WorldWideScience

Sample records for combined atmospheric photochemistry

  1. Atmospheric Photochemistry

    Science.gov (United States)

    Massey, Harrie; Potter, A. E.

    1961-01-01

    The upper atmosphere offers a vast photochemical laboratory free from solid surfaces, so all reactions take place in the gaseous phase. At 30 km altitude the pressure has fallen to about one-hundredth of that at ground level, and we shall, rather arbitrarily, regard the upper atmosphere as beginning at that height. By a little less than 100 km the pressure has fallen to 10(exp -3) mm Hg and is decreasing by a power of ten for every 15 km increase in altitude. Essentially we are concerned then with the photochemistry of a nitrogen-oxygen mixture under low-pressure conditions in which photo-ionization, as well as photodissociation, plays an important part. Account must also be taken of the presence of rare constituents, such as water vapour and its decomposition products, including particularly hydroxyl, oxides of carbon, methane and, strangely enough, sodium, lithium and calcium. Many curious and unfamiliar reactions occur in the upper atmosphere. Some of them are luminescent, causing the atmosphere to emit a dim light called the airglow. Others, between gaseous ions and neutral molecules, are almost a complete mystery at this time. Similar interesting phenomena must occur in other planetary atmospheres, and they might be predicted if sufficient chemical information were available.

  2. Photochemistry of Planetary Atmospheres

    Science.gov (United States)

    Yung, Y. L.

    2005-12-01

    The Space Age started half a century ago. Today, with the completion of a fairly detailed study of the planets of the Solar System, we have begun studying exoplanets (or extrasolar planets). The overriding question in is to ask whether an exoplanet is habitable and harbors life, and if so, what the biosignatures ought to be. This forces us to confront the fundamental question of what controls the composition of an atmosphere. The composition of a planetary atmosphere reflects a balance between thermodynamic equilibrium chemistry (as in the interior of giant planets) and photochemistry (as in the atmosphere of Mars). The terrestrial atmosphere has additional influence from life (biochemistry). The bulk of photochemistry in planetary atmospheres is driven by UV radiation. Photosynthesis may be considered an extension of photochemistry by inventing a molecule (chlorophyll) that can harvest visible light. Perhaps the most remarkable feature of photochemistry is catalytic chemistry, the ability of trace amounts of gases to profoundly affect the composition of the atmosphere. Notable examples include HOx (H, OH and HO2) chemistry on Mars and chlorine chemistry on Earth and Venus. Another remarkable feature of photochemistry is organic synthesis in the outer solar system. The best example is the atmosphere of Titan. Photolysis of methane results in the synthesis of more complex hydrocarbons. The hydrocarbon chemistry inevitably leads to the formation of high molecular weight products, giving rise to aerosols when the ambient atmosphere is cool enough for them to condense. These results are supported by the findings of the recent Cassini mission. Lastly, photochemistry leaves a distinctive isotopic signature that can be used to trace back the evolutionary history of the atmosphere. Examples include nitrogen isotopes on Mars and sulfur isotopes on Earth. Returning to the question of biosignatures on an exoplanet, our Solar System experience tells us to look for speciation

  3. Photochemistry in the Atmospheres of Denver and Mexico City

    Science.gov (United States)

    Cantrell, C. A.

    2016-12-01

    The composition of atmospheres in and downwind of urban centers has been the subject of study for decades. While early campaigns involved measurements exclusively from the ground, more recent studies have included airborne-based observations. Improved understanding has hinged critically on the development of instrumentation for better qualitifcation of pollutants, and measurement of previously unobserved species in the gas and particulate phases. Comprehensive, well-planned studies have, over time, led to more detailed understanding of chemical transformations and thus improved model representations and directions for further research. This presentation focuses on findings from two case studies of urban atmospheres, namely the MILAGRO study in the Mexico City metropolitan area and the FRAPPE study in the Denver metropolitan region. Both studies made use of extensive ground-based networks and multiple aircraft platforms. The data collected during these studies have been combined with numerical models to derive assessments of the evolution of atmospheric composition due to photochemistry, mixing, and surface processes. Here, analysis of MILAGRO data focuses on the evolution of outflow downwind of the urban region. In FRAPPE, the focus is the possible role of oil and gas exploration on urban air quality. These findings are used to assess the accuracy of current numerical models to reproduce observations, and to point toward areas possibly needing further study.

  4. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. I. PHOTOCHEMISTRY MODEL AND BENCHMARK CASES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2012-12-20

    We present a comprehensive photochemistry model for exploration of the chemical composition of terrestrial exoplanet atmospheres. The photochemistry model is designed from the ground up to have the capacity to treat all types of terrestrial planet atmospheres, ranging from oxidizing through reducing, which makes the code suitable for applications for the wide range of anticipated terrestrial exoplanet compositions. The one-dimensional chemical transport model treats up to 800 chemical reactions, photochemical processes, dry and wet deposition, surface emission, and thermal escape of O, H, C, N, and S bearing species, as well as formation and deposition of elemental sulfur and sulfuric acid aerosols. We validate the model by computing the atmospheric composition of current Earth and Mars and find agreement with observations of major trace gases in Earth's and Mars' atmospheres. We simulate several plausible atmospheric scenarios of terrestrial exoplanets and choose three benchmark cases for atmospheres from reducing to oxidizing. The most interesting finding is that atomic hydrogen is always a more abundant reactive radical than the hydroxyl radical in anoxic atmospheres. Whether atomic hydrogen is the most important removal path for a molecule of interest also depends on the relevant reaction rates. We also find that volcanic carbon compounds (i.e., CH{sub 4} and CO{sub 2}) are chemically long-lived and tend to be well mixed in both reducing and oxidizing atmospheres, and their dry deposition velocities to the surface control the atmospheric oxidation states. Furthermore, we revisit whether photochemically produced oxygen can cause false positives for detecting oxygenic photosynthesis, and find that in 1 bar CO{sub 2}-rich atmospheres oxygen and ozone may build up to levels that have conventionally been accepted as signatures of life, if there is no surface emission of reducing gases. The atmospheric scenarios presented in this paper can serve as the

  5. HIGH-TEMPERATURE PHOTOCHEMISTRY IN THE ATMOSPHERE OF HD 189733b

    International Nuclear Information System (INIS)

    Line, M. R.; Yung, Y. L.; Liang, M. C.

    2010-01-01

    Recent infrared spectroscopy of hot exoplanets is beginning to reveal their atmospheric composition. Deep within the planetary atmosphere, the composition is controlled by thermochemical equilibrium. Photochemistry becomes important higher in the atmosphere, at levels above ∼1 bar. These two chemistries compete between ∼1 and 10 bars in hot-Jupiter-like atmospheres, depending on the strength of the eddy mixing and temperature. HD 189733b provides an excellent laboratory in which to study the consequences of chemistry of hot atmospheres. The recent spectra of HD 189733b contain signatures of CH 4 , CO 2 , CO, and H 2 O. Here we identify the primary chemical pathways that govern the abundances of CH 4 , CO 2 , CO, and H 2 O in the cases of thermochemical equilibrium chemistry, photochemistry, and their combination. Our results suggest that the disequilibrium mechanisms can significantly enhance the abundances of these species above their thermochemical equilibrium value, so some caution must be taken when assuming that an atmosphere is in strict thermochemical equilibrium.

  6. Photochemistry in Saturn’s Ring-Shadowed Atmosphere: Photochemistry and Haze Observations

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil K.; Baines, Kevin H.; West, Robert A.; Bjoraker, Gordon L.; Fletcher, Leigh; Momary, Thomas W.; Wilson, Eric; CIRS, ISS, UVIS, VIMS

    2017-10-01

    After 13 years of observing Saturn, Cassini would have ended nearly a half Saturnian year. During this epoch, the ring shadow has moved from covering much of the northern hemisphere to covering a large swath southern hemisphere. The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn’s axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds. This effect magnifies the effect due to axial tilt alone and acts to turn off photochemistry and haze generation. This effect is seen in both the presence of a bluish Rayleigh-scattering atmosphere in 2004 in the northern hemisphere and color change to blue in the northern hemisphere.Previous work examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. We report on the impact of the oscillating ring shadow, in addition to variation due to axial tilt, on photolysis and production rates of hydrocarbons and phosphine in Saturn’s stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. We assess their impact on a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini’s CIRS, UVIS, and VIMS datasets that provide an estimate of the evolving haze content. In particular, we will examine how the region inside Saturn’s famous hexagonal jet stream changes over time from a relatively clear atmosphere to a hazy one. We also explore how the hexagon acts like a barrier to transport, isolating Saturn’s north polar region from outside influences of photochemically-generated molecules and haze.The research described in this paper was

  7. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Science.gov (United States)

    Vaïtilingom, M.; Charbouillot, T.; Deguillaume, L.; Maisonobe, R.; Parazols, M.; Amato, P.; Sancelme, M.; Delort, A.-M.

    2011-08-01

    The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2) as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10-10-10-11 M s-1). The chemical composition (marine or continental origin) had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5. In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH) radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10-12 M) led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10-14 M), microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach. Combining these two approaches (experimental and theoretical), our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more efficient than its biodegradation; the biodegradation of acetate and succinate seemed to exceed their photodegradation.

  8. PHOTOCHEMISTRY IN TERRESTRIAL EXOPLANET ATMOSPHERES. II. H{sub 2}S AND SO{sub 2} PHOTOCHEMISTRY IN ANOXIC ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Hu Renyu; Seager, Sara; Bains, William, E-mail: hury@mit.edu [Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2013-05-20

    Sulfur gases are common components in the volcanic and biological emission on Earth, and are expected to be important input gases for atmospheres on terrestrial exoplanets. We study the atmospheric composition and the spectra of terrestrial exoplanets with sulfur compounds (i.e., H{sub 2}S and SO{sub 2}) emitted from their surfaces. We use a comprehensive one-dimensional photochemistry model and radiative transfer model to investigate the sulfur chemistry in atmospheres ranging from reducing to oxidizing. The most important finding is that both H{sub 2}S and SO{sub 2} are chemically short-lived in virtually all types of atmospheres on terrestrial exoplanets, based on models of H{sub 2}, N{sub 2}, and CO{sub 2} atmospheres. This implies that direct detection of surface sulfur emission is unlikely, as their surface emission rates need to be extremely high (>1000 times Earth's volcanic sulfur emission) for these gases to build up to a detectable level. We also find that sulfur compounds emitted from the surface lead to photochemical formation of elemental sulfur and sulfuric acid in the atmosphere, which would condense to form aerosols if saturated. For terrestrial exoplanets in the habitable zone of Sun-like stars or M stars, Earth-like sulfur emission rates result in optically thick haze composed of elemental sulfur in reducing H{sub 2}-dominated atmospheres for a wide range of particle diameters (0.1-1 {mu}m), which is assumed as a free parameter in our simulations. In oxidized atmospheres composed of N{sub 2} and CO{sub 2}, optically thick haze, composed of elemental sulfur aerosols (S{sub 8}) or sulfuric acid aerosols (H{sub 2}SO{sub 4}), will form if the surface sulfur emission is two orders of magnitude more than the volcanic sulfur emission of Earth. Although direct detection of H{sub 2}S and SO{sub 2} by their spectral features is unlikely, their emission might be inferred by observing aerosol-related features in reflected light with future generation

  9. Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry

    Directory of Open Access Journals (Sweden)

    M. Vaïtilingom

    2011-08-01

    Full Text Available The objective of this work was to compare experimentally the contribution of photochemistry vs. microbial activity to the degradation of carboxylic acids present in cloud water. For this, we selected 17 strains representative of the microflora existing in real clouds and worked on two distinct artificial cloud media that reproduce marine and continental cloud chemical composition. Photodegradation experiments with hydrogen peroxide (H2O2 as a source of hydroxyl radicals were performed under the same microcosm conditions using two irradiation systems. Biodegradation and photodegradation rates of acetate, formate, oxalate and succinate were measured on both media at 5 °C and 17 °C and were shown to be on the same order of magnitude (around 10−10–10−11 M s−1. The chemical composition (marine or continental origin had little influence on photodegradation and biodegradation rates while the temperature shift from 17 °C to 5 °C decreased biodegradation rates of a factor 2 to 5.

    In order to test other photochemical scenarios, theoretical photodegradation rates were calculated considering hydroxyl (OH radical concentration values in cloud water estimated by cloud chemistry modelling studies and available reaction rate constants of carboxylic compounds with both hydroxyl and nitrate radicals. Considering high OH concentration ([OH] = 1 × 10−12 M led to no significant contribution of microbial activity in the destruction of carboxylic acids. On the contrary, for lower OH concentration (at noon, [OH] = 1 × 10−14 M, microorganisms could efficiently compete with photochemistry and in similar contributions than the ones estimated by our experimental approach.

    Combining these two approaches (experimental and theoretical, our results led to the following conclusions: oxalate was only photodegraded; the photodegradation of formate was usually more

  10. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere

    Science.gov (United States)

    Zahnle, K. J.

    1986-01-01

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  11. Photochemistry of pyrene with water at low temperature: study of atmospherical and astrochemical interest.

    Science.gov (United States)

    Guennoun, Zohra; Aupetit, Christian; Mascetti, Joëlle

    2011-03-17

    Photochemistry of a polyaromatic hydrocarbon, pyrene C(16)H(10), with water has been investigated at cryogenic temperatures. Photoprocessing of this species, performed at λ > 235 nm, in argon matrices, adsorbed onto amorphous water surfaces, and trapped in solid water, led to the formation of ketonic isomers, C(16)H(10)O, and possibly quinones. These species have been identified for the first time by infrared spectroscopy with the support of isotopic substitution experiments and DFT calculations. These oxidized pyrene-like species, of atmospherical and astrochemical interest, most likely arise from a tautomeric rearrangement of their analogous hydroxylated molecules, these latter being formed by reaction of water with pyrene cations.

  12. On the relationship between the greenhouse effect, atmospheric photochemistry, and species distribution

    Science.gov (United States)

    Callis, L. B.; Boughner, R. E.; Natarajan, M.

    1983-01-01

    The coupling that exists between infrared opacity changes and tropospheric (and to a lesser extent stratospheric) chemistry is explored in considerable detail, and the effects arising from various perturbations are examined. The studies are carried out with a fully coupled one-dimensional radiative-convective-photochemical model (RCP) that extends from the surface to 53.5 km and has the capability of calculating surface temperature changes due to both chemical and radiative perturbations. The model encompasses contemporary atmospheric chemistry and photochemistry involving the O(x), HO(x), NO(x), and Cl(x) species.

  13. Photochemistry Saturn's Atmosphere. 2; Effects of an Influx of External Oxygen

    Science.gov (United States)

    Moses, Julianne I.; Lellouch, Emmanuel; Bezard, Bruno; Gladstone, G. Randall; Allen, Mark

    2000-01-01

    We use a one-dimensional diurnally averaged model of photochemistry and diffusion in Saturn's stratosphere to investigate the influence of extraplanetary debris on atmospheric chemistry. In particular, we consider the effects of an influx of oxygen from micrometeoroid ablation or from ring-particle diffusion; the contribution from cometary impacts, satellite debris, or ring vapor is deemed to be less important. The photochemical model results are compared directly with Infrared Space Observatory (ISO) observations to constrain the influx of extraplanetary oxygen to Saturn. From the ISO observations, we determine that the column densities of CO2 and H2O above 10 mbar in Saturn's atmosphere are (6.3 +/- 1) x 10(exp 14) and (1.4 +/- 0.4) x 10(exp 15)/ square cm, respectively; our models indicate that a globally averaged oxygen influx of (4+/-2) x 10(exp 6) O atoms /sq cm/s is required to explain these observations. Models with a locally enhanced influx of H20 operating over a small fraction of the projected area do not provide as good a fit to the ISO H2O observations. If volatile oxygen compounds comprise one-third to one-half of the exogenic source by mass, then Saturn is currently being bombarded with (3 +/- 2) x 10(exp -16) g/square cm/s of extraplanetary material. To reproduce the observed CO2/H2O ratio in Saturn's stratosphere, some of the exogenic oxygen must arrive in the form of a carbon-oxygen bonded species such as CO or CO2. An influx consistent with the composition of cometary ices fails to reproduce the high observed CO2/H2O ratio, suggesting that (i) the material has ices that are slightly more carbon-rich than is typical for comets, (ii) a contribution from an organic-rich component is required, or (iii) some of the hydrogen-oxygen bonded material is converted to carbon-oxygen bonded material without photochemistry (e.g., during the ablation process). We have also reanalyzed the 5-micron CO observations of Noll and Larson and determine that the CO

  14. EUV-VUV photochemistry in the upper atmospheres of Titan and the early Earth

    Science.gov (United States)

    Imanaka, H.; Smith, M. A.

    2010-12-01

    Titan, the organic-rich moon of Saturn, possesses a thick atmosphere of nitrogen, globally covered with organic haze layers. The recent Cassini’s INMS and CAPS observations clearly demonstrate the importance of complex organic chemistry in the ionosphere. EUV photon radiation is the major driving energy source there. Our previous laboratory study of the EUV-VUV photolysis of N2/CH4 gas mixtures demonstrates a unique role of nitrogen photoionization in the catalytic formation of complex hydrocarbons in Titan’s upper atmosphere (Imanaka and Smith, 2007, 2009). Such EUV photochemistry could also have played important roles in the formation of complex organic molecules in the ionosphere of the early Earth. It has been suggested that the early Earth atmosphere may have contained significant amount of reduced species (CH4, H2, and CO) (Kasting, 1990, Pavlov et al., 2001, Tian et al., 2005). Recent experimental study, using photon radiation at wavelengths longer than 110 nm, demonstrates that photochemical organic haze could have been generated from N2/CO2 atmospheres with trace amounts of CH4 or H2 (Trainer et al., 2006, Dewitt et al., 2009). However, possible EUV photochemical processes in the ionosphere are not well understood. We have investigated the effect of CO2 in the possible EUV photochemical processes in simulated reduced early Earth atmospheres. The EUV-VUV photochemistry using wavelength-tunable synchrotron light between 50 - 150 nm was investigated for gas mixtures of 13CO2/CH4 (= 96.7/3.3) and N2/13CO2/CH4 (= 90/6.7/3.3). The onsets of unsaturated hydrocarbon formation were observed at wavelengths shorter than the ionization potentials of CO2 and N2, respectively. This correlation indicates that CO2 can play a similar catalytic role to N2 in the formation of heavy organic species, which implies that EUV photochemistry might have significant impact on the photochemical generation of organic haze layers in the upper atmosphere of the early Earth.

  15. A combined continuous microflow photochemistry and asymmetric organocatalysis approach for the enantioselective synthesis of tetrahydroquinolines

    Directory of Open Access Journals (Sweden)

    Erli Sugiono

    2013-11-01

    Full Text Available A continuous-flow asymmetric organocatalytic photocyclization–transfer hydrogenation cascade reaction has been developed. The new protocol allows the synthesis of tetrahydroquinolines from readily available 2-aminochalcones using a combination of photochemistry and asymmetric Brønsted acid catalysis. The photocylization and subsequent reduction was performed with catalytic amount of chiral BINOL derived phosphoric acid diester and Hantzsch dihydropyridine as hydrogen source providing the desired products in good yields and with excellent enantioselectivities.

  16. Atmospheric photochemistry at a fatty acid coated air/water interface

    Science.gov (United States)

    George, Christian; Rossignol, Stéphanie; Passananti, Monica; Tinel, Liselotte; Perrier, Sebastien; Kong, Lingdong; Brigante, Marcello; Bianco, Angelica; Chen, Jianmin; Donaldson, James

    2017-04-01

    Over the past 20 years, interfacial processes have become increasingly of interest in the field of atmospheric chemistry, with many studies showing that environmental surfaces display specific chemistry and photochemistry, enhancing certain reactions and acting as reactive sinks or sources for various atmospherically relevant species. Many molecules display a free energy minimum at the air-water interface, making it a favored venue for compound accumulation and reaction. Indeed, surface active molecules have been shown to undergo specific photochemistry at the air-water interface. This presentation will address some recent surprises. Indeed, while fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds (VOCs) are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over monolayer NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet state NA molecules excited by direct absorption of actinic light at the water surface. As fatty acids covered interfaces are ubiquitous in the environment, such photochemical processing will have a significant impact on local ozone and particle formation. In addition, it was shown recently that a heterogeneous reaction between SO2 and oleic acid (OA; an unsaturated fatty acid) takes place and leads efficiently to the formation of organosulfur products. Here, we demonstrate that this reaction proceeds photochemically on various unsaturated fatty acids compounds, and may therefore have a general environmental impact. This is probably due to the chromophoric nature of the SO2 adduct with C=C bonds, and means that the contribution of this direct addition of SO2 could

  17. The atmosphere simulation chamber SAPHIR: a tool for the investigation of photochemistry.

    Science.gov (United States)

    Brauers, T.; Bohn, B.; Johnen, F.-J.; Rohrer, R.; Rodriguez Bares, S.; Tillmann, R.; Wahner, A.

    2003-04-01

    On the campus of the Forschungszentrum Jülich we constructed SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) which was accomplished in fall 2001. The chamber consists of a 280-m^3 double-wall Teflon bag of cylindrical shape that is held by a steel frame. Typically 75% of the outside actinic flux (290~nm~--~420~nm) is available inside the chamber. A louvre system allows switching between full sun light and dark within 40 s giving the opportunity to study relaxation processes of the photo chemical system. The SAPHIR chamber is equipped with a comprehensive set of sensitive instruments including the measurements of OH, HO_2, CO, hydrocarbons, aldehydes, nitrogen-oxides and solar radiation. Moreover, the modular concept of SAPHIR allows fast and flexible integration of new instruments and techniques. In this paper we will show the unique and new features of the SAPHIR chamber, namely the clean air supply and high purity water vapor supply providing a wide range of trace gas concentrations being accessible through the experiments. We will also present examples from the first year of SAPHIR experiment showing the scope of application from high quality instrument inter-comparison and kinetic studies to the simulation of complex mixtures of trace gases at ambient concentrations.

  18. Combined In Situ Illumination-NMR-UV/Vis Spectroscopy: A New Mechanistic Tool in Photochemistry.

    Science.gov (United States)

    Seegerer, Andreas; Nitschke, Philipp; Gschwind, Ruth M

    2018-06-18

    Synthetic applications in photochemistry are booming. Despite great progress in the development of new reactions, mechanistic investigations are still challenging. Therefore, we present a fully automated in situ combination of NMR spectroscopy, UV/Vis spectroscopy, and illumination to allow simultaneous and time-resolved detection of paramagnetic and diamagnetic species. This optical fiber-based setup enables the first acquisition of combined UV/Vis and NMR spectra in photocatalysis, as demonstrated on a conPET process. Furthermore, the broad applicability of combined UVNMR spectroscopy for light-induced processes is demonstrated on a structural and quantitative analysis of a photoswitch, including rate modulation and stabilization of transient species by temperature variation. Owing to the flexibility regarding the NMR hardware, temperature, and light sources, we expect wide-ranging applications of this setup in various research fields. © 2018 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  19. Sources and photochemistry of volatile organic compounds in the remote atmosphere of western China: results from the Mt. Waliguan Observatory

    Directory of Open Access Journals (Sweden)

    L. K. Xue

    2013-09-01

    Full Text Available The chemistry of the natural atmosphere and the influence by long-range transport of air pollution are key issues in the atmospheric sciences. Here we present two intensive field measurements of volatile organic compounds (VOCs in late spring and summer of 2003 at Mt. Waliguan (WLG, 36.28° N, 100.90° E, 3816 m a.s.l., a baseline station in the northeast part of the Qinghai-Tibetan Plateau. Most VOC species exhibited higher concentrations in late spring than in summer. A typical diurnal variation was observed with higher nighttime levels, in contrast to results from other mountainous sites. Five different air masses were identified from backward trajectory analysis showing distinct VOC speciation. Air masses originating from the central Eurasian continent contained the lowest VOC levels compared to the others that were impacted by anthropogenic emissions from China and the Indian subcontinent. A photochemical box model based on the Master Chemical Mechanism (version 3.2 and constrained by a full suite of measurements was developed to probe the photochemistry of atmosphere at WLG. Our results show net ozone production from in situ photochemistry during both late spring and summer. Oxidation of nitric oxide (NO by the hydroperoxyl radical (HO2 dominates the ozone production relative to the oxidation by the organic peroxy radicals (RO2, and the ozone is primarily destroyed by photolysis and reactions with the HOx (HOx = OH + HO2 radicals. Ozone photolysis is the predominant primary source of radicals (ROx = OH + HO2 + RO2, followed by the photolysis of secondary oxygenated VOCs and hydrogen peroxides. The radical losses are governed by the self and cross reactions among the radicals. Overall, the findings of the present study provide insights into the background chemistry and the impacts of pollution transport on the pristine atmosphere over the Eurasian continent.

  20. Nitrogen Fixation by Photochemistry in the Atmosphere of Titan and Implications for Prebiotic Chemistry

    Science.gov (United States)

    Balucani, Nadia

    The observation of N-containing organic molecules and the composition of the haze aerosols, as determined by the Aerosol Collector and Pyrolyser (ACP) on-board Huygens, are clear indications that some chemistry involving nitrogen active forms and hydrocarbons is operative in the upper atmosphere of Titan. Neutral-neutral reactions involving the first electronically excited state of atomic nitrogen, N(2D), and small hydrocarbons have the right prerequisites to be among the most significant pathways to formation of nitriles, imines and other simple N-containing organic molecules. The closed-shell products methanimine, ethanimine, ketenimine, 2H-azirine and the radical products CH3N, HCCN and CH2NCH can be the intermediate molecular species that, via addition reactions, polymerization and copolymerization form the N-rich organic aerosols of Titan as well as tholins in bulk reactors simulating Titan's atmosphere.

  1. Photochemistry in Saturn’s Ring-Shadowed Atmosphere: Modulation of Hydrocarbons and Aerosols

    Science.gov (United States)

    Edgington, Scott G.; Atreya, Sushil K.; Wilson, Eric H.; Baines, Kevin H.; West, Robert A.; Bjoraker, Gordon L.; Fletcher, Leigh N.; Momary, Tom

    2015-11-01

    Cassini has been orbiting Saturn for over eleven years now. During this epoch, the ring shadow has moved from covering much of the northern hemisphere (the solar inclination was 24 degrees) to covering a large swath south of the equator and it continues to move southward. At Saturn Orbit Insertion in 2004, the projection of the A-ring onto Saturn reached as far as 40N along the central meridian (52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N/S (58N/S at the terminator). The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn’s axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds.Our previous work, examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. Here, we report on the impact of the oscillating ring shadow on the photolysis and production rates of hydrocarbons (acetylene, ethane, propane, and benzene) and phosphine in Saturn’s stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. Similarly, we assess their impact on phosphine abundance, a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini’s datasets that provide an estimate of the evolving haze content of the northern hemisphere and we will begin to assess the implications for dynamical mixing. In particular, we will examine how the now famous hexagonal jet stream acts like a barrier to transport, isolating Saturn’s north polar region from outside transport of photochemically-generated molecules and haze.The research described in this paper was carried

  2. Photochemistry in Saturn's Ring-Shadowed Atmosphere: Modulation of Hydrocarbons and Observations of Dust Content

    Science.gov (United States)

    Edgington, S. G.; Atreya, S. K.; Wilson, E. H.; Baines, K. H.; West, R. A.; Bjoraker, G. L.; Fletcher, L. N.; Momary, T.

    2016-12-01

    Cassini has been orbiting Saturn for over twelve years now. During this epoch, the ring shadow has moved from covering much of the northern hemisphere with solar inclination of 24 degrees to covering a large swath south of the equator and it continues to move southward. At Saturn Orbit Insertion in 2004, the projection of the A-ring onto Saturn reached as far as 40N along the central meridian (52N at the terminator). At its maximum extent, the ring shadow can reach as far as 48N/S (58N/S at the terminator). The net effect is that the intensity of both ultraviolet and visible sunlight penetrating through the rings to any particular latitude will vary depending on both Saturn's axis relative to the Sun and the optical thickness of each ring system. In essence, the rings act like semi-transparent venetian blinds.Previous work examined the variation of the solar flux as a function of solar inclination, i.e. for each 7.25-year season at Saturn. Here, we report on the impact of the oscillating ring shadow on the photolysis and production rates of hydrocarbons (acetylene, ethane, propane, and benzene) and phosphine in Saturn's stratosphere and upper troposphere. The impact of these production and loss rates on the abundance of long-lived photochemical products leading to haze formation are explored. We assess their impact on phosphine abundance, a disequilibrium species whose presence in the upper troposphere can be used as a tracer of convective processes in the deeper atmosphere.We will also present our ongoing analysis of Cassini's CIRS, UVIS, and VIMS datasets that provide an estimate of the evolving haze content of the northern hemisphere and we will begin to assess the implications for dynamical mixing. In particular, we will examine how the now famous hexagonal jet stream acts like a barrier to transport, isolating Saturn's north polar region from outside transport of photochemically-generated molecules and haze.The research described in this paper was carried out

  3. Response of atmospheric biomarkers to NO(x)-induced photochemistry generated by stellar cosmic rays for earth-like planets in the habitable zone of M dwarf stars.

    Science.gov (United States)

    Grenfell, John Lee; Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A Beate C; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-12-01

    Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N(2)), which leads to production of nitrogen oxides (NO(x)) in the planetary atmosphere, hence affecting biomarkers such as ozone (O(3)). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NO(x) production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O(3) formation proceeds via the reaction O+O(2)+M→O(3)+M. At high NO(x) abundances, the O atoms arise mainly from NO(2) photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O(2)). For the flaring case, O(3) is mainly destroyed via direct titration, NO+O(3)→NO(2)+O(2), and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O(3), Rayleigh scattering by the main atmospheric gases (O(2), N(2), and CO(2)) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O(3) survived all the stellar-activity scenarios considered except for the strong

  4. Response of Atmospheric Biomarkers to NOx-Induced Photochemistry Generated by Stellar Cosmic Rays for Earth-like Planets in the Habitable Zone of M Dwarf Stars

    Science.gov (United States)

    Grießmeier, Jean-Mathias; von Paris, Philip; Patzer, A. Beate C.; Lammer, Helmut; Stracke, Barbara; Gebauer, Stefanie; Schreier, Franz; Rauer, Heike

    2012-01-01

    Abstract Understanding whether M dwarf stars may host habitable planets with Earth-like atmospheres and biospheres is a major goal in exoplanet research. If such planets exist, the question remains as to whether they could be identified via spectral signatures of biomarkers. Such planets may be exposed to extreme intensities of cosmic rays that could perturb their atmospheric photochemistry. Here, we consider stellar activity of M dwarfs ranging from quiet up to strong flaring conditions and investigate one particular effect upon biomarkers, namely, the ability of secondary electrons caused by stellar cosmic rays to break up atmospheric molecular nitrogen (N2), which leads to production of nitrogen oxides (NOx) in the planetary atmosphere, hence affecting biomarkers such as ozone (O3). We apply a stationary model, that is, without a time dependence; hence we are calculating the limiting case where the atmospheric chemistry response time of the biomarkers is assumed to be slow and remains constant compared with rapid forcing by the impinging stellar flares. This point should be further explored in future work with time-dependent models. We estimate the NOx production using an air shower approach and evaluate the implications using a climate-chemical model of the planetary atmosphere. O3 formation proceeds via the reaction O+O2+M→O3+M. At high NOx abundances, the O atoms arise mainly from NO2 photolysis, whereas on Earth this occurs via the photolysis of molecular oxygen (O2). For the flaring case, O3 is mainly destroyed via direct titration, NO+O3→NO2+O2, and not via the familiar catalytic cycle photochemistry, which occurs on Earth. For scenarios with low O3, Rayleigh scattering by the main atmospheric gases (O2, N2, and CO2) became more important for shielding the planetary surface from UV radiation. A major result of this work is that the biomarker O3 survived all the stellar-activity scenarios considered except for the strong case, whereas the biomarker

  5. Combined eye-atmosphere visibility model

    Science.gov (United States)

    Kaufman, Y. J.

    1981-01-01

    Existing models of the optical characteristics of the eye are combined with a recent model of optical characteristics of the atmosphere given by its modulation transfer function. This combination results in the combined eye-atmosphere performance given by the product of their modulation transfer functions. An application for the calculation of visibility thresholds in the case of a two-halves field is given.

  6. Differential acclimation of enzymatic antioxidant metabolism and photosystem II photochemistry in tall fescue under drought and heat and the combined stresses

    Directory of Open Access Journals (Sweden)

    Aoyue eBi

    2016-04-01

    Full Text Available Quality inferiority in cool-season turfgrass due to drought, heat and a combination of both stresses is predicted to be more prevalent in the future. Understanding the various response to heat and drought stress will assist in the selection and breeding of tolerant grass varieties. The objective of this study was to investigate the behavior of antioxidant metabolism and photosystem II (PSII photochemistry in two tall fescue genotypes (PI 234881 and PI 578718 with various thermotolerance capacities. Wide variations were found between heat-tolerant PI 578718 and heat-sensitive PI 234881 for leaf relative water content, malondialdehyde and electrolyte leakage under drought, high-temperature or a combination of both stresses. The sensitivity of PI 234881 exposed to combined stresses was associated with lower superoxide dismutase activity and higher H2O2 accumulation than that in PI 578718. Various antioxidant enzymes displayed positive correlation with chlorophyll content, but negative with membrane injury index at most of the stages in both tall fescue genotypes. The JIP-test analysis in PI 578718 indicated a significant improvement in ABS/RC, TR0/RC, RE0/RC, RE0/ABS values as compared to the control regime, which indicated that PI 578718 had a high potential to protect the PSII system under drought and high temperature stress. And the PS II photochemistry in PI 234881 was damaged significantly compared with PI578718. Moreover, quantitative RT-PCR revealed that heat and drought stresses deduced the gene expression of psbB and psbC, but induced the expression of psbA. These findings to some extent confirmed that the various adaptations of physiological traits may contribute to breeding in cold-season turfgrass in response to drought, high-temperature and a combination of both stresses.

  7. Lifetimes of organic photovoltaics: photochemistry, atmosphere effects and barrier layers in ITO-MEHPPV:PCBM-aluminium devices

    DEFF Research Database (Denmark)

    Krebs, Frederik C; Carlé, Jon Eggert; Cruys-Bagger, N.

    2005-01-01

    Large area polymer photovoltaic cells based on poly[(2-methoxy-5-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) and [6,6]-phenyl-C-61-butyric acid methyl ester (PCBM) were prepared. The lifetimes of the photovoltaic cells were studied in terms of the atmosphere, handling, electrode treatment, m...

  8. Photochemistry on solid surfaces

    CERN Document Server

    Matsuura, T

    1989-01-01

    The latest developments in photochemistry on solid surfaces, i.e. photochemistry in heterogeneous systems, including liquid crystallines, are brought together for the first time in a single volume. Distinguished photochemists from various fields have contributed to the book which covers a number of important applications: molecular photo-devices for super-memory, photochemical vapor deposition to produce thin-layered electronic semiconducting materials, sensitive optical media, the control of photochemical reactions pathways, etc. Photochemistry on solid surfaces is now a major field and this

  9. Photochemistry of Fe:H2O Adducts in Argon Matrixes: A Combined Experimental and Theoretical Study in the Mid-IR and UV-Visible Regions.

    Science.gov (United States)

    Deguin, Vincent; Mascetti, Joëlle; Simon, Aude; Ben Amor, Nadia; Aupetit, Christian; Latournerie, Sandra; Noble, Jennifer A

    2018-01-18

    The photochemistry of Fe:H 2 O adducts is of interest in fields as diverse as catalysis and astrochemistry. Industrially, iron can be used as a catalyst to convert H 2 O to H 2 , whereas in the interstellar medium it may be an important component of dust grains, influencing the chemistry on their icy surfaces. This study consisted of the deposition and spectral characterization of binary systems of atomic iron with H 2 O in cryogenic argon matrixes. In this way, we were able to obtain information about the interaction of the two species; we observed the formation of adducts of iron monomers and dimers with water molecules in the mid-IR and UV-visible spectral domains. Upon irradiation with a UV radiation source, the iron species were inserted into the water molecules to form HFeOH and HFe 2 OH, leading in some cases to the formation of FeO possibly accompanied by the production of H 2 . DFT and correlated multireference wave function calculations confirmed our attributions. This combination of IR and UV-visible spectroscopy with theoretical calculations allowed us to determine, for the first time, the spectral characteristics of iron adducts and their photoproducts in the UV-visible and in the OH stretching region of the mid-IR domain.

  10. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS by Kum Leong Lee September...MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS 5. FUNDING NUMBERS 6. AUTHOR(S) Kum Leong Lee 7. PERFORMING ORGANIZATION NAME(S) AND...BLANK ii Approved for public release. Distribution is unlimited. MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS Kum Leong Lee

  11. Photochemistry research at NREL

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, C.E.; Carlson, C.E. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    Photochemistry research team at NREL conducts research and development work in all R&D areas, basic, applied, demonstration and transfer to commercialization. Basic research includes core PCO R&D and catalysts work as well as conducting research into new photochemistry areas such as photoinduced adsorption and high temperature solar PCO. Applied research work consists of remediation of chloroethylenes in gas phase, gas phase solar photoreactor development, and application research including indoor air quality, hybrid biological/PCO processes and more. We are demonstrating the PCO treatment technology in the gas phase with SEMATECH through CRADA work and remediation of organics in aqueous phase through the Solarchem Environmental Systems. We are working with IT through a CRADA to transfer the PCO gas phase remediation technology to IT to commercialize this promising -technology. Photochemistry research conducted at NREL spans the R&D spectrum from basic research through technology demonstration with the goal of technology commercialization.

  12. Collaborative Research: Atmospheric Pressure Microplasma Chemistry-Photon Synergies Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Graves, David [Univ. of California, Berkeley, CA (United States)

    2017-02-07

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources shows greatly expanded range of applications of each of them. The plasma sources create active chemical species and these can be activated further by addition of photons and associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. The project combines construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling.

  13. Optimal control of open quantum systems: A combined surrogate Hamiltonian optimal control theory approach applied to photochemistry on surfaces

    International Nuclear Information System (INIS)

    Asplund, Erik; Kluener, Thorsten

    2012-01-01

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., (ℎ/2π)=m e =e=a 0 = 1, have been used unless otherwise stated.

  14. Optimal control of open quantum systems: a combined surrogate hamiltonian optimal control theory approach applied to photochemistry on surfaces.

    Science.gov (United States)

    Asplund, Erik; Klüner, Thorsten

    2012-03-28

    In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ℏ = m(e) = e = a(0) = 1, have been used unless otherwise stated.

  15. Photochemistry of materials in the stratosphere

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, H.S. [Lawrence Berkeley Laboratories, CA (United States)

    1993-12-01

    This research is concerned with global change in the atmosphere, including photochemical modeling and, in the past, experimental gas-phase photochemistry involving molecular dynamics and laboratory study of atmospheric chemical reactions. The experimental work on this project concluded in August 1991, but there is a back-log of several journal articles to be written and submitted for publication. The theoretical work involves photochemical modeling in collaboration with Lawrence Livermore National Laboratory (LLNL) and advising the Upper Atmosphere Research Program on Atmospheric Effects of Stratospheric Aircraft, National Aeronautics and Space Administration (NASA).

  16. Vacuum ultraviolet photochemistry of polymers

    International Nuclear Information System (INIS)

    Skurat, Vladimir

    2003-01-01

    The interaction of vacuum UV radiation (wavelength range from 1 to 200 nm) with polymers is interesting for fundamental and applied sciences. This interest is stimulated by various reasons: - Wide applications of polymeric materials in semiconductor technology, where they are used as photoresist materials in combination with VUV light sources (lasers, excimer lamps, synchrotron radiation and others). - Polymers are widely used as spacecraft materials in the last 20 years. On near-Earth orbits, the polymeric materials of spacecraft surfaces are destroyed by solar radiation. - VUV radiation is one of the components of gas discharge plasmas, which are used for treatment of polymer, with the aim of modifying their surface properties. The main features of interaction of VUV radiation with polymers are discussed. The spectra of intrinsic absorption of saturated polymers (polyethylene, polypropylene, polytetrafluoroethylene and others) are situated mainly in the VUV region. The photochemistry of polymers in the VUV region is very different from their photochemistry at wavelengths longer than 200 nm, where the absorption spectra belong to impurities and polymer defects. The polymer photochemistry in the VUV region is wavelength-dependent. At wavelengths longer than about 140 nm, the main role is played by transformations of primary-formed singlet excited molecules. At shorter wavelengths the role of photoionization increases progressively and the main features of VUV photolysis become similar to the picture of radiolysis, with significant contributions of charge pairs and triplet excited molecules. Very important features of VUV light absorption in polymers are high absorption coefficients. Because of this, the surface layers absorb large doses of energy. This leads to very profound transformation of material on the polymer surface. In particular for polymers which are considered destroyed by radiation (for example, perfluoropolymers), this leads to VUV-induced erosion

  17. The photochemistry of the paleoatmosphere

    Science.gov (United States)

    Levine, J. S.

    1982-01-01

    Recent progress in the understanding of the chemistry and photochemistry of the paleoatmosphere is reviewed with emphasis on the application of photochemical models to the investigation of the evolution of the atmosphere. Photochemical calculations are presented which show that a primordial highly reducing atmosphere composed of methane and ammonia, if it formed at all, would be short-lived in the presence of solar ultraviolet radiation, giving way rapidly to a more mildly reducing atmosphere of carbon dioxide and nitrogen. Estimations of O2 produced from the photolysis of water vapor prior to the emergence of photosynthesis range from less than 10 to the -14th to 0.1 times the present atmospheric level, indicating the need for further research. A series of photochemical models of increasing complexity has been developed to study the evolution of atmospheric ozone taking into account reactions with O atoms, hydrogen oxides, nitrogen oxides, and chlorine as well as vertical transport, temperature and tropospheric chemistry so that the total content and vertical distribution of O3 may be determined for a specified level of paleoatmospheric O2.

  18. Combined effect of diuron and simazine on photosystem II photochemistry in a sandy soil and soil amended with solid olive-mill waste.

    Science.gov (United States)

    Redondo-Gómez, Susana; Cox, Lucía; Cornejo, Juan; Figueroa, Enrique

    2007-01-01

    Diuron (3-(3,4-dichlorophenyl)- = 1,1-dimethylurea) and simazine (6-chloro-N(2), N(4)-diethyl-1,3,5-triazine-2,4-diamine) are soil-applied herbicides used in olive crops. The objective of this study is to investigate the effect of these herbicides on Photosystem II photochemistry of Olea europaea L., and whether the amendment of soil with an organic waste (OW) from olive oil production industry modifies this effect. For this purpose, herbicide soil adsorption studies, with unamended and OW-amended soil, and chlorophyll fluorescence measurements in adult olive leaves, after one, two and three weeks of soil herbicide treatment and/or OW amendment, were performed. Soil application of these herbicides reduced the efficiency of Photosystem II photochemistry of olive trees due to chronic photoinhibition, and this effect is counterbalanced by the addition of OW to the soil. OW reduces herbicide uptake by the plant due to an increase in herbicide adsorption.

  19. Photochemistry of the actinides

    International Nuclear Information System (INIS)

    Toth, L.M.; Bell, J.T.; Friedman, H.A.

    1979-01-01

    It has been found that all three major actinides have a useful variety of photochemical reactions which could be used to achieve a separations process that requires fewer reagents. Several features merit enumerating: (1) Laser photochemistry is not now as uniquely important in fuel reprocessing as it is in isotopic enrichment. The photochemistry can be successfully accomplished with conventional light sources. (2) The easiest place to apply photo-reprocessing is on the three actinides U, Pu, and Np. The solutions are potentially cleaner and more amenable to photoreactions. (3) Organic-phase photoreactions are probably not worth much attention because of the troublesome solvent redox chemistry associated with the photochemical reaction. (4) Upstream process treatment on the raffinate (dissolver solution) may never be too attractive since the radiation intensity precludes the usage of many optical materials and the nature of the solution is such that light transmission into it might be totally impossible

  20. The reaction of atomic hydrogen with germane - Temperature dependence of the rate constant and implications for germane photochemistry in the atmospheres of Jupiter and Saturn

    Science.gov (United States)

    Nava, David F.; Payne, Walter A.; Marston, George; Stief, Louis J.

    1993-01-01

    Studies of the formation and loss processes for GeH4 are required in order to provide data to help determine the major chemical form in which germanium exists in the atmospheres of Jupiter and Saturn. The reaction of hydrogen atoms with germane is one of the most important of these reactions. The absolute rate constant for this reaction as a function of temperature and pressure is studied. Flash photolysis of dilute mixtures of GeH4 in argon, combined with time-resolved detection of H atoms via Lyman alpha resonance fluorescence, is employed to measure the reaction rate. The reaction is shown to be moderately rapid, independent of total pressure, but possessing a positive temperature dependence.

  1. Radiation and photochemistry section

    International Nuclear Information System (INIS)

    1991-01-01

    The highlights of this past year in the Radiation and Photochemistry Section at Argonne include: (1) picosecond optical studies of radical cations and excited states produced in hydrocarbon radiolysis provided the first kinetic measurements of ion transformation and production of triplet and singlet excited states by ion recombination. (2) studies of radical cations of alkyl-substituted amines and sulfides provided insights into ion-molecule reactions of radical cations in the condensed phase. (3) studies of the behavior of strained alkane radical cations, such as cubane + ·, revealed new rearrangements and remarkable, medium-dependent differences in their structures. (4) H·atom reactions yielding e aq - provided the first reliable measurements of hydrated-electron enthalpy and entropy and forced the revision of some previous thinking about the driving force in aq - reactions

  2. Impact of a new wavelength-dependent representation of methane photolysis branching ratios on the modeling of Titan’s atmospheric photochemistry

    Science.gov (United States)

    Gans, B.; Peng, Z.; Carrasco, N.; Gauyacq, D.; Lebonnois, S.; Pernot, P.

    2013-03-01

    A new wavelength-dependent model for CH4 photolysis branching ratios is proposed, based on the values measured recently by Gans et al. (Gans, B. et al. [2011]. Phys. Chem. Chem. Phys. 13, 8140-8152). We quantify the impact of this representation on the predictions of a photochemical model of Titan’s atmosphere, on their precision, and compare to earlier representations. Although the observed effects on the mole fraction of the species are small (never larger than 50%), it is possible to draw some recommendations for further studies: (i) the Ly-α branching ratios of Wang et al. (Wang, J.H. et al. [2000]. J. Chem. Phys. 113, 4146-4152) used in recent models overestimate the CH2:CH3 ratio, a factor to which a lot of species are sensitive; (ii) the description of out-of-Ly-α branching ratios by the “100% CH3” scenario has to be avoided, as it can bias significantly the mole fractions of some important species (C3H8); and (iii) complementary experimental data in the 130-140 nm range would be useful to constrain the models in the Ly-α deprived 500-700 km altitude range.

  3. Active molecular iodine photochemistry in the Arctic.

    Science.gov (United States)

    Raso, Angela R W; Custard, Kyle D; May, Nathaniel W; Tanner, David; Newburn, Matt K; Walker, Lawrence; Moore, Ronald J; Huey, L G; Alexander, Liz; Shepson, Paul B; Pratt, Kerri A

    2017-09-19

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I 2 ) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I 2 and snowpack iodide (I - ) measurements, which were conducted near Utqiaġvik, AK, in February 2014. Using chemical ionization mass spectrometry, I 2 was observed in the atmosphere at mole ratios of 0.3-1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I - measurements showed enrichments of up to ∼1,900 times above the seawater ratio of I - /Na + , consistent with iodine activation and recycling. Modeling shows that observed I 2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I 2 is likely a dominant source of iodine atoms in the Arctic.

  4. Microwave Photochemistry II. Photochemistry of 2-tert-butylphenol

    Czech Academy of Sciences Publication Activity Database

    Církva, Vladimír; Kurfürstová, Jana; Karban, Jindřich; Hájek, Milan

    2004-01-01

    Roč. 168, č. 3 (2004), s. 197-204 ISSN 1010-6030 R&D Projects: GA ČR GA203/02/0879 Institutional research plan: CEZ:AV0Z4072921 Keywords : microwave photochemistry * electrodeless discharge lamp * 2-tert-Butylphenol Subject RIV: CC - Organic Chemistry Impact factor: 2.235, year: 2004

  5. Microwave Photochemistry III. Photochemistry of 4-tert-Butylphenol

    Czech Academy of Sciences Publication Activity Database

    Církva, Vladimír; Kurfürstová, J.; Karban, Jindřich; Hájek, Milan

    2005-01-01

    Roč. 174, č. 1 (2005), s. 38-44 ISSN 1010-6030 R&D Projects: GA ČR(CZ) GA203/02/0879; GA AV ČR(CZ) KSK4040110 Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave photochemistry * electrodeless discharge lamp * 4-tert-Butylphenol Subject RIV: CC - Organic Chemistry Impact factor: 2.286, year: 2005

  6. Flow photochemistry: Old light through new windows

    Directory of Open Access Journals (Sweden)

    Jonathan P. Knowles

    2012-11-01

    Full Text Available Synthetic photochemistry carried out in classic batch reactors has, for over half a century, proved to be a powerful but under-utilised technique in general organic synthesis. Recent developments in flow photochemistry have the potential to allow this technique to be applied in a more mainstream setting. This review highlights the use of flow reactors in organic photochemistry, allowing a comparison of the various reactor types to be made.

  7. Active molecular iodine photochemistry in the Arctic

    Energy Technology Data Exchange (ETDEWEB)

    Raso, Angela R.; Custard, Kyle D.; May, Nathaniel W.; Tanner, David; Newburn, Matthew K.; Walker, Lawrence R.; Moore, Ronald J.; Huey, L. G.; Alexander, Lizabeth; Shepson, Paul B.; Pratt, Kerri A.

    2017-09-05

    During springtime, the Arctic atmospheric boundary layer undergoes frequent rapid depletions in ozone and gaseous elemental mercury due to reactions with halogen atoms, influencing atmospheric composition and pollutant fate. Although bromine chemistry has been shown to initiate ozone depletion events, and it has long been hypothesized that iodine chemistry may contribute, no previous measurements of molecular iodine (I2) have been reported in the Arctic. Iodine chemistry also contributes to atmospheric new particle formation and therefore cloud properties and radiative forcing. Here we present Arctic atmospheric I2 and snowpack iodide (I-) measurements, which were conducted near Utqiagvik, AK, in February 2014. Using chemical ionization mass spectrometry, I2 was observed in the atmosphere at mole ratios of 0.3–1.0 ppt, and in the snowpack interstitial air at mole ratios up to 22 ppt under natural sunlit conditions and up to 35 ppt when the snowpack surface was artificially irradiated, suggesting a photochemical production mechanism. Further, snow meltwater I-measurements showed enrichments of up to ~1,900 times above the seawater ratio of I-/Na+, consistent with iodine activation and recycling. Modeling shows that observed I2 levels are able to significantly increase ozone depletion rates, while also producing iodine monoxide (IO) at levels recently observed in the Arctic. These results emphasize the significance of iodine chemistry and the role of snowpack photochemistry in Arctic atmospheric composition, and imply that I2 is likely a dominant source of iodine atoms in the Arctic.

  8. NUCAPS: NOAA Unique Combined Atmospheric Processing System Outgoing Longwave Radiation (OLR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of Outgoing Longwave Radiation (OLR) from the NOAA Unique Combined Atmospheric Processing System (NUCAPS). NUCAPS was developed by the...

  9. NUCAPS: NOAA Unique Combined Atmospheric Processing System Cloud-Cleared Radiances (CCR)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of Cloud-Cleared Radiances (CCRs) from the NOAA Unique Combined Atmospheric Processing System (NUCAPS). NUCAPS was developed by the NOAA/NESDIS...

  10. Photochemistry of comets

    International Nuclear Information System (INIS)

    Huebner, W.F.

    1985-01-01

    The classification of comets, chemically rich mixtures of volatile materials and refractory grains, is described. The developments of coma and tails, and the composition and structure of coma, plasma tails, dust, and nucleus are examined. The differences between comets and planetary atmospheres are investigated. Three hypotheses on the origin of comets are proposed; one states that comets formed in the region of the giant planets, the second theory has the development of comets occuring in the outer parts of the solar nebula, and the third states that comets formed in a companion fragment of the nebula. The use of radar, photometric, spectral, and laboratory measurements for modeling comets is discussed. The physics and main photolytic and chemical reaction processes of a collision-dominated coma are analyzed; the influence of the solar wind on the coma is studied. A comparison of the model with observed data is presented; good correlation of data is observed. The features of Halley's Comet and other comets with distinctive characteristics are examined. Future comet exploration missions and the need to improve comet models are discussed. 31 references

  11. CHEM2D-OPP: A new linearized gas-phase ozone photochemistry parameterization for high-altitude NWP and climate models

    Directory of Open Access Journals (Sweden)

    J. P. McCormack

    2006-01-01

    Full Text Available The new CHEM2D-Ozone Photochemistry Parameterization (CHEM2D-OPP for high-altitude numerical weather prediction (NWP systems and climate models specifies the net ozone photochemical tendency and its sensitivity to changes in ozone mixing ratio, temperature and overhead ozone column based on calculations from the CHEM2D interactive middle atmospheric photochemical transport model. We evaluate CHEM2D-OPP performance using both short-term (6-day and long-term (1-year stratospheric ozone simulations with the prototype high-altitude NOGAPS-ALPHA forecast model. An inter-comparison of NOGAPS-ALPHA 6-day ozone hindcasts for 7 February 2005 with ozone photochemistry parameterizations currently used in operational NWP systems shows that CHEM2D-OPP yields the best overall agreement with both individual Aura Microwave Limb Sounder ozone profile measurements and independent hemispheric (10°–90° N ozone analysis fields. A 1-year free-running NOGAPS-ALPHA simulation using CHEM2D-OPP produces a realistic seasonal cycle in zonal mean ozone throughout the stratosphere. We find that the combination of a model cold temperature bias at high latitudes in winter and a warm bias in the CHEM2D-OPP temperature climatology can degrade the performance of the linearized ozone photochemistry parameterization over seasonal time scales despite the fact that the parameterized temperature dependence is weak in these regions.

  12. Nonlinear optical beam manipulation, beam combining, and atmospheric propagation

    International Nuclear Information System (INIS)

    Fischer, R.A.

    1988-01-01

    These proceedings collect papers on optics: Topics include: diffraction properties of laser speckle, coherent beam combination by plasma modes, nonlinear responses, deformable mirrors, imaging radiometers, electron beam propagation in inhomogeneous media, and stability of laser beams in a structured environment

  13. Isoprene photochemistry over the Amazon rainforest

    Science.gov (United States)

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R.; Rivera-Rios, Jean C.; Seco, Roger; Bates, Kelvin H.; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N.; Kim, Saewung; Goldstein, Allen H.; Guenther, Alex B.; Manzi, Antonio O.; Souza, Rodrigo A. F.; Springston, Stephen R.; Watson, Thomas B.; McKinney, Karena A.

    2016-01-01

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4–0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (<60 ppt). This abrupt shift in isoprene photooxidation, sparked by human activities, speaks to ongoing and possible future changes in the photochemistry active over the Amazon rainforest. PMID:27185928

  14. Formation of reactive nitrogen oxides from urban grime photochemistry

    Science.gov (United States)

    Baergen, Alyson M.; Donaldson, D. James

    2016-05-01

    Impervious surfaces are ubiquitous in urban environments and constitute a substrate onto which atmospheric constituents can deposit and undergo photochemical and oxidative processing, giving rise to "urban grime" films. HNO3 and N2O5 are important sinks for NOx in the lower atmosphere and may be deposited onto these films, forming nitrate through surface hydrolysis. Although such deposition has been considered as a net loss of NOx from the atmosphere, there is increasing evidence that surface-associated nitrate undergoes further reaction. Here, we examine the gas phase products of the photochemistry of real, field-collected urban grime using incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS). Gas phase nitrogen oxides are emitted upon illumination of grime samples and their production increases with ambient relative humidity (RH) up to 35 % after which the production becomes independent of RH. These results are discussed in the context of water uptake onto and evaporation from grime films.

  15. Combined effects of γ-ray radiation and high atmospheric pressure on peripheral blood lymphocytes

    International Nuclear Information System (INIS)

    Zhu Bingchai; Lu Jiaben; Wang Zongwu; Chen Tiehe

    1989-01-01

    The combined effects of γ-ray radiation and high atmospheric pressure on chromosome aberration, micronucleus and transformation frequency in peripheral blood lymphocytes have been studied. The results indicated that there were no significant influence for effects of high atmospheric pressure on chromosome aberrations, transformation frequency in peripheral blood lymphocytes induced γ-ray radiation, and that high atmospheric pressure increased effect of micronucleus in human peripheral blood lymphocytes in vitro induced γ-ray radiation

  16. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    Science.gov (United States)

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  17. Enhanced photochemistry on metal surfaces

    International Nuclear Information System (INIS)

    Goncher, G.M.; Parsons, C.A.; Harris, C.B.

    1984-01-01

    Due to the fast relaxation of molecular excited states in the vicinity of a metal or semiconductor surface, few observations of surface photochemistry have been reported. The following work concerns the surface-enhanced photo-reactions of a variety of physisorbed molecules on roughened Ag surfaces. In summary, photodecomposition leads to a graphitic surface carbon product which is monitored via surface-enhanced Raman scattering. In most cases an initial two-photon molecular absorption step followed by further absorption and fragmentation is thought to occur. Enhancement of the incident fields occurs through roughness-mediated surface plasmon resonances. This mechanism provides the amplified electromagnetic surface fields responsible for the observed photodecomposition. The photodecomposition experiments are performed under ultra-high vacuum. Surface characterization of the roughened surfaces was done by Scanning Electron Microscopy (SEM), and electron-stimulated emission. The SEM revealed morphology on the order of 300-400 A. This size of roughness feature, when modelled as isolated spheres should exhibit the well-known Mie resonances for light of the correct wavelengths. For protrusions existing on a surface these Mie resonances can be thought of as a coupling of the light with the surface plasmon. Experimental verification of these resonances was provided by the electron-stimulated light emission results. These showed that a polished Ag surface emitted only the expected transition radiation at the frequency of the Ag bulk plasmon. Upon roughening, however, a broad range of lower frequencies extending well into the visible are seen from electron irradiation of the surface. Large enhancements are expected for those frequencies which are able to couple into the surface modes

  18. Surface-Plasmon-Driven Hot Electron Photochemistry.

    Science.gov (United States)

    Zhang, Yuchao; He, Shuai; Guo, Wenxiao; Hu, Yue; Huang, Jiawei; Mulcahy, Justin R; Wei, Wei David

    2017-11-30

    Visible-light-driven photochemistry has continued to attract heightened interest due to its capacity to efficiently harvest solar energy and its potential to solve the global energy crisis. Plasmonic nanostructures boast broadly tunable optical properties coupled with catalytically active surfaces that offer a unique opportunity for solar photochemistry. Resonant optical excitation of surface plasmons produces energetic hot electrons that can be collected to facilitate chemical reactions. This review sums up recent theoretical and experimental approaches for understanding the underlying photophysical processes in hot electron generation and discusses various electron-transfer models on both plasmonic metal nanostructures and plasmonic metal/semiconductor heterostructures. Following that are highlights of recent examples of plasmon-driven hot electron photochemical reactions within the context of both cases. The review concludes with a discussion about the remaining challenges in the field and future opportunities for addressing the low reaction efficiencies in hot-electron-induced photochemistry.

  19. LOW POWER UPCONVERSION FOR SOLAR FUELS PHOTOCHEMISTRY

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Felix N. [Bowling Green State University

    2013-08-05

    Earth abundant copper(I) diimine complexes represent a renewable and economically feasible alternative to commonly used heavy metal containing chromophores. In the metal-to-ligand charge transfer (MLCT) excited state, copper(I) diimine complexes typically undergo a significant structural rearrangement, leading to molecules with large Stokes shifts and very short excited state lifetimes, thereby limiting their usefulness as sensitizers in bimolecular electron and triplet energy transfer reactions. Strategically placed bulky substituents on the coordinating phenanthroline ligands have proven useful in restricting the transiently produced excited state Jahn-Teller distortion, leading to longer-lived excited states. By combining bulky sec-butyl groups in the 2- and 9- positions with methyl groups in the 3-,4-, 7-, and 8- positions, a remarkably long-lived (2.8 μs in DCM) copper(I) bis-phenanthroline complex, [Cu(dsbtmp)2]+, has been synthesized and characterized. Unlike other copper(I) diimine complexes, [Cu(dsbtmp)2]+ also retains a μs lifetime in coordinating solvents such as acetonitrile and water as a result of the cooperative sterics inherent in the molecular design. Preliminary results on the use of this complex in hydrogen-forming homogeneous photocatalysis is presented. Photon upconversion based on sensitized triplet-triplet annihilation (TTA) represents a photochemical means to generate high-energy photons (or high-energy chemical products) from low-energy excitation, having potential applications in solar energy conversion and solar fuels producing devices. For the first time, synthetically facile and earth abundant Cu(I) MLCT sensitizers have been successfully incorporated into two distinct photochemical upconversion schemes, affording both red-to-green and orange-to-blue wavelength conversions. Preliminary results on aqueous-based photochemical upconversion as well as intramolecular Sn(IV) porphyrins containing axially coordinated aromatic hydrocarbon

  20. Synthesis, characterization and photochemistry of a new ...

    Indian Academy of Sciences (India)

    The synthesis, crystal structure, redox characteristics and photochemistry of a new heptamolyb- ... The ability of [Mo7O24]−6 to function as a pure “inor- .... Abbreviations used: bpp = 1,3-bis(4-pyridyl)propane; 2-amp = 2-aminopyridine; DMSO ...

  1. Fifteenth DOE solar photochemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This is a compilation of abstracts from the Fifteenth DOE Solar Photochemistry Research Conference hosted by the Solar Energy Research Institute which took place June 2--6, 1991. A large variety of topics pertinent to solar energy conversion are covered, including photoinduced electron transfer, photochemical energy conversion, and photosynthetic energy conversion. (GHH)

  2. Solar eclipse demonstrating the importance of photochemistry in new particle formation

    OpenAIRE

    Jokinen, Tuija; Kontkanen, Jenni; Lehtipalo, Katrianne; Manninen, Hanna E.; Aalto, Juho; Porcar-Castell, Albert; Garmash, Olga; Nieminen, Tuomo; Ehn, Mikael; Kangasluoma, Juha; Junninen, Heikki; Levula, Janne; Duplissy, Jonathan; Ahonen, Lauri R.; Rantala, Pekka

    2017-01-01

    Solar eclipses provide unique possibilities to investigate atmospheric processes, such as new particle formation (NPF), important to the global aerosol load and radiative balance. The temporary absence of solar radiation gives particular insight into different oxidation and clustering processes leading to NPF. This is crucial because our mechanistic understanding on how NPF is related to photochemistry is still rather limited. During a partial solar eclipse over Finland in 2015, we found that...

  3. Preservation of ethnic food dodol combination of irradiation and atmosphere modified packaging

    International Nuclear Information System (INIS)

    Tanhindarto, Rindy P

    1998-01-01

    An investigation was conducted to determine the suitable types of modified atmosphere treatment combined with irradiation to extend the storage life of dodol at room temperature. The samples were obtained from the manufacture and the production date was known. The sample were vacuum-packed, vacuum-packed with N 2 , and vacuum-packed with CO 2 in polyethylene laminated nylon pouches. A part of the samples were unirradiated, and the irradiated ones received total doses of 2,5 and 5 kGy. The quality of the samples were determined by chemical, microbiological, and organoleptic test. The results showed that the three types of packaging combined with irradiation were not significant. The storage life of irradiation treatment with the doses of 2,5 and 5 kGy combined with modified atmosphere treatment dodol could be extended up to 10 and 12 months, respectively. For Unirradiated dodol, the storage life could be extended up to 8 months. (authors)

  4. Interfacial photochemistry of biogenic surfactants: a major source of abiotic volatile organic compounds.

    Science.gov (United States)

    Brüggemann, Martin; Hayeck, Nathalie; Bonnineau, Chloé; Pesce, Stéphane; Alpert, Peter A; Perrier, Sébastien; Zuth, Christoph; Hoffmann, Thorsten; Chen, Jianmin; George, Christian

    2017-08-24

    Films of biogenic compounds exposed to the atmosphere are ubiquitously found on the surfaces of cloud droplets, aerosol particles, buildings, plants, soils and the ocean. These air/water interfaces host countless amphiphilic compounds concentrated there with respect to in bulk water, leading to a unique chemical environment. Here, photochemical processes at the air/water interface of biofilm-containing solutions were studied, demonstrating abiotic VOC production from authentic biogenic surfactants under ambient conditions. Using a combination of online-APCI-HRMS and PTR-ToF-MS, unsaturated and functionalized VOCs were identified and quantified, giving emission fluxes comparable to previous field and laboratory observations. Interestingly, VOC fluxes increased with the decay of microbial cells in the samples, indicating that cell lysis due to cell death was the main source for surfactants and VOC production. In particular, irradiation of samples containing solely biofilm cells without matrix components exhibited the strongest VOC production upon irradiation. In agreement with previous studies, LC-MS measurements of the liquid phase suggested the presence of fatty acids and known photosensitizers, possibly inducing the observed VOC production via peroxy radical chemistry. Up to now, such VOC emissions were directly accounted to high biological activity in surface waters. However, the results obtained suggest that abiotic photochemistry can lead to similar emissions into the atmosphere, especially in less biologically-active regions. Furthermore, chamber experiments suggest that oxidation (O 3 /OH radicals) of the photochemically-produced VOCs leads to aerosol formation and growth, possibly affecting atmospheric chemistry and climate-related processes, such as cloud formation or the Earth's radiation budget.

  5. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  6. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  7. Atmospheric and aerosol chemistry

    International Nuclear Information System (INIS)

    McNeill, V. Faye; Ariya, Parisa A.; McGill Univ. Montreal, QC

    2014-01-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  8. Dust ablation on the giant planets: Consequences for stratospheric photochemistry

    Science.gov (United States)

    Moses, Julianne I.; Poppe, Andrew R.

    2017-11-01

    Ablation of interplanetary dust supplies oxygen to the upper atmospheres of Jupiter, Saturn, Uranus, and Neptune. Using recent dynamical model predictions for the dust influx rates to the giant planets (Poppe et al., 2016), we calculate the ablation profiles and investigate the subsequent coupled oxygen-hydrocarbon neutral photochemistry in the stratospheres of these planets. We find that dust grains from the Edgeworth-Kuiper Belt, Jupiter-family comets, and Oort-cloud comets supply an effective oxygen influx rate of 1.0-0.7+2.2 ×107 O atoms cm-2 s-1 to Jupiter, 7.4-5.1+16 ×104 cm-2 s-1 to Saturn, 8.9-6.1+19 ×104 cm-2 s-1 to Uranus, and 7.5-5.1+16 ×105 cm-2 s-1 to Neptune. The fate of the ablated oxygen depends in part on the molecular/atomic form of the initially delivered products, and on the altitude at which it was deposited. The dominant stratospheric products are CO, H2O, and CO2, which are relatively stable photochemically. Model-data comparisons suggest that interplanetary dust grains deliver an important component of the external oxygen to Jupiter and Uranus but fall far short of the amount needed to explain the CO abundance currently seen in the middle stratospheres of Saturn and Neptune. Our results are consistent with the theory that all of the giant planets have experienced large cometary impacts within the last few hundred years. Our results also suggest that the low background H2O abundance in Jupiter's stratosphere is indicative of effective conversion of meteoric oxygen to CO during or immediately after the ablation process - photochemistry alone cannot efficiently convert the H2O into CO on the giant planets.

  9. Effects of hydrogen peroxide, modified atmosphere and their combination on quality of minimally processed cluster beans.

    Science.gov (United States)

    Waghmare, Roji B; Annapure, Uday S

    2017-10-01

    The aim of this study was to determine the potential of hydrogen peroxide (H 2 O 2 ) and modified atmosphere packaging (MAP) on quality of fresh-cut cluster beans. Fresh-cut cluster beans were dipped in a solution of 2% H 2 O 2 for 2 min, packed in an atmosphere of (5% O 2 , 10% CO 2 , 85% N 2 ) and stored in polypropylene bags at 5 °C for 35 days. Passive MAP was created by consuming O 2 and producing CO 2 by fresh-cut cluster beans. The combined effect of H 2 O 2 and MAP on physico-chemical analysis (Headspace gas, weight loss, chlorophyll, hardness and color), microbial quality (mesophilic aerobics and yeasts and molds) and sensory analysis were studied. Chemical treatment and MAP both are equally effective in extending the shelf life at 5 °C for 28 days. Hence, MAP can be an alternative for chemical treatment to achieve a shelf life of 28 days for fresh-cut cluster beans. Control samples, without chemical treatment and modified atmosphere, stored at 5 °C were spoiled after 14 days. Chemical treatment followed by MAP underwent minimum changes in weight, chlorophyll, hardness and color of fresh-cut cluster beans. Combination treatment gives a storage life of 35 days.

  10. Understanding the Atmosphere of 51 Eri b: Do Photochemical Hazes Cloud the Planets Spectrum?

    Science.gov (United States)

    Marley, Mark Scott; Zahnle, Kevin; Moses, J.; Morley, C.

    2015-01-01

    The first young giant planet to be discovered by the Gemini Planet Imager was the (is) approximately 2MJ planet 51 Eri b. This approximately 20 Myr old young Jupiter is the first directly imaged planet to show unmistakable methane in H band. To constrain the planet's mass, atmospheric temperature, and composition, the GPI J and H band spectra as well as some limited photometric points were compared to the predictions of substellar atmosphere models. The best fitting models reported in the discovery paper (Macintosh et al. 2015) relied upon a combination of clear and cloudy atmospheric columns to reproduce the data. However for an object as cool as 700 K, the origin of the cloud coverage is somewhat puzzling, as the global silicate and iron clouds would be expected to have sunk well below the photosphere by this effective temperature. While strong vertical mixing in these low gravity atmospheres remains a plausible explanation, we have explored whether atmospheric photochemistry, driven by the UV flux from the primary star, may yield hazes that also influence the observed spectrum of the planet. To explore this possibility we have modeled the atmospheric photochemistry of 51 Eri b using two state-of-the-art photochemical models, both capable of predicting yields of complex hydrocarbons under various atmospheric conditions. In our presentation we will summarize the modeling approach employed to characterize 51 Eri b, explaining constraints on the planet's effective temperature, gravity, and atmospheric composition and also present results of our studies of atmospheric photochemistry. We will discuss whether photochemical hazes could indeed be responsible for the particulate opacity that apparently sculpts the spectrum of the planet.

  11. Solid state photochemistry. Subpanel A-2(c): Challenges and opportunities in photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Czanderna, A.W. [National Renewable Energy Laboratory, Golden, CO (United States)

    1996-09-01

    In contrast with the prior two subsections, the topics in solid state photochemistry range from photo(thermal)-induced degradation to synthesizing new compounds with desirable functions or properties. We will therefore discuss the importance of each relative to existing technological barriers, recent progress, potential applications, and the advantages expected from new information from basic science, especially, as it relates to the DOE mission.

  12. The Electrodeless Discharge Lamp: A Prospective Tool for Photochemistry Part 3. The Microwave Photochemistry Reactor

    Czech Academy of Sciences Publication Activity Database

    Klán, P.; Hájek, Milan; Církva, Vladimír

    2001-01-01

    Roč. 140, č. 3 (2001), s. 185-189 ISSN 1010-6030 Institutional research plan: CEZ:AV0Z4072921 Keywords : photochemistry * electrodeless discharge lamp * microwave Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.038, year: 2001

  13. Organic chemistry in Titan's atmosphere

    Science.gov (United States)

    Scattergood, T.

    1982-01-01

    Laboratory photochemical simulations and other types of chemical simulations are discussed. The chemistry of methane, which is the major known constituent of Titan's atmosphere was examined with stress on what can be learned from photochemistry and particle irradiation. The composition of dust that comprises the haze layer was determined. Isotope fractionation in planetary atmospheres is also discussed.

  14. A personal perspective on the future of flow photochemistry

    NARCIS (Netherlands)

    Noël, Timothy

    2017-01-01

    Photochemistry and photoredox catalysis have witnessed a remarkable comeback in the last decade. Flow chemistry has been of pivotal importance to alleviate some of the classical obstacles associated with photochemistry. Herein, we analyze some of the most exciting features provided by photo flow

  15. Proceedings of the Nineteenth DOE Solar Photochemistry Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    This document is a compilation of reports presented at the Nineteenth DOE Solar Photochemistry Research Conference. Sessions included photophysical properties of transition metal complexes, cage effects on photochemistry, charge transfer, photo-induced charge separation in biomimetic molecules, photosynthesis, and electron transfer.

  16. Tunable lasers for waste management photochemistry applications

    International Nuclear Information System (INIS)

    Finch, F.T.

    1978-09-01

    A review of lasers with potential photochemical applications in waste management indicates that dye lasers, as a class, can provide tunable laser output through the visible and near-uv regions of the spectrum of most interest to photochemistry. Many variables can affect the performance of a specific dye laser, and the interactions of these variables, at the current state of the art, are complex. The recent literature on dye-laser characteristics has been reviewed and summarized, with emphasis on those parameters that most likely will affect the scaling of dye lasers in photochemical applications. Current costs are reviewed and correlated with output power. A new class of efficient uv lasers that appear to be scalable in both energy output and pulse rate, based on rare-gas halide excimers and similar molecules, is certain to find major applications in photochemistry. Because the most important developments are too recent to be adequately described in the literature or are the likely outcome of current experiments, the basic physics underlying the class of excimer lasers is described. Specific cost data are unavailable, but these new gas lasers should reflect costs similar to those of existing gas lasers, in particular, the pulsed CO 2 lasers. To complete the survey of tunable-laser characteristics, the technical characteristics of the various classes of lasers in the ir are summarized. Important developments in ir laser technology are being accelerated by isotope-separation research, but, initially at least, this portion of the spectrum is least likely to receive emphasis in waste-management-oriented photochemistry

  17. Photochemistry and photophysics concepts, research, applications

    CERN Document Server

    Balzani , Vincenzo; Juris, Alberto

    2014-01-01

    This textbook covers the spectrum from basic concepts of photochemistry and photophysics to selected examples of current applications and research.Clearly structured, the first part of the text discusses the formation, properties and reactivity of excited states of inorganic and organic molecules and supramolecular species, as well as experimental techniques. The second part focuses on the photochemical and photophysical processes in nature and artificial systems, using a wealth of examples taken from applications in nature, industry and current research fields, ranging from natural photosynth

  18. The nitrogen cycle: Atmosphere interactions

    Science.gov (United States)

    Levine, J. S.

    1984-01-01

    Atmospheric interactions involving the nitrogen species are varied and complex. These interactions include photochemical reactions, initiated by the absorption of solar photons and chemical kinetic reactions, which involve both homogeneous (gas-to-gas reactions) and heterogeneous (gas-to-particle) reactions. Another important atmospheric interaction is the production of nitrogen oxides by atmospheric lightning. The nitrogen cycle strongly couples the biosphere and atmosphere. Many nitrogen species are produced by biogenic processes. Once in the atmosphere nitrogen oxides are photochemically and chemically transformed to nitrates, which are returned to the biosphere via precipitation, dry deposition and aerosols to close the biosphere-atmosphere nitrogen cycle. The sources, sinks and photochemistry/chemistry of the nitrogen species; atmospheric nitrogen species; souces and sinks of nitrous oxide; sources; sinks and photochemistry/chemistry of ammonia; seasonal variation of the vertical distribution of ammonia in the troposphere; surface and atmospheric sources of the nitrogen species, and seasonal variation of ground level ammonia are summarized.

  19. Solar photochemistry - twenty years of progress, what`s been accomplished, and where does it lead?

    Energy Technology Data Exchange (ETDEWEB)

    Blake, D M

    1995-01-01

    It has been more than 20 years since the first oil embargo. That event created an awareness of the need for alternative sources of energy and renewed interest in combining sunlight and chemistry to produce the chemicals and materials required by industry. This paper will review approaches that have been taken, progress that has been made, and give some projections for the near and longer term prospects for commercialization of solar photochemistry.

  20. Microwave Photochemistry. Applications in Organic Synthesis

    Czech Academy of Sciences Publication Activity Database

    Církva, Vladimír; Relich, Stanislav

    2011-01-01

    Roč. 8, č. 3 (2011), s. 282-293 ISSN 1570-193X Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave * photochemistry * electrodeless discharge lamp Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 2.406, year: 2011 http://www.scopus.com/record/display.url?eid=2-s2.0-79960013317&origin=resultslist&sort=plf-f&src=s&st1=cirkva%2cv&sid=95rFucNho6qr5iGwVeMnh_W%3a150&sot=b&sdt=b&sl=21&s=AUTHOR-NAME%28cirkva%2cv%29&relpos=0&relpos=0&searchTerm=AUTHOR-NAME(cirkva,v)

  1. Combined Atmospheric and Ocean Profiling from an Airborne High Spectral Resolution Lidar

    Directory of Open Access Journals (Sweden)

    Hair Johnathan

    2016-01-01

    Full Text Available First of its kind combined atmospheric and ocean profile data were collected by the recently upgraded NASA Langley Research Center’s (LaRC High Spectral Resolution Lidar (HSRL-1 during the 17 July – 7 August 2014 Ship-Aircraft Bio-Optical Research Experiment (SABOR. This mission sampled over a region that covered the Gulf of Maine, open-ocean near Bermuda, and coastal waters from Virginia to Rhode Island. The HSRL-1 and the Research Scanning Polarimeter from NASA Goddard Institute for Space Studies collected data onboard the NASA LaRC King Air aircraft and flight operations were closely coordinated with the Research Vessel Endeavor that made in situ ocean optical measurements. The lidar measurements provided profiles of atmospheric backscatter and particulate depolarization at 532nm, 1064nm, and extinction (532nm from approximately 9km altitude. In addition, for the first time HSRL seawater backscatter, depolarization, and diffuse attenuation data at 532nm were collected and compared to both the ship measurements and the Moderate Resolution Imaging Spectrometer (NASA MODIS-Aqua satellite ocean retrievals.

  2. Combined effects of gamma irradiation and a modified atmospheric packaging on the physicochemical characteristics of sausage

    International Nuclear Information System (INIS)

    Ahn, H-.J.; Kim, J.-H.; Jo, Cheorun; Lee, J.-W.; Yook, H.-S.; Kim, H.-Y.; Byun, M.-W.

    2004-01-01

    This study is to investigate the combined effects of irradiation and a modified atmospheric packaging (MAP) on the color, nitrosoheme pigments (NO-Mb), residual nitrite and N-nitrosodimethylamine (NDMA) in sausage during storage. Sausage with air, vacuum, CO 2 , N 2 , or CO 2 /N 2 packaging was irradiated at 5 kGy. Irradiation reduced the red color of sausage, and a vacuum or MAP was effective in minimizing the loss of redness. The reduction of NO-Mb was observed by irradiation, while the MAP was more effective in maintaining the NO-Mb than the aerobic ones. Residual nitrite was reduced by irradiation, and the contents were lower under vacuum or MAP than aerobic ones. NDMA was significantly reduced by irradiation

  3. Combined effects of gamma irradiation and a modified atmospheric packaging on the physicochemical characteristics of sausage

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, H- J; Kim, J -H; Jo, Cheorun; Lee, J -W; Yook, H -S; Kim, H -Y; Byun, M -W

    2004-10-01

    This study is to investigate the combined effects of irradiation and a modified atmospheric packaging (MAP) on the color, nitrosoheme pigments (NO-Mb), residual nitrite and N-nitrosodimethylamine (NDMA) in sausage during storage. Sausage with air, vacuum, CO{sub 2}, N{sub 2}, or CO{sub 2}/N{sub 2} packaging was irradiated at 5 kGy. Irradiation reduced the red color of sausage, and a vacuum or MAP was effective in minimizing the loss of redness. The reduction of NO-Mb was observed by irradiation, while the MAP was more effective in maintaining the NO-Mb than the aerobic ones. Residual nitrite was reduced by irradiation, and the contents were lower under vacuum or MAP than aerobic ones. NDMA was significantly reduced by irradiation.

  4. Proceedings of the Fourteenth DOE solar photochemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The central themes of this year's Solar Photochemistry Research Conference encompassed initial charge separation in photosynthesis, photoinduced charge separation in other organized assemblies, electron transfer, organic and inorganic photochemistry, and photoelectrochemistry. This volume contains a copy of the program the abstracts of 29 formal presentations and 47 posters, a record of the discussion following each presentation, and an address list for the 96 attendees. Individual projects are processed separately for the databases. .

  5. Proceedings of the Fourteenth DOE solar photochemistry research conference

    International Nuclear Information System (INIS)

    1989-01-01

    The central themes of this year's Solar Photochemistry Research Conference encompassed initial charge separation in photosynthesis, photoinduced charge separation in other organized assemblies, electron transfer, organic and inorganic photochemistry, and photoelectrochemistry. This volume contains a copy of the program the abstracts of 29 formal presentations and 47 posters, a record of the discussion following each presentation, and an address list for the 96 attendees. Individual projects are processed separately for the databases

  6. Performance analysis of decode-and-forward dual-hop optical spatial modulation with diversity combiner over atmospheric turbulence

    Science.gov (United States)

    Odeyemi, Kehinde O.; Owolawi, Pius A.; Srivastava, Viranjay M.

    2017-11-01

    Dual-hops transmission is a growing interest technique that can be used to mitigate against atmospheric turbulence along the Free Space Optical (FSO) communication links. This paper analyzes the performance of Decode-and-Forward (DF) dual-hops FSO systems in-conjunction with spatial modulation and diversity combiners over a Gamma-Gamma atmospheric turbulence channel using heterodyne detection. Maximum Ratio Combiner (MRC), Equal Gain Combiner (EGC) and Selection Combiner (SC) are considered at the relay and destination as mitigation tools to improve the system error performance. Power series expansion of modified Bessel function is used to derive the closed form expression for the end-to-end Average Pairwise Error Probability (APEP) expressions for each of the combiners under study and a tight upper bound on the Average Bit Error Rate (ABER) per hop is given. Thus, the overall end-to-end ABER for the dual-hops FSO system is then evaluated. The numerical results depicted that dual-hops transmission systems outperformed the direct link systems. Moreover, the impact of having the same and different combiners at the relay and destination are also presented. The results also confirm that the combination of dual hops transmission with spatial modulation and diversity combiner significantly improves the systems error rate with the MRC combiner offering an optimal performance with respect to variation in atmospheric turbulence, change in links average received SNR and link range of the system.

  7. Molecular beam studies of stratospheric photochemistry

    Science.gov (United States)

    Moore, Teresa Anne

    1998-12-01

    Photochemistry of chlorine oxide containing species plays a major role in stratospheric ozone depletion. This thesis discusses two photodissociation studies of the key molecules ClONO2 and ClOOCl which were previously thought to only produce Cl-atom (ozone depleting) products at wavelengths relevant to the stratosphere. The development of a molecular beam source of ClOOCl and the photodissociation dynamics of the model system Cl2O are also discussed. In the first chapter, the photochemistry of ClONO2 is examined at 308 nm using the technique of photofragment translational spectroscopy. Two primary decomposition pathways, leading to Cl + NO3 and ClO + NO2, were observed, with a lower limit of 0.33 for the relative yield of ClO. The angular distributions for both channels were anisotropic, indicating that the dissociation occurs within a rotational period. Chapter two revisits the photodissociation dynamics of Cl2O at 248 and 308 nm, on which we had previously reported preliminary findings. At 248 nm, three distinct dissociation pathways leading to Cl + ClO products were resolved. At 308 nm, the angular distribution was slightly more isotropic that previously reported, leaving open the possibility that Cl2O excited at 308 nm lives longer than a rotational period. Chapter three describes the development and optimization of a molecular beam source of ClOOCl. We utilized pulsed laser photolysis of ClA2O to generate ClO radicals, and cooled the cell to promote three body recombination to form ClOOCl. The principal components in the beam were Cl2, Cl2O, and ClOOCl. In the fourth chapter, the photodissociation dynamics of ClOOCl are investigated at 248 and 308 nm. We observed multiple dissociation pathways which produced ClO + ClO and 2Cl + O2 products. The relative Cl:ClO product yields are 1.0:0.13 and 1.0:0.20 for ClOOCl photolysis at 248 and 308 nm, respectively. The upper limit for the relative yield of the ClO + ClO channel was 0.19 at 248 nm and 0.31 at 308 nm

  8. The photochemistry of ring-substituted cinnamyl acetates

    International Nuclear Information System (INIS)

    Fleming, S.A.; Renault, L.; Grundy, E.C.; Pincock, J.A.

    2006-01-01

    The photochemistry of the (E)-cinnamyl acetates ((E)-1-aryl-3-propenyl acetates, 8a-8e) with substituents H, 4-CH 3 O, 3-CH 3 O, 4-CF 3 , and 3-CF 3 , respectively, was examined in both cyclohexane and methanol solvents. Alkene isomerization (E to Z) occurred more efficiently than other reactions and evidence is presented that this process occurs from the excited triplet state. In a slower process, 1,3-migration of the acetoxy group led to the rearranged 3-aryl-3-propenyl acetate isomers (9a-9e) as the major pathway, particularly in cylohexane. In methanol, the isomeric ethers 3-aryl-3-methoxypropene (14) and 1-aryl-3-methoxypropene (15) were formed by reaction of methanol with the photochemically generated cation. The combined yield of 14 and 15 (95% and 5%, respectively) was quantitative for the 4-methoxyphenyl compound (8b). Independent irradiations of the isomers 9a-9c demonstrated that the ethers 14 and 15 were primary photoproducts from 8 and not secondary photoproducts from 9. Fluorescence quantum yields and excited singlet state lifetimes indicated that the reactions, other than the E to Z isomerization, are from the excited singlet state. (author)

  9. Modeling of synchrotron-based laboratory simulations of Titan's ionospheric photochemistry

    Science.gov (United States)

    Carrasco, Nathalie; Peng, Zhe; Pernot, Pascal

    2014-11-01

    The APSIS reactor has been designed to simulate in the laboratory with a VUV synchrotron irradiation the photochemistry occurring in planetary upper atmospheres. A N2-CH4 Titan-like gas mixture has been studied, whose photochemistry in Titan's ionospheric irradiation conditions leads to a coupled chemical network involving both radicals and ions. In the present work, an ion-neutral coupled model is developed to interpret the experimental data, taking into account the uncertainties on the kinetic parameters by Monte Carlo sampling. The model predicts species concentrations in agreement with mass spectrometry measurements of the methane consumption and product blocks intensities. Ion chemistry and in particular dissociative recombination are found to be very important through sensitivity analysis. The model is also applied to complementary environmental conditions, corresponding to Titan's ionospheric average conditions and to another existing synchrotron setup. An innovative study of the correlations between species concentrations identifies two main competitive families, leading respectively to saturated and unsaturated species. We find that the unsaturated growth family, driven by C2H2 , is dominant in Titan's upper atmosphere, as observed by the Cassini INMS. But the saturated species are substantially more intense in the measurements of the two synchrotron experimental setups, and likely originate from catalysis by metallic walls of the reactors.

  10. ON THE COMBINATION OF IMAGING-POLARIMETRY WITH SPECTROPOLARIMETRY OF UPPER SOLAR ATMOSPHERES DURING SOLAR ECLIPSES

    International Nuclear Information System (INIS)

    Qu, Z. Q.; Deng, L. H.; Dun, G. T.; Chang, L.; Zhang, X. Y.; Cheng, X. M.; Qu, Z. N.; Xue, Z. K.; Ma, L.; Allington-Smith, J.; Murray, G.

    2013-01-01

    We present results from imaging polarimetry (IP) of upper solar atmospheres during a total solar eclipse on 2012 November 13 and spectropolarimetry of an annular solar eclipse on 2010 January 15. This combination of techniques provides both the synoptic spatial distribution of polarization above the solar limb and spectral information on the physical mechanism producing the polarization. Using these techniques together we demonstrate that even in the transition region, the linear polarization increases with height and can exceed 20%. IP shows a relatively smooth background distribution in terms of the amplitude and direction modified by solar structures above the limb. A map of a new quantity that reflects direction departure from the background polarization supplies an effective technique to improve the contrast of this fine structure. Spectral polarimetry shows that the relative contribution to the integrated polarization over the observed passband from the spectral lines decreases with height while the contribution from the continuum increases as a general trend. We conclude that both imaging and spectral polarimetry obtained simultaneously over matched spatial and spectral domains will be fruitful for future eclipse observations

  11. Instability of combined gravity-inertial-Rossby waves in atmospheres and oceans

    Directory of Open Access Journals (Sweden)

    J. F. McKenzie

    2011-06-01

    Full Text Available The properties of the instability of combined gravity-inertial-Rossby waves on a β-plane are investigated. The wave-energy exchange equation shows that there is an exchange of energy with the background stratified medium. The energy source driving the instability lies in the background enthalpy released by the gravitational buoyancy force. It is shown that if the phase speed of the westward propagating low frequency-long wavelength Rossby wave exceeds the Poincaré-Kelvin (or "equivalent" shallow water wave speed, instability arises from the merging of Rossby and Poincaré modes. There are two key parameters in this instability condition; namely, the equatorial/rotational Mach (or Froude number M and the latitude θ0 of the β-plane. In general waves equatorward of a critical latitude for given M can be driven unstable, with corresponding growth rates of the order of a day or so. Although these conclusions may only be safely drawn for short wavelengths corresponding to a JWKB wave packet propagating internally and located far from boundaries, nevertheless such a local instability may play a significant role in atmosphere-ocean dynamics.

  12. Mousse photochemistry formation; Formacao fotoquimica de mousse

    Energy Technology Data Exchange (ETDEWEB)

    Rangel, George W.M.; Nicodem, David E. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Quimica]. E-mail: gwallace_iq@yahoo.com.br; nicodem@iq.ufrj.br

    2003-07-01

    The petroleum, when spilled in the sea it forms an emulsion of water in oil could contain up to 90% of water. This emulsion, called Mousse of Chocolate, it can be very stable, taking to the increase of the environmental impact and impeding the microbiological degradation. It was observed that the petroleum, when irradiated with solar light, it forms Mousse more easily. However, same being known about the importance of the action of the light in the formation of Mousse, little it is known regarding the processes and conditions involved in the formation of Mousse. This project proposes the study of the process of formation of Mousse, in function of the suffered transformations for petroleum after solar irradiation. We will study the relationship between the stability and formation of Mousse and the present amount of asphaltenes in the petroleum as a result of the irradiation. We will develop a methodology for analysis of emulsions of water in petroleum, in way we know her/it the stability of the emulsion in function of the time and the amount of water in the same. We will study the behavior of a sample of Brazilian petroleum of Campos' Basin, already used in other photochemistry studies. We will analyze the effect of the time of irradiation in the asphaltenes formation and Mousse. We will also analyze other types of petroleum, for us to compare results with obtained them in the Brazilian petroleum. (author)

  13. Radiation Chemistry and Photochemistry of Ionic Liquids

    International Nuclear Information System (INIS)

    Wishart, J.F.; Takahaski, K.

    2010-01-01

    As our understanding of ionic liquids and their tunable properties has grown, it is possible to see many opportunities for ionic liquids to contribute to the sustainable use of energy. The potential safety and environmental benefits of ionic liquids, as compared to conventional solvents, have attracted interest in their use as processing media for the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry of ionic liquids is still a relatively unexplored topic although there has been a significant increase in the number of researchers in the field recently. This article provides a brief introduction to ionic liquids and their interesting properties, and recent advances in the radiation chemistry and photochemistry of ionic liquids. In this article, we will mainly focus on excess electron dynamics and radical reaction dynamics. Because solvation dynamics processes in ionic liquids are much slower than in molecular solvents, one of the distinguishing characteristics is that pre-solvated electrons play an important role in ionic liquid radiolysis. It will be also shown that the reaction dynamics of radical ions is significantly different from that observed in molecular solvents because of the Coulombic screening effects and electrostatic interactions in ionic liquids.

  14. Effect of modified atmosphere packaging and irradiation in combination on content of nitrosamines in cooked pork sausage.

    Science.gov (United States)

    Song, I H; Kim, W J; Jo, C; Ahn, H J; Kim, J H; Byun, M W

    2003-06-01

    The effect of modified atmosphere packaging and irradiation in combination on nitrosodimethylamine (NDMA) and nitrosopyrrolidine (NPYR) levels in pork sausage was studied. Emulsion-type cooked pork sausage was manufactured and packaged in aerobic, CO2 (100%), N2 (100%), and CO2/N2 (25%/75%) environments, respectively, and irradiated at 0, 5, 10, and 20 kGy with gamma irradiation. The nitrosamine contents were significantly reduced by irradiation, and the reduction of nitrosamines was more extensive with modified atmosphere packaging than with aerobic packaging. The correlation coefficient between irradiation dose and nitrosamine content indicated that irradiation can reduce the levels of nitrosamines. The combination of irradiation and modified atmosphere packaging is effective in enhancing the chemical safety of sausage by reducing nitrosamines, if present, as well as enhancing the microbial safety of cooked pork sausage.

  15. Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system

    Directory of Open Access Journals (Sweden)

    A. J. Geer

    2007-01-01

    Full Text Available This paper evaluates the performance of various linear ozone photochemistry parametrizations using the stratosphere-troposphere data assimilation system of the Met Office. A set of experiments were run for the period 23 September 2003 to 5 November 2003 using the Cariolle (v1.0 and v2.1, LINOZ and Chem2D-OPP (v0.1 and v2.1 parametrizations. All operational meteorological observations were assimilated, together with ozone retrievals from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS. Experiments were validated against independent data from the Halogen Occultation Experiment (HALOE and ozonesondes. Additionally, a simple offline method for comparing the parametrizations is introduced. It is shown that in the upper stratosphere and mesosphere, outside the polar night, ozone analyses are controlled by the photochemistry parametrizations and not by the assimilated observations. The most important factor in getting good results at these levels is to pay attention to the ozone and temperature climatologies in the parametrizations. There should be no discrepancies between the climatologies and the assimilated observations or the model, but there is also a competing demand that the climatologies be objectively accurate in themselves. Conversely, in the lower stratosphere outside regions of heterogeneous ozone depletion, the ozone analyses are dominated by observational increments and the photochemistry parametrizations have little influence. We investigate a number of known problems in LINOZ and Cariolle v1.0 in more detail than previously, and we find discrepancies in Cariolle v2.1 and Chem2D-OPP v2.1, which are demonstrated to have been removed in the latest available versions (v2.8 and v2.6 respectively. In general, however, all the parametrizations work well through much of the stratosphere, helped by the presence of good quality assimilated MIPAS observations.

  16. O2 atmospheric band measurements with WINDII: Performance of a narrow band filter/wide angle Michelson combination in space

    International Nuclear Information System (INIS)

    Ward, W.E.; Hersom, C.H.; Tai, C.C.; Gault, W.A.; Shepherd, G.G.; Solheim, B.H.

    1994-01-01

    Among the emissions viewed by the Wind Imaging Interferometer (WINDII) on the Upper Atmosphere Research Satellite (UARS) are selected lines in the (0-0) transition of the O2 atmospheric band. These lines are viewed simultaneously using a narrow band filter/wide-angle Michelson interferometer combination. The narrow band filter is used to separate the lines on the CCD (spectral-spatial scanning) and the Michelson used to modulate the emissions so that winds and rotational temperatures may be measured from the Doppler shifts and relative intensities of the lines. In this report this technique will be outlined and the on-orbit behavior since launch summarized

  17. NUCAPS: NOAA Unique Combined Atmospheric Processing System Environmental Data Record (EDR) Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset consists of numerous retrieved estimates of hydrological variables and trace gases as Environmental Data Record (EDR) products from the NOAA Unique...

  18. Photochemistry of modified proteins benzophenone-containing bovine serum albumin

    International Nuclear Information System (INIS)

    Mariano, P.S.; Glover, G.I.; Wilkinson, T.J.

    1976-01-01

    The results of exploratory and mechanistic studies of the photochemistry of poly-p-benzoyl-acetimido-bovine serum albumin, a modified protein containing photoreactive and photosensitizing groups, are reported. Specifically described are recent findings concerning (1) the synthesis and characterization of a modified bovine serum albumin that contains benzophenone-like moieties, (2) the photochemistry of this modified protein which appeared to involve photoreductive coupling of the benzophenone chromophores to the protein backbone, and (3) triplet energy transfer from modified bovine serum albumin to small molecule acceptors resulting in quenching of the photoreaction. (author)

  19. VUV spectroscopy and photochemistry of five interstellar and putative prebiotic molecules

    Science.gov (United States)

    Schwell, M.; Gaie-Levrel, F.; Bénilan, Y.; Gazeau, M.-C.; Fray, N.; Saul, G.; Champion, N.; Leach, S.; Guillemin, J.-C.

    2012-02-01

    For many years, our group has been investigating the VUV spectroscopy and photochemistry of molecules of astrophysical (Jochims et al. 2006a,b; Leach et al. 2008; Schwell et al. 2012) and prebiotic interest (Schwell et al. 2006). Polyynes and cyano-polyynes that are abundant in the interstellar medium (ISM) and in planetary atmospheres, have been investigated too (e.g. Fray et al. 2010). An aerosol source for reactive and thermo-labile compounds has been developed (Gaie-Levrel et al. 2011) to perform gas-phase measurements. These are necessary to measure intrinsic molecular properties and to compare to quantum chemical calculations. Besides measuring absolute absorption and photoionization cross sections, dissociative channels and their involved excited states are identified for a number of molecules of interstellar interest. Branching ratios of the respective elementary photoreactions are determined in order to understand and model the photochemistry occurring in the ISM. Some very recent results on the dissociative photoionization of methylformate (MF), glycolaldehyde (GA), dimethylether (DIM), aminoacetonitrile (AAC) and cyanoacetylene (CA), are presented here.

  20. Host trait combinations drive abundance and canopy distribution of atmospheric bromeliad assemblages.

    Science.gov (United States)

    Chaves, Cleber Juliano Neves; Dyonisio, Júlio César; Rossatto, Davi Rodrigo

    2016-01-01

    Epiphytes are strongly dependent on the conditions created by their host's traits and a certain degree of specificity is expected between them, even if these species are largely abundant in a series of tree hosts of a given environment, as in the case of atmospheric bromeliads. Despite their considerable abundance in these environments, we hypothesize that stochasticity alone cannot explain the presence and abundance of atmospheric bromeliads on host trees, since host traits could have a greater influence on the establishment of these bromeliads. We used secondary and reforested seasonal forests and three distinct silvicultures to test whether species richness, phylogenetic diversity and functional diversity of trees can predict the differential presence, abundance and distribution of atmospheric bromeliads on hosts. We compared the observed parameters of their assemblage with null models and performed successive variance hierarchic partitions of abundance and distribution of the assemblage to detect the influence of multiple traits of the tree hosts. Our results do not indicate direct relationships between the abundance of atmospheric bromeliads and phylogenetic or functional diversity of trees, but instead indicate that bromeliads occurred on fewer tree species than expected by chance. We distinguished functional tree patterns that can improve or reduce the abundance of atmospheric bromeliads, and change their distribution on branches and trunk. While individual tree traits are related to increased abundance, species traits are related to the canopy distribution of atmospheric bromeliad assemblages. A balance among these tree functional patterns drives the atmospheric bromeliad assemblage of the forest patches. Published by Oxford University Press on behalf of the Annals of Botany Company.

  1. The changing photochemistry of the troposhere

    Energy Technology Data Exchange (ETDEWEB)

    Crutzen, P.J.; Zimmermann, P.H. (Div. of Atmospheric Chemistry, Max-Planck-Institute for Chemistry, Mainz (DE))

    1991-01-01

    The cemistry of the troposhere is substantially influenced by a wide range of chemical processes which are primarily driven by the action of solar ultraviolet radiation of wavelengths shorter that about 310 nm on ozone and water vapour. This leads to the formation of hydroxyl (OH) radicals which, despite very low troposheric concentrations, remove most gases that are emitted into the atmosphere by natural and anthropogenic processes. Although troposheric ozone only makes up about 10% of all atmospheric ozone, through the formation of OH, it determines the oxidation efficiency of the atmosphere and it is, therefore, of the utmost importance for maintaining the chemical composition of the atmosphere. Due to a variety of human activities, leading especially to increasing emissions of CH{sub 4}, CO and NO{sub x}, it is conceivable that the concentrations of ozone are increasing in polluted and those of hydroxyl decreasing in clean troposheric environments. The result is most likely an overall decrease in the oxidation efficiency of the atmosphere and consequently a buildup of several long-lived trace gases that are primarily removed by reaction with OH. Here we discuss the most important processes that determine the oxidation efficiency of the atmosphere and give some examples of changes in O{sub 3}, CO, and OH concentration distributions that may have occurred as a result of human activities. (au).

  2. A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets

    NARCIS (Netherlands)

    Brogi, M.; Line, M.; Bean, J.; Désert, J.-M.; Schwarz, H.

    2017-01-01

    Current observations of the atmospheres of close-in exoplanets are predominantly obtained with two techniques: low-resolution spectroscopy with space telescopes and high-resolution spectroscopy from the ground. Although the observables delivered by the two methods are in principle highly

  3. Microwave-ultrasound combined reactor suitable for atmospheric sample preparation procedure of biological and chemical products

    NARCIS (Netherlands)

    Lagha, A.; Chemat, S.; Bartels, P.V.; Chemat, F.

    1999-01-01

    A compact apparatus in which a specific position can be irradiated by microwaves (MW) and ultrasound (US) simultaneously has been developed. The MW-US reactor has been designed for atmospheric pressure digestion and dissolution of biological and chemical products. The reactor can treat a range of

  4. Photochemistry, mixing and transport in Jupiter's stratosphere constrained by Cassini

    Science.gov (United States)

    Hue, V.; Hersant, F.; Cavalié, T.; Dobrijevic, M.; Sinclair, J. A.

    2018-06-01

    In this work, we aim at constraining the diffusive and advective transport processes in Jupiter's stratosphere, using Cassini/CIRS observations published by Nixon et al. (2007,2010). The Cassini-Huygens flyby of Jupiter on December 2000 provided the highest spatially resolved IR observations of Jupiter so far, with the CIRS instrument. The IR spectrum contains the fingerprints of several atmospheric constituents and allows probing the tropospheric and stratospheric composition. In particular, the abundances of C2H2 and C2H6, the main compounds produced by methane photochemistry, can be retrieved as a function of latitude in the pressure range at which CIRS is sensitive to. CIRS observations suggest a very different meridional distribution for these two species. This is difficult to reconcile with their photochemical histories, which are thought to be tightly coupled to the methane photolysis. While the overall abundance of C2H2 decreases with latitude, C2H6 becomes more abundant at high latitudes. In this work, a new 2D (latitude-altitude) seasonal photochemical model of Jupiter is developed. The model is used to investigate whether the addition of stratospheric transport processes, such as meridional diffusion and advection, are able to explain the latitudinal behavior of C2H2 and C2H6. We find that the C2H2 observations are fairly well reproduced without meridional diffusion. Adding meridional diffusion to the model provides an improved agreement with the C2H6 observations by flattening its meridional distribution, at the cost of a degradation of the fit to the C2H2 distribution. However, meridional diffusion alone cannot produce the observed increase with latitude of the C2H6 abundance. When adding 2D advective transport between roughly 30 mbar and 0.01 mbar, with upwelling winds at the equator and downwelling winds at high latitudes, we can, for the first time, reproduce the C2H6 abundance increase with latitude. In parallel, the fit to the C2H2 distribution is

  5. Some results of an experimental study of the atmospheric aerosol in Tomsk: A combined approach

    Energy Technology Data Exchange (ETDEWEB)

    Zuev, V.V. [Institute of Atmospheric Optics, Tomsk (Russian Federation)

    1996-04-01

    As widely accepted, aerosols strongly contribute to the formation of the earth`s radiation balance through the absorption and scattering of solar radiation. In addition, aerosols, being active condensation nuclei, also have a role in the cloud formation process. In this paper, results are presented of aerosol studies undertaken at the field measurement sites of the Institute of Atmospheric Optics in Tomsk and the Tomsk region.

  6. Microbiological Safety of Minimally Processed White Radish in Modified Atmosphere Packaging Combined with Irradiation Treatment

    International Nuclear Information System (INIS)

    Kim, J.K.; Jo, C.U.; Kim, H.J.; Lee, J.W.; Hwang, H.J.; Byun, M.W.

    2005-01-01

    White radish was minimally processed, packed with air, CO@@@(100g), and CO@@@/N@@@(25/75%), and irradiated at 0, 1, and 2 kGy, and its microbiological quality and pH were investigated during storage for 2 weeks at 4℃. Irradiation significantly reduced total aerobic, coli-form, and lactic acid bacteria counts. Modified atmosphere packaging (MAP) enhanced microorganism control during storage. Acidity decreased by MAP but was restored during storage

  7. Tracking atmospheric boundary layer in tehran using combined lidar remote sensing and ground base measurements

    Science.gov (United States)

    Panahifar, Hossein; Khalesifard, Hamid

    2018-04-01

    The vertical structure of the atmospheric boundary layer (ABL) has been studied by use of a depolarized LiDAR over Tehran, Iran. The boundary layer height (BLH) remains under 1km, and its retrieval from LiDAR have been compared with sonding measurements and meteorological model outputs. It is also shown that the wind speed and direction as well as topography lead to the persistence of air pollution in Tehran. The situation aggravate in fall and winter due to temperature inversion.

  8. An update of nitrile photochemistry on Titan

    Science.gov (United States)

    Yung, Yuk L.

    1987-01-01

    Comparisons are undertaken between laboratory kinetics experiments and Voyager observations in order to shed light on possible chemical reaction pathways to the generation of cyanogen and dicyanoacetylene in Titan's upper atmosphere. The predicted concentrations of the simple nitrile compounds are found to be of a magnitude realistically corresponding to the Voyager observations.

  9. Treatment of uncertainties in atmospheric chemical systems: A combined modeling and experimental approach

    Science.gov (United States)

    Pun, Betty Kong-Ling

    1998-12-01

    Uncertainty is endemic in modeling. This thesis is a two- phase program to understand the uncertainties in urban air pollution model predictions and in field data used to validate them. Part I demonstrates how to improve atmospheric models by analyzing the uncertainties in these models and using the results to guide new experimentation endeavors. Part II presents an experiment designed to characterize atmospheric fluctuations, which have significant implications towards the model validation process. A systematic study was undertaken to investigate the effects of uncertainties in the SAPRC mechanism for gas- phase chemistry in polluted atmospheres. The uncertainties of more than 500 parameters were compiled, including reaction rate constants, product coefficients, organic composition, and initial conditions. Uncertainty propagation using the Deterministic Equivalent Modeling Method (DEMM) revealed that the uncertainties in ozone predictions can be up to 45% based on these parametric uncertainties. The key parameters found to dominate the uncertainties of the predictions include photolysis rates of NO2, O3, and formaldehyde; the rate constant for nitric acid formation; and initial amounts of NOx and VOC. Similar uncertainty analysis procedures applied to two other mechanisms used in regional air quality models led to the conclusion that in the presence of parametric uncertainties, the mechanisms cannot be discriminated. Research efforts should focus on reducing parametric uncertainties in photolysis rates, reaction rate constants, and source terms. A new tunable diode laser (TDL) infrared spectrometer was designed and constructed to measure multiple pollutants simultaneously in the same ambient air parcels. The sensitivities of the one hertz measurements were 2 ppb for ozone, 1 ppb for NO, and 0.5 ppb for NO2. Meteorological data were also collected for wind, temperature, and UV intensity. The field data showed clear correlations between ozone, NO, and NO2 in the one

  10. Effect of methyl mercaptophos in different combinations with elevated atmospheric temperature and ultraviolet radiation

    International Nuclear Information System (INIS)

    Gabovich, R.D.; Murashko, V.A.

    1975-01-01

    Rats were exposed to methyl mercaptophos (I) vapor combined with various doses of uv irradiation at 22deg or 37deg. Changes in the levels of serum alkaline phosphatase, hepatic and serum cholinestrerase, adrenal ascorbic acid, and other parameters indicated that the animals' resistance to the effects of I was decreased by: a) low uv irradiation, b) elevated temperature, or c) combined elevated temperature and excessive uv irradiation

  11. Combined effects of gamma-irradiation and modified atmosphere packaging on quality of some spices.

    Science.gov (United States)

    Kirkin, Celale; Mitrevski, Blagoj; Gunes, Gurbuz; Marriott, Philip J

    2014-07-01

    Thyme (Thymus vidgaris L.), rosemary (Rosmarinus officinalis L.), black pepper (Piper nigrum L.) and cumin (Cuminum cyminum L.) in ground form were packaged in either air or 100% N2 and γ-irradiated at 3 different irradiation levels (7kGy, 12kGy, 17kGy). Total viable bacterial count, yeast and mould count, colour, essential oil yield and essential oil composition were determined. Microbial load was not detectable after 12kGy irradiation of all samples. Irradiation resulted in significant changes in colour values of rosemary and black pepper. The discolouration of the irradiated black pepper was lower in modified atmosphere packaging (MAP) compared to air packaging. Essential oil yield of irradiated black pepper and cumin was lower in air packaging compared to MAP. Gamma-irradiation generally decreased monoterpenes and increased oxygenated compounds, but the effect was lower in MAP. Overall, spices should be irradiated under an O2-free atmosphere to minimise quality deterioration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Radiation and Photochemistry Section annual report, October 1990--September 1991

    International Nuclear Information System (INIS)

    1991-12-01

    This report describes the radiation chemistry and photochemistry of reactive intermediates in the condensed phase. The section on the chemistry of ions treats condensed-phase reactions of radical cations, radical cations in zeolite matrices, high energy chemistry, ions and excited states in radiolysis, and photochemistry of the polymer imaging systems. The section on the role of solvent in chemical reactivity describes a study of atomic hydrogen and deuterium in water radiolysis, solvated electron thermodynamics and transport properties, solvent relaxation dynamics, and solvation of an excess electron in an aqueous solution of LiCl. A separate section outlines activities at the 20-MeV linac and the 3-MeV Van de Graaff accelerator

  13. Study on atmosphere pollution by PIXE analysis combining with statistical method

    International Nuclear Information System (INIS)

    Zhu Guanghua

    1994-06-01

    Atmospheric aerosol samples were collected using an 8-stage cascade impactor or an automatic time sequence step sampler at Jomo Langma, Zhangye at the edge of Gobi Desert and Beijing. Element concentration were analyzed by PIXE (proton induced X-ray emission) technique. The data were analyzed by APCA (absolute principal component analysis) to determine the principal components. The sources and contribution to the aerosol in the above three regions were discussed. The result shows that the PIXE has high sensitivity, multi-element capability, high speed and non-destruction advantages. APCA analytical method can effectively determine the aerosol components in urban area, and it also can distinguish between local components and remote components in the area far from the pollution resources

  14. Silicon etching of difluoromethane atmospheric pressure plasma jet combined with its spectroscopic analysis

    Science.gov (United States)

    Sung, Yu-Ching; Wei, Ta-Chin; Liu, You-Chia; Huang, Chun

    2018-06-01

    A capacitivly coupled radio-frequency double-pipe atmospheric-pressure plasma jet is used for etching. An argon carrier gas is supplied to the plasma discharge jet; and CH2F2 etch gas is inserted into the plasma discharge jet, near the silicon substrate. Silicon etchings rate can be efficiently-controlled by adjusting the feeding etching gas composition and plasma jet operating parameters. The features of silicon etched by the plasma discharge jet are discussed in order to spatially spreading plasma species. Electronic excitation temperature and electron density are detected by increasing plasma power. The etched silicon profile exhibited an anisotropic shape and the etching rate was maximum at the total gas flow rate of 4500 sccm and CH2F2 concentration of 11.1%. An etching rate of 17 µm/min was obtained at a plasma power of 100 W.

  15. The nature of light. A brief introduction to photochemistry

    OpenAIRE

    Font, Josep

    2017-01-01

    The first lecture of the seminar on Light, Darkness and Living Beings, held in Mataró in March 2015, was devoted to explaining the dual nature of light and the interaction of this electromagnetic radiation with matter, considering mainly the photochemical aspects. This article summarizes the lecture, offering a brief description of the basis of photochemistry and giving some examples of reactions that need light in order to occur. Examples related to biological systems (e.g. plant photosynthe...

  16. Isoprene photochemistry over the Amazon rainforest.

    Science.gov (United States)

    Liu, Yingjun; Brito, Joel; Dorris, Matthew R; Rivera-Rios, Jean C; Seco, Roger; Bates, Kelvin H; Artaxo, Paulo; Duvoisin, Sergio; Keutsch, Frank N; Kim, Saewung; Goldstein, Allen H; Guenther, Alex B; Manzi, Antonio O; Souza, Rodrigo A F; Springston, Stephen R; Watson, Thomas B; McKinney, Karena A; Martin, Scot T

    2016-05-31

    Isoprene photooxidation is a major driver of atmospheric chemistry over forested regions. Isoprene reacts with hydroxyl radicals (OH) and molecular oxygen to produce isoprene peroxy radicals (ISOPOO). These radicals can react with hydroperoxyl radicals (HO2) to dominantly produce hydroxyhydroperoxides (ISOPOOH). They can also react with nitric oxide (NO) to largely produce methyl vinyl ketone (MVK) and methacrolein (MACR). Unimolecular isomerization and bimolecular reactions with organic peroxy radicals are also possible. There is uncertainty about the relative importance of each of these pathways in the atmosphere and possible changes because of anthropogenic pollution. Herein, measurements of ISOPOOH and MVK + MACR concentrations are reported over the central region of the Amazon basin during the wet season. The research site, downwind of an urban region, intercepted both background and polluted air masses during the GoAmazon2014/5 Experiment. Under background conditions, the confidence interval for the ratio of the ISOPOOH concentration to that of MVK + MACR spanned 0.4-0.6. This result implies a ratio of the reaction rate of ISOPOO with HO2 to that with NO of approximately unity. A value of unity is significantly smaller than simulated at present by global chemical transport models for this important, nominally low-NO, forested region of Earth. Under polluted conditions, when the concentrations of reactive nitrogen compounds were high (>1 ppb), ISOPOOH concentrations dropped below the instrumental detection limit (Amazon rainforest.

  17. Atmospheric gravity wave detection following the 2011 Tohoku earthquakes combining COSMIC occultation and GPS observations

    Science.gov (United States)

    Yan, X.; Tao, Y.; Xia, C.; Qi, Y.; Zuo, X.

    2017-12-01

    Several studies have reported the earthquake-induced atmospheric gravity waves detected by some new technologies such as airglow (Makela et al., 2011), GOCE (Garcia et al., 2013), GRACE (Yang et al., 2014), F3/C radio occultation sounding (Coïsson et al., 2015). In this work, we collected all occultation events on 11 March, and selected four events to analyze at last. The original and filtered podTEC is represented as function of the altitude of the impact parameter and UT of the four events. Then, the travel time diagrams of filtered podTEC derived from the events were analyzed. The occultation signal from one event (marked as No.73) is consistent with the previous results reported by Coïsson. 2015, which is corresponds to the ionospheric signal induced from tsunami gravity wave. What is noticeable, in this work, is that three occultation events of No.403, 77 and 118 revealed a disturbance of atmospheric gravity wave with velocity 300m/s, preceding the tsunami. It would probably be correspond to the gravity waves caused by seismic rupture but not tsunami. In addition, it can be seen that the perturbation height of occultation observation TEC is concentrated at 200-400km, corresponding ionosphere F region. The signals detected above are compared with GPS measurements of TEC from GEONET and IGS. From GPS data, traveling ionospheric disturbances were observed spreading out from the epicenter as a quasi-circular propagation pattern with the time. Exactly, we observed an acoustic wave coupled with Rayleigh wave starting from the epicenter with a speed of 3.0km/s and a superimposed acoustic-gravity wave moving with a speed of 800m/s. The acoustic-gravity wave generated at the epicenter and gradually attenuated 800km away, then it is replaced by a gravity wave coupled with the tsunami that moves with a speed of between 100 and 300m/s. It is necessary to confirm the propagation process of the waves if we attempt to evaluate the use of ionospheric seismology as a

  18. Toxic effects of six plant oils alone and in combination with controlled atmosphere on Liposcelis bostrychophila (Psocoptera: Liposcelididae).

    Science.gov (United States)

    Wang, J J; Tsai, J H; Ding, W; Zhao, Z M; Li, L S

    2001-10-01

    Six plant essential oils alone as repellent and fumigant, and in combination with the controlled atmosphere against Liposcelis bostrychophila Badonnel were assessed in the laboratory. These essential oils were extracted from the leaves of six source plants: Citrus tangerina Tanaka, Citrus aurantium L., Citrus bergamia Risso et Poiteau, Pinus sylvestris L., Cupressus funebris End]., and Eucalyptus citriodora Hook. The repellency test indicated that L. bostrychophila adults were repelled by filter paper strips treated with six essential oils. Of these essential oils, the C. funebris oil was most effective followed by that of F. sylvestris, C. tangerina, C. bergamia, and E. citriodora. The average repellency of the C. aurantium oil against L. bostrychophila adults was significantly lower than other five test oils by day 14. These essential oils had a high level of toxicity in the fumigation assay against L. bostrychophila adults at both 10 and 20 ppm. When combined with two controlled atmosphere treatments (12% CO2 + 9% O2, and 10% CO2 + 5% O2, balanced N2), the toxicity of plant oils was enhanced significantly.

  19. A combined MOIP-MCDA approach to building and screening atmospheric pollution control strategies in urban regions.

    Science.gov (United States)

    Mavrotas, George; Ziomas, Ioannis C; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  20. A Combined MOIP-MCDA Approach to Building and Screening Atmospheric Pollution Control Strategies in Urban Regions

    Science.gov (United States)

    Mavrotas, George; Ziomas, Ioannis C.; Diakouaki, Danae

    2006-07-01

    This article presents a methodological approach for the formulation of control strategies capable of reducing atmospheric pollution at the standards set by European legislation. The approach was implemented in the greater area of Thessaloniki and was part of a project aiming at the compliance with air quality standards in five major cities in Greece. The methodological approach comprises two stages: in the first stage, the availability of several measures contributing to a certain extent to reducing atmospheric pollution indicates a combinatorial problem and favors the use of Integer Programming. More specifically, Multiple Objective Integer Programming is used in order to generate alternative efficient combinations of the available policy measures on the basis of two conflicting objectives: public expenditure minimization and social acceptance maximization. In the second stage, these combinations of control measures (i.e., the control strategies) are then comparatively evaluated with respect to a wider set of criteria, using tools from Multiple Criteria Decision Analysis, namely, the well-known PROMETHEE method. The whole procedure is based on the active involvement of local and central authorities in order to incorporate their concerns and preferences, as well as to secure the adoption and implementation of the resulting solution.

  1. ATLID: atmospheric lidar for clouds and aerosol observation combined with radar sounding

    Science.gov (United States)

    Pain, Th.; Martimort, Ph.; Tanguy, Ph.; Leibrandt, W.; Heliere, A.

    2017-11-01

    The atmospheric lidar ATLID is part of the payload of the joint collaborative satellite mission Earth Cloud and Aerosol Explorer (EarthCARE) conducted by the European Space Agency (ESA) and the National Space Development Agency of Japan (JAXA). In December 2002, ESA granted Alcatel Space with a phase A study of the EarthCARE mission in which Alcatel Space is also in charge to define ATLID. The primary objective of ATLID at the horizon 2011 is to provide global observation of clouds in synergy with a cloud profiling radar (CPR) mounted on the same platform. The planned spaceborne mission also embarks an imager and a radiometer and shall fly for 3 years. The lidar design is based on a novel concept that maximises the scientific return and fosters a cost-effective approach. This improved capability results from a better understanding of the way optical characteristics of aerosol and clouds affect the performance budget. For that purpose, an end to end performance model has been developed utilising a versatile data retrieval method suitable for new and more conventional approaches. A synthesis of the achievable performance will be presented to illustrate the potential of the system together with a description of the design.

  2. Proceedings of the twenty-first DOE solar photochemistry research conference

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The Solar Photochemistry Research Conference brings together grantees and contractors of the Division of Chemical Sciences who are engaged in fundamental research on solar photochemical energy conversion. The annual conference provides a focus for the program by allowing for the exchange of new information and ideas, identification of needs and opportunities, and fostering of collaborations among investigators of disparate chemistry backgrounds. The synergy that has been achieved is a major strength of the program. The research provides the foundations for future solar technologies, in which light-induced charge separation processes will be applied to conversion of light energy to chemical energy, e.g., production of alcohols from carbon dioxide, hydrogen from water, ammonia from atmospheric nitrogen, or other needed chemicals at lower cost of by using sunlight as the energy source. The program includes topical sessions on semiconductor nanoparticles, nanocrystalline films, and photoinduced charge separation at the semiconductor/liquid interface; photochemistry and photophysics of transition metal complexes; photoinduced charge separation in zeolites and lamellar assemblies; intramolecular charge separation and electron transfer; dynamics of solvation and solution interfaces; and photoconversion via porphyrins and biomimetic constructs. The special guest plenary lecturer is Professor Moungi Bawendi of the Massachusetts Institute of Technology, who spoke on semiconductor nanocrystallites (quantum dots). As an added feature, Tom Surek, the Photovoltaics Technology program manager at NREL, presented a status report on one of the most promising and heavily supported programs in solar energy conversion technology, solid state photovoltaics. This volume contains the agenda for the meeting, abstracts of the 31 formal presentations and 55 posters, as well as an address list for the 111 participants.

  3. Simultaneous Observations of Atmospheric Tides from Combined in Situ and Remote Observations at Mars from the MAVEN Spacecraft

    Science.gov (United States)

    England, Scott L.; Liu, Guiping; Withers, Paul; Yigit, Erdal; Lo, Daniel; Jain, Sonal; Schneider, Nicholas M. (Inventor); Deighan, Justin; McClintock, William E.; Mahaffy, Paul R.; hide

    2016-01-01

    We report the observations of longitudinal variations in the Martian thermosphere associated with nonmigrating tides. Using the Neutral Gas Ion Mass Spectrometer (NGIMS) and the Imaging Ultraviolet Spectrograph (IUVS) on NASA's Mars Atmosphere and Volatile EvolutioN Mission (MAVEN) spacecraft, this study presents the first combined analysis of in situ and remote observations of atmospheric tides at Mars for overlapping volumes, local times, and overlapping date ranges. From the IUVS observations, we determine the altitude and latitudinal variation of the amplitude of the nonmigrating tidal signatures, which is combined with the NGIMS, providing information on the compositional impact of these waves. Both the observations of airglow from IUVS and the CO2 density observations from NGIMS reveal a strong wave number 2 signature in a fixed local time frame. The IUVS observations reveal a strong latitudinal dependence in the amplitude of the wave number 2 signature. Combining this with the accurate CO2 density observations from NGIMS, this would suggest that the CO2 density variation is as high as 27% at 0-10 deg latitude. The IUVS observations reveal little altitudinal dependence in the amplitude of the wave number 2 signature, varying by only 20% from 160 to 200 km. Observations of five different species with NGIMS show that the amplitude of the wave number 2 signature varies in proportion to the inverse of the species scale height, giving rise to variation in composition as a function of longitude. The analysis and discussion here provide a roadmap for further analysis as additional coincident data from these two instruments become available.

  4. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites

    Energy Technology Data Exchange (ETDEWEB)

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo [University Grenoble Alpes — LTHE UMR 5564–CNRS-INSU/UGA/INPG/IRD, 1025 rue de la Piscine, DU BP53 - 38041 Grenoble CEDEX 9 (France); Sobanska, Sophie [LASIR, (UMR CNRS 8516), Université de Lille 1, Bât. C5, 59655 Villeneuve d' Ascq CEDEX (France); Martins, Jean M.F., E-mail: jean.martins@yujf-grenoble.fr [University Grenoble Alpes — LTHE UMR 5564–CNRS-INSU/UGA/INPG/IRD, 1025 rue de la Piscine, DU BP53 - 38041 Grenoble CEDEX 9 (France)

    2015-12-30

    Highlights: • Numerous ancient mines are left over without specific care for contaminated wastes. • Sources similarity makes the tracing of the origin of metallic fallouts challenging. • Physico-chemical fingerprints of all metal-source sites and fallouts were established. • Combining physical/chemical methods allowed discriminating polluted fallouts origin. • A Hierarchical cluster analysis permitted to identify the dominant particles source. - Abstract: Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

  5. Combining microscopy with spectroscopic and chemical methods for tracing the origin of atmospheric fallouts from mining sites

    International Nuclear Information System (INIS)

    Navel, Aline; Uzu, Gaëlle; Spadini, Lorenzo; Sobanska, Sophie; Martins, Jean M.F.

    2015-01-01

    Highlights: • Numerous ancient mines are left over without specific care for contaminated wastes. • Sources similarity makes the tracing of the origin of metallic fallouts challenging. • Physico-chemical fingerprints of all metal-source sites and fallouts were established. • Combining physical/chemical methods allowed discriminating polluted fallouts origin. • A Hierarchical cluster analysis permitted to identify the dominant particles source. - Abstract: Populations living close to mining sites are often exposed to important heavy metal concentrations, especially through atmospheric fallouts. Identifying the main sources of metal-rich particles remains a challenge because of the similarity of the particle signatures from the polluted sites. This work provides an original combination of physical and chemical methods to determine the main sources of airborne particles impacting inhabited zones. Raman microspectrometry (RMS), X-ray diffraction (DRX), morphology analyses by microscopy and chemical composition were assessed. Geochemical analysis allowed the identification of target and source areas; XRD and RMS analysis identified the main mineral phases in association with their metal content and speciation. The characterization of the dominant minerals was combined with particle morphology analysis to identify fallout sources. The complete description of dust morphologies permitted the successful determination of a fingerprint of each source site. The analysis of these chemical and morphological fingerprints allowed identification of the mine area as the main contributor of metal-rich particles impacting the inhabited zone. In addition to the identification of the main sources of airborne particles, this study will also permit to better define the extent of polluted zones requiring remediation or protection from eolian erosion inducing metal-rich atmospheric fallouts.

  6. Photochemistry of the α-Al2O3-PETN Interface

    Directory of Open Access Journals (Sweden)

    Roman V. Tsyshevsky

    2016-02-01

    Full Text Available Optical absorption measurements are combined with electronic structure calculations to explore photochemistry of an α-Al2O3-PETN interface formed by a nitroester (pentaerythritol tetranitrate, PETN, C5H8N4O12 and a wide band gap aluminum oxide (α-Al2O3 substrate. The first principles modeling is used to deconstruct and interpret the α-Al2O3-PETN absorption spectrum that has distinct peaks attributed to surface F0-centers and surface—PETN transitions. We predict the low energy α-Al2O3 F0-center—PETN transition, producing the excited triplet state, and α-Al2O3 F0-center—PETN charge transfer, generating the PETN anion radical. This implies that irradiation by commonly used lasers can easily initiate photodecomposition of both excited and charged PETN at the interface. The feasible mechanism of the photodecomposition is proposed.

  7. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis

    Science.gov (United States)

    Keane, Thomas C.

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH3 (ammonia) and C2H2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH3CN (acetonitrile), CH3CH = N-N = CHCH3 (acetaldazine), CH3CH = N-NH2 (acetaldehyde hydrazone), C2H5NH2 (ethylamine), CH3NH2 (methylamine) and C2H4 (ethene) in the photolysis of NH3/C2H2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH3CH = N-N = CHCH3 does not explain all of the results obtained in this study. The formation of CH3CH = N-N = CHCH3 by a radical combination reaction of CH3CH = N• was shown in this work to be inconsistent with other experiments where the CH3CH = N• radical is thought to form but where no CH3CH = N-N = CHCH3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH3CH = N-N = CHCH3 formation involving nucleophilic reaction between N2H4 and CH3CH = NH is advanced.

  8. Mechanism for the Coupled Photochemistry of Ammonia and Acetylene: Implications for Giant Planets, Comets and Interstellar Organic Synthesis.

    Science.gov (United States)

    Keane, Thomas C

    2017-09-01

    Laboratory studies provide a fundamental understanding of photochemical processes in planetary atmospheres. Photochemical reactions taking place on giant planets like Jupiter and possibly comets and the interstellar medium are the subject of this research. Reaction pathways are proposed for the coupled photochemistry of NH 3 (ammonia) and C 2 H 2 (acetylene) within the context Jupiter's atmosphere. We then extend the discussion to the Great Red Spot, Extra-Solar Giant Planets, Comets and Interstellar Organic Synthesis. Reaction rates in the form of quantum yields were measured for the decomposition of reactants and the formation of products and stable intermediates: HCN (hydrogen cyanide), CH 3 CN (acetonitrile), CH 3 CH = N-N = CHCH 3 (acetaldazine), CH 3 CH = N-NH 2 (acetaldehyde hydrazone), C 2 H 5 NH 2 (ethylamine), CH 3 NH 2 (methylamine) and C 2 H 4 (ethene) in the photolysis of NH 3 /C 2 H 2 mixtures. Some of these compounds, formed in our investigation of pathways for HCN synthesis, were not encountered previously in observational, theoretical or laboratory photochemical studies. The quantum yields obtained allowed for the formulation of a reaction mechanism that attempts to explain the observed results under varying experimental conditions. In general, the results of this work are consistent with the initial observations of Ferris and Ishikawa (1988). However, their proposed reaction pathway which centers on the photolysis of CH 3 CH = N-N = CHCH 3 does not explain all of the results obtained in this study. The formation of CH 3 CH = N-N = CHCH 3 by a radical combination reaction of CH 3 CH = N• was shown in this work to be inconsistent with other experiments where the CH 3 CH = N• radical is thought to form but where no CH 3 CH = N-N = CHCH 3 was detected. The importance of the role of H atom abstraction reactions was demonstrated and an alternative pathway for CH 3 CH = N-N = CHCH 3 formation involving nucleophilic reaction

  9. Global atmospheric response to specific linear combinations of the main SST modes. Part I: numerical experiments and preliminary results

    Directory of Open Access Journals (Sweden)

    S. Trzaska

    1996-10-01

    Full Text Available This article investigates through numerical experiments the controversial question of the impact of El Niño-Southern Oscillation (ENSO phenomena on climate according to large-scale and regional-scale interhemispheric thermal contrast. Eight experiments (two considering only inversed Atlantic thermal anomalies and six combining ENSO warm phase with large-scale interhemispheric contrast and Atlantic anomaly patterns were performed with the Météo-France atmospheric general circulation model. The definition of boundary conditions from observed composites and principal components is presented and preliminary results concerning the month of August, especially over West Africa and the equatorial Atlantic are discussed. Results are coherent with observations and show that interhemispheric and regional scale sea-surface-temperature anomaly (SST patterns could significantly modulate the impact of ENSO phenomena: the impact of warm-phase ENSO, relative to the atmospheric model intercomparison project (AMIP climatology, seems stronger when embedded in global and regional SSTA patterns representative of the post-1970 conditions [i.e. with temperatures warmer (colder than the long-term mean in the southern hemisphere (northern hemisphere]. Atlantic SSTAs may also play a significant role.

  10. Three-dimensional vapor intrusion modeling approach that combines wind and stack effects on indoor, atmospheric, and subsurface domains.

    Science.gov (United States)

    Shirazi, Elham; Pennell, Kelly G

    2017-12-13

    Vapor intrusion (IV) exposure risks are difficult to characterize due to the role of atmospheric, building and subsurface processes. This study presents a three-dimensional VI model that extends the common subsurface fate and transport equations to incorporate wind and stack effects on indoor air pressure, building air exchange rate (AER) and indoor contaminant concentration to improve VI exposure risk estimates. The model incorporates three modeling programs: (1) COMSOL Multiphysics to model subsurface fate and transport processes, (2) CFD0 to model atmospheric air flow around the building, and (3) CONTAM to model indoor air quality. The combined VI model predicts AER values, zonal indoor air pressures and zonal indoor air contaminant concentrations as a function of wind speed, wind direction and outdoor and indoor temperature. Steady state modeling results for a single-story building with a basement demonstrate that wind speed, wind direction and opening locations in a building play important roles in changing the AER, indoor air pressure, and indoor air contaminant concentration. Calculated indoor air pressures ranged from approximately -10 Pa to +4 Pa depending on weather conditions and building characteristics. AER values, mass entry rates and indoor air concentrations vary depending on weather conditions and building characteristics. The presented modeling approach can be used to investigate the relationship between building features, AER, building pressures, soil gas concentrations, indoor air concentrations and VI exposure risks.

  11. Numerical simulation of atmospheric-pressure helium discharge driven by combined radio frequency and trapezoidal pulse sources

    International Nuclear Information System (INIS)

    Wang Qi; Sun Jizhong; Zhang Jianhong; Ding Zhenfeng; Wang Dezhen

    2010-01-01

    Atmospheric-pressure capacitive discharges driven by combined radio frequency (rf) and trapezoidal pulse sources are investigated using a one-dimensional self-consistent fluid model. The results show that the plasma intensity in the rf discharge can be enhanced drastically when a low duty ratio short pulse source is additionally applied. The mechanism for the increase in the plasma density can be attributed to a strong localized electric field induced by the applied short pulse; the strong electric field generates a great number of high energy electrons and chemically active particles, which subsequently generate more electrons and ions. The rf capacitive discharges with the aid of externally applied short pulses can achieve a high plasma density with better power efficiency.

  12. Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Prather, Michael J. [Univ. of California, Irvine, CA (United States); Hsu, Juno [Univ. of California, Irvine, CA (United States); Nicolau, Alex [Univ. of California, Irvine, CA (United States); Veidenbaum, Alex [Univ. of California, Irvine, CA (United States); Smith, Philip Cameron [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bergmann, Dan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-11-07

    Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

  13. Collaborative Research. Atmospheric Pressure Microplasma Chemistry-Photon Synergies

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sung-Jin [Univ. of Illinois, Urbana, IL (United States); Eden, James Gary [Univ. of Illinois, Urbana, IL (United States)

    2015-12-01

    Combining the effects of low temperature, atmospheric pressure microplasmas and microplasma photon sources offers the promise of greatly expanding the range of applications for each of them. The plasma sources create active chemical species and these can be activated further by the addition of photons and the associated photochemistry. There are many ways to combine the effects of plasma chemistry and photochemistry, especially if there are multiple phases present. This project combined the construction of appropriate test experimental systems, various spectroscopic diagnostics and mathematical modeling. Through a continuous discussion and co-design process with the UC-Berkeley Team, we have successfully completed the fabrication and testing of all components for a microplasma array-assisted system designed for photon-activated plasma chemistry research. Microcavity plasma lamps capable of generating more than 20 mW/cm2 at 172 nm (Xe dimer) were fabricated with a custom form factor to mate to the plasma chemistry setup, and a lamp was current being installed by the Berkeley team so as to investigate plasma chemistry-photon synergies at a higher photon energy (~7.2 eV) as compared to the UVA treatment that is afforded by UV LEDs operating at 365 nm. In particular, motivated by the promising results from the Berkeley team with UVA treatment, we also produced the first generation of lamps that can generate photons in the 300-370 nm wavelength range. Another set of experiments, conducted under the auspices of this grant, involved the use of plasma microjet arrays. The combination of the photons and excited radicals produced by the plasma column resulted in broad area deactivation of bacteria.

  14. Secondary Organic Aerosol Formation from Acetylene (C2H2: seed effect on SOA yields due to organic photochemistry in the aerosol aqueous phase

    Directory of Open Access Journals (Sweden)

    P. J. Ziemann

    2009-03-01

    Full Text Available The lightest Non Methane HydroCarbon (NMHC, i.e., acetylene (C2H2 is found to form secondary organic aerosol (SOA. Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosols, mild acidification with sulphuric acid (SA, 3photochemistry in the liquid water associated with internally mixed inorganic/WSOC seed aerosols is found responsible for this seed effect. WSOC photochemistry enhances the SOA source from CHOCHO, while seeds containing amino acids (AA and/or SA showed among the lowest of all YSOA values, and largely suppress the photochemical enhancement on the rate of CHOCHO uptake. Our results give first evidence for the importance of heterogeneous photochemistry of CHOCHO in SOA formation, and identify a potential bias in the currently available YSOA data for other SOA precursor NMHCs. We demonstrate that SOA formation via the aqueous phase is not limited to cloud droplets, but proceeds also in the absence of clouds, i.e., does not stop once a cloud droplet evaporates. Atmospheric models need to be expanded to include SOA formation from WSOC photochemistry of CHOCHO, and possibly other α-dicarbonyls, in aqueous aerosols.

  15. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yun-bo

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs.

  16. Photochemistry of psoralen-DNA adducts, biological effects of psoralen-DNA adducts, applications of psoralen-DNA photochemistry

    International Nuclear Information System (INIS)

    Shi, Yun-bo.

    1988-03-01

    This thesis consists of three main parts and totally eight chapters. In Part I, The author will present studies on the photochemistry of psoralen-DNA adducts, specifically, the wavelength dependencies for the photoreversals of thymidine-HMT (4'-hydroxymethyl-4, 5', 8-trimenthylpsoralen) monoadducts and diadduct and the same adducts incorporated in DNA helices and the wavelength dependecies for the photocrossslinking of thymidine-HMT monoadducts in double-stranded helices. In Part II, The author will report some biological effects of psoralen-DNA adducts, i.e., the effects on double-stranded DNA stability, DNA structure, and transcription by E. coli and T7 RNA polymerases. Finally, The author will focus on the applications of psoralen-DNA photochemistry to investigation of protein-DNA interaction during transcription, which includes the interaction of E. coli and T7 RNA polymerases with DNA in elongation complexes arrested at specific psoralen-DNA adduct sites as revealed by DNase I footprinting experiments. 123 refs., 52 figs., 12 tabs

  17. Detection of Pb-LIII edge XANES spectra of urban atmospheric particles combined with simple acid extraction

    International Nuclear Information System (INIS)

    Funasaka, K.; Tojo, T.; Katahira, K.; Shinya, M.; Miyazaki, T.; Kamiura, T.; Yamamoto, O.; Moriwaki, H.; Tanida, H.; Takaoka, M.

    2008-01-01

    Pb-LIII edge XANES spectra of atmospheric particles are directly obtained by fluorescent XAFS spectroscopy using a 19-element solid state detector (SSD). Particulate sample was collected on a quartz fiber filter using a high-volume air sampler, and the filter was cut into small pieces (25 x 25 mm). Then, surface layer of the filter piece was scaled and accumulated in order to enhance the particle density per filter unit. Use of 10 pieces of the surface layer enables the measurement of Pb-LIII edge XANES spectra on beamline BL01B1 at SPring-8, Hyogo, Japan. The shape of the Pb-LIII edge XANES spectra of the particulate sample is similar to the shapes of the spectra for PbS, PbCO 3 , PbSO 4 and/or PbCl 2 . Additionally, the filter sample is also divided into water-soluble, 0.1 M HCl-extractable, and residual fractions of Pb compounds by a simple acid extraction procedure. We discuss the possibility of Pb speciation in the particulate samples with combination of highly sensitive XANES spectroscopy and simple acid extraction

  18. Combined effects of gamma irradiation and modified atmosphere packaging on bacterial resistance in grated carrots (Daucus carota)

    International Nuclear Information System (INIS)

    Lacroix, M.; Lafortune, R.

    2004-01-01

    The present study was conducted to evaluate the efficiency of gamma irradiation combined with modified atmosphere packaging as an alternative treatment to ensure the innocuity and the shelf life extension of pre-cured vegetables. Grated carrots were inoculated with Escherichia coli (10 6 CFU/g) and packed under air or under MAP condition (60% O 2 , 30% CO 2 and 10% N 2 ). The packages were then, gamma irradiated at doses from 0.15 to 0.9 kGy and stored at 4±1 deg. C. E. coli counts were periodically evaluated during 50 days of storage. Results showed that at day 1, an irradiation treatment at a dose of 0.15 kGy reduced by 3 and 4 log the microbial level representing a level of 3 and 2 log CFU/g when samples were irradiated under air and under MAP respectively. However, a level of 3 log CFU/g was detected in both treated samples after 7 days of storage. When samples were irradiated at doses ≥0.3 kGy no E.coli were detected during the whole storage in samples treated under MAP. However, when samples were treated under air, a level of 1-2 log CFU/g of E.coli was detected after 5 days of storage

  19. Combined effect of temperature and controlled atmosphere on storage and shelf-life of 'Rocha' pear treated with 1-methylcyclopropene.

    Science.gov (United States)

    Gago, Custódia M L; Miguel, Maria G; Cavaco, Ana M; Almeida, Domingos P F; Antunes, Maria D C

    2015-03-01

    The combination of temperature and atmosphere composition for storage of Pyrus communis L. 'Rocha' treated with 1-methylcyclopropene was investigated. Fruits treated with 312 nl l(-1) 1-methylcyclopropene were stored at 0 ℃ and 2.5 ℃ in air and controlled atmosphere (CA) (3.04 kPa O2+ 0.91 kPa CO2). Fruits were removed from storage after 14, 26 and 35 weeks, transferred to shelf-life at approximately 22 ℃ and assessed for ripening and quality, symptoms of superficial scald and internal browning and the accumulation of biochemical compounds related to scald after 0, 1 and 2 weeks. Superficial scald occurred only in fruits stored for 35 weeks in air at 2.5 ℃. Levels of conjugated trienols and α-farnesene increased during the first 26 weeks in storage, remaining constant thereafter. During shelf-life, conjugated trienols were higher in fruits stored in air at 2.5 ℃. Internal browning developed in shelf-life after 26 weeks at 2.5 ℃. Pears in air at 2.5 ℃ were not able to stand a 2-week shelf-life after 35 weeks of storage, while fruits stored at 0 ℃ under CA ripened slowly after the same storage period. The retention of firmness during shelf-life of 1-methylcyclopropene-treated 'Rocha' pear can be overcome by elevating the storage temperature from 0 ℃ to 2.5 ℃, but CA is a required complement to avoid excessive softening after long-term storage. The ratio carotenoid/chlorophyll increased during storage and shelf-life, as plastids senesced. CA reduced the rate of chlorophyll loss during the first 14 weeks in storage, but its effect was reduced afterwards. 'Rocha' pear treated with 1-methylcyclopropene had a similar post-harvest behaviour during long-term storage at 0 ℃ in air or at 2.5 ℃ under CA. © The Author(s) 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  20. Aerosols from fires: an examination of the effects on ozone photochemistry in the Western United States.

    Science.gov (United States)

    Jiang, Xiaoyan; Wiedinmyer, Christine; Carlton, Annmarie G

    2012-11-06

    This study presents a first attempt to investigate the roles of fire aerosols in ozone (O(3)) photochemistry using an online coupled meteorology-chemistry model, the Weather Research and Foresting model with Chemistry (WRF-Chem). Four 1-month WRF-Chem simulations for August 2007, with and without fire emissions, were carried out to assess the sensitivity of O(3) predictions to the emissions and subsequent radiative feedbacks associated with large-scale fires in the Western United States (U.S.). Results show that decreases in planetary boundary layer height (PBLH) resulting from the radiative effects of fire aerosols and increases in emissions of nitrogen oxides (NO(x)) and volatile organic compounds (VOCs) from the fires tend to increase modeled O(3) concentrations near the source. Reductions in downward shortwave radiation reaching the surface and surface temperature due to fire aerosols cause decreases in biogenic isoprene emissions and J(NO(2)) photolysis rates, resulting in reductions in O(3) concentrations by as much as 15%. Thus, the results presented in this study imply that considering the radiative effects of fire aerosols may reduce O(3) overestimation by traditional photochemical models that do not consider fire-induced changes in meteorology; implementation of coupled meteorology-chemistry models are required to simulate the atmospheric chemistry impacted by large-scale fires.

  1. 3D printing of natural organic materials by photochemistry

    Science.gov (United States)

    Da Silva Gonçalves, Joyce Laura; Valandro, Silvano Rodrigo; Wu, Hsiu-Fen; Lee, Yi-Hsiung; Mettra, Bastien; Monnereau, Cyrille; Schmitt Cavalheiro, Carla Cristina; Pawlicka, Agnieszka; Focsan, Monica; Lin, Chih-Lang; Baldeck, Patrice L.

    2016-03-01

    In previous works, we have used two-photon induced photochemistry to fabricate 3D microstructures based on proteins, anti-bodies, and enzymes for different types of bio-applications. Among them, we can cite collagen lines to guide the movement of living cells, peptide modified GFP biosensing pads to detect Gram positive bacteria, anti-body pads to determine the type of red blood cells, and trypsin columns in a microfluidic channel to obtain a real time biochemical micro-reactor. In this paper, we report for the first time on two-photon 3D microfabrication of DNA material. We also present our preliminary results on using a commercial 3D printer based on a video projector to polymerize slicing layers of gelatine-objects.

  2. Fluorescence Spectroscopy, Exciton Dynamics and Photochemistry of Single Allophycocyanin Trimers

    International Nuclear Information System (INIS)

    Ying, Liming; Xie, Xiaoliang

    1998-01-01

    We report a study of the spectroscopy and exciton dynamics of the allophycocyanin trimer (APC), a light harvesting protein complex from cyanobacteria, by room-temperature single-molecule measurements of fluorescence spectra, lifetimes, intensity trajectories and polarization modulation. Emission spectra of individual APC trimers are found to be homogeneous on the time scale of seconds. In contrast, their emission lifetimes are found to be widely distributed, because of generation of exciton traps during the course of measurements. The intensity trajectories and polarization modulation experiments indicate reversible ixciton trap formation within the three quasi-independent pairs of strong interacting a84 and B84 chromophores in APC, as well a photobleaching of individual chromophores. Comparison experiments under continuous wave and pulsed excitation reveal a two-photon mechanism for generating exciton traps and/or photobleaching, which involves exciton-exciton annihilation. These single-molecule experiments provide new insights into exciton dynamics and photochemistry of light-harvesting complexes

  3. FREE AND COMBINED AMINO COMPOUNDS IN ATMOSPHERIC FINE PARTICLES (PM2.5) AND FOG WATERS FROM NORTHERN CALIFORNIA. (R825433)

    Science.gov (United States)

    Atmospheric fine particles (PM2.5) collected during August 1997–July 1998 and wintertime fog waters collected during 1997–1999 at Davis, California were analyzed for free and combined amino compounds. In both PM2.5 and fog waters, the averag...

  4. Proceedings of the Seventeenth DOE Solar Photochemistry Research Conference

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    The Seventeenth DOE Solar Photochemistry Research Conference sponsored by the Division of Chemical Sciences, Office of Basic Energy Sciences, is being held June 6--10, 1993, at Cragun`s Lodge and Conference Center, Brainerd, Minnesota The meeting is hosted this year by the Ames Laboratory of Iowa State University. The purpose of the meeting is to foster cooperation, collaboration, and exchange of current research ideas among grantees and contractors of the DOE Division of Chemical Sciences engaged in fundamental research on solar photochemical energy conversion. This conference provides a special opportunity for interaction among investigators from diverse traditional chemistry disciplines who share the common good of providing the knowledge and concepts needed for production of low cost fuels and chemicals or electricity by photochemical conversion of solar energy. Our special guest plenary lecturer is Professor Graham Fleming, of the University of Chicago, who will speak on ultrafast spectroscopic studies of molecular dynamics in the condensed phase. The remaining presentations on Monday will feature further investigations of ultrafast phenomena in solvation, electron transfer, and charge separation at interfaces. These will lead into the topical sessions which follow on photosynthesis, molecular models, photoinduced charge transfer in homogeneous and heterogeneous solutions, inorganic photochemistry, and photoelectrochemistry. As an added feature, the photoelectrochemistry session will include six short introductory lectures for the benefit of nonspecialists on outstanding issues and problems in that field. In this volume may be found a copy of the program, the abstracts of 28 formal presentations and 59 posters, as well as an address listing of the 114 participants.

  5. ALMA observations of Titan's atmospheric chemistry and seasonal variation

    Science.gov (United States)

    Cordiner, Martin

    2017-04-01

    Titan is the largest moon of Saturn, with a thick (1.45 bar) atmosphere composed primarily of molecular nitrogen and methane. Photochemistry in Titan's upper atmosphere results in the production of a wide range of organic molecules, including hydrocarbons, nitriles and aromatics, some of which could be of pre-biotic relevance. Thus, we obtain insights into the possible molecular inventories of primitive (reducing) planetary atmospheres. Titan's atmosphere also provides a unique laboratory for testing our understanding of fundamental processes involving the chemistry and spectroscopy of complex organic molecules. In this talk, results will be presented from our studies using the Atacama Large Millimeter/submillimeter Array (ALMA) during the period 2012-2015, focussing in particular on the detection and mapping of emission from various nitrile species. By combining data from multiple ALMA observations, our spectra have reached an unprecedented sensitivity level, enabling the first spectroscopic detection and mapping of C2H3CN (vinyl cyanide) on Titan. Liquid-phase simulations of Titan's seas indicate that vinyl cyanide molecules could combine to form vesicle membranes (similar to the cells of terrestrial biology), and the astrobiological implications of this discovery will be discussed. Furthermore, ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere, for gases inaccessible to previous instruments. Combined with complementary data obtained from the Cassini Saturn orbiter, as well as theoretical models and laboratory studies, our observed, seasonally variable, spatially resolved abundance patterns are capable of providing new insights into photochemical production and transport in primitive planetary atmospheres in the Solar System and beyond.

  6. Combined Effect of an Atmospheric River and a Cut-off Low in Hiroshima Flooding Event on August 19, 2014

    Science.gov (United States)

    Takayabu, Y. N.; Hirota, N.; Kato, M.; Arakane, S.

    2015-12-01

    An extraordinary precipitation over 100 mmhr-1in Hiroshima on August 19, 2014, caused a flash flood which resulted in 74 fatalities and collapse of 330 houses. In order to examine the meteorological background of this flooding event, we carried out a detailed analysis utilizing rain gauge data, satellite precipitation dataset, and a meso scale and a global scale objective analyses provided from the Japan Meteorological Agency. Then, we performed numerical experiments using a nonhydrostatic compressible equation model called the Cloud-Resolving Storm Simulator (CReSS). As a result, a combined effect of an atmospheric river (AR) and a cut-off low (COL) in this flooding event was elucidated. During the event, a filamentary transport of moisture extending from the Indochina Peninsula to the Japanese Islands was observed along the southern side of the subtropical jet, forming an AR. This AR had a deep structure with an amount of free tropospheric moisture comparable to that of the boundary layer. Concurrently, there was a COL, detached from the Mid-Pacific Trough, moving northwestward toward the Japanese Archipelago. With various sensitivity experiments, we concluded that a mid-tropospheric instability associated with the cold core of the COL and a dynamical ascent induced in its foreside, collaboratively worked with the anomalous moisture in the free troposphere associated with the AR, to extraordinarily enhance the precipitation over Hiroshima region. An orographic effect to concentrate the precipitation in this region was also confirmed. An implication on a difference in effects of AR in this event with a climatologically moist boundary layer, from those in the US west coast with a very dry environment, was also obtained. Acknowledgment: This study is supported by the Environment Research and Technology Development Fund (2-1503) of the Ministry of the Environment, Japan, and by the Ministry of Education, Culture, Sports, Science and Technology, Japan.

  7. Validation and Demonstration of the NOAA Unique Combined Atmospheric Processing System (NUCAPS) in Support of User Applications

    Science.gov (United States)

    Nalli, N. R.; Gambacorta, A.; Tan, C.; Iturbide, F.; Barnet, C. D.; Reale, A.; Sun, B.; Liu, Q.

    2017-12-01

    This presentation overviews the performance of the operational SNPP NOAA Unique Combined Atmospheric Processing System (NUCAPS) environmental data record (EDR) products. The SNPP Cross-track Infrared Sounder and Advanced Technology Microwave Sounder (CrIS/ATMS) suite, the first of the Joint Polar Satellite System (JPSS) Program, is one of NOAA's major investments in our nation's future operational environmental observation capability. The NUCAPS algorithm is a world-class NOAA-operational IR/MW retrieval algorithm based upon the well-established AIRS science team algorithm for deriving temperature, moisture, ozone and carbon trace gas to provide users with state-of-the-art EDR products. Operational use of the products includes the NOAA National Weather Service (NWS) Advanced Weather Interactive Processing System (AWIPS), along with numerous science-user applications. NUCAPS EDR product assessments are made with reference to JPSS Level 1 global requirements, which provide the definitive metrics for assessing that the products have minimally met predefined global performance specifications. The NESDIS/STAR NUCAPS development and validation team recently delivered the Phase 4 algorithm which incorporated critical updates necessary for compatibility with full spectral-resolution (FSR) CrIS sensor data records (SDRs). Based on comprehensive analyses, the NUCAPS Phase 4 CrIS-FSR temperature, moisture and ozone profile EDRs, as well as the carbon trace gas EDRs (CO, CH4 and CO2), are shown o be meeting or close to meeting the JPSS program global requirements. Regional and temporal assessments of interest to EDR users (e.g., AWIPS) will also be presented.

  8. Applications of continuous-flow photochemistry in organic synthesis, material science, and water treatment

    NARCIS (Netherlands)

    Cambié, D.; Bottecchia, C.; Straathof, N.J.W.; Hessel, V.; Noël, T.

    2016-01-01

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous

  9. Martian Atmospheric and Ionospheric plasma Escape

    Science.gov (United States)

    Lundin, Rickard

    2016-04-01

    Solar forcing is responsible for the heating, ionization, photochemistry, and erosion processes in the upper atmosphere throughout the lifetime of the terrestrial planets. Of the four terrestrial planets, the Earth is the only one with a fully developed biosphere, while our kin Venus and Mars have evolved into arid inhabitable planets. As for Mars, there are ample evidences for an early Noachian, water rich period on Mars. The question is, what made Mars evolve so differently compared to the Earth? Various hydrosphere and atmospheric evolution scenarios for Mars have been forwarded based on surface morphology, chemical composition, simulations, semi-empiric (in-situ data) models, and the long-term evolution of the Sun. Progress has been made, but the case is still open regarding the changes that led to the present arid surface and tenuous atmosphere at Mars. This presentation addresses the long-term variability of the Sun, the solar forcing impact on the Martian atmosphere, and its interaction with the space environment - an electromagnetic wave and particle interaction with the upper atmosphere that has implications for its photochemistry, composition, and energization that governs thermal and non-thermal escape. Non-thermal escape implies an electromagnetic upward energization of planetary ions and molecules to velocities above escape velocity, a process governed by a combination of solar EUV radiation (ionization), and energy and momentum transfer by the solar wind. The ion escape issue dates back to the early Soviet and US-missions to Mars, but the first more accurate estimates of escape rates came with the Phobos-2 mission in 1989. Better-quality ion composition measurement results of atmospheric/ionospheric ion escape from Mars, obtained from ESA Mars Express (MEX) instruments, have improved our understanding of the ion escape mechanism. With the NASA MAVEN spacecraft orbiting Mars since Sept. 2014, dual in-situ measurement with plasma instruments are now

  10. Photophysics and Photochemistry of Canonical Nucleobases’ Thioanalogs: From Quantum Mechanical Studies to Time Resolved Experiments

    Directory of Open Access Journals (Sweden)

    Serra Arslancan

    2017-06-01

    Full Text Available Interest in understanding the photophysics and photochemistry of thiated nucleobases has been awakened because of their possible involvement in primordial RNA or their potential use as photosensitizers in medicinal chemistry. The interpretation of the photodynamics of these systems, conditioned by their intricate potential energy surfaces, requires the powerful interplay between experimental measurements and state of the art molecular simulations. In this review, we provide an overview on the photophysics of natural nucleobases’ thioanalogs, which covers the last 30 years and both experimental and computational contributions. For all the canonical nucleobase’s thioanalogs, we have compiled the main steady state absorption and emission features and their interpretation in terms of theoretical calculations. Then, we revise the main topographical features, including stationary points and interstate crossings, of their potential energy surfaces based on quantum mechanical calculations and we conclude, by combining the outcome of different spectroscopic techniques and molecular dynamics simulations, with the mechanism by which these nucleobase analogs populate their triplet excited states, which are at the origin of their photosensitizing properties.

  11. Two case studies on the interaction of large-scale transport, mesoscale photochemistry, and boundary-layer processes on the lower tropospheric ozone dynamics in early spring

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    2001-04-01

    Full Text Available The vertical distribution of ozone in the lower troposphere over the Swiss Plateau is investigated in detail for two episodes in early spring (February 1998 and March 1999. Profile measurements of boundary-layer ozone performed during two field campaigns with a tethered balloon sounding system and a kite are investigated using regular aerological and ozone soundings from a nearby site, measurements from monitoring stations at various altitudes, backward trajectories, and synoptic analyses of meteorological fields. Additionally, the effect of in situ photochemistry was estimated for one of the episodes employing the Metphomod Eulerian photochemical model. Although the meteorological situations were completely different, both cases had elevated layers with high ozone concentrations, which is not untypical for late winter and early spring. In the February episode, the highest ozone concentrations of 55 to 60 ppb, which were found at around 1100 m asl, were partly advected from Southern France, but a considerable contribution of in situ photochemistry is also predicted by the model. Below that elevation, the local chemical sinks and surface deposition probably overcompensated chemical production, and the vertical ozone distribution was governed by boundary-layer dynamics. In the March episode, the results suggest that ozone-rich air parcels, probably of stratospheric or upper tropospheric origin, were advected aloft the boundary layer on the Swiss Plateau.Key words. Atmospheric composition and structure (pollution – urban and regional; troposphere – composition and  chemistry – Meteorology and atmospheric dynamics (mesoscale meteorology

  12. Combined ground-based and satellite remote sensing of atmospheric aerosol and Earth surface in the Antarctic

    Science.gov (United States)

    Chaikovsky, Anatoli; Korol, Michail; Malinka, A.; Zege, E.; Katsev, I.; Prikhach, A.; Denisov, S.; Dick, V.; Goloub, P.; Blarel, L.; Chaikovskaya, L.; Lapyonok, A.; Podvin, T.; Denishchik-Nelubina, N.; Fedarenka, A.; Svidinsky, V.

    2016-01-01

    The paper presents lecture materials given at the Nineteenth International Conference and School on Quantum Electronics "Laser Physics and Applications" (19th ICSQE) in 2016, Sozopol, Bulgaria and contains the results of the 10-year research of Belarusian Antarctic expeditions to study the atmospheric aerosol and Earth surface in Antarctica. The works focus on the studying variability and trends of aerosol, cloud and snow characteristics in the Antarctic and the links of these processes with the long range transport of atmospheric pollutants and climate changes.

  13. Photodynamic Efficiency: From Molecular Photochemistry to Cell Death

    Directory of Open Access Journals (Sweden)

    Isabel O. L. Bacellar

    2015-08-01

    Full Text Available Photodynamic therapy (PDT is a clinical modality used to treat cancer and infectious diseases. The main agent is the photosensitizer (PS, which is excited by light and converted to a triplet excited state. This latter species leads to the formation of singlet oxygen and radicals that oxidize biomolecules. The main motivation for this review is to suggest alternatives for achieving high-efficiency PDT protocols, by taking advantage of knowledge on the chemical and biological processes taking place during and after photosensitization. We defend that in order to obtain specific mechanisms of cell death and maximize PDT efficiency, PSes should oxidize specific molecular targets. We consider the role of subcellular localization, how PS photochemistry and photophysics can change according to its nanoenvironment, and how can all these trigger specific cell death mechanisms. We propose that in order to develop PSes that will cause a breakthrough enhancement in the efficiency of PDT, researchers should first consider tissue and intracellular localization, instead of trying to maximize singlet oxygen quantum yields in in vitro tests. In addition to this, we also indicate many open questions and challenges remaining in this field, hoping to encourage future research.

  14. On the photophysics and photochemistry of the water dimer

    Energy Technology Data Exchange (ETDEWEB)

    Segarra-Marti, Javier; Merchan, Manuela [Instituto de Ciencia Molecular, Universitat de Valencia, P.O. Box 22085, 46071 Valencia (Spain); Roca-Sanjuan, Daniel; Lindh, Roland [Department of Chemistry - Angstroem, Theoretical Chemistry Program, Uppsala University, Box 518, 75120 Uppsala (Sweden)

    2012-12-28

    The photochemistry of the water dimer irradiated by UV light is studied by means of the complete active space perturbation theory//complete active space self-consistent field (CASPT2//CASSCF) method and accurate computational approaches like as minimum energy paths. Both electronic structure computations and ab initio molecular dynamics simulations are carried out. The results obtained show small shifts relative to a single water molecule on the vertical excitation energies of the dimer due to the hydrogen bond placed between the water donor (W{sub D}) and the water acceptor (W{sub A}). A red-shift and a blue-shift are predicted for the W{sub D} and W{sub A}, respectively, supporting previous theoretical and experimental results. The photoinduced chemistry of the water dimer is described as a process occurring between two single water molecules in which the effect of the hydrogen bond plays a minor role. Thus, the photoinduced decay routes correspond to two photodissociation processes, one for each water molecule. The proposed mechanism for the decay channels of the lowest-lying excited states of the system is established as the photochemical production of a hydrogen-bonded H{sub 2}O Horizontal-Ellipsis HO species plus a hydrogen H atom.

  15. Rice Photosynthetic Productivity and PSII Photochemistry under Nonflooded Irrigation

    Directory of Open Access Journals (Sweden)

    Haibing He

    2014-01-01

    Full Text Available Nonflooded irrigation is an important water-saving rice cultivation technology, but little is known on its photosynthetic mechanism. The aims of this work were to investigate photosynthetic characteristics of rice during grain filling stage under three nonflooded irrigation treatments: furrow irrigation with plastic mulching (FIM, furrow irrigation with nonmulching (FIN, and drip irrigation with plastic mulching (DI. Compared with the conventional flooding (CF treatment, those grown in the nonflooded irrigation treatments showed lower net photosynthetic rate (PN, lower maximum quantum yield (Fv/Fm, and lower effective quantum yield of PSII photochemistry (ΦPSII. And the poor photosynthetic characteristics in the nonflooded irrigation treatments were mainly attributed to the low total nitrogen content (TNC. Under non-flooded irrigation, the PN, Fv/Fm, and ΦPSII significantly decreased with a reduction in the soil water potential, but these parameters were rapidly recovered in the DI and FIM treatments when supplementary irrigation was applied. Moreover, The DI treatment always had higher photosynthetic productivity than the FIM and FIN treatments. Grain yield, matter translocation, and dry matter post-anthesis (DMPA were the highest in the CF treatment, followed by the DI, FIM, and FIN treatments in turn. In conclusion, increasing nitrogen content in leaf of rice plants could be a key factor to improve photosynthetic capacity in nonflooded irrigation.

  16. The photochemistry of neptunium in aqueous perchloric acid solutions

    International Nuclear Information System (INIS)

    Friedman, H.A.; Toth, L.M.; Osborne, M.M.

    1979-01-01

    The photochemistry of neptunium ions in aqueous perchloric acid has been investigated using 254 and 300 nm UV radiation. In the absence of other reagents, Np(IV) and (V) oxidized to Np(VI), in a stepwise fashion, with individual quantum efficiencies for each step that vary from 0.02 to 0.004. Decreasing acid concentration favors the Np(IV) → Np(V) reaction whereas it hinders the Np(V) → Np(VI) photo-oxidation. When ethanol, acetaldehyde and other mild reducing agents are added to neptunium-perchloric acid solutions which are then photolyzed, the Np species are reduced to Np(III) in a stepwise fashion with individual quantum efficiencies that vary from 0.07 to 0.006. The overall photoredox reactions of neptunium are subject to competing secondary product reactions that become significant as the photolysis products accumulate. Absorption spectrophotometry was used to monitor the changes in Np oxidation states and reference spectra of the various Np oxidation states are given for 1.0 N HClO 4 . The Np species have absorption bands in the 300 to 1320 nm region that obey Beer's law only when they were properly resolved. (author)

  17. Soft x-ray photochemistry in solid surfaces

    International Nuclear Information System (INIS)

    Sekiguchi, Tetsuhiro; Baba, Yuji

    2000-01-01

    Resent studies on photochemistry using synchrotron soft x-rays in solid surfaces are reviewed. A type of site-selective chemical reaction induced by inner-shell excitation is classified into two model systems that are referred to as 'Element-specific fragmentation' and 'Bonding-site-specific dissociation.' The former system uses difference of core-binding-energies in different elements and the latter is based on the existence of plural unoccupied molecular orbitals with different antibonding character. The selectivity of the reaction in respective systems is discussed in terms of mass-patterns of desorbed fragment-ions and photon-energy dependence of the ion yields. Also discussed are the fragmentation and desorption mechanisms which include intrinsic direct photofragmentation and indirect channels induced by secondary electrons. The latter process reduces the selectivity of the reaction. Furthermore, two experimental approaches, which have recently been performed to estimate the relative magnitude of contribution in the direct and indirect processes to the total yields, are described: (1) the layer-thickness dependence and (2) polarization-angle dependence in the photofragmentation. (author)

  18. Studies in organic and physical photochemistry - an interdisciplinary approach.

    Science.gov (United States)

    Oelgemöller, Michael; Hoffmann, Norbert

    2016-08-21

    Traditionally, organic photochemistry when applied to synthesis strongly interacts with physical chemistry. The aim of this review is to illustrate this very fruitful interdisciplinary approach and cooperation. A profound understanding of the photochemical reactivity and reaction mechanisms is particularly helpful for optimization and application of these reactions. Some typical reactions and particular aspects are reported such as the Norrish-Type II reaction and the Yang cyclization and related transformations, the [2 + 2] photocycloadditions, particularly the Paternò-Büchi reaction, photochemical electron transfer induced transformations, different kinds of catalytic reactions such as photoredox catalysis for organic synthesis and photooxygenation are discussed. Particular aspects such as the structure and reactivity of aryl cations, photochemical reactions in the crystalline state, chiral memory, different mechanisms of hydrogen transfer in photochemical reactions or fundamental aspects of stereoselectivity are discussed. Photochemical reactions are also investigated in the context of chemical engineering. Particularly, continuous flow reactors are of interest. Novel reactor systems are developed and modeling of photochemical transformations and different reactors play a key role in such studies. This research domain builds a bridge between fundamental studies of organic photochemical reactions and their industrial application.

  19. Detection of CO2 leaks from carbon capture and storage sites with combined atmospheric CO2 and O-2 measurements

    NARCIS (Netherlands)

    van Leeuwen, Charlotte; Meijer, Harro A. J.

    2015-01-01

    This paper presents a transportable instrument that simultaneously measures the CO2 and (relative) O-2 concentration of the atmosphere with the purpose to aid in the detection of CO2 leaks from CCS sites. CO2 and O-2 are coupled in most processes on earth (e.g., photosynthesis, respiration and

  20. Status of the NPP and J1 NOAA Unique Combined Atmospheric Processing System (NUCAPS): recent algorithm enhancements geared toward validation and near real time users applications.

    Science.gov (United States)

    Gambacorta, A.; Nalli, N. R.; Tan, C.; Iturbide-Sanchez, F.; Wilson, M.; Zhang, K.; Xiong, X.; Barnet, C. D.; Sun, B.; Zhou, L.; Wheeler, A.; Reale, A.; Goldberg, M.

    2017-12-01

    The NOAA Unique Combined Atmospheric Processing System (NUCAPS) is the NOAA operational algorithm to retrieve thermodynamic and composition variables from hyper spectral thermal sounders such as CrIS, IASI and AIRS. The combined use of microwave sounders, such as ATMS, AMSU and MHS, enables full atmospheric sounding of the atmospheric column under all-sky conditions. NUCAPS retrieval products are accessible in near real time (about 1.5 hour delay) through the NOAA Comprehensive Large Array-data Stewardship System (CLASS). Since February 2015, NUCAPS retrievals have been also accessible via Direct Broadcast, with unprecedented low latency of less than 0.5 hours. NUCAPS builds on a long-term, multi-agency investment on algorithm research and development. The uniqueness of this algorithm consists in a number of features that are key in providing highly accurate and stable atmospheric retrievals, suitable for real time weather and air quality applications. Firstly, maximizing the use of the information content present in hyper spectral thermal measurements forms the foundation of the NUCAPS retrieval algorithm. Secondly, NUCAPS is a modular, name-list driven design. It can process multiple hyper spectral infrared sounders (on Aqua, NPP, MetOp and JPSS series) by mean of the same exact retrieval software executable and underlying spectroscopy. Finally, a cloud-clearing algorithm and a synergetic use of microwave radiance measurements enable full vertical sounding of the atmosphere, under all-sky regimes. As we transition toward improved hyper spectral missions, assessing retrieval skill and consistency across multiple platforms becomes a priority for real time users applications. Focus of this presentation is a general introduction on the recent improvements in the delivery of the NUCAPS full spectral resolution upgrade and an overview of the lessons learned from the 2017 Hazardous Weather Test bed Spring Experiment. Test cases will be shown on the use of NPP and Met

  1. Nonequilibrium atmospheric pressure plasma jet using a combination of 50 kHz/2 MHz dual-frequency power sources

    International Nuclear Information System (INIS)

    Zhou, Yong-Jie; Yuan, Qiang-Hua; Li, Fei; Wang, Xiao-Min; Yin, Gui-Qin; Dong, Chen-Zhong

    2013-01-01

    An atmospheric pressure plasma jet is generated by dual sinusoidal wave (50 kHz and 2 MHz). The dual-frequency plasma jet exhibits the advantages of both low frequency and radio frequency plasmas, namely, the long plasma plume and the high electron density. The radio frequency ignition voltage can be reduced significantly by using dual-frequency excitation compared to the conventional radio frequency without the aid of the low frequency excitation source. A larger operating range of α mode discharge can be obtained using dual-frequency excitation which is important to obtain homogeneous and low-temperature plasma. A larger controllable range of the gas temperature of atmospheric pressure plasma could also be obtained using dual-frequency excitation

  2. Estimating regional carbon exchange in New England and Quebec by combining atmospheric, ground-based and satellite data

    International Nuclear Information System (INIS)

    Matross, Daniel M.; Pathmathevan, Mahadevan; Wofsy, Steven C.; Daube, Bruce C.; Gottlieb, Elaine W.; Chow, Victoria Y.; Munger, J.William; Lin, John C.

    2006-01-01

    We derive regional-scale (∼104 km 2 ) CO 2 flux estimates for summer 2004 in the northeast United States and southern Quebec by assimilating extensive data into a receptor-oriented model-data fusion framework. Surface fluxes are specified using the Vegetation Photosynthesis and Respiration Model (VPRM), a simple, readily optimized biosphere model driven by satellite data, AmeriFlux eddy covariance measurements and meteorological fields. The surface flux model is coupled to a Lagrangian atmospheric adjoint model, the Stochastic Time-Inverted Lagrangian Transport Model (STILT) that links point observations to upwind sources with high spatiotemporal resolution. Analysis of CO 2 concentration data from the NOAA-ESRL tall tower at Argyle, ME and from extensive aircraft surveys, shows that the STILT-VPRM framework successfully links model flux fields to regionally representative atmospheric CO 2 data, providing a bridge between 'bottom-up' and 'top-down' methods for estimating regional CO 2 budgets on timescales from hourly to monthly. The surface flux model, with initial calibration to eddy covariance data, produces an excellent a priori condition for inversion studies constrained by atmospheric concentration data. Exploratory optimization studies show that data from several sites in a region are needed to constrain model parameters for all major vegetation types, because the atmosphere commingles the influence of regional vegetation types, and even high-resolution meteorological analysis cannot disentangle the associated contributions. Airborne data are critical to help define uncertainty within the optimization framework, showing for example, that in summertime CO 2 concentration at Argyle (107 m) is ∼0.6 ppm lower than the mean in the planetary boundary layer

  3. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry.

    Science.gov (United States)

    Serrano-Andrés, Luis; Merchán, Manuela; Borin, Antonio C

    2006-06-06

    Distinct photophysical behavior of nucleobase adenine and its constitutional isomer, 2-aminopurine, has been studied by using quantum chemical methods, in particular an accurate ab initio multiconfigurational second-order perturbation theory. After light irradiation, the efficient, ultrafast energy dissipation observed for nonfluorescent 9H-adenine is explained here by the nonradiative internal conversion process taking place along a barrierless reaction path from the initially populated 1(pipi* La) excited state toward a low-lying conical intersection (CI) connected with the ground state. In contrast, the strong fluorescence recorded for 2-aminopurine at 4.0 eV with large decay lifetime is interpreted by the presence of a minimum in the 1(pipi* La) hypersurface lying below the lowest CI and the subsequent potential energy barrier required to reach the funnel to the ground state. Secondary deactivation channels were found in the two systems related to additional CIs involving the 1(pipi* Lb) and 1(npi*) states. Although in 9H-adenine a population switch between both states is proposed, in 7H-adenine this may be perturbed by a relatively larger barrier to access the 1(npi*) state, and, therefore, the 1(pipi* Lb) state becomes responsible for the weak fluorescence measured in aqueous adenine at approximately 4.5 eV. In contrast to previous models that explained fluorescence quenching in adenine, unlike in 2-aminopurine, on the basis of the vibronic coupling of the nearby 1(pipi*) and 1(npi*) states, the present results indicate that the 1(npi*) state does not contribute to the leading photophysical event and establish the prevalence of a model based on the CI concept in modern photochemistry.

  4. Developing Tighter Constraints on Exoplanet Biosignatures by Modeling Atmospheric Haze

    Science.gov (United States)

    Felton, Ryan; Neveu, Marc; Domagal-Goldman, Shawn David; Desch, Steven; Arney, Giada

    2018-01-01

    As we increase our capacity to resolve the atmospheric composition of exoplanets, we must continue to refine our ability to distinguish true biosignatures from false positives in order to ultimately distinguish a life-bearing from a lifeless planet. Of the possible true and false biosignatures, methane (CH4) and carbon dioxide (CO2) are of interest, because on Earth geological and biological processes can produce them on large scales. To identify a biotic, Earth-like exoplanet, we must understand how these biosignatures shape their atmospheres. High atmospheric abundances of CH4 produce photochemical organic haze, which dramatically alters the photochemistry, climate, and spectrum of a planet. Arney et al. (2017) have suggested that haze-bearing atmospheres rich in CO2 may be a type of biosignature because the CH4 flux required to produce the haze is similar to the amount of biogenic CH4 on modern Earth. Atmospheric CH4 and CO2 both affect haze-formation photochemistry, and the potential for hazes to form in Earth-like atmospheres at abiotic concentrations of these gases has not been well studied. We will explore a wide range of parameter space of abiotic concentration levels of these gases to determine what spectral signatures are possible from abiotic environments and look for measurable differences between abiotic and biotic atmospheres. We use a 1D photochemical model with an upgraded haze production mechanism to compare Archean and modern Earth atmospheres to abiotic versions while varying atmospheric CH4 and CO2 levels and atmospheric pressure. We will vary CO2 from a trace gas to an amount such that it dominates atmospheric chemistry. For CH4, there is uncertainty regarding the amount of abiotic CH4 that comes from serpentinizing systems. To address this uncertainty, we will model three cases: 1) assume all CH4 comes from photochemistry; 2) use estimates of modern-day serpentinizing fluxes, assuming they are purely abiotic; and 3) assume serpentinizing

  5. Contribution of carbonyl photochemistry to aging of atmospheric secondary organic aerosol

    DEFF Research Database (Denmark)

    Mang, Stephen A.; Henricksen, Dana K.; Bateman, Adam P.

    2008-01-01

    of freshly prepared SOA was estimated to be on the order of' 15 L mol(-1) cm(-1) at 300 rim, implying one carbonyl group in every SOA constituent. The absorption by the SOA material slowly increased in the visible and near-UV during storage of SOA in open air in the dark, presumably as a result......The photodegradation of secondary organic aerosol (SOA) material by actinic UV radiation was investigated. SOA was generated via the dark reaction of ozone and d-limonene, collected onto quartz-fiber filters, and exposed to wavelength-tunable radiation. Photochemical production of CO was monitored...

  6. Atmospheric photochemistry at a fatty acid-coated air-water interface

    Science.gov (United States)

    Rossignol, Stéphanie; Tinel, Liselotte; Bianco, Angelica; Passananti, Monica; Brigante, Marcello; Donaldson, D. James; George, Christian

    2016-08-01

    Although fatty acids are believed to be photochemically inert in the actinic region, complex volatile organic compounds are produced during illumination of an air-water interface coated solely with a monolayer of carboxylic acid. When aqueous solutions containing nonanoic acid (NA) at bulk concentrations that give rise to just over a monolayer of NA coverage are illuminated with actinic radiation, saturated and unsaturated aldehydes are seen in the gas phase, and more highly oxygenated products appear in the aqueous phase. This chemistry is probably initiated by triplet-state NA molecules excited by direct absorption of actinic light at the water surface. Because fatty acids-covered interfaces are ubiquitous in the environment, such photochemical processing will have a substantial impact on local ozone and particle formation.

  7. Atmospheric Photochemistry Studies of Pollutant Emissions from Transportation Vehicles Operating on Alternative Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Jeffries, H.; Sexton, K.; Yu, J.

    1998-07-01

    This project was undertaken with the goal of improving our ability to predict the changes in urban ozone resulting from the widespread use of alternative fuels in automobiles. This report presents the results in detail.

  8. Effect of a bacteriophage cocktail in combination with modified atmosphere packaging in controlling Listeria monocytogenes on fresh-cut spinach

    Directory of Open Access Journals (Sweden)

    Boyacioglu O.

    2016-06-01

    Full Text Available A Listeria monocytogenes-specific bacteriophage cocktail was evaluated for its activity against a nalidixic acid-resistant L. monocytogenes (Lm-NalR isolate on fresh-cut spinach stored under modified atmosphere packaging at various temperatures. Pieces (~2 × 2 cm2 of fresh spinach inoculated with 4.5 log CFU/cm2 Lm-NalR were sprayed with the phage cocktail (6.5 log plaque-forming units [PFU]/cm2 or a control. The samples were stored at 4°C or 10°C for up to 14 d in sealed packages filled with either atmospheric air (AA or modified atmosphere (MA. At 4°C under AA, the phages significantly (P ≤ 0.05 lowered the Lm-NalR populations on spinach, compared to control-treated inoculated samples, by 1.12 and 1.51 log CFU/cm2 after 1 and 14 d, respectively. At 4°C under MA, Lm-NalR was significantly reduced by 1.95 log CFU/cm2 compared to control leaves after both 1 and 14 d. At 10°C under AA, the phages significantly reduced Lm-NalR by 1.50 and 2.51 log CFU/cm2 after 1 and 14 d compared to the control. Again at 10°C under MA, the phages significantly reduced Lm-NalR by 1.71 and 3.24 log CFU/cm2 compared to control after 1 and 14 d, respectively. The results support the potential of lytic bacteriophages in effectively reducing populations of L. monocytogenes on freshcut leafy produce, under both AA and MA conditions.

  9. A Combined Very Large Telescope and Gemini Study of the Atmosphere of the Directly Imaged Planet, Beta Pictoris b

    Science.gov (United States)

    Currie, Thayne; Burrows, Adam; Madhusudhan, Nikku; Fukagawa, Misato; Girard, Julien H.; Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott; Kuchner, Marc J.; Matsumura, Soko; hide

    2013-01-01

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet Beta Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While Beta Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects-i.e., ? And b and 1RXJ 1609B-match Beta Pic b's JHKsL photometry and its 3.1 micron and 5 micron photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (approx. 60 micron)dust grains fail to reproduce the Beta Pic b spectrum. However, models incorporating thick clouds similar to those found forHR8799 bcde, but also with small (a fewmicrons) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles (a = 4 micron), we derive atmosphere parameters of log(g) = 3.8 +/- 0.2 and Teff = 1575-1650 K, an inferred mass of 7+4 -3 MJ, and a luminosity of log(L/L) approx. -3.80 +/- 0.02. The best-estimated planet radius, is approx. equal to 1.65 +/- 0.06 RJ, is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if Beta Pic b is younger than is approx. equal to 7 Myr, consistent with a late formation well after its host star's birth approx. 12+8 -4 Myr ago.

  10. A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b

    International Nuclear Information System (INIS)

    Currie, Thayne; Jayawardhana, Ray; Burrows, Adam; Madhusudhan, Nikku; Fukagawa, Misato; Girard, Julien H.; Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott; Kuchner, Marc; Matsumura, Soko; Chambers, John; Bromley, Ben

    2013-01-01

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet β Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While β Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects—i.e., κ And b and 1RXJ 1609B—match β Pic b's JHK s L' photometry and its 3.1 μm and 5 μm photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (∼60 μm) dust grains fail to reproduce the β Pic b spectrum. However, models incorporating thick clouds similar to those found for HR 8799 bcde, but also with small (a few microns) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles ((a) = 4 μm), we derive atmosphere parameters of log (g) = 3.8 ± 0.2 and T eff = 1575-1650 K, an inferred mass of 7 +4 -3 M J , and a luminosity of log(L/L ☉ ) ∼–3.80 ± 0.02. The best-estimated planet radius, ≈1.65 ± 0.06 R J , is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if β Pic b is younger than ≈7 Myr, consistent with a late formation well after its host star's birth ∼12 +8 -4 Myr ago

  11. Stable lead isotopes and lake sediments. A useful combination for the study of atmospheric lead pollution history

    Energy Technology Data Exchange (ETDEWEB)

    Renberg, I.; Braennvall, M.-L.; Bindler, R. [Department of Ecology and Environmental Science, Umea University, SE-901 87 Umea (Sweden); Emteryd, O. [Department of Forest Ecology, Swedish University of Agricultural Sciences, SE-901 83 Umea (Sweden)

    2002-06-20

    Analysis of stable lead isotopes and lead concentrations in lake-sediment deposits, not least in varved (annually-laminated) sediments, is a useful method to study lead pollution history. This paper presents details from a study of 31 lakes in Sweden. Using a strong acid digestion of sediment samples and ICP-MS analyses, we have found that Swedish lake sediments have a high natural (pre-pollution) 206[Pb]/207[Pb] ratio (mean 1.52{+-}0.18, range 1.28-2.01, n=31 lakes). In contrast, atmospheric lead pollution derived from metal smelting processes, coal burning and from alkyl-lead added to petrol has a lower ratio (<1.2). Consequently, when pollution lead deposition began approximately 3500 years ago, the lead isotope ratio of the sediments started to decline, and in modern sediments it is typically <1.2. Using the isotope and concentration values and a mixing model, the relative contribution of pollution and natural lead in sediment samples can be calculated. The pollution lead records of the Swedish lake sediments show a consistent picture of the atmospheric lead pollution history. Some noticeable features are the Roman peak, the large and permanent Medieval increase, peaks at approximately 1200 and 1530 ad, the rapid increase after World War II, the peak in the 1970s, and the large modern decline.

  12. Selected topics in photochemistry of nucleic acids. Recent results and perspectives

    International Nuclear Information System (INIS)

    Loeber, G.; Kittler, L.

    1977-01-01

    Recent results on the following photoreactions of nucleic acids are reported: photochemistry of aza-bases and minor bases, formation of photoproducts of the non-cyclobutane type, formations of furocoumarin-pyrimidine photoadducts, fluorescence of dye-nucleic acid complexes and their role in chromosomal fluorescence staining, and mechanisms of the photochemical reaction. Results are discussed with respect to: (i) photobiological relevance of light-induced defects in nucleic acids; (ii) possibilities of achieving higher selectivity of light-induced defects in nucleic acids; (iii) the use of nucleic acid photochemistry to analyze genetic material. An extensive bibliography is included. (author)

  13. Applications of Continuous-Flow Photochemistry in Organic Synthesis, Material Science, and Water Treatment.

    Science.gov (United States)

    Cambié, Dario; Bottecchia, Cecilia; Straathof, Natan J W; Hessel, Volker; Noël, Timothy

    2016-09-14

    Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.

  14. A COMBINED VERY LARGE TELESCOPE AND GEMINI STUDY OF THE ATMOSPHERE OF THE DIRECTLY IMAGED PLANET, β PICTORIS b

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne; Jayawardhana, Ray [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, Ontario M5S 3H4 (Canada); Burrows, Adam [Department of Astrophysical Sciences, Princeton University, 4 Ivy Lane, Peyton Hall, Princeton, NJ 08544 (United States); Madhusudhan, Nikku [Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Fukagawa, Misato [Osaka University, Machikaneyama 1-1, Toyonaka, Osaka 560-0043 (Japan); Girard, Julien H. [European Southern Observatory, Alonso de Cordova 3107, Vitacura, Cassilla 19001, Santiago (Chile); Dawson, Rebekah; Murray-Clay, Ruth; Kenyon, Scott [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 10, Cambridge, MA 02138 (United States); Kuchner, Marc [NASA-Goddard Space Flight Center, Exoplanets and Stellar Astrophysics Laboratory Code 667, Greenbelt, MD 20771 (United States); Matsumura, Soko [Department of Astronomy, University of Maryland, College Park, MD 20742-2421 (United States); Chambers, John [Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road, NW Washington, DC 20015-1305 (United States); Bromley, Ben [Department of Physics, University of Utah, Salt Lake City, UT (United States)

    2013-10-10

    We analyze new/archival VLT/NaCo and Gemini/NICI high-contrast imaging of the young, self-luminous planet β Pictoris b in seven near-to-mid IR photometric filters, using advanced image processing methods to achieve high signal-to-noise, high precision measurements. While β Pic b's near-IR colors mimic those of a standard, cloudy early-to-mid L dwarf, it is overluminous in the mid-infrared compared to the field L/T dwarf sequence. Few substellar/planet-mass objects—i.e., κ And b and 1RXJ 1609B—match β Pic b's JHK{sub s}L' photometry and its 3.1 μm and 5 μm photometry are particularly difficult to reproduce. Atmosphere models adopting cloud prescriptions and large (∼60 μm) dust grains fail to reproduce the β Pic b spectrum. However, models incorporating thick clouds similar to those found for HR 8799 bcde, but also with small (a few microns) modal particle sizes, yield fits consistent with the data within the uncertainties. Assuming solar abundance models, thick clouds, and small dust particles ((a) = 4 μm), we derive atmosphere parameters of log (g) = 3.8 ± 0.2 and T{sub eff} = 1575-1650 K, an inferred mass of 7{sup +4}{sub -3} M{sub J} , and a luminosity of log(L/L{sub ☉}) ∼–3.80 ± 0.02. The best-estimated planet radius, ≈1.65 ± 0.06 R{sub J} , is near the upper end of allowable planet radii for hot-start models given the host star's age and likely reflects challenges constructing accurate atmospheric models. Alternatively, these radii are comfortably consistent with hot-start model predictions if β Pic b is younger than ≈7 Myr, consistent with a late formation well after its host star's birth ∼12{sup +8}{sub -4} Myr ago.

  15. Mutagenicity in Salmonella of a Simulated Urban-Smog Atmosphere Generated Using a Mobile Reaction Chamber

    Science.gov (United States)

    The EPA Mobile Reaction Chamber (MRC) is a 24-foot trailer containing a 14.3-m3 Teflon lined photochemical chamber used to generate simulated urban atmospheres. Photochemistry in the MRC is catalyzed by 120 fluorescent bulbs evenly mixed with black light bulbs and UV bulbs (300 &...

  16. Chitosan-limonene coating in combination with modified atmosphere packaging preserve postharvest quality of cucumber during storage

    NARCIS (Netherlands)

    Maleki, Gisoo; Sedaghat, Naser; Woltering, Ernst J.; Farhoodi, Mehdi; Mohebbi, Mohebbat

    2018-01-01

    Since cucumbers suffer from a short postharvest life, applying different technologies is increasingly used as effective ways to increase their shelf life and quality. In this study a combination of chitosan-limonene coating and MAP storage has been used as a postharvest treatment to maintain

  17. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  18. Structure and UV-induced photochemistry of 2-furaldehyde dimethylhydrazone isolated in rare gas matrices

    Science.gov (United States)

    Araujo-Andrade, C.; Giuliano, B. M.; Gómez-Zavaglia, A.; Fausto, R.

    2012-11-01

    In this work, a combined matrix isolation FTIR and theoretical DFT(B3LYP)/6-311++G(d,p) study of 2-furaldehyde dimethylhydrazone (2FDH) was performed. According to calculations, two E and two Z conformers exist, the E forms having considerably lower energy than the Z forms. The absence of relevant sterical hindrance between the two substituents around the Cdbnd N bond (dimethylamino and 2-furyl) in the E structures and an extended π-p electron delocalization in the hydrazone moiety determines the higher stability of these species relatively to the Z structures. In the lowest energy form (E-AG) the O-C-Cdbnd N and Cdbnd N-N-Lp (Lp = lone electron pair of amine nitrogen atom) dihedral angles are predicted by the calculations to be -177.2° and 93.7°, respectively. The weak (Ndbnd C)-H⋯O hydrogen bond type interaction (H⋯O distance: 252.2 pm) in form E-AG, together with the absence in this form of the destabilizing interaction between the lone electron pairs of the oxygen and nitrogen atoms existing in E-SG, explains its lower energy in comparison with this latter form. Both E-AG and E-SG conformers could be trapped from room temperature gas phase in low temperature argon and xenon matrices. The high E-SG → E-AG energy barrier (>25 kJ mol-1) explains that, upon increasing the temperature of the matrices no conformational isomerization could be observed. After irradiation of 2FDH with UV-light at λ > 328 and λ > 234 nm, two different photochemistries were observed. Irradiation at lower energy (λ > 328 nm) induced the E-AG → E-SG isomerization. Further irradiation at higher energy (λ > 234 nm) led to a quick consumption of 2FDH and production of furan and dimethylisocyanide.

  19. Combining in situ and laboratory measurements of soil-atmosphere carbonyl sulfide fluxes from four different biomes across Europe

    Science.gov (United States)

    Kitz, Florian; Gomez-Brandon, Maria; Hammerle, Albin; Spielmann, Felix M.; Insam, Heribert; Ibrom, Andreas; Migliavacca, Mirco; Moreno, Gerardo; Noe, Steffen M.; Wohlfahrt, Georg

    2017-04-01

    Flux partitioning, the quantification of photosynthesis and respiration, is a major uncertainty in modelling the carbon cycle and in times when robust models are needed to assess future global changes a persistent problem. A promising new approach is to derive gross primary production (GPP) from measurements of the carbonyl sulfide (COS) flux, the most abundant sulfur-containing trace gas in the atmosphere, with a mean concentration of about 500 pptv in the troposphere. This is possible because COS and CO2 enter the leaf via a similar pathway and are processed by the same enzyme (carbonic anhydrase). A prerequisite for using COS as a proxy for photosynthesis is a robust estimation of all non-leaf sources and sinks in an ecosystem. Past studies described soils either as a sink or source, depending on their properties like soil temperature and soil water content. In 2016 we conducted field campaigns in Austria (managed temperate mountain grassland), Spain (savannah), Denmark (temperate beech forest) and Estonia (hemiboreal forest) to estimate the soil-atmosphere COS fluxes under ambient conditions in different biomes. We used self-built fused silica soil chambers to avoid COS emissions from built-in materials and to assess the impact of radiation. At the grassland sites (Austria, Spain) vegetation was removed below the chambers, therefor more radiation reached the soil surface compared to natural conditions. The grassland sites were characterized by highly positive COS fluxes during daytime and COS fluxes around zero during nighttime. In contrast, the soils at the forest sites (Denmark, Estonia), characterized by less radiation on the soil surface, acted as a sink for COS. The impact of other abiotic factors, like soil water content and soil temperature, varied between the ecosystems. In addition to the field measurements soil and litter samples were taken at the study sites and used to measure COS fluxes under controlled conditions in the lab. Results from the

  20. Kinetics and Photochemistry of Ruthenium Bisbipyridine Diacetonitrile Complexes: An Interdisciplinary Inorganic and Physical Chemistry Laboratory Exercise

    Science.gov (United States)

    Rapp, Teresa L.; Phillips, Susan R.; Dmochowski, Ivan J.

    2016-01-01

    The study of ruthenium polypyridyl complexes can be widely applied across disciplines in the undergraduate curriculum. Ruthenium photochemistry has advanced many fields including dye-sensitized solar cells, photoredox catalysis, lightdriven water oxidation, and biological electron transfer. Equally promising are ruthenium polypyridyl complexes…

  1. Photochemistry of Nitrophenol Molecules and Clusters: Intra- vs Intermolecular Hydrogen Bond Dynamics

    Czech Academy of Sciences Publication Activity Database

    Grygoryeva, Kateřina; Kubečka, J.; Pysanenko, Andriy; Lengyel, Jozef; Slavíček, Petr; Fárník, Michal

    2016-01-01

    Roč. 120, č. 24 (2016), s. 4139-4146 ISSN 1089-5639 R&D Projects: GA ČR(CZ) GA15-12386S Institutional support: RVO:61388955 Keywords : photochemistry * clusters * laser techniques Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.847, year: 2016

  2. Selected Contributions of the 4th International Conference on Semiconductor Photochemistry (5P4) Introduction.

    Czech Academy of Sciences Publication Activity Database

    Krýsa, J.; Klusoň, Petr; Malato, S.

    2014-01-01

    Roč. 230, JUL 2014 (2014), s. 1 ISSN 0920-5861 Grant - others:SMEC(ES) CTQ2012-38754-C03-01 Institutional support: RVO:67985858 Keywords : semiconductor photochemistry * catalysis * scientific applications Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 3.893, year: 2014

  3. On the involvement of single-bond rotation in the primary photochemistry of photoactive yellow protein

    NARCIS (Netherlands)

    Stahl, A.D.; Hospes, M.; Singhal, K.; van Stokkum, I.; van Grondelle, R.; Groot, M.L.; Hellingwerf, K.J.

    2011-01-01

    Prior experimental observations, as well as theoretical considerations, have led to the proposal that C4-C7 single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid

  4. Energy cascades, excited state dynamics, and photochemistry in cob(III)alamins and ferric porphyrins.

    Science.gov (United States)

    Rury, Aaron S; Wiley, Theodore E; Sension, Roseanne J

    2015-03-17

    Porphyrins and the related chlorins and corrins contain a cyclic tetrapyrrole with the ability to coordinate an active metal center and to perform a variety of functions exploiting the oxidation state, reactivity, and axial ligation of the metal center. These compounds are used in optically activated applications ranging from light harvesting and energy conversion to medical therapeutics and photodynamic therapy to molecular electronics, spintronics, optoelectronic thin films, and optomagnetics. Cobalt containing corrin rings extend the range of applications through photolytic cleavage of a unique axial carbon-cobalt bond, permitting spatiotemporal control of drug delivery. The photochemistry and photophysics of cyclic tetrapyrroles are controlled by electronic relaxation dynamics including internal conversion and intersystem crossing. Typically the electronic excitation cascades through ring centered ππ* states, ligand to metal charge transfer (LMCT) states, metal to ligand charge transfer (MLCT) states, and metal centered states. Ultrafast transient absorption spectroscopy provides a powerful tool for the investigation of the electronic state dynamics in metal containing tetrapyrroles. The UV-visible spectrum is sensitive to the oxidation state, electronic configuration, spin state, and axial ligation of the central metal atom. Ultrashort broadband white light probes spanning the range from 270 to 800 nm, combined with tunable excitation pulses, permit the detailed unravelling of the time scales involved in the electronic energy cascade. State-of-the-art theoretical calculations provide additional insight required for precise assignment of the states. In this Account, we focus on recent ultrafast transient absorption studies of ferric porphyrins and corrin containing cob(III)alamins elucidating the electronic states responsible for ultrafast energy cascades, excited state dynamics, and the resulting photoreactivity or photostability of these compounds. Iron

  5. Oxygen isotope dynamics of atmospheric nitrate over the Antarctic plateau: First combined measurements of ozone and nitrate 17O-excess (Δ17O)

    Science.gov (United States)

    Vicars, William; Savarino, Joël; Erbland, Joseph; Preunkert, Susanne; Jourdain, Bruno; Frey, Markus; Gil, Jaime; Legrand, Michel

    2013-04-01

    Variations in the isotopic composition of atmospheric nitrate (NO3-) provide novel indicators for important processes in boundary layer chemistry, often acting as source markers for reactive nitrogen (NOx = NO + NO2) and providing both qualitative and quantitative constraints on the pathways that determine its fate. Stable isotope ratios of nitrate (δ15N, δ17O, δ18O) offer direct insight into the nature and magnitude of the fluxes associated with different processes, thus providing unique information regarding phenomena that are often difficult to quantify from concentration measurements alone. The unique and distinctive 17O-excess (Δ17O = δ17O - 0.52 × δ18O ) of ozone (O3), which is transferred to NOx via oxidation reactions in the atmosphere, has been found to be a particularly useful isotopic fingerprint in studies of NOx transformations. Constraining the propagation of 17O-excess within the NOx cycle is critical in polar areas where there exists the possibility of extending atmospheric interpretations to the glacial/interglacial time scale using deep ice core records of nitrate. Here we present measurements of the comprehensive isotopic composition of atmospheric nitrate collected at Dome C, Antarctica during December 2011 to January 2012. Sampling was conducted within the framework of the OPALE (Oxidant Production over Antarctic Land and its Export) project, thus providing an opportunity to combine our isotopic observations with a wealth of meteorological and chemical data, including in-situ concentration measurements of the gas-phase precursors involved in nitrate production (NOx, O3, OH, HO2, etc.). Furthermore, nitrate isotope analysis has been combined in this study for the first time with parallel observations of the transferrable Δ17O of surface ozone, which was measured concurrently at Dome C using our recently developed analytical approach. This unique dataset has allowed for a direct comparison of observed Δ17O(NO3-) values to those that are

  6. Carbon monoxide in jupiter's upper atmosphere: An extraplanetary source

    International Nuclear Information System (INIS)

    Prather, M.J.; Logan, J.A.; McElroy, M.B.

    1978-01-01

    Ablation of meteoroidal material in Jupiter's atmosphere may provide substantial quantities of H 2 O. Subsequent photochemistry can convert H 2 O and CH 4 to CO and H 2 . The associated source of CO could account for the observations by Beer, Larson, Fink, and Treffers, and Beer and Taylor, and would explain the relatively low rotational temperatures inferred by Beer and Taylor. Meteoritic debris might also provide spectroscopically detectable concentrations of SiO

  7. Separation of atmospheric, oceanic and hydrological polar motion excitation mechanisms based on a combination of geometric and gravimetric space observations

    Science.gov (United States)

    Göttl, F.; Schmidt, M.; Seitz, F.; Bloßfeld, M.

    2015-04-01

    The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems, Very Long Baseline Interferometry, Doppler Orbit determination and Radiopositioning Integrated on Satellite, satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

  8. The impact of urban canopy meteorological forcing on summer photochemistry

    Science.gov (United States)

    Huszár, Peter; Karlický, Jan; Belda, Michal; Halenka, Tomáš; Pišoft, Petr

    2018-03-01

    The regional climate model RegCM4.4, including the surface model CLM4.5, was offline coupled to the chemistry transport model CAMx version 6.30 in order to investigate the impact of the urban canopy induced meteorological changes on the longterm summer photochemistry over central Europe for the 2001-2005 period. First, the urban canopy impact on the meteorological conditions was calculated performing a reference experiment without urban landsurface considered and an experiment with urban surfaces modeled with the urban parameterization within the CLM4.5 model. In accordance with expectations, strong increases of urban surface temperatures (up to 2-3 K), decreases of wind speed (up to -1 ms-1) and increases of vertical turbulent diffusion coefficient (up to 60-70 m2s-1) were found. For the impact on chemistry, these three components were considered. Additionally, we accounted for the effect of temperature enhanced biogenic emission increase. Several experiments were performed by adding these effects one-by-one to the total impact: i.e., first, only the urban temperature impact was considered driving the chemistry model; secondly, the wind impact was added and so on. We found that the impact on biogenic emission account for minor changes in the concentrations of ozone (O3), oxides of nitrogen NOx = NO + NO2 and nitric acid (HNO3). On the other hand, the dominating component acting is the increased vertical mixing, resulting in up to 5 ppbv increase of urban ozone concentrations while causing -2 to -3 ppbv decreases and around 1 ppbv increases of NOx and HNO3 surface concentrations, respectively. The temperature impact alone results in reduction of ozone, increase in NO, decrease in NO2 and increases of HNO3. The wind impact leads, over urban areas, to ozone decreases, increases of NOx and a slight increase in HNO3. The overall impact is similar to the impact of increased vertical mixing alone. The Process Analysis (PA) technique implemented in CAMx was adopted to

  9. Heterogeneous photochemistry of imidazole-2-carboxaldehyde: HO2 radical formation and aerosol growth

    Directory of Open Access Journals (Sweden)

    L. González Palacios

    2016-09-01

    Full Text Available The multiphase chemistry of glyoxal is a source of secondary organic aerosol (SOA, including its light-absorbing product imidazole-2-carboxaldehyde (IC. IC is a photosensitizer that can contribute to additional aerosol ageing and growth when its excited triplet state oxidizes hydrocarbons (reactive uptake via H-transfer chemistry. We have conducted a series of photochemical coated-wall flow tube (CWFT experiments using films of IC and citric acid (CA, an organic proxy and H donor in the condensed phase. The formation rate of gas-phase HO2 radicals (PHO2 was measured indirectly by converting gas-phase NO into NO2. We report on experiments that relied on measurements of NO2 formation, NO loss and HONO formation. PHO2 was found to be a linear function of (1 the [IC]  ×  [CA] concentration product and (2 the photon actinic flux. Additionally, (3 a more complex function of relative humidity (25 %  <  RH  <  63 % and of (4 the O2 ∕ N2 ratio (15 %  <  O2 ∕ N2  <  56 % was observed, most likely indicating competing effects of dilution, HO2 mobility and losses in the film. The maximum PHO2 was observed at 25–55 % RH and at ambient O2 ∕ N2. The HO2 radicals form in the condensed phase when excited IC triplet states are reduced by H transfer from a donor, CA in our system, and subsequently react with O2 to regenerate IC, leading to a catalytic cycle. OH does not appear to be formed as a primary product but is produced from the reaction of NO with HO2 in the gas phase. Further, seed aerosols containing IC and ammonium sulfate were exposed to gas-phase limonene and NOx in aerosol flow tube experiments, confirming significant PHO2 from aerosol surfaces. Our results indicate a potentially relevant contribution of triplet state photochemistry for gas-phase HO2 production, aerosol growth and ageing in the atmosphere.

  10. Aspects of airborne particles and radiation in the atmosphere

    International Nuclear Information System (INIS)

    Hidy, G.M.

    1975-01-01

    There are two major ways that thermal radiation may interact with airborne particles in the Earth's atmosphere. The first is a classical problem in which the radiation balance is influenced by scattering and absorption from haze or aerosol layers in the atmosphere. Absorption is generally believed to have a minor effect on attenuation of radiation compared with scattering. In the visible and infrared, scattering by submicron sized particles can have a substantial influence on the balance of radiation in the atmosphere. Considerable interest in this question has developed recently with the assessment of the global impact of air pollution in the lower atmosphere and of exhaust emissions from aircraft flying in the stratosphere. In the first part of this review, the physics of atmospheric aerosol scattering is summarized, and the current status of observational knowledge is examined to identify areas of greatest uncertainty. The second way the radiation is involved in aerosols lies in the production in the atmosphere. Until recently, evidence for airborne particle production by atmospheric photochemistry was quite ambiguous. However, with the advent of results from several new field experiments the role of photochemistry in the generation of aerosol precursors from traces of such gases as sulfur dioxide, nitrogen oxides, and olefinic hydrocarbons is much better understood. The remaining part of this paper is devoted to the discussion of several new observations that indicate the complicated nature of photochemical aerosol formation in the polluted and non-polluted atmosphere

  11. Estimation of land-atmosphere energy transfer over the Tibetan Plateau by a combination use of geostationary and polar-orbiting satellite data

    Science.gov (United States)

    Zhong, L.; Ma, Y.

    2017-12-01

    Land-atmosphere energy transfer is of great importance in land-atmosphere interactions and atmospheric boundary layer processes over the Tibetan Plateau (TP). The energy fluxes have high temporal variability, especially in their diurnal cycle, which cannot be acquired by polar-orbiting satellites alone because of their low temporal resolution. Therefore, it's of great practical significance to retrieve land surface heat fluxes by a combination use of geostationary and polar orbiting satellites. In this study, a time series of the hourly LST was estimated from thermal infrared data acquired by the Chinese geostationary satellite FengYun 2C (FY-2C) over the TP. The split window algorithm (SWA) was optimized using a regression method based on the observations from the Enhanced Observing Period (CEOP) of the Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) and Tibetan observation and research platform (TORP), the land surface emissivity (LSE) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the water vapor content from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) project. The 10-day composite hourly LST data were generated via the maximum value composite (MVC) method to reduce the cloud effects. The derived LST was validated by the field observations of CAMP/Tibet and TORP. The results show that the retrieved LST and in situ data have a very good correlation (with root mean square error (RMSE), mean bias (MB), mean absolute error (MAE) and correlation coefficient (R) values of 1.99 K, 0.83 K, 1.71 K, and 0.991, respectively). Together with other characteristic parameters derived from polar-orbiting satellites and meteorological forcing data, the energy balance budgets have been retrieved finally. The validation results showed there was a good consistency between estimation results and in-situ measurements over the TP, which prove the robustness of the proposed estimation

  12. Synergy of CuO and CeO2 combination for mercury oxidation under low-temperature selective catalytic reduction atmosphere

    KAUST Repository

    Li, Hailong

    2016-07-19

    Synergy for low temperature Hg0 oxidation under selective catalytic reduction (SCR) atmosphere was achieved when copper oxides and cerium oxides were combined in a CuO-CeO2/TiO2 (CuCeTi) catalyst. Hg0 oxidation efficiency as high as 99.0% was observed on the CuCeTi catalyst at 200 °C, even the gas hourly space velocity was extremely high. To analyze the synergistic effect, comparisons of catalyst performance in the presence of different SCR reaction gases were systematically conducted over CuO/TiO2 (CuTi), CeO2/TiO2 (CeTi) and CuCeTi catalysts prepared by sol-gel method. The interactions between copper oxides and cerium oxides in CuCeTi catalyst yielded more surface chemisorbed oxygen, and facilitated the conversion of gas-phase O2 to surface oxygen, which are favorable for Hg0 oxidation. Copper oxides in the combination interacted with NO forming more chemisorbed oxygen for Hg0 oxidation in the absence of gas-phase O2. Cerium oxides in the combination promoted Hg0 oxidation through enhancing the transformations of NO to NO2. In the absence of NO, NH3 exhibited no inhibitive effect on Hg0 oxidation, because enough Lewis acid sites due to the combination of copper oxides and cerium oxides scavenged the competitive adsorption between NH3 and Hg0. In the presence of NO, although NH3 lowered Hg0 oxidation rate through inducing reduction of oxidized mercury, complete recovery of Hg0 oxidation activity over the CuCeTi catalyst was quickly achieved after cutting off NH3. This study revealed the synergistic effect of the combination of copper oxides and cerium oxides on Hg0 oxidation, and explored the involved mechanisms. Such knowledge would help obtaining maximum Hg0 oxidation co-benefit from SCR units in coal-fired power plants.

  13. Combining tree-ring metal concentrations and lead, carbon and oxygen isotopes to reconstruct peri-urban atmospheric pollution

    Directory of Open Access Journals (Sweden)

    Annick Doucet

    2012-08-01

    Full Text Available In this study, we analysed the tree-ring metal concentrations and isotope ratios of five stands located in three contrasted settings to infer the diffuse air pollution history of the northern part of the Windsor–Québec City Corridor in eastern Canada. Tree-ring series show that the Cd and Zn accumulation rates were higher between 1960 and 1986 and that the long-term acidification of the soil (Ca/Al series was likely induced by NOx and SOx deposition (δ15N and δ13C trends as proxy. The Pb concentrations and 206Pb/207Pb ratios indicate that the dominant source of lead from 1880 to the 1920s was the combustion of north-eastern American coal, which was succeeded by the combustion of leaded gasoline from the 1920s to the end of the 1980s. Our modelling approach allows separating the climatic and anthropogenic effects on the tree-ring δ13C and δ18O responses. Diffuse air pollution caused an enrichment in 13C in all stands and a decrease of the δ18O values only in three of the stands. This study indicates that dendrogeochemistry can show contrasted responses to environmental changes and that the combination of several independent indicators constitutes a powerful tool to reconstruct the air pollution history in the complex context of peri-urban regions.

  14. Two case studies on the interaction of large-scale transport, mesoscale photochemistry, and boundary-layer processes on the lower tropospheric ozone dynamics in early spring

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    Full Text Available The vertical distribution of ozone in the lower troposphere over the Swiss Plateau is investigated in detail for two episodes in early spring (February 1998 and March 1999. Profile measurements of boundary-layer ozone performed during two field campaigns with a tethered balloon sounding system and a kite are investigated using regular aerological and ozone soundings from a nearby site, measurements from monitoring stations at various altitudes, backward trajectories, and synoptic analyses of meteorological fields. Additionally, the effect of in situ photochemistry was estimated for one of the episodes employing the Metphomod Eulerian photochemical model. Although the meteorological situations were completely different, both cases had elevated layers with high ozone concentrations, which is not untypical for late winter and early spring. In the February episode, the highest ozone concentrations of 55 to 60 ppb, which were found at around 1100 m asl, were partly advected from Southern France, but a considerable contribution of in situ photochemistry is also predicted by the model. Below that elevation, the local chemical sinks and surface deposition probably overcompensated chemical production, and the vertical ozone distribution was governed by boundary-layer dynamics. In the March episode, the results suggest that ozone-rich air parcels, probably of stratospheric or upper tropospheric origin, were advected aloft the boundary layer on the Swiss Plateau.

    Key words. Atmospheric composition and structure (pollution – urban and regional; troposphere – composition and  chemistry – Meteorology and atmospheric dynamics (mesoscale meteorology

  15. Photochemistry of CS2/Cl complexes-combined pulse radiolysis-laser flash photolysis studies

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Nakayama, Masayoshi; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Complexes of chlorine atoms and carbon disulfide (CS 2 ) were produced by pulse radiolysis of CS 2 in halocarbons and photochemical reactions were studied by laser flash photolysis. Excitation of CS 2 /Cl complexes resulted in rapid and permanent photobleaching. The photobleaching of CS 2 /Cl complexes is due to intermolecular chlorine atom abstraction in CCl 4 with a quantum yield of 0.04, while that ascribed to hydrogen atom abstraction in 1,2-dichloroethane has a quantum yield of 0.21. The effects of additives are discussed based on the bond dissociation energy

  16. 2009 Gordon Research Conference on Photochemistry: Formal Schedule and Speaker/Poster Program

    Energy Technology Data Exchange (ETDEWEB)

    Wasielewski, Michael [Northwestern Univ., Evanston, IL (United States)

    2009-07-05

    The impact of photochemistry on diverse fields ranging from materials and environmental science to biology and medicine has never been greater. The 2009 Gordon Conference on Photochemistry will highlight recent advances in these key areas while also presenting the latest research on new photochemical reactions and mechanistic studies. Session topics will include: development of new chromophores, light harvesting materials, solar energy conversion, photocontrolled biomolecules, light-triggered amplification reactions, and advanced bioimaging techniques. The Conference will continue its 45 year history of promoting interactions between fundamental and applied scientists, a hallmark of the Gordon Conferences. In addition, oral presentations, poster sessions and informal discussions will provide opportunities for junior scientists and students to present their own work and discuss their results with leaders in the field. Applicants to the Conference are encouraged to submit abstracts for poster presentations in order to gain visibility and feedback on their research. In addition, a number of poster abstracts will be selected for presentation as short talks.

  17. Photochemistry of the ozone-water complex in cryogenic neon, argon, and krypton matrixes.

    Science.gov (United States)

    Tsuge, Masashi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2013-12-12

    The photochemistry of ozone-water complexes and the wavelength dependence of the reactions were studied by matrix isolation FTIR spectrometry in neon, argon, and krypton matrixes. Hydrogen peroxide was formed upon the irradiation of UV light below 355 nm. Quantitative analyses of the reactant and product were performed to evaluate the matrix cage effect of the photoreaction. In argon and krypton matrixes, a bimolecular O((1)D) + H2O → H2O2 reaction was found to occur to form hydrogen peroxide, where the O((1)D) atom generated by the photolysis of ozone diffused in the cryogenic solids to encounter water. In a neon matrix, hydrogen peroxide was generated through intracage photoreaction of the ozone-water complex, indicating that a neon matrix medium is most appropriate to study the photochemistry of the ozone-water complex.

  18. An overview of aquatic photochemistry as it relates to microbial production

    Energy Technology Data Exchange (ETDEWEB)

    Miller, W.L. [Dalhousie Univ., Halifax, NS (Canada). Inst. of Oceanography

    2000-07-01

    A review of fundamental photochemistry and its potential impact on microbial processes in natural waters was presented. It is a known fact that solar radiation alters chromophoric dissolved organic matter (CDOM) and results in the production of a complex mixture of reactive oxygen species, inorganic nutrients, and carbon photoproducts. In addition, it results in reduced average molecular weight and changes in water optical properties. The largest carbon product results from the direct photo-mineralization of dissolved organic carbon (DOC) to dissolved inorganic carbon (DIC), thereby bypassing the microbial web. Other studies demonstrated that growth was enhanced for heterotrophic bacteria in natural samples exposed to sunlight, that bacterial growth was absent when stimulated by photochemistry and that there was a marked reduction in the ability of DOC to support bacterial growth after exposure to ultraviolet radiation B (UV-B). 20 refs., 1 fig.

  19. Structure and photochemistry of a novel tetrazole-saccharyl conjugate isolated in solid argon

    Science.gov (United States)

    Ismael, A.; Borba, A.; Duarte, L.; Giuliano, B. M.; Gómez-Zavaglia, A.; Cristiano, M. L. S.

    2012-10-01

    A combined matrix isolation FTIR and theoretical DFT/B3LYP/6-311++G(3df,3pd) study of the novel synthesised tetrazole-saccharyl conjugate 2-[1-(1H-tetrazol-5-yl)ethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide [1-TE-BZT] was performed. In the gas phase, at room temperature, the compound exists as a mixture of six isomeric forms (four conformers of 1H tautomer and two conformers of 2H tautomer). According to theoretical calculations, conformers 1H were the most stable and the relative energies among the three most stable forms are lower than 4 kJ mol-1. These conformers benefit from stabilising intramolecular hydrogen bonds-like interactions involving the 1H of the tetrazole ring and the carbonyl oxygen of the saccharyl moiety. The photochemistry of 1-TE-BZT in solid argon was investigated and theoretical DFT/B3LYP/6-311++G(3df,3pd) calculations also helped in assignment of the experimental bands. A quick consumption of the compound occurred after irradiation of the matrix with UV laser light at λ = 275 nm. Three photofragmentation pathways were proposed, one leading to 2-[1-(1H-diaziren-3-yl)ethyl]-1,2-benzisothiazol-3(2H)-one 1,1-dioxide and molecular nitrogen, a second one giving 2-(1,1-dioxide-3-oxo-1,2-benzisothiazol-2(3H)-yl)propanenitrile and azide, and a third one involving loss of azide from the tetrazole ring and decarbonylation of the saccharyl ring of 1-TE-BZT to give acrylonitrile and 7-thia-8-azabicyclo[4.2.0] octa-1,3,5-triene 7,7 dioxide. The comparison of the relative intensities of the bands of the photoproducts obtained from the three channels allowed us to consider the latter pathway, involving an unprecedented photocleavage of the benzisothiazole (saccharyl) ring, as the preferred photodegradation channel of 1-TE-BZT.

  20. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography

    OpenAIRE

    H?lz, K.; Lietard, J.; Somoza, M. M.

    2016-01-01

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition...

  1. Ultrafast Infrared and UV-vis Studies of the Photochemistry of Methoxycarbonylphenyl Azides in Solution

    OpenAIRE

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S. V.; Hadad, Christopher M.; Platz, Matthew S.

    2012-01-01

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a) and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitre...

  2. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    Energy Technology Data Exchange (ETDEWEB)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly.

  3. Matrix photochemistry of small molecules: Influencing reaction dynamics on electronically excited hypersurfaces

    International Nuclear Information System (INIS)

    Laursen, S.L.

    1990-01-01

    Investigations of chemical reactions on electronically excited reaction surfaces are presented. The role of excited-surface multiplicity is of particular interest, as are chemical reactivity and energy transfer in systems in which photochemistry is initiated through a metal atom ''sensitizer.'' Two approaches are employed: A heavy-atom matrix affords access to forbidden triplet reaction surfaces, eliminating the need for a potentially reactive sensitizer. Later, the role of the metal atom in the photosensitization process is examined directly

  4. Separation and enrichment of isotopes using laser photochemistry - fundamentals and prospectives

    International Nuclear Information System (INIS)

    Guesten, H.

    1978-01-01

    Basic knowledge is summed up on isotope separation by laser photochemistry. The principal prerequisites are explained of the application of atomic and molecular spectroscopy for this purpose. Practical examples are given of isotope separation of uranium, nitrogen, chlorine, carbon, sulfur, and molybdenum showing the application of two basic techniques, i.e., of gradual atom photoionization or gradual molecule photodissociation and of selective photochemical reactions. (L.K.)

  5. Microwave Photochemistry IV: Preparation of the Electrodeless Discharge Lamps for Photochemical Applications

    Czech Academy of Sciences Publication Activity Database

    Církva, Vladimír; Vlková, Leona; Relich, Stanislav; Hájek, Milan

    2006-01-01

    Roč. 179, 1-2 (2006), s. 229-233 ISSN 1010-6030 R&D Projects: GA AV ČR KSK4040110; GA ČR GA203/02/0879 Institutional research plan: CEZ:AV0Z40720504 Keywords : microwave photochemistry * electrodeless discharge lamp * uv/vis source Subject RIV: CC - Organic Chemistry Impact factor: 2.098, year: 2006

  6. Reduction of methanol in brewed wine by the use of atmospheric and room-temperature plasma method and the combination optimization of malt with different adjuncts.

    Science.gov (United States)

    Liang, Ming-Hua; Liang, Ying-Jie; Chai, Jiang-Yan; Zhou, Shi-Shui; Jiang, Jian-Guo

    2014-11-01

    Methanol, often generated in brewed wine, is highly toxic for human health. To decrease the methanol content of the brewed wine, atmospheric and room-temperature plasma (ARTP) was used as a new mutagenesis tool to generate a mutant of Saccharomyces cerevisiae with lower methanol content. Headspace gas chromatography was used to determine the identity and concentration of methanol with butyl acetate as internal standard in brewed wine. With 47.4% higher and 26.3% positive mutation rates were obtained, the ARTP jet exhibited a strong effect on mutation breeding of S. cerevisiae. The mutant S. cerevisiae S12 exhibited the lowest methanol content, which was decreased by 72.54% compared with that of the wild-type strain. Subsequently, the mutant S. cerevisiae S12 was used to ferment different combinations of malt and adjuncts for lower methanol content and higher alcoholic content. It was shown that the culture 6#, which was 60% malt, 20% wheat, and 20% corn, was the best combinations of malt and adjuncts, with the lowest methanol content (104.8 mg/L), and a relatively higher alcoholic content (15.3%, v/v). The optimal malt-adjunct culture 6#, treated with the glucoamylase dose of 0.04 U/mg of grain released the highest reducing sugars (201.6 mg/mL). It was indicated that the variation in reducing sugars among the combinations of malt and different adjuncts could be due to the dose of exogenous enzymes. © 2014 Institute of Food Technologists®

  7. The Radiation Environment of Exoplanet Atmospheres

    Directory of Open Access Journals (Sweden)

    Jeffrey L. Linsky

    2014-10-01

    Full Text Available Exoplanets are born and evolve in the radiation and particle environment created by their host star. The host star’s optical and infrared radiation heats the exoplanet’s lower atmosphere and surface, while the ultraviolet, extreme ultraviolet and X-radiation control the photochemistry and mass loss from the exoplanet’s upper atmosphere. Stellar radiation, especially at the shorter wavelengths, changes dramatically as a host star evolves leading to changes in the planet’s atmosphere and habitability. This paper reviews the present state of our knowledge concerning the time-dependent radiation emitted by stars with convective zones, that is stars with spectral types F, G, K, and M, which comprise nearly all of the host stars of detected exoplanets.

  8. Evaluation of the combined effect of the irradiation process and packaging in different atmospheres on microbiological and sensory quality of beef (Longissimus dorsi) fresh chilled and frozen

    International Nuclear Information System (INIS)

    Moreno, Maria Luz Garcia

    2001-01-01

    Meat, a nutritious food, allows the development of a wide variety of microorganisms which not only spoils it but offers risk to public health. Irradiation with medium doses can be efficiently use to control the presence of microorganisms in meat. Depending upon the dose, irradiation of meat can lead to formation of off-flavours, off odours and discoloration of meat packed with oxygen. These problems can probably be overcome using vacuum package or freezing temperatures. The aim of this research was to evaluate the effect of irradiation, vacuum packaging and temperature on the meat quality. Forty beef pieces (approx. 100g each) were packed under normal atmosphere, 40 were vacuum packed and 40 under N 2 atmosphere. Half of each group was kept overnight under refrigeration and half was frozen. Refrigerated samples were irradiated with 0, 1, 1.5 and 2 kGy. Frozen samples were irradiated with 0, 1, 2 and 3 kGy. Number of microorganisms was significantly reduced (p 3 CFU/g in control samples and remained the same during all study and was detected only in refrigerated irradiated samples. Lactic acid bacteria were less affected by irradiation. Bacterial spores were found in both control and irradiated samples in low numbers (1-67 spores/g). Salmonella sp. and Staphylococcus sp. were not detected. The best combination of treatments to extend the shelf-life of refrigerated meat was vacuum packaging and an irradiation dose of 2 kGy. Nitrogen did not improve the color of irradiated meat. Refrigerated irradiated aerobically packaged meat was darker and less red than control samples. Frozen irradiated aerobically packaged meat was less red and lightener. The effectiveness of food irradiation is based on good quality of raw product. (author)

  9. Maintenance of safety and quality of refrigerated ready-to-cook seasoned ground beef product (meatball) by combining gamma irradiation with modified atmosphere packaging.

    Science.gov (United States)

    Gunes, Gurbuz; Ozturk, Aylin; Yilmaz, Neriman; Ozcelik, Beraat

    2011-08-01

    Meatballs were prepared by mixing ground beef and spices and inoculated with E. coli O157:H7, L. monocytogenes, and S. enteritidis before packaged in modified atmosphere (3% O₂ + 50% CO₂ + 47% N₂) or aerobic conditions. The packaged samples were irradiated at 0.75, 1.5, and 3 kGy doses and stored at 4 °C for 21 d. Survival of the pathogens, total plate count, lipid oxidation, color change, and sensory quality were analyzed during storage. Irradiation at 3 kGy inactivated all the inoculated (approximately 10⁶ CFU/g) S. enteritidis and L. monocytogenes cells in the samples. The inoculated (approximately 10⁶ CFU/g) E. coli O157:H7 cells were totally inactivated by 1.5 kGy irradiation. D¹⁰-values for E. coli O157:H7, S. enteritidis, and L. monocytogenes were 0.24, 0.43, and 0.41 kGy in MAP and 0.22, 0.39, and 0.39 kGy in aerobic packages, respectively. Irradiation at 1.5 and 3 kGy resulted in 0.13 and 0.36 mg MDA/kg increase in 2-thiobarbituric acid-reactive substances (TBARS) reaching 1.02 and 1.49 MDA/kg, respectively, on day 1. Irradiation also caused significant loss of color and sensory quality in aerobic packages. However, MAP effectively inhibited the irradiation-induced quality degradations during 21-d storage. Thus, combining irradiation (3 kGy) and MAP (3% O₂ + 50% CO₂ + 47% N₂) controlled the safety risk due to the potential pathogens and maintained qualities of meatballs during 21-d refrigerated storage. Combined use of gamma irradiation and modified atmosphere packaging (MAP) can maintain quality and safety of seasoned ground beef (meatball). Seasoned ground beef can be irradiated at 3 kGy and packaged in MAP with 3% O₂ + 50% CO₂ + 47% N₂ gas mixture in a high barrier packaging materials. These treatments can significantly decrease risk due to potential pathogens including E. coli O157:H7, L. monocytogenes, and S. enteritidis in the product. The MAP would reduce the undesirable effects of

  10. Photochemistry of Fe(Iii)-Carboxylates in Polysaccharide-Based Materials with Tunable Mechanical Properties

    Science.gov (United States)

    Giammanco, Giuseppe E.

    We present the formulation and study of light-responsive materials based on carboxylate-containing polysaccharides. The functional groups in these natural polymers allow for strong interactions with transition metal ions such as Fe(III). The known photochemistry of hydroxycarboxylic acids in natural waters inspired us in exploring the visible light induced photochemistry of the carboxylates in these polysaccharides when coordinated to Fe(III) ions. Described in this dissertation are the design and characterization of the Fe(III)-polysaccharide materials, specifically the mechanistic aspects of the photochemistry and the effects that these reactions have on the structure of the polymer materials. We present a study of the quantitative photochemistry of different polysaccharide systems, where the presence of uronic acids was important for the photoreaction to take place. Alginate (Alg), pectate (Pec), hyaluronic acid (Hya), xanthan gum (Xan), and a polysaccharide extracted from the Noni fruit (NoniPs), were among the natural uronic acid-containing polysaccharide (UCPS) systems we analyzed. Potato starch, lacking of uronate groups, did not present any photochemistry in the presence of Fe(III); however, we were able to induce a photochemical response in this polysaccharide upon chemical manipulation of its functional groups. Important structure-function relationships were drawn from this study. The uronate moiety present in these polysaccharides is then envisioned as a tool to induce response to light in a variety of materials. Following this approach, we report the formulation of materials for controlled drug release, able to encapsulate and release different drug models only upon illumination with visible light. Furthermore, hybrid hydrogels were prepared from UPCS and non-responsive polymers. Different properties of these materials could be tuned by controlling the irradiation time, intensity and location. These hybrid gels were evaluated as scaffolds for tissue

  11. Photochemistry and aerosol in alpine region: mixing and transport

    International Nuclear Information System (INIS)

    Chaxel, E.

    2006-11-01

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  12. Mercury, trace elements and organic constituents in atmospheric fine particulate matter, Shenandoah National Park, Virginia, USA: A combined approach to sampling and analysis

    Science.gov (United States)

    Kolker, A.; Engle, M.A.; Orem, W.H.; Bunnell, J.E.; Lerch, H.E.; Krabbenhoft, D.P.; Olson, M.L.; McCord, J.D.

    2008-01-01

    Compliance with U.S. air quality regulatory standards for atmospheric fine particulate matter (PM2.5) is based on meeting average 24 hour (35 ?? m-3) and yearly (15 ??g m-3) mass-per-unit-volume limits, regardless of PM2.5 composition. Whereas this presents a workable regulatory framework, information on particle composition is needed to assess the fate and transport of PM2.5 and determine potential environmental/human health impacts. To address these important non-regulatory issues an integrated approach is generally used that includes (1) field sampling of atmospheric particulate matter on filter media, using a size-limiting cyclone, or with no particle-size limitation; and (2) chemical extraction of exposed filters and analysis of separate particulate-bound fractions for total mercury, trace elements and organic constituents, utilising different USGS laboratories optimised for quantitative analysis of these substances. This combination of sampling and analysis allowed for a more detailed interpretation of PM2.5 sources and potential effects, compared to measurements of PM2.5 abundance alone. Results obtained using this combined approach are presented for a 2006 air sampling campaign in Shenandoah National Park (Virginia, USA) to assess sources of atmospheric contaminants and their potential impact on air quality in the Park. PM2.5 was collected at two sampling sites (Big Meadows and Pinnacles) separated by 13.6 km. At both sites, element concentrations in PM2.5 were low, consistent with remote or rural locations. However, element/Zr crustal abundance enrichment factors greater than 10, indicating anthropogenic input, were found for Hg, Se, S, Sb, Cd, Pb, Mo, Zn and Cu, listed in decreasing order of enrichment. Principal component analysis showed that four element associations accounted for 84% of the PM 2.5 trace element variation; these associations are interpreted to represent: (1) crustal sources (Al, REE); (2) coal combustion (Se, Sb), (3) metal production

  13. Combined modified atmosphere packaging and low temperature storage delay lignification and improve the defense response of minimally processed water bamboo shoot.

    Science.gov (United States)

    Song, Lili; Chen, Hangjun; Gao, Haiyan; Fang, Xiangjun; Mu, Honglei; Yuan, Ya; Yang, Qian; Jiang, Yueming

    2013-09-04

    Minimally processed water bamboo shoot (WBS) lignifies and deteriorates rapidly at room temperature, which limits greatly its marketability. This study was to investigate the effect of modified atmosphere packaging (MAP) on the sensory quality index, lignin formation, production of radical oxygen species (ROS) and activities of scavenging enzymes, membrane integrity and energy status of minimally processed WBS when packaged with or without the sealed low-density polyethylene (LDPE) bags, and then stored at 20°C for 9 days or 2°C for 60 days. The sensory quality of minimally processed WBS decreased quickly after 6 days of storage at 20°C. Low temperature storage maintained a higher sensory quality index within the first 30 days, but exhibited higher contents of lignin and hydrogen peroxide (H2O2) as compared with non-MAP shoots at 20°C. Combined MAP and low temperature storage not only maintained good sensory quality after 30 days, but also reduced significantly the increases in lignin content, superoxide anion (O2.-) production rate, H2O2 content and membrane permeability, maintained high activities of superoxide dismutase (SOD), catalase (CAT) and ascorbate peroxidase (APX), and reduced the increase in activities of lipase, phospholipase D (PLD) and lipoxygenase (LOX). Furthermore, the minimally processed WBS under MAP condition exhibited higher energy charge (EC) and lower adenosine monophosphate (AMP) content by the end of storage (60 days) at 2°C than those without MAP or stored for 9 days at 20°C. These results indicated that MAP in combination with low temperature storage reduced lignification of minimally processed WBS, which was closely associated with maintenance of energy status and enhanced activities of antioxidant enzymes, as well as reduced alleviation of membrane damage caused by ROS.

  14. Quantifying atmospheric transport, chemistry, and mixing using a new trajectory-box model and a global atmospheric-chemistry GCM

    Directory of Open Access Journals (Sweden)

    H. Riede

    2009-12-01

    Full Text Available We present a novel method for the quantification of transport, chemistry, and mixing along atmospheric trajectories based on a consistent model hierarchy. The hierarchy consists of the new atmospheric-chemistry trajectory-box model CAABA/MJT and the three-dimensional (3-D global ECHAM/MESSy atmospheric-chemistry (EMAC general circulation model. CAABA/MJT employs the atmospheric box model CAABA in a configuration using the atmospheric-chemistry submodel MECCA (M, the photochemistry submodel JVAL (J, and the new trajectory submodel TRAJECT (T, to simulate chemistry along atmospheric trajectories, which are provided offline. With the same chemistry submodels coupled to the 3-D EMAC model and consistent initial conditions and physical parameters, a unique consistency between the two models is achieved. Since only mixing processes within the 3-D model are excluded from the model consistency, comparisons of results from the two models allow to separate and quantify contributions of transport, chemistry, and mixing along the trajectory pathways. Consistency of transport between the trajectory-box model CAABA/MJT and the 3-D EMAC model is achieved via calculation of kinematic trajectories based on 3-D wind fields from EMAC using the trajectory model LAGRANTO. The combination of the trajectory-box model CAABA/MJT and the trajectory model LAGRANTO can be considered as a Lagrangian chemistry-transport model (CTM moving isolated air parcels. The procedure for obtaining the necessary statistical basis for the quantification method is described as well as the comprehensive diagnostics with respect to chemistry.

    The quantification method presented here allows to investigate the characteristics of transport, chemistry, and mixing in a grid-based 3-D model. The analysis of chemical processes within the trajectory-box model CAABA/MJT is easily extendable to include, for example, the impact of different transport pathways or of mixing processes onto

  15. Atmospheric Science and the CFC Industry

    Science.gov (United States)

    Steed, J. M.

    2012-12-01

    Industry involvement with developing atmospheric science and subsequent regulations to protect ozone was unusual. Chlorofluorocarbon manufacturers were research-based businesses accustomed to understanding the science behind product-related issues. When Lovelock's measurements in 1971 implied most of the cumulative production of CFCs remained in the atmosphere, global CFC producers funded academic research to identify natural sinks for the materials. The Fluorocarbon Program Panel (FPP) began in 1972, but changed focus to atmospheric photochemistry following Rowland and Molina's work in 1974. Despite early vociferous opposition, especially by the CFC-using aerosol industry, to any regulations, leaders among the producers worked to build their scientific understanding, expanding FPP funding and launching internal work in modeling and ozone trend analysis. The key first question for industry was not how much depletion might occur, but whether it would occur at all. If so, regardless of the amount, regulations and a major transition would be required in CFC-using industries, and the response would need to be global and prompt. So long as that basic question was in doubt, some businesses and countries would resist the economic cost of action. In the meantime, the producing industry worked to identify potential alternatives and to communicate atmospheric science to the downstream industries. Although the industry science effort was often disparaged as an attack on "real" science, my only assignment when I joined DuPont's Central Research Department in 1979 was to understand and contribute to the science, keeping both the company and our customers informed. Our modeling results were published freely. FPP funding led to better knowledge of the ClO + O rate constant, significantly increasing depletion in model calculations; supported the development of the techniques used to measure in situ atmospheric ClO, so important in later strengthening the case for chlorine

  16. Shelf-life extension of semi-dried buckwheat noodles by the combination of aqueous ozone treatment and modified atmosphere packaging.

    Science.gov (United States)

    Bai, Yi-Peng; Guo, Xiao-Nao; Zhu, Ke-Xue; Zhou, Hui-Ming

    2017-12-15

    The present study investigated the combined effects of aqueous ozone treatment and modified atmosphere packaging (MAP) on prolonging the shelf-life of semi-dried buckwheat noodles [SBWN; moisture content (22.5±0.5%)] at 25°C. Firstly, the different concentrations of ozonated water were used to make SBWN. Subsequently, SBWN prepared with ozonated water were packaged under six different conditions and stored for 11days. Changes in microbial, chemical-physical, textural properties and sensorial qualities of SWBN were monitored during storage. Microbiological results indicated that adopting 2.21mg/L of ozonated water resulted in a 1.8 log 10 CFU/g reduction of the initial microbial loads in SBWN. In addition, MAP suppressed the microbial growth with a concomitant reduction in the rates of acidification and quality deteriorations of SBWN. Finally, the shelf-life of sample packed under N 2 :CO 2 =30:70 was extended to 9days, meanwhile textural and sensorial characteristics were maintained during the whole storage period. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Combining measurements and modelling to quantify the contribution of atmospheric fallout, local industry and road traffic to PAH stocks in contrasting catchments

    International Nuclear Information System (INIS)

    Gateuille, David; Evrard, Olivier; Lefevre, Irène; Moreau-Guigon, Elodie; Alliot, Fabrice; Chevreuil, Marc; Mouchel, Jean-Marie

    2014-01-01

    Various sources supply PAHs that accumulate in soils. The methodology we developed provided an evaluation of the contribution of local sources (road traffic, local industries) versus remote sources (long range atmospheric transport, fallout and gaseous exchanges) to PAH stocks in two contrasting subcatchments (46–614 km²) of the Seine River basin (France). Soil samples (n = 336) were analysed to investigate the spatial pattern of soil contamination across the catchments and an original combination with radionuclide measurements provided new insights into the evolution of the contamination with depth. Relationships between PAH concentrations and the distance to the potential sources were modelled. Despite both subcatchments are mainly rural, roadside areas appeared to concentrate 20% of the contamination inside the catchment while a local industry was found to be responsible for up to 30% of the stocks. Those results have important implications for understanding and controlling PAH contamination in rural areas of early-industrialized regions. - Highlights: • Contributions of several sources to PAH stocks in soils were investigated. • PAH stocks in soils varied between 13 and 735 mg m −2 depending on source vicinity. • Roadside areas concentrated 20% of the catchment contamination. • Local industry was found to be responsible for 30% of the stocks. - Source contributions to PAH soil contamination were investigated with distance-based models

  18. Photochemistry of biogenic emissions over the Amazon forest

    Science.gov (United States)

    Jacob, Daniel J.; Wofsy, Steven C.

    1988-01-01

    The boundary layer chemistry over the Amazon forest during the dry season is simulated with a photochemical model. Results are in good agreement with measurements of isoprene, NO, ozone, and organic acids. Photochemical reactions of biogenic isoprene and NOx can supply most of the ozone observed in the boundary layer. Production of ozone is very sensitive to the availability of NOx, but is insensitive to the isoprene source strength. High concentrations of total odd nitrogen (NOy) are predicted for the planetary boundary layer, about 1 ppb in the mixed layer and 0.75 ppb in the convective cloud layer. Most of the odd nitrogen is present as PAN-type species, which are removed by dry deposition to the forest. The observed daytime variations of isoprene are explained by a strong dependence of the isoprene emission flux on sun angle. Nighttime losses of isoprene exceed rates of reaction with NO3 and O3 and appear to reflect dry-deposition processes. The 24-hour averaged isoprene emission flux is calculated to be 38 mg/sq m per day. Photooxidation of isoprene could account for a large fraction of the CO enrichment observed in the boundary layer under unpolluted conditions and could constitute an important atmospheric source of formic acid, methacrylic acid, and pyruvic acid.

  19. Combining external and internal mixing representation of atmospheric aerosol for optical properties calculations: focus on absorption properties over Europe and North America using AERONET observations and AQMEII simulations

    Science.gov (United States)

    Curci, Gabriele

    2017-04-01

    The calculation of optical properties from knowledge of the composition and abundance of atmospheric aerosol implies a certain number of assumptions. First and if not known or explicitly simulated, a size distribution must be assigned to each aerosol component (e.g. sulfate-like inorganic ions, organic and back carbon, soil dust, sea salt). Second, physical-chemical properties such as the shape, density, complex refractive index, and hygroscopic factors must be associated to each aerosol species. Third, a representation of how the aerosol species combine together must be made: among those, the most popular are the assumptions of external mixing, in which each particle is assumed to be formed of a single compound and the optical properties may be calculated separately for each species, or of internal core-shell arrangement, in which each particle consists of a water-insoluble core coated with a water-soluble shell and that requires more elaborate calculations for optical properties. Previous work found that the assumption on the mixing state (external or core-shell internal) is the one that introduces the highest uncertainty, quantified in about 30% uncertainty on the calculation of monthly mean aerosol optical depth (AOD) and single-scattering albedo (SSA). The external mixing assumption is generally more reasonable for freshly emitted aerosol, while the internal mixing case is associated with aged aerosol that had the time to form the coating around the core. Both approximations are thus regarded as valid, but in general a combination of the two mixing states may be expected in a given air mass. In this work, we test a simple empirical parameterization of the fraction of internally mixed particles (F_in) in a generic air mass. The F_in fraction is calculated in two alternative ways, one exploiting the NOz to NOx ratio (proxy of the photochemical aging), and the other using the relative abundance of black carbon with respect to other aerosol components (proxy of

  20. Staging atmospheres

    DEFF Research Database (Denmark)

    Bille, Mikkel; Bjerregaard, Peter; Sørensen, Tim Flohr

    2015-01-01

    The article introduces the special issue on staging atmospheres by surveying the philosophical, political and anthropological literature on atmosphere, and explores the relationship between atmosphere, material culture, subjectivity and affect. Atmosphere seems to occupy one of the classic...

  1. Chemistry and evolution of Titan's atmosphere

    International Nuclear Information System (INIS)

    Strobel, D.F.

    1982-01-01

    The chemistry and evolution of Titan's atmosphere is reviewed in the light of the scientific findings from the Voyager mission. It is argued that the present N 2 atmosphere may be Titan's initial atmosphere rather than photochemically derived from an original NH 3 atmosphere. The escape rate of hydrogen from Titan is controlled by photochemical production from hydrocarbons. CH 4 is irreversibly converted to less hydrogen rich hydrocarbons, which over geologic time accumulate on the surface to a layer thickness of approximately 0.5 km. Magnetospheric electrons interacting with Titan's exosphere may dissociate enough N 2 into hot, escaping N atoms to remove approximately 0.2 of Titan's present atmosphere over geologic time. The energy dissipation of magnetospheric electrons exceeds solar e.u.v. energy deposition in Titan's atmosphere by an order of magnitude and is the principal driver of nitrogen photochemistry. The environmental conditions in Titan's upper atmosphere are favorable to building up complex molecules, particularly in the north polar cap region. (author)

  2. Effects of climate change on surface-water photochemistry: a review.

    Science.gov (United States)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2014-10-01

    Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.

  3. Characterizing the Atmosphere of a Young Planet

    Science.gov (United States)

    Marley, Mark

    2016-01-01

    Since the discovery of the young, directly imaged planet 51 Eri b, its emergent spectrum has proved challenging to interpret. The initial discovery paper (Macintosh et al. 2015) interpreted the spectrum as indicative of a low mass (few Jupiter masses), effective temperature near 700 degrees Kelvin, and partial cloudiness. Subsequent observations in the K band, however, seem to invalidate the early models. In addition, newly improved photochemical data point to the likely presence of exotic haze species in the atmosphere. In my presentation I will explore the photochemistry of the atmosphere and discuss whether disequilibrium chemistry, hazes, clouds, or non-solar abundances of heavy elements may be responsible for the unusual spectrum of this planet. The implications for the interpretation of other young Jupiters in this mass and effective temperature range will also be considered.

  4. Reactivity of biogenic manganese oxide for metal sequestration and photochemistry: Computational solid state physics study

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, K.D.; Sposito, G.

    2010-02-01

    Many microbes, including both bacteria and fungi, produce manganese (Mn) oxides by oxidizing soluble Mn(II) to form insoluble Mn(IV) oxide minerals, a kinetically much faster process than abiotic oxidation. These biogenic Mn oxides drive the Mn cycle, coupling it with diverse biogeochemical cycles and determining the bioavailability of environmental contaminants, mainly through strong adsorption and redox reactions. This mini review introduces recent findings based on quantum mechanical density functional theory that reveal the detailed mechanisms of toxic metal adsorption at Mn oxide surfaces and the remarkable role of Mn vacancies in the photochemistry of these minerals.

  5. Detection and mapping of organic molecules in Titan's atmosphere using ALMA

    Science.gov (United States)

    Cordiner, Martin

    2016-06-01

    Titan's atmospheric photochemistry results in the production of a wide range of organic molecules, including hydrocarbons, nitriles, aromatics and other complex species of possible pre-biotic relevance. Studies of Titan's atmospheric chemistry thus provide a unique opportunity to explore the origin and evolution of organic matter in primitive (terrestrial) planetary atmospheres. The Atacama Large Millimeter/submillimeter Array (ALMA) is a powerful new facility, well suited to the study of molecular emission from Titan's upper and middle-atmosphere. Results will be presented from our ongoing studies of Titan using ALMA data obtained during the period 2012-2014 [1,2], including detection and mapping of emission from C2H5CN, HNC, HC3N, CH3CN and CH3CCH. In addition, combining data from multiple ALMA Band 6 observations, we obtained high-resolution spectra with unprecedented sensitivity, enabling the first detection of C2H3CN (vinyl cyanide) on Titan, and derived a mean C2H3CN C2H5CN abundance ratio above 300 km of 0.3. Vinyl cyanide has recently been investigated as a possible constituent of (pre-biotic) vesicle membranes in Titan's liquid CH4 oceans [3]. Radiative transfer models and possible chemical formation pathways for the detected molecules will be discussed. ALMA observations provide instantaneous snapshot mapping of Titan's entire Earth-facing hemisphere for gases inaccessible to previous studies, and therefore provide new insights into photochemical production and transport, particularly at higher altitudes. Our maps show spatially resolved peaks in Titan's northern and southern hemispheres, consistent with the molecular distributions found in previous studies at infrared wavelengths by Voyager and Cassini, but high-altitude longitudinal asymmetries in our nitrile data indicate that the mesosphere may be more spatially variable than previously thought.

  6. Impacts of aerosol direct effects on tropospheric ozone through changes in atmospheric dynamics and photolysis rates

    Science.gov (United States)

    Xing, Jia; Wang, Jiandong; Mathur, Rohit; Wang, Shuxiao; Sarwar, Golam; Pleim, Jonathan; Hogrefe, Christian; Zhang, Yuqiang; Jiang, Jingkun; Wong, David C.; Hao, Jiming

    2017-08-01

    Aerosol direct effects (ADEs), i.e., scattering and absorption of incoming solar radiation, reduce radiation reaching the ground and the resultant photolysis attenuation can decrease ozone (O3) formation in polluted areas. One the other hand, evidence also suggests that ADE-associated cooling suppresses atmospheric ventilation, thereby enhancing surface-level O3. Assessment of ADE impacts is thus important for understanding emission reduction strategies that seek co-benefits associated with reductions in both particulate matter and O3 levels. This study quantifies the impacts of ADEs on tropospheric ozone by using a two-way online coupled meteorology and atmospheric chemistry model, WRF-CMAQ, using a process analysis methodology. Two manifestations of ADE impacts on O3 including changes in atmospheric dynamics (ΔDynamics) and changes in photolysis rates (ΔPhotolysis) were assessed separately through multiple scenario simulations for January and July of 2013 over China. Results suggest that ADEs reduced surface daily maxima 1 h O3 (DM1O3) in China by up to 39 µg m-3 through the combination of ΔDynamics and ΔPhotolysis in January but enhanced surface DM1O3 by up to 4 µg m-3 in July. Increased O3 in July is largely attributed to ΔDynamics, which causes a weaker O3 sink of dry deposition and a stronger O3 source of photochemistry due to the stabilization of the atmosphere. Meanwhile, surface OH is also enhanced at noon in July, though its daytime average values are reduced in January. An increased OH chain length and a shift towards more volatile organic compound (VOC)-limited conditions are found due to ADEs in both January and July. This study suggests that reducing ADEs may have the potential risk of increasing O3 in winter, but it will benefit the reduction in maxima O3 in summer.

  7. Chloroplast Movement May Impact Plant Phenotyping and Photochemistry Results

    Science.gov (United States)

    Malas, J.; Pleban, J. R.; Wang, D. R.; Riley, C.; Mackay, D. S.

    2017-12-01

    Investigating phenotypic responses of crop species across environmental conditions is vital to improving agricultural productivity. Crop production is closely linked with photosynthetic activity, which can be evaluated using parameters such as relative chlorophyll, SPAD, and variable chlorophyll fluorescence. Recently, a handheld device known as the MultispeQ emerged on the market as an open-source instrument that aims to provide high-output, high-quality field data at a low cost to the plant research community. MultispeQ takes measurements of both environmental conditions (light intensity, temperature, humidity, etc.) and photosynthetic parameters (relative chlorophyll, SPAD, photosystem II quantum efficiency (FII), and non-photochemical quenching (NPQ)). Data are automatically backed up and shared on the PhotosynQ network, which serves as a collaborative platform for researchers and professionals. Here, we used the instrument to quantify photosynthetic time-courses of two Brassica rapa genotypes in response to two contrasting nutrient management strategies (Control; High Nitrogen). Previous research found that chloroplast movement is one strategy plants use to optimize photosynthesis across varying light conditions. We were able to detect chloroplast movement throughout the day using the MultispeQ device. Our results support the idea that chloroplast movement serves both as an intrinsic feature of the circadian clock and as a light avoidance strategy. Under low light conditions (PAR 0-300) more light at the near-infrared and red regions was absorbed than under higher light conditions (PAR 500-800). In one genotype by treatment combination, absorbance at 730nm was around 60% at low light, versus only 30% at high light conditions. In light of our results that relative chlorophyll may change throughout a day, we suggest that it is important to take note of these effects when collecting photosynthesis efficiency data in order to avoid bias in measurements. We also

  8. Jovian atmospheres

    International Nuclear Information System (INIS)

    Allison, M.; Travis, L.D.

    1986-10-01

    A conference on the atmosphere of Jupiter produced papers in the areas of thermal and ortho-para hydrogen structure, clouds and chemistry, atmospheric structure, global dynamics, synoptic features and processes, atmospheric dynamics, and future spaceflight opportunities. A session on the atmospheres of Uranus and Neptune was included, and the atmosphere of Saturn was discussed in several papers

  9. General patterns in the photochemistry of pregna-1,4-dien-3,20-diones.

    Science.gov (United States)

    Ricci, Andrea; Fasani, Elisa; Mella, Mariella; Albini, Angelo

    2003-05-30

    The photochemistry of six pregna-1,4-dien-3,20-diones has been compared and found to involve both the cyclohexadienone moiety in ring A and the isolated ketone at C-20. The two reactions take place proportionally to the fraction of light absorbed by each chromophore. The cross-conjugated ketone absorbs predominantly or exclusively at both 254 and 366 nm and undergoes the "lumi" rearrangement to bicyclo[3.1.0]hex-3-en-2-one. The quantum yield of the reaction diminished somewhat with increasing lambda(exc), e.g., for prednisolone Phi(254) (nm) = 0.42, Phi(366) (nm) = 0.3. A much stronger lowering is caused by halogen substitution in position 9 (by a factor of 3 for F, >50 for Cl), apparently due to a shortened triplet lifetime caused by heavy atom effect. At 310 nm, both chromophores absorb to a comparable degree and both may react. The reaction at C(20) ketone involves either quite efficient alpha-cleavage (C(17)-C(20)) for compounds bearing an acetal or hydroxyl function at C(17) or less effective (by a factor of ca. 10) hydrogen abstraction from the 18-methyl group in the other cases (finally resulting in Norrish II fragmentation or Yang cyclization). The results allow generalizing how the substitution pattern surrounding each chromophore affects the photoreactivity at that site and the competition between the two modes, allowing predicting the photochemistry of this family of antiinflammatory drugs.

  10. Atmospheric chemistry of ethane and ethylene

    International Nuclear Information System (INIS)

    Aikin, A.C.; Herman, J.R.; Maier, E.J.; McQuillian, C.J.

    1982-01-01

    A detailed study of ethane and ethylene photochemistry is presented for the troposphere and stratosphere. It is demonstrated that the loss of ethane is controlled by OH in the troposphere and Cl in the stratosphere. Observation of ethane show a stratospheric behavior indicative of a free chlorine concentration below 30 km that is only 10% of the predicted value given by both our photochemical model calculations and those done by others. The inferred lower amount of chlorine cannot be explained by heterogeneous processes for concentration of aerosols representing average background conditions, nor does current stratospheric photochemistry show agreement. Chemical destruction of ethane and ethylene within the atmosphere leads to the production of carbon monoxide, formaldehyde, and other products. Tropospheric concentrations of formaldehyde are enhanced by nearly a factor of 3 for an ethylene mixing ratio of 2 ppb. Simultaneous monitoring of formaldehyde and carbon monoxide, as well as other products, will greatly aid in determining the relative importance of different tropospheric CO sources. Peroxyacetyl nitrate (PAN) acts as a reservoir for odd-nitrogen at the expense of HNO 3 HO 2 NO 2 , NO, and NO 2

  11. WATER FORMATION IN THE UPPER ATMOSPHERE OF THE EARLY EARTH

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Benjamin; Carrasco, Nathalie; Marcq, Emmanuel; Vettier, Ludovic; Määttänen, Anni, E-mail: benjamin.fleury@latmos.ipsl.fr [Université Versailles St-Quentin, Sorbonne Universités, UPMC Univ. Paris 06, CNRS/INSU, LATMOS-IPSL, 11 Boulevard d’Alembert, F-78280 Guyancourt (France)

    2015-07-10

    The water concentration and distribution in the early Earth's atmosphere are important parameters that contribute to the chemistry and the radiative budget of the atmosphere. If the atmosphere above the troposphere is generally considered as dry, photochemistry is known to be responsible for the production of numerous minor species. Here we used an experimental setup to study the production of water in conditions simulating the chemistry above the troposphere of the early Earth with an atmospheric composition based on three major molecules: N{sub 2}, CO{sub 2}, and H{sub 2}. The formation of gaseous products was monitored using infrared spectroscopy. Water was found as the major product, with approximately 10% of the gas products detected. This important water formation is discussed in the context of the early Earth.

  12. Toward autonomous measurements of photosynthetic electron transport rates: An evaluation of active fluorescence-based measurements of photochemistry

    NARCIS (Netherlands)

    Silsbe, G.M.; Oxborough, K.; Suggett, D.J.; Forster, R.M.; Ihnken, S.; Komárek, O.; Lawrenz, E.; Prášil, O.; Röttgers, R.; Šicner, M.; Simis, S.G.H.; Van Dijk, M.A.; Kromkamp, J.C.

    2015-01-01

    This study presents a methods evaluation and intercalibration of active fluorescence-based measurements of the quantum yield ( inline image) and absorption coefficient ( inline image) of photosystem II (PSII) photochemistry. Measurements of inline image, inline image, and irradiance (E) can be

  13. The Electrodeless Discharge Lamp: a Prospective Tool for Photochemistry - Part 4. Temperature- and Envelope Material-Dependent Emission Characteristics

    Czech Academy of Sciences Publication Activity Database

    Müller, P.; Klán, P.; Církva, Vladimír

    2003-01-01

    Roč. 158, č. 1 (2003), s. 1-5 ISSN 1010-6030 R&D Projects: GA ČR GA203/02/0879 Institutional research plan: CEZ:AV0Z4072921 Keywords : photochemistry * microwave * electrodeless discharge lamp Subject RIV: CC - Organic Chemistry Impact factor: 1.693, year: 2003

  14. The Elecrodeless Discharge Lamp: A Prospective Tool for Photochemistry Part 5. Fill Material-Dependent Emission Characteristics

    Czech Academy of Sciences Publication Activity Database

    Müller, P.; Klán, P.; Církva, Vladimír

    2005-01-01

    Roč. 171, Vol.1 (2005), s. 51-57 ISSN 1010-6030 R&D Projects: GA ČR GA203/02/0879 Institutional research plan: CEZ:AV0Z4072921 Keywords : photochemistry * microwave * spectra Subject RIV: CC - Organic Chemistry Impact factor: 2.286, year: 2005

  15. Lucifer's Planet: Photolytic Hazes in the Atmosphere of 51 Eri b

    Science.gov (United States)

    Zahnle, Kevin

    2016-01-01

    We use a 1D model to address photochemistry and possible haze formation in the irradiated atmosphere of 51 Eri b (2016arXiv160407388Z). The intended focus was to have been on carbon and organic hazes, but sulfur photochemistry turns out to be interesting and possibly more important. The case for organic photochemical hazes is intriguing but falls short of being compelling. If organic hazes form abundantly, they are likeliest to do so if vertical mixing in 51 Eri b is weaker than in Jupiter, and they would be found below the altitudes where methane and water are photolyzed. The more novel result is that photochemistry turns H2S into elemental sulfur, here treated as S8. In the cooler models, S8 is predicted to condense in optically significant clouds of solid sulfur particles, whilst in the warmer models S8 remains a vapor along with several other sulfur allotropes that are both visually striking and potentially observable. For 51 Eri b, the division between models with and without condensed sulfur is at an effective temperature of 700 K, which is within error its actual effective temperature; the local temperature where sulfur condenses is between 280 and 320 K. The sulfur photochemistry we discuss is quite general and ought to be found in a wide variety of worlds over a broad temperature range, both colder and hotter than the 650-750 K range studied here, and we show that products of sulfur photochemistry will be nearly as abundant on planets where the UV irradiation is orders of magnitude weaker than it is on 51 Eri b.

  16. Laser Photochemistry.

    Science.gov (United States)

    1981-07-01

    inverted by the first, i.e., at the moment of time t = T, such that i = (2n+)lT, where 0 is the Rabi frequency (Oraevski et al., 1976). . classical... anisotropic molecule present. CW HeNe, Ar+ and Kr+ lasers are used, and the filter method is necessary because of time-scales lo8 - 10ll Hz. Some general...e.g., truncated harmonic oscillator, square well, spherically symmetric Morse or Lennard-Jones, anisotropic (angle-dependent) Morse or Lennard-Jones

  17. Atmospheric contamination

    International Nuclear Information System (INIS)

    Gruetter, Juerg

    1997-01-01

    It is about the levels of contamination in center America, the population's perception on the problem, effects of the atmospheric contamination, effects in the environment, causes of the atmospheric contamination, possibilities to reduce the atmospheric contamination and list of Roeco Swisscontac in atmospheric contamination

  18. Mechanistic studies on the OH-initiated atmospheric oxidation of selected aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Nehr, Sascha

    2012-07-01

    Benzene, toluene, the xylenes, and the trimethylbenzenes are among the most abundant aromatic trace constituents of the atmosphere mainly originating from anthropogenic sources. The OH-initiated atmospheric photo-oxidation of aromatic hydrocarbons is the predominant removal process resulting in the formation of O{sub 3} and secondary organic aerosol. Therefore, aromatics are important trace constituents regarding air pollution in urban environments. Our understanding of aromatic photo-oxidation processes is far from being complete. This work presents novel approaches for the investigation of OH-initiated atmospheric degradation mechanisms of aromatic hydrocarbons. Firstly, pulsed kinetic studies were performed to investigate the prompt HO{sub 2} formation from OH+ aromatic hydrocarbon reactions under ambient conditions. For these studies, the existing OH reactivity instrument, based on the flash photolysis/laser-induced fluorescence (FP/LIF) technique, was extended to the detection of HO{sub 2} radicals. The experimental design allows for the determination of HO{sub 2} formation yields and kinetics. Results of the pulsed kinetic experiments complement previous product studies and help to reduce uncertainties regarding the primary oxidation steps. Secondly, experiments with aromatic hydrocarbons were performed under atmospheric conditions in the outdoor atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber) located at Forschungszentrum Juelich. The experiments were aimed at the evaluation of up-to-date aromatic degradation schemes of the Master Chemical Mechanism (MCMv3.2). The unique combination of analytical instruments operated at SAPHIR allows for a detailed investigation of HO{sub x} and NO{sub x} budgets and for the determination of primary phenolic oxidation product yields. MCMv3.2 deficiencies were identified and most likely originate from shortcomings in the mechanistic representation of ring

  19. The Upper Atmosphere Research Satellite: From Coffee Table Art to Quantitative Science

    Science.gov (United States)

    Douglass, Anne R.

    1999-01-01

    The Upper Atmosphere Research Satellite (UARS) has provided an unprecedented set of observations of constituents of the stratosphere. When used in combination with data from other sources and appropriate modeling tools, these observations are useful for quantitative evaluation of stratospheric photochemical processes. This is illustrated by comparing ozone observations from airborne Differential Absorption Lidar (DIAL), from the Polar Ozone and Aerosol Measurement (POAM), from the Microwave Limb Sounder (MLS), and from the Halogen occultation Experiment (HALOE) with ozone fields generated with a three dimensional model. For 1995-96, at polar latitudes, observations from DIAL flights on December 9 and January 30, and POAM and MLS between late December and late January are compared with ozone fields from the GSFC 3D chemistry and transport model. Data from the three platforms consistently show that the observed ozone has a negative trend relative to the modeled ozone, and that the trend is uniform in time between early and mid winter, with no obvious dependence on proximity to the vortex edge. The importance of chlorine catalyzed photochemistry to this ozone loss is explored by comparing observations from MLS and HALOE with simulations for other northern winters, particularly 1997-98.

  20. Photochemistry of fluorinated 4-iodophenylnitrenes: matrix isolation and spectroscopic characterization of phenylnitrene-4-yls.

    Science.gov (United States)

    Grote, Dirk; Sander, Wolfram

    2009-10-02

    The photochemistry of a series of fluorinated p-iodophenyl azides 2 has been investigated using matrix isolation IR and EPR spectroscopy. In all cases, the corresponding phenylnitrenes 1 were formed as primary photoproducts. Further irradiation of the nitrenes 1 resulted in the formation of azirines 3, ketenimines 4, and nitreno radicals 5. The yield of 5 depends on the number of ortho fluorine substituents: with two ortho fluorine atoms the highest yield is observed, whereas without fluorine atoms the yield is too low for IR spectroscopic detection. The interconversion between the isomers 1, 3, and 4 proved to be rather complex. If the fluorine atoms are distributed unsymmetrically, two isomers of azirines 3 and ketenimines 4 can be formed. The yields of these isomers depend critically on the irradiation conditions.

  1. New concepts in therapeutic photomedicine: photochemistry, optical targeting and the therapeutic window

    International Nuclear Information System (INIS)

    Parrish, J.A.

    1981-01-01

    Advances in optics technology, synthetic photochemistry, and the science of photobiology make it possible to think beyond phototherapy and photochemotherapy which is dependent on direct photochemical alteration of metabolites or direct phototoxic insult to cells. This report discusses another gender of photomedicine therapy which includes in vivo photoactivation of medicines, photon-dependent drug delivery, and manipulation of host and exposure source to maximize therapeutic index. These therapeutic manipulations are made possible because the skin is highly overperfused and because non-ionizing electromagnetic radiation that enters skin and blood has adequate photon energy to cause electronic excitation. Radiation of 320-800 nm is not very directly phototoxic, is absorbed by a variety of relatively nontoxic photolabile molecules and has an internal dosimetric depth profile. This radiation can therefore be used to activate, deactivate, bind, release or biotransform medications in vivo in skin or other organs. The photochemist, synthetic chemist and photobiologist can collaborate to significantly increase therapeutic possibilities

  2. Bond selective photochemistry in CH2BrI through electronic excitation at 210 nm

    International Nuclear Information System (INIS)

    Butler, L.J.; Hintsa, E.J.; Lee, Y.T.

    1986-01-01

    To explore the possibility of bond selective photochemistry in an excited electronic state, we have studied the photolysis of CH 2 BrI in a molecular beam at 210 nm. Following the direct local excitation of a repulsive transition on the C--Br bond at 210 nm, the fragments were detected by time-of-flight mass spectrometry. The dominant channel was found to be C--Br fission (60%) releasing an average of 15 kcal/mol into translation with the remainder reacting to form CH 2 +IBr and CH 2 +I+Br. There was no evidence for the primary fission of the C--I bond, making this the first clear example of the selective cleavage of a stronger bond in a molecule over the weakest one

  3. Photochemistry at high temperatures - potential of ZnO as a high temperature photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Schubnell, M; Beaud, P; Kamber, I [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    Direct conversion of solar radiation into useful, storeable and transportable chemical products is the primary goal of solar chemistry. In this paper we discuss some fundamental aspects of photochemistry at elevated temperatures. We show that luminescence can serve as an indicator of the potential use of a system as a photoconverter. As an example we present experimental data on the chemical potential and on the lifetime of the excited states of ZnO. The low luminescence quantum yield together with a lifetime of about 200 ps indicate that an efficient photochemical conversion on ZnO is highly improbable. We believe this to be a general feature of chemical systems based on a semiconductor photocatalyst, in particular of photoreactions at a solid/gas interface. (author) 3 figs., 6 refs

  4. Modification of porous silicon rugate filters through thiol-yne photochemistry

    International Nuclear Information System (INIS)

    Soeriyadi, Alexander H.; Zhu, Ying; Gooding, J. Justin; Reece, Peter

    2014-01-01

    Porous silicon (PSi) has a considerable potential as biosensor platform. In particular, the ability to modify the surface chemistry of porous silicon is of interest. Here we present a generic method to modify the surface of porous silicon through thiol-yne photochemistry initiated by a radical initiator. Firstly, a freshly etched porous silicon substrate is modified through thermal hydrosilylation with 1,8-nonadiyne to passivate the surface and introduce alkyne functionalities. The alkyne functional surface could then be further reacted with thiol species in the presence of a radical initiator and UV light. Functionalization of the PSi rugate filter is followed with optical reflectivity measurements as well as high resolution X-ray photoelectron spectroscopy (XPS)

  5. Automatic generation of active coordinates for quantum dynamics calculations: Application to the dynamics of benzene photochemistry

    International Nuclear Information System (INIS)

    Lasorne, Benjamin; Sicilia, Fabrizio; Bearpark, Michael J.; Robb, Michael A.; Worth, Graham A.; Blancafort, Lluis

    2008-01-01

    A new practical method to generate a subspace of active coordinates for quantum dynamics calculations is presented. These reduced coordinates are obtained as the normal modes of an analytical quadratic representation of the energy difference between excited and ground states within the complete active space self-consistent field method. At the Franck-Condon point, the largest negative eigenvalues of this Hessian correspond to the photoactive modes: those that reduce the energy difference and lead to the conical intersection; eigenvalues close to 0 correspond to bath modes, while modes with large positive eigenvalues are photoinactive vibrations, which increase the energy difference. The efficacy of quantum dynamics run in the subspace of the photoactive modes is illustrated with the photochemistry of benzene, where theoretical simulations are designed to assist optimal control experiments

  6. Mechanistic reappraisal of early stage photochemistry in the light-driven enzyme protochlