Fe((H2N)2C&z.dbd;O)6](NO3)3) and by using Mg(OH)2 as a solid precipitating agent. The platelet Ba-hexaferrite nanoparticles of different sizes were used as the cores. The controlled coating resulted in an exclusively heterogeneous nucleation and the topotactic growth of the spinel layers on both basal surfaces of the larger hexaferrite nanoplatelets. The direct magnetic coupling between the core and the shell resulted in a strong increase of the energy product |BH|max. Ultrafine core nanoparticles reacted with the precipitating species and homogeneous product nanoparticles were formed, which differ in terms of the structure and composition compared to any other compound in the BaO-Fe2O3 system.By coupling two different magnetic materials inside a single composite nanoparticle, the shape of the magnetic hysteresis can be engineered to meet the requirements of specific applications. Sandwich-like composite nanoparticles composed of a hard-magnetic Ba-hexaferrite (BaFe12O19) platelet core in between two soft-magnetic spinel iron oxide maghemite (γ-Fe2O3) layers were synthesized using a new, simple and inexpensive method based on the co-precipitation of Fe3+/Fe2+ ions in an aqueous suspension of hexaferrite core nanoparticles. The required close control of the

  12. Glutathione in the human brain: Review of its roles and measurement by magnetic resonance spectroscopy.

    Science.gov (United States)

    Rae, Caroline D; Williams, Stephen R

    2017-07-15

    We review the transport, synthesis and catabolism of glutathione in the brain as well as its compartmentation and biochemistry in different brain cells. The major reactions involving glutathione are reviewed and the factors limiting its availability in brain cells are discussed. We also describe and critique current methods for measuring glutathione in the human brain using magnetic resonance spectroscopy, and review the literature on glutathione measurements in healthy brains and in neurological, psychiatric, neurodegenerative and neurodevelopmental conditions In summary: Healthy human brain glutathione concentration is ∼1-2 mM, but it varies by brain region, with evidence of gender differences and age effects; in neurological disease glutathione appears reduced in multiple sclerosis, motor neurone disease and epilepsy, while being increased in meningiomas; in psychiatric disease the picture is complex and confounded by methodological differences, regional effects, length of disease and drug-treatment. Both increases and decreases in glutathione have been reported in depression and schizophrenia. In Alzheimer's disease and mild cognitive impairment there is evidence for a decrease in glutathione compared to age-matched healthy controls. Improved methods to measure glutathione in vivo will provide better precision in glutathione determination and help resolve the complex biochemistry of this molecule in health and disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Implications of neurovascular uncoupling in functional magnetic resonance imaging (fMRI) of brain tumors.

    Science.gov (United States)

    Pak, Rebecca W; Hadjiabadi, Darian H; Senarathna, Janaka; Agarwal, Shruti; Thakor, Nitish V; Pillai, Jay J; Pathak, Arvind P

    2017-11-01

    Functional magnetic resonance imaging (fMRI) serves as a critical tool for presurgical mapping of eloquent cortex and changes in neurological function in patients diagnosed with brain tumors. However, the blood-oxygen-level-dependent (BOLD) contrast mechanism underlying fMRI assumes that neurovascular coupling remains intact during brain tumor progression, and that measured changes in cerebral blood flow (CBF) are correlated with neuronal function. Recent preclinical and clinical studies have demonstrated that even low-grade brain tumors can exhibit neurovascular uncoupling (NVU), which can confound interpretation of fMRI data. Therefore, to avoid neurosurgical complications, it is crucial to understand the biophysical basis of NVU and its impact on fMRI. Here we review the physiology of the neurovascular unit, how it is remodeled, and functionally altered by brain cancer cells. We first discuss the latest findings about the components of the neurovascular unit. Next, we synthesize results from preclinical and clinical studies to illustrate how brain tumor induced NVU affects fMRI data interpretation. We examine advances in functional imaging methods that permit the clinical evaluation of brain tumors with NVU. Finally, we discuss how the suppression of anomalous tumor blood vessel formation with antiangiogenic therapies can "normalize" the brain tumor vasculature, and potentially restore neurovascular coupling.

  14. [Synergetic killing effects of external magnetic fields combined with porphyrin-dextran magnetic nanoparticles on the human bladder cancer cells].

    Science.gov (United States)

    Luo, Dao-sheng; Mi, Qi-wu; Meng, Xiang-jun; Gao, Yong; Dai, Yu-ping; Deng, Chun-hua

    2012-08-18

    To study the synergetic killing effects of external magnetic fields combined with the photodynamic action of porphyrin-dextran iron oxide magnetic nanoparticles (PDMN) on human bladder cancer cells in vitro. The PDMN were produced by using the chemical co-precipitation and redox process and the physicochemical properties were characterized. Methyl thiazolyl tetrazolium (MTT) and flow cytometry were used to determine the effects of photodynamic therapy of PDMN combined with external pulsed electromagnetic fields (5 mT) on killing human bladder cancer BIU-87 cells respectively. The diameters of PDMN were 10-15 nm and the saturation magnetization was 0.20 emu/g. Effective diameter of PDMN was 94.8 nm. PDMN could remarkably inhibit the proliferation and induce the obvious apoptosis of BIU-87 cells, and the rates of growth inhibition and apoptosis were (17.61±2.73)% and (24.53±5.74)% respectively. Moreover, external pulsed electromagnetic fields (5 mT) could also suppress the proliferation and induce apoptosis of BIU-87 cells. Furthermore, the photodynamic action of PDMN combined with external magnetic fields significantly inhibited the proliferation and promote apoptosis of BIU-87 cells, and the rates of growth inhibition and apoptosis was (28.11±4.25)% and (24.53±5.74)%, respectively, which were significantly higher than those of other groups (P<0.01). The chemical modified photodynamic action of PDMN could effectively inhibit proliferation and induce apoptosis of BIU-87 cells. Moreover, these effects on BIU-87 cells could be strengthened by the combination with external magnetic fields.

  15. Combined liquid and solid-phase extraction improves quantification of brain estrogen content

    Directory of Open Access Journals (Sweden)

    Andrew eChao

    2011-09-01

    Full Text Available Accuracy in quantifying brain-derived steroid hormones (‘neurosteroids’ has become increasingly important for understanding the modulation of neuronal activity, development, and physiology. Relative to other neuroactive compounds and classical neurotransmitters, steroids pose particular challenges with regard to isolation and analysis, owing to their lipid solubility. Consequently, anatomical studies of the distribution of neurosteroids have relied primarily on the expression of neurosteroid synthesis enzymes. To evaluate the distribution of synthesis enzymes vis-à-vis the actual steroids themselves, traditional steroid quantification assays, including radioimmunoassays (RIA, have successfully employed liquid extraction methods (e.g., ether, dichloromethane or methanol to isolate steroids from microdissected brain tissue. Due to their sensitivity, safety and reliability, the use of commercial enzyme immunoassays (EIA for laboratory quantification of steroids in plasma and brain has become increasingly widespread. However, EIAs rely on enzymatic reactions in vitro, making them sensitive to interfering substances in brain tissue and thus producing unreliable results. Here, we evaluate the effectiveness of a protocol for combined, two-stage liquid/solid phase extraction as compared to conventional liquid extraction alone for the isolation of estradiol (E2 from brain tissue. We employ the songbird model system, in which brain steroid production is pronounced and linked to neural mechanisms of learning and plasticity. This study outlines a combined liquid-solid phase extraction protocol that improves the performance of a commercial EIA for the quantification of brain E2 content. We demonstrate the effectiveness of our optimized method for evaluating the region specificity of brain E2 content, compare these results to established anatomy of the estrogen synthesis enzyme and estrogen receptor, and discuss the nature of potential EIA interfering

  16. Does pediatric post-traumatic stress disorder alter the brain? Systematic review and meta-analysis of structural and functional magnetic resonance imaging studies.

    Science.gov (United States)

    Milani, Ana Carolina C; Hoffmann, Elis V; Fossaluza, Victor; Jackowski, Andrea P; Mello, Marcelo F

    2017-03-01

    Several studies have recently demonstrated that the volumes of specific brain regions are reduced in children and adolescents with post-traumatic stress disorder (PTSD) compared with those of healthy controls. Our study investigated the potential association between early traumatic experiences and altered brain regions and functions. We conducted a systematic review of the scientific literature regarding functional magnetic resonance imaging and a meta-analysis of structural magnetic resonance imaging studies that investigated cerebral region volumes in pediatric patients with PTSD. We searched for articles from 2000 to 2014 in the PsycINFO, PubMed, Medline, Lilacs, and ISI (Web of Knowledge) databases. All data regarding the amygdala, hippocampus, corpus callosum, brain, and intracranial volumes that fit the inclusion criteria were extracted and combined in a meta-analysis that assessed differences between groups. The meta-analysis found reduced total corpus callosum areas and reduced total cerebral and intracranial volumes in the patients with PTSD. The total hippocampus (left and right hippocampus) and gray matter volumes of the amygdala and frontal lobe were also reduced, but these differences were not significant. The functional studies revealed differences in brain region activation in response to stimuli in the post-traumatic stress symptoms/PTSD group. Our results confirmed that the pediatric patients with PTSD exhibited structural and functional brain abnormalities and that some of the abnormalities occurred in different brain regions than those observed in adults. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  17. Combining intraoperative ultrasound brain shift correction and augmented reality visualizations: a pilot study of eight cases.

    Science.gov (United States)

    Gerard, Ian J; Kersten-Oertel, Marta; Drouin, Simon; Hall, Jeffery A; Petrecca, Kevin; De Nigris, Dante; Di Giovanni, Daniel A; Arbel, Tal; Collins, D Louis

    2018-04-01

    We present our work investigating the feasibility of combining intraoperative ultrasound for brain shift correction and augmented reality (AR) visualization for intraoperative interpretation of patient-specific models in image-guided neurosurgery (IGNS) of brain tumors. We combine two imaging technologies for image-guided brain tumor neurosurgery. Throughout surgical interventions, AR was used to assess different surgical strategies using three-dimensional (3-D) patient-specific models of the patient's cortex, vasculature, and lesion. Ultrasound imaging was acquired intraoperatively, and preoperative images and models were registered to the intraoperative data. The quality and reliability of the AR views were evaluated with both qualitative and quantitative metrics. A pilot study of eight patients demonstrates the feasible combination of these two technologies and their complementary features. In each case, the AR visualizations enabled the surgeon to accurately visualize the anatomy and pathology of interest for an extended period of the intervention. Inaccuracies associated with misregistration, brain shift, and AR were improved in all cases. These results demonstrate the potential of combining ultrasound-based registration with AR to become a useful tool for neurosurgeons to improve intraoperative patient-specific planning by improving the understanding of complex 3-D medical imaging data and prolonging the reliable use of IGNS.

  18. Vascular brain lesions, brain atrophy, and cognitive decline. The Second Manifestations of ARTerial diseased-Magnetic Resonance (SMART-MR) study

    NARCIS (Netherlands)

    Kooistra, M.; Geerlings, M.I.; van der Graaf, Y.; Mali, W.P.T.M.; Vincken, K.L.; Kappelle, L.J.; Muller, M.; Biessels, G.J.

    2014-01-01

    We examined the association between brain atrophy and vascular brain lesions (i.e., white matter lesions [WMLs] or brain infarcts), alone or in combination, with decline in memory and executive functioning over 4 years of follow-up in 448 patients (57 ± 9.5 years) with symptomatic atherosclerotic

  19. Imaging of brain oxygenation with magnetic resonance imaging: A validation with positron emission tomography in the healthy and tumoural brain.

    Science.gov (United States)

    Valable, Samuel; Corroyer-Dulmont, Aurélien; Chakhoyan, Ararat; Durand, Lucile; Toutain, Jérôme; Divoux, Didier; Barré, Louisa; MacKenzie, Eric T; Petit, Edwige; Bernaudin, Myriam; Touzani, Omar; Barbier, Emmanuel L

    2017-07-01

    The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (S t O 2 -MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[ 18 F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([ 18 F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of S t O 2 -MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, S t O 2 -MRI and [ 18 F]-FMISO PET were performed sequentially. Under hypoxemia conditions, S t O 2 -MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [ 18 F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, S t O 2 -MRI was able to detect hypoxia in the hypoxic models, mimicking [ 18 F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, S t O 2 -MRI could be a robust and specific imaging biomarker to assess hypoxia.

  20. Diffusion-weighted magnetic resonance imaging of the fetal brain in intrauterine growth restriction.

    Science.gov (United States)

    Arthurs, O J; Rega, A; Guimiot, F; Belarbi, N; Rosenblatt, J; Biran, V; Elmaleh, M; Sebag, G; Alison, M

    2017-07-01

    Diffusion-weighted magnetic resonance imaging (DWI) is a sensitive method for assessing brain maturation and detecting brain lesions, providing apparent diffusion coefficient (ADC) values as a measure of water diffusion. Abnormal ADC values are seen in ischemic brain lesions, such as those associated with acute or chronic hypoxia. The aim of this study was to assess whether ADC values in the fetal brain were different in fetuses with severe intrauterine growth restriction (IUGR) compared with normal controls. Brain magnetic resonance imaging (MRI) with single-shot axial DWI (b = 0 and b = 700 s/mm2 ) was performed in 30 fetuses with severe IUGR (estimated fetal weight IUGR fetuses and controls. There was no difference in gestational age at MRI between IUGR and control fetuses (IUGR, 30.2 ± 1.6 weeks vs controls, 30.7 ± 1.4 weeks). Fetal brain morphology and signals were normal in all fetuses. Brain dimensions (supratentorial ± infratentorial) were decreased (Z-score, IUGR fetuses. Compared with controls, IUGR fetuses had significantly lower ADC values in frontal white matter (1.97 ± 0.23 vs 2.17 ± 0.22 × 10-3 mm2 /s; P IUGR fetuses had a lower frontal-occipital ADC ratio than did normal fetuses (1.00 ± 0.11 vs 1.08 ± 0.05; P = 0.003). ADC values in IUGR fetuses were significantly lower than in normal controls in the frontal white matter, thalami, centrum semiovale and pons, suggesting abnormal maturation in these regions. However, the prognostic value of these ADC changes is still unknown. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd. Copyright © 2016 ISUOG. Published by John Wiley & Sons Ltd.

  1. Quantitative estimation of regional brain iron with magnetic resonance imaging.

    Science.gov (United States)

    Martin, W R Wayne

    2009-12-01

    Biochemical studies have reported increased iron content in the substantia nigra pars compacta (SNc) in Parkinson disease (PD), with changes most marked in severe disease, suggesting that measurement of regional iron content in the nigra may provide an indication of the pathologic severity of the disease. Although basal ganglia structures, including the substantia nigra, are readily visualized with MRI, in part because of their high iron content, conventional imaging techniques have failed to show definitive abnormalities in individuals with PD. We have developed MRI-based methodology to estimate regional iron content utilizing a 1.5 tesla system and have shown a correlation between age and striatal iron, as well as a significant increase in putaminal and pallidal iron in PD that correlated with the severity of clinical symptomatology. Several investigators have utilized novel MR techniques implemented on 3 tesla magnets and have suggested the presence of increased nigral iron content in treated patients with PD, in addition to a correlation between nigral iron and simple reaction time. We have applied a modification of our original method to determine whether SNc changes evident at 3 tesla corresponded anatomically to the distribution of neuropathologic changes reported previously. Our results indicate the presence of lateral SNc abnormalities in untreated patients with early PD, consistent with increased iron content and corresponding to the known distribution of neuronal loss occurring in this disorder. We suggest that this may ultimately provide an imaging marker for disease progression in PD, although longitudinal studies are required.

  2. Automatic system for brain MRI analysis using a novel combination of fuzzy rule-based and automatic clustering techniques

    Science.gov (United States)

    Hillman, Gilbert R.; Chang, Chih-Wei; Ying, Hao; Kent, T. A.; Yen, John

    1995-05-01

    Analysis of magnetic resonance images (MRI) of the brain permits the identification and measurement of brain compartments. These compartments include normal subdivisions of brain tissue, such as gray matter, white matter and specific structures, and also include pathologic lesions associated with stroke or viral infection. A fuzzy system has been developed to analyze images of animal and human brain, segmenting the images into physiologically meaningful regions for display and measurement. This image segmentation system consists of two stages which include a fuzzy rule-based system and fuzzy c-means algorithm (FCM). The first stage of this system is a fuzzy rule-based system which classifies most pixels in MR images into several known classes and one `unclassified' group, which fails to fit the predetermined rules. In the second stage, this system uses the result of the first stage as initial estimates for the properties of the compartments and applies FCM to classify all the previously unclassified pixels. The initial prototypes are estimated by using the averages of the previously classified pixels. The combined processes constitute a fast, accurate and robust image segmentation system. This method can be applied to many clinical image segmentation problems. While the rule-based portion of the system allows specialized knowledge about the images to be incorporated, the FCM allows the resolution of ambiguities that result from noise and artifacts in the image data. The volumes and locations of the compartments can easily be measured and reported quantitatively once they are identified. It is easy to adapt this approach to new imaging problems, by introducing a new set of fuzzy rules and adjusting the number of expected compartments. However, for the purpose of building a practical fully automatic system, a rule learning mechanism may be necessary to improve the efficiency of modification of the fuzzy rules.

  3. Task-evoked brain functional magnetic susceptibility mapping by independent component analysis (χICA).

    Science.gov (United States)

    Chen, Zikuan; Calhoun, Vince D

    2016-03-01

    Conventionally, independent component analysis (ICA) is performed on an fMRI magnitude dataset to analyze brain functional mapping (AICA). By solving the inverse problem of fMRI, we can reconstruct the brain magnetic susceptibility (χ) functional states. Upon the reconstructed χ dataspace, we propose an ICA-based brain functional χ mapping method (χICA) to extract task-evoked brain functional map. A complex division algorithm is applied to a timeseries of fMRI phase images to extract temporal phase changes (relative to an OFF-state snapshot). A computed inverse MRI (CIMRI) model is used to reconstruct a 4D brain χ response dataset. χICA is implemented by applying a spatial InfoMax ICA algorithm to the reconstructed 4D χ dataspace. With finger-tapping experiments on a 7T system, the χICA-extracted χ-depicted functional map is similar to the SPM-inferred functional χ map by a spatial correlation of 0.67 ± 0.05. In comparison, the AICA-extracted magnitude-depicted map is correlated with the SPM magnitude map by 0.81 ± 0.05. The understanding of the inferiority of χICA to AICA for task-evoked functional map is an ongoing research topic. For task-evoked brain functional mapping, we compare the data-driven ICA method with the task-correlated SPM method. In particular, we compare χICA with AICA for extracting task-correlated timecourses and functional maps. χICA can extract a χ-depicted task-evoked brain functional map from a reconstructed χ dataspace without the knowledge about brain hemodynamic responses. The χICA-extracted brain functional χ map reveals a bidirectional BOLD response pattern that is unavailable (or different) from AICA. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. •Primary brain tumors: Proton magnetic resonance spectroscopic analysis and histopathological correlation

    Directory of Open Access Journals (Sweden)

    Abdurrahim Dusak

    2014-06-01

    Full Text Available Objective: Recent advances in treatment of primary brain tumors have increased the interest in radiological imaging in respect to both the diagnosis of tumor and the evaluation of the efficiency of therapy. Conventional Magnetic Resonance (MR imaging is commonly used for diagnosis and follows up of the primary brain tumors, but it fails in grading of the tumors. MR spectroscopy permits in-vivo biochemical evaluation of brain lesions. Methods: Twenty three patients with histopathologic diagnosis of primary brain tumor and control group consisting of 23 healthy volunteers were investigated. In addition to conventional MR imaging of all patients were underwent point resolved spectroscopy (PRESS sequence via single voxel MR spectroscopy. Using MR spectroscopy, metabolites [N-acetyl aspartate (NAA, choline (Cho, myo-inositol (mI, lipid, lactate and alanine] and their ratio to creatine (Cr were measured quantitatively. Results: MR spectroscopic imaging of neuroglial primary brain tumors revealed that the NAA/Cr and mI/Cr ratios were decreased. In extra axial primary brain tumors, which consist of meningioma, NAA wasn’t detected, Cho/Cr ratio was remarkably increased, mI/Cr, lipid/Cr and lactate/Cr ratios were mildly increased. Alanine peak was detected only in meningioma. In high grade neuroglial tumors in proportion to low grade ones NAA/Cr and mI/Cr ratios were decreased, Cho/Cr, lipid/Cr and lactate/Cr ratios were remarkably increased. Conclusion: MR spectroscopy provides extra information in classification of primary brain tumors as intra-axial and extra-axial, and in grading of neuroglial primary brain tumors as high grade or low grade. It was concluded that using conventional MR imaging in cooperation with MR spectroscopy is beneficial in differential diagnosis and in grading of primary brain tumors. J Clin Exp Invest 2014; 5 (2: 233-241

  5. Improvements in Attention and Decision-Making Following Combined Behavioral Training and Brain Stimulation.

    Science.gov (United States)

    Filmer, Hannah L; Varghese, Elizabeth; Hawkins, Guy E; Mattingley, Jason B; Dux, Paul E

    2017-07-01

    In recent years there has been a significant commercial interest in 'brain training' - massed or spaced practice on a small set of tasks to boost cognitive performance. Recently, researchers have combined cognitive training regimes with brain stimulation to try and maximize training benefits, leading to task-specific cognitive enhancement. It remains unclear, however, whether the performance gains afforded by such regimes can transfer to untrained tasks, or how training and stimulation affect the brain's latent information processing dynamics. To examine these issues, we applied transcranial direct current stimulation (tDCS) over the prefrontal cortex while participants undertook decision-making training over several days. Anodal, relative to cathodal/sham tDCS, increased performance gains from training. Critically, these gains were reliable for both trained and untrained tasks. The benefit of anodal tDCS occurred for left, but not right, prefrontal stimulation, and was absent for stimulation delivered without concurrent training. Modeling revealed left anodal stimulation combined with training caused an increase in the brain's rate of evidence accumulation for both tasks. Thus tDCS applied during training has the potential to modulate training gains and give rise to transferable performance benefits for distinct cognitive operations through an increase in the rate at which the brain acquires information. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. First in vivo traumatic brain injury imaging via magnetic particle imaging

    Science.gov (United States)

    Orendorff, Ryan; Peck, Austin J.; Zheng, Bo; Shirazi, Shawn N.; Ferguson, R. Matthew; Khandhar, Amit P.; Kemp, Scott J.; Goodwill, Patrick; Krishnan, Kannan M.; Brooks, George A.; Kaufer, Daniela; Conolly, Steven

    2017-05-01

    Emergency room visits due to traumatic brain injury (TBI) is common, but classifying the severity of the injury remains an open challenge. Some subjective methods such as the Glasgow Coma Scale attempt to classify traumatic brain injuries, as well as some imaging based modalities such as computed tomography and magnetic resonance imaging. However, to date it is still difficult to detect and monitor mild to moderate injuries. In this report, we demonstrate that the magnetic particle imaging (MPI) modality can be applied to imaging TBI events with excellent contrast. MPI can monitor injected iron nanoparticles over long time scales without signal loss, allowing researchers and clinicians to monitor the change in blood pools as the wound heals.

  7. BRAIN MAGNETIC RESONANCE EVALUATION AND PUBERTAL DEVELOPMENT VARIATIONS AMONG FEMALE ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    Paula Fonseca

    2017-04-01

    Conclusion: To our knowledge, this is the first work to address the relation of pubertal maturation timing and central nervous system development using brain magnetic resonance imaging. The observed tendency for an increased volume of the subcortical structures may be related to a possible delayed development of the nucleus accumbens in early-maturers, and may explain the increased vulnerability of this group to risk behaviours.

  8. Ultrasonography and magnetic resonance imaging of the brain in hypoxic full-term newborns

    OpenAIRE

    Kudrevičienė, Aušrelė; Lukoševičius, Saulius; Laurynaitienė, Jūratė; Marmienė, Vitalija; Tamelienė, Rasa; Basevičius, Algidas

    2013-01-01

    The aim of this article was to review the studies on diagnostic and prognostic value of radiological investigations (cranial sonography, Doppler ultrasonography, and magnetic resonance imaging) in the detection of hypoxic-ischemic brain injuries in full-term newborns. Materials and Methods. A systematic search of studies on the diagnostic and prognostic possibilities of radiological investigations for the detection of hypoxic-ischemic injuries in full-term newborns was performed. Results. A t...

  9. Asymptomatic Brain Lesions on Cranial Magnetic Resonance Imaging in Inflammatory Bowel Disease

    OpenAIRE

    Dolapcioglu, Can; Guleryuzlu, Yuksel; Uygur-Bayramicli, Oya; Ahishali, Emel; Dabak, Resat

    2013-01-01

    Background/Aims This study aimed to examine the frequency and type of asymptomatic neurological involvement in inflammatory bowel disease (IBD) using cranial magnetic resonance imaging (MRI). Methods Fifty-one IBD patients with no known neurological diseases or symptoms and 30 controls with unspecified headaches without neurological origins were included. Patients and controls underwent cranial MRI assessments for white matter lesions, sinusitis, otitis-mastoiditis, and other brain parenchyma...

  10. Magnetic Resonance Imaging of the brain myelination; Mielinizacja mozgu w obrazie rezonansu magnetycznego

    Energy Technology Data Exchange (ETDEWEB)

    Goraj, B. [Dzial Diagnostyki Obrazowej, Centrum Zdrowia Matki Polki, Lodz (Poland)

    1994-12-31

    The variability of magnetic resonance image (MRI) of the brain during early childhood depends in great part on the progression of myelination. The sequence of human white matter myelination was discussed in the paper and MRI visualization of this process was presented and illustrated. The short characteristics of myelin sheath and factors modifying white matter signal intensity in MRI were also discussed. (author) 12 refs, 6 figs, 1 tab

  11. Prenatal magnetic resonance imaging: brain normal linear biometric values below 24 gestational weeks

    Energy Technology Data Exchange (ETDEWEB)

    Parazzini, C.; Righini, A.; Triulzi, F. [Children' s Hospital ' ' V. Buzzi' ' , Department of Radiology and Neuroradiology, Milan (Italy); Rustico, M. [Children' s Hospital ' ' V. Buzzi' ' , Department of Obstetrics and Gynecology, Milan (Italy); Consonni, D. [Fondazione IRCCS Ospedale Maggiore Policlinico, Unit of Epidemiology, Milan (Italy)

    2008-10-15

    Prenatal magnetic resonance (MR) imaging is currently used to measure quantitative data concerning brain structural development. At present, morphometric MR imaging studies have been focused mostly on the third trimester of gestational age. However, in many countries, because of legal restriction on abortion timing, the majority of MR imaging fetal examination has to be carried out during the last part of the second trimester of pregnancy (i.e., before the 24th week of gestation). Accurate and reliable normative data of the brain between 20 and 24 weeks of gestation is not available. This report provides easy and practical parametric support to assess those normative data. From a database of 1,200 fetal MR imaging studies, we retrospectively selected 84 studies of the brain of fetuses aged 20-24 weeks of gestation that resulted normal on clinical and radiological follow-up. Fetuses with proved or suspected infections, twin pregnancy, and fetuses of mothers affected by pathology that might have influenced fetal growth were excluded. Linear biometrical measurements of the main cerebral structures were obtained by three experienced pediatric neuroradiologists. A substantial interobserver agreement for each measurements was reached, and normative data with median, maximum, and minimum value were obtained for brain structures. The knowledge of a range of normality and interindividual variability of linear biometrical values for the developing brain between 20th and 24th weeks of gestation may be valuable in assessing normal brain development in clinical settings. (orig.)

  12. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging.

    Science.gov (United States)

    Ugurbil, Kamil

    2016-10-05

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a 'golden technique' that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. © 2016 The Author(s).

  13. Brain injury after moderate drowning: subtle alterations detected by functional magnetic resonance imaging.

    Science.gov (United States)

    Nucci, Mariana P; Lukasova, Katerina; Sato, João R; Amaro, Edson

    2017-10-01

    To describe cerebral (structural and functional MRI) and neuropsychological long term changes in moderate drowning victim's compared to healthy volunteers in working memory and motor domains. We studied 15 adult drowning victim's in chronic stage (DV - out of 157 eligible cases of sea water rescues with moderate drowning classification) paired to 18 healthy controls (HC). All participants were investigated using intelligence, memory, and attention neuropsychological standard tests and underwent functional (motor and working memory tasks) and structural magnetic resonance imaging (MRI) in a 3 T system. All images were preprocessed for head movement correction and quantitative analysis was performed using FSL and freesurfer software packages. We found no between group differences in neuropsychological assessments. No MRI brain lesion was observed in patients, neither difference on morphometric parameters in any cortical or subcortical brain structure. In constrast, functional MRI revealed that patients showed increased brain response in the motor (left putamen and insula) and memory (left cuneus and lingual gyrus - not the classical memory network) tasks. Functional brain changes in motor and visual brain regions in victims of moderate drowning may indicate reduced brain reserve, despite the lack of structural and behavior alterations. More attention should be given to investigate ageing effects in this nonfatal drowning group.

  14. What is feasible with imaging human brain function and connectivity using functional magnetic resonance imaging

    Science.gov (United States)

    2016-01-01

    When we consider all of the methods we employ to detect brain function, from electrophysiology to optical techniques to functional magnetic resonance imaging (fMRI), we do not really have a ‘golden technique’ that meets all of the needs for studying the brain. We have methods, each of which has significant limitations but provide often complimentary information. Clearly, there are many questions that need to be answered about fMRI, which unlike other methods, allows us to study the human brain. However, there are also extraordinary accomplishments or demonstration of the feasibility of reaching new and previously unexpected scales of function in the human brain. This article reviews some of the work we have pursued, often with extensive collaborations with other co-workers, towards understanding the underlying mechanisms of the methodology, defining its limitations, and developing solutions to advance it. No doubt, our knowledge of human brain function has vastly expanded since the introduction of fMRI. However, methods and instrumentation in this dynamic field have evolved to a state that discoveries about the human brain based on fMRI principles, together with information garnered at a much finer spatial and temporal scale through other methods, are poised to significantly accelerate in the next decade. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574313

  15. Brain damages in ketamine addicts as revealed by magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Chunmei eWang

    2013-07-01

    Full Text Available Ketamine, a known antagonist of N-methyl-D-aspartic (NMDA glutamate receptors, had been used as an anesthetic particularly for pediatric or for cardiac patients. Unfortunately, ketamine has become an abusive drug in many parts of the world while chronic and prolonged usage led to damages of many organs including the brain. However, no studies on possible damages in the brains induced by chronic ketamine abuse have been documented in the human via neuroimaging. This paper described for the first time via employing magnetic resonance imaging (MRI the changes in ketamine addicts of 0.5 to 12 years and illustrated the possible brain regions susceptible to ketamine abuse. Twenty-one ketamine addicts were recruited and the results showed that the lesions in the brains of ketamine addicts were located in many regions which appeared 2-4 years after ketamine addiction. Cortical atrophy was usually evident in the frontal, parietal or occipital cortices of addicts. Such study confirmed that many brain regions in the human were susceptible to chronic ketamine injury and presented a diffuse effect of ketamine on the brain which might differ from other central nervous system (CNS drugs, such as cocaine, heroin and methamphetamine.

  16. Functional magnetic resonance imaging during urodynamic testing identifies brain structures initiating micturition.

    Science.gov (United States)

    Shy, Michael; Fung, Steve; Boone, Timothy B; Karmonik, Christof; Fletcher, Sophie G; Khavari, Rose

    2014-10-01

    Normal voiding in neurologically intact patients is triggered by the release of tonic inhibition from suprapontine centers, allowing the pontine micturition center to trigger the voiding reflex. Supraspinal mechanisms of voluntary voiding in humans are just beginning to be described via functional neuroimaging. We further elucidated brain activity processes during voiding using functional magnetic resonance imaging in normal females to gain better understanding of normal voiding as well as changes that may occur in voiding dysfunction. We screened 13 healthy premenopausal female volunteers using baseline clinic urodynamics to document normal voiding parameters. We then recorded brain activity via functional magnetic resonance imaging and simultaneous urodynamics, including the pressure flow voiding phase. After motion correction of functional magnetic resonance images we performed activation and connectivity analyses in 10 subjects. Group analysis revealed consistent activation areas, including regions for motor control (cerebellum, thalamus, caudate, lentiform nucleus, red nucleus, supplementary motor area and post-central gyrus), emotion (anterior/posterior cingulate gyrus and insula), executive function (left superior frontal gyrus) and a focal region in the pons. Connectivity analysis demonstrated strong interconnectivity of the pontine micturition center with many short-range and long-range cortical clusters. Our study is one of the first reports of brain activation centers associated with micturition initiation in normal healthy females. Results show activation of a brain network consisting of regions for motor control, executive function and emotion processing. Further studies are planned to create and validate a model of brain activity during normal voiding in women. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  17. Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akira [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: yakira@kuhp.kyoto-u.ac.jp; Miki, Yukio [Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: mikiy@kuhp.kyoto-u.ac.jp; Adachi, Souichi [Department of Pediatrics, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto-shi Kyoto 606-8507 (Japan)]. E-mail: sadachi@kuhp.kyoto-u.ac.jp (and others)

    2006-03-15

    Background and purpose: The purpose of this prospective study was to evaluate the hypothesis that magnetization transfer ratio (MTR) histogram analysis of the whole brain could detect early and subtle brain changes nonapparent on conventional magnetic resonance imaging (MRI) in children with acute lymphoblastic leukemia (ALL) receiving methotrexate (MTX) therapy. Materials and methods: Subjects in this prospective study comprised 10 children with ALL (mean age, 6 years; range, 0-16 years). In addition to conventional MRI, magnetization transfer images were obtained before and after intrathecal and intravenous MTX therapy. MTR values were calculated and plotted as a histogram, and peak height and location were calculated. Differences in peak height and location between pre- and post-MTX therapy scans were statistically analyzed. Conventional MRI was evaluated for abnormal signal area in white matter. Results: MTR peak height was significantly lower on post-MTX therapy scans than on pre-MTX therapy scans (p = 0.002). No significant differences in peak location were identified between pre- and post-chemotherapy imaging. No abnormal signals were noted in white matter on either pre- or post-MTX therapy conventional MRI. Conclusions: This study demonstrates that MTR histogram analysis allows better detection of early and subtle brain changes in ALL patients who receive MTX therapy than conventional MRI.

  18. Brain-targeted delivery of trans-activating transcriptor-conjugated magnetic PLGA/lipid nanoparticles.

    Directory of Open Access Journals (Sweden)

    Xiangru Wen

    Full Text Available Magnetic poly (D,L-lactide-co-glycolide (PLGA/lipid nanoparticles (MPLs were fabricated from PLGA, L-α-phosphatidylethanolamine (DOPE, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-amino (polyethylene glycol (DSPE-PEG-NH2, and magnetic nanoparticles (NPs, and then conjugated to trans-activating transcriptor (TAT peptide. The TAT-MPLs were designed to target the brain by magnetic guidance and TAT conjugation. The drugs hesperidin (HES, naringin (NAR, and glutathione (GSH were encapsulated in MPLs with drug loading capacity (>10% and drug encapsulation efficiency (>90%. The therapeutic efficacy of the drug-loaded TAT-MPLs in bEnd.3 cells was compared with that of drug-loaded MPLs. The cells accumulated higher levels of TAT-MPLs than MPLs. In addition, the accumulation of QD-loaded fluorescein isothiocyanate (FITC-labeled TAT-MPLs in bEnd.3 cells was dose and time dependent. Our results show that TAT-conjugated MPLs may function as an effective drug delivery system that crosses the blood brain barrier to the brain.

  19. Effect of anatomical variability in brain on transcranial magnetic stimulation treatment

    Science.gov (United States)

    Syeda, F.; Magsood, H.; Lee, E. G.; El-Gendy, A. A.; Jiles, D. C.; Hadimani, R. L.

    2017-05-01

    Transcranial Magnetic Stimulation is a non-invasive clinical therapy used to treat depression and migraine, and shows further promise as treatment for Parkinson's disease, Alzheimer's disease, and other neurological disorders. However, it is yet unclear as to how anatomical differences may affect stimulation from this treatment. We use finite element analysis to model and analyze the results of Transcranial Magnetic Stimulation in various head models. A number of heterogeneous head models have been developed using MRI data of real patients, including healthy individuals as well as patients of Parkinson's disease. Simulations of Transcranial Magnetic Stimulation performed on 22 anatomically different models highlight the differences in induced stimulation. A standard Figure of 8 coil is used with frequency 2.5 kHz, placed 5 mm above the head. We compare cortical stimulation, volume of brain tissue stimulated, specificity, and maximum E-field induced in the brain for models ranging from ages 20 to 60. Results show that stimulation varies drastically between patients of the same age and health status depending upon brain-scalp distance, which is not necessarily a linear progression with age.

  20. Correlation between magnetic resonance perfusion weighted imaging of radiation brain injury and pathology.

    Science.gov (United States)

    Liu, X J; Duan, C F; Fu, W W; Niu, L; Li, Y; Sui, Q L; Xu, W J

    2015-12-08

    We used magnetic resonance perfusion weighted imaging and pathological evaluation to examine different stages of radiation-induced brain injury and to investigate the correlation between the relative cerebral blood volume (rCBV) ratio and vascular endothelial growth factor (VEGF). Thirty adult rats were randomly divided into 2 groups: control and radiation group. The control group was not subjected to irradiation. The irradiation group rats were examined by magnetic resonance imaging and magnetic resonance perfusion weighted imaging at 1, 3, 6, 9, and 12 months after radiation treatment. We measured the rCBV, mean transit time, and time to peak. Hematoxylin and eosin staining, immunohistochemical staining, and electron microscopy were performed. VEGF absorbance was evaluated by immunohistochemical staining. Compared with the control group, the differences in rCBV, mean transit time, time to peak, and VEGF absorbance after 3 months were statistically significant (P brain tissue after irradiation. Decreased expression of VEGF plays a critical role in the pathogenesis of radiation-induced brain injury.

  1. Callus formation in bone fractures combined with brain injury in rat

    Directory of Open Access Journals (Sweden)

    Yu-Ping Chen

    2017-01-01

    Full Text Available Objective: The objective of this study was to determine the speed of bony union and the serum levels of biomarkers in the setting of bone fractures combined with brain injury. Materials and Methods: In this study, Sprague–Dawley rats were randomized into four groups: sham, brain injury, bone fracture, and bone fracture plus brain injury groups. The serum levels of biochemical markers, namely, nerve growth factor (NGF, Wnt-3a, Dickkopf-related protein-1, receptor-activator of NF-κB ligand, and adrenocorticotropic hormone (ACTH, were measured on the days 1, 3, 7, and 14 following injury. Bony union was evaluated using radiographs every week for 6 weeks. Results: Compared with the brain injury group and bone fracture group, the radiographs of the bone fracture plus brain injury group revealed enhanced callus formations in week 2. From week 3, the callus formation did not differ significantly among the groups. The serum levels of the biomarkers varied at different time points. The serum levels of NGF on days 1 and 3, Wnt-3a on days 3 and 14, and ACTH on days 1, 3, and 7 were significantly higher in the bone fracture plus brain injury group than in the bone fracture group. Conclusions: Brain injury increases callus formation in simultaneous bone fracture. Considering the time point, early NGF, Wnt-3a, and ACTH elevation might be associated with early callus formation enhancement. The results indicate that these brain injury-induced biomarkers might play crucial role in accelerating bone healing.

  2. Visualization and quantification of magnetic nanoparticles into vesicular systems by combined atomic and magnetic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C. [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161, Rome (Italy); Department of Physics, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185, Rome (Italy); Corsetti, S.; Passeri, D. [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161, Rome (Italy); Rossi, M. [Department of Basic and Applied Sciences for Engineering, SAPIENZA University of Rome, Via A. Scarpa 16, 00161, Rome (Italy); Research Center for Nanotechnology applied to Engineering of SAPIENZA University of Rome (CNIS), Piazzale A. Moro 5, 00185, Rome (Italy); Carafa, M.; Marianecci, C., E-mail: carlotta.marianecci@uniroma1.it [Department of Drug Chemistry and Technologies, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185, Rome (Italy); Pantanella, F. [Department of Public Health and Infectious Diseases, SAPIENZA University of Rome, Piazzale A. Moro 5, 00185, Rome (Italy); Research Center for Nanotechnology applied to Engineering of SAPIENZA University of Rome (CNIS), Piazzale A. Moro 5, 00185, Rome (Italy); Rinaldi, F.; Ingallina, C. [Center for Life Nano Science @ Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome (Italy); Sorbo, A. [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità (ISS), Viale Regina Elena 299, 00161, Rome (Italy)

    2015-06-23

    We report a phenomenological approach for the quantification of the diameter of magnetic nanoparticles (MNPs) incorporated in non-ionic surfactant vesicles (niosomes) using magnetic force microscopy (MFM). After a simple specimen preparation, i.e., by putting a drop of solution containing MNPs-loaded niosomes on flat substrates, topography and MFM phase images are collected. To attempt the quantification of the diameter of entrapped MNPs, the method is calibrated on the sole MNPs deposited on the same substrates by analyzing the MFM signal as a function of the MNP diameter (at fixed tip-sample distance) and of the tip-sample distance (for selected MNPs). After calibration, the effective diameter of the MNPs entrapped in some niosomes is quantitatively deduced from MFM images.

  3. Magnetization transfer ratio measurements of the brain in children with tuberous sclerosis complex

    Energy Technology Data Exchange (ETDEWEB)

    Zikou, Anastasia; Ioannidou, Maria-Christina; Astrakas, Loukas; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Tzoufi, Meropi [University of Ioannina, Child Health Department, Medical School, Ioannina (Greece)

    2005-11-01

    Magnetization transfer contrast and magnetization transfer ratio (MTR) in brain are mainly related to the presence of myelin. Neuropathological studies of brain lesions in tuberous sclerosis complex (TSC) have demonstrated disordered myelin sheaths. To evaluate the MTR of the brain in children with TSC and to compare with that in controls. Four patients (aged 0.41-8.4 years, mean 2.5 years) with TSC and four age- and sex-matched controls were evaluated with classic MR sequences and with a three-dimensional gradient-echo sequence without and with magnetization transfer pre-pulse. The MTR was calculated as: (SI{sub 0}-SI{sub m})/SI{sub 0} x 100%, where SI{sub m} refers to signal intensity from an image acquired with a magnetization transfer pre-pulse and SI{sub 0} the signal intensity from the image acquired without a magnetization transfer pre-pulse. The MTR values of cortical tubers (44.1{+-}4.1), of subependymal nodules (51.6{+-}4.8) and of white matter lesions (52.4{+-}1.8) were significantly lower than those of cortex (58.7{+-}3.53), of basal ganglia (caudate nucleus 58.2{+-}2.8, putamen 59.6{+-}2.5, thalamus 61.3{+-}2.4) and of white matter (64.2{+-}2.5) in controls (P<0.001). The MTR of normal-appearing white matter (61.2{+-}3.0) in patients was lower than that of white matter in controls (P<0.01). The MTR of cortex and basal ganglia in patients was not significantly different from that in controls. MTR measurements not only provide semiquantitative information for TSC lesions but also reveal more extensive disease. (orig.)

  4. Magnetic biochar combining adsorption and separation recycle for removal of chromium in aqueous solution.

    Science.gov (United States)

    Xin, Ouyang; Yitong, Han; Xi, Cao; Jiawei, Chen

    2017-03-01

    Biochar has been developed in recent years for the removal of contaminants such as Cr (VI) in water. The enhancement of the adsorption capacity of biochar and its recyclable use are still challenges. In this study, magnetic biochar derived from corncobs and peanut hulls was synthesized under different pyrolysis temperatures after pretreating the biomass with a low concentration of 0.5 M FeCl 3 solution. The morphology, specific surface area, saturation magnetization and Fourier transform infrared spectroscopy (FT-IR) spectra were characterized for biochar. The magnetic biochar performed well in combining adsorption and separation recycle for the removal of Cr (VI) in water. The Cr (VI) adsorbance of the biochar was increased with the increase in pyrolysis temperature, and the magnetic biochar derived from corncobs showed better performance for both magnetization and removal of Cr (VI) than that from peanut hulls. The Langmuir model was used for the isothermal adsorption and the maximum Cr (VI) adsorption capacity of corncob magnetic biochar pyrolyzed at 650 °C reached 61.97 mg/g. An alkaline solution (0.1 M NaOH) favored the desorption of Cr (VI) from the magnetic biochar, and the removal of Cr (VI) still remained around 77.6% after four cycles of adsorption-desorption. The results showed that corncob derived magnetic biochar is a potentially efficient and recoverable adsorbent for remediation of heavy metals in water.

  5. Brain Basics

    Medline Plus

    Full Text Available ... imaging (MRI), which uses magnetic fields to take pictures of the brain's structure, studies show that brain ... imaging technique that uses magnetic fields to take pictures of the brain's structure. mutation —A change in ...

  6. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves

    DEFF Research Database (Denmark)

    Rossini, P M; Burke, D; Chen, R

    2015-01-01

    These guidelines provide an up-date of previous IFCN report on "Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application" (Rossini et al., 1994). A new Committee, composed of international experts, some...... theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments....... of whom were in the panel of the 1994 "Report", was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation...

  7. Magnetic resonance elastography (MRE) of the human brain: technique, findings and clinical applications

    Science.gov (United States)

    Hiscox, Lucy V.; Johnson, Curtis L.; Barnhill, Eric; McGarry, Matt D. J.; Huston 3rd, John; van Beek, Edwin J. R.; Starr, John M.; Roberts, Neil

    2016-12-01

    Neurological disorders are one of the most important public health concerns in developed countries. Established brain imaging techniques such as magnetic resonance imaging (MRI) and x-ray computerised tomography (CT) have been essential in the identification and diagnosis of a wide range of disorders, although usually are insufficient in sensitivity for detecting subtle pathological alterations to the brain prior to the onset of clinical symptoms—at a time when prognosis for treatment is more favourable. The mechanical properties of biological tissue provide information related to the strength and integrity of the cellular microstructure. In recent years, mechanical properties of the brain have been visualised and measured non-invasively with magnetic resonance elastography (MRE), a particularly sensitive medical imaging technique that may increase the potential for early diagnosis. This review begins with an introduction to the various methods used for the acquisition and analysis of MRE data. A systematic literature search is then conducted to identify studies that have specifically utilised MRE to investigate the human brain. Through the conversion of MRE-derived measurements to shear stiffness (kPa) and, where possible, the loss tangent (rad), a summary of results for global brain tissue and grey and white matter across studies is provided for healthy participants, as potential baseline values to be used in future clinical investigations. In addition, the extent to which MRE has revealed significant alterations to the brain in patients with neurological disorders is assessed and discussed in terms of known pathophysiology. The review concludes by predicting the trends for future MRE research and applications in neuroscience.

  8. Brain Basics

    Medline Plus

    Full Text Available ... technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures of the brain's ... resonance imaging (MRI) mdash;An imaging technique that uses magnetic fields to take pictures of the brain's ...

  9. Toward 20 T magnetic resonance for human brain studies: opportunities for discovery and neuroscience rationale

    Science.gov (United States)

    Bird, Mark D.; Frydman, Lucio; Long, Joanna R.; Mareci, Thomas H.; Rooney, William D.; Rosen, Bruce; Schenck, John F.; Schepkin, Victor D.; Sherry, A. Dean; Sodickson, Daniel K.; Springer, Charles S.; Thulborn, Keith R.; Uğurbil, Kamil; Wald, Lawrence L.

    2017-01-01

    An initiative to design and build magnetic resonance imaging (MRI) and spectroscopy (MRS) instruments at 14 T and beyond to 20 T has been underway since 2012. This initiative has been supported by 22 interested participants from the USA and Europe, of which 15 are authors of this review. Advances in high temperature superconductor materials, advances in cryocooling engineering, prospects for non-persistent mode stable magnets, and experiences gained from large-bore, high-field magnet engineering for the nuclear fusion endeavors support the feasibility of a human brain MRI and MRS system with 1 ppm homogeneity over at least a 16-cm diameter volume and a bore size of 68 cm. Twelve neuroscience opportunities are presented as well as an analysis of the biophysical and physiological effects to be investigated before exposing human subjects to the high fields of 14 T and beyond. PMID:27194154

  10. Drastic therapy for listerial brain abscess involving combined hyperbaric oxygen therapy and antimicrobial agents.

    Science.gov (United States)

    Nakahara, Keiichi; Yamashita, Satoshi; Ideo, Katsumasa; Shindo, Seigo; Suga, Tomohiro; Ueda, Akihiko; Honda, Shoji; Hirahara, Tomoo; Watanabe, Masaki; Yamashita, Taro; Maeda, Yasushi; Yonemochi, Yasuhiro; Takita, Tomohiro; Ando, Yukio

    2014-10-01

    Listeria monocytogenes (L. monocytogenes) is a rare causative pathogen of brain abscess that is often found in immunocompromised patients. Although patients with supratentorial listerial abscesses showed a longer survival with surgical drainage, the standard therapy for patients with subtentorial lesions has not been established. We report herein a patient with supra- and subtentorial brain abscesses caused by L. monocytogenes infection. These abscesses did not respond to antibiotics, and his symptoms gradually worsened. Drainage was not indicated for subtentorial lesions, and the patient was additionally treated with hyperbaric oxygen therapy, which dramatically reduced the volume of abscesses and improved the symptoms. This is the first report of drastic therapy for a patient with listerial brain abscesses involving combined antibiotics and hyperbaric oxygen therapy. The findings suggest that hyperbaric oxygen therapy is a good option for treating patients with deep-seated listerial abscesses and for who surgical drainage is not indicated.

  11. Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke.

    Science.gov (United States)

    Johnson, N N; Carey, J; Edelman, B J; Doud, A; Grande, A; Lakshminarayan, K; He, B

    2018-02-01

    Combining repetitive transcranial magnetic stimulation (rTMS) with brain-computer interface (BCI) training can address motor impairment after stroke by down-regulating exaggerated inhibition from the contralesional hemisphere and encouraging ipsilesional activation. The objective was to evaluate the efficacy of combined rTMS  +  BCI, compared to sham rTMS  +  BCI, on motor recovery after stroke in subjects with lasting motor paresis. Three stroke subjects approximately one year post-stroke participated in three weeks of combined rTMS (real or sham) and BCI, followed by three weeks of BCI alone. Behavioral and electrophysiological differences were evaluated at baseline, after three weeks, and after six weeks of treatment. Motor improvements were observed in both real rTMS  +  BCI and sham groups, but only the former showed significant alterations in inter-hemispheric inhibition in the desired direction and increased relative ipsilesional cortical activation from fMRI. In addition, significant improvements in BCI performance over time and adequate control of the virtual reality BCI paradigm were observed only in the former group. When combined, the results highlight the feasibility and efficacy of combined rTMS  +  BCI for motor recovery, demonstrated by increased ipsilesional motor activity and improvements in behavioral function for the real rTMS  +  BCI condition in particular. Our findings also demonstrate the utility of BCI training alone, as shown by behavioral improvements for the sham rTMS  +  BCI condition. This study is the first to evaluate combined rTMS and BCI training for motor rehabilitation and provides a foundation for continued work to evaluate the potential of both rTMS and virtual reality BCI training for motor recovery after stroke.

  12. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Tijn M. Schouten

    2016-01-01

    Full Text Available Magnetic resonance imaging (MRI is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD, and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N=77 from the prospective registry on dementia study and controls (N=173 from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC of 0.760 (full correlations between functional networks to 0.909 (grey matter density. When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.

  13. Combining anatomical, diffusion, and resting state functional magnetic resonance imaging for individual classification of mild and moderate Alzheimer's disease.

    Science.gov (United States)

    Schouten, Tijn M; Koini, Marisa; de Vos, Frank; Seiler, Stephan; van der Grond, Jeroen; Lechner, Anita; Hafkemeijer, Anne; Möller, Christiane; Schmidt, Reinhold; de Rooij, Mark; Rombouts, Serge A R B

    2016-01-01

    Magnetic resonance imaging (MRI) is sensitive to structural and functional changes in the brain caused by Alzheimer's disease (AD), and can therefore be used to help in diagnosing the disease. Improving classification of AD patients based on MRI scans might help to identify AD earlier in the disease's progress, which may be key in developing treatments for AD. In this study we used an elastic net classifier based on several measures derived from the MRI scans of mild to moderate AD patients (N = 77) from the prospective registry on dementia study and controls (N = 173) from the Austrian Stroke Prevention Family Study. We based our classification on measures from anatomical MRI, diffusion weighted MRI and resting state functional MRI. Our unimodal classification performance ranged from an area under the curve (AUC) of 0.760 (full correlations between functional networks) to 0.909 (grey matter density). When combining measures from multiple modalities in a stepwise manner, the classification performance improved to an AUC of 0.952. This optimal combination consisted of grey matter density, white matter density, fractional anisotropy, mean diffusivity, and sparse partial correlations between functional networks. Classification performance for mild AD as well as moderate AD also improved when using this multimodal combination. We conclude that different MRI modalities provide complementary information for classifying AD. Moreover, combining multiple modalities can substantially improve classification performance over unimodal classification.

  14. Noninvasive brain stimulation with transcranial magnetic or direct current stimulation (TMS/tDCS)-From insights into human memory to therapy of its dysfunction.

    Science.gov (United States)

    Sparing, Roland; Mottaghy, Felix M

    2008-04-01

    Noninvasive stimulation of the brain by means of transcranial magnetic stimulation (TMS) or transcranial direct current stimulation (tDCS) has driven important discoveries in the field of human memory functions. Stand-alone or in combination with other brain mapping techniques noninvasive brain stimulation can assess issues such as location and timing of brain activity, connectivity and plasticity of neural circuits and functional relevance of a circumscribed brain area to a given cognitive task. In this emerging field, major advances in technology have been made in a relatively short period. New stimulation protocols and, especially, the progress in the application of tDCS have made it possible to obtain longer and much clearer inhibitory or facilitatory effects even after the stimulation has ceased. In this introductory review, we outline the basic principles, discuss technical limitations and describe how noninvasive brain stimulation can be used to study human memory functions in vivo. Though improvement of cognitive functions through noninvasive brain stimulation is promising, it still remains an exciting challenge to extend the use of TMS and tDCS from research tools in neuroscience to the treatment of neurological and psychiatric patients.

  15. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging

    Science.gov (United States)

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B.; Eagle, Cheyenne Sun; Williams, Todd D.; Siahaan, Teruna J.

    2015-01-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new non-invasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (i.v.) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain. PMID:26705088

  16. Brain Delivery of Drug and MRI Contrast Agent: Detection and Quantitative Determination of Brain Deposition of CPT-Glu Using LC-MS/MS and Gd-DTPA Using Magnetic Resonance Imaging.

    Science.gov (United States)

    Tabanor, Kayann; Lee, Phil; Kiptoo, Paul; Choi, In-Young; Sherry, Erica B; Eagle, Cheyenne Sun; Williams, Todd D; Siahaan, Teruna J

    2016-02-01

    Successful treatment and diagnosis of neurological diseases depend on reliable delivery of molecules across the blood-brain barrier (BBB), which restricts penetration of pharmaceutical drugs and diagnostic agents into the brain. Thus, developing new noninvasive strategies to improve drug delivery across the BBB is critically needed. This study was aimed at evaluating the activity of HAV6 peptide (Ac-SHAVSS-NH2) in improving brain delivery of camptothecin-glutamate (CPT-Glu) conjugate and gadolinium-diethylenetriaminepentaacetate (Gd-DTPA) contrast agent in Sprague-Dawley rats. Brain delivery of both CPT-Glu and Gd-DTPA was evaluated in an in situ rat brain perfusion model in the presence and absence of HAV6 peptide (1.0 mM). Gd-DTPA (0.6 mmol/kg) was intravenously (iv) administered with and without HAV6 peptide (0.019 mmol/kg) in rats. The detection and quantification of CPT-Glu and Gd-DTPA in the brain were carried out by LC-MS/MS and quantitative magnetic resonance imaging (MRI), respectively. Rats perfused with CPT-Glu in combination with HAV6 had significantly higher deposition of drug in the brain compared to CPT-Glu alone. MRI results also showed that administration of Gd-DTPA in the presence of HAV6 peptide led to significant accumulation of Gd-DTPA in various regions of the brain in both the in situ rat brain perfusion and in vivo studies. All observations taken together indicate that HAV6 peptide can disrupt the BBB and enhance delivery of small molecules into the brain.

  17. In situ 3D magnetic resonance metabolic imaging of microwave-irradiated rodent brain: a new tool for metabolomics research.

    Science.gov (United States)

    de Graaf, Robin A; Chowdhury, Golam M I; Brown, Peter B; Rothman, Douglas L; Behar, Kevin L

    2009-04-01

    The rapid elevation in rat brain temperature achieveable with focused beam microwave irradiation (FBMI) leads to a permanent inactivation of enzymes, thereby minimizing enzyme-dependent post-mortem metabolic changes. An additional characteristic of FBMI is that the NMR properties of the tissue are close to those of the in vivo condition and remain so for at least 12 h. These features create an opportunity to develop magnetic resonance spectroscopy and imaging on microwave-irradiated samples into a technique with a resolution, coverage and sensitivity superior to any experiment performed directly in vivo. Furthermore, when combined with pre-FBMI infusion of (13)C-labeled substrates, like [1-(13)C]-glucose, the technique can generate maps of metabolic fluxes, like the tricarboxylic acid and glutamate-glutamine neurotransmitter cycle fluxes at an unprecedented spatial resolution.

  18. Combining rotating-coil measurements of large-aperture accelerator magnets

    CERN Document Server

    AUTHOR|(CDS)2089510

    2016-10-05

    The rotating coil is a widely used tool to measure the magnetic field and the field errors in accelerator magnets. The coil has a length that exceeds the entire magnetic field along the longitudinal dimension of the magnet and gives therefore a two-dimensional representation of the integrated field. Having a very good precision, the rotating coil lacks in versatility. The fixed dimensions make it impractical and inapplicable in situations, when the radial coil dimension is much smaller than the aperture or when the aperture is only little covered by the coil. That being the case for rectangular apertures with large aspect ratio, where a basic measurement by the rotating coil describes the field only in a small area of the magnet. A combination of several measurements at different positions is the topic of this work. Very important for a combination is the error distribution on the measured field harmonics. To preserve the good precision of the higher-order harmonics, the combination must not rely on the main ...

  19. Combined 3 Tesla MRI Biomarkers Improve the Differentiation between Benign vs Malignant Single Ring Enhancing Brain Masses.

    Directory of Open Access Journals (Sweden)

    Simone Salice

    Full Text Available To evaluate whether the combination of imaging biomarkers obtained by means of different 3 Tesla (3T Magnetic Resonance Imaging (MRI advanced techniques can improve the diagnostic accuracy in the differentiation between benign and malignant single ring-enhancing brain masses.14 patients presenting at conventional 3T MRI single brain mass with similar appearance as regard ring enhancement, presence of peri-lesional edema and absence of hemorrhage signs were included in the study. All lesions were histologically proven: 5 pyogenic abscesses, 6 glioblastomas, and 3 metastases. MRI was performed at 3 Tesla and included Diffusion Weighted Imaging (DWI, Dynamic Susceptibility Contrast -Perfusion Weighted Imaging (DSC-PWI, Magnetic Resonance Spectroscopy (MRS, and Diffusion Tensor Imaging (DTI. Imaging biomarkers derived by those advanced techniques [Cerebral Blood Flow (CBF, relative Cerebral Blood Volume (rCBV, relative Main Transit Time (rMTT, Choline (Cho, Creatine (Cr, Succinate, N-Acetyl Aspartate (NAA, Lactate (Lac, Lipids, relative Apparent Diffusion Coefficient (rADC, and Fractional Anisotropy (FA] were detected by two experienced neuroradiologists in joint session in 4 areas: Internal Cavity (IC, Ring Enhancement (RE, Peri-Lesional edema (PL, and Contralateral Normal Appearing White Matter (CNAWM. Significant differences between benign (n = 5 and malignant (n = 9 ring enhancing lesions were tested with Mann-Withney U test. The diagnostic accuracy of MRI biomarkers taken alone and MRI biomarkers ratios were tested with Receiver Operating Characteristic (ROC analysis with an Area Under the Curve (AUC ≥ 0.9 indicating a very good diagnostic accuracy of the variable.Five MRI biomarker ratios achieved excellent accuracy: IC-rADC/PL-NAA (AUC = 1, IC-rADC/IC-FA (AUC = 0.978, RE-rCBV/RE-FA (AUC = 0.933, IC-rADC/RE-FA (AUC = 0.911, and IC-rADC/PL-FA (AUC = 0.911. Only IC-rADC achieved a very good diagnostic accuracy (AUC = 0.909 among MRI biomarkers

  20. Proton Magnetic Resonance Spectroscopy and MRI Reveal No Evidence for Brain Mitochondrial Dysfunction in Children with Autism Spectrum Disorder

    Science.gov (United States)

    Corrigan, Neva M.; Shaw, Dennis. W. W.; Richards, Todd L.; Estes, Annette M.; Friedman, Seth D.; Petropoulos, Helen; Artru, Alan A.; Dager, Stephen R.

    2012-01-01

    Brain mitochondrial dysfunction has been proposed as an etiologic factor in autism spectrum disorder (ASD). Proton magnetic resonance spectroscopic imaging ([superscript 1]HMRS) and MRI were used to assess for evidence of brain mitochondrial dysfunction in longitudinal samples of children with ASD or developmental delay (DD), and cross-sectionally…

  1. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our spe...

  2. Mannitol as a Potential Pitfall for Peak Assignment on Magnetic Resonance Spectra (MRS) for Brain Tumors: A Case Report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jee Young; Ahn, Kook Jin; Yu, Won Jong; Kim, Bum Soo [Catholic University, Seoul (Korea, Republic of); Park, Ik Sung [Catholic University, Bucheon St. Mary' s Hospital, Bucheon (Korea, Republic of)

    2009-06-15

    Mannitol is a xenobiotic commonly used for the control of brain edema in patients with brain tumors. Although not typically identifiable with the use of routine proton magnetic resonance spectroscopy (MRS), we report a case where the mannitol peak was clearly visible on the MR spectra of a recurrent meningioma.

  3. Fetal magnetic resonance imaging (MRI): a tool for a better understanding of normal and abnormal brain development.

    Science.gov (United States)

    Saleem, Sahar N

    2013-07-01

    Knowledge of the anatomy of the developing fetal brain is essential to detect abnormalities and understand their pathogenesis. Capability of magnetic resonance imaging (MRI) to visualize the brain in utero and to differentiate between its various tissues makes fetal MRI a potential diagnostic and research tool for the developing brain. This article provides an approach to understand the normal and abnormal brain development through schematic interpretation of fetal brain MR images. MRI is a potential screening tool in the second trimester of pregnancies in fetuses at risk for brain anomalies and helps in describing new brain syndromes with in utero presentation. Accurate interpretation of fetal MRI can provide valuable information that helps genetic counseling, facilitates management decisions, and guides therapy. Fetal MRI can help in better understanding the pathogenesis of fetal brain malformations and can support research that could lead to disease-specific interventions.

  4. Combined Néel and Brown rotational Langevin dynamics in magnetic particle imaging, sensing, and therapy

    Science.gov (United States)

    Reeves, Daniel B.; Weaver, John B.

    2015-11-01

    Magnetic nanoparticles have been studied intensely because of their possible uses in biomedical applications. Biosensing using the rotational freedom of particles has been used to detect biomarkers for cancer, hyperthermia therapy has been used to treat tumors, and magnetic particle imaging is a promising new imaging modality that can spatially resolve the concentration of nanoparticles. There are two mechanisms by which the magnetization of a nanoparticle can rotate, a fact that poses a challenge for applications that rely on precisely one mechanism. The challenge is exacerbated by the high sensitivity of the dominant mechanism to applied fields. Here, we demonstrate stochastic Langevin equation simulations for the combined rotation in magnetic nanoparticles exposed to oscillating applied fields typical to these applications to both highlight the existing relevant theory and quantify which mechanism should occur in various parameter ranges.

  5. Coupling field maps of combined function bending magnets to linear optics for the SESAME storage ring

    CERN Document Server

    Milanese, A

    2013-01-01

    This note provides several analyses of the combined function bending magnets of the SESAME storage ring. The objective is to develop tools to couple the magnetic design to the linear optics specifications. Such tools can be used to carry out a 3D field optimization, at the design phase and following magnetic measurements, in particular in order to fine tune the end shims on the poles. The analyses take as input field maps on the midplane, which are then processed in different ways to obtain linear transfer matrices for the optics, in the horizontal and vertical planes. Some peculiarities of this kind of magnet are also highlighted, for example, the slight variation of gradient along the arc. For convenience, the relative codes and scripts are included in the appendix.

  6. Combination of magnetic and enhanced mechanical properties for copolymer-grafted magnetite composite thermoplastic elastomers.

    Science.gov (United States)

    Jiang, Feng; Zhang, Yaqiong; Wang, Zhongkai; Wang, Wentao; Xu, Zhaohua; Wang, Zhigang

    2015-05-20

    Composite thermoplastic elastomers (CTPEs) of magnetic copolymer-grafted nanoparticles (magnetite, Fe3O4) were synthesized and characterized to generate magnetic CTPEs, which combined the magnetic property of Fe3O4 nanoparticles and the thermoplastic elasticity of the grafted amorphous polymer matrix. Fe3O4 nanoparticles served as stiff, multiple physical cross-linking points homogeneously dispersed in the grafted poly(n-butyl acrylate-co-methyl methacrylate) rubbery matrix synthesized via the activators regenerated by electron transfer for atom transfer radical polymerization method (ARGET ATRP). The preparation technique for magnetic CTPEs opened a new route toward developing a wide spectrum of magnetic elastomeric materials with strongly enhanced macroscopic properties. Differential scanning calorimetry (DSC) was used to measure the glass transition temperatures, and thermogravimetric analysis (TGA) was used to examine thermal stabilities of these CTPEs. The magnetic property could be conveniently tuned by adjusting the content of Fe3O4 nanoparticles in CTPEs. Compared to their linear copolymers, these magnetic CTPEs showed significant increases in tensile strength and elastic recovery. In situ small-angle X-ray scattering measurement was conducted to reveal the microstructural evolution of CTPEs during tensile deformation.

  7. [Modulating effect of weak combined magnetic fields on duration of mealworm beetle Tenebrio molitor metamorphosis stage].

    Science.gov (United States)

    Novikov, V V; Sheĭman, I M; Iablokova, E V; Fesenko, E E

    2014-01-01

    It is shown that an exposure of pupae of the mealworm beetle Tenebrio molitor to the combined static (42 μT) and very weak alternating (250 nT) magnetic fields exerts different influence, depending on the frequency of the alternating magnetic field, on duration of metamorphosis processes in these insects. For instance, an exposure of pupae to weak combined magnetic fields, adjusted to the frequency of ion cyclotron resonance for glutaminic acid (4,4 Hz), stimulates metamorphosis process--a transitional stage from pupae to imago lasts shorter. An inhibiting effect was observed when adjusted to the frequency of ion cyclotron resonance for Ca2 (32,2 Hz). At some frequencies this effect is not seen. For instance, an exposure at a frequency of ion cyclotron resonance for K+ (16,5 Hz) exerts no noticeable effect on the duration of the pupal metamorphosis stage.

  8. Characterization of eddy current distortion effects on magnetic resonance axonography of human brain

    Science.gov (United States)

    Elshafiey, Ibrahim; Narayana, Ponnada A.

    2002-05-01

    Axonography of human brain, based on diffusion tensor magnetic resonance imaging (DT-MRI), has recently gained popularity because of its potential in providing crucial information about intercommunication between different regions of brain. This technique exploits the sensitivity of MRI to random water diffusion in tissues in the presence of diffusion gradient pulses incorporated into the imaging sequence. Large diffusion weighting that is necessary for the generation of axonography with high SNR is achieved by increasing the magnitude of diffusion pulses. However large diffusion gradients induce strong eddy currents in the metallic structure of the cryostat that houses the superconducting coil of the scanner magnet, resulting in distortion of magnetic resonance images. The purpose of this study was to characterize the effect of eddy currents on images obtained using the DT-MRI of human brain. Characterization of eddy current effects is essential for optimizing the scanning parameters and improving image quality. All MRI studies were performed on 1.5-T GE scanner, using single shot diffusion weighed echo planar imaging sequence. All acquisitions were cardiac gated for minimizing the pulsation effect of cerebrospinal fluid (CSF) on the images. Diffusion gradient- or b-space was explored using a set of 62 directions along the two poles, and 60 other directions. Total scan time was less than three minutes. The exploration of the b-space helps quantify the relationship between the orientation of diffusion gradients and eddy current levels. Experimental results demonstrate that certain directions are more prone to eddy current-induced image distortions. Determining the optimum gradient directions should present a powerful technique for reducing eddy current distortion, and thus enhance the use of MRI axonography for a noninvasive assessment of human brain.

  9. Body mass index and magnetic resonance markers of brain integrity in adults.

    Science.gov (United States)

    Gazdzinski, Stefan; Kornak, John; Weiner, Michael W; Meyerhoff, Dieter J

    2008-05-01

    Obesity and being overweight during adulthood have been consistently linked to increased risk for development of dementia later in life, especially Alzheimer's disease. They have also been associated with cognitive dysfunction and brain structural alterations in otherwise healthy adults. Although proton magnetic resonance spectroscopy may distinguish between neuronal and glial components of the brain and may point to neurobiological mechanisms underlying brain atrophy and cognitive changes, no spectroscopic studies have yet assessed the relationships between adiposity and brain metabolites. We have utilized magnetic resonance imaging and proton magnetic resonance spectroscopic imaging data from 50 healthy middle-aged participants (mean age, 41.7 +/- 8.5 years; 17 women), who were scanned as control subjects for another study. After adjustment for age and sex, greater body mass indices (BMIs) correlated with: (1) lower concentrations of N-acetylaspartate (spectroscopic marker of neuronal viability) in frontal (p = 0.001), parietal (p = 0.006), and temporal (p = 0.008) white matter; (2) lower N-acetylaspartate in frontal gray matter (p = 0.01); and (3) lower concentrations of choline-containing metabolites (associated with membrane metabolism) in frontal white matter (p = 0.05). These results suggest that increased BMI at midlife is associated with neuronal and/or myelin abnormalities, primarily in the frontal lobe. Because white matter in the frontal lobes is more prone to the effects of aging than in other lobes, our results may reflect accelerated aging in individuals with high levels of adiposity. Thus, greater BMI may increase the odds of developing an age-related disease, such as Alzheimer's disease.

  10. Review: magnetic resonance imaging of male/female differences in human adolescent brain anatomy

    Directory of Open Access Journals (Sweden)

    Giedd Jay N

    2012-08-01

    Full Text Available Abstract Improvements in neuroimaging technologies, and greater access to their use, have generated a plethora of data regarding male/female differences in the developing brain. Examination of these differences may shed light on the pathophysiology of the many illnesses that differ between the sexes and ultimately lead to more effective interventions. In this review, we attempt to synthesize the anatomic magnetic resonance imaging (MRI literature of male/female brain differences with emphasis on studies encompassing adolescence – a time of divergence in physical and behavioral characteristics. Across all ages total brain size is consistently reported to be about 10% larger in males. Structures commonly reported to be different between sexes include the caudate nucleus, amygdala, hippocampus, and cerebellum – all noted to have a relatively high density of sex steroid receptors. The direction and magnitude of reported brain differences depends on the methodology of data acquisition and analysis, whether and how the subcomponents are adjusted for the total brain volume difference, and the age of the participants in the studies. Longitudinal studies indicate regional cortical gray matter volumes follow inverted U shaped developmental trajectories with peak size occurring one to three years earlier in females. Cortical gray matter differences are modulated by androgen receptor genotyope and by circulating levels of hormones. White matter volumes increase throughout childhood and adolescence in both sexes but more rapidly in adolescent males resulting in an expanding magnitude of sex differences from childhood to adulthood.

  11. Effects of Recent Concussion on Brain Bioenergetics: A Phosphorus-31 Magnetic Resonance Spectroscopy Study.

    Science.gov (United States)

    Sikoglu, Elif M; Liso Navarro, Ana A; Czerniak, Suzanne M; McCafferty, Joseph; Eisenstock, Jordan; Stevenson, J Herbert; King, Jean A; Moore, Constance M

    2015-12-01

    Although clinical evaluations and neurocognitive assessments are commonly used to evaluate the extent of and recovery from concussion, brain bioenergetics could provide a more quantitative marker. The neurometabolic response to a concussion is thought to increase neuronal energy consumption and thus the demand for nucleoside triphosphate (NTP). We investigated the possible disruption in high-energy metabolism within the prefrontal cortex of college athletes who had either had a concussion within the past 6 months (n=14) or had never had a concussion (n=13). We hypothesized that concussed athletes would have imbalanced brain bioenergetics resulting from increased NTP consumption, and these biochemical changes would correspond to impaired cognitive abilities. We used phosphorus-31 magnetic resonance spectroscopy to quantify high-energy phosphates. We performed the neuroimaging in conjunction with neurocognitive assessments targeting prefrontal cortex-mediated tasks. Our results revealed significantly lower γ-NTP levels in the athletes after concussion. Although the concussed and non-concussed participants performed similarly in neurocognitive assessments, lower levels of γ-NTP were associated with worse scores on neurocognitive tasks. Our results support the concept of increased energy demand in the prefrontal cortex of a concussed brain, and we found that while neurocognitive assessments appear normal, brain energetics may be abnormal. A longitudinal study could help establish brain NTP levels as a biomarker to aid in diagnosis and to assess recovery in concussed patients.

  12. Predicting Outcome after Pediatric Traumatic Brain Injury by Early Magnetic Resonance Imaging Lesion Location and Volume

    Science.gov (United States)

    Smitherman, Emily; Hernandez, Ana; Stavinoha, Peter L.; Huang, Rong; Kernie, Steven G.; Diaz-Arrastia, Ramon

    2016-01-01

    Abstract Brain lesions after traumatic brain injury (TBI) are heterogeneous, rendering outcome prognostication difficult. The aim of this study is to investigate whether early magnetic resonance imaging (MRI) of lesion location and lesion volume within discrete brain anatomical zones can accurately predict long-term neurological outcome in children post-TBI. Fluid-attenuated inversion recovery (FLAIR) MRI hyperintense lesions in 63 children obtained 6.2±5.6 days postinjury were correlated with the Glasgow Outcome Scale Extended-Pediatrics (GOS-E Peds) score at 13.5±8.6 months. FLAIR lesion volume was expressed as hyperintensity lesion volume index (HLVI)=(hyperintensity lesion volume / whole brain volume)×100 measured within three brain zones: zone A (cortical structures); zone B (basal ganglia, corpus callosum, internal capsule, and thalamus); and zone C (brainstem). HLVI-total and HLVI-zone C predicted good and poor outcome groups (pCompared to patients with lesions in zone A alone or in zones A and B, patients with lesions in all three zones had a significantly higher odds ratio (4.38; 95% confidence interval, 1.19–16.0) for developing an unfavorable outcome. PMID:25808802

  13. Structural Abnormality on Brain Magnetic Resonance Imaging in Late-onset Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Hsiu-Fen Lin

    2005-09-01

    Full Text Available The purpose of this study was to examine the structural abnormalities of patients with late-onset major depressive disorder using brain magnetic resonance imaging (MRI and to assess clinical correlates of these structural abnormalities. Thirty-seven elderly patients with DSM-IV major depressive disorder that first occurred after the age of 50 years, and 18 control subjects without depression were recruited. All participants underwent comprehensive psychiatric assessment and cerebral MRI. Brain ventricular and sulcal sizes and white matter hyperintensities were assessed visually. Relative to control subjects, patients with late-life major depressive disorder showed more severe brain atrophy (p = 0.043 and white matter hyperintensities (p = 0.024, especially in the periventricular area (p = 0.012. Over 60% of the patient group had significant brain MRI hyperintensities. White matter hyperintensity was correlated with later onset of depressive illness (r = 0.49, p = 0.002 among patients. Brain atrophy and white matter hyperintensities are prevalent in patients with late-onset major depressive disorders. These two abnormalities may represent different pathophysiologic processes of depressive disorders. White matter hyperintensities may be predisposing factors for late-onset major depressive disorder.

  14. Brain atrophy rates in Parkinson's disease with and without dementia using serial magnetic resonance imaging.

    Science.gov (United States)

    Burton, Emma J; McKeith, Ian G; Burn, David J; O'Brien, John T

    2005-12-01

    Increased rates of brain atrophy are seen in Alzheimer's disease, but whether rates are similarly increased in other dementias such as Parkinson's disease dementia (PDD) has not been well examined. We determined the rates of brain atrophy using serial magnetic resonance imaging (MRI) in PDD and compared this finding to rates seen in cognitively intact Parkinson's disease (PD) patients and age-matched control subjects. Thirty-one patients (PD = 18, PDD = 13) and 24 age-matched controls underwent serial volumetric 1.5 T MRI scans, approximately 1 year apart. Baseline and repeat scans were registered and quantification of the brain boundary shift integral was used to determine whole-brain atrophy rates. Rates of brain atrophy were significantly increased in PDD (1.12 +/- 0.98%/year) compared to PD (0.31 +/- 0.69%/year; P = 0.018) and control subjects (0.34 +/- 0.76%/year; P = 0.015). There were no differences in atrophy rates between controls and PD (P = 0.79). No correlations between increased atrophy rates and age or dementia severity (Mini-Mental State Examination score) were observed. Serial MRI may be a useful tool for monitoring disease progression in PDD and further studies should investigate its utility for early diagnosis.

  15. Magnetic Resonance Imaging Volumetric Analysis of the Putamen in Children with ADHD: Combined Type versus Control

    Science.gov (United States)

    Wellington, Tasha McMahon; Semrud-Clikeman, Margaret; Gregory, Amanda Louise; Murphy, Jennifer Mary; Lancaster, Jack Lynn

    2006-01-01

    Objective: Volumetric differences in the putamen of boys with ADHD combined subtype with psychopathic traits and controls are investigated. Method: The putamen in 24 archival magnetic resonance imaging scans of 12 boys in residential treatment with symptoms of ADHD and psychopathic traits and 12 community control boys are analyzed using Display…

  16. Regional brain network organization distinguishes the combined and inattentive subtypes of Attention Deficit Hyperactivity Disorder

    OpenAIRE

    Jacqueline F. Saad; Kristi R. Griffiths; Michael R. Kohn; Simon Clarke; Leanne M. Williams; Mayuresh S. Korgaonkar

    2017-01-01

    Attention Deficit Hyperactivity Disorder (ADHD) is characterized clinically by hyperactive/impulsive and/or inattentive symptoms which determine diagnostic subtypes as Predominantly Hyperactive-Impulsive (ADHD-HI), Predominantly Inattentive (ADHD-I), and Combined (ADHD-C). Neuroanatomically though we do not yet know if these clinical subtypes reflect distinct aberrations in underlying brain organization. We imaged 34 ADHD participants defined using DSM-IV criteria as ADHD-I (n?=?16) or as ADH...

  17. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils.

    Science.gov (United States)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-21

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  18. Evaluation method for in situ electric field in standardized human brain for different transcranial magnetic stimulation coils

    Science.gov (United States)

    Iwahashi, Masahiro; Gomez-Tames, Jose; Laakso, Ilkka; Hirata, Akimasa

    2017-03-01

    This study proposes a method to evaluate the electric field induced in the brain by transcranial magnetic stimulation (TMS) to realize focal stimulation in the target area considering the inter-subject difference of the brain anatomy. The TMS is a non-invasive technique used for treatment/diagnosis, and it works by inducing an electric field in a specific area of the brain via a coil-induced magnetic field. Recent studies that report on the electric field distribution in the brain induced by TMS coils have been limited to simplified human brain models or a small number of detailed human brain models. Until now, no method has been developed that appropriately evaluates the coil performance for a group of subjects. In this study, we first compare the magnetic field and the magnetic vector potential distributions to determine if they can be used as predictors of the TMS focality derived from the electric field distribution. Next, the hotspots of the electric field on the brain surface of ten subjects using six coils are compared. Further, decisive physical factors affecting the focality of the induced electric field by different coils are discussed by registering the computed electric field in a standard brain space for the first time, so as to evaluate coil characteristics for a large population of subjects. The computational results suggest that the induced electric field in the target area cannot be generalized without considering the morphological variability of the human brain. Moreover, there was no remarkable difference between the various coils, although focality could be improved to a certain extent by modifying the coil design (e.g., coil radius). Finally, the focality estimated by the electric field was more correlated with the magnetic vector potential than the magnetic field in a homogeneous sphere.

  19. Brain Phosphorus Magnetic Resonance Spectroscopy Imaging of Sleep Homeostasis and Restoration in Drug Dependence

    Directory of Open Access Journals (Sweden)

    George H. Trksak

    2007-01-01

    Full Text Available Numerous reports have documented a high occurrence of sleep difficulties in drug-dependent populations, prompting researchers to characterize sleep profiles and physiology in drug abusing populations. This mini-review examines studies indicating that drug-dependent populations exhibit alterations in sleep homeostatic and restoration processes in response to sleep deprivation. Sleep deprivation is a principal sleep research tool that results in marked physiological challenge, which provides a means to examine sleep homeostatic processes in response to extended wakefulness. A report from our laboratory demonstrated that following recovery sleep from sleep deprivation, brain high-energy phosphates particularly beta–nucleoside triphosphate (beta-NTP are markedly increased as measured with phosphorus magnetic resonance spectroscopy (MRS. A more recent study examined the effects of sleep deprivation in opiate-dependent methadone-maintained (MM subjects. The study demonstrated increases in brain beta-NTP following recovery sleep. Interestingly, these increases were of a markedly greater magnitude in MM subjects compared to control subjects. A similar study examined sleep deprivation in cocaine-dependent subjects demonstrating that cocaine-dependent subjects exhibit greater increases in brain beta-NTP following recovery sleep when compared to control subjects. The studies suggest that sleep deprivation in both MM subjects and cocaine-dependent subjects is characterized by greater changes in brain ATP levels than control subjects. Greater enhancements in brain ATP following recovery sleep may reflect a greater disruption to or impact of sleep deprivation in drug dependent subjects, whereby sleep restoration processes may be unable to properly regulate brain ATP and maintain brain high-energy equilibrium. These studies support the notion of a greater susceptibility to sleep loss in drug dependent populations. Additional sleep studies in drug abusing

  20. Anatomical Characterization of Human Fetal Brain Development with Diffusion Tensor Magnetic Resonance Imaging

    Science.gov (United States)

    Huang, Hao; Xue, Rong; Zhang, Jiangyang; Ren, Tianbo; Richards, Linda J.; Yarowsky, Paul; Miller, Michael I.; Mori, Susumu

    2009-01-01

    The human brain is extraordinarily complex, and yet its origin is a simple tubular structure. Characterizing its anatomy at different stages of human fetal brain development not only aids in understanding this highly ordered process but also provides clues to detecting abnormalities caused by genetic or environmental factors. During the second trimester of human fetal development, neural structures in the brain undergo significant morphological changes. Diffusion tensor imaging (DTI), a novel method of magnetic resonance imaging, is capable of delineating anatomical components with high contrast and revealing structures at the microscopic level. In this study, high-resolution and high-signal-to-noise-ratio DTI data of fixed tissues of second-trimester human fetal brains were acquired and analyzed. DTI color maps and tractography revealed that important white matter tracts, such as the corpus callosum and uncinate and inferior longitudinal fasciculi, become apparent during this period. Three-dimensional reconstruction shows that major brain fissures appear while most of the cerebral surface remains smooth until the end of the second trimester. A dominant radial organization was identified at 15 gestational weeks, followed by both laminar and radial architectures in the cerebral wall throughout the remainder of the second trimester. Volumetric measurements of different structures indicate that the volumes of basal ganglia and ganglionic eminence increase along with that of the whole brain, while the ventricle size decreases in the later second trimester. The developing fetal brain DTI database presented can be used for education, as an anatomical research reference, and for data registration. PMID:19339620

  1. Intraoperative Magnetic Resonance Imaging of Cerebral Oxygen Metabolism During Resection of Brain Lesions.

    Science.gov (United States)

    Stadlbauer, Andreas; Merkel, Andreas; Zimmermann, Max; Sommer, Björn; Buchfelder, Michael; Meyer-Bäse, Anke; Rössler, Karl

    2017-04-01

    Tissue oxygen tension is an important parameter for brain tissue viability and its noninvasive intraoperative monitoring in the whole brain is of highly clinical relevance. The purpose of this study was the introduction of a multiparametric quantitative blood oxygenation dependent magnetic resonance imaging (MRI) approach for intraoperative examination of oxygen metabolism during the resection of brain lesions. Sixteen patients suffering from brain lesions were examined intraoperatively twice (before craniotomy and after gross-total resection) via the quantitative blood oxygenation dependent technique and a 1.5-Tesla MRI scanner, which is installed in an operating room. The MRI protocol included T2*- and T2 mapping and dynamic susceptibility weighted perfusion. Data analysis was performed with a custom-made, in-house MatLab software for calculation of maps of oxygen extraction fraction (OEF) and cerebral metabolic rate of oxygen (CMRO 2 ) as well as of cerebral blood volume and cerebral blood flow. Perilesional edema showed a significant increase in both perfusion (cerebral blood volume +21%, cerebral blood flow +13%) and oxygen metabolism (OEF +32%, CMRO 2  +16%) after resection of the lesions. In perilesional nonedematous tissue only, however, oxygen metabolism (OEF +19%, CMRO 2  +11%) was significantly increased, but not perfusion. No changes were found in normal brain. Fortunately, no neurovascular adverse events were observed. This approach for intraoperative examination of oxygen metabolism in the whole brain is a new application of intraoperative MRI additionally to resection control (residual tumor detection) and updating of neuronavigation (brain shift detection). It may help to detect neurovascular adverse events early during surgery. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Magnetic resonance imaging anatomy of the rabbit brain at 3 T.

    Science.gov (United States)

    Müllhaupt, Désirée; Augsburger, Heinz; Schwarz, Andrea; Fischer, Gregor; Kircher, Patrick; Hatt, Jean-Michel; Ohlerth, Stefanie

    2015-08-28

    Rabbits are widely accepted as an animal model in neuroscience research. They also represent very popular pet animals, and, in selected clinical cases with neurological signs, magnetic resonance imaging (MRI) may be indicated for imaging the rabbit brain. Literature on the normal MRI anatomy of the rabbit brain and associated structures as well as related reference values is sparse. Therefore, it was the purpose of this study to generate an MRI atlas of the normal rabbit brain including the pituitary gland, the cranial nerves and major vessels by the use of a 3 T magnet. Based on transverse, dorsal and sagittal T2-weighted (T2w) and pre- and post-contrast 3D T1-weighted (T1w) sequences, 60 intracranial structures were identified and labeled. Typical features of a lissencephalic brain type were described. In the 5 investigated rabbits, on T1w images a crescent-shaped hyperintense area caudodorsally in the pituitary gland most likely corresponded to a part of the neurohypophysis. The optic, trigeminal, and in part, the facial, vestibulocochlear and trochlear nerves were identified. Mild contrast enhancement of the trigeminal nerve was present in all rabbits. Absolute and relative size of the pituitary gland, midline area of the cranial and caudal cranial fossa and height of the tel- and diencephalon, 3rd and 4th ventricles were also determined. These data established normal MRI appearance and measurements of the rabbit brain. Results provide reference for research studies in rabbits and, in rare instances, clinical cases in veterinary medicine.

  3. Brain magnetic resonance immediately before surgery in single ventricles and surgical postponement.

    Science.gov (United States)

    Fogel, Mark A; Pawlowski, Tom; Schwab, Peter J; Nicolson, Susan C; Montenegro, Lisa M; Berenstein, Laura Diaz; Spray, Thomas L; Gaynor, J William; Fuller, Stephanie; Keller, Marc S; Harris, Matthew A; Whitehead, Kevin K; Vossough, Arastoo; Licht, Daniel J

    2014-11-01

    Single-ventricle patients undergoing surgical reconstruction experience a high rate of brain injury. Incidental findings on preoperative brain scans may result in safety considerations involving hemorrhage extension during cardiopulmonary bypass that result in surgical postponement. Single-ventricle patients were studied with brain scans immediately preoperatively, as part of a National Institutes of Health study, and were reviewed by neuroradiology immediately before cardiopulmonary bypass. Of 144 consecutive patients recruited into the project, 33 were studied before stage I (3.7±1.8 days), 34 before bidirectional Glenn (5.8±0.5 months), and 67 before Fontan (3.3±1.1 years) operations. Six operations (4.5%), 2 before stage I, 3 before bidirectional Glenn, and 1 before Fontan, were postponed because of concerning findings on brain magnetic resonance imaging. Five were due to unexpected incidental findings of acute intracranial hemorrhage, and 1 was due to diffuse cerebellar cytotoxic edema; none who proceeded to operation had these lesions. Prematurity and genetic syndromes were not present in any patients with a postponed operation. Four of 4 before bidirectional Glenn/Fontan with surgical delays had hypoplastic left heart syndrome compared with 44 of 97 who did not (p=0.048). After observation and follow-up, all eventually had successful operations with bypass. Preoperative brain magnetic resonance imaging performed in children with single ventricles disclosed injuries in 4.5% leading to surgical delay; hemorrhagic lesions were most common and raised concerns for extension during the operation. The true risk of progression and need for delay of the operation due to heparinization associated with these lesions remains uncertain. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Combined thalamic and subthalamic deep brain stimulation for tremor-dominant Parkinson's disease.

    Science.gov (United States)

    Oertel, Markus F; Schüpbach, W Michael M; Ghika, Joseph-André; Stieglitz, Lennart H; Fiechter, Michael; Kaelin-Lang, Alain; Raabe, Andreas; Pollo, Claudio

    2017-02-01

    Deep brain stimulation (DBS) in the thalamic ventral intermediate (Vim) or the subthalamic nucleus (STN) reportedly improves medication-refractory Parkinson's disease (PD) tremor. However, little is known about the potential synergic effects of combined Vim and STN DBS. We describe a 79-year-old man with medication-refractory tremor-dominant PD. Bilateral Vim DBS electrode implantation produced insufficient improvement. Therefore, the patient underwent additional unilateral left-sided STN DBS. Whereas Vim or STN stimulation alone led to partial improvement, persisting tremor resolution occurred after simultaneous stimulation. The combination of both targets may have a synergic effect and is an alternative option in suitable cases.

  5. BRAF inhibitors and radiotherapy for melanoma brain metastases: potential advantages and disadvantages of combination therapy.

    Science.gov (United States)

    Chowdhary, Mudit; Patel, Kirtesh R; Danish, Hasan H; Lawson, David H; Khan, Mohammad K

    2016-01-01

    Melanoma is an aggressive malignancy that frequently spreads to the brain, resulting in rapid deterioration in both quality and quantity of life. Historically, treatment options for melanoma brain metastases (MBM) have predominantly consisted of surgery and radiotherapy. While these options can help provide local control, the majority of patients still develop intracranial progression. Indeed, novel therapeutic options, including molecularly targeted agents and immunotherapy, have improved outcomes and are now changing the role of radiotherapy. Up to 50% of melanomas contain an activating BRAF mutation, resulting in hyperactive cellular proliferation and survival. Drugs that target BRAF have been introduced for the treatment of metastatic melanoma and offer hope in improving disease outcomes; however, many of these trials either excluded or had a limited amount of patients with MBM. Recent studies have revealed that melanoma cell lines become more radiosensitive following BRAF inhibition, thus providing a potential synergistic mechanism when combining BRAF inhibitor (BRAFi) and radiotherapy. However, neurotoxicity concerns also exist with this combination. This article reviews the efficacy and limitations of BRAFi therapy for MBM, describes current evidence for combining BRAFis with radiation, discusses the rationale and evidence for combination modalities, and highlights emerging clinical trials specifically investigating this combination in MBM.

  6. Combining CHAMP and Swarm Satellite Data to Invert the Lithospheric Magnetic Field in the Tibetan Plateau.

    Science.gov (United States)

    Qiu, Yaodong; Wang, Zhengtao; Jiang, Weiping; Zhang, Bingbing; Li, Fupeng; Guo, Fei

    2017-01-26

    CHAMP and Swarm satellite magnetic data are combined to establish the lithospheric magnetic field over the Tibetan Plateau at satellite altitude by using zonal revised spherical cap harmonic analysis (R-SCHA). These data are integrated with geological structures data to analyze the relationship between magnetic anomaly signals and large-scale geological tectonic over the Tibetan Plateau and to explore the active tectonic region based on the angle of the magnetic anomaly. Results show that the model fitting error is small for a layer 250-500 km high, and the RMSE of the horizontal and radial geomagnetic components is better than 0.3 nT. The proposed model can accurately describe medium- to long-scale lithospheric magnetic anomalies. Analysis indicates that a negative magnetic anomaly in the Tibetan Plateau significantly differs with a positive magnetic anomaly in the surrounding area, and the boundary of the positive and negative regions is generally consistent with the geological tectonic boundary in the plateau region. Significant differences exist between the basement structures of the hinterland of the plateau and the surrounding area. The magnetic anomaly in the Central and Western Tibetan Plateau shows an east-west trend, which is identical to the direction of the geological structures. The magnetic anomaly in the eastern part is arc-shaped and extends along the northeast direction. Its direction is significantly different from the trend of the geological structures. The strongest negative anomaly is located in the Himalaya block, with a central strength of up to -9 nT at a height of 300 km. The presence of a strong negative anomaly implies that the Curie isotherm in this area is relatively shallow and deep geological tectonic activity may exist.

  7. A Review of Magnetic Resonance Imaging and Diffusion Tensor Imaging Findings in Mild Traumatic Brain Injury

    Science.gov (United States)

    Shenton, ME; Hamoda, HM; Schneiderman, JS; Bouix, S; Pasternak, O; Rathi, Y; M-A, Vu; Purohit, MP; Helmer, K; Koerte, I; Lin, AP; C-F, Westin; Kikinis, R; Kubicki, M; Stern, RA; Zafonte, R

    2013-01-01

    Mild traumatic brain injury (mTBI), also referred to as concussion, remains a controversial diagnosis because the brain often appears quite normal on conventional computed tomography (CT) and magnetic resonance imaging (MRI) scans. Such conventional tools, however, do not adequately depict brain injury in mTBI because they are not sensitive to detecting diffuse axonal injuries (DAI), also described as traumatic axonal injuries (TAI), the major brain injuries in mTBI. Furthermore, for the 15 to 30% of those diagnosed with mTBI on the basis of cognitive and clinical symptoms, i.e., the “miserable minority,” the cognitive and physical symptoms do not resolve following the first three months post-injury. Instead, they persist, and in some cases lead to long-term disability. The explanation given for these chronic symptoms, i.e., postconcussive syndrome, particularly in cases where there is no discernible radiological evidence for brain injury, has led some to posit a psychogenic origin. Such attributions are made all the easier since both post-traumatic stress disorder (PTSD) and depression are frequently co-morbid with mTBI. The challenge is thus to use neuroimaging tools that are sensitive to DAI/TAI, such as diffusion tensor imaging (DTI), in order to detect brain injuries in mTBI. Of note here, recent advances in neuroimaging techniques, such as DTI, make it possible to characterize better extant brain abnormalities in mTBI. These advances may lead to the development of biomarkers of injury, as well as to staging of reorganization and reversal of white matter changes following injury, and to the ability to track and to characterize changes in brain injury over time. Such tools will likely be used in future research to evaluate treatment efficacy, given their enhanced sensitivity to alterations in the brain. In this article we review the incidence of mTBI and the importance of characterizing this patient population using objective radiological measures. Evidence

  8. Apoptosis selectively induced in BEL-7402 cells by folic acid-modified magnetic nanoparticles combined with 100 Hz magnetic field.

    Science.gov (United States)

    Wen, Jian; Jiang, Shulian; Chen, Zhiqiang; Zhao, Wei; Yi, Yongxiang; Yang, Ruili; Chen, Baoan

    2014-01-01

    To explore the effect of folic acid-modified magnetic nanoparticles (FA-MNPs) combined with a 100 Hz extremely low-frequency electromagnetic field (ELF-EMF) on the apoptosis of liver cancer BEL-7402 cells. MNPs (20 nm) were prepared by coprecipitation, and then folic acid was coated onto MNPs to prepare FA-MNPs. BEL-7402 cells and HL7702 cells were selected as liver cancer cells and normal liver cells, respectively. The ELF-EMF was generated from a solenoid coil. Cellular uptake of NPs was determined by inductively coupled plasma atomic emission spectroscopy. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was used to evaluate cell inhibition. Apoptosis was analyzed by flow cytometry. Statistical analyses were performed using two-way analysis of variance. FA-MNPs combined with a 100 Hz magnetic field significantly inhibited cell proliferation and induced higher apoptosis compared to either the ELF-EMF alone or FA-MNPs alone. FA-MNPs showed a better apoptosis effect and higher iron uptake in BEL-7402 cells compared to in HL7702 cells. On the basis of the ELF-EMF, higher doses of FA-MNPs brought higher apoptosis and higher iron uptake in either BEL-7402 cells or HL7702 cells. These results suggest that FA-MNPs may induce apoptosis in a cellular iron uptake-dependent manner when combined with an ELF-EMF in BEL-7402 cells.

  9. Brain morphometry predicts individual creative potential and the ability to combine remote ideas.

    Science.gov (United States)

    Bendetowicz, David; Urbanski, Marika; Aichelburg, Clarisse; Levy, Richard; Volle, Emmanuelle

    2017-01-01

    For complex mental functions such as creative thinking, inter-individual variability is useful to better understand the underlying cognitive components and brain anatomy. Associative theories propose that creative individuals have flexible semantic associations, which allows remote elements to be formed into new combinations. However, the structural brain variability associated with the ability to combine remote associates has not been explored. To address this question, we performed a voxel-based morphometry (VBM) study and explored the anatomical connectivity of significant regions. We developed a Remote Combination Association Task adapted from Mednick's test, in which subjects had to find a solution word related to three cue words presented to them. In our adaptation of the task, we used free association norms to quantify the associative distance between the cue words and solution words, and we varied this distance. The tendency to solve the task with insight and the ability to evaluate the appropriateness of a proposed solution were also analysed. Fifty-four healthy volunteers performed this task and underwent a structural MRI. Structure-function relationships were analysed using regression models between grey matter (GM) volume and task performance. Significant clusters were mapped onto an atlas of white matter (WM) tracts. The ability to solve the task, which depended on the associative distance of the solution word, was associated with structural variation in the left rostrolateral prefrontal and posterior parietal regions; the left rostral prefrontal region was connected to distant regions through long-range pathways. By using a creative combination task in which the semantic distance between words varied, we revealed a brain network centred on the left frontal pole that appears to support the ability to combine information in new ways by bridging the semantic distance between pieces of information. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Brain Basics

    Medline Plus

    Full Text Available ... Life Brain Basics in Real Life—How Depression affects the Brain Meet Sarah Sarah is a middle- ... than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses ...

  11. [Median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of hand].

    Science.gov (United States)

    Ma, Shanjun; Zhou, Tianjian

    2014-05-01

    To evaluate the effectiveness of the median nerve constrictive operation combined with tendon transfer to treat the brain paralysis convulsive deformity of the hand. The clinical data from 21 cases with brain paralysis convulsive deformity of the hand were analyzed retrospectively between August 2009 and April 2012. Of them, there were 13 males and 8 females with an average age of 15 years (range, 10-29 years). The causes of the convulsive cerebral palsy included preterm deliveries in 11 cases, hypoxia asphyxia in 7, traumatic brain injury in 2, and encephalitis sequela in 1. The disease duration was 2-26 years (mean, 10.6 years). All the 21 patients had cock waists, crooking fingers, and contracture of adductors pollicis, 12 had the forearm pronation deformity. According to Ashworth criteria, there were 2 cases at level I, 5 cases at level II, 8 cases at level III, 4 cases at level IV, and 2 cases at level V. All patients had no intelligence disturbances. The forearm X-ray film showed no bone architectural changes before operation. The contraction of muscle and innervation was analyzed before operation. The median nerve constrictive operation combined with tendon transfer was performed. The functional activities and deformity improvement were evaluated during follow-up. After operation, all the patients' incision healed by first intension, without muscle atrophy and ischemic spasm. All the 21 cases were followed up 1.5-4.5 years (mean, 2.3 years). No superficial sensory loss occurred. The effectiveness was excellent in 13 cases, good in 6 cases, and poor in 2 cases, with an excellent and good rate of 90.4% at last follow-up. The median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of the hand can remove and prevent the recurrence of spasm, achieve the orthopedic goals, to assure the restoration of motor function and the improvement of the life quality.

  12. Differentiation of solitary brain metastasis from glioblastoma multiforme: a predictive multiparametric approach using combined MR diffusion and perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Adam Herman; Moser, Franklin G.; Maya, Marcel [Cedars-Sinai Medical Center, Department of Medical Imaging, Los Angeles, CA (United States); Erly, William; Nael, Kambiz [University of Arizona Medical Center, Department of Medical Imaging, Tucson, AZ (United States)

    2015-07-15

    Solitary brain metastasis (MET) and glioblastoma multiforme (GBM) can appear similar on conventional MRI. The purpose of this study was to identify magnetic resonance (MR) perfusion and diffusion-weighted biomarkers that can differentiate MET from GBM. In this retrospective study, patients were included if they met the following criteria: underwent resection of a solitary enhancing brain tumor and had preoperative 3.0 T MRI encompassing diffusion tensor imaging (DTI), dynamic contrast-enhanced (DCE), and dynamic susceptibility contrast (DSC) perfusion. Using co-registered images, voxel-based fractional anisotropy (FA), mean diffusivity (MD), K{sup trans}, and relative cerebral blood volume (rCBV) values were obtained in the enhancing tumor and non-enhancing peritumoral T2 hyperintense region (NET2). Data were analyzed by logistic regression and analysis of variance. Receiver operating characteristic (ROC) analysis was performed to determine the optimal parameter/s and threshold for predicting of GBM vs. MET. Twenty-three patients (14 M, age 32-78 years old) met our inclusion criteria. Pathology revealed 13 GBMs and 10 METs. In the enhancing tumor, rCBV, K{sup trans}, and FA were higher in GBM, whereas MD was lower, neither without statistical significance. In the NET2, rCBV was significantly higher (p = 0.05) in GBM, but MD was significantly lower (p < 0.01) in GBM. FA and K{sup trans} were higher in GBM, though not reaching significance. The best discriminative power was obtained in NET2 from a combination of rCBV, FA, and MD, resulting in an area under the curve (AUC) of 0.98. The combination of MR diffusion and perfusion matrices in NET2 can help differentiate GBM over solitary MET with diagnostic accuracy of 98 %. (orig.)

  13. [Functional brain magnetic resonance imaging in healthy people receiving acupuncture at Waiguan versus Waiguan plus Yanglingquan points: a randomized controlled trial].

    Science.gov (United States)

    Huang, Yong; Li, Tian-Le; Lai, Xin-Sheng; Zou, Yan-Qi; Wu, Jun-Xian; Tang, Chun-Zhi; Yang, Jun-Jun

    2009-06-01

    To observe the cerebral activating effects of needling at Waiguan (SJ5) versus SJ5 plus Yanglingquan (GB34) points in young healthy volunteers based on the hypothesis of "needling effect of combined acupuncture points relates to the brain activation". Sixteen healthy volunteers were randomly divided into SJ5 group and SJ5 plus GB34 group, and there were 8 volunteers in each group. The volunteers in the two groups received needling at corresponding points on the right hand or foot respectively. Nuclear magnetic resonance (1.5T, GE Corporation) was used for functional magnetic resonance imaging (fMRI) of the brain before and during the needling, and the obtained experimental data in the regional brain were processed and analyzed by the method of region of interest (ROI). The ROI activation induced by needling of SJ5 or SJ5 plus GB34 was all relatively concentrated (activation rate more than 4 or activation point more than 10) on bilateral frontal and parietal lobes. There were no significant differences in ROI activation rates of brain regions between the two groups. ROI activation points showed that needling at SJ5 could activate the right cerebellum specifically (P vs SJ5 plus GB34), while needling at SJ5 plus GB34 could activate the left parietal and occipital lobes and bilateral basal ganglion more effectively than activate the other brain regions (P vs SJ5). ROI activation strength showed that needling at SJ5 plus GB34 could more strongly activate the right cerebellum (P vs SJ5). Based on fMRI data, a kind of acupuncture point combination of SJ5 and GB34 within the hand-foot Shaoyang meridians, could improve the motor and sensory dysfunctions and equilibrium disturbance. The effect of combined acupuncture points was proved by cerebral activity initially.

  14. Combined x-ray and magnetic resonance imaging facility: application to image-guided stereotactic and functional neurosurgery.

    Science.gov (United States)

    Hunsche, Stefan; Sauner, Dieter; Maarouf, Mohammad; Lackner, Klaus; Sturm, Volker; Treuer, Harald

    2007-04-01

    To assess the feasibility of a hybrid imaging setup combining x-ray and magnetic resonance imaging (MRI) in the setting of both stereotactic and functional neurosurgery. A combined x-ray and MRI scanning facility with a trolley system for a fast patient transfer between both modalities was installed in a neurosurgical setting. A registration algorithm for fusion of MRI scans and x-ray images was derived for augmentation of fluoroscopic x-ray projection images with MRI scan data, such as anatomic structures and planned probe trajectories. Phantom measurements were obtained between both modalities for estimation of registration accuracy. Practical application of our system in stereotactic and functional neurosurgery was tested in brachytherapy, deep brain stimulation, and motor cortex stimulation. Phantom measurements yielded a mean spatial deviation of 0.7 +/- 0.3 mm with a maximum deviation of 1.1 mm for MRI scans versus x-rays. Augmentation of x-ray images with MRI scan data allowed intraoperative verification of the planned trajectory and target in three types of neurosurgical procedures: positioning iodine seeds in brachytherapy in one case with cerebellar metastasis, placement of electrodes for deep brain stimulation in two cases of advanced Parkinson's disease, and placement of an epidural grid for motor cortex stimulation in two cases of intractable pain. Combined x-ray and MRI-guided stereotactic and functional neurosurgery is feasible. Augmentation of x-ray projection images with MRI scan data, such as planned probe trajectories and MRI scan segmented anatomic structures may be beneficial for probe guidance in stereotactic and functional neurosurgery.

  15. Reconfigurable magnetic logic combined with non-volatile memory in silicon

    Science.gov (United States)

    Luo, Zhaochu; Zhang, Xiaozhong

    Silicon-based complementary metal-oxide-semiconductor (CMOS) transistors have achieved great success and become the mainstream of integrated logic circuits. However, the traditional pathway to enhance computational performance and decrease cost by continuous miniaturization is approaching its fundamental limits. The recent emergence of magnetic logic devices, especially magnetic-field-based semiconductor logic devices, shows promise for surpassing the development limits of CMOS logic and arouses profound attentions. Based on our Si based magnetoresistance (MR) device, we proposed a Si based reconfigurable magnetic logic device by coupling nonlinear transport effect and Hall effect in Si, which could do all four basic Boolean logic operations including AND, OR, NOR and NAND combined with non-volatile memory. Further, we developed a Si based current-mode magnetic logic device, which allowed direct communication between different logic devices by current-induced magnetization switch effect without external intermediate magnetic-electric converters. This may result in a memory-logic integrated system leading to a non von Neumann computer.

  16. SUPERCONDUCTING COMBINED FUNCTION MAGNET SYSTEM FOR J-PARC NEUTRINO EXPERIMENT.

    Energy Technology Data Exchange (ETDEWEB)

    OGITSU, T.; AJIMA, Y.; ANERELLA, M.; ESCALLIER, J.; GANETIS, G.; GUPTA, R.; HAGEDOM, D.; HARRISON, M.; HIGASHI, N.; IWAMOTO, Y.; ICHIKAWA, A.; JAIN, A.; KIMURA, N.; KOBAYASHI, T.; MAKIDA, Y.; MURATORE, J.; NAKAMOTO, T.; OHHATA, H.; TAKASAKI, N.; TANAKA, K.; TERASHIMA, A.; YAMOMOTO, A.; OBANA, T.; PARKER, B.; WANDERER, P.

    2004-10-03

    The J-PARC Neutrino Experiment, the construction of which starts in JFY 2004, will use a superconducting magnet system for its primary proton beam line. The system, which bends the 50 GeV 0.75 MW proton beam by about 80 degrees, consists of 28 superconducting combined function magnets. The magnets utilize single layer left/right asymmetric coils that generate a dipole field of 2.6 T and a quadrupole field of 18.6 T/m with the operation current of about 7.35 kA. The system also contains a few conduction cooled superconducting corrector magnets that serve as vertical and horizontal steering magnets. All the magnets are designed to provide a physical beam aperture of 130 mm in order to achieve a large beam acceptance. Extensive care is also required to achieve safe operation with the high power proton beam. The paper summarizes the system design as well as some safety analysis results.

  17. An integrated hybrid system for genetic analysis combining EWOD sample preparation and magnetic detection

    Science.gov (United States)

    Brennan, Des; Jary, Dorothee; Peponnet, Christine; Cardosa, Filipe; Freitas, Paolo; Dinca, Mihai; Aherne, Margaret; Galvin, Paul

    2011-08-01

    Over the last decade microelectronic technologies have delivered significant advances in devices for point of care diagnostics. Complex microfluidic systems integrate components such as valves, pumps etc. to manipulate liquids. In recent years, the drive is to combine biochemical protocols in a single system, delivering "sample in answer out". An Electrowetting on Dielectric (EWOD) device offers the possibility to move and manipulate 64nl volumes implementing biochemical processes, while the magnetic sensor facilitates hybridisation detection. We outline an injection molding approach where EWOD and magnetic devices are integrated into a hybrid microfluidic system with the potential to implement "sample in answer out" biological protocols.

  18. Effects of tramadol, clonazepam, and their combination on brain mitochondrial complexes.

    Science.gov (United States)

    Mohamed, Tarek Mostafa; Ghaffar, Hamdy M Abdel; El Husseiny, Rabee M R

    2015-12-01

    The present study is an unsubstantiated qualitative assessment of the abused drugs-tramadol and clonazepam. The aim of this study is to evaluate whether the effects of tramadol, clonazepam, and their combination on mitochondrial electron transport chain (ETC) complexes were influential at therapeutic or at progressively increasing doses. The study comprised of a total of 70 healthy male rats, aged 3 months. According to the drug intake regimen, animals were divided into seven groups: control, tramadol therapeutic, clonazepam therapeutic, combination therapeutic, tramadol abuse, clonazepam abuse, and combination abuse group. At the end of the experiment, brain mitochondrial ETC complexes (I, II, III, and IV) were evaluated. Histopathological examinations were also performed on brain tissues. The results showed that groups that received tramadol (therapeutic and abuse) suffered from weight loss. Tramadol abuse group and combination abuse group showed significant decrease in the activities of I, III, and IV complexes but not in the activity of complex II. In conclusion, tramadol but not clonazepam has been found to partially inhibit the activities of respiratory chain complexes I, III, and IV but not the activity of complex II and such inhibition occurred only at doses that exceeded the maximum recommended adult human daily therapeutic doses. This result explains the clinical and histopathological effects of tramadol, such as seizures and red neurons (marker for apoptosis), respectively. © The Author(s) 2012.

  19. Brain of rats intoxicated with acrylamide: observation with 4.7 tesla magnetic resonance.

    Science.gov (United States)

    Kinoshita, Y; Matsumura, H; Igisu, H; Yokota, A

    2000-10-01

    When rats were injected intraperitoneally with acrylamide (50 mg/kg per day) for 8 days, all animals developed ataxia and weakness in the hindlimbs. On examining their brain with an ultrahigh-field (4.7 T) magnetic resonance (MR) spectrometer, the lateral ventricles on both sides and the third ventricle were dilated. The aqueduct and cisterns were also enlarged. The size of the cerebral cortex was quantified in three MR image slices covering the cerebrum. Compared with the images of the brain of body weight-matched controls, the cerebral cortex of rats intoxicated with acrylamide was found to be smaller in the primary motor area in all slices, and in the primary or secondary sensory area in two slices. Taken together with previous enzymatic analyses, rats intoxicated with acrylamide (50 mg/kg per day for 8 days) seem to represent an animal model of acrylamide encephalopathy not only biochemically but also structurally.

  20. The social brain in adolescence: Evidence from functional magnetic resonance imaging and behavioural studies

    Science.gov (United States)

    Burnett, Stephanie; Sebastian, Catherine; Kadosh, Kathrin Cohen; Blakemore, Sarah-Jayne

    2015-01-01

    Social cognition is the collection of cognitive processes required to understand and interact with others. The term ‘social brain’ refers to the network of brain regions that underlies these processes. Recent evidence suggests that a number of social cognitive functions continue to develop during adolescence, resulting in age differences in tasks that assess cognitive domains including face processing, mental state inference and responding to peer influence and social evaluation. Concurrently, functional and structural magnetic resonance imaging (MRI) studies show differences between adolescent and adult groups within parts of the social brain. Understanding the relationship between these neural and behavioural observations is a challenge. This review discusses current research findings on adolescent social cognitive development and its functional MRI correlates, then integrates and interprets these findings in the context of hypothesised developmental neurocognitive and neurophysiological mechanisms. PMID:21036192

  1. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    Science.gov (United States)

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  2. Brain structure in prenatal stroke: quantitative magnetic resonance imaging (MRI) analysis.

    Science.gov (United States)

    Bava, Sunita; Archibald, Sarah L; Trauner, Doris A

    2007-07-01

    Neonatal stroke outcome studies demonstrate variable findings of either relatively spared intellectual function or persistent impairments. Volumetric measurement of the brain can provide more precise data on lesion-cognition outcomes. We studied 7 children with unilateral focal lesions from prenatal stroke. Whole-brain magnetic resonance imaging scans were analyzed to produce volumes of cortical gray matter, total white matter, cerebrospinal fluid, lesion, and lesion constricted fluid, and we ascertained the relationship of morphometric variables to intellectual and clinical outcome. Children with cystic encephalomalacia plus atrophy had poorer outcomes than children with atrophy or gliosis alone. These children also demonstrated the largest lesion size, smallest gray matter volume, and greatest proportion of hyperintense white matter in the affected hemisphere. Findings suggest that the type and size of the lesion, in addition to the integrity of white matter and residual cortex, may be better predictors of intellectual functioning than either of these indices alone.

  3. Quantitative magnetic resonance imaging and studies of degenerative diseases of the developing human brain

    Energy Technology Data Exchange (ETDEWEB)

    Caviness, V.S. Jr. (Massachusetts General Hospital, Boston, MA (United States)); Phil, D.; Filipek, P.A.; Kennedy, D.N.

    1992-05-01

    The Rett syndrome is a progressive disorder which is associated with regression of psychomotor development and precipitous deceleration of brain growth during the first year of life. General histopathological surveys in postmortem specimens have identified degeneration of subpopulations of neurons of the nigrostriatal system but no other evidence of degenerative process. Magnetic resonance imaging-based morphometry may usefully guide application of rigorous but demanding quantitative histologic search for evidence of neuronal degeneration. The volumes of the principal set of cortical and nuclear structures of principal interest in the disorder may be measured by currently avaiable MRI-based methods. Opimized levels of precision now allow detection of volumetric changes over time in the same brain of approximately 10% at the 95% confidence level. (author).

  4. Volumetric Magnetic Resonance Imaging Study of Brain and Cerebellum in Children with Cerebral Palsy.

    Science.gov (United States)

    Kułak, Piotr; Maciorkowska, Elżbieta; Gościk, Elżbieta

    2016-01-01

    Introduction. Quantitative magnetic resonance imaging (MRI) studies are rarely used in the diagnosis of patients with cerebral palsy. The aim of present study was to assess the relationships between the volumetric MRI and clinical findings in children with cerebral palsy compared to control subjects. Materials and Methods. Eighty-two children with cerebral palsy and 90 age- and sex-matched healthy controls were collected. Results. The dominant changes identified on MRI scans in children with cerebral palsy were periventricular leukomalacia (42%) and posthemorrhagic hydrocephalus (21%). The total brain and cerebellum volumes in children with cerebral palsy were significantly reduced in comparison to controls. Significant grey matter volume reduction was found in the total brain in children with cerebral palsy compared with the control subjects. Positive correlations between the age of the children of both groups and the grey matter volumes in the total brain were found. Negative relationship between width of third ventricle and speech development was found in the patients. Positive correlations were noted between the ventricles enlargement and motor dysfunction and mental retardation in children with cerebral palsy. Conclusions. By using the voxel-based morphometry, the total brain, cerebellum, and grey matter volumes were significantly reduced in children with cerebral palsy.

  5. Multigrid Nonlocal Gaussian Mixture Model for Segmentation of Brain Tissues in Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Yunjie Chen

    2016-01-01

    Full Text Available We propose a novel segmentation method based on regional and nonlocal information to overcome the impact of image intensity inhomogeneities and noise in human brain magnetic resonance images. With the consideration of the spatial distribution of different tissues in brain images, our method does not need preestimation or precorrection procedures for intensity inhomogeneities and noise. A nonlocal information based Gaussian mixture model (NGMM is proposed to reduce the effect of noise. To reduce the effect of intensity inhomogeneity, the multigrid nonlocal Gaussian mixture model (MNGMM is proposed to segment brain MR images in each nonoverlapping multigrid generated by using a new multigrid generation method. Therefore the proposed model can simultaneously overcome the impact of noise and intensity inhomogeneity and automatically classify 2D and 3D MR data into tissues of white matter, gray matter, and cerebral spinal fluid. To maintain the statistical reliability and spatial continuity of the segmentation, a fusion strategy is adopted to integrate the clustering results from different grid. The experiments on synthetic and clinical brain MR images demonstrate the superior performance of the proposed model comparing with several state-of-the-art algorithms.

  6. Transcranial magnetic stimulation and connectivity mapping: tools for studying the neural bases of brain disorders.

    Directory of Open Access Journals (Sweden)

    Michelle Hampson

    2010-08-01

    Full Text Available There has been an increasing emphasis on characterizing pathophysiology underlying psychiatric and neurological disorders in terms of altered neural connectivity and network dynamics. Transcranial magnetic stimulation (TMS provides a unique opportunity for investigating connectivity in the human brain. TMS allows researchers and clinicians to directly stimulate cortical regions accessible to electromagnetic coils positioned on the scalp. The induced activation can then propagate through long-range connections to other brain areas. Thus, by identifying distal regions activated during TMS, researchers can infer connectivity patterns in the healthy human brain and can examine how those patterns may be disrupted in patients with different brain disorders. Conversely, connectivity maps derived using neuroimaging methods can identify components of a dysfunctional network. Nodes in this dysfunctional network accessible as targets for TMS by virtue of their proximity to the scalp may then permit TMS-induced alterations of components of the network not directly accessible to TMS via propagated effects. Thus TMS can provide a portal for accessing and altering neural dynamics in networks that are widely distributed anatomically. Finally, when long-term modulation of network dynamics is induced by trains of repetitive TMS, changes in functional connectivity patterns can be studied in parallel with changes in patient symptoms. These correlational data can elucidate neural mechanisms underlying illness and recovery. In this review, we focus on the application of these approaches to the study of psychiatric and neurological illnesses.

  7. Multifrequency magnetic resonance elastography of the brain reveals tissue degeneration in neuromyelitis optica spectrum disorder

    Energy Technology Data Exchange (ETDEWEB)

    Streitberger, Kaspar-Josche [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Fehlner, Andreas; Sack, Ingolf [Charite - Universitaetsmedizin Berlin, Department of Radiology, Berlin (Germany); Pache, Florence [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Lacheta, Anna; Papazoglou, Sebastian; Brandt, Alexander [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Bellmann-Strobl, Judith [Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Ruprecht, Klemens [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Braun, Juergen [Charite - Universitaetsmedizin Berlin, Institute of Medical Informatics, Berlin (Germany); Paul, Friedemann [Charite - Universitaetsmedizin Berlin, Department of Neurology with Experimental Neurology, Berlin (Germany); Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Wuerfel, Jens [Charite - Universitaetsmedizin Berlin, NeuroCure Clinical Research Center, Berlin (Germany); Max Delbrueck Center for Molecular Medicine and Charite - Universitaetsmedizin Berlin, Experimental and Clinical Research Center, Berlin (Germany); Medical Image Analysis Center (MIAC AG), Basel (Switzerland)

    2017-05-15

    Application of multifrequency magnetic resonance elastography (MMRE) of the brain parenchyma in patients with neuromyelitis optica spectrum disorder (NMOSD) compared to age matched healthy controls (HC). 15 NMOSD patients and 17 age- and gender-matched HC were examined using MMRE. Two three-dimensional viscoelastic parameter maps, the magnitude G* and phase angle φ of the complex shear modulus were reconstructed by simultaneous inversion of full wave-field data in 1.9-mm isotropic resolution at 7 harmonic drive frequencies from 30 to 60 Hz. In NMOSD patients, a significant reduction of G* was observed within the white matter fraction (p = 0.017), predominantly within the thalamic regions (p = 0.003), compared to HC. These parameters exceeded the reduction in brain volume measured in patients versus HC (p = 0.02 whole-brain volume reduction). Volumetric differences in white matter fraction and the thalami were not detectable between patients and HC. However, phase angle φ was decreased in patients within the white matter (p = 0.03) and both thalamic regions (p = 0.044). MMRE reveals global tissue degeneration with accelerated softening of the brain parenchyma in patients with NMOSD. The predominant reduction of stiffness is found within the thalamic region and related white matter tracts, presumably reflecting Wallerian degeneration. (orig.)

  8. Magnetic resonance imaging contrast enhancement of brain tumors at 3 tesla versus 1.5 tesla.

    Science.gov (United States)

    Nöbauer-Huhmann, Iris-Melanie; Ba-Ssalamah, Ahmed; Mlynarik, Vladimir; Barth, Markus; Schöggl, Alexander; Heimberger, Karl; Matula, Christian; Fog, Amura; Kaider, Alexandra; Trattnig, Siegfried

    2002-03-01

    To compare the diagnostic efficacy of a standard dose of MRI contrast agent in the evaluation of primary brain tumors and metastases using a high-field 3 tesla MR unit versus a 1.5 tesla MR unit. Sixteen patients with brain tumors were examined at both field strengths using identical axial T1-SE protocols pre- and postcontrast (0.1 mmol/kg gadolinium), and postcontrast coronal 3D GRE with magnetization preparation (MP-RAGE), which was adjusted separately for each field strength. Evaluation of the images was performed quantitatively and, in the case of T1-SE images, also by visual assessment. Tumor-to-brain-contrast after gadolinium administration using statistical evaluation of MP-RAGE scans was significantly higher at 3 tesla (97.5) than at 1.5 tesla (46.3). The same was true for T1-SE sequences (93.0 vs. 72.1). Signal enhancement of the lesions in T1-SE sequences was not significantly different between both field strengths. Administration of a gadolinium contrast agent produces higher contrast between tumor and normal brain at 3 tesla than at 1.5 tesla.

  9. Methods for optimizing the display conditions of brain magnetic resonance images.

    Science.gov (United States)

    Hara, Toshimasa; Inoue, Yusuke; Ukisu, Ryutaro; Hata, Hirofumi

    2017-10-01

    To investigate a method for optimizing the display conditions of brain magnetic resonance (MR) images. We retrospectively analyzed brain MR images of 120 adults classified into screening, acute cerebral infarction, and brain tumor groups (n = 40 each). Two observers independently displayed the images on a monitor and optimized the display conditions using the W/L and U/L methods. In the W/L method, the observers manipulated the width and level of the display window, while in the U/L method they manipulated the upper and lower levels of the window. The times required were compared between the two methods. Additionally, the appropriateness of the determined window setting was evaluated visually by the respective observer to exclude the possibility that rough, suboptimal adjustment shortened the adjustment time. For both observers and all groups, the time required for optimization was significantly shorter for the U/L method than for the W/L method. The appropriateness of the window setting for the U/L method was equal to or better than that for the W/L method. Manipulating the upper and lower levels of the display window appears to improve the efficiency of interpreting brain MR images through rapid optimization of the display condition.

  10. Brain magnetic resonance imaging screening is not useful for HIV-1-infected patients without neurological symptoms.

    Science.gov (United States)

    Nishijima, Takeshi; Gatanaga, Hiroyuki; Teruya, Katsuji; Tajima, Tsuyoshi; Kikuchi, Yoshimi; Hasuo, Kanehiro; Oka, Shinichi

    2014-10-01

    We investigated the diagnostic usefulness of brain magnetic resonance imaging (MRI) screening in HIV-1-infected patients without neurological symptoms in detecting intracranial diseases at early stages. In this retrospective analysis, the study patients were HIV-1-infected patients who underwent brain MRI scan in clinical practice between 2001 and 2013. We excluded patients with MRI for (1) follow-up examination for prediagnosed intracranial diseases, (2) cancer staging, (3) screening mycobacterium/bacteria/fungi disease proliferation in the brain, and (4) evaluation for meningitis/encephalitis. The study patients (n=485) were classified into two groups: those who underwent brain MRI scan without any neurological symptoms/signs (asymptomatic patients, n=158) and those who underwent MRI due to such symptoms (symptomatic patients, n=327). Asymptomatic patients had lower CD4 counts than symptomatic patients (median 78 versus 241/μl). Intracranial diseases were detected in three (2%) of the asymptomatic patients [two toxoplasmosis and one progressive multifocal leukoencephalopathy (PML)] compared to 58 (19%) of the symptomatic patients (the χ(2) test, pMRI screening for HIV-1-infected patients without neurological symptoms is of little value.

  11. Brain metabolic pattern analysis using a magnetic resonance spectra classification software in experimental stroke.

    Science.gov (United States)

    Jiménez-Xarrié, Elena; Davila, Myriam; Candiota, Ana Paula; Delgado-Mederos, Raquel; Ortega-Martorell, Sandra; Julià-Sapé, Margarida; Arús, Carles; Martí-Fàbregas, Joan

    2017-01-13

    Magnetic resonance spectroscopy (MRS) provides non-invasive information about the metabolic pattern of the brain parenchyma in vivo. The SpectraClassifier software performs MRS pattern-recognition by determining the spectral features (metabolites) which can be used objectively to classify spectra. Our aim was to develop an Infarct Evolution Classifier and a Brain Regions Classifier in a rat model of focal ischemic stroke using SpectraClassifier. A total of 164 single-voxel proton spectra obtained with a 7 Tesla magnet at an echo time of 12 ms from non-infarcted parenchyma, subventricular zones and infarcted parenchyma were analyzed with SpectraClassifier ( http://gabrmn.uab.es/?q=sc ). The spectra corresponded to Sprague-Dawley rats (healthy rats, n = 7) and stroke rats at day 1 post-stroke (acute phase, n = 6 rats) and at days 7 ± 1 post-stroke (subacute phase, n = 14). In the Infarct Evolution Classifier, spectral features contributed by lactate + mobile lipids (1.33 ppm), total creatine (3.05 ppm) and mobile lipids (0.85 ppm) distinguished among non-infarcted parenchyma (100% sensitivity and 100% specificity), acute phase of infarct (100% sensitivity and 95% specificity) and subacute phase of infarct (78% sensitivity and 100% specificity). In the Brain Regions Classifier, spectral features contributed by myoinositol (3.62 ppm) and total creatine (3.04/3.05 ppm) distinguished among infarcted parenchyma (100% sensitivity and 98% specificity), non-infarcted parenchyma (84% sensitivity and 84% specificity) and subventricular zones (76% sensitivity and 93% specificity). SpectraClassifier identified candidate biomarkers for infarct evolution (mobile lipids accumulation) and different brain regions (myoinositol content).

  12. Dual-Targeting Lactoferrin-Conjugated Polymerized Magnetic Polydiacetylene-Assembled Nanocarriers with Self-Responsive Fluorescence/Magnetic Resonance Imaging for In Vivo Brain Tumor Therapy.

    Science.gov (United States)

    Fang, Jen-Hung; Chiu, Tsung-Lang; Huang, Wei-Chen; Lai, Yen-Ho; Hu, Shang-Hsiu; Chen, You-Yin; Chen, San-Yuan

    2016-03-01

    Maintaining a high concentration of therapeutic agents in the brain is difficult due to the restrictions of the blood-brain barrier (BBB) and rapid removal from blood circulation. To enable controlled drug release and enhance the blood-brain barrier (BBB)-crossing efficiency for brain tumor therapy, a new dual-targeting magnetic polydiacetylene nanocarriers (PDNCs) delivery system modified with lactoferrin (Lf) is developed. The PDNCs are synthesized using the ultraviolet (UV) cross-linkable 10,12-pentacosadiynoic acid (PCDA) monomers through spontaneous assembling onto the surface of superparamagnetic iron oxide (SPIO) nanoparticles to form micelles-polymerized structures. The results demonstrate that PDNCs will reduce the drug leakage and further control the drug release, and display self-responsive fluorescence upon intracellular uptake for cell trafficking and imaging-guided tumor treatment. The magnetic Lf-modified PDNCs with magnetic resonance imaging (MRI) and dual-targeting ability can enhance the transportation of the PDNCs across the BBB for tracking and targeting gliomas. An enhanced therapeutic efficiency can be obtained using Lf-Cur (Curcumin)-PDNCs by improving the retention time of the encapsulated Cur and producing fourfold higher Cur amounts in the brain compared to free Cur. Animal studies also confirm that Lf targeting and controlled release act synergistically to significantly suppress tumors in orthotopic brain-bearing rats. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Magnetic nanoparticles in fluid environment: combining molecular dynamics and Lattice-Boltzmann

    Science.gov (United States)

    Melenev, Petr

    2017-06-01

    Hydrodynamic interactions between magnetic nanoparticles suspended in the Newtonian liquid are accounted for using a combination of the lattice Boltzmann method and molecular dynamics simulations. Nanoparticle is modelled by the system of molecular dynamics material points (which form structure resembles raspberry) coupled to the lattice Boltzmann fluid. The hydrodynamic coupling between the colloids is studied by simulations of the thermo-induced rotational diffusion of two raspberry objects. It was found that for the considered range of model parameters the approaching of the raspberries leads to slight retard of the relaxation process. The presence of the weak magnetic dipolar interaction between the objects leads to modest decrease of the relaxation time and the extent of the acceleration of the diffusion is intensified along with magnetic forces.

  14. The effects of combined repetitive transcranial magnetic stimulation and transcranial direct current stimulation on motor function in patients with stroke.

    Science.gov (United States)

    Kwon, Tae Gun; Park, Eunhee; Kang, Chung; Chang, Won Hyuk; Kim, Yun-Hee

    2016-11-22

    Both transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), when provided to stroke patients in combination with motor training, enhance therapeutic efficacy and motor function. However, the majority of previous studies have only examined a single treatment modality. The authors investigated the modulating influence of combination dual-mode brain stimulation upon bihemispheric stimulation with motor training in stroke patients. Twenty stroke patients with hemiparesis underwent five randomly arranged sessions of diverse combinations of rTMS and tDCS. We applied cathodal or anodal tDCS over the contralesional primary motor cortex (cM1) and 10 Hz rTMS over the ipsilesional primary motor cortex (iM1) in a simultaneous or preconditioning method including sham stimulation. Immediately after dual-mode stimulation, sequential hand motor training was performed for 5 minutes. The total pulses of rTMS and the duration of tDCS and motor training were the same for all sessions. Cortical excitability and sequential motor performance were evaluated before and after each session. Motor function and corticomotor excitability following simultaneous stimulation via cathodal tDCS over the cM1 combined with 10 Hz rTMS over the iM1 were significantly increased after the intervention, with significantly greater motor improvement than seen with other treatment conditions (P stimulation of cathodal tDCS and 10 Hz rTMS results in better motor performance in stroke patients than other combination methods. This result seemed to be related to effective modulation of interhemispheric imbalance of cortical excitability by dual-mode stimulation.

  15. Study on diffusion tensor imaging combined with electrophysiological monitoring in brain stem cavernous hemangioma resection

    Directory of Open Access Journals (Sweden)

    Dong-sheng KONG

    2017-07-01

    Full Text Available Objective To evaluate the clinical application value of diffusion tensor imaging (DTI combined with electrophysiological monitoring in the resection of brain stem cavernous hemangioma (CM.    Methods There were 39 patients with brain stem cavernous hemangioma. DTI was performed before and during the operation. Diffusion tensor tractography (DTT was used to track fiber and reconstruct pyramidal tract. Intraoperative neurobehavioral monitoring was used to detect the changes of somatosensory-evoked potentials (SEP, motor - evoked potentials (MEP and brain stem auditory - evoked potentials (BAEP.    Results Of all the 39 patients, there was no significant change of BAEP during the operation, 5 patients (12.82% had abnormal SEP, 6 cases (15.38% had abnormalities in MEP monitoring, 2 cases (5.13% had reduced volumes of pyramidal tract proved by DTI. Intraoperative MRI confirmed 36 cases (92.31% had complete removal of lesions, and 3 cases (7.69% had subtotal resection. There were improvement of clinical symptoms in 29 cases (74.36% , no obvious changes in 4 cases (10.26% , postoperative facial paralysis in 3 cases (7.69%, worsened movement disorder in 2 cases (5.13%, death due to disorder of consciousness and pulmonary infection in one case (2.56% . Postoperative follow - up was 30 months in average. Glasgow Outcome Scale (GOS showed 27 cases (69.23% of Grade 5, 7 cases (17.95% of Grade 4, 4 cases (10.26% of Grade 3, and one case (2.56% of Grade 1.    Conclusions Combined use of intraoperative DTI and electrophysiological monitoring can safely and effectively remove brain stem cavernous hemangioma. DOI: 10.3969/j.issn.1672-6731.2017.05.010

  16. Use of Ultrasound Pulses Combined with Definity for Targeted Blood-Brain Barrier Disruption

    Science.gov (United States)

    McDannold, Nathan; Vykhodtseva, Natalia; Hynynen, Kullervo

    2007-05-01

    We have developed a method to combine an ultrasound contrast agent (USCA) with low-intensity focused ultrasound pulses combined to produce temporary blood-brain barrier disruption (BBBD), a potential non-invasive means for targeted drug delivery in the brain. All of our previous work used the USCA Optison. The purpose of this work was to test the feasibility of using the USCA Definity for BBBD. Thirty-six non-overlapping locations were sonicated through a craniotomy in experiments in the brains of nine rabbits (4 locations per rabbit; US frequency: 0.69MHz, burst: 10ms, PRF: 1Hz, duration: 20s; pressure amplitude: 0.2-1.5 MPa). Eleven locations were sonicated using Optison at 0.5 MPa. For both agents, the probability for BBBD was estimated to be 50% at 0.4 MPa using probit regression. In histology, small isolated areas of extravasated erythrocytes were observed in some locations. At 0.8 MPa and above, this extravasation was sometimes accompanied by tiny (dimensions of 100 μm or less) regions of damaged brain parenchyma. The magnitude of the BBBD was larger with Optison than with Definity at 0.5 MPa (P=0.04), and more areas with extravasated erythrocytes were observed (P=0.03). We conclude that BBBD is possible using Definity for the dosage of USCA and the acoustic parameters tested in this study. While the probability for BBBD as a function of pressure amplitude and the type of acute tissue effects was similar to findings with Optison, under these experimental conditions, Optison produced a larger effect.

  17. Handedness- and brain size-related efficiency differences in small-world brain networks: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Li, Meiling; Wang, Junping; Liu, Feng; Chen, Heng; Lu, Fengmei; Wu, Guorong; Yu, Chunshui; Chen, Huafu

    2015-05-01

    The human brain has been described as a complex network, which integrates information with high efficiency. However, the relationships between the efficiency of human brain functional networks and handedness and brain size remain unclear. Twenty-one left-handed and 32 right-handed healthy subjects underwent a resting-state functional magnetic resonance imaging scan. The whole brain functional networks were constructed by thresholding Pearson correlation matrices of 90 cortical and subcortical regions. Graph theory-based methods were employed to further analyze their topological properties. As expected, all participants demonstrated small-world topology, suggesting a highly efficient topological structure. Furthermore, we found that smaller brains showed higher local efficiency, whereas larger brains showed higher global efficiency, reflecting a suitable efficiency balance between local specialization and global integration of brain functional activity. Compared with right-handers, significant alterations in nodal efficiency were revealed in left-handers, involving the anterior and median cingulate gyrus, middle temporal gyrus, angular gyrus, and amygdala. Our findings indicated that the functional network organization in the human brain was associated with handedness and brain size.

  18. Label-free imaging of brain and brain tumor specimens with combined two-photon excited fluorescence and second harmonic generation microscopy

    Science.gov (United States)

    Jiang, Liwei; Wang, Xingfu; Wu, Zanyi; Du, Huiping; Wang, Shu; Li, Lianhuang; Fang, Na; Lin, Peihua; Chen, Jianxin; Kang, Dezhi; Zhuo, Shuangmu

    2017-10-01

    Label-free imaging techniques are gaining acceptance within the medical imaging field, including brain imaging, because they have the potential to be applied to intraoperative in situ identifications of pathological conditions. In this paper, we describe the use of two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) microscopy in combination for the label-free detection of brain and brain tumor specimens; gliomas. Two independently detecting channels were chosen to subsequently collect TPEF/SHG signals from the specimen to increase TPEF/SHG image contrasts. Our results indicate that the combined TPEF/SHG microscopic techniques can provide similar rat brain structural information and produce a similar resolution like conventional H&E staining in neuropathology; including meninges, cerebral cortex, white-matter structure corpus callosum, choroid plexus, hippocampus, striatum, and cerebellar cortex. It can simultaneously detect infiltrating human brain tumor cells, the extracellular matrix collagen fiber of connective stroma within brain vessels and collagen depostion in tumor microenvironments. The nuclear-to-cytoplasmic ratio and collagen content can be extracted as quantitative indicators for differentiating brain gliomas from healthy brain tissues. With the development of two-photon fiberscopes and microendoscope probes and their clinical applications, the combined TPEF and SHG microcopy may become an important multimodal, nonlinear optical imaging approach for real-time intraoperative histological diagnostics of residual brain tumors. These occur in various brain regions during ongoing surgeries through the method of simultaneously identifying tumor cells, and the change of tumor microenvironments, without the need for the removal biopsies and without the need for tissue labelling or fluorescent markers.

  19. THE STUDY OF THE BRAIN IN A PATIENT WITH TYPE 1 DIABETES MELLITUS USING TECHNIQUES OF MAGNETIC RESONANCE IMAGING

    Directory of Open Access Journals (Sweden)

    Yu. G. Samoylova

    2015-01-01

    Full Text Available Type 1 diabetes mellitus (T1DM is now widely distributed worldwide and in theRussian Federation, it is an important medical and social problem in connection with the development of serious, disabling complications. Some of these complications could make changes in the brain which are accompanied by cognitive impairments that decrease quality of life and worsening disease compensation. The diagnosis of these disorders to date, possible by using modern methods of magnetic resonance imaging, which describe not only the morphological changes of the brain, but also the metabolism of nervous tissue. The study of the brain, namely structural and metabolic manifestations of diabetes, is one of the priority problem of modern medical science.The aim of the study was to evaluate dynamics in the different techniques of magnetic resonance imaging in the diagnosis of brain changes in patients with T1DM.Research methods included physical examination, in accordance with the diagnostic algorithm of patients with T1DM, a neurologist consultation, an assessment of cognitive function, analysis of brain changes using standard magnetic resonance imaging and spectroscopy. Statistical processing was performed using software package R-system. This publication presents a clinical case of a patient with T1DM and severe cognitive impairments are associated with changes in the brain, diagnosed using standard magnetic resonance imaging and spectroscopy. The study shows the positive role of correction of carbohydrate metabolism in improving cognitive function in a patient with T1DM.In addition, the process analysis revealed the absence of dynamic changes in the brain of a patient with T1DM according to standard magnetic resonance imaging. This required the use of additional techniques – magnetic resonance spectroscopy, which revealed changes of metabolism in the thalamus N-acetyl aspartate, choline and creatinine.

  20. A combined post-mortem magnetic resonance imaging and quantitative histological study of multiple sclerosis pathology

    Science.gov (United States)

    Kolasinski, James; Chance, Steven A.; DeLuca, Gabriele C.; Esiri, Margaret M.; Chang, Eun-Hyuk; Palace, Jacqueline A.; McNab, Jennifer A.; Jenkinson, Mark; Miller, Karla L.; Johansen-Berg, Heidi

    2012-01-01

    Multiple sclerosis is a chronic inflammatory neurological condition characterized by focal and diffuse neurodegeneration and demyelination throughout the central nervous system. Factors influencing the progression of pathology are poorly understood. One hypothesis is that anatomical connectivity influences the spread of neurodegeneration. This predicts that measures of neurodegeneration will correlate most strongly between interconnected structures. However, such patterns have been difficult to quantify through post-mortem neuropathology or in vivo scanning alone. In this study, we used the complementary approaches of whole brain post-mortem magnetic resonance imaging and quantitative histology to assess patterns of multiple sclerosis pathology. Two thalamo-cortical projection systems were considered based on their distinct neuroanatomy and their documented involvement in multiple sclerosis: lateral geniculate nucleus to primary visual cortex and mediodorsal nucleus of the thalamus to prefrontal cortex. Within the anatomically distinct thalamo-cortical projection systems, magnetic resonance imaging derived cortical thickness was correlated significantly with both a measure of myelination in the connected tract and a measure of connected thalamic nucleus cell density. Such correlations did not exist between these markers of neurodegeneration across different thalamo-cortical systems. Magnetic resonance imaging lesion analysis depicted clearly demarcated subcortical lesions impinging on the white matter tracts of interest; however, quantitation of the extent of lesion-tract overlap failed to demonstrate any appreciable association with the severity of markers of diffuse pathology within each thalamo-cortical projection system. Diffusion-weighted magnetic resonance imaging metrics in both white matter tracts were correlated significantly with a histologically derived measure of tract myelination. These data demonstrate for the first time the relevance of functional

  1. Numerical studies of radiofrequency of the electromagnetic radiation power absorption in paediatrics undergoing brain magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    C. Subaar

    2017-07-01

    Full Text Available Magnetic resonance imaging current operating frequencies are above 100 kHz which is converted to heat through resistive tissue losses during imaging. The imaging is coupled with a concurring increase in temperature in patients. Magnetic resonance imaging of the brain has seen a rising clinical request during diagnosis and therefore become imperative that its safety issues be assessed. This study modelled Pennes' classical bio-heat equation using Finite Difference Method (FDM approach and with the help of MATLAB programming language, predicted three dimensional steady state temperature distributions in patients during magnetic resonance imaging. Sixty-four paediatric patients' referred for (head brain magnetic resonance imaging scan at 37 Military Hospital and the Diagnostic Center Limited, Ghana, pre-scan and post-scan temperatures were measured at the right tympanic. The numerically steady state temperature distribution during magnetic resonance imaging shows that there is excessive temperature elevation at the skin surface of the patients. The resulting skin heating during magnetic resonance imaging can reach dangerous level which suggests that the ohmic heating of tissue is greatest at the surface and minimal at the center of the patient's brain. Though the experimental results show that patients brain temperature increase after imaging, all measured temperatures were within acceptable safe levels.

  2. Feasibility Study of Large Combined Function Magnets for the Jefferson Lab 12 GeV Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Brindza P. D.; LeRose J. J.; Leung E. M.

    2005-05-01

    The 12 GeV upgrade at Jefferson Lab has identified two new large spectrometers as Physics detectors for the project. The first is a 7.5 Gev/c 35 m-sr. spectrometer that requires a pair of identical Combined Function Superconducting Magnets (CFSM) that can simultaneously produce 1.5 T dipole fields and 4.5 T/m quadrupole fields inside a warm bore of 120 cm. The second is an 11 GeV/c 2 m-sr. spectrometer that requires a CFSM that simultaneously produces a dipole field of 4.0 T and a quadruple field of 3.0 T/m in a 60 cm warm bore. Magnetic designs using TOSCA 3D have been performed to realize the magnetic requirements, provide 3d fields for optics analysis and produce field and force information for the engineering feasibility of the magnets. A two-sector cos(theta)/cos(2theta) design with a low nominal current density, warm bore and warm iron design has been selected and analyzed. These low current densities are consistent with the limits for a cryostable winding. The current paper will summarize the requirement definition of these two magnets. The conceptual design arrived at during the feasibility study involving the choice of conductors, thermal and structural analyses will be presented. A discussion of the manufacturing approach and challenges will be provided.

  3. Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration

    Science.gov (United States)

    Chertok, Beata; David, Allan E.; Yang, Victor C.

    2010-01-01

    This study aimed to examine the applicability of polyethyleneimine (PEI)-modified magnetic nanoparticles (GPEI) as a potential vascular drug/gene carrier to brain tumors. In vitro, GPEI exhibited high cell association and low cell toxicity – properties which are highly desirable for intracellular drug/gene delivery. In addition, a high saturation magnetization of 93 emu/g Fe was expected to facilitate magnetic targeting of GPEI to brain tumor lesions. However, following intravenous administration, GPEI could not be magnetically accumulated in tumors of rats harboring orthotopic 9L-gliosarcomas due to its poor pharmacokinetic properties, reflected by a negligibly low plasma AUC of 12 ± 3 μg Fe/ml*min. To improve “passive” GPEI presentation to brain tumor vasculature for subsequent “active” magnetic capture, we examined the intra-carotid route as an alternative for nanoparticle administration. Intra-carotid administration in conjunction with magnetic targeting resulted in 30-fold (p = 0.002) increase in tumor entrapment of GPEI compared to that seen with intravenous administration. In addition, magnetic accumulation of cationic GPEI (ζ-potential = + 37.2 mV) in tumor lesions was 5.2-fold higher (p = 0.004) than that achieved with slightly anionic G100 (ζ-potential = −12 mV) following intra-carotid administration, while no significant accumulation difference was detected between the two types of nanoparticles in the contra-lateral brain (p = 0.187). These promising results warrant further investigation of GPEI as a potential cell-permeable, magnetically-responsive platform for brain tumor delivery of drugs and genes. PMID:20494439

  4. A combined Preisach–Hyperbolic Tangent model for magnetic hysteresis of Terfenol-D

    Energy Technology Data Exchange (ETDEWEB)

    Talebian, Soheil [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Hojjat, Yousef, E-mail: yhojjat@modares.ac.ir [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Ghodsi, Mojtaba [Department of Mechanical and Industrial Engineering, Sultan Qaboos University, Muscat (Oman); Karafi, Mohammad Reza [Department of Mechanical Engineering, Tarbiat Modares University, Tehran (Iran, Islamic Republic of); Mirzamohammadi, Shahed [Department of Mechanical Engineering, Shahid Rajaee University, Tehran (Iran, Islamic Republic of)

    2015-12-15

    This study presents a new model using the combination of Preisach and Hyperbolic Tangent models, to predict the magnetic hysteresis of Terfenol-D at different frequencies. Initially, a proper experimental setup was fabricated and used to obtain different magnetic hysteresis curves of Terfenol-D; such as major, minor and reversal loops. Then, it was shown that the Hyperbolic Tangent model is precisely capable of modeling the magnetic hysteresis of the Terfenol-D for both rate-independent and rate-dependent cases. Empirical equations were proposed with respect to magnetic field frequency which can calculate the non-dimensional coefficients needed by the model. These empirical equations were validated at new frequencies of 100 Hz and 300 Hz. Finally, the new model was developed through the combination of Preisach and Hyperbolic Tangent models. In the combined model, analytical relations of the Hyperbolic Tangent model for the first order reversal loops determined the weighting function of the Preisach model. This model reduces the required experiments and errors due to numerical differentiations generally needed for characterization of the Preisach function. In addition, it can predict the rate-dependent hysteresis as well as rate-independent hysteresis. - Highlights: • Different hysteresis curves of Terfenol-D are experimentally obtained at 0–200 Hz. • A new model is presented using combination of Preisach and Hyperbolic Tangent models. • The model predicts both rate-independent and rate-dependent hystereses of Terfenol-D. • The analytical model reduces the numerical errors and number of required experiments.

  5. Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide.

    Directory of Open Access Journals (Sweden)

    W Alan C Mutch

    Full Text Available BACKGROUND: An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2 tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2 challenge using a computer-controlled gas blender to administer: i a square wave change in CO(2 and, ii a ramp stimulus, consisting of a continuously graded change in CO(2 over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD magnetic resonance imaging (MRI. METHODOLOGY/PRINCIPAL FINDINGS: We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2. Cerebrovascular reactivity (CVR maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2, voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA maps of the processed raw BOLD signal per voxel over the same CO(2 range were generated. Regions of BOLD signal decrease with increased CO(2 (coded blue were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. CONCLUSIONS/SIGNIFICANCE: This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as

  6. Approaches to brain stress testing: BOLD magnetic resonance imaging with computer-controlled delivery of carbon dioxide.

    Science.gov (United States)

    Mutch, W Alan C; Mandell, Daniel M; Fisher, Joseph A; Mikulis, David J; Crawley, Adrian P; Pucci, Olivia; Duffin, James

    2012-01-01

    An impaired vascular response in the brain regionally may indicate reduced vascular reserve and vulnerability to ischemic injury. Changing the carbon dioxide (CO(2)) tension in arterial blood is commonly used as a cerebral vasoactive stimulus to assess the cerebral vascular response, changing cerebral blood flow (CBF) by up to 5-11 percent/mmHg in normal adults. Here we describe two approaches to generating the CO(2) challenge using a computer-controlled gas blender to administer: i) a square wave change in CO(2) and, ii) a ramp stimulus, consisting of a continuously graded change in CO(2) over a range. Responses were assessed regionally by blood oxygen level dependent (BOLD) magnetic resonance imaging (MRI). We studied 8 patients with known cerebrovascular disease (carotid stenosis or occlusion) and 2 healthy subjects. The square wave stimulus was used to study the dynamics of the vascular response, while the ramp stimulus assessed the steady-state response to CO(2). Cerebrovascular reactivity (CVR) maps were registered by color coding and overlaid on the anatomical scans generated with 3 Tesla MRI to assess the corresponding BOLD signal change/mmHg change in CO(2), voxel-by-voxel. Using a fractal temporal approach, detrended fluctuation analysis (DFA) maps of the processed raw BOLD signal per voxel over the same CO(2) range were generated. Regions of BOLD signal decrease with increased CO(2) (coded blue) were seen in all of these high-risk patients, indicating regions of impaired CVR. All patients also demonstrated regions of altered signal structure on DFA maps (Hurst exponents less than 0.5; coded blue) indicative of anti-persistent noise. While 'blue' CVR maps remained essentially stable over the time of analysis, 'blue' DFA maps improved. This combined dual stimulus and dual analysis approach may be complementary in identifying vulnerable brain regions and thus constitute a regional as well as global brain stress test.

  7. Magnetic resonance imaging brain activation in first-episode bipolar mania during a response inhibition task.

    Science.gov (United States)

    Strakowski, Stephen M; Adler, Caleb M; Cerullo, Michael A; Eliassen, James C; Lamy, Martine; Fleck, David E; Lee, Jing-Huei; DelBello, Melissa P

    2008-11-01

    Impulsivity is common in bipolar disorder, especially during mania. Understanding the functional neuroanatomy of response inhibition, one component of impulsivity, might clarify the neural substrate of bipolar disorder. Sixteen DSM-IV first-episode, manic bipolar patients and 16 matched healthy subjects were examined during a first manic episode using functional magnetic resonance imaging while performing a response inhibition task. All subjects were studied using a 4.0 Tesla Varian Unity INOVA Whole Body MRI/MRS system. The response inhibition task was presented using non-ferromagnetic goggles, and task performance was recorded during scan acquisition. Imaging data were analysed using analysis of functional neuroimages. Group contrasts were made for the specific response inhibition measure. The groups performed the task similarly, although both demonstrated relatively poor rates of target response, but high rates of successful 'stops'. Despite similar behavioural results, the groups showed significantly different patterns of functional magnetic resonance imaging brain activation. Specifically, during response inhibition, the healthy subjects exhibited significantly greater activation in anterior and posterior cingulate, medial dorsal thalamus, middle temporal gyrus, and precuneus. The bipolar patients exhibited prefrontal activation (BA 10) that was not observed in healthy subjects. Bipolar and healthy subjects exhibit different patterns of brain activation to response inhibition; these differences may reflect different functional neuroanatomic approaches to response inhibition between the two groups.

  8. Measurement and correction of microscopic head motion during magnetic resonance imaging of the brain.

    Directory of Open Access Journals (Sweden)

    Julian Maclaren

    Full Text Available Magnetic resonance imaging (MRI is a widely used method for non-invasive study of the structure and function of the human brain. Increasing magnetic field strengths enable higher resolution imaging; however, long scan times and high motion sensitivity mean that image quality is often limited by the involuntary motion of the subject. Prospective motion correction is a technique that addresses this problem by tracking head motion and continuously updating the imaging pulse sequence, locking the imaging volume position and orientation relative to the moving brain. The accuracy and precision of current MR-compatible tracking systems and navigator methods allows the quantification and correction of large-scale motion, but not the correction of very small involuntary movements in six degrees of freedom. In this work, we present an MR-compatible tracking system comprising a single camera and a single 15 mm marker that provides tracking precision in the order of 10 m and 0.01 degrees. We show preliminary results, which indicate that when used for prospective motion correction, the system enables improvement in image quality at both 3 T and 7 T, even in experienced and cooperative subjects trained to remain motionless during imaging. We also report direct observation and quantification of the mechanical ballistocardiogram (BCG during simultaneous MR imaging. This is particularly apparent in the head-feet direction, with a peak-to-peak displacement of 140 m.

  9. Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging

    Science.gov (United States)

    Tomitaka, Asahi; Arami, Hamed; Gandhi, Sonu; Krishnan, Kannan M.

    2015-10-01

    Magnetic Particle Imaging (MPI) is a new real-time imaging modality, which promises high tracer mass sensitivity and spatial resolution directly generated from iron oxide nanoparticles. In this study, monodisperse iron oxide nanoparticles with median core diameters ranging from 14 to 26 nm were synthesized and their surface was conjugated with lactoferrin to convert them into brain glioma targeting agents. The conjugation was confirmed with the increase of the hydrodynamic diameters, change of zeta potential, and Bradford assay. Magnetic particle spectrometry (MPS), performed to evaluate the MPI performance of these nanoparticles, showed no change in signal after lactoferrin conjugation to nanoparticles for all core diameters, suggesting that the MPI signal is dominated by Néel relaxation and thus independent of hydrodynamic size difference or presence of coating molecules before and after conjugations. For this range of core sizes (14-26 nm), both MPS signal intensity and spatial resolution improved with increasing core diameter of nanoparticles. The lactoferrin conjugated iron oxide nanoparticles (Lf-IONPs) showed specific cellular internalization into C6 cells with a 5-fold increase in MPS signal compared to IONPs without lactoferrin, both after 24 h incubation. These results suggest that Lf-IONPs can be used as tracers for targeted brain glioma imaging using MPI.

  10. MR_CHIROD v.2: magnetic resonance compatible smart hand rehabilitation device for brain imaging.

    Science.gov (United States)

    Khanicheh, Azadeh; Mintzopoulos, Dionyssios; Weinberg, Brian; Tzika, A Aria; Mavroidis, Constantinos

    2008-02-01

    This paper presents the design, fabrication, and testing of a novel, one degree-of-freedom, magnetic resonance compatible smart hand interfaced rehabilitation device (MR_CHIROD v.2), which may be used in brain magnetic resonance (MR) imaging during handgrip rehabilitation. A key feature of the device is the use of electrorheological fluids (ERFs) to achieve computer controlled, variable, and tunable resistive force generation. The device consists of three major subsystems: 1) an ERF based resistive element, 2) handles, and c) two sensors, one optical encoder and one force sensor, to measure the patient induced motion and force. MR_CHIROD v.2 is designed to resist up to 50% of the maximum level of gripping force of a human hand and be controlled in real time. Our results demonstrate that the MR environment does not interfere with the performance of the MR_CHIROD v.2, and, reciprocally, its use does not cause fMR image artifacts. The results are encouraging in jointly using MR_CHIROD v.2 and brain MR imaging to study motor performance and assess rehabilitation after neurological injuries such as stroke.

  11. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks.

    Science.gov (United States)

    Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo

    2015-01-01

    We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model "modality atypical," that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks.

  12. Brain activations during bimodal dual tasks depend on the nature and combination of component tasks

    Directory of Open Access Journals (Sweden)

    Emma eSalo

    2015-02-01

    Full Text Available We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or simple (speaker-gender or font-shade discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley’s model modality atypical, that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks.

  13. Quantitative magnetization transfer provides information complementary to grey matter atrophy in Alzheimer's disease brains.

    Science.gov (United States)

    Giulietti, Giovanni; Bozzali, Marco; Figura, Viviana; Spanò, Barbara; Perri, Roberta; Marra, Camillo; Lacidogna, Giordano; Giubilei, Franco; Caltagirone, Carlo; Cercignani, Mara

    2012-01-16

    Preliminary studies, based on a region-of-interest approach, suggest that quantitative magnetization transfer (qMT), an extension of magnetization transfer imaging, provides complementary information to conventional magnetic resonance imaging (MRI) in the characterisation of Alzheimer's disease (AD). The aim of this study was to extend these findings to the whole brain, using a voxel-wise approach. We recruited 19AD patients and 11 healthy subjects (HS). All subjects had an MRI acquisition at 3.0T including a T(1)-weighted volume, 12 MT-weighted volumes for qMT, and data for computing T(1) and B(1) maps. The T(1)-weighted volumes were processed to yield grey matter (GM) volumetric maps, while the other sequences were used to compute qMT parametric maps of the whole brain. qMT maps were warped to standard space and smoothed, and subsequently compared between groups. Of all the qMT parameters considered, only the forward exchange rate, RM(0)(B), showed significant group differences. These images were therefore retained for the multimodal statistical analysis, designed to locate brain regions of RM(0)(B) differences between AD and HS groups, adjusting for local GM atrophy. Widespread areas of reduced RM(0)(B) were found in AD patients, mainly located in the hippocampus, in the temporal lobe, in the posterior cingulate and in the parietal cortex. These results indicate that, among qMT parameters, RM(0)(B) is the most sensitive to AD pathology. This quantity is altered in the hippocampus of patients with AD (as found by previous works) but also in other brain areas, that PET studies have highlighted as involved with both, reduced glucose metabolism and amyloid β deposition. RM(0)(B) might reflect, through the measurement of the efficiency of MT exchange, some information with a specific pathological counterpart. Given previous evidence of a strict relationship between RM(0)(B) and intracellular pH, an intriguing speculation is that our findings might reflect metabolic

  14. Early treatment with lyophilized plasma protects the brain in a large animal model of combined traumatic brain injury and hemorrhagic shock

    DEFF Research Database (Denmark)

    Imam, Ayesha M; Jin, Guang; Sillesen, Martin

    2013-01-01

    Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well as the assoc......Combination of traumatic brain injury (TBI) and hemorrhagic shock (HS) can result in significant morbidity and mortality. We have previously shown that early administration of fresh frozen plasma (FFP) in a large animal model of TBI and HS reduces the size of the brain lesion as well...... as the associated edema. However, FFP is a perishable product that is not well suited for use in the austere prehospital settings. In this study, we tested whether a shelf-stable, low-volume, lyophilized plasma (LSP) product was as effective as FFP....

  15. Magnetic resonance imaging biomarkers of exercise-induced improvement of oxidative stress and inflammation in the brain of old high-fat-fed ApoE-/-mice.

    Science.gov (United States)

    Chirico, Erica N; Di Cataldo, Vanessa; Chauveau, Fabien; Geloën, Alain; Patsouris, David; Thézé, Benoît; Martin, Cyril; Vidal, Hubert; Rieusset, Jennifer; Pialoux, Vincent; Canet-Soulas, Emmanuelle

    2016-12-01

    Vascular brain lesions and atherosclerosis are two similar conditions that are characterized by increased inflammation and oxidative stress. Non-invasive imaging in a murine model of atherosclerosis showed vascular brain damage and peripheral inflammation. In this study, exercise training reduced magnetic resonance imaging-detected abnormalities, insulin resistance and markers of oxidative stress and inflammation in old ApoE -/- mice. Our results demonstrate the protective effect of exercise on neurovascular damage in the ageing brain of ApoE -/- mice. Vascular brain lesions, present in advanced atherosclerosis, share pathological hallmarks with peripheral vascular lesions, such as increased inflammation and oxidative stress. Physical activity reduces these peripheral risk factors, but its cerebrovascular effect is less documented, especially by non-invasive imaging. Through a combination of in vivo and post-mortem techniques, we aimed to characterize vascular brain damage in old ApoE -/- mice fed a high-cholesterol (HC) diet with dietary controlled intake. We then sought to determine the beneficial effects of exercise training on oxidative stress and inflammation in the brain as a treatment option in an ageing atherosclerosis mouse model. Using in vivo magnetic resonance imaging (MRI) and biological markers of oxidative stress and inflammation, we evaluated the occurrence of vascular abnormalities in the brain of HC-diet fed ApoE -/- mice >70 weeks old, its association with local and systemic oxidative stress and inflammation, and whether both can be modulated by exercise. Exercise training significantly reduced both MRI-detected abnormalities (present in 71% of untrained vs. 14% of trained mice) and oxidative stress (lipid peroxidation, 9.1 ± 1.4 vs. 5.2 ± 0.9 μmol mg -1 ; P brain, and the mortality rate. Exercise also decreased peripheral insulin resistance, oxidative stress and inflammation, but significant associations were seen only within brain

  16. The use of high-field intra-operative magnetic resonance imaging combined with language functional neuronavigation in glioma surgery

    Directory of Open Access Journals (Sweden)

    Yan ZHAO

    2011-07-01

    Full Text Available Objective To explore the effect of high-field intra-operative magnetic resonance imaging(iMRI combined with language functional neuronavigation in resection of glioma in language area of dominant hemisphere of the brain.Methods Twenty right handed patients(12 males and 8 females,aged from 20 to 61 years with mean of 43.6 years with glioma close to arcuate fasciculus were involved in present study,and they were stratified into normal group(n=9 and aphasia group(n=11 according to the preoperative aphasia quotient(AQ.All the patients underwent surgical operation assisted by arcuate fasciculus navigator,and the high-field iMRI was performed with a 1.5-T magnetic resonance scanner.The 3D reconstructed arcuate fasciculus images were integrated into neuronavigation system before the operation,and used by combining with functional neuronavigation under microscope during the surgical procedure.Pre-operatirely,and 2-4 weeks,3-6 months postoperative,the patients were examined with magnetic resonance scanning and aphasia quotients examination.Results Pre-operative and intra-operative arcuate fasciculus reconstruction was completed in all the 20 patients,and neuronavigation under microscope were performed after the 3D images integrated into neuronavigation system.Patients of normal AQ(94.5±5.5 retained the normal level,except one patients who developed new conduction aphasia syndrome(AQ=81.8 2-4 weeks after operation.The AQ of aphasia group(89.4±5.8 was significantly improved than that before operation(84.9±8.7,P < 0.05,except 2 patients whose language deficit was exacerbated due to tumor recurrence.The AQ of normal group(98.3±0.5 remained at normal level,while that of aphasia group(95.2±2.6 was significantly improved 3-6 months after operation compared with that at 2-4 weeks after operation(P < 0.05.There were no other new neurologic deficits and death in both groups.Conclusion High-field iMRI combined with functional neuronavigation is a safe and

  17. Magnetization transfer ratio and volumetric analysis of the brain in macrocephalic patients with neurofibromatosis type 1

    Energy Technology Data Exchange (ETDEWEB)

    Margariti, Persefoni N.; Katzioti, Frosso G.; Zikou, Anastasia K.; Argyropoulou, Maria I. [University of Ioannina, Department of Radiology, Medical School, Ioannina (Greece); Blekas, Konstantinos [University of Ioannina, Department of Computer Science, Ioannina (Greece); Tzoufi, Meropi [University of Ioannina, Child Health Department, Medical School, Ioannina (Greece)

    2007-02-15

    The purpose of the study was to evaluate brain myelination by measuring the magnetization transfer ratio (MTR) and to measure grey (GMV) and white matter volume (WMV) in macrocephalic children with neurofibromatosis type 1 (NF1). Seven NF1 patients (aged 0.65-16.67 years) and seven age- and gender-matched controls were studied. A three-dimensional (3D) gradient echo sequence with and without magnetization transfer (MT) prepulse was used for MTR assessment. Volume measurements of GM and WM were performed by applying segmentation techniques on T2-weighted turbo spin echo images (T2WI). MTR of unidentified bright objects (UBOs) on T2WI in cerebellar white matter (52.8{+-}3.3), cerebral peduncles (48.5{+-}1.5), hippocampus (52.6{+-}1.1), internal capsule (55.7{+-}0.3), globus pallidus (52.7{+-}3.9), and periventricular white matter (52.6{+-}1.2) was lower than in the corresponding areas of controls (64.6{+-}2.5, 60.8{+-}1.3, 56.4{+-}0.9, 64.7{+-}1.9, 59.2{+-}2.3, 63.6{+-}1.7, respectively; p<0.05). MTR of normal-appearing brain tissue in patients was not significantly different than in controls. Surface area (mm{sup 2}) of the corpus callosum (809.1{+-}62.8), GMV (cm{sup 3}) (850.7{+-}42.9), and white matter volume (WMV) (cm{sup 3}) (785.1{+-}85.2) were greater in patients than in controls (652.5{+-}52.6 mm{sup 2}, 611.2{+-}92.1 cm{sup 3}, 622.5{+-}108.7 cm{sup 3}, respectively; p<0.05). To conclude, macrocephaly in NF1 patients is related to increased GMV and WMV and corpus callosum enlargement. MTR of UBOs is lower than that of normal brain tissue. (orig.)

  18. Brain activation during manipulation of the myoelectric prosthetic hand: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Maruishi, Masaharu; Tanaka, Yoshiyuki; Muranaka, Hiroyuki; Tsuji, Toshio; Ozawa, Yoshiaki; Imaizumi, Satoshi; Miyatani, Makoto; Kawahara, Junichiro

    2004-04-01

    Neuroimaging data, particularly functional magnetic resonance imaging (fMRI) findings, have not been reported in users of the myoelectric or electromyographic (EMG) prosthetic hand. We developed a virtual EMG prosthetic hand system to eliminate mutual signal noise interference between fMRI imaging and the EMG prosthesis. We used fMRI to localize activation in the human brain during manipulation of the virtual EMG prosthetic hand. Fourteen right-handed normal subjects were instructed to perform repetitive grasping with the right hand with eyes closed (CEG); repetitive grasping with the right hand with eyes open to obtain visual feedback of their own hand movement (OEG); and repetitive grasping with the virtual EMG prosthetic hand with the eyes open to obtain visual feedback of the prosthetic hand movement (VRG). The specific site activated during manipulation of the EMG prosthetic hand was the right ventral premotor cortex. Both paradigms with visual feedback also (OEG and VRG) demonstrated activation in the right posterior parietal cortex. The center of activation of the right posterior parietal cortex shifted laterally for visual feedback with the virtual EMG prosthetic hand compared to a subject's own hand. The results suggest that the EMG prosthetic hand might be recognized in the brain as a high-performance alternative to a real hand, being controlled through a "mirror system" in the brain.

  19. Temporal filtering of longitudinal brain magnetic resonance images for consistent segmentation

    Directory of Open Access Journals (Sweden)

    Snehashis Roy

    2016-01-01

    Full Text Available Longitudinal analysis of magnetic resonance images of the human brain provides knowledge of brain changes during both normal aging as well as the progression of many diseases. Previous longitudinal segmentation methods have either ignored temporal information or have incorporated temporal consistency constraints within the algorithm. In this work, we assume that some anatomical brain changes can be explained by temporal transitions in image intensities. Once the images are aligned in the same space, the intensities of each scan at the same voxel constitute a temporal (or 4D intensity trend at that voxel. Temporal intensity variations due to noise or other artifacts are corrected by a 4D intensity-based filter that smooths the intensity values where appropriate, while preserving real anatomical changes such as atrophy. Here smoothing refers to removal of sudden changes or discontinuities in intensities. Images processed with the 4D filter can be used as a pre-processing step to any segmentation method. We show that such a longitudinal pre-processing step produces robust and consistent longitudinal segmentation results, even when applying 3D segmentation algorithms. We compare with state-of-the-art 4D segmentation algorithms. Specifically, we experimented on three longitudinal datasets containing 4–12 time-points, and showed that the 4D temporal filter is more robust and has more power in distinguishing between healthy subjects and those with dementia, mild cognitive impairment, as well as different phenotypes of multiple sclerosis.

  20. Identification of cellular infiltrates during early stages of brain inflammation with magnetic resonance microscopy.

    Directory of Open Access Journals (Sweden)

    Helmar Waiczies

    Full Text Available A comprehensive view of brain inflammation during the pathogenesis of autoimmune encephalomyelitis can be achieved with the aid of high resolution non-invasive imaging techniques such as microscopic magnetic resonance imaging (μMRI. In this study we demonstrate the benefits of cryogenically-cooled RF coils to produce μMRI in vivo, with sufficient detail to reveal brain pathology in the experimental autoimmune encephalomyelitis (EAE model. We could visualize inflammatory infiltrates in detail within various regions of the brain, already at an early phase of EAE. Importantly, this pathology could be seen clearly even without the use of contrast agents, and showed excellent correspondence with conventional histology. The cryogenically-cooled coil enabled the acquisition of high resolution images within short scan times: an important practical consideration in conducting animal experiments. The detail of the cellular infiltrates visualized by in vivo μMRI allows the opportunity to follow neuroinflammatory processes even during the early stages of disease progression. Thus μMRI will not only complement conventional histological examination but will also enable longitudinal studies on the kinetics and dynamics of immune cell infiltration.

  1. Reorganization of Motor Representations in Patients with Brain Lesions: A Navigated Transcranial Magnetic Stimulation Study.

    Science.gov (United States)

    Bulubas, Lucia; Sollmann, Nico; Tanigawa, Noriko; Zimmer, Claus; Meyer, Bernhard; Krieg, Sandro M

    2018-03-01

    This is an explorative study applying presurgical navigated transcranial magnetic stimulation (nTMS) to investigate the spatial distributions of motor sites to reveal tumor-induced brain plasticity in patients with brain tumors. We analyzed nTMS-based motor maps derived from presurgical mapping of 100 patients with motor eloquently located brain tumors (tumors in the frontal lobe, the precentral gyrus [PrG], the postcentral gyrus [PoG], the remaining parietal lobe, or the temporal lobe). Based on these motor maps, we systematically investigated changes in motor evoked potential (MEP) counts among 4 gyri (PrG, PoG, medial frontal gyrus, and superior frontal gyrus) between subgroups of patients according to the tumor location in order to depict the tumor's influence on reorganization. When comparing patients with different tumor locations, high MEP counts were elicited less frequently by stimulating the PrG in patients with tumors directly affecting the PrG (p motor representations within the primary motor cortex. In contrast, patients with PoG and parietal tumors primarily showed high MEP counts when stimulating the PoG (p motor function from the PrG to adjacent regions but rather leads to a reorganization within anatomical constraints, such as of the PoG. Thus, presurgical nTMS-based motor mapping sensitively depicted the tumor-induced plasticity of the motor cortex.

  2. Tickling the brain: studying visual sensation, perception and cognition by transcranial magnetic stimulation.

    Science.gov (United States)

    Cowey, A; Walsh, V

    2001-01-01

    Transcranial magnetic stimulation (TMS) is a means of stimulating the brain from outside the skull with little, and occasionally no discomfort for the subject. A single TMS pulse, lasting less than 1 ms, can briefly disrupt the normal activity of a targeted region of the brain for tens of milliseconds, allowing the effects of disruption on specific perceptual and cognitive tasks to be measured behaviorally. Rapid, repeated pulses can disrupt activity for correspondingly longer periods. The reversibility of the effects make it possible to create 'virtual patients' who can be tested in the same way as actual patients with real brain damage in order to explore regional functional specialization. Although several aspects of TMS continue to be evaluated, such as its safety, the extent and localization of the effective region of induced electrical current, the importance of the waveform of the pulse, the configuration and positioning of the coil, its productivity has been firmly established in little more than 10 years of systematic use. Examples of the latter are given from investigations of the nature of visual phosphenes produced by TMS applied to different regions of the visual cortex in normal subjects and subjects with occipital or ocular damage in an attempt to reveal the role of visual cortex in visual awareness.

  3. Malnutrition and Risk of Structural Brain Changes Seen on Magnetic Resonance Imaging in Older Adults.

    Science.gov (United States)

    de van der Schueren, Marian A E; Lonterman-Monasch, Sabine; van der Flier, Wiesje M; Kramer, Mark H; Maier, Andrea B; Muller, Majon

    2016-12-01

    To study the associations between protein energy malnutrition, micronutrient malnutrition, brain atrophy, and cerebrovascular lesions. Cross-sectional. Geriatric outpatient clinic. Older adults (N = 475; mean age 80 ± 7). Nutritional status was assessed using the Mini Nutritional Assessment (MNA) and according to serum micronutrient levels (vitamins B1, B6, B12, D; folic acid). White matter hyperintensities (WMHs), global cortical brain atrophy, and medial temporal lobe atrophy on magnetic resonance imaging (MRI) were rated using visual rating scales. Logistic regression analyses were performed to assess associations between the three MNA categories (nutritional status. Results remained significant after further adjustments for cognitive function, depressive symptoms, cardiovascular risk factors, history of cardiovascular disease, smoking and alcohol use, and micronutrient levels. Lower vitamin B1 (OR = 1.51, 95% CI = 1.11-2.08) and B12 (OR = 1.45, 95% CI = 1.02-2.04) levels were also related to greater risk of severe WMHs, independent of age and sex. Results remained significant after additional adjustments. MNA and vitamin levels were not associated with measures of brain atrophy. Malnutrition and lower vitamin B1 and B12 levels were independently associated with greater risk of WMHs. Underlying mechanisms need to be further clarified, and whether nutritional interventions can modify these findings also needs to be studied. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  4. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, P.R.B.; Brum, D.G. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Neurociencias e Ciencias do Comportamento; Santos, A. C. [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Clinica Medica; Murta-Junior, L.O.; Araujo, D.B. de, E-mail: murta@usp.b [Universidade de Sao Paulo (USP), Ribeirao Preto, SP (Brazil). Faculdade de Filosofia, Ciencias e Letras. Dept. de Fisica e Matematica

    2010-01-15

    The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously. (author)

  5. Brain tissue segmentation using q-entropy in multiple sclerosis magnetic resonance images

    Directory of Open Access Journals (Sweden)

    P.R.B. Diniz

    2010-01-01

    Full Text Available The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.

  6. [Effect of weak combined magnetic fields on the metamorphosis of the meal-worm beetle Tenebrio molitor].

    Science.gov (United States)

    Ermakov, A M; Lednev, V V

    2010-01-01

    The effects of weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+ and extremely weak alternating magnetic field on the metamorphosis of the meal-worm beetle Tenebrio molitor have been studied. It was shown that the exposure of pupas of insects to all above-indicated types of fields stimulates the metamorphosis. However, after the exposure to weak combined magnetic fields adjusted to the parametric resonance for Ca2+ and K+, the number of insects with anomalies increases, which is not observed by the action of the weak alternating magnetic field.

  7. Combining multiple features for error detection and its application in brain-computer interface.

    Science.gov (United States)

    Tong, Jijun; Lin, Qinguang; Xiao, Ran; Ding, Lei

    2016-02-04

    Brain-computer interface (BCI) is an assistive technology that conveys users' intentions by decoding various brain activities and translating them into control commands, without the need of verbal instructions and/or physical interactions. However, errors existing in BCI systems affect their performance greatly, which in turn confines the development and application of BCI technology. It has been demonstrated viable to extract error potential from electroencephalography recordings. This study proposed a new approach of fusing multiple-channel features from temporal, spectral, and spatial domains through two times of dimensionality reduction based on neural network. 26 participants (13 males, mean age = 28.8 ± 5.4, range 20-37) took part in the study, who engaged in a P300 speller task spelling cued words from a 36-character matrix. In order to evaluate the generalization ability across subjects, the data from 16 participants were used for training and the rest for testing. The total classification accuracy with combination of features is 76.7 %. The receiver operating characteristic (ROC) curve and area under ROC curve (AUC) further indicate the superior performance of the combination of features over any single features in error detection. The average AUC reaches 0.7818 with combined features, while 0.7270, 0.6376, 0.7330 with single temporal, spectral, and spatial features respectively. The proposed method combining multiple-channel features from temporal, spectral, and spatial domain has better classification performance than any individual feature alone. It has good generalization ability across subject and provides a way of improving error detection, which could serve as promising feedbacks to promote the performance of BCI systems.

  8. USE OF PROTON MAGNETIC RESONANCE SPECTROSCOPIC IMAGING DATA IN PLANNING FOCAL RADIATION THERAPIES FOR BRAIN TUMORS

    Directory of Open Access Journals (Sweden)

    Edward E Graves

    2011-05-01

    Full Text Available Advances in radiation therapy for malignant neoplasms have produced techniques such as Gamma Knife radiosurgery, capable of delivering an ablative dose to a specific, irregular volume of tissue. However, efficient use of these techniques requires the identification of a target volume that will produce the best therapeutic response while sparing surrounding normal brain tissue. Accomplishing this task using conventional computed tomography (CT and contrast-enhanced magnetic resonance imaging (MRI techniques has proven difficult because of the difficulties in identifying the effective tumor margin. Magnetic resonance spectroscopic imaging (MRSI has been shown to offer a clinically-feasible metabolic assessment of the presence and extent of neoplasm that can complement conventional anatomic imaging. This paper reviews current Gamma Knife protocols and MRSI acquisition, reconstruction, and interpretation techniques, and discusses the motivation for including magnetic resonance spectroscopy findings while planning focal radiation therapies. A treatment selection and planning strategy incorporating MRSI is then proposed, which can be used in the future to assess the efficacy of spectroscopy-based therapy planning.

  9. Magnetization transfer studies of the fast and slow tissue water diffusion components in the human brain.

    Science.gov (United States)

    Mulkern, Robert V; Vajapeyam, Sridhar; Haker, Steven J; Maier, Stephan E

    2005-05-01

    Magnetization transfer (MT) properties of the fast and slow diffusion components recently observed in the human brain were assessed experimentally. One set of experiments, performed at 1.5 T in healthy volunteers, was designed to determine whether the amplitudes of fast and slow diffusion components, differentiated on the basis of biexponential fits to signal decays over a wide range of b-factors, demonstrated a different or similar magnetization transfer ratio (MTR). Another set of experiments, performed at 3 T in healthy volunteers, was designed to determine whether MTRs differed when measured from high signal-to-noise images acquired with b-factor weightings of 350 vs 3500 s/mm2. The 3 T studies included measurements of MTR as a function of off-resonance frequency for the MT pulse at both low and high b-factors. The primary conclusion drawn from all the studies is that there appears to be no significant difference between the magnetization transfer properties of the fast and slow tissue water diffusion components. The conclusions do not lend support to a direct interpretation of the 'components' of the biexponential diffusion decay in terms of the 'compartments' associated with intra- and extracellular water. Copyright 2004 John Wiley & Sons, Ltd.

  10. Magnetic Resonance Imaging of Cerebral Malaria Patients Reveals Distinct Pathogenetic Processes in Different Parts of the Brain

    OpenAIRE

    Sanjib Mohanty; Benjamin, Laura A; Megharay Majhi; Premanand Panda; Sam Kampondeni; Sahu, Praveen K.; Akshaya Mohanty; Mahanta, Kishore C.; Rajyabardhan Pattnaik; Rashmi R. Mohanty; Sonia Joshi; Anita Mohanty; Ian W. Turnbull; Dondorp, Arjen M.; Taylor, Terrie E.

    2017-01-01

    ABSTRACT The mechanisms underlying the rapidly reversible brain swelling described in patients with cerebral malaria (CM) are unknown. Using a 1.5-Tesla (T) magnetic resonance imaging (MRI) scanner, we undertook an observational study in Rourkela, India, of 11 Indian patients hospitalized with CM and increased brain volume. Among the 11 cases, there were 5 adults and 6 children. All patients had reduced consciousness and various degrees of cortical swelling at baseline. The latter was predomi...

  11. USE OF DIFFUSION-WEIGHTED MAGNETIC RESONANCE IMAGING FOR REVEALING HYPOXIC-ISCHEMIC BRAIN LESIONS IN NEONATES

    OpenAIRE

    E. V. Shimchenko; E. I. Kleshchenko; K. F. Goloseyev

    2014-01-01

    The article presents advantages of use of diffusion-weighted magnetic resonance imaging (DW MRI) for revealing hypoxic-ischemic brain lesions in neonates. The trial included 97 neonates with perinatal brain lesion who had been undergoing treatment at a resuscitation department or neonatal pathology department in the first month of life. The article shows high information value of diffusion-weighted images (DWI) for diagnostics of hypoxic-ischemic lesions in comparison with regular standard mo...

  12. Quantification of ethanol methyl 1H magnetic resonance signal intensity following intravenous ethanol administration in primate brain

    OpenAIRE

    Flory, Graham S.; O’Malley, Jean; Grant, Kathleen A.; Park, Byung; Kroenke, Christopher D.

    2009-01-01

    In vivo 1H magnetic resonance spectroscopy (MRS) can be used to directly monitor brain ethanol. Previously, studies of human subjects have lead to the suggestion that the ethanol methyl 1H MRS signal intensity relates to tolerance to ethanol’s intoxicating effects. More recently, the ethanol 1H MRS signal intensity has been recognized to vary between brain gray matter (GM), white matter (WM), and cerebrospinal fluid (CSF) due to differences in T2 within these environments. The methods present...

  13. PET brain imaging in HIV-associated neurocognitive disorders (HAND) in the era of combination antiretroviral therapy

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Jaime H. [Brighton and Sussex Medical School, Department of Infection and Global Health, Brighton (United Kingdom); Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Ridha, Basil [Brighton and Sussex University Hospitals NHS Trust, Neurology Department, Brighton (United Kingdom); Gilleece, Yvonne; Amlani, Aliza [Brighton and Sussex University Hospitals NHS Trust, HIV Department, Brighton (United Kingdom); Thorburn, Patrick; Dizdarevic, Sabina [Brighton and Sussex University Hospitals NHS Trust, Imaging and Nuclear Medicine Department, Brighton (United Kingdom); Brighton and Sussex Medical School, Clinical Imaging Science Centre, Brighton (United Kingdom)

    2017-05-15

    Effective combination antiretroviral therapy (cART) has lead to a significant reduction in the prevalence and incidence of central nervous system (CNS) HIV-associated brain disease, particularly CNS opportunistic infections and HIV encephalitis. Despite this, cognitive deficits in people living with HIV, also known as HIV-associated neurocognitive disorders (HAND) have become more prevalent in recent years. The pathogenesis of HAND is likely to be multifactorial, however recent evidence suggests that brain microglial activation is the most likely pathogenic mechanism. Recent developments in positron emission tomography (PET) brain neuroimaging using novel brain radioligands targeting a variety of physiological changes in the brains of HIV-positive individuals have improved our understanding of the mechanisms associated with the development of HAND. This review will highlight recent PET brain neuroimaging studies in the cART era, focusing on physiological and neurochemical changes associated with HAND in people living with HIV. (orig.)

  14. Myxoma virus combined with rapamycin treatment enhances adoptive T cell therapy for murine melanoma brain tumors.

    Science.gov (United States)

    Thomas, Diana L; Doty, Rosalinda; Tosic, Vesna; Liu, Jia; Kranz, David M; McFadden, Grant; Macneill, Amy L; Roy, Edward J

    2011-10-01

    Adoptive transfer of tumor-specific T cells has shown some success for treating metastatic melanoma. We evaluated a novel strategy to improve adoptive therapy by administering both T cells and oncolytic myxoma virus to mice with syngeneic B16.SIY melanoma brain tumors. Adoptive transfer of activated CD8(+) 2C T cells that recognize SIY peptide doubled survival time, but SIY-negative tumors recurred. Myxoma virus killed B16.SIY cells in vitro, and intratumoral injection of virus led to selective and transient infection of the tumor. Virus treatment recruited innate immune cells to the tumor and induced IFNβ production in the brain, resulting in limited oncolytic effects in vivo. To counter this, we evaluated the safety and efficacy of co-administering 2C T cells, myxoma virus, and either rapamycin or neutralizing antibodies against IFNβ. Mice that received either triple combination therapy survived significantly longer with no apparent side effects, but eventually relapsed. Importantly, rapamycin treatment did not impair T cell-mediated tumor destruction, supporting the feasibility of combining adoptive immunotherapy and rapamycin-enhanced virotherapy. Myxoma virus may be a useful vector for transient delivery of therapeutic genes to a tumor to enhance T cell responses.

  15. Feasibility of approaches combining sensor and source features in brain-computer interface.

    Science.gov (United States)

    Ahn, Minkyu; Hong, Jun Hee; Jun, Sung Chan

    2012-02-15

    Brain-computer interface (BCI) provides a new channel for communication between brain and computers through brain signals. Cost-effective EEG provides good temporal resolution, but its spatial resolution is poor and sensor information is blurred by inherent noise. To overcome these issues, spatial filtering and feature extraction techniques have been developed. Source imaging, transformation of sensor signals into the source space through source localizer, has gained attention as a new approach for BCI. It has been reported that the source imaging yields some improvement of BCI performance. However, there exists no thorough investigation on how source imaging information overlaps with, and is complementary to, sensor information. Information (visible information) from the source space may overlap as well as be exclusive to information from the sensor space is hypothesized. Therefore, we can extract more information from the sensor and source spaces if our hypothesis is true, thereby contributing to more accurate BCI systems. In this work, features from each space (sensor or source), and two strategies combining sensor and source features are assessed. The information distribution among the sensor, source, and combined spaces is discussed through a Venn diagram for 18 motor imagery datasets. Additional 5 motor imagery datasets from the BCI Competition III site were examined. The results showed that the addition of source information yielded about 3.8% classification improvement for 18 motor imagery datasets and showed an average accuracy of 75.56% for BCI Competition data. Our proposed approach is promising, and improved performance may be possible with better head model. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Combined MRI and MRS improves pre-therapeutic diagnoses of pediatric brain tumors over MRI alone

    Energy Technology Data Exchange (ETDEWEB)

    Shiroishi, Mark S.; Nelson, Marvin D. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Panigrahy, Ashok [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Children' s Hospital of Pittsburgh of University of Pittsburgh Medical Center, Department of Pediatric Radiology, Pittsburgh, PA (United States); Moore, Kevin R. [Primary Children' s Medical Center, Department of Radiology, Salt Lake City, UT (United States); Gilles, Floyd H. [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Pathology, Los Angeles, CA (United States); Gonzalez-Gomez, Ignacio [All Children' s Hospital, Department of Pathology, St. Petersburg, FL (United States); Blueml, Stefan [Children' s Hospital Los Angeles/Keck School of Medicine of USC, Department of Radiology, Los Angeles, CA (United States); Rudi Schulte Research Institute, Santa Barbara, CA (United States)

    2015-09-15

    The specific goal of this study was to determine whether the inclusion of MRS had a measureable and positive impact on the accuracy of pre-surgical MR examinations of untreated pediatric brain tumors over that of MRI alone in clinical practice. Final imaging reports of 120 pediatric patients with newly detected brain tumors who underwent combined MRI/MRS examinations were retrospectively reviewed. Final pathology was available in all cases. Group A comprised 60 subjects studied between June 2001 and January 2005, when MRS was considered exploratory and radiologists utilized only conventional MRI to arrive at a diagnosis. For group B, comprising 60 subjects studied between January 2005 and March 2008, the radiologists utilized information from both MRI and MRS. Furthermore, radiologists revisited group A (blind review, time lapse >4 years) to determine whether the additional information from MRS would have altered their interpretation. Sixty-three percent of patients in group A were diagnosed correctly, whereas in 10 % the report was partially correct with the final tumor type mentioned (but not mentioned as most likely tumor), while in 27 % of cases the reports were wrong. For group B, the diagnoses were correct in 87 %, partially correct in 5 %, and incorrect in 8 % of the cases, which is a significant improvement (p < 0.005). Re-review of combined MRI and MRS of group A resulted 87 % correct, 7 % partially correct, and 7 % incorrect diagnoses, which is a significant improvement over the original diagnoses (p < 0.05). Adding MRS to conventional MRI significantly improved diagnostic accuracy in preoperative pediatric patients with untreated brain tumors. (orig.)

  17. Brain activity during bladder filling and pelvic floor muscle contractions: a study using functional magnetic resonance imaging and synchronous urodynamics.

    Science.gov (United States)

    Krhut, Jan; Holy, Petr; Tintera, Jaroslav; Zachoval, Roman; Zvara, Peter

    2014-02-01

    To map the brain activity during bladder filling by functional magnetic resonance imaging using a refined scanning protocol including synchronous urodynamics and pelvic floor muscle contractions. A total of 23 healthy female volunteers (age 20-68 years) were enrolled. Participants were asked to contract their pelvic floor muscles. This was followed by a urodynamic examination consisting of repeated filling cycles. Brain activity was measured by functional magnetic resonance imaging using a 3T magnetic resonance system. Measurements of brain activity consisted of 120 functional scans during pelvic floor contractions and 210 scans during bladder filling. Each functional magnetic resonance imaging scan covered the brain with 35 slices. Statistical analyses used the general linear model and independent component analysis. Areas of activation were visualized using group statistics. The following main clusters of activation were observed during pelvic floor muscle contractions: medial surface of the frontal lobe (primary motor area), bilaterally; supplementary motor area, bilaterally; and left gyrus precentralis. During bladder filling, activation was detected in the inferior frontal lobe bordering the frontal cingulum, left gyrus parietalis superior, left central area, right insula, brainstem and thalamus with subcortical gray matter nuclei. Our work extends an existing functional magnetic resonance imaging protocol for researching the neural control of the lower urinary tract. The present results are consistent with the available literature and agree with the present hypothetical functional model of lower urinary tract neural control. © 2013 The Japanese Urological Association.

  18. Haptic fMRI: combining functional neuroimaging with haptics for studying the brain's motor control representation.

    Science.gov (United States)

    Menon, Samir; Brantner, Gerald; Aholt, Chris; Kay, Kendrick; Khatib, Oussama

    2013-01-01

    A challenging problem in motor control neuroimaging studies is the inability to perform complex human motor tasks given the Magnetic Resonance Imaging (MRI) scanner's disruptive magnetic fields and confined workspace. In this paper, we propose a novel experimental platform that combines Functional MRI (fMRI) neuroimaging, haptic virtual simulation environments, and an fMRI-compatible haptic device for real-time haptic interaction across the scanner workspace (above torso ∼ .65×.40×.20m(3)). We implement this Haptic fMRI platform with a novel haptic device, the Haptic fMRI Interface (HFI), and demonstrate its suitability for motor neuroimaging studies. HFI has three degrees-of-freedom (DOF), uses electromagnetic motors to enable high-fidelity haptic rendering (>350Hz), integrates radio frequency (RF) shields to prevent electromagnetic interference with fMRI (temporal SNR >100), and is kinematically designed to minimize currents induced by the MRI scanner's magnetic field during motor displacement (Tesla fMRI scanner's baseline noise variation (∼.85±.1%). Finally, HFI is haptically transparent and does not interfere with human motor tasks (tested for .4m reaches). By allowing fMRI experiments involving complex three-dimensional manipulation with haptic interaction, Haptic fMRI enables-for the first time-non-invasive neuroscience experiments involving interactive motor tasks, object manipulation, tactile perception, and visuo-motor integration.

  19. The Brain of the Black (Diceros bicornis and White (Ceratotherium simum African Rhinoceroses: Morphology and Volumetrics from Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Adhil Bhagwandin

    2017-08-01

    Full Text Available The morphology and volumetrics of the understudied brains of two iconic large terrestrial African mammals: the black (Diceros bicornis and white (Ceratotherium simum rhinoceroses are described. The black rhinoceros is typically solitary whereas the white rhinoceros is social, and both are members of the Perissodactyl order. Here, we provide descriptions of the surface of the brain of each rhinoceros. For both species, we use magnetic resonance images (MRI to develop a description of the internal anatomy of the rhinoceros brain and to calculate the volume of the amygdala, cerebellum, corpus callosum, hippocampus, and ventricular system as well as to determine the gyrencephalic index. The morphology of both black and white rhinoceros brains is very similar to each other, although certain minor differences, seemingly related to diet, were noted, and both brains evince the general anatomy of the mammalian brain. The rhinoceros brains display no obvious neuroanatomical specializations in comparison to other mammals previously studied. In addition, the volumetric analyses indicate that the size of the various regions of the rhinoceros brain measured, as well as the extent of gyrification, are what would be predicted for a mammal with their brain mass when compared allometrically to previously published data. We conclude that the brains of the black and white rhinoceros exhibit a typically mammalian organization at a superficial level, but histological studies may reveal specializations of interest in relation to rhinoceros behavior.

  20. Normal and skewed phosphorene nanoribbons in combined magnetic and electric fields

    Science.gov (United States)

    Arsoski, Vladimir V.; Grujić, Marko M.; Čukarić, Nemanja A.; Tadić, Milan Ž.; Peeters, François M.

    2017-09-01

    The energy spectrum and eigenstates of single-layer black phosphorus nanoribbons in the presence of a perpendicular magnetic field and an in-plane transverse electric field are investigated by means of a tight-binding method, and the effect of different types of edges is examined analytically. A description based on a continuum model is proposed using an expansion of the tight-binding model in the long-wavelength limit. The wave functions corresponding to the flatband part of the spectrum are obtained analytically and are shown to agree well with the numerical results from the tight-binding method for both narrow (10 nm) and wide (100 nm) nanoribbons. Analytical expressions for the critical magnetic field at which Landau levels are formed and the ranges of wave numbers in the dispersionless flatband segments in the energy spectra are derived. We examine the evolution of the Landau levels when an in-plane lateral electric field is applied, and we determine analytically how the edge states shift with magnetic field. For wider nanoribbons, the conductance is shown to have a characteristic staircase shape in combined magnetic and electric fields. Some of the stairs in zigzag and skewed armchair nanoribbons originate from edge states that are found in the band gap.

  1. Magnetic resonance imaging assessment of brain maturation in preterm neonates with punctate white matter lesions

    Energy Technology Data Exchange (ETDEWEB)

    Ramenghi, Luca A.; Fumagalli, Monica; Bassi, Laura; Groppo, Michela; Mosca, Fabio [University of Milan, Neonatal Intensive Care Unit - Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, IRCCS, Milan (Italy); Righini, Andrea; Parazzini, Cecilia; Bianchini, Elena; Triulzi, Fabio [Ospedale Pediatrico ' ' Buzzi' ' -ICP, Department of Radiology and Neuroradiology, Milan (Italy)

    2007-02-15

    Early white matter (WM) injury affects brain maturation in preterm infants as revealed by diffusion tensor imaging and volumetric magnetic resonance (MR) imaging at term postmenstrual age (PMA). The aim of the study was to assess quantitatively brain maturation in preterm infants with and without milder forms of WM damage (punctate WM lesions, PWML) using conventional MRI. Brain development was quantitatively assessed using a previously validated scoring system (total maturation score, TMS) which utilizes four parameters (progressive myelination and cortical infolding, progressive involution of glial cell migration bands and germinal matrix tissue). PWML were defined as foci of increased signal on T1-weighted images and decreased signal on T2-weighted images with no evidence of cystic degeneration. A group of 22 preterm infants with PWML at term PMA (PWML group) were compared with 22 matched controls with a normal MR appearance. The two groups were comparable concerning gestational age, birth weight and PMA. TMS was significantly lower in the PWML group than in the control group (mean TMS 12.44 {+-} 2.31 vs 14.00 {+-} 1.44; P = 0.011). Myelination (mean 2.76 {+-} 0.42 PWML group vs 3.32 {+-} 0.55 control group, P = 0.003) and cortical folding (3.64 {+-} 0.79 vs 4.09 {+-} 0.43, P = 0.027) appeared to be significantly delayed in babies with PWML. Conventional MRI appears able to quantify morphological changes in brain maturation of preterm babies with PWML; delayed myelination and reduced cortical infolding seem to be the most significant aspects. (orig.)

  2. Predicting brain metastases for non-small cell lung cancer based on magnetic resonance imaging.

    Science.gov (United States)

    Yin, Gang; Li, Churong; Chen, Heng; Luo, Yangkun; Orlandini, Lucia Clara; Wang, Pei; Lang, Jinyi

    2017-02-01

    In this study the relationship between brain structure and brain metastases (BM) occurrence was analyzed. A model for predicting the time of BM onset in patients with non-small cell lung cancer (NSCLC) was proposed. Twenty patients were used to develop the model, whereas the remaining 69 were used for independent validation and verification of the model. Magnetic resonance images were segmented into cerebrospinal fluid, gray matter (GM), and white matter using voxel-based morphometry. Automatic anatomic labeling template was used to extract 116 brain regions from the GM volume. The elapsed time between the MRI acquisitions and BM diagnosed was analyzed using the least absolute shrinkage and selection operator method. The model was validated using the leave-one-out cross validation (LOOCV) and permutation test. The GM volume of the extracted 11 regions of interest increased with the progression of BM from NSCLC. LOOCV test on the model indicated that the measured and predicted BM onset were highly correlated (r = 0.834, P = 0.0000). For the 69 independent validating patients, accuracy, sensitivity, and specificity of the model for predicting BM occurrence were 70, 75, and 66%, respectively, in 6 months and 74, 82, and 60%, respectively, in 1 year. The extracted brain GM volumes and interval times for BM occurrence were correlated. The established model based on MRI data may reliably predict BM in 6 months or 1 year. Further studies with larger sample size are needed to validate the findings in a clinical setting.

  3. Dance combined with magnetic pulse stimulates the ability of walk and balance in elder people.

    Science.gov (United States)

    Lu, Tao; Song, Qing-Hua; Xu, Rong-Mei; Guo, Yan-Hua; Wang, Feng; Hu, Jian-Ping; Wang, Yi; Zhang, Li-Yan

    2015-01-01

    Observe the treatment effect on elderly people's waling and balance ability under the stimulation and intervention of waving dance combined with magnetic pulse. 96 elderly people are Involved in the research and the random number table method is divided into observation group and control group; there are 48 people in each group. The control group on the basis of routine daily activities increase waving dance for training treatment; the observation group take training treatment together with the control group, plus magnetic pulse for stimulation treatment. Inspection and control shall be made to relevant indicators of subject's walk and balance ability at the time when they are selected and after they go through 6-month treatment. after 6-month treatment, we found that indicators of walk and balance ability of these two groups of patients have been improved to different extent compared to those indicators when selected (all Pelderly people's walk and balance ability, and the improvement effect could be ever more significant when combined treatment with magnetic pulse stimulation. Such effect is obviously better than the effect improved only by waving dance.

  4. MaLT - Combined Motor and Language Therapy Tool for Brain Injury Patients Using Kinect.

    Science.gov (United States)

    Wairagkar, Maitreyee; McCrindle, Rachel; Robson, Holly; Meteyard, Lotte; Sperrin, Malcom; Smith, Andy; Pugh, Moyra

    2017-03-23

    The functional connectivity and structural proximity of elements of the language and motor systems result in frequent co-morbidity post brain injury. Although rehabilitation services are becoming increasingly multidisciplinary and "integrated", treatment for language and motor functions often occurs in isolation. Thus, behavioural therapies which promote neural reorganisation do not reflect the high intersystem connectivity of the neurologically intact brain. As such, there is a pressing need for rehabilitation tools which better reflect and target the impaired cognitive networks. The objective of this research is to develop a combined high dosage therapy tool for language and motor rehabilitation. The rehabilitation therapy tool developed, MaLT (Motor and Language Therapy), comprises a suite of computer games targeting both language and motor therapy that use the Kinect sensor as an interaction device. The games developed are intended for use in the home environment over prolonged periods of time. In order to track patients' engagement with the games and their rehabilitation progress, the game records patient performance data for the therapist to interrogate. MaLT incorporates Kinect-based games, a database of objects and language parameters, and a reporting tool for therapists. Games have been developed that target four major language therapy tasks involving single word comprehension, initial phoneme identification, rhyme identification and a naming task. These tasks have 8 levels each increasing in difficulty. A database of 750 objects is used to programmatically generate appropriate questions for the game, providing both targeted therapy and unique gameplay every time. The design of the games has been informed by therapists and by discussions with a Public Patient Involvement (PPI) group. Pilot MaLT trials have been conducted with three stroke survivors for the duration of 6 to 8 weeks. Patients' performance is monitored through MaLT's reporting facility

  5. Magnetic resonance spectroscopy of brain tumors; MR-Spektroskopie bei Hirntumoren

    Energy Technology Data Exchange (ETDEWEB)

    Ditter, P.; Hattingen, E. [Universitaetsklinikum Bonn, FE Neuroradiologie, Radiologische Klinik, Bonn (Germany)

    2017-06-15

    Conventional magnetic resonance imaging (MRI) under consideration of clinical information enables the correct diagnosis and therapy for the majority of cerebral space-occupying lesions. Some important differential diagnoses, e. g. low vs. high-grade tumors, require additional MRI methods. This article critically discusses the importance of magnetic resonance spectroscopy ({sup 1}H-MRS) in brain tumors. The concentration of normal and pathological brain metabolites can be non-invasively measured by {sup 1}H-MRS. It is based on the principle that chemical proton compounds of certain brain metabolites focally attenuate the external magnetic field and change the proton resonance frequency according to typical patterns. In addition, parameter maps of MRS imaging (MRSI) can show the tumor heterogeneity as well as changes in the surrounding brain tissue. In this context, the patterns of N-acetylaspartate, total choline (tCho) and creatine are relatively robust, whereas the patterns of other metabolites, such as myoinositol, glutamate, lactate or lipids greatly depend on the external field strength and echo time. The signal intensity of tCho in vital tumor tissue increases with the WHO grade of the brain tumor, i.e. increases with the level of malignancy. The use of MRSI facilitates the WHO grading of gliomas by determining target points in biopsies. Different distribution patterns and specific metabolite signals enable a better differentiation between abscesses, metastases, central nervous system (CNS) lymphomas and gliomas. The use of {sup 1}H-MRS provides valuable information on the differential diagnosis and graduation of brain tumors; however, so far artefacts, signal strength, parameter selection and a lack of standardization impede the establishment of {sup 1}H-MRS for use in clinical routine diagnostics. (orig.) [German] Die konventionelle MRT ermoeglicht unter Beruecksichtigung klinischer Information bei einem Grossteil zerebraler Raumforderungen die richtige

  6. Combined administration of D-galactose and aluminium induces Alzheimer-like lesions in brain.

    Science.gov (United States)

    Xiao, Fei; Li, Xiao-Guang; Zhang, Xiao-Yu; Hou, Jun-Dai; Lin, Lian-Feng; Gao, Qin; Luo, Huan-Min

    2011-06-01

    It has been reported that D-galactose (D-gal) can model subacute aging, and aluminum (Al) acts as a neurotoxin, but combined effects of them have not been reported. The present work aimed to reveal the effect of combined administration of D-gal and Al in mice and compare the effect of D-gal treatment with that of Al treatment. Al was intragastrically administered and D-gal was subcutaneously injected into Kunming mice for 10 consecutive weeks. Learning and memory, cholinergic systems, as well as protein levels of amyloid β (Aβ) and hyperphosphorylated tau were determined using Morri water maze test, biochemical assays and immunohistochemical staining, respectively. The mice with combined treatment had obvious learning and memory deficits, and showed decreases in brain acetylcholine (ACh) level and in activities of choline acetyltransferase (ChAT) and acetylcholinesterase (AChE). Formation of senile plaque (SP)-like and neurofibrillary tangle (NFT)-like structures was also observed. The behavioral and pathological changes persisted for at least 6 weeks after withdrawal of D-gal and Al. Combined use of D-gal and Al is an effective way to establish the non-transgenic Alzheimer's disease (AD) animal model, and is useful for studies of AD pathogenesis and therapeutic evaluation.

  7. Exploring combinations of auditory and visual stimuli for gaze-independent brain-computer interfaces.

    Directory of Open Access Journals (Sweden)

    Xingwei An

    Full Text Available For Brain-Computer Interface (BCI systems that are designed for users with severe impairments of the oculomotor system, an appropriate mode of presenting stimuli to the user is crucial. To investigate whether multi-sensory integration can be exploited in the gaze-independent event-related potentials (ERP speller and to enhance BCI performance, we designed a visual-auditory speller. We investigate the possibility to enhance stimulus presentation by combining visual and auditory stimuli within gaze-independent spellers. In this study with N = 15 healthy users, two different ways of combining the two sensory modalities are proposed: simultaneous redundant streams (Combined-Speller and interleaved independent streams (Parallel-Speller. Unimodal stimuli were applied as control conditions. The workload, ERP components, classification accuracy and resulting spelling speed were analyzed for each condition. The Combined-speller showed a lower workload than uni-modal paradigms, without the sacrifice of spelling performance. Besides, shorter latencies, lower amplitudes, as well as a shift of the temporal and spatial distribution of discriminative information were observed for Combined-speller. These results are important and are inspirations for future studies to search the reason for these differences. For the more innovative and demanding Parallel-Speller, where the auditory and visual domains are independent from each other, a proof of concept was obtained: fifteen users could spell online with a mean accuracy of 87.7% (chance level <3% showing a competitive average speed of 1.65 symbols per minute. The fact that it requires only one selection period per symbol makes it a good candidate for a fast communication channel. It brings a new insight into the true multisensory stimuli paradigms. Novel approaches for combining two sensory modalities were designed here, which are valuable for the development of ERP-based BCI paradigms.

  8. Measuring two at the same time: combining magnetic tweezers with single-molecule FRET.

    Science.gov (United States)

    Swoboda, Marko; Grieb, Maj Svea; Hahn, Steffen; Schlierf, Michael

    2014-01-01

    Molecular machines are the workhorses of the cell that efficiently convert chemical energy into mechanical motion through conformational changes. They can be considered powerful machines, exerting forces and torque on the molecular level of several piconewtons and piconewton-nanometer, respectively. For studying translocation and conformational changes of these machines, fluorescence methods, like FRET, as well as "mechanical" methods, like optical and magnetic tweezers, have proven well suited over the past decades. One of the current challenges in the field of molecular machines is gaining maximal information from single-molecule experiments by simultaneously measuring translocation, conformational changes, and forces exerted by these machines. In this chapter, we describe the combination of magnetic tweezers with single-molecule FRET for orthogonal simultaneous readout to maximize the information gained in single-molecule experiments.

  9. Magnetic planar waveguides as combined polarizers and spin-flippers for neutron microbeams

    Energy Technology Data Exchange (ETDEWEB)

    Rühm, A. [Max-Planck-Institut für Intelligente Systeme (formerly Max-Planck-Institut für Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany); Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Max-Planck-Institut für Intelligente Systeme (formerly Max-Planck-Institut für Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany); Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Ott, F. [CEA, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); Radu, F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, D-12489 Berlin (Germany); Major, J. [Max-Planck-Institut für Intelligente Systeme (formerly Max-Planck-Institut für Metallforschung), Heisenbergstr. 3, D-70569 Stuttgart (Germany)

    2013-04-21

    We propose waveguide structures which transform an incident unpolarized beam into a polarized microbeam and also can be used as spin-flippers by varying the incidence angle on the structure. We describe optimized structures combining these functions. Such waveguides could be used for the investigation of one-dimensional magnetic structures and could be implemented on any existing fixed wavelength reflectometer. -- Highlights: ► We propose a waveguide transforming a neutron beam into a polarized microbeam. ► This thin-film device acts as polarizer and spin-flipper for neutron microbeam. ► We calculate optimized parameters of this waveguide. ► Application of waveguides is in investigation of magnetic microstructures.

  10. Music modulation of pain perception and pain-related activity in the brain, brain stem, and spinal cord: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Dobek, Christine E; Beynon, Michaela E; Bosma, Rachael L; Stroman, Patrick W

    2014-10-01

    The oldest known method for relieving pain is music, and yet, to date, the underlying neural mechanisms have not been studied. Here, we investigate these neural mechanisms by applying a well-defined painful stimulus while participants listened to their favorite music or to no music. Neural responses in the brain, brain stem, and spinal cord were mapped with functional magnetic resonance imaging spanning the cortex, brain stem, and spinal cord. Subjective pain ratings were observed to be significantly lower when pain was administered with music than without music. The pain stimulus without music elicited neural activity in brain regions that are consistent with previous studies. Brain regions associated with pleasurable music listening included limbic, frontal, and auditory regions, when comparing music to non-music pain conditions. In addition, regions demonstrated activity indicative of descending pain modulation when contrasting the 2 conditions. These regions include the dorsolateral prefrontal cortex, periaqueductal gray matter, rostral ventromedial medulla, and dorsal gray matter of the spinal cord. This is the first imaging study to characterize the neural response of pain and how pain is mitigated by music, and it provides new insights into the neural mechanism of music-induced analgesia within the central nervous system. This article presents the first investigation of neural processes underlying music analgesia in human participants. Music modulates pain responses in the brain, brain stem, and spinal cord, and neural activity changes are consistent with engagement of the descending analgesia system. Copyright © 2014 American Pain Society. Published by Elsevier Inc. All rights reserved.

  11. Intracavitary moderator balloon combined with (252)Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations.

    Science.gov (United States)

    Brandão, S F; Campos, T P R

    2015-07-01

    This article proposes a combination of californium-252 ((252)Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Dosimetric evaluations were performed on three protocol set-ups: (252)Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0-5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the (252)Cf source, sparing the normal brain tissue. Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis.

  12. Intracavitary moderator balloon combined with 252Cf brachytherapy and boron neutron capture therapy, improving dosimetry in brain tumour and infiltrations

    Science.gov (United States)

    Brandão, S F

    2015-01-01

    Objective: This article proposes a combination of californium-252 (252Cf) brachytherapy, boron neutron capture therapy (BNCT) and an intracavitary moderator balloon catheter applied to brain tumour and infiltrations. Methods: Dosimetric evaluations were performed on three protocol set-ups: 252Cf brachytherapy combined with BNCT (Cf-BNCT); Cf-BNCT with a balloon catheter filled with light water (LWB) and the same set-up with heavy water (HWB). Results: Cf-BNCT-HWB has presented dosimetric advantages to Cf-BNCT-LWB and Cf-BNCT in infiltrations at 2.0–5.0 cm from the balloon surface. However, Cf-BNCT-LWB has shown superior dosimetry up to 2.0 cm from the balloon surface. Conclusion: Cf-BNCT-HWB and Cf-BNCT-LWB protocols provide a selective dose distribution for brain tumour and infiltrations, mainly further from the 252Cf source, sparing the normal brain tissue. Advances in knowledge: Malignant brain tumours grow rapidly and often spread to adjacent brain tissues, leading to death. Improvements in brain radiation protocols have been continuously achieved; however, brain tumour recurrence is observed in most cases. Cf-BNCT-LWB and Cf-BNCT-HWB represent new modalities for selectively combating brain tumour infiltrations and metastasis. PMID:25927876

  13. Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood-brain barrier.

    Science.gov (United States)

    Yan, Feng; Wang, Ying; He, Shenzhi; Ku, Shuting; Gu, Wei; Ye, Ling

    2013-10-01

    The blood-brain barrier (BBB) restricts the delivery of many potentially important therapeutic agents for the treatment of brain disorders. An efficient strategy for brain targeted delivery is the utilization of the targeting ligand conjugated nanoparticles to trigger the receptor-mediated transcytosis. In this study, transferrin (Tf) was employed as a brain targeting ligand to functionalize the fluorescein-loaded magnetic nanoparticles (FMNs). The Tf conjugated FMNs (Tf-FMNs) were characterized by transmission electron microscopy, thermal gravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Using fluorescein as an optical probe, the potential of Tf-FMNs as brain targeting drug carriers was explored in vivo. It was demonstrated that Tf-FMNs were able to cross the intact BBB, diffuse into brain neurons, and distribute in the cytoplasm, dendrites, axons, and synapses of neurons. In contrast, magnetic nanoparticles without Tf conjugation cannot cross the BBB efficiently under the same conditions. Therefore, Tf-FMNs hold great potential in serving as an efficient multifunctional platform for the brain-targeted theranostics.

  14. An electric field induced in the retina and brain at threshold magnetic flux density causing magnetophosphenes

    Energy Technology Data Exchange (ETDEWEB)

    Hirata, Akimasa; Takano, Yukinori; Fujiwara, Osamu [Nagoya Institute of Technology, Department of Computer Science and Engineering (Japan); Dovan, Thanh [SP AusNet, Division of Network Strategy and Development (Australia); Kavet, Robert, E-mail: ahirata@nitech.ac.jp [Electric Power Research Institute, Palo Alto, CA (United States)

    2011-07-07

    For magnetic field exposures at extremely low frequencies, the electrostimulatory response with the lowest threshold is the magnetophosphene, a response that corresponds to an adult exposed to a 20 Hz magnetic field of nominally 8.14 mT. In the IEEE standard C95.6 (2002), the corresponding in situ field in the retinal locus of an adult-sized ellipsoidal was calculated to be 53 mV m{sup -1}. However, the associated dose in the retina and brain at a high level of resolution in anatomically correct human models is incompletely characterized. Furthermore, the dose maxima in tissue computed with voxel human models are prone to staircasing errors, particularly for the low-frequency dosimetry. In the analyses presented in this paper, analytical and quasi-static finite-difference time-domain (FDTD) solutions were first compared for a three-layer sphere exposed to a uniform 50 Hz magnetic field. Staircasing errors in the FDTD results were observed at the tissue interface, and were greatest at the skin-air boundary. The 99th percentile value was within 3% of the analytic maximum, depending on model resolution, and thus may be considered a close approximation of the analytic maximum. For the adult anatomical model, TARO, exposed to a uniform magnetic field, the differences in the 99th percentile value of in situ electric fields for 2 mm and 1 mm voxel models were at most several per cent. For various human models exposed at the magnetophosphene threshold at three orthogonal field orientations, the in situ electric field in the brain was between 10% and 70% greater than the analytical IEEE threshold of 53 mV m{sup -1}, and in the retina was lower by roughly 50% for two horizontal orientations (anterior-posterior and lateral), and greater by about 15% for a vertically oriented field. Considering a reduction factor or safety factors of several folds applied to electrostimulatory thresholds, the 99th percentile dose to a tissue calculated with voxel human models may be used as an

  15. Pathological Assessment of Brain White Matter in Relapsing-Remitting MS Patients using Quantitative Magnetization Transfer Imaging

    Directory of Open Access Journals (Sweden)

    Khodarahm Pahlevan

    2011-09-01

    Full Text Available Introduction: Multiple sclerosis (MS is characterized by lesions in the white matter (WM of the central nervous system. Magnetic resonance imaging is the most specific and sensitive method for diagnosis of multiple sclerosis. However, the ability of conventional MRI to show histopathologic heterogeneity of MS lesions is insufficient. Quantitative magnetization transfer imaging (qMTI is a relatively new method to investigate pathologic processes of the brain tissue occurring in MS patients. Material and Methods: Voxel-based analyses allow regional comparisons between groups to be made for the whole brain in a single analysis. This is done by coregistering data from all individual subjects to a reference brain, generally referred to as the "standard space", and then comparing them on a voxel-by-voxel basis. This study aimed to analyze whole-brain quantitative T1 maps, not to find global changes or changes in selected regions, but specifically to investigate the spatial distribution throughout the brain of T1 increases in MS WM with respect to control WM. In this study, 11 healthy controls, 10 relapsing-remitting (RR MS patients and 13 CIS patients were studied using MT-MRI imaging. MT parameters, including magnetization transfer ratio (MTR, magnetization transfer rate between free protons and restricted macromolecular protons, Ksat and longitudinal relaxation times (with and without MT saturation pulse, T1sat and T1free values were evaluated. Results: The results showed that, at a group level, there is widespread involvement of WM throughout the brain in CIS MS and especially in RRMS, where a significant T1 increase was found in 15.58% of WM voxels (normals < RR. Discussion and Conclusion: This study demonstrates that WM in large parts of the brain is susceptible to disease processes in RR and CIS MS

  16. Using transcranial magnetic stimulation of the undamaged brain to identify lesion sites that predict language outcome after stroke.

    Science.gov (United States)

    Lorca-Puls, Diego L; Gajardo-Vidal, Andrea; Seghier, Mohamed L; Leff, Alexander P; Sethi, Varun; Prejawa, Susan; Hope, Thomas M H; Devlin, Joseph T; Price, Cathy J

    2017-06-01

    unguided lesion overlap map; and (iii) a region identified from voxel-based lesion-symptom mapping. Finally, consistent with prior findings from functional imaging and transcranial magnetic stimulation in healthy participants, we show how damage to our transcranial magnetic stimulation-guided regions affected performance on phonologically more than semantically demanding tasks. The observation that phonological processing abilities were impaired years after the stroke, suggests that other brain regions were not able to fully compensate for the contribution that the transcranial magnetic stimulation-guided regions make to language tasks. More generally, our novel transcranial magnetic stimulation-guided lesion-deficit mapping approach shows how non-invasive stimulation of the healthy brain can be used to guide the identification of regions where brain damage is likely to cause persistent behavioural effects. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.

  17. Functional magnetic resonance imaging can be used to explore tactile and nociceptive processing in the infant brain

    Science.gov (United States)

    Williams, Gemma; Fabrizi, Lorenzo; Meek, Judith; Jackson, Deborah; Tracey, Irene; Robertson, Nicola; Slater, Rebeccah; Fitzgerald, Maria

    2015-01-01

    Aim Despite the importance of neonatal skin stimulation, little is known about activation of the newborn human infant brain by sensory stimulation of the skin. We carried out functional magnetic resonance imaging (fMRI) to assess the feasibility of measuring brain activation to a range of mechanical stimuli applied to the skin of neonatal infants. Methods We studied 19 term infants with a mean age of 13 days. Brain activation was measured in response to brushing, von Frey hair (vFh) punctate stimulation and, in one case, nontissue damaging pinprick stimulation of the plantar surface of the foot. Initial whole brain analysis was followed by region of interest analysis of specific brain areas. Results Distinct patterns of functional brain activation were evoked by brush and vFh punctate stimulation, which were reduced, but still present, under chloral hydrate sedation. Brain activation increased with increasing stimulus intensity. The feasibility of using pinprick stimulation in fMRI studies was established in one unsedated healthy full-term infant. Conclusion Distinct brain activity patterns can be measured in response to different modalities and intensities of skin sensory stimulation in term infants. This indicates the potential for fMRI studies in exploring tactile and nociceptive processing in the infant brain. PMID:25358870

  18. Physiological and brain activity after a combined cognitive behavioral treatment plus video game therapy for emotional regulation in bulimia nervosa: a case report.

    Science.gov (United States)

    Fagundo, Ana Beatriz; Via, Esther; Sánchez, Isabel; Jiménez-Murcia, Susana; Forcano, Laura; Soriano-Mas, Carles; Giner-Bartolomé, Cristina; Santamaría, Juan J; Ben-Moussa, Maher; Konstantas, Dimitri; Lam, Tony; Lucas, Mikkel; Nielsen, Jeppe; Lems, Peter; Cardoner, Narcís; Menchón, Jose M; de la Torre, Rafael; Fernandez-Aranda, Fernando

    2014-08-12

    PlayMancer is a video game designed to increase emotional regulation and reduce general impulsive behaviors, by training to decrease arousal and improve decision-making and planning. We have previously demonstrated the usefulness of PlayMancer in reducing impulsivity and improving emotional regulation in bulimia nervosa (BN) patients. However, whether these improvements are actually translated into brain changes remains unclear. The aim of this case study was to report on a 28-year-old Spanish woman with BN, and to examine changes in physiological variables and brain activity after a combined treatment of video game therapy (VGT) and cognitive behavioral therapy (CBT). Ten VGT sessions were carried out on a weekly basis. Anxiety, physiological, and impulsivity measurements were recorded. The patient was scanned in a 1.5-T magnetic resonance scanner, prior to and after the 10-week VGT/CBT combined treatment, using two paradigms: (1) an emotional face-matching task, and (2) a multi-source interference task (MSIT). Upon completing the treatment, a decrease in average heart rate was observed. The functional magnetic resonance imaging (fMRI) results indicated a post-treatment reduction in reaction time along with high accuracy. The patient engaged areas typically active in healthy controls, although the cluster extension of the active areas decreased after the combined treatment. These results suggest a global improvement in emotional regulation and impulsivity control after the VGT therapy in BN, demonstrated by both physiological and neural changes. These promising results suggest that a combined treatment of CBT and VGT might lead to functional cerebral changes that ultimately translate into better cognitive and emotional performances.

  19. Physiological and Brain Activity After a Combined Cognitive Behavioral Treatment Plus Video Game Therapy for Emotional Regulation in Bulimia Nervosa: A Case Report

    Science.gov (United States)

    Fagundo, Ana Beatriz; Via, Esther; Sánchez, Isabel; Jiménez-Murcia, Susana; Forcano, Laura; Soriano-Mas, Carles; Giner-Bartolomé, Cristina; Santamaría, Juan J; Ben-Moussa, Maher; Konstantas, Dimitri; Lam, Tony; Lucas, Mikkel; Nielsen, Jeppe; Lems, Peter; Cardoner, Narcís; Menchón, Jose M; de la Torre, Rafael

    2014-01-01

    Background PlayMancer is a video game designed to increase emotional regulation and reduce general impulsive behaviors, by training to decrease arousal and improve decision-making and planning. We have previously demonstrated the usefulness of PlayMancer in reducing impulsivity and improving emotional regulation in bulimia nervosa (BN) patients. However, whether these improvements are actually translated into brain changes remains unclear. Objective The aim of this case study was to report on a 28-year-old Spanish woman with BN, and to examine changes in physiological variables and brain activity after a combined treatment of video game therapy (VGT) and cognitive behavioral therapy (CBT). Methods Ten VGT sessions were carried out on a weekly basis. Anxiety, physiological, and impulsivity measurements were recorded. The patient was scanned in a 1.5-T magnetic resonance scanner, prior to and after the 10-week VGT/CBT combined treatment, using two paradigms: (1) an emotional face-matching task, and (2) a multi-source interference task (MSIT). Results Upon completing the treatment, a decrease in average heart rate was observed. The functional magnetic resonance imaging (fMRI) results indicated a post-treatment reduction in reaction time along with high accuracy. The patient engaged areas typically active in healthy controls, although the cluster extension of the active areas decreased after the combined treatment. Conclusions These results suggest a global improvement in emotional regulation and impulsivity control after the VGT therapy in BN, demonstrated by both physiological and neural changes. These promising results suggest that a combined treatment of CBT and VGT might lead to functional cerebral changes that ultimately translate into better cognitive and emotional performances. PMID:25116416

  20. Subacute sclerosing panencephalitis with bilateral inferior collicular hyperintensity on magnetic resonance imaging brain

    Directory of Open Access Journals (Sweden)

    Maya Thomas

    2012-01-01

    Full Text Available Subacute sclerosing panencephalitis (SSPE is chronic encephalitis occurring after infection with measles virus. An 8-year-old boy presented with progressive behavioral changes, cognitive decline and myoclonic jerks, progressing to a bed bound state over 2 months. Magnetic resonance imaging (MRI brain showed T2-weighted hyperintensities in the subcortical areas of the left occipital lobe and brachium of the inferior colliculus on both sides. EEG showed bilateral, synchronous periodic discharges. Serum/cerebrospinal fluid measles IgG titer was significantly positive. The overall features were suggestive of SSPE. MRI finding of bilateral inferior colliculus changes on MRI without significant involvement of other commonly involved areas suggests an uncommon/rare imaging pattern of SSPE.

  1. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences......A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... intracranial hypertension. The results indicate that brain water self diffusion can be measured in vivo with reasonable accuracy. The clinical examples suggest that diffusion measurements may be clinically useful adding further information about in vivo MR tissue characterization....

  2. Subacute sclerosing panencephalitis with bilateral inferior collicular hyperintensity on magnetic resonance imaging brain.

    Science.gov (United States)

    Thomas, Maya; Sivadasan, Ajith; Alexander, Mathew; Patil, Anil Kumar B

    2012-10-01

    Subacute sclerosing panencephalitis (SSPE) is chronic encephalitis occurring after infection with measles virus. An 8-year-old boy presented with progressive behavioral changes, cognitive decline and myoclonic jerks, progressing to a bed bound state over 2 months. Magnetic resonance imaging (MRI) brain showed T2-weighted hyperintensities in the subcortical areas of the left occipital lobe and brachium of the inferior colliculus on both sides. EEG showed bilateral, synchronous periodic discharges. Serum/cerebrospinal fluid measles IgG titer was significantly positive. The overall features were suggestive of SSPE. MRI finding of bilateral inferior colliculus changes on MRI without significant involvement of other commonly involved areas suggests an uncommon/rare imaging pattern of SSPE.

  3. Detectability of Neuronal Currents in Human Brain with Magnetic Resonance Spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Howland D. T. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Thomas, Edward V. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Harper, Jason C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayer, Andrew R. [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Caprihan, Arvind [Mind Research Network, Albuquerque, NM (United States); Gasparovic, Charles [Mind Research Network, Albuquerque, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Blagoev, Krastan B. [Mind Research Network, Albuquerque, NM (United States); Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Haaland, David M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2012-09-01

    Magnetic resonance spectroscopy has been used in a high-risk, high-payoff search for neuronal current (NC) signals in the free induction decay (FID) data from the visual cortex of human subjects during visual stimulation. If successful, this approach could make possible the detection of neuronal currents in the brain at high spatial and temporal resolution. Our initial experiments indicated the presence of a statistically significant change in the FID containing the NC relative to FIDs with the NC absent, and this signal was consistent with the presence of NC. Unfortunately, two follow-on experiments were not able to confirm or replicate the positive findings of the first experiment. However, even if the result from the first experiment were evidence of NC in the FID, it is clear that its effect is so small, that a true NC imaging experiment would not be possible with the current instrumentation and experimental protocol used here.

  4. In vivo measurement of water self diffusion in the human brain by magnetic resonance imaging

    DEFF Research Database (Denmark)

    Thomsen, C; Henriksen, O; Ring, P

    1987-01-01

    A new pulse sequence for in vivo diffusion measurements by magnetic resonance imaging (MRI) is introduced. The pulse sequence was tested on phantoms to evaluate the accuracy, reproducibility and inplane variations. The sensitivity of the sequence was tested by measuring the self diffusion...... coefficient of water with different temperatures. This phantom study showed that the water self diffusion could be measured accurately and that the inplane deviation was less than +/- 10 per cent. Seven healthy volunteers were studied with a 10 mm thick slice through the lateral ventricles, clear differences...... between grey and white matter as well as regional differences within the white matter were seen. In two patients with infarction, alternations in water self diffusion were seen in the region of the infarct. Likewise, pronounced changes in brain water self diffusion were observed in a patient with benign...

  5. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies.

    Science.gov (United States)

    Giussani, Carlo; Roux, Frank-Emmanuel; Ojemann, Jeffrey; Sganzerla, Erik Pietro; Pirillo, David; Papagno, Costanza

    2010-01-01

    Language functional magnetic resonance imaging (fMRI) has been used extensively in the past decade for both clinical and research purposes. Its integration in the preoperative imaging assessment of brain lesions involving eloquent areas is progressively more diffused in neurosurgical practice. Nevertheless, the reliability of language fMRI is unclear. To understand the reliability of preoperative language fMRI in patients operated on for brain tumors, the surgical studies that compared language fMRI with direct cortical stimulation (DCS) were reviewed. Articles comparing language fMRI with DCS of language areas were reviewed with attention to the lesion pathology, the magnetic field, the language tasks used pre- and intraoperatively, and the validation modalities adopted to establish the reliability of language fMRI. We tried to explore the effectiveness of language fMRI in gliomas. Nine language brain mapping studies compared the findings of fMRI with those of DCS. The studies are not homogeneous for tumor types, magnetic fields, pre- and intraoperative language tasks, intraoperative matching criteria, and results. Sensitivity and specificity were calculated in 5 studies (respectively ranging from 59% to 100% and from 0% to 97%). The contradictory results of these studies do not allow consideration of language fMRI as an alternative tool to DCS in brain lesions located in language areas, especially in gliomas because of the pattern of growth of these tumors. However, language fMRI conducted with high magnet fields is a promising brain mapping tool that must be validated by DCS in methodological robust studies.

  6. Combining ICA and Granger causality: a novel tool for investigation of brain dynamics and brain oscillations using fNIRS measurements

    Science.gov (United States)

    Yuan, Zhen

    2014-03-01

    Identifying directional influences in neural circuits from functional near infrared spectroscopy (fNIRS) recordings presents one of the main challenges for understanding brain dynamics. In this study a new strategy that combines Granger causality mapping (GCM) and independent component analysis (ICA) is proposed to reveal complex neural network dynamics underlying cognitive processes with fNIRS measurements. The GCM-ICA algorithm implements the following two procedures: (i) extraction of the region of interests (ROIs) of cortical activations by ICA, and (ii) estimation of the direct causal influences in local brain networks using Granger causality among voxels of ROIs. Our results show the use of GCM in conjunction with ICA is able to effectively capture the brain network dynamics in time-frequency domain with significantly reduced computational cost. We thus suggest that the GCM-ICA technique is a potentially valuable tool that could be used for the investigation of directional causality influences of brain network dynamics in biophotonics fields.

  7. [CLIPPERS syndrome with atypical distribution of lesions in magnetic resonance imaging of the brain].

    Science.gov (United States)

    Canneti, Beatrice; Mosqueira, Antonio J; Gilo, Francisco; Carreras, Teresa; Barbosa, Antonio; Meca-Lallana, Virginia; Vivancos, José

    2013-10-16

    CLIPPERS syndrome (chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids) is an inflammatory process of the central nervous system whose distinguishing features are the enhancing punctiform lesions in the brainstem that appear in the magnetic resonance images. Clinically, it is accompanied by dysarthria, ataxia and diplopia, and usually responds to treatment with corticoids. Pathologically, T lymphocytes appear infiltrated in the perivascular spaces of the brainstem. We report the case of a 40-year-old woman with an initial subacute clinical picture of binocular diplopia, ataxia and dysarthria. The magnetic resonance brain scan revealed T2 hyperintense punctiform lesions in the stem, cerebellum, diencephalons and cortico-subcortical areas of both hemispheres, which were enhanced with contrast. An aetiological study was performed to rule out any underlying infectious, neoplastic or inflammatory origin, the results being negative. The patient was treated on two occasions with methylprednisolone, with a gradual lowering of the dosage, the response being favourable. Diplopia and ataxia, as in our case, are practically always present. The MR findings consist of punctiform enhancing lesions located in the pons extending towards the cerebellum, basal ganglia and corpus callosum, the enhancement gradient becoming lower as the distance increases rostrally away from the cortex, and caudally towards the spinal cord. In the case of our patient, this gradient is not respected, and the density found was similar to that of lesions at the supratentorial level. The differential diagnosis is wide-ranging and justifies an extensive diagnostic study with, in certain cases, a biopsy study of brain tissue. The disease courses in a relapsing-remitting pattern and the earlier steroid therapy is established and the more prolonged it is, the better the prognosis will be.

  8. Vessel segmentation in 4D arterial spin labeling magnetic resonance angiography images of the brain

    Science.gov (United States)

    Phellan, Renzo; Lindner, Thomas; Falcão, Alexandre X.; Forkert, Nils D.

    2017-03-01

    4D arterial spin labeling magnetic resonance angiography (4D ASL MRA) is a non-invasive and safe modality for cerebrovascular imaging procedures. It uses the patient's magnetically labeled blood as intrinsic contrast agent, so that no external contrast media is required. It provides important 3D structure and blood flow information but a sufficient cerebrovascular segmentation is important since it can help clinicians to analyze and diagnose vascular diseases faster, and with higher confidence as compared to simple visual rating of raw ASL MRA images. This work presents a new method for automatic cerebrovascular segmentation in 4D ASL MRA images of the brain. In this process images are denoised, corresponding image label/control image pairs of the 4D ASL MRA sequences are subtracted, and temporal intensity averaging is used to generate a static representation of the vascular system. After that, sets of vessel and background seeds are extracted and provided as input for the image foresting transform algorithm to segment the vascular system. Four 4D ASL MRA datasets of the brain arteries of healthy subjects and corresponding time-of-flight (TOF) MRA images were available for this preliminary study. For evaluation of the segmentation results of the proposed method, the cerebrovascular system was automatically segmented in the high-resolution TOF MRA images using a validated algorithm and the segmentation results were registered to the 4D ASL datasets. Corresponding segmentation pairs were compared using the Dice similarity coefficient (DSC). On average, a DSC of 0.9025 was achieved, indicating that vessels can be extracted successfully from 4D ASL MRA datasets by the proposed segmentation method.

  9. Love-related changes in the brain: A resting-state functional magnetic resonance imaging study

    Directory of Open Access Journals (Sweden)

    Hongwen eSong

    2015-02-01

    Full Text Available Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Studies with functional magnetic resonance imaging (fMRI have found activation increases in brain regions involved in processing of reward, emotion, motivation when romantic lovers view photographs of their partners. However, not much is known on whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI data was collected to compare the regional homogeneity (ReHo and functional connectivity (FC across a lover group (LG, N=34, currently intensely in love, ended-love group (ELG, N=34, romantic relationship ended recently, and single group (SG, N=32, never fallen in love.The results showed that:1 ReHo of the left dorsal anterior cingulate cortex (dACC was significantly increased in the LG (in comparison to the ELG and the SG; 2 ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; 3 functional connectivity (FC within the reward, motivation, and emotion network (dACC, insula, caudate, amygdala and nucleus accumbens and the social cognition network (temporo-parietal junction (TPJ, posterior cingulate cortex (PCC, medial prefrontal cortex (MPFC, inferior parietal, precuneus and temporal lobe was significantly increased in the LG (in comparison to the ELG and SG; 4 in most regions within both networks FC was positively correlated with the love duration in the LG but negatively correlated with the lovelorn duration in the ELG. This study provides first empirical evidence of love-related alterations of brain functional architecture. The results shed light on the underlying neural mechanisms of romantic love, and demonstrate the possibility of applying a resting state approach for investigating romantic love.

  10. Proton magnetic resonance spectroscopy and apparent diffusion coefficient in evaluation of solid brain lesions

    Directory of Open Access Journals (Sweden)

    Ristić-Baloš Dragana

    2013-01-01

    Full Text Available Background/Aim. Advanced magnetic resonance techniques can provide insight in physiological changes within pathological canges and contribute to better distinquishing between different tumor types and their discrimination from non-neoplastic lesions. The aim of this study was to evaluate the role of proton magnetic resonance spectroscopy (1H-MRS and apparent diffusion coefficients (ADC in distinguishing intracranial glial tumors from tumor like nonneoplastic lesions, as well as for differentiating high- from low-grade gliomas. Methods. This retrospective study included 47 patients with solid brain lesions (25 nonneoplastic, 14 low-grade and 8 anaplastic glial tumors. In all patients 1H-MRS (at a TE of 135 ms and 30 ms and diffusion- weighted imaging (DWI were performed. The choline to creatine (Cho/Cr, choline to N-acetyl aspartate (Cho/NAA, N-acetyl aspartate to creatine (NAA/Cr and myoinositol to creatine (mIn/Cr ratios and the apparent diffusion coefficient (ADC were determined. Results. The Cho/Cr ratio was significantly higher in glial tumors grade II than in non-neoplastic lesions (p = 0.008 and in glial tumors grade III than in non-neoplastic lesions (p = 0.001. The Cho/NAA ratio was significantly higher in glial tumors grade II than in non-neoplastic lesions (p = 0.037. ΔADC/ADC between glial tumors grade II and glial tumors grade III showed a statistical significance (p = 0.023. Conclusion. Our study showed that 1H-MRS and apparent diffusion coefficients can help in evaluation and differentiation of solid brain lesions.

  11. Hemodynamic quantification in brain arteriovenous malformations with time-resolved spin-labeled magnetic resonance angiography.

    Science.gov (United States)

    Raoult, Hélène; Bannier, Elise; Maurel, Pierre; Neyton, Clément; Ferré, Jean-Christophe; Schmitt, Peter; Barillot, Christian; Gauvrit, Jean-Yves

    2014-08-01

    Unenhanced time-resolved spin-labeled magnetic resonance angiography enables hemodynamic quantification in arteriovenous malformations (AVMs). Our purpose was to identify quantitative parameters that discriminate among different AVM components and to relate hemodynamic patterns with rupture risk. Sixteen patients presenting with AVMs (7 women, 9 men; mean age 37.1±15.9 years) were assigned to the high rupture risk or low rupture risk group according to anatomic AVM characteristics and rupture history. High temporal resolution (magnetic resonance angiography was performed on a 3-T MR system. After dedicated image processing, hemodynamic quantitative parameters were computed. T tests were used to compare quantitative parameters among AVM components, between the high rupture risk and low rupture risk groups, and between the hemorrhagic and nonhemorrhagic groups. Among the quantitative parameters, time-to-peak (Pmagnetic resonance angiography allows AVM-specific combined anatomic and quantitative analysis of AVM hemodynamics. © 2014 American Heart Association, Inc.

  12. Subject Combination and Electrode Selection in Cooperative Brain-Computer Interface Based on Event Related Potentials

    Directory of Open Access Journals (Sweden)

    Hubert Cecotti

    2014-04-01

    Full Text Available New paradigms are required in Brain-Computer Interface (BCI systems for the needs and expectations of healthy people. To solve this issue, we explore the emerging field of cooperative BCIs, which involves several users in a single BCI system. Contrary to classical BCIs that are dependent on the unique subject’s will, cooperative BCIs are used for problem solving tasks where several people shall be engaged by sharing a common goal. Similarly as combining trials over time improves performance, combining trials across subjects can significantly improve performance compared with when only a single user is involved. Yet, cooperative BCIs may only be used in particular settings, and new paradigms must be proposed to efficiently use this approach. The possible benefits of using several subjects are addressed, and compared with current single-subject BCI paradigms. To show the advantages of a cooperative BCI, we evaluate the performance of combining decisions across subjects with data from an event-related potentials (ERP based experiment where each subject observed the same sequence of visual stimuli. Furthermore, we show that it is possible to achieve a mean AUC superior to 0.95 with 10 subjects and 3 electrodes on each subject, or with 4 subjects and 6 electrodes on each subject. Several emerging challenges and possible applications are proposed to highlight how cooperative BCIs could be efficiently used with current technologies and leverage BCI applications.

  13. Contrast enhancement by combining T1- and T2-weighted structural brain MR Images.

    Science.gov (United States)

    Misaki, Masaya; Savitz, Jonathan; Zotev, Vadim; Phillips, Raquel; Yuan, Han; Young, Kymberly D; Drevets, Wayne C; Bodurka, Jerzy

    2015-12-01

    In order to more precisely differentiate cerebral structures in neuroimaging studies, a novel technique for enhancing the tissue contrast based on a combination of T1-weighted (T1w) and T2-weighted (T2w) MRI images was developed. The combined image (CI) was calculated as CI = (T1w - sT2w)/(T1w + sT2w), where sT2w is the scaled T2-weighted image. The scaling factor was calculated to adjust the gray- matter (GM) voxel intensities in the T2w image so that their median value equaled that of the GM voxel intensities in the T1w image. The image intensity homogeneity within a tissue and the discriminability between tissues in the CI versus the separate T1w and T2w images were evaluated using the segmentation by the FMRIB Software Library (FSL) and FreeSurfer (Athinoula A. Martinos Center for Biomedical Imaging at Massachusetts General Hospital, Boston, MA) software. The combined image significantly improved homogeneity in the white matter (WM) and GM compared to the T1w images alone. The discriminability between WM and GM also improved significantly by applying the CI approach. Significant enhancements to the homogeneity and discriminability also were achieved in most subcortical nuclei tested, with the exception of the amygdala and the thalamus. The tissue discriminability enhancement offered by the CI potentially enables more accurate neuromorphometric analyses of brain structures. © 2014 Wiley Periodicals, Inc.

  14. Combination Therapy for Multi-Target Manipulation of Secondary Brain Injury Mechanisms.

    Science.gov (United States)

    Somayaji, Mahadevabharath R; Mahadevabharath, R; Przekwas; Andrzej, J; Gupta; Raj, K

    2017-08-28

    Traumatic brain injury (TBI) is a major healthcare problem that affects millions of people worldwide. Despite advances in understanding and developing preventative and treatment strategies using preclinical animal models, clinical trials to date have failed, and a "magic bullet" for effectively treating TBI-induced damage does not exist. Thus, novel pharmacological strategies to effectively manipulate the complex and heterogeneous pathophysiology of secondary injury mechanisms are needed. Given that goal, this paper discusses the relevance and advantages of combination therapies (COMTs) for "multi-target manipulation" of the injury cascade by administering multiple drugs to achieve an optimal therapeutic window of opportunity (e.g., temporally broad window) and compares these regimens to monotherapies that manipulate a single target with a single drug at a time. Furthermore, we posit that integrated mechanistic multiscale models that combine primary biomechanics, secondary injury mechano-/neurobiology, pharmacology and mathematical programming techniques could account for vast differences in the biological space and time scales and help to accelerate drug development, optimize combination pharmacotherapy protocols and improve treatment outcomes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Treating brain tumor-initiating cells using a combination of myxoma virus and rapamycin.

    Science.gov (United States)

    Zemp, Franz J; Lun, Xueqing; McKenzie, Brienne A; Zhou, Hongyuan; Maxwell, Lori; Sun, Beichen; Kelly, John J P; Stechishin, Owen; Luchman, Artee; Weiss, Samuel; Cairncross, J Gregory; Hamilton, Mark G; Rabinovich, Brian A; Rahman, Masmudur M; Mohamed, Mohamed R; Smallwood, Sherin; Senger, Donna L; Bell, John; McFadden, Grant; Forsyth, Peter A

    2013-07-01

    Intratumoral heterogeneity in glioblastoma multiforme (GBM) poses a significant barrier to therapy in certain subpopulation such as the tumor-initiating cell population, being shown to be refractory to conventional therapies. Oncolytic virotherapy has the potential to target multiple compartments within the tumor and thus circumvent some of the barriers facing conventional therapies. In this study, we investigate the oncolytic potential of myxoma virus (MYXV) alone and in combination with rapamycin in vitro and in vivo using human brain tumor-initiating cells (BTICs). We cultured fresh GBM specimens as neurospheres and assayed their growth characteristics in vivo. We then tested the susceptibility of BTICs to MYXV infection with or without rapamycin in vitro and assessed viral biodistribution/survival in vivo in orthotopic xenografts. The cultured neurospheres were found to retain stem cell markers in vivo, and they closely resembled human infiltrative GBM. In this study we determined that (i) all patient-derived BTICs tested, including those resistant to temozolomide, were susceptible to MYXV replication and killing in vitro; (ii) MYXV replicated within BTICs in vivo, and intratumoral administration of MYXV significantly prolonged survival of BTIC-bearing mice; (iii) combination therapy with MYXV and rapamycin improved antitumor activity, even in mice bearing "advanced" BTIC tumors; (iv) MYXV treatment decreased expression of stem cell markers in vitro and in vivo. Our study suggests that MYXV in combination with rapamycin infects and kills both the BTICs and the differentiated compartments of GBM and may be an effective treatment even in TMZ-resistant patients.

  16. Metabolic Profiling of Dividing Cells in Live Rodent Brain by Proton Magnetic Resonance Spectroscopy (1HMRS) and LCModel Analysis

    DEFF Research Database (Denmark)

    Park, June-Hee; Lee, Hedok; Makaryus, Rany

    2014-01-01

    RATIONALE: Dividing cells can be detected in the live brain by positron emission tomography or optical imaging. Here we apply proton magnetic resonance spectroscopy (1HMRS) and a widely used spectral fitting algorithm to characterize the effect of increased neurogenesis after electroconvulsive sh...

  17. Functional Magnetic Resonance Imaging of Cognitive Control following Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Randall S. Scheibel

    2017-08-01

    Full Text Available Novel and non-routine tasks often require information processing and behavior to adapt from moment to moment depending on task requirements and current performance. This ability to adapt is an executive function that is referred to as cognitive control. Patients with moderate-to-severe traumatic brain injury (TBI have been reported to exhibit impairments in cognitive control and functional magnetic resonance imaging (fMRI has provided evidence for TBI-related alterations in brain activation using various fMRI cognitive control paradigms. There is some support for greater and more extensive cognitive control-related brain activation in patients with moderate-to-severe TBI, relative to comparison subjects without TBI. In addition, some studies have reported a correlation between these activation increases and measures of injury severity. Explanations that have been proposed for increased activation within structures that are thought to be directly involved in cognitive control, as well as the extension of this over-activation into other brain structures, have included compensatory mechanisms, increased demand upon normal processes required to maintain adequate performance, less efficient utilization of neural resources, and greater vulnerability to cognitive fatigue. Recent findings are also consistent with the possibility that activation increases within some structures, such as the posterior cingulate gyrus, may reflect a failure to deactivate components of the default mode network (DMN and that some cognitive control impairment may result from ineffective coordination between the DMN and components of the salience network. Functional neuroimaging studies examining cognitive control-related activation following mild TBI (mTBI have yielded more variable results, with reports of increases, decreases, and no significant change. These discrepancies may reflect differences among the various mTBI samples under study, recovery of function in some

  18. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges.

    Science.gov (United States)

    Millán, J D R; Rupp, R; Müller-Putz, G R; Murray-Smith, R; Giugliemma, C; Tangermann, M; Vidaurre, C; Cincotti, F; Kübler, A; Leeb, R; Neuper, C; Müller, K-R; Mattia, D

    2010-01-01

    In recent years, new research has brought the field of electroencephalogram (EEG)-based brain-computer interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely, "Communication and Control", "Motor Substitution", "Entertainment", and "Motor Recovery". We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users' mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  19. Combining Brain-Computer Interfaces and Assistive Technologies: State-of-the-Art and Challenges

    Directory of Open Access Journals (Sweden)

    José del R. Millán

    2010-09-01

    Full Text Available In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT. In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication & Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI to improve BCI usability, and the development of novel BCI technology including better EEG devices.

  20. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Shao-qun Zhang

    2015-01-01

    Full Text Available Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3 and Taixi (KI3 using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19, inferior occipital gyrus (Brodmann area 18 and cuneus (Brodmann area 18, but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11, inferior frontal gyrus (Brodmann area 44 and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  1. Brain activation and inhibition after acupuncture at Taichong and Taixi: resting-state functional magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Shao-Qun; Wang, Yan-Jie; Zhang, Ji-Ping; Chen, Jun-Qi; Wu, Chun-Xiao; Li, Zhi-Peng; Chen, Jia-Rong; Ouyang, Huai-Liang; Huang, Yong; Tang, Chun-Zhi

    2015-02-01

    Acupuncture can induce changes in the brain. However, the majority of studies to date have focused on a single acupoint at a time. In the present study, we observed activity changes in the brains of healthy volunteers before and after acupuncture at Taichong (LR3) and Taixi (KI3) using resting-state functional magnetic resonance imaging. Fifteen healthy volunteers underwent resting-state functional magnetic resonance imaging of the brain 15 minutes before acupuncture, then received acupuncture at Taichong and Taixi using the nail-pressing needle insertion method, after which the needle was retained in place for 30 minutes. Fifteen minutes after withdrawal of the needle, the volunteers underwent a further session of resting-state functional magnetic resonance imaging, which revealed that the amplitude of low-frequency fluctuation, a measure of spontaneous neuronal activity, increased mainly in the cerebral occipital lobe and middle occipital gyrus (Brodmann area 18/19), inferior occipital gyrus (Brodmann area 18) and cuneus (Brodmann area 18), but decreased mainly in the gyrus rectus of the frontal lobe (Brodmann area 11), inferior frontal gyrus (Brodmann area 44) and the center of the posterior lobe of the cerebellum. The present findings indicate that acupuncture at Taichong and Taixi specifically promote blood flow and activation in the brain areas related to vision, emotion and cognition, and inhibit brain areas related to emotion, attention, phonological and semantic processing, and memory.

  2. Enhancement of Combined Umami and Salty Taste by Glutathione in the Human Tongue and Brain.

    Science.gov (United States)

    Goto, Tazuko K; Yeung, Andy Wai Kan; Tanabe, Hiroki C; Ito, Yuki; Jung, Han-Sung; Ninomiya, Yuzo

    2016-09-01

    Glutathione, a natural substance, acts on calcium receptors on the tongue and is known to enhance basic taste sensations. However, the effects of glutathione on brain activity associated with taste sensation on the tongue have not been determined under standardized taste delivery conditions. In this study, we investigated the sensory effect of glutathione on taste with no effect of the smell when glutathione added to a combined umami and salty taste stimulus. Twenty-six volunteers (12 women and 14 men; age 19-27 years) performed a sensory evaluation of taste of a solution of monosodium L-glutamate and sodium chloride, with and without glutathione. The addition of glutathione changed taste qualities and significantly increased taste intensity ratings under standardized taste delivery conditions (P umami and salty mixture. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. The fractionation of spoken language understanding by measuring electrical and magnetic brain signals.

    Science.gov (United States)

    Hagoort, Peter

    2008-03-12

    This paper focuses on what electrical and magnetic recordings of human brain activity reveal about spoken language understanding. Based on the high temporal resolution of these recordings, a fine-grained temporal profile of different aspects of spoken language comprehension can be obtained. Crucial aspects of speech comprehension are lexical access, selection and semantic integration. Results show that for words spoken in context, there is no 'magic moment' when lexical selection ends and semantic integration begins. Irrespective of whether words have early or late recognition points, semantic integration processing is initiated before words can be identified on the basis of the acoustic information alone. Moreover, for one particular event-related brain potential (ERP) component (the N400), equivalent impact of sentence- and discourse-semantic contexts is observed. This indicates that in comprehension, a spoken word is immediately evaluated relative to the widest interpretive domain available. In addition, this happens very quickly. Findings are discussed that show that often an unfolding word can be mapped onto discourse-level representations well before the end of the word. Overall, the time course of the ERP effects is compatible with the view that the different information types (lexical, syntactic, phonological, pragmatic) are processed in parallel and influence the interpretation process incrementally, that is as soon as the relevant pieces of information are available. This is referred to as the immediacy principle.

  4. Magnetic resonance volumetry reveals focal brain atrophy in transient epileptic amnesia.

    Science.gov (United States)

    Butler, Christopher; van Erp, Willemijn; Bhaduri, Amit; Hammers, Alexander; Heckemann, Rolf; Zeman, Adam

    2013-09-01

    Transient epileptic amnesia (TEA) is a recently described epilepsy syndrome characterized by recurrent episodes of isolated memory loss. It is associated with two unusual forms of interictal memory impairment: accelerated long-term forgetting (ALF) and autobiographical amnesia. We investigated the neural basis of TEA using manual volumetry and automated multi-atlas-based segmentation of whole-brain magnetic resonance imaging data from 40 patients with TEA and 20 healthy controls. Both methods confirmed the presence of subtle, bilateral hippocampal atrophy. Additional atrophy was revealed in perirhinal and orbitofrontal cortices. The volumes of these regions correlated with anterograde memory performance. No structural correlates were found for ALF or autobiographical amnesia. The results support the hypothesis that TEA is a focal medial temporal lobe epilepsy syndrome but reveal additional pathology in connected brain regions. The unusual interictal memory deficits of TEA remain unexplained by structural pathology and may reflect physiological disruption of memory networks by subclinical epileptiform activity. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Regional brain changes in bipolar I depression: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Altshuler, Lori; Bookheimer, Susan; Townsend, Jennifer; Proenza, Manuel A; Sabb, Fred; Mintz, Jim; Cohen, Mark S

    2008-09-01

    To investigate neural activity in prefrontal cortex and amygdala during bipolar depression. Eleven bipolar I depressed and 17 normal subjects underwent functional magnetic resonance imaging (fMRI) while performing a task known to activate prefrontal cortex and amygdala. Whole brain activation patterns were determined using statistical parametric mapping (SPM) when subjects matched faces displaying neutral or negative affect (match condition) or matched a geometric form (control condition). Contrasts for each group for the match versus control conditions were used in a second-level random effects analysis. Random effects between-group analysis revealed significant attenuation in right and left orbitofrontal cortex (BA47) and right dorsolateral prefrontal cortex (DLPFC) (BA9) in bipolar depressed subjects. Additionally, random effects analysis showed a significantly increased activation in left lateral orbitofrontal cortex (BA10) in the bipolar depressed versus control subjects. Within-group contrasts demonstrated significant amygdala activation in the controls and no significant amygdala activation in the bipolar depressed subjects. The amygdala between-group difference, however, was not significant. Bipolar depression is associated with attenuated bilateral orbitofrontal (BA47) activation, attenuated right DLPFC (BA9) activation and heightened left orbitofrontal (BA10) activation. BA47 attenuation has also been reported in mania and may thus represent a trait feature of the disorder. Increased left prefrontal (BA10) activation may be a state marker to bipolar depression. Our findings suggest dissociation between mood-dependent and disease-dependent functional brain abnormalities in bipolar disorder.

  6. An algorithm for automatic segmentation and classification of magnetic resonance brain images.

    Science.gov (United States)

    Erickson, B J; Avula, R T

    1998-05-01

    In this article, we describe the development and validation of an automatic algorithm to segment brain from extracranial tissues, and to classify intracranial tissues as cerebrospinal fluid (CSF), gray matter (GM), white matter (WM) or pathology. T1 weighted spin echo, dual echo fast spin echo (T2 weighted and proton density (PD) weighted images) and fast Fluid Attenuated Inversion Recovery (FLAIR) magnetic resonance (MR) images were acquired in 100 normal patients and 9 multiple sclerosis (MS) patients. One of the normal studies had synthesized MS-like lesions superimposed. This allowed precise measurement of the accuracy of the classification. The 9 MS patients were imaged twice in one week. The algorithm was applied to these data sets to measure reproducibility. The accuracy was measured based on the synthetic lesion images, where the true voxel class was known. Ninety-six percent of normal intradural tissue voxels (GM, WM, and CSF) were labeled correctly, and 94% of pathological tissues were labeled correctly. A low coefficient of variation (COV) was found (mean, 4.1%) for measurement of brain tissues and pathology when comparing MRI scans on the 9 patients. A totally automatic segmentation algorithm has been described which accurately and reproducibly segments and classifies intradural tissues based on both synthetic and actual images.

  7. Automated Segmentation of in Vivo and Ex Vivo Mouse Brain Magnetic Resonance Images

    Directory of Open Access Journals (Sweden)

    Alize E.H. Scheenstra

    2009-01-01

    Full Text Available Segmentation of magnetic resonance imaging (MRI data is required for many applications, such as the comparison of different structures or time points, and for annotation purposes. Currently, the gold standard for automated image segmentation is nonlinear atlas-based segmentation. However, these methods are either not sufficient or highly time consuming for mouse brains, owing to the low signal to noise ratio and low contrast between structures compared with other applications. We present a novel generic approach to reduce processing time for segmentation of various structures of mouse brains, in vivo and ex vivo. The segmentation consists of a rough affine registration to a template followed by a clustering approach to refine the rough segmentation near the edges. Compared with manual segmentations, the presented segmentation method has an average kappa index of 0.7 for 7 of 12 structures in in vivo MRI and 11 of 12 structures in ex vivo MRI. Furthermore, we found that these results were equal to the performance of a nonlinear segmentation method, but with the advantage of being 8 times faster. The presented automatic segmentation method is quick and intuitive and can be used for image registration, volume quantification of structures, and annotation.

  8. Brain magnetic resonance imaging findings in cryptogenic stroke patients under 60 years with patent foramen ovale

    Energy Technology Data Exchange (ETDEWEB)

    Boutet, Claire, E-mail: claire.boutet@chu-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Rouffiange-Leclair, Laure, E-mail: laurerouffiange@hotmail.com [Department of Radiology, University Hospital of Saint-Etienne (France); Garnier, Pierre, E-mail: pierre.garnier@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Quenet, Sara, E-mail: sara.quenet@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Delsart, Daphné, E-mail: daphne.delsart@hotmail.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Therapeutic Medicine, CHU Saint-Etienne, Hôpital Nord, Saint-Etienne (France); Inserm, CIE3, F-42055 Saint-Etienne (France); Varvat, Jérôme, E-mail: jvarvat@9online.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Epinat, Magali, E-mail: magali.epinat@chu-st-etienne.fr [Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Department of Neurology, University Hospital of Saint-Etienne (France); Schneider, Fabien, E-mail: fabien.schneider@univ-st-etienne.fr [Department of Radiology, University Hospital of Saint-Etienne (France); Thrombosis Research Group EA 3065, Jean Monnet University, Saint-Etienne (France); Antoine, Jean-Christophe, E-mail: j.christophe.antoine@chu-st-etienne.fr [Department of Neurology, University Hospital of Saint-Etienne (France); Lyon Neuroscience Research Center, INSERM U1028 – CNRS UMR5292 (France); EA 4338, Jean Monnet University, Saint-Etienne (France); and others

    2014-05-15

    Purpose: To compare magnetic resonance imaging (MRI) brain feature in cryptogenic stroke patients with patent foramen ovale (PFO), cryptogenic stroke patients without PFO and patients with cardioembolic stroke. Materials and methods: The ethics committee required neither institutional review board approval nor informed patient consent for retrospective analyses of the patients’ medical records and imaging data. The patients’ medical files were retrospectively reviewed in accordance with human subject research protocols. Ninety-two patients under 60 years of age were included: 15 with cardioembolic stroke, 32 with cryptogenic stroke with PFO and 45 with cryptogenic stroke without PFO. Diffusion-weighted imaging of brain MRI was performed by a radiologist blinded to clinical data. Univariate, Fischer's exact test for qualitative data and non-parametric Wilcoxon test for quantitative data were used. Results: There was no statistically significant difference found between MRI features of patients with PFO and those with cardioembolic stroke (p < .05). Patients without PFO present more corticosubcortical single lesions (p < .05) than patients with PFO. Patients with PFO have more often subcortical single lesions larger than 15 mm, involvement of posterior cerebral arterial territory and intracranial occlusion (p < .05) than patients with cryptogenic stroke without PFO. Conclusion: Our study suggests a cardioembolic mechanism in ischemic stroke with PFO.

  9. Magnetic Resonance Imaging to Assess Blood–Brain Barrier Damage in Murine Trypanosomiasis

    Science.gov (United States)

    Rodgers, Jean; McCabe, Christopher; Gettinby, George; Bradley, Barbara; Condon, Barrie; Kennedy, Peter G. E.

    2011-01-01

    The ability of trypanosomes to invade the brain and induce an inflammatory reaction is well-recognized. This study uses magnetic resonance imaging (MRI) in conjunction with a murine model of central nervous system (CNS) stage trypanosomiasis to investigate this phenomenon at the level of the blood–brain barrier (BBB). Mice were scanned before and after administration of the contrast agent. Signal enhancement maps were generated, and the percentage signal change was calculated. The severity of the neuroinflammation was also assessed. Statistical analysis of the signal change data revealed a significantly (P = 0.028) higher signal enhancement in mice at 28 days post-infection (least squares mean = 26.709) compared with uninfected animals (6.298), indicating the presence of BBB impairment. Leukocytes were found in the meninges and perivascular space of some blood vessels in the infected mice. This study shows that the integrity of the BBB is compromised during CNS stage trypanosomiasis and that the impairment does not correlate with inflammatory cell infiltration. PMID:21292912

  10. Functional magnetic resonance imaging exploration of combined hand and speech movements in Parkinson's disease.

    Science.gov (United States)

    Pinto, Serge; Mancini, Laura; Jahanshahi, Marjan; Thornton, John S; Tripoliti, Elina; Yousry, Tarek A; Limousin, Patricia

    2011-10-01

    Among the repertoire of motor functions, although hand movement and speech production tasks have been investigated widely by functional neuroimaging, paradigms combining both movements have been studied less so. Such paradigms are of particular interest in Parkinson's disease, in which patients have specific difficulties performing two movements simultaneously. In 9 unmedicated patients with Parkinson's disease and 15 healthy control subjects, externally cued tasks (i.e., hand movement, speech production, and combined hand movement and speech production) were performed twice in a random order and functional magnetic resonance imaging detected cerebral activations, compared to the rest. F-statistics tested within-group (significant activations at P values 10 voxels). For control subjects, the combined task activations comprised the sum of those obtained during hand movement and speech production performed separately, reflecting the neural correlates of performing movements sharing similar programming modalities. In patients with Parkinson's disease, only activations underlying hand movement were observed during the combined task. We interpreted this phenomenon as patients' potential inability to recruit facilitatory activations while performing two movements simultaneously. This lost capacity could be related to a functional prioritization of one movement (i.e., hand movement), in comparison with the other (i.e., speech production). Our observation could also reflect the inability of patients with Parkinson's disease to intrinsically engage the motor coordination necessary to perform a combined task. Copyright © 2011 Movement Disorder Society.

  11. Brain Basics

    Medline Plus

    Full Text Available ... time in healthy people and are working to compare that with brain development in people mental disorders. Genes and environmental ... the brain than ever before. Brain Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take pictures ...

  12. Characterisation of Lesions after Stereotactic Radiosurgery for Brain Metastases: Impact of Delayed Contrast Magnetic Resonance Imaging.

    Science.gov (United States)

    Wagner, S; Gufler, H; Eichner, G; Lanfermann, H

    2017-03-01

    To investigate if brain metastases and radiation injuries after stereotactic radiosurgery (SRS) have different signal intensity (SI) time courses up to 55 min after contrast agent application and if delayed contrast magnetic resonance imaging (MRI) contributes to improve diagnostic accuracy. Thirty-four consecutive patients treated with SRS for cerebral metastases were prospectively enrolled in the study. T1-weighted images were acquired on a 3-Tesla MR unit at three time points, at 2 (TP1), 15 (TP2) and 55 (TP3) min after administering contrast agent. A simultaneous, matched-pairs approach was used for region of interest analysis of the entire contrast-enhancing lesion (SI-e), the centre (SI-c), the border of the lesion (SI-b) and the adjacent non-contrast-enhancing tissue (SI-p). SIs of brain metastases and radiation injuries after SRS were compared using a two-level, linear, mixed-effects regression model. In total, 41 lesions were analysed: 16 metastases and 25 radiation injuries. The SI time course of SI-e, SI-c and SI-b proved to be significantly different for both entities (P < 0.001) from TP2 to TP3. The SI of 39/41 lesions increased from TP1 to TP2 for the three parameters. Radiation injuries showed a further signal increase at least for SI-c from TP2 to TP3, whereas for all the three parameters SI decreased in all metastases. Brain metastases and radiation injuries after SRS have a characteristic and statistically significantly different SI time course on sequential gadolinium enhancement MRI when late MR studies are included. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  13. Brain glutamate in anorexia nervosa: a magnetic resonance spectroscopy case control study at 7 Tesla.

    Science.gov (United States)

    Godlewska, Beata R; Pike, Alexandra; Sharpley, Ann L; Ayton, Agnes; Park, Rebecca J; Cowen, Philip J; Emir, Uzay E

    2017-02-01

    Anorexia nervosa (AN) is a serious psychiatric disorder with high morbidity and mortality. There are no established pharmacological treatments and the neurobiology of the condition is poorly understood. Previous studies using magnetic resonance spectroscopy (MRS) have shown that AN may be associated with reductions in indices of brain glutamate; however, at conventional field strengths (≤3 T), it is difficult to separate glutamate from its precursor and metabolite, glutamine. The objective of the present study was to use high field (7 T) MRS to measure concentrations of glutamate, in three separate brain voxels, in women with AN. We studied 13 female participants with AN and 12 healthy female controls who underwent MRS scanning at 7 T with voxels placed in anterior cingulate cortex, occipital cortex and putamen. Neurometabolites were calculated using the unsuppressed water signal as a reference and corrected for individual cerebrospinal fluid concentration in the voxel. We found that participants with AN had significantly lower concentrations of glutamate in all three voxels (mean reduction 8%, p = 0.002) but glutamine levels were not altered. Concentrations of N-acetylaspartate, creatine, GABA and glutathione were also unchanged. However, inositol was lower in AN participants in anterior cingulate (p = 0.022) and occipital cortex (p = 0.002). Women with AN apparently have widespread reductions in brain glutamate. Further work will be needed to assess if this change has pathophysiological relevance or whether it is a consequence of the many physical changes produced in AN by food restriction.

  14. Threshold segmentation algorithm for automatic extraction of cerebral vessels from brain magnetic resonance angiography images.

    Science.gov (United States)

    Wang, Rui; Li, Chao; Wang, Jie; Wei, Xiaoer; Li, Yuehua; Zhu, Yuemin; Zhang, Su

    2015-02-15

    Cerebrovascular segmentation plays an important role in medical diagnosis. This study was conducted to develop a threshold segmentation algorithm for automatic extraction and volumetric quantification of cerebral vessels on brain magnetic resonance angiography (MRA) images. The MRA images of 10 individuals were acquired using a 3 Tesla MR scanner (Intera-achieva SMI-2.1, Philips Medical Systems). Otsu's method was used to divide the brain MRA images into two parts, namely, foreground and background regions. To extract the cerebral vessels, we performed the threshold segmentation algorithm on the foreground region by comparing two different statistical distributions. Automatically segmented vessels were compared with manually segmented vessels. Different similarity metrics were used to assess the changes in segmentation performance as a function of a weighted parameter w used in segmentation algorithm. Varying w from 2 to 100 resulted in a false positive rate ranging from 117% to 3.21%, and a false negative rate ranging from 8.23% to 28.97%. The Dice similarity coefficient (DSC), which reflected the segmentation accuracy, initially increased and then decreased as w increased. The suggested range of values for w is [10, 20] given that the maximum DSC (e.g., DSC=0.84) was obtained within this range. The performance of our method was validated by comparing with manual segmentation. The proposed threshold segmentation method can be used to accurately and efficiently extract cerebral vessels from brain MRA images. Threshold segmentation may be used for studies focusing on three-dimensional visualization and volumetric quantification of cerebral vessels. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Change in brain magnetic resonance spectroscopy after treatment during acute HIV infection.

    Directory of Open Access Journals (Sweden)

    Napapon Sailasuta

    Full Text Available Single voxel proton magnetic resonance spectroscopy (MRS can be used to monitor changes in brain inflammation and neuronal integrity associated with HIV infection and its treatments. We used MRS to measure brain changes during the first weeks following HIV infection and in response to antiretroviral therapy (ART.Brain metabolite levels of N-acetyl aspartate (NAA, choline (tCHO, creatine (CR, myoinositol (MI, and glutamate and glutamine (GLX were measured in acute HIV subjects (n = 31 and compared to chronic HIV+individuals (n = 26 and HIV negative control subjects (n = 10 from Bangkok, Thailand. Metabolites were measured in frontal gray matter (FGM, frontal white matter (FWM, occipital gray matter (OGM, and basal ganglia (BG. Repeat measures were obtained in 17 acute subjects 1, 3 and 6 months following initiation of ART.After adjustment for age we identified elevated BG tCHO/CR in acute HIV cases at baseline (median 14 days after HIV infection compared to control (p = 0.0014, as well as chronic subjects (p = 0.0023. A similar tCHO/CR elevation was noted in OGM; no other metabolite abnormalities were seen between acute and control subjects. Mixed longitudinal models revealed resolution of BG tCHO/CR elevation after ART (p = 0.022 with tCHO/CR similar to control subjects at 6 months.We detected cellular inflammation in the absence of measurable neuronal injury within the first month of HIV infection, and normalization of this inflammation following acutely administered ART. Our findings suggest that early ART may be neuroprotective in HIV infection by mitigating processes leading to CNS injury.

  16. Incidental extracerebral findings on brain nonenhanced magnetic resonance imaging: frequency, nondetection rate, and clinical importance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Ming-Liang; Wei, Xiao-Er [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Lu, Li-Yan [Nanjing Medical University, Department of Radiology, Nanjing First Hospital, Nanjing (China); Li, Wen-Bin [School of Medicine, Department of Radiology, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai (China); Kashgar Prefecture Second People' s Hospital, Imaging Center, Kashgar (China)

    2017-03-15

    This study aims to elucidate the frequency, nondetection rate, and clinical importance of incidental extracerebral findings (IECFs) on brain nonenhanced magnetic resonance imaging (MRI). A total of 8284 brain MRIs performed between January 1, 2015 and December 31, 2015 were evaluated for the presence of IECFs and the distribution of IECFs was analyzed. IECFs were categorized as E1 (clinically unimportant, e.g., sinus mucosal thickening); E2 (likely unimportant, e.g., pharyngeal mucosal symmetrical thickening); and E3 (potentially important, e.g., pharyngeal mucosal asymmetrical thickening). The nondetection rate was determined by comparing the results of the structured approach with the initial MRI reports. The medical records were examined for patients with E3 IECFs to assess clinical importance and outcome of these lesions. A total of 5992 IECFs were found in 4469 of the 8284 patients (54.0%). E1 findings constituted 82.2% (4924/5992) of all IECFs; E2 constituted 16.6% (995/5992) and E3 constituted 1.2% (73/5992). Overall IECFs and E1 findings were significantly more common in male patients (P < 0.05). Statistically significant difference was also seen between the different age groups (P < 0.001). The nondetection rate was 56.9% (3409/5992) for overall IECFs and 32.9% (24/73) for E3 IECFs. Of the 73 patients with E3 IECFs, 34 (46.6%) received final diagnosis and appropriate treatment during the study period. IECFs are prevalent in clinical patients on brain MR images with a nondetection rate of 32.9% for potentially important (E3) findings. The reporting of IECFs according to clinical importance is helpful for patients' management. (orig.)

  17. {sup 1}H magnetic resonance spectroscopy in the diagnosis of paediatric low grade brain tumours

    Energy Technology Data Exchange (ETDEWEB)

    Orphanidou-Vlachou, E., E-mail: eleni.orphanidou@googlemail.com [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Auer, D., E-mail: dorothee.auer@nottingham.ac.uk [Division of Academic Radiology, School of Medical and Surgical Sciences, The University of Nottingham, University Park, Nottingham, NG7 2RD (United Kingdom); Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); Brundler, M.A., E-mail: marie-anne.brundler@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Davies, N.P., E-mail: nigel.davies@nhs.net [School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); Jaspan, T., E-mail: tim.jaspan@nuh.nhs.uk [Children' s Brain Tumour Research Centre, Queens Medical Centre, University of Nottingham (United Kingdom); MacPherson, L., E-mail: Lesley.MacPherson@bch.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Natarajan, K., E-mail: Kal.Natarajan@uhb.nhs.uk [Birmingham Children' s Hospital NHS Foundation Trust, Whittall Street, Birmingham, B4 6NH (United Kingdom); Department of Medical Physics, University Hospitals Birmingham NHS Foundation Trust, Mindelsohn Way, Edgbaston, Birmingham, B15 2WB (United Kingdom); and others

    2013-06-15

    Introduction: Low grade gliomas are the commonest brain tumours in children but present in a myriad of ways, each with its own treatment challenges. Conventional MRI scans play an important role in their management but have limited ability to identify likely clinical behaviour. The aim of this study is to investigate {sup 1}H magnetic resonance spectroscopy (MRS) as a method for detecting differences between the various low grade gliomas and related tumours in children. Patients and methods: Short echo time single voxel {sup 1}H MRS at 1.5 or 3.0 T was performed prior to treatment on children with low grade brain tumours at two centres and five MR scanners, 69 cases had data which passed quality control. MRS data was processed using LCModel to give mean spectra and metabolite concentrations which were compared using T-tests, ANOVA, Receiver Operator Characteristic curves and logistic regression in SPSS. Results: Significant differences were found in concentrations of key metabolites between glioneuronal and glial tumours (T-test p < 0.05) and between most of the individual histological subtypes of low grade gliomas. The discriminatory metabolites identified, such as choline and myoinositol, are known tumour biomarkers. In the set of pilocytic astrocytomas and unbiopsied optic pathway gliomas, significant differences (p < 0.05, ANOVA) were found in metabolite profiles of tumours depending on location and patient neurofibromatosis type 1 status. Logistic regression analyses yielded equations which could be used to assess the probability of a tumour being of a specific type. Conclusions: MRS can detect subtle differences between low grade brain tumours in children and should form part of the clinical assessment of these tumours.

  18. Neurosyphilis with dementia and bilateral hippocampal atrophy on brain magnetic resonance imaging

    Directory of Open Access Journals (Sweden)

    Mehrabian Shima

    2012-09-01

    Full Text Available Abstract Background This article reports a rare case of active neurosyphilis in a man with mild to moderate dementia and marked hippocampal atrophy, mimicking early onset Alzheimer’s disease. Few cases have so far described bilateral hippocampal atrophy mimicking Alzheimer’s disease in neurosyphilis. Case presentation The patient presented here is a 33 year old Bulgarian male, whose clinical features include progressive cognitive decline and behavioral changes over the last 18 months. Neuropsychological examination revealed mild to moderate dementia (Mini Mental State Examination score was 16/30 with impaired memory and attention, and executive dysfunction. Pyramidal, and extrapyramidal signs, as well as dysarthria and impairment in coordination, were documented. Brain magnetic resonance imaging showed cortical atrophy with noticeable bilateral hippocampal atrophy. The diagnosis of active neurosyphilis was based on positive results of the Venereal Disease Research Laboratory test/Treponema pallidum hemagglutination reactions in blood and cerebrospinal fluid samples. In addition, cerebrospinal fluid analysis showed pleocytosis and elevated protein levels. High-dose intravenous penicillin therapy was administered. At 6 month follow up, improvements were noted clinically, on neuropsychological examinations, and in cerebrospinal fluid samples. Conclusion This case underlines the importance of early diagnosis of neurosyphilis. The results suggest that neurosyphilis should be considered when magnetic resonance imaging results indicate mesiotemporal abnormalities and hippocampal atrophy. Neurosyphilis is a treatable condition which requires early aggressive antibiotic therapy.

  19. Diffusion tensor magnetic resonance imaging of the brain in APP transgenic mice: a cohort study.

    Directory of Open Access Journals (Sweden)

    Hans-Peter Müller

    Full Text Available INTRODUCTION: Fast in-vivo high resolution diffusion tensor imaging (DTI of the mouse brain has recently been shown to enable cohort studies by the combination of appropriate pulse sequences and cryogenically cooled resonators (CCR. The objective of this study was to apply this DTI approach at the group level to β-amyloid precursor protein (APP transgenic mice. METHODS: Twelve mice (5 wild type, 7 APP transgenic tg2576 underwent DTI examination at 156(2 × 250 µm(3 spatial resolution with a CCR at ultrahigh field (11.7 T. Diffusion images were acquired along 30 gradient directions plus 5 references without diffusion encoding with a total acquisition time of 35 minutes. Fractional anisotropy (FA maps were statistically compared by whole brain-based spatial statistics (WBSS at the group level vs. wild type controls. RESULTS: FA-map comparison showed characteristic regional patterns of differences between the groups with localizations associated with Alzheimer's disease in humans, such as the hippocampus, the entorhinal cortex, and the caudoputamen. CONCLUSION: In this proof-of-principle study, regions associated with amyloid-β deposition could be identified by WBSS of FA maps in APP transgenic mice vs. wild type mice. Thus, DTI in the mouse brain acquired at 11.7 T by use of a CCR was demonstrated to be feasible for cohort studies.

  20. Transcranial magnetic stimulation of the brain: guidelines for pain treatment research

    Science.gov (United States)

    Klein, Max M.; Treister, Roi; Raij, Tommi; Pascual-Leone, Alvaro; Park, Lawrence; Nurmikko, Turo; Lenz, Fred; Lefaucheur, Jean-Pascal; Lang, Magdalena; Hallett, Mark; Fox, Michael; Cudkowicz, Merit; Costello, Ann; Carr, Daniel B.; Ayache, Samar S.; Oaklander, Anne Louise

    2015-01-01

    Abstract Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after

  1. Optical pathology of human brain metastasis of lung cancer using combined resonance Raman and spatial frequency spectroscopies

    Science.gov (United States)

    Zhou, Yan; Liu, Cheng-hui; Pu, Yang; Cheng, Gangge; Zhou, Lixin; Chen, Jun; Zhu, Ke; Alfano, Robert R.

    2016-03-01

    Raman spectroscopy has become widely used for diagnostic purpose of breast, lung and brain cancers. This report introduced a new approach based on spatial frequency spectra analysis of the underlying tissue structure at different stages of brain tumor. Combined spatial frequency spectroscopy (SFS), Resonance Raman (RR) spectroscopic method is used to discriminate human brain metastasis of lung cancer from normal tissues for the first time. A total number of thirty-one label-free micrographic images of normal and metastatic brain cancer tissues obtained from a confocal micro- Raman spectroscopic system synchronously with examined RR spectra of the corresponding samples were collected from the identical site of tissue. The difference of the randomness of tissue structures between the micrograph images of metastatic brain tumor tissues and normal tissues can be recognized by analyzing spatial frequency. By fitting the distribution of the spatial frequency spectra of human brain tissues as a Gaussian function, the standard deviation, σ, can be obtained, which was used to generate a criterion to differentiate human brain cancerous tissues from the normal ones using Support Vector Machine (SVM) classifier. This SFS-SVM analysis on micrograph images presents good results with sensitivity (85%), specificity (75%) in comparison with gold standard reports of pathology and immunology. The dual-modal advantages of SFS combined with RR spectroscopy method may open a new way in the neuropathology applications.

  2. Partial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising.

    Science.gov (United States)

    Golla, Sandeep S V; Lubberink, Mark; van Berckel, Bart N M; Lammertsma, Adriaan A; Boellaard, Ronald

    2017-12-01

    Accurate quantification of PET studies depends on the spatial resolution of the PET data. The commonly limited PET resolution results in partial volume effects (PVE). Iterative deconvolution methods (IDM) have been proposed as a means to correct for PVE. IDM improves spatial resolution of PET studies without the need for structural information (e.g. MR scans). On the other hand, deconvolution also increases noise, which results in lower signal-to-noise ratios (SNR). The aim of this study was to implement IDM in combination with HighlY constrained back-PRojection (HYPR) denoising to mitigate poor SNR properties of conventional IDM. An anthropomorphic Hoffman brain phantom was filled with an [ 18 F]FDG solution of ~25 kBq mL -1 and scanned for 30 min on a Philips Ingenuity TF PET/CT scanner (Philips, Cleveland, USA) using a dynamic brain protocol with various frame durations ranging from 10 to 300 s. Van Cittert IDM was used for PVC of the scans. In addition, HYPR was used to improve SNR of the dynamic PET images, applying it both before and/or after IDM. The Hoffman phantom dataset was used to optimise IDM parameters (number of iterations, type of algorithm, with/without HYPR) and the order of HYPR implementation based on the best average agreement of measured and actual activity concentrations in the regions. Next, dynamic [ 11 C]flumazenil (five healthy subjects) and [ 11 C]PIB (four healthy subjects and four patients with Alzheimer's disease) scans were used to assess the impact of IDM with and without HYPR on plasma input-derived distribution volumes (V T ) across various regions of the brain. In the case of [ 11 C]flumazenil scans, Hypr-IDM-Hypr showed an increase of 5 to 20% in the regional V T whereas a 0 to 10% increase or decrease was seen in the case of [ 11 C]PIB depending on the volume of interest or type of subject (healthy or patient). References for these comparisons were the V T s from the PVE-uncorrected scans. IDM improved quantitative accuracy

  3. Propranolol and Mesenchymal Stromal Cells Combine to Treat Traumatic Brain Injury.

    Science.gov (United States)

    Kota, Daniel J; Prabhakara, Karthik S; van Brummen, Alexandra J; Bedi, Supinder; Xue, Hasen; DiCarlo, Bryan; Cox, Charles S; Olson, Scott D

    2016-01-01

    More than 6.5 million patients are burdened by the physical, cognitive, and psychosocial deficits associated with traumatic brain injury (TBI) in the U.S. Despite extensive efforts to develop neuroprotective therapies for this devastating disorder, there have been no successful outcomes in human clinical trials to date. Retrospective studies have shown that β-adrenergic receptor blockers, specifically propranolol, significantly decrease mortality of TBI through mechanisms not yet fully elucidated but are thought to counterbalance a hyperadrenergic state resulting from a TBI. Conversely, cellular therapies have been shown to improve long-term behavior following TBI, likely by reducing inflammation. Given the nonredundancy in their therapeutic mechanisms, we hypothesized that a combination of acute propranolol followed by mesenchymal stem cells (MSCs) isolated from human bone marrow would have additive effects in treating a rodent model of TBI. We have found that the treatments are well-tolerated individually and in combination with no adverse events. MSCs decrease BBB permeability at 96 hours after injury, inhibit a significant accumulation of activated microglia/macrophage in the thalamic region of the brain both short and long term, and enhance neurogenesis short term. Propranolol decreases edema and reduces the number of fully activated microglia at 7 days and the number of semiactivated microglia at 120 days. Combinatory treatment improved cognitive and memory functions 120 days following TBI. Therefore, the results here suggest a new, efficacious sequential treatment for TBI may be achieved using the β-blocker propranolol followed by MSC treatment. Despite continuous efforts, traumatic brain injury (TBI) remains the leading cause of death and disability worldwide in patients under the age of 44. In this study, an animal model of moderate-severe TBI was treated with an acute dose of propranolol followed by a delayed dose of human mesenchymal stem cells (MSCs

  4. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study.

    Science.gov (United States)

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d'Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain's functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an "in-love" group (LG, N = 34, currently intensely in love), an "ended-love" group (ELG, N = 34, ended romantic relationship recently), and a "single" group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate the

  5. Magnetic resonance imaging of the brain and vocal tract: Applications to the study of speech production and language learning.

    Science.gov (United States)

    Carey, Daniel; McGettigan, Carolyn

    2017-04-01

    The human vocal system is highly plastic, allowing for the flexible expression of language, mood and intentions. However, this plasticity is not stable throughout the life span, and it is well documented that adult learners encounter greater difficulty than children in acquiring the sounds of foreign languages. Researchers have used magnetic resonance imaging (MRI) to interrogate the neural substrates of vocal imitation and learning, and the correlates of individual differences in phonetic "talent". In parallel, a growing body of work using MR technology to directly image the vocal tract in real time during speech has offered primarily descriptive accounts of phonetic variation within and across languages. In this paper, we review the contribution of neural MRI to our understanding of vocal learning, and give an overview of vocal tract imaging and its potential to inform the field. We propose methods by which our understanding of speech production and learning could be advanced through the combined measurement of articulation and brain activity using MRI - specifically, we describe a novel paradigm, developed in our laboratory, that uses both MRI techniques to for the first time map directly between neural, articulatory and acoustic data in the investigation of vocalisation. This non-invasive, multimodal imaging method could be used to track central and peripheral correlates of spoken language learning, and speech recovery in clinical settings, as well as provide insights into potential sites for targeted neural interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Differentiation of Glioblastomas from Metastatic Brain Tumors by Tryptophan Uptake and Kinetic Analysis: A Positron Emission Tomographic Study with Magnetic Resonance Imaging Comparison

    Directory of Open Access Journals (Sweden)

    David O. Kamson

    2013-07-01

    Full Text Available Differentiating high-grade gliomas from solitary brain metastases is often difficult by conventional magnetic resonance imaging (MRI; molecular imaging may facilitate such discrimination. We tested the accuracy of α[11C]methyl-L-tryptophan (AMT–positron emission tomography (PET to differentiate newly diagnosed glioblastomas from brain metastases. AMT-PET was performed in 36 adults with suspected brain malignancy. Tumoral AMT accumulation was measured by standardized uptake values (SUVs. Tracer kinetic analysis was also performed to separate tumoral net tryptophan transport (by AMT volume of distribution [VD] from unidirectional uptake rates using dynamic PET and blood input function. Differentiating the accuracy of these PET variables was evaluated and compared to conventional MRI. For glioblastoma/metastasis differentiation, tumoral AMT SUV showed the highest accuracy (74% and the tumor/cortex VD ratio had the highest positive predictive value (82%. The combined accuracy of MRI (size of contrast-enhancing lesion and AMT-PET reached up to 93%. For ring-enhancing lesions, tumor/cortex SUV ratios were higher in glioblastomas than in metastatic tumors and could differentiate these two tumor types with > 90% accuracy. These results demonstrate that evaluation of tryptophan accumulation by PET can enhance pretreatment differentiation of glioblastomas and metastatic brain tumors. This approach may be particularly useful in patients with a newly diagnosed solitary ring-enhancing mass.

  7. A clinical and magnetic resonance spectroscopy study of a brain tumor in a patient with segmental neurofibromatosis.

    Science.gov (United States)

    Chebel, S; Ben Yahia, S; Boughammoura-Bouatay, A; Salem, R; Golli, M; Khairallah, M; Frih-Ayed, M

    2010-08-01

    Segmental neurofibromatosis 1 (segmental NF-1) is a rare genodermatosis caused by somatic mutations in the NF-1 gene. It consists of localized characteristic skin lesions. A serial study using magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) of a brain tumor in a 16-year-old patient with segmental NF-1 is reported. A 16-year-old boy with congenital dorsal scoliosis and segmental NF-1 was evaluated for bilateral optic atrophy. Neurological examination showed an isolated tetra pyramidal syndrome. The cerebral MRI showed a bilateral brain lesion involving the basal ganglia, optic pathways, temporal lobes, and the midbrain. Serial MRSs showed a decreased N-acetylaspartate (NAA)/creatine ratio and increased choline/creatine ratio. An increase in the myoinositol (MYO)/creatine ratio and the presence of a lipid/lactate peak were also recorded. A neuroimaging follow-up with MRI and MRS performed 2 years later showed similar findings. We describe an MRS study of a brain tumor in a patient with segmental NF-1 for the first time. The MRS study showed similar findings, described earlier in rare studies of patients with the classic form of NF-1. MRS is a noninvasive technique for detecting the presence of tumor tissue in the brain through its metabolic activity. MRS plays an important role in clinical studies and it can be used to differentiate malignant and nonmalignant brain lesions from normal brain tissue. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.

  8. The Relationship Between Brain Oscillatory Activity and Therapeutic Effectiveness of Transcranial Magnetic Stimulation in the Treatment of Major Depressive Disorder

    Directory of Open Access Journals (Sweden)

    Andrew Francis Leuchter

    2013-02-01

    Full Text Available Major Depressive Disorder (MDD is marked by disturbances in brain functional connectivity. This connectivity is modulated by rhythmic oscillations of brain electrical activity, which enable coordinated functions across brain regions. Oscillatory activity plays a central role in regulating thinking and memory, mood, cerebral blood flow, and neurotransmitter levels, and restoration of normal oscillatory patterns is associated with effective treatment of MDD. Repetitive Transcranial Magnetic Stimulation (rTMS is a robust treatment for MDD, but the mechanism of action (MOA of its benefits for mood disorders remains incompletely understood. Benefits of rTMS have been tied to enhanced neuroplasticity in specific brain pathways. We summarize here the evidence that rTMS entrains and resets thalamocortical oscillators, normalizes regulation and facilitates reemergence of intrinsic cerebral rhythms, and through this mechanism restores normal brain function. This entrainment and resetting may be a critical step in engendering neuroplastic changes and the antidepressant effects of rTMS. It may be possible to modify the method of rTMS administration to enhance this mechanism of action and achieve better antidepressant effectiveness. We propose that rTMS can be administered: 1 synchronized to a patient’s individual alpha rhythm (IAF, or synchronized rTMS (sTMS; 2 as a low magnetic field strength sinusoidal wave form; and, 3 broadly to multiple brain areas simultaneously. We present here the theory and evidence indicating that these modifications could enhance the therapeutic effectiveness of rTMS for the treatment of MDD.

  9. Combination of Aβ Suppression and Innate Immune Activation in the Brain Significantly Attenuates Amyloid Plaque Deposition.

    Science.gov (United States)

    Verbeeck, Christophe; Carrano, Anna; Chakrabarty, Paramita; Jankowsky, Joanna L; Das, Pritam

    2017-12-01

    Anti-Aβ clinical trials are currently under way to determine whether preventing amyloid deposition will be beneficial in arresting progression of Alzheimer disease. Both clinical and preclinical studies suggest that antiamyloid strategies are only effective if started at early stages of the disease process in a primary prevention strategy. Because this approach will be difficult to deploy, strategies for secondary prevention aimed at later stages of disease are also needed. In this study, we asked whether combining innate immune activation in the brain with concurrent Aβ suppression could enhance plaque clearance and could improve pathologic outcomes in mice with moderate amyloid pathologic disorder. Starting at 5 months of age, tet-off amyloid precursor protein transgenic mice were treated with doxycycline (dox) to suppress further amyloid precursor protein/Aβ production, and at the same time mice were intracranially injected with adeno-associated virus 1 expressing murine IL-6 (AAV1-mIL-6). Three months later, mice treated with the combination of Aβ suppression and AAV1-mIL-6 showed significantly less plaque pathologic disorder than dox or AAV1-mIL-6 only groups. The combination of AAV1-mIL-6 + dox treatment lowered total plaque burden by >60% versus untreated controls. Treatment with either dox or AAV1-mIL-6 alone was less effective than the combination. Our results suggest a synergistic mechanism by which the up-regulation of mIL-6 was able to improve plaque clearance in the setting of Aβ suppression. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Brain Basics

    Medline Plus

    Full Text Available ... Imaging Using brain imaging technologies such as magnetic resonance imaging (MRI), which uses magnetic fields to take ... slow or stop them from progressing. Functional magnetic resonance imaging (fMRI) is another important research tool in ...

  11. Magnetic materials at finite temperatures: thermodynamics and combined spin and molecular dynamics derived from first principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Eisenbach, Markus [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Perera, Meewanage Dilina N. [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Landau, David P [Univ. of Georgia, Athens, GA (United States). Center for Simulational Physics; Nicholson, Don M. [Univ. of North Carolina, Asheville, NC (United States). Dept. of Physics; Yin, Junqi [Univ. of Tennessee, Knoxville, TN (United States). National Inst. for Computational Sciences; Brown, Greg [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    2015-01-01

    We present a unified approach to describe the combined behavior of the atomic and magnetic degrees of freedom in magnetic materials. Using Monte Carlo simulations directly combined with first principles the Curie temperature can be obtained ab initio in good agreement with experimental values. The large scale constrained first principles calculations have been used to construct effective potentials for both the atomic and magnetic degrees of freedom that allow the unified study of influence of phonon-magnon coupling on the thermodynamics and dynamics of magnetic systems. The MC calculations predict the specific heat of iron in near perfect agreement with experimental results from 300K to above Tc and allow the identification of the importance of the magnon-phonon interaction at the phase-transition. Further Molecular Dynamics and Spin Dynamics calculations elucidate the dynamics of this coupling and open the potential for quantitative and predictive descriptions of dynamic structure factors in magnetic materials using first principles-derived simulations.

  12. Combined Conformal Strongly-Coupled Magnetic Resonance for Efficient Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Matjaz Rozman

    2017-04-01

    Full Text Available This paper proposes a hybrid circuit between a conformal strongly-coupled magnetic resonance (CSCMR and a strongly-coupled magnetic resonance (SCMR, for better wireless power transmission (WPT. This combination promises to enhance the flexibility of the proposed four-loop WPT system. The maximum efficiency at various distances is achieved by combining coupling-matching between the source and transmitting coils along with the coupling factor between the transmitting and receiving coils. Furthermore, the distance between transmitting and receiving coils is investigated along with the distance relationship between the source loop and transmission coil, in order to achieve the maximum efficiency of the proposed hybrid WPT system. The results indicate that the proposed approach can be effectively employed at distances comparatively smaller than the maximum distance without frequency matching. The achievable efficiency can be as high as 84% for the whole working range of the transmitter. In addition, the proposed hybrid system allows more spatial freedom compared to existing chargers.

  13. Effect of combined treadmill training and magnetic stimulation on spasticity and gait impairments after cervical spinal cord injury.

    Science.gov (United States)

    Hou, Jiamei; Nelson, Rachel; Nissim, Nicole; Parmer, Ronald; Thompson, Floyd J; Bose, Prodip

    2014-06-15

    Spasticity and gait impairments are two common disabilities after cervical spinal cord injury (C-SCI). In this study, we tested the therapeutic effects of early treadmill locomotor training (Tm) initiated at postoperative (PO) day 8 and continued for 6 weeks with injury site transcranial magnetic stimulation (TMSsc) on spasticity and gait impairments after low C6/7 moderate contusion C-SCI in a rat model. The combined treatment group (Tm+TMSsc) showed the most robust decreases in velocity-dependent ankle torques and triceps surae electromyography burst amplitudes that were time locked to the initial phase of lengthening, as well as the most improvement in limb coordination quantitated using three-dimensional kinematics and CatWalk gait analyses, compared to the control or single-treatment groups. These significant treatment-associated decreases in measures of spasticity and gait impairment were also accompanied by marked treatment-associated up-regulation of dopamine beta-hydroxylase, glutamic acid decarboxylase 67, gamma-aminobutyric acid B receptor, and brain-derived neurotrophic factor in the lumbar spinal cord (SC) segments of the treatment groups, compared to tissues from the C-SCI nontreated animals. We propose that the treatment-induced up-regulation of these systems enhanced the adaptive plasticity in the SC, in part through enhanced expression of pre- and postsynaptic reflex regulatory processes. Further, we propose that locomotor exercise in the setting of C-SCI may decrease aspects of the spontaneous maladaptive segmental and descending plasticity. Accordingly, TMSsc treatment is characterized as an adjuvant stimulation that may further enhance this capacity. These data are the first to suggest that a combination of Tm and TMSsc across the injury site can be an effective treatment modality for C-SCI-induced spasticity and gait impairments and provided a pre-clinical demonstration for feasibility and efficacy of early TMSsc intervention after C-SCI.

  14. Silicon transport under rotating and combined magnetic fields in liquid phase diffusion growth of SiGe

    Energy Technology Data Exchange (ETDEWEB)

    Armour, N.; Dost, S. [Crystal Growth Laboratory, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2010-04-15

    The effect of applied rotating and combined (rotating and static) magnetic fields on silicon transport during the liquid phase diffusion growth of SiGe was experimentally studied. 72-hour growth periods produced some single crystal sections. Single and polycrystalline sections of the processed samples were examined for silicon composition. Results show that the application of a rotating magnetic field enhances silicon transport in the melt. It also has a slight positive effect on flattening the initial growth interface. For comparison, growth experiments were also conducted under combined (rotating and static) magnetic fields. The processed samples revealed that the addition of static field altered the thermal characteristics of the system significantly and led to a complete melt back of the germanium seed. Silicon transport in the melt was also enhanced under combined fields compared with experiments with no magnetic field. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    Science.gov (United States)

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  16. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation.

    Directory of Open Access Journals (Sweden)

    Navjot Shah

    Full Text Available Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays.We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach.Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.

  17. Two critical brain networks for generation and combination of remote associations.

    Science.gov (United States)

    Bendetowicz, David; Urbanski, Marika; Garcin, Béatrice; Foulon, Chris; Levy, Richard; Bréchemier, Marie-Laure; Rosso, Charlotte; Thiebaut de Schotten, Michel; Volle, Emmanuelle

    2018-01-01

    Recent functional imaging findings in humans indicate that creativity relies on spontaneous and controlled processes, possibly supported by the default mode and the fronto-parietal control networks, respectively. Here, we examined the ability to generate and combine remote semantic associations, in relation to creative abilities, in patients with focal frontal lesions. Voxel-based lesion-deficit mapping, disconnection-deficit mapping and network-based lesion-deficit approaches revealed critical prefrontal nodes and connections for distinct mechanisms related to creative cognition. Damage to the right medial prefrontal region, or its potential disrupting effect on the default mode network, affected the ability to generate remote ideas, likely by altering the organization of semantic associations. Damage to the left rostrolateral prefrontal region and its connections, or its potential disrupting effect on the left fronto-parietal control network, spared the ability to generate remote ideas but impaired the ability to appropriately combine remote ideas. Hence, the current findings suggest that damage to specific nodes within the default mode and fronto-parietal control networks led to a critical loss of verbal creative abilities by altering distinct cognitive mechanisms. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation.

    Science.gov (United States)

    Shah, Navjot; Singh, Rumani; Sarangi, Upasana; Saxena, Nishant; Chaudhary, Anupama; Kaur, Gurcharan; Kaul, Sunil C; Wadhwa, Renu

    2015-01-01

    Ashwagandha, a traditional Indian herb, has been known for its variety of therapeutic activities. We earlier demonstrated anticancer activities in the alcoholic and water extracts of the leaves that were mediated by activation of tumor suppressor functions and oxidative stress in cancer cells. Low doses of these extracts were shown to possess neuroprotective activities in vitro and in vivo assays. We used cultured glioblastoma and neuroblastoma cells to examine the effect of extracts (alcoholic and water) as well as their bioactive components for neuroprotective activities against oxidative stress. Various biochemical and imaging assays on the marker proteins of glial and neuronal cells were performed along with their survival profiles in control, stressed and recovered conditions. We found that the extracts and one of the purified components, withanone, when used at a low dose, protected the glial and neuronal cells from oxidative as well as glutamate insult, and induced their differentiation per se. Furthermore, the combinations of extracts and active component were highly potent endorsing the therapeutic merit of the combinational approach. Ashwagandha leaf derived bioactive compounds have neuroprotective potential and may serve as supplement for brain health.

  19. A Combined Intensity and Gradient-Based Similarity Criterion for Interindividual SPECT Brain Scan Registration

    Directory of Open Access Journals (Sweden)

    Bengtsson Ewert

    2003-01-01

    Full Text Available An evaluation of a new similarity criterion for interindividual image registration is presented. The proposed criterion combines intensity and gradient information from the images to achieve a more robust and accurate registration. It builds on a combination of the normalised mutual information (NMI cost function and a gradient-weighting function, calculated from gradient magnitude and relative gradient angle values from the images. An investigation was made to determine the best settings for the number of bins in the NMI joint histograms, subsampling, and smoothing of the images prior to the registration. The new method was compared with the NMI and correlation-coefficient (CC criterions for interindividual SPECT image registration. Two different validation tests were performed, based on the displacement of voxels inside the brain relative to their estimated true positions after registration. The results show that the registration quality was improved when compared with the NMI and CC measures. The actual improvements, in one of the tests, were in the order of 30-40% for the mean voxel displacement error measured within 20 different SPECT images. A conclusion from the studies is that the new similarity measure significantly improves the registration quality, compared with the NMI and CC similarity measures.

  20. Music-induced emotions can be predicted from a combination of brain activity and acoustic features.

    Science.gov (United States)

    Daly, Ian; Williams, Duncan; Hallowell, James; Hwang, Faustina; Kirke, Alexis; Malik, Asad; Weaver, James; Miranda, Eduardo; Nasuto, Slawomir J

    2015-12-01

    It is widely acknowledged that music can communicate and induce a wide range of emotions in the listener. However, music is a highly-complex audio signal composed of a wide range of complex time- and frequency-varying components. Additionally, music-induced emotions are known to differ greatly between listeners. Therefore, it is not immediately clear what emotions will be induced in a given individual by a piece of music. We attempt to predict the music-induced emotional response in a listener by measuring the activity in the listeners electroencephalogram (EEG). We combine these measures with acoustic descriptors of the music, an approach that allows us to consider music as a complex set of time-varying acoustic features, independently of any specific music theory. Regression models are found which allow us to predict the music-induced emotions of our participants with a correlation between the actual and predicted responses of up to r=0.234,pmusic induced emotions can be predicted by their neural activity and the properties of the music. Given the large amount of noise, non-stationarity, and non-linearity in both EEG and music, this is an encouraging result. Additionally, the combination of measures of brain activity and acoustic features describing the music played to our participants allows us to predict music-induced emotions with significantly higher accuracies than either feature type alone (p<0.01). Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Brain and arterial abnormalities following prenatal X-ray irradiation in mice assessed by magnetic resonance imaging and angiography.

    Science.gov (United States)

    Saito, Shigeyoshi; Sawada, Kazuhiko; Mori, Yuki; Yoshioka, Yoshichika; Murase, Kenya

    2015-05-01

    The present study aimed to quantitatively characterize changes in the whole brain and arterial morphology in response to prenatal ionizing irradiation. Magnetic resonance imaging (MRI) and angiography (MRA) were used to evaluate brain and arterial abnormalities in 8-week-old male mice prenatally exposed to X-ray radiation at a dose of 0.5 or 1.0 Gy on embryonic day (E) 13. Irradiated mice demonstrated decreased brain volume, increased ventricular volume, and arterial malformation. Additionally, MRA signal intensity and arterial thickness in the anterior cerebral artery, middle cerebral artery, and basilar artery were lower in radiation-exposed mice than in control mice. MRI and MRA are useful tools for assessing brain and arterial abnormalities after prenatal exposure to radiation. © 2014 Japanese Teratology Society.

  2. Fast Transverse Beam Instability Caused by Electron Cloud Trapped in Combined Function Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Antipov, Sergey [Univ. of Chicago, IL (United States)

    2017-03-01

    Electron cloud instabilities affect the performance of many circular high-intensity particle accelerators. They usually have a fast growth rate and might lead to an increase of the transverse emittance and beam loss. A peculiar example of such an instability is observed in the Fermilab Recycler proton storage ring. Although this instability might pose a challenge for future intensity upgrades, its nature had not been completely understood. The phenomena has been studied experimentally by comparing the dynamics of stable and unstable beam, numerically by simulating the build-up of the electron cloud and its interaction with the beam, and analytically by constructing a model of an electron cloud driven instability with the electrons trapped in combined function dipoles. Stabilization of the beam by a clearing bunch reveals that the instability is caused by the electron cloud, trapped in beam optics magnets. Measurements of microwave propagation confirm the presence of the cloud in the combined function dipoles. Numerical simulations show that up to 10$^{-2}$ of the particles can be trapped by their magnetic field. Since the process of electron cloud build-up is exponential, once trapped this amount of electrons significantly increases the density of the cloud on the next revolution. In a combined function dipole this multi-turn accumulation allows the electron cloud reaching final intensities orders of magnitude greater than in a pure dipole. The estimated fast instability growth rate of about 30 revolutions and low mode frequency of 0.4 MHz are consistent with experimental observations and agree with the simulations. The created instability model allows investigating the beam stability for the future intensity upgrades.

  3. Synergetic responses after administration of interleukin-2 and Interferon-alpha combined with gamma knife radiosurgery in a patient with multiple lung and brain metastases: a case report

    National Research Council Canada - National Science Library

    Takada, Toshihiko; Yamada, Yoshiteru; Uno, Masahiro; Komeda, Hisao; Fujimoto, Yoshinori

    2005-01-01

    ...). Initially, Interferon-alpha (IFN-alpha) therapy was started for lung metastases. About 40 days after surgery, head magnetic resonance imaging revealed brain metastases, and therefore gamma knife radiosurgery(GKS) was performed...

  4. Combined therapy of iron chelator and antioxidant completely restores brain dysfunction induced by iron toxicity

    National Research Council Canada - National Science Library

    Sripetchwandee, Jirapas; Pipatpiboon, Noppamas; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2014-01-01

    .... We investigated the effects of iron overload induced by high iron-diet consumption on brain mitochondrial function, brain synaptic plasticity and learning and memory. Iron chelator (deferiprone) and antioxidant (n-acetyl cysteine...

  5. Localized stimulation of the human brain and spinal cord by a pair of opposing pulsed magnetic fields

    Science.gov (United States)

    Ueno, S.; Matsuda, T.; Hiwaki, O.

    1990-05-01

    A method of localized stimulation of the human brain and spinal cord is proposed. The basic idea is to concentrate induced eddy currents locally in the vicinity of a target by a pair of opposing pulsed magnetic fields. A pair of coils are positioned outside the head in the opposite directions around a target. The eddy currents induced at the target are expected to flow together, which results in an increased current flow at the target. A figure-eight coil is designed, and the magnetic brain stimulation is carried out using ourselves as volunteers. The results show that the selective stimulation of the brain is realized with a 5-mm resolution. The functional mapping of the human motor cortex related to the hand, arm, and foot areas is obtained. It is also obtained that an optimum direction of stimulating currents for neural excitation exists in each functional area in the cortex. Magnetic stimulation of the spinal cord is carried out by the same method as used in the brain stimulation. Rabbits are used in the experiments. A figure-eight coil is positioned on the surface of the spine. Shifting the stimulating points on the spine, electromyographic (EMG) signals are recorded from limb muscles. The EMG signals are clearly responding to the stimulation at a segment which innervates limb muscles, whereas no EMG signals are obtained by stimulation of segments higher than the critical segment. It is also obtained that the amplitude of the EMG signals varies with the direction of stimulating currents.

  6. Enhanced therapeutic agent delivery through magnetic resonance imaging-monitored focused ultrasound blood-brain barrier disruption for brain tumor treatment: an overview of the current preclinical status.

    Science.gov (United States)

    Liu, Hao-Li; Yang, Hung-Wei; Hua, Mu-Yi; Wei, Kuo-Chen

    2012-01-01

    Malignant glioma is a severe primary CNS cancer with a high recurrence and mortality rate. The current strategy of surgical debulking combined with radiation therapy or chemotherapy does not provide good prognosis, tumor progression control, or improved patient survival. The blood-brain barrier (BBB) acts as a major obstacle to chemotherapeutic treatment of brain tumors by severely restricting drug delivery into the brain. Because of their high toxicity, chemotherapeutic drugs cannot be administered at sufficient concentrations by conventional delivery methods to significantly improve long-term survival of patients with brain tumors. Temporal disruption of the BBB by microbubble-enhanced focused ultrasound (FUS) exposure can increase CNS-blood permeability, providing a promising new direction to increase the concentration of therapeutic agents in the brain tumor and improve disease control. Under the guidance and monitoring of MR imaging, a brain drug-delivery platform can be developed to control and monitor therapeutic agent distribution and kinetics. The success of FUS BBB disruption in delivering a variety of therapeutic molecules into brain tumors has recently been demonstrated in an animal model. In this paper the authors review a number of critical studies that have demonstrated successful outcomes, including enhancement of the delivery of traditional clinically used chemotherapeutic agents or application of novel nanocarrier designs for actively transporting drugs or extending drug half-lives to significantly improve treatment efficacy in preclinical animal models.

  7. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    Energy Technology Data Exchange (ETDEWEB)

    Paula, Leonardo B. de [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14049-900 (Brazil); Primo, Fernando L. [Departamento de Química, Centro de Nanotecnologia e Engenharia Tecidual, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Nanophoton Company, SUPERA Innovation and Technology Park, Av. Doutora Nadir de Aguiar, 1805, Universidade de São Paulo, Ribeirão Preto, P 14056-680 (Brazil); Pinto, Marcelo R. [Departamento de Química, Laboratório de Enzimologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901 (Brazil); Morais, Paulo C. [Instituto de Física, Universidade de Brasília, Brasília, DF 70910-900 (Brazil); School of Automation, Huazhong University of Science and Technology, Wuhan 430074 (China); and others

    2015-04-15

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×10{sup 13} or 1.50×10{sup 13} particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×10{sup 13} or 1.50×10{sup 13} magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments. - Highlights: • Current protocols in nanotechnology allow for biocompatible magnetic nanoparticles being associated with photosensitizer photoactive drugs, which could lead to perfectly controlled drug release. • The combination of the HPT and PDT therapies can be useful to develop further protocols for both advanced in vitro and in vivo assays. • Magnetic nanodevices associated with therapies have led to the decreased of proliferation of cell population that provides a favorable environment for tumor progression.

  8. Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion

    Science.gov (United States)

    de Paula, Leonardo B.; Primo, Fernando L.; Pinto, Marcelo R.; Morais, Paulo C.; Tedesco, Antonio C.

    2015-04-01

    The present study reports on the preparation and the cell viability assay of two nanoemulsions loaded with magnetic nanoparticle and chloroaluminum phthalocyanine. The preparations contain equal amount of chloroaluminum phthalocyanine (0.05 mg/mL) but different contents of magnetic nanoparticle (0.15×1013 or 1.50×1013 particle/mL). The human bone marrow mesenchymal stem cell line was used as the model to assess the cell viability and this type of cell can be used as a model to mimic cancer stem cells. The cell viability assays were performed in isolated as well as under combined magnetic hyperthermia and photodynamic therapy treatments. We found from the cell viability assay that under the hyperthermia treatment (1 MHz and 40 Oe magnetic field amplitude) the cell viability reduction was about 10%, regardless the magnetic nanoparticle content within the magnetic nanoparticle/chloroaluminum phthalocyanine formulation. However, cell viability reduction of about 50% and 60% were found while applying the photodynamic therapy treatment using the magnetic nanoparticle/chloroaluminum phthalocyanine formulation containing 0.15×1013 or 1.50×1013 magnetic particle/mL, respectively. Finally, an average reduction in cell viability of about 66% was found while combining the hyperthermia and photodynamic therapy treatments.

  9. Brain Stimulation Therapies

    Science.gov (United States)

    ... Magnetic Seizure Therapy Deep Brain Stimulation Additional Resources Brain Stimulation Therapies Overview Brain stimulation therapies can play ... for a shorter recovery time than ECT Deep Brain Stimulation Deep brain stimulation (DBS) was first developed ...

  10. Nonhemorrhagic brain lesions detected by magnetic resonance imaging in closed head injured patients

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Yoshihiro; Hiraide, Atsushi; Yoshioka, Toshiji; Sugimoto, Tadashi (Osaka University Hospital, Osaka (Japan)); Ichimura, Teruhisa; Saito, Akira; Ohno, Yoshioki

    1990-05-01

    This study evaluated the diagnostic usefulness of magnetic resonance imaging (MRI) in 83 closed head injured patients in whom CT failed to detect focal intra or extraaxial hematoma and/or apparent brain contusion. The patients were divided into three groups on the basis of unconsciousness duration: Group 1 comprised 50 patients diagnosed as having classical cerebral concussion; group 2 comprised 19 patients who presented to the hospital with 6-hr unconsciousness and was recovered within a week; and group 3 comprised 14 patients whose unconsciousness persisted for a week or more. There was no CT evidence of abnormal findings for group 1; and intraventricular hemorrhage and subarachnoid hemorrhage were visualized on CT in 26% and 16%, respectively, for group 2 and 71% and 14% for group 3. Intraaxial nonhemorrhagic lesions were detected on T2-weighted MRI. According to high signal intensity, diffuse axonal injury and cortical contusion could be distinguished; i.e., in the former the corpus callosum, basal ganglia, or brain stem showed a high signal intensity, and in the latter the frontal, temporal, or parietal lobe adjacent to the skull showed a low signal intensity. T2-weighted MRI revealed cortical contusion in 6% for group 1, 37% for group 2, and 14% for group 3; and diffuse axonal injury in 42% for group 2 and 79% for group 3. For 62 patients with normal CT findings, diffuse axonal injury was detected in 88%. There was a good correlation between intraventricular hemorrhage on CT and diffuse axonal injury on MRI. In conclusion, T2-weighted MRI was significantly superior to CT in detecting nonhemorrhagic lesions, and it was of great help for predicting neurologic recovery in closed head injured patients without apparent focal lesions on CT. (N.K.).

  11. Functional Magnetic Resonance Imaging for Preoperative Planning in Brain Tumour Surgery.

    Science.gov (United States)

    Lau, Jonathan C; Kosteniuk, Suzanne E; Bihari, Frank; Megyesi, Joseph F

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is being increasingly used for the preoperative evaluation of patients with brain tumours. The study is a retrospective chart review investigating the use of clinical fMRI from 2002 through 2013 in the preoperative evaluation of brain tumour patients. Baseline demographic and clinical data were collected. The specific fMRI protocols used for each patient were recorded. Sixty patients were identified over the 12-year period. The tumour types most commonly investigated were high-grade glioma (World Health Organization grade III or IV), low-grade glioma (World Health Organization grade II), and meningioma. Most common presenting symptoms were seizures (69.6%), language deficits (23.2%), and headache (19.6%). There was a predominance of left hemispheric lesions investigated with fMRI (76.8% vs 23.2% for right). The most commonly involved lobes were frontal (64.3%), temporal (33.9%), parietal (21.4%), and insular (7.1%). The most common fMRI paradigms were language (83.9%), motor (75.0%), sensory (16.1%), and memory (10.7%). The majority of patients ultimately underwent a craniotomy (75.0%), whereas smaller groups underwent stereotactic biopsy (8.9%) and nonsurgical management (16.1%). Time from request for fMRI to actual fMRI acquisition was 3.1±2.3 weeks. Time from fMRI acquisition to intervention was 4.9±5.5 weeks. We have characterized patient demographics in a retrospective single-surgeon cohort undergoing preoperative clinical fMRI at a Canadian centre. Our experience suggests an acceptable wait time from scan request to scan completion/analysis and from scan to intervention.

  12. Local texture descriptors for the assessment of differences in diffusion magnetic resonance imaging of the brain.

    Science.gov (United States)

    Thomsen, Felix Sebastian Leo; Delrieux, Claudio Augusto; de Luis-García, Rodrigo

    2017-03-01

    Descriptors extracted from magnetic resonance imaging (MRI) of the brain can be employed to locate and characterize a wide range of pathologies. Scalar measures are typically derived within a single-voxel unit, but neighborhood-based texture measures can also be applied. In this work, we propose a new set of descriptors to compute local texture characteristics from scalar measures of diffusion tensor imaging (DTI), such as mean and radial diffusivity, and fractional anisotropy. We employ weighted rotational invariant local operators, namely standard deviation, inter-quartile range, coefficient of variation, quartile coefficient of variation and skewness. Sensitivity and specificity of those texture descriptors were analyzed with tract-based spatial statistics of the white matter on a diffusion MRI group study of elderly healthy controls, patients with mild cognitive impairment (MCI), and mild or moderate Alzheimer's disease (AD). In addition, robustness against noise has been assessed with a realistic diffusion-weighted imaging phantom and the contamination of the local neighborhood with gray matter has been measured. The new texture operators showed an increased ability for finding formerly undetected differences between groups compared to conventional DTI methods. In particular, the coefficient of variation, quartile coefficient of variation, standard deviation and inter-quartile range of the mean and radial diffusivity detected significant differences even between previously not significantly discernible groups, such as MCI versus moderate AD and mild versus moderate AD. The analysis provided evidence of low contamination of the local neighborhood with gray matter and high robustness against noise. The local operators applied here enhance the identification and localization of areas of the brain where cognitive impairment takes place and thus indicate them as promising extensions in diffusion MRI group studies.

  13. Microwave and magnetic (M2 proteomics of a mouse model of mild traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Teresa M. Evans

    2014-06-01

    Full Text Available Short-term increases in oxidative stress and decreases in motor function, including debilitating effects on balance and motor control, can occur following primary mild traumatic brain injuries (mTBI. However, the long-term effects on motor unit impairment and integrity as well as the molecular mechanisms underlying secondary injuries are poorly understood. We hypothesized that changes in central nervous system-specific protein (CSP expression might correlate to these long-term effects. To test our hypothesis, we longitudinally assessed a closed-skull mTBI mouse model, vs. sham control, at 1, 7, 30, and 120 days post-injury. Motor impairment was determined by rotarod and grip strength performance measures, while motor unit integrity was determined using electromyography. Relative protein expression was determined by microwave and magnetic (M2 proteomics of ipsilateral brain tissue, as previously described. Isoprostane measurements were performed to confirm a primary oxidative stress response. Decoding the relative expression of 476 ± 56 top-ranked proteins for each specimen revealed statistically significant changes in the expression of two well-known CSPs at 1, 7 and 30 days post-injury: P < 0.001 for myelin basic protein (MBP and p < 0.05 for myelin associated glycoprotein (MAG. This was confirmed by Western blot. Moreover, MAG, αII-spectrin (SPNA2 and neurofilament light (NEFL expression at 30 days post-injury were directly related to grip strength (p < 0.05. While higher-powered studies of larger cohorts merit further investigation, this study supports the proof-of-concept that M2 proteomics is a rapid method to quantify putative protein biomarkers and therapeutic targets of mTBI and suggests the feasibility of CSP expression correlations to long-term effects on motor impairment.

  14. MAGNETIC RESONANCE WATER SELF-DIFFUSION TENSOR ENCODING OPTIMIZATION METHODS FOR FULL BRAIN ACQUISITION

    Directory of Open Access Journals (Sweden)

    Khader M Hasan

    2011-05-01

    Full Text Available Water diffusion tensor magnetic resonance imaging (DT-MRI is a non-invasive and sensitive modality that is becoming increasingly popular in diagnostic radiology. DT-MRI provides in vivo directional information about the organization and microdynamics of deep brain tissue that is not available by other MRI relaxationbased methods. The DT-MRI experiment involves a host of imaging and diffusion parameters that influence the efficiency (signal-to-noise ratio per unit time, accuracy, and specificity of the information sought. These parameters may include typical imaging parameters such as TE, TR, slice thickness, sampling rate, etc. The DTI relevant parameter space includes pulse duration, separation, direction, number of directions (Ne, order, sign and strength of the diffusion encoding gradient pulses. The goal of this work is to present and compare different tensor encoding strategies used to obtain the DT-MRI information for the whole brain. In this paper an evaluation of tensor encoding advantage is presented using a multi-dimensional non-parametric Bootstrap resampling method. This work also explores the relationship between different tensor encoding schemes using the analytical encoding approach. This work shows that the minimum energy optimization approach can produce uniformly distributed tensor encoding that are comparable to the icosahedral sets. The minimum condition encoding sets are not uniformly distributed and are shown to be suboptimal and related to a commonly used heuristic tensor encoding set. This work shows that the icosahedral set is the only uniformly distributed set with Ne = 6. At equal imaging time, the Bootstrap experiments show that optimal tensor encoding sets can have 6 < Ne < 24.

  15. Brain SPECT guided repetitive transcranial magnetic stimulation (rTMS) in treatment resistant major depressive disorder.

    Science.gov (United States)

    Jha, Shailesh; Chadda, Rakesh K; Kumar, Nand; Bal, C S

    2016-06-01

    Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential treatment in treatment resistant major depressive disorder (MDD). However, there is no consensus about the exact site of stimulation for rTMS. Single-photon emission computed tomography (SPECT) offers a potential technique in deciding the site of stimulation. The present study was conducted to assess the difference in outcome of brain SPECT assisted rTMS versus standard protocol of twenty sessions of high frequency rTMS as add on treatment in 20 patients with treatment resistant MDD, given over a period of 4 weeks. Thirteen subjects (group I) received high frequency rTMS over an area of hypoperfusion in the prefrontal cortex, as identified on SPECT, whereas 7 subjects (group II) were administered rTMS in the left dorsoslateral prefrontal cortex (DLPFC) area. Improvement was monitored using standardized instruments. Patients in the group I showed a significantly better response compared to those in the group II. In group I, 46% of the subjects were responders on MADRS, 38% on BDI and 77% on CGI. The parallel figures of responders in Group II were 0% on MADRS, 14% on BDI and 43% on CGI. There were no remitters in the study. No significant untoward side effects were noticed. The study had limitations of a small sample size and non-controlled design, and all the subjects were also receiving the standard antidepressant therapy. Administration of rTMS over brain SPECT specified area of hypoperfusion may have a better clinical outcome compared to the standard protocol. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Late-Onset Neurodegeneration with Brain Iron Accumulation with Diffusion Tensor Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Syed Omar Shah

    2012-12-01

    Full Text Available Introduction: Neuroferritinopathy is an autosomal dominant neurodegenerative disorder that includes a movement disorder, cognitive decline, and characteristic findings on brain magnetic resonance imaging (MRI due to abnormal iron deposition. Here, we present a late-onset case, along with diffusion tensor imaging (DTI. Case Presentation: We report the case of a 74-year-old Caucasian female with no significant past medical history who presented for evaluation of orofacial dyskinesia, suspected to be edentulous dyskinesia given her history of ill-fitting dentures. She had also developed slowly progressive dysarthria, dysphagia, visual hallucinations as well as stereotypic movements of her hands and feet. Results: The eye-of-the-tiger sign was demonstrated on T2 MRI. Increased fractional anisotropy and T2 hypointensity were observed in the periphery of the globus pallidus, putamen, substantia nigra, and dentate nucleus. T2 hyperintensity was present in the medial dentate nucleus and central globus pallidus. Discussion: The pallidal MRI findings were more typical of pantothenate kinase-associated neurodegeneration (PKAN, but given additional dentate and putamenal involvement, lack of retinopathy, and advanced age of onset, PKAN was less likely. Although the patient’s ferritin levels were within low normal range, her clinical and imaging features led to a diagnosis of neuroferritinopathy. Conclusion: Neurodegeneration with brain iron accumulation (NBIA is a rare cause of orofacial dyskinesia. DTI MRI can confirm abnormal iron deposition. The location of abnormal iron deposits helps in differentiating NBIA subtypes. Degeneration of the dentate and globus pallidus may occur via an analogous process given their similar T2 and DTI MRI appearance.

  17. Love-related changes in the brain: a resting-state functional magnetic resonance imaging study

    Science.gov (United States)

    Song, Hongwen; Zou, Zhiling; Kou, Juan; Liu, Yang; Yang, Lizhuang; Zilverstand, Anna; d’Oleire Uquillas, Federico; Zhang, Xiaochu

    2015-01-01

    Romantic love is a motivational state associated with a desire to enter or maintain a close relationship with a specific other person. Functional magnetic resonance imaging (fMRI) studies have found activation increases in brain regions involved in the processing of reward, motivation and emotion regulation, when romantic lovers view photographs of their partners. However, not much is known about whether romantic love affects the brain’s functional architecture during rest. In the present study, resting state functional magnetic resonance imaging (rsfMRI) data was collected to compare the regional homogeneity (ReHo) and functional connectivity (FC) across an “in-love” group (LG, N = 34, currently intensely in love), an “ended-love” group (ELG, N = 34, ended romantic relationship recently), and a “single” group (SG, N = 32, never fallen in love). Results show that: (1) ReHo of the left dorsal anterior cingulate cortex (dACC) was significantly increased in the LG (in comparison to the ELG and the SG); (2) ReHo of the left dACC was positively correlated with length of time in love in the LG, and negatively correlated with the lovelorn duration since breakup in the ELG; (3) FC within the reward, motivation, and emotion regulation network (dACC, insula, caudate, amygdala, and nucleus accumbens) as well as FC in the social cognition network [temporo-parietal junction (TPJ), posterior cingulate cortex (PCC), medial prefrontal cortex (MPFC), inferior parietal, precuneus, and temporal lobe] was significantly increased in the LG (in comparison to the ELG and SG); (4) in most regions within both networks FC was positively correlated with the duration of love in the LG but negatively correlated with the lovelorn duration of time since breakup in the ELG. This study provides first empirical evidence of love-related alterations in brain functional architecture. Furthermore, the results shed light on the underlying neural mechanisms of romantic love, and demonstrate

  18. In vivo magnetic resonance imaging and 31P spectroscopy of large human brain tumours at 1.5 tesla

    DEFF Research Database (Denmark)

    Thomsen, C; Jensen, K E; Achten, E

    1988-01-01

    31P MR spectroscopy of human brain tumours is one feature of magnetic resonance imaging. Eight patients with large superficial brain tumours and eight healthy volunteers were examined with 31P spectroscopy using an 8 cm surface coil for volume selection. Seven frequencies were resolved in our...... and after chemotherapy. The spectra showed considerable changes during chemotherapy. It is concluded that 31P spectroscopy using surface coils is of limited value for tumour characterization, but may add useful information in monitoring the effect of chemotherapy....

  19. Simvastatin Combined with Antioxidant Attenuates the Cerebral Vascular Endothelial Inflammatory Response in a Rat Traumatic Brain Injury

    Directory of Open Access Journals (Sweden)

    Kuo-Wei Wang

    2014-01-01

    Full Text Available Traumatic brain injury (TBI leads to important and deleterious neuroinflammation, as evidenced by indicators such as edema, cytokine production, induction of nitric oxide synthase, and leukocyte infiltration. After TBI, cerebral vascular endothelial cells play a crucial role in the pathogenesis of inflammation. In our previous study, we proved that simvastatin could attenuate cerebral vascular endothelial inflammatory response in a rat traumatic brain injury. This purpose of this study was to determine whether simvastatin combined with an antioxidant could produce the same effect or greater and to examine affected surrogate biomarkers for the neuroinflammation after traumatic brain injury in rat. In our study, cortical contusions were induced, and the effect of acute and continuous treatment of simvastatin and vitamin C on behavior and inflammation in adult rats following experimental TBI was evaluated. The results demonstrated that simvastatin combined with an antioxidant could provide neuroprotection and it may be attributed to a dampening of cerebral vascular endothelial inflammatory response.

  20. Combined magnetic vector-scalar potential finite element computation of 3D magnetic field and performance of modified Lundell alternators in Space Station applications. Ph.D. Thesis

    Science.gov (United States)

    Wang, Ren H.

    1991-01-01

    A method of combined use of magnetic vector potential (MVP) based finite element (FE) formulations and magnetic scalar potential (MSP) based FE formulations for computation of three-dimensional (3D) magnetostatic fields is developed. This combined MVP-MSP 3D-FE method leads to considerable reduction by nearly a factor of 3 in the number of unknowns in comparison to the number of unknowns which must be computed in global MVP based FE solutions. This method allows one to incorporate portions of iron cores sandwiched in between coils (conductors) in current-carrying regions. Thus, it greatly simplifies the geometries of current carrying regions (in comparison with the exclusive MSP based methods) in electric machinery applications. A unique feature of this approach is that the global MSP solution is single valued in nature, that is, no branch cut is needed. This is again a superiority over the exclusive MSP based methods. A Newton-Raphson procedure with a concept of an adaptive relaxation factor was developed and successfully used in solving the 3D-FE problem with magnetic material anisotropy and nonlinearity. Accordingly, this combined MVP-MSP 3D-FE method is most suited for solution of large scale global type magnetic field computations in rotating electric machinery with very complex magnetic circuit geometries, as well as nonlinear and anisotropic material properties.

  1. Metric to quantify white matter damage on brain magnetic resonance images

    Energy Technology Data Exchange (ETDEWEB)

    Valdes Hernandez, Maria del C.; Munoz Maniega, Susana; Anblagan, Devasuda; Bastin, Mark E.; Wardlaw, Joanna M. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Chappell, Francesca M.; Morris, Zoe; Sakka, Eleni [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); UK Dementia Research Institute, Edinburgh Dementia Research Centre, London (United Kingdom); Dickie, David Alexander; Royle, Natalie A. [University of Edinburgh, Department of Neuroimaging Sciences, Centre for Clinical Brain Sciences, Edinburgh (United Kingdom); University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); Armitage, Paul A. [University of Sheffield, Department of Cardiovascular Sciences, Sheffield (United Kingdom); Deary, Ian J. [University of Edinburgh, Centre for Cognitive Ageing and Cognitive Epidemiology, Edinburgh (United Kingdom); University of Edinburgh, Department of Psychology, Edinburgh (United Kingdom)

    2017-10-15

    Quantitative assessment of white matter hyperintensities (WMH) on structural Magnetic Resonance Imaging (MRI) is challenging. It is important to harmonise results from different software tools considering not only the volume but also the signal intensity. Here we propose and evaluate a metric of white matter (WM) damage that addresses this need. We obtained WMH and normal-appearing white matter (NAWM) volumes from brain structural MRI from community dwelling older individuals and stroke patients enrolled in three different studies, using two automatic methods followed by manual editing by two to four observers blind to each other. We calculated the average intensity values on brain structural fluid-attenuation inversion recovery (FLAIR) MRI for the NAWM and WMH. The white matter damage metric is calculated as the proportion of WMH in brain tissue weighted by the relative image contrast of the WMH-to-NAWM. The new metric was evaluated using tissue microstructure parameters and visual ratings of small vessel disease burden and WMH: Fazekas score for WMH burden and Prins scale for WMH change. The correlation between the WM damage metric and the visual rating scores (Spearman ρ > =0.74, p < 0.0001) was slightly stronger than between the latter and WMH volumes (Spearman ρ > =0.72, p < 0.0001). The repeatability of the WM damage metric was better than WM volume (average median difference between measurements 3.26% (IQR 2.76%) and 5.88% (IQR 5.32%) respectively). The follow-up WM damage was highly related to total Prins score even when adjusted for baseline WM damage (ANCOVA, p < 0.0001), which was not always the case for WMH volume, as total Prins was highly associated with the change in the intense WMH volume (p = 0.0079, increase of 4.42 ml per unit change in total Prins, 95%CI [1.17 7.67]), but not with the change in less-intense, subtle WMH, which determined the volumetric change. The new metric is practical and simple to calculate. It is robust to variations in

  2. EEG reactions of the human brain in the gradient magnetic field zone of the active geological fault (pilot study)

    Science.gov (United States)

    Pobachenko, S. V.; Shitov, A. V.; Grigorjev, P. E.; Sokolov, M. V.; Zubrilkin, A. I.; Vypiraylo, D. N.; Solovjev, A. V.

    2016-12-01

    This paper presents the results of experimental studies of the dynamics of the functional state of a person within the zone of an active geological fault characterized by abnormal spatial distribution of the magnetic- field vector values. It is shown that these geophysical modifications have a pronounced effect on the fluctuations of the electrical activity of the human brain. When the person gets into a zone with abnormal levels of gradient magnetic field in the absence of any subjective sensations, a nonspecific orientation activation reaction is observed, which is characterized by a significant increase in the levels of peak performance in key functional EEG frequency bands.

  3. 5-HT(2C) antagonism blocks blood oxygen level-dependent pharmacological-challenge magnetic resonance imaging signal in rat brain areas related to feeding.

    Science.gov (United States)

    Stark, Jennifer A; McKie, Shane; Davies, Karen E; Williams, Steve R; Luckman, Simon M

    2008-01-01

    In this study, pharmacological-challenge magnetic resonance imaging was used to further characterize the central action of serotonin on feeding. In both feeding and pharmacological-challenge magnetic resonance imaging experiments, we combined 5-HT(1B/2C) agonist m-chlorophenylpiperazine (mCPP) challenge with pre-treatment with the selective 5-HT(1B) and 5-HT(2C) receptor antagonists, SB 224289 (2.5 mg/kg) and SB 242084 (2 mg/kg), respectively. Subcutaneous injection of mCPP (3 mg/kg) completely blocked fast-induced refeeding in freely behaving, non-anaesthetized male rats, an effect that was not modified by the 5-HT(1B) receptor antagonist but was partially reversed by the 5-HT(2C) receptor antagonist. mCPP alone induced both positive and negative blood oxygen level-dependent (BOLD) responses in the brains of anaesthetized rats, including in the limbic system and basal ganglia. Overall, the 5-HT(2C) antagonist SB 242084 reversed the effects elicited by mCPP, whereas the 5-HT(1B) antagonist SB 224289 had virtually no impact. SB 242084 eliminated BOLD signal in nuclei associated with the limbic system and diminished activation in basal ganglia. In addition, BOLD signal was returned to baseline levels in the cortical regions and cerebellum. These results suggest that mCPP may reduce food intake by acting specifically on brain circuits that are modulated by 5-HT(2C) receptors in the rat.

  4. Optimization of the magnetic labeling of human neural stem cells and MRI visualization in the hemiparkinsonian rat brain.

    Science.gov (United States)

    Ramos-Gómez, Milagros; Seiz, Emma G; Martínez-Serrano, Alberto

    2015-03-05

    Magnetic resonance imaging is the ideal modality for non-invasive in vivo cell tracking allowing for longitudinal studies over time. Cells labeled with superparamagnetic iron oxide nanoparticles have been shown to induce sufficient contrast for in vivo magnetic resonance imaging enabling the in vivo analysis of the final location of the transplanted cells. For magnetic nanoparticles to be useful, a high internalization efficiency of the particles is required without compromising cell function, as well as validation of the magnetic nanoparticles behaviour inside the cells. In this work, we report the development, optimization and validation of an efficient procedure to label human neural stem cells with commercial nanoparticles in the absence of transfection agents. Magnetic nanoparticles used here do not affect cell viability, cell morphology, cell differentiation or cell cycle dynamics. Moreover, human neural stem cells progeny labeled with magnetic nanoparticles are easily and non-invasively detected long time after transplantation in a rat model of Parkinson's disease (up to 5 months post-grafting) by magnetic resonance imaging. These findings support the use of commercial MNPs to track cells for short- and mid-term periods after transplantation for studies of brain cell replacement therapy. Nevertheless, long-term MR images should be interpreted with caution due to the possibility that some MNPs may be expelled from the transplanted cells and internalized by host microglial cells.

  5. [Utility of diffusion-weighted magnetic resonance imaging in severe focal traumatic brain injuries].

    Science.gov (United States)

    Prieto-Valderrey, F; Muñiz-Montes, J R; López-García, J A; Villegas-Del Ojo, J; Málaga-Gil, J; Galván-García, R

    2013-01-01

    To describe the apparent diffusion coefficient (ADC) in a series of severe traumatic brain injuries, their clinical and outcome features, and possible implications. A descriptive, observational case-series study was carried out. Patients with severe traumatic brain injuries (TBIs) admitted to the ICU were subjected to MRI study using a 1.5 T scanner. Diffusion-weighted images (DWMR) were obtained using the following echo-planar pulse sequence: TR 10000 ms, TE 126.9 ms, with b values 1000 s/mm2 in the three spatial dimensions. Combining the three sets of images, an isotropic image conforming a map of the mean ADCs was obtained. DWMR was performed in 23 patients with severe TBI admitted to the ICU between 2001 and 2004. In the MR images we selected 26 regions of interest (ROIs) where ADC was recorded. We observed a clear increase in diffusion in non-treated space-occupying lesions versus other types of injuries and the normal values. A poorer outcome was recorded in patients with lower ADC values. Mean ADC in the lesions was greater than the normal values and greater in contusions than in other types of injuries, as an expression of extracellular edema. ADCs were decreased in patients with a poor outcome, suggesting an association between ischemia and the patient prognosis. Copyright © 2011 Elsevier España, S.L. and SEMICYUC. All rights reserved.

  6. Three dimensional magnetic fields in extra high speed modified Lundell alternators computed by a combined vector-scalar magnetic potential finite element method

    Science.gov (United States)

    Demerdash, N. A.; Wang, R.; Secunde, R.

    1992-01-01

    A 3D finite element (FE) approach was developed and implemented for computation of global magnetic fields in a 14.3 kVA modified Lundell alternator. The essence of the new method is the combined use of magnetic vector and scalar potential formulations in 3D FEs. This approach makes it practical, using state of the art supercomputer resources, to globally analyze magnetic fields and operating performances of rotating machines which have truly 3D magnetic flux patterns. The 3D FE-computed fields and machine inductances as well as various machine performance simulations of the 14.3 kVA machine are presented in this paper and its two companion papers.

  7. Noninvasive brain stimulation in the study of the human visual system

    OpenAIRE

    Halko, Mark; Eldaief, Mark C.; Pascual-Leone, Alvaro

    2013-01-01

    There are currently two techniques to manipulate brain function non-invasively: transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). These brain stimulation techniques work to cause long-term change within the brain. We have been combining noninvasive brain stimulation with functional magnetic resonance imaging (fMRI) to investigate the plasticity of brain networks. When fMRI is used as an outcome measure, it is possible to identify the specificity of tD...

  8. Fast and robust multi-atlas segmentation of brain magnetic resonance images

    DEFF Research Database (Denmark)

    Lötjönen, Jyrki Mp; Wolz, Robin; Koikkalainen, Juha R

    2010-01-01

    We introduce an optimised pipeline for multi-atlas brain MRI segmentation. Both accuracy and speed of segmentation are considered. We study different similarity measures used in non-rigid registration. We show that intensity differences for intensity normalised images can be used instead...... of standard normalised mutual information in registration without compromising the accuracy but leading to threefold decrease in the computation time. We study and validate also different methods for atlas selection. Finally, we propose two new approaches for combining multi-atlas segmentation and intensity...... modelling based on segmentation using expectation maximisation (EM) and optimisation via graph cuts. The segmentation pipeline is evaluated with two data cohorts: IBSR data (N=18, six subcortial structures: thalamus, caudate, putamen, pallidum, hippocampus, amygdala) and ADNI data (N=60, hippocampus...

  9. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Science.gov (United States)

    Nielsen, Jared A; Zielinski, Brandon A; Ferguson, Michael A; Lainhart, Janet E; Anderson, Jeffrey S

    2013-01-01

    Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained" network strength

  10. An evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic resonance imaging.

    Directory of Open Access Journals (Sweden)

    Jared A Nielsen

    Full Text Available Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction and language regions (e.g., Broca Area and Wernicke Area, whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields. Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater "left-brained" or greater "right-brained

  11. Localized proton magnetic resonance spectroscopy of the brain differentiates the inborn metabolic encephalopathies in children

    Energy Technology Data Exchange (ETDEWEB)

    Chabrol, B.; Salvan, A.M.; Confort-Gouny, S.; Vion-Dury, J.; Cozzone, P.J. [Hopital de la Timone, 13 - Marseille (France)

    1995-09-01

    Localized brain proton magnetic resonance spectroscopy (MRS) has been performed using a STEAM (Stimulated echo-acquisition mode) method with a short-echo time (20ms) in 10 children suffering from different lysosomal diseases, 6 boys with X-linked adrenoleukodystrophy (X-ALD) and 5 healthy children. Metabolic data from localized spectra were processed by principal component analysis (PCA) of 7 metabolic variables recorded on the MR spectra. PCA allows to delineate different clusters corresponding to the 2 pathological groups which are separated from each other and from the control group. The position of each spectrum on the patient map correlates with the clinical data and to the evolution of the patients subjected to a follow-up. These results also confirm the metabolic features characterizing the pathologies of the lysosome (increase in inositol) and the peroxisome (increase in choline and free lipids). PCA constitutes an alternative to the classical statistical methods to analyze and compare metabolic modifications in small populations of patients and allows to identify the most critical parameters defining the organization of the pathological populations. This analysis clearly increases the discrimination among pathologies based on the metabolic profiles obtained by MRS. (author). 17 refs., 2 figs., 2 tabs.

  12. Asymptomatic Brain Lesions on Cranial Magnetic Resonance Imaging in Inflammatory Bowel Disease

    Science.gov (United States)

    Guleryuzlu, Yuksel; Uygur-Bayramicli, Oya; Ahishali, Emel; Dabak, Resat

    2013-01-01

    Background/Aims This study aimed to examine the frequency and type of asymptomatic neurological involvement in inflammatory bowel disease (IBD) using cranial magnetic resonance imaging (MRI). Methods Fifty-one IBD patients with no known neurological diseases or symptoms and 30 controls with unspecified headaches without neurological origins were included. Patients and controls underwent cranial MRI assessments for white matter lesions, sinusitis, otitis-mastoiditis, and other brain parenchymal findings. Results The frequencies of white matter lesions, other brainstem parenchymal lesions, and otitis-mastoiditis were similar in IBD patients and controls (p>0.05), whereas sinusitis was significantly more frequent in IBD patients (56.9% vs 33.3%, p=0.041). However, among those subjects with white matter lesions, the number of such lesions was significantly higher in IBD patients compared to controls (12.75±9.78 vs 3.20±2.90, p0.05 for all). Conclusions The incidence of white matter lesions seemed to be similar in IBD patients and normal healthy individuals, and the lesions detected did not pose any clinical significance. However, long-term clinical follow-up of the lesions is warranted. PMID:23560152

  13. Visualizing functional pathways in the human brain using correlation tensors and magnetic resonance imaging.

    Science.gov (United States)

    Ding, Zhaohua; Xu, Ran; Bailey, Stephen K; Wu, Tung-Lin; Morgan, Victoria L; Cutting, Laurie E; Anderson, Adam W; Gore, John C

    2016-01-01

    Functional magnetic resonance imaging usually detects changes in blood oxygenation level dependent (BOLD) signals from T2*-sensitive acquisitions, and is most effective in detecting activity in brain cortex which is irrigated by rich vasculature to meet high metabolic demands. We recently demonstrated that MRI signals from T2*-sensitive acquisitions in a resting state exhibit structure-specific temporal correlations along white matter tracts. In this report we validate our preliminary findings and introduce spatio-temporal functional correlation tensors to characterize the directional preferences of temporal correlations in MRI signals acquired at rest. The results bear a remarkable similarity to data obtained by diffusion tensor imaging but without any diffusion-encoding gradients. Just as in gray matter, temporal correlations in resting state signals may reflect intrinsic synchronizations of neural activity in white matter. Here we demonstrate that functional correlation tensors are able to visualize long range white matter tracts as well as short range sub-cortical fibers imaged at rest, and that evoked functional activities alter these structures and enhance the visualization of relevant neural circuitry. Furthermore, we explore the biophysical mechanisms underlying these phenomena by comparing pulse sequences, which suggest that white matter signal variations are consistent with hemodynamic (BOLD) changes associated with neural activity. These results suggest new ways to evaluate MRI signal changes within white matter. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Glioblastoma multiforme versus solitary supratentorial brain metastasis. Differentiation based on morphology and magnetic resonance signal characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, Martin H.; Wuestefeld, J.; Schaefer, M.L.; Wiener, E. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Diagnostische und Interventionelle Radiologie; Synowitz, M.; Lohkamp, L.N. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Neurochirurgie; Badakshi, H. [Charite - Universitaetsmedizin Berlin, Campus Virchow-Klinikum (Germany). Klinik fuer Strahlentherapie

    2013-03-15

    Purpose: To evaluate the diagnostic potential of a multi-factor analysis of morphometric parameters and magnetic resonance (MR) signal characteristics of a mass and peritumoral area to distinguish solitary supratentorial metastasis from glioblastoma multiforme (GBM). Materials and Methods: MR examinations of 51 patients with histologically proven GBM and 44 with a single supratentorial metastasis were evaluated. A large variety of morphologic criteria and MR signal characteristics in different sequences were analyzed. The data were subjected to logistic regression to investigate their ability to discriminate between GBM and cerebral metastasis. Receiver-operating characteristic (ROC) analysis was used to select an optimal cut-off point for prediction and to assess the predictive value in terms of sensitivity, specificity, and accuracy of the final model. Results: The logistic regression analysis revealed that the ratio of the maximum diameter of the peritumoral area measured on T2-weighted images (d T2) to the maximum diameter of the enhancing mass area (d T1, post-contrast) is the only useful criterion to distinguish single supratentorial brain metastasis from GBM with a lower ratio favoring GBM (accuracy 68 %, sensitivity 84 % and specificity 45 %). The cut-off point for the ratio d T2/d T1 post-contrast was calculated as 2.35. Conclusion: Measurement of maximum diameters of the peritumoral area in relation to the enhancing mass can be evaluated easily in the clinical routine to discriminate GBM from solitary supratentorial metastasis with an accuracy comparable to that of advanced MRI techniques. (orig.)

  15. Prediction of memory rehabilitation outcomes in traumatic brain injury by using functional magnetic resonance imaging.

    Science.gov (United States)

    Strangman, Gary E; O'Neil-Pirozzi, Therese M; Goldstein, Richard; Kelkar, Kalika; Katz, Douglas I; Burke, David; Rauch, Scott L; Savage, Cary R; Glenn, Mel B

    2008-05-01

    To evaluate the ability of functional magnetic resonance imaging (fMRI) measures collected from people with traumatic brain injury (TBI) to provide predictive value for rehabilitation outcomes over and above standard predictors. Prospective study. Academic medical center. Persons (N=54) with TBI greater than 1 year postinjury. A novel 12-session group rehabilitation program focusing on internal strategies to improve memory. The Hopkins Verbal Learning Test-Revised (HVLT-R) delayed recall score. fMRI measures were collected while participants performed a strategically directed word memorization task. Prediction models were multiple linear regressions with the following primary predictors of outcome: age, education, injury severity, preintervention HVLT-R, and task-related fMRI activation of the left dorsolateral and left ventrolateral prefrontal cortex (VLPFC). Baseline HVLT-R was a significant predictor of outcome (P=.007), as was injury severity (for severe vs mild, P=.049). We also found a significant quadratic (inverted-U) effect of fMRI in the VLPFC (P=.007). This study supports previous evidence that left prefrontal activity is related to strategic verbal learning, and the magnitude of this activation predicted success in response to cognitive memory rehabilitation strategies. Extreme under- or overactivation of VLPFC was associated with less successful learning after rehabilitation. Further study is necessary to clarify this relationship and to expand and optimize the possible uses of functional imaging to guide rehabilitation therapies.

  16. Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akio; Iwama, Toru [Gifu University School of Medicine, Department of Neurosurgery, Gifu City (Japan); Nakashima, Toshihiko; Okumura, Ayumi; Shinoda, Jun [Kizawa Memorial Hospital, Chubu Medical Center for Prolonged Traumatic Brain Dysfunction, Department of Neurosurgery, Minokamo (Japan); Kuwata, Kazuo [Gifu University School of Medicine, Department of Biochemistry and Biophysics, Gifu (Japan)

    2005-07-01

    The anterior cingulate cortex (ACC) plays a key role in cognition, motor function, and emotion processing. However, little is known about how traumatic brain injury (TBI) affects the ACC system. Our purpose was to compare, by functional magnetic resonance imaging (fMRI) studies, the patterns of cortical activation in patients with cognitive impairment after TBI and those of normal subjects. Cortical activation maps of 11 right-handed healthy control subjects and five TBI patients with cognitive impairment were recorded in response to a Stroop task during a block-designed fMRI experiment. Statistical parametric mapping (SPM99) was used for individual subjects and group analysis. In TBI patients and controls, cortical activation, found in similar regions of the frontal, occipital, and parietal lobes, resembled patterns of activation documented in previous neuroimaging studies of the Stroop task in healthy controls. However, the TBI patients showed a relative decrease in ACC activity compared with the controls. Cognitive impairment in TBI patients seems to be associated with alterations in functional cerebral activity, especially less activation of the ACC. These changes are probably the result of destruction of neural networks after diffuse axonal injury and may reflect cortical disinhibition attributable to disconnection or compensation for an inefficient cognitive process. (orig.)

  17. Abnormal baseline brain activity in bipolar depression: a resting state functional magnetic resonance imaging study.

    Science.gov (United States)

    Liu, Chun-Hong; Li, Feng; Li, Su-Fang; Wang, Yong-Jun; Tie, Chang-Le; Wu, Hai-Yan; Zhou, Zhen; Zhang, Dan; Dong, Jie; Yang, Zhi; Wang, Chuan-Yue

    2012-01-01

    We examined resting state brain activity in the depressive phase of bipolar disorder (BD) by measuring the amplitude of low-frequency fluctuations (ALFF) in the functional magnetic resonance imaging (fMRI) signal. Unlike functional connectivity, the ALFF approach reflects local properties in specific regions and provides direct information about impaired foci. Groups of 26 patients with BD depression and 26 gender-, age-, and education-matched healthy subjects participated in fMRI scans. We examined group differences in ALFF findings as well as correlations between clinical measurements and ALFF in the regions showing significant group differences. Our results showed that patients with BD depression had significantly increased ALFF in the left insula, the right caudate nucleus, the temporal gyrus, the bilateral inferior frontal gyrus, and the posterior lobe of the cerebellum. They also had decreased ALFF in the left postcentral gyrus, the left parahippocampal gyrus, and the cerebellum. Moderate negative correlations were found between the Hamilton Depression Rating Scale score and ALFF in the left insular cortex in the patient group. These results support a model of BD that involves dysfunction in the prefrontal-limbic networks and associated striatal systems. We also demonstrated the feasibility of ALFF as a technique to investigate persistent cerebral dysfunction in BD. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  18. Accuracy of Intraoperative Computed Tomography during Deep Brain Stimulation Procedures: Comparison with Postoperative Magnetic Resonance Imaging.

    Science.gov (United States)

    Bot, Maarten; van den Munckhof, Pepijn; Bakay, Roy; Stebbins, Glenn; Verhagen Metman, Leo

    2017-01-01

    To determine the accuracy of intraoperative computed tomography (iCT) in localizing deep brain stimulation (DBS) electrodes by comparing this modality with postoperative magnetic resonance imaging (MRI). Optimal lead placement is a critical factor for the outcome of DBS procedures and preferably confirmed during surgery. iCT offers 3-dimensional verification of both microelectrode and lead location during DBS surgery. However, accurate electrode representation on iCT has not been extensively studied. DBS surgery was performed using the Leksell stereotactic G frame. Stereotactic coordinates of 52 DBS leads were determined on both iCT and postoperative MRI and compared with intended final target coordinates. The resulting absolute differences in X (medial-lateral), Y (anterior-posterior), and Z (dorsal-ventral) coordinates (ΔX, ΔY, and ΔZ) for both modalities were then used to calculate the euclidean distance. Euclidean distances were 2.7 ± 1.1 and 2.5 ± 1.2 mm for MRI and iCT, respectively (p = 0.2). Postoperative MRI and iCT show equivalent DBS lead representation. Intraoperative localization of both microelectrode and DBS lead in stereotactic space enables direct adjustments. Verification of lead placement with postoperative MRI, considered to be the gold standard, is unnecessary. © 2017 The Author(s) Published by S. Karger AG, Basel.

  19. Brain Magnetic Resonance Imaging Does Not Contribute to the Diagnosis of Chronic Neuroborreliosis

    Energy Technology Data Exchange (ETDEWEB)

    Aalto, A.; Sjoewall, J.; Davidsson, L.; Forsberg, P.; Smedby, Oe. [Div. of Radiology, Dept. of Medicine and Care, and Div. of Infectious Diseases, Dept. of Molecular and Clinical Medicine, Linkoeping Univ., Linkoeping (Sweden)

    2007-09-15

    Background: Borrelia infections, especially chronic neuroborreliosis (NB), may cause considerable diagnostic problems. This diagnosis is based on symptoms and findings in the cerebrospinal fluid but is not always conclusive. Purpose: To evaluate brain magnetic resonance imaging (MRI) in chronic NB, to compare the findings with healthy controls, and to correlate MRI findings with disease duration. Material and Methods: Sixteen well-characterized patients with chronic NB and 16 matched controls were examined in a 1.5T scanner with a standard head coil. T1- (with and without gadolinium), T2-, and diffusion-weighted imaging plus fluid-attenuated inversion recovery (FLAIR) imaging were used. Results: White matter lesions and lesions in the basal ganglia were seen in 12 patients and 10 controls (no significant difference). Subependymal lesions were detected in patients down to the age of 25 and in the controls down to the age of 43. The number of lesions was correlated to age both in patients ( = 0.83, P<0.01) and in controls ( = 0.61, P<0.05), but not to the duration of disease. Most lesions were detected with FLAIR, but many also with T2-weighted imaging. Conclusion: A number of MRI findings were detected in patients with chronic NB, although the findings were unspecific when compared with matched controls and did not correlate with disease duration. However, subependymal lesions may constitute a potential finding in chronic NB.

  20. Incidental paranasal sinusitis on routine brain magnetic resonance scans: association with atherosclerosis.

    Science.gov (United States)

    Rosenthal, Peter A; Lundy, Katherine C; Massoglia, Dino P; Payne, Elizabeth H; Gilbert, Gregory; Gebregziabher, Mulugeta

    2016-12-01

    Incidental paranasal sinusitis (IPS) is common on imaging for non-sinusitis disorders, usually without symptoms or obstructive features, and possibly arising from periodontitis (PD). PD associations with atherosclerosis have been widely reported. We test if IPS may also be associated with atherosclerosis. IPS was scored retrospectively in a random sample of 180 magnetic resonance (MR) brain scans and compared with chart review for atherosclerosis (all subtypes), rhinosinusitis, and related factors (smoking, asthma, and relevant surgery). IPS was scored out of 30, from all sinuses, with maxillary sinuses weighted double volumetrically. Significant IPS (Sig IPS) was designated as 6 or more out of 30. Bivariate logistic regression was used to test for associations of Sig IPS to the clinical data, with multivariate analysis then testing for potential confounders. A total of 173 subjects were analyzed (7 exclusions). MR indications included suspected acute/prior stroke (22.0%). Sig IPS found in 20 (11.6%). Positive histories for atherosclerosis were cerebral, 57 (32.9%); coronary, 48 (27.7%); and peripheral arterial disease, 14 (8.1%). IPS ≥6 was strongly associated with cerebrovascular disease (odds ratio [OR] 6.0, p Sig IPS to cerebrovascular disease persisted (modified OR 5.2, p = 0.002). Significant incidental sinusitis, which is mostly subclinical sinusitis, is associated with cerebrovascular disease but not other atheroscleroses. This suggests possible common causation of both by PD. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  1. Longitudinal noninvasive magnetic resonance imaging of brain microhemorrhages in BACE inhibitor-treated APP transgenic mice.

    Science.gov (United States)

    Beckmann, Nicolau; Doelemeyer, Arno; Zurbruegg, Stefan; Bigot, Karine; Theil, Diethilde; Frieauff, Wilfried; Kolly, Carine; Moulin, Pierre; Neddermann, Daniel; Kreutzer, Robert; Perrot, Ludovic; Brzak, Irena; Jacobson, Laura H; Staufenbiel, Matthias; Neumann, Ulf; Shimshek, Derya R

    2016-09-01

    Currently, several immunotherapies and BACE (Beta Site APP Cleaving Enzyme) inhibitor approaches are being tested in the clinic for the treatment of Alzheimer's disease. A crucial mechanism-related safety concern is the exacerbation of microhemorrhages, which are already present in the majority of Alzheimer patients. To investigate potential safety liabilities of long-term BACE inhibitor therapy, we used aged amyloid precursor protein (APP) transgenic mice (APP23), which robustly develop cerebral amyloid angiopathy. T2*-weighted magnetic resonance imaging (MRI), a translational method applicable in preclinical and clinical studies, was used for the detection of microhemorrhages throughout the entire brain, with subsequent histological validation. Three-dimensional reconstruction based on in vivo MRI and serial Perls' stained sections demonstrated a one-to-one matching of the lesions thus allowing for their histopathological characterization. MRI detected small Perls' positive areas with a high spatial resolution. Our data demonstrate that volumetric assessment by noninvasive MRI is well suited to monitor cerebral microhemorrhages in vivo. Furthermore, 3 months treatment of aged APP23 with the potent BACE-inhibitor NB-360 did not exacerbate microhemorrhages in contrast to Aβ-antibody β1. These results substantiate the safe use of BACE inhibitors regarding microhemorrhages in long-term clinical studies for the treatment of Alzheimer's disease. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  2. Clinical and magnetic resonance imaging (MRI) distinctions between tumefactive demyelination and brain tumors in children.

    Science.gov (United States)

    Yiu, Eppie M; Laughlin, Suzanne; Verhey, Leonard H; Banwell, Brenda L

    2014-05-01

    Tumefactive demyelinating lesions can be difficult to distinguish from tumors. Clinical and magnetic resonance imaging features of children with tumefactive demyelination and supratentorial brain tumors were compared. Patients were identified through a 23-site national demyelinating disease study, and from a single-site neuroradiology database. For inclusion, lesions met at least 1 of 3 criteria: maximal cross-sectional diameter >20 mm, local or global cerebral mass effect, or presence of perilesional edema. Thirty-one children with tumefactive demyelination (5 with solitary lesions) were identified: 27 of 189 (14.3%) from the demyelinating disease study and 4 from the database. Thirty-three children with tumors were identified. Children with tumefactive demyelination were more likely to have an abnormal neurologic examination and polyfocal neurologic deficits compared to children with tumors. Tumefactive demyelination was distinguished from tumor by the presence of multiple lesions, absence of cortical involvement, and decrease in lesion size or detection of new lesions on serial imaging.

  3. Cognitive event-related potentials and brain magnetic resonance imaging in HTLV-1 associated myelopathy (HAM).

    Science.gov (United States)

    Fukushima, T; Ikeda, T; Uyama, E; Uchino, M; Okabe, H; Ando, M

    1994-10-01

    Auditory and visual cognitive event-related potentials (ERPs) were investigated in 14 patients with HTLV-1 associated myelopathy (HAM) and in 36 normal controls. In the HAM patients, the latencies of P300 and N200 by the auditory tone method were significantly delayed, and N100 by the auditory click method was significantly delayed in latency. No abnormal ERP components were observed with visual methods. While these auditory abnormal ERPs were present in the HAM patients, there was no evidence of visual abnormal ERPs. Abnormal lesions on the white matter were evident at magnetic resonance imaging (MRI) in 6 (75%) of 8 patients. There was no correlation between MRI lesions and the abnormalities of ERPs, but there was a significant correlation between bifrontal index on MRI and P300 amplitudes at Cz and Pz sites by auditory tone method. In one patient, atrophy of bilateral parietal lobes was seen on MRI and P300 latencies delayed using various methods. Therefore, the possibility that electrophysiological cognitive impairment in patients with HAM is related to brain atrophy rather than to white matter lesions requires attention.

  4. A comprehensive visual rating scale of brain magnetic resonance imaging: application in elderly subjects with Alzheimer's disease, mild cognitive impairment, and normal cognition.

    Science.gov (United States)

    Jang, Jae-Won; Park, So Young; Park, Young Ho; Baek, Min Jae; Lim, Jae-Sung; Youn, Young Chul; Kim, SangYun

    2015-01-01

    Brain magnetic resonance imaging (MRI) shows cerebral structural changes. However, a unified comprehensive visual rating scale (CVRS) has seldom been studied. Thus, we combined brain atrophy and small vessel disease scales and used an MRI template as a CVRS. The aims of this study were to design a simple and reliable CVRS, validate it by investigating cerebral structural changes in clinical groups, and made comparison to the volumetric measurements. Elderly subjects (n = 260) with normal cognition (NC, n = 65), mild cognitive impairment (MCI, n = 101), or Alzheimer's disease (AD, n = 94) were evaluated with brain MRI according to the CVRS of brain atrophy and small vessel disease. Validation of the CVRS with structural changes, neuropsychological tests, and volumetric analyses was performed. The CVRS revealed a high intra-rater and inter-rater agreement and it reflected the structural changes of subjects with NC, MCI, and AD better than volumetric measures (CVRS-coronal: F = 13.5, p < 0.001; CVRS-axial: F = 19.9, p < 0.001). The area under the receiver operation curve (aROC) of the CVRS showed higher accuracy than volumetric analyses. (NC versus MCI aROC: CVRS-coronal, 0.777; CVRS-axial, 0.773; MCI versus AD aROC: CVRS-coronal, 0.680; CVRS-axial, 0.681). The CVRS can be used clinically to conveniently measure structural changes of brain. It reflected cerebral structural changes of clinical groups and correlated with the age better than volumetric measures.

  5. Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging of the human brain. Application to assess Wallerian degeneration

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Hironaka; Katayama, Yasuo; Tsuganezawa, Toshikazu; Yamamuro, Manabu; Terashi, Akiro; Owan, Chojin [Nippon Medical School, Tokyo (Japan)

    1998-08-01

    Three-dimensional anisotropy contrast (3DAC) magnetic resonance imaging is a new algorithm for the treatment of apparent diffusion tensor using the three primary colors. To determine if 3DAC has a clinical application for human brain, six normal volunteers and twenty patients with supratentorial cerebrovascular accidents were examined using clinical magnetic resonance imaging (MRI), and the changes in the 3DAC images associated with Wallerian degeneration of the pyramidal tract were evaluated. The 3DAC images exhibited impressive anatomical resolution. In all chronic stage patients with hemiparesis, the colors in the pyramidal tract were faded. Patients examined during the acute stage who later recovered from hemiparesis had no visible changes of the 3DAC image, whereas patients who recovered poorly showed distinct color fading in the pyramidal tract within 14 days following stroke. In conclusion, very fine anatomical structures are visible on 3DAC images, and it can be used as a diagnostic tool for the human brain. (author)

  6. Effects of Physical Exercise Combined with Nutritional Supplements on Aging Brain Related Structures and Functions: A Systematic Review.

    Science.gov (United States)

    Schättin, Alexandra; Baur, Kilian; Stutz, Jan; Wolf, Peter; de Bruin, Eling D

    2016-01-01

    Age-related decline in gray and white brain matter goes together with cognitive depletion. To influence cognitive functioning in elderly, several types of physical exercise and nutritional intervention have been performed. This paper systematically reviews the potential additive and complementary effects of nutrition/nutritional supplements and physical exercise on cognition. The search strategy was developed for EMBASE, Medline, PubMed, Cochrane, CINAHL, and PsycInfo databases and focused on the research question: "Is the combination of physical exercise with nutrition/nutritional supplementation more effective than nutrition/nutritional supplementation or physical exercise alone in effecting on brain structure, metabolism, and/or function?" Both mammalian and human studies were included. In humans, randomized controlled trials that evaluated the effects of nutrition/nutritional supplements and physical exercise on cognitive functioning and associated parameters in healthy elderly (>65 years) were included. The systematic search included English and German language literature without any limitation of publication date. The search strategy yielded a total of 3129 references of which 67 studies met the inclusion criteria; 43 human and 24 mammalian, mainly rodent, studies. Three out of 43 human studies investigated a nutrition/physical exercise combination and reported no additive effects. In rodent studies, additive effects were found for docosahexaenoic acid supplementation when combined with physical exercise. Although feasible combinations of physical exercise/nutritional supplements are available for influencing the brain, only a few studies evaluated which possible combinations of nutrition/nutritional supplementation and physical exercise might have an effect on brain structure, metabolism and/or function. The reason for no clear effects of combinatory approaches in humans might be explained by the misfit between the combinations of nutritional methods with

  7. Combined Magnetic Tweezers and Micro-mirror Total Internal Reflection Fluorescence Microscope for Single-Molecule Manipulation and Visualization.

    Science.gov (United States)

    Seol, Yeonee; Neuman, Keir C

    2018-01-01

    Magnetic tweezers is a versatile yet simple single-molecule manipulation technique that has been used to study a broad range of nucleic acids and nucleic acid-based molecular motors. In this chapter, we combine micro-mirror-based total internal reflection microscopy with a magnetic tweezers instrument, permitting simultaneous single-molecule visualization and mechanical manipulation. We provide a simple method to calibrate the evanescent wave penetration depth via supercoiling of DNA with a fluorescent nanodiamond-labeled magnetic bead and a complementary method employing a surface-immobilized fluorescent nanodiamond.

  8. Combining Exergame Training with Omega-3 Fatty Acid Supplementation: Protocol for a Randomized Controlled Study assessing the Effect on Neuronal Structure/Function in the Elderly Brain

    Directory of Open Access Journals (Sweden)

    Alexandra Schättin

    2016-11-01

    Full Text Available A common problem in the older population is the risk of falling that might lead to injury, immobility, and reduced survival. Age-related neuronal changes, e.g. decline in grey- and white-matter, affect neuronal, cognitive, and motor functioning. The improvement of these factors might decrease fall events in elderly. Studies showed that the sole administration of video game-based physical exercise, a so-called exergame, or omega-3 fatty acid (FA may improve motor and/or cognitive functioning through neuronal changes in the brain of older adults. The aim of this study is to assess the effects of a combination of exergame training with omega-3 FA supplementation on the elderly brain. We hypothesize that an intervention using a combination approach differently effects on the neuronal structure and function of the elderly’s brain as compared to the sole administration of exergame training. The study is a parallel, double-blinded, randomized controlled trial lasting 26 weeks. Sixty autonomous living, non-smoking, and right-handed healthy older (>65 years adults who live independently or in a senior residency are included, randomized, and allocated to one of two study groups. The experimental group receives a daily amount of 13.5ml fish oil (including 2.9g of omega-3 FA, whereas the control group receives a daily amount of 13.5ml olive oil for 26 weeks. After 16 weeks, both groups start with an exergame training program three times per week. Measurements are performed on three time-points by treatment blinded investigators: pre-intervention measurement, blood sample after 16 week, and post-intervention measurements. The main outcomes are motor evoked potentials of the right M. tibialis anterior (transcranial magnetic stimulation and response-related potentials (electroencephalography during a cognitive test. For secondary outcomes, reaction times during cognitive tests and spatio-temporal parameters during gait performance are measured. Statistics

  9. The Impact of Combined Prehospital Hypotension and Hypoxia on Mortality in Major Traumatic Brain Injury

    Science.gov (United States)

    Spaite, Daniel W.; Hu, Chengcheng; Bobrow, Bentley J.; Chikani, Vatsal; Barnhart, Bruce; Gaither, Joshua B.; Denninghoff, Kurt R.; Adelson, P. David; Keim, Samuel M.; Viscusi, Chad; Mullins, Terry; Sherrill, Duane

    2016-01-01

    BACKGROUND Survival is significantly reduced by either hypotension or hypoxia during the prehospital management of major traumatic brain injury (TBI). However, only a handful of small studies have investigated the influence of the combination of both hypotension and hypoxia occurring together. Objective: In patients with major TBI, we evaluated the associations between mortality and prehospital hypotension and hypoxia, both separately and in combination. METHODS All moderate/severe TBI cases in the pre-implementation cohort of the Excellence in Prehospital Injury Care (EPIC) Study (a statewide, before/after, controlled study of the impact of implementing the prehospital TBI treatment guidelines) from 1/1/07–3/31/14 were evaluated [exclusions: age200mmHg]. The relationship between mortality and hypotension (SBP controlling for Injury Severity Score, head region severity, injury type (blunt versus penetrating), age, sex, race, ethnicity, payer, inter-hospital transfer, and trauma center. RESULTS Among the 13,151 cases that met inclusion criteria [Median age: 45; Male: 68.6%], 11,545 (87.8%) had neither hypotension nor hypoxia, 604 (4.6%) had hypotension only, 790 (6.0%) had hypoxia only, and 212 (1.6%) had both hypotension and hypoxia. Mortality for the four study cohorts was 5.6%, 20.7%, 28.1%, and 43.9%, respectively. The crude and adjusted odds ratios (cOR/aOR) for death within the cohorts, utilizing the patients with neither hypotension nor hypoxia as the reference, were 4.4/2.5, 6.6/3.0, and 13.2/6.1, respectively. Evaluation for an interaction between hypotension and hypoxia revealed that the effects are additive on the log odds of death. CONCLUSION In this statewide analysis of major TBI, combined prehospital hypotension/hypoxia were associated with dramatically increased mortality. This effect on survival persisted even after controlling for multiple potential confounders. In fact, the adjusted odds of death in patients with both hypotension and hypoxia was

  10. Improving Brain Magnetic Resonance Image (MRI) Segmentation via a Novel Algorithm based on Genetic and Regional Growth

    Science.gov (United States)

    A., Javadpour; A., Mohammadi

    2016-01-01

    Background Regarding the importance of right diagnosis in medical applications, various methods have been exploited for processing medical images solar. The method of segmentation is used to analyze anal to miscall structures in medical imaging. Objective This study describes a new method for brain Magnetic Resonance Image (MRI) segmentation via a novel algorithm based on genetic and regional growth. Methods Among medical imaging methods, brains MRI segmentation is important due to high contrast of non-intrusive soft tissue and high spatial resolution. Size variations of brain tissues are often accompanied by various diseases such as Alzheimer’s disease. As our knowledge about the relation between various brain diseases and deviation of brain anatomy increases, MRI segmentation is exploited as the first step in early diagnosis. In this paper, regional growth method and auto-mate selection of initial points by genetic algorithm is used to introduce a new method for MRI segmentation. Primary pixels and similarity criterion are automatically by genetic algorithms to maximize the accuracy and validity in image segmentation. Results By using genetic algorithms and defining the fixed function of image segmentation, the initial points for the algorithm were found. The proposed algorithms are applied to the images and results are manually selected by regional growth in which the initial points were compared. The results showed that the proposed algorithm could reduce segmentation error effectively. Conclusion The study concluded that the proposed algorithm could reduce segmentation error effectively and help us to diagnose brain diseases. PMID:27672629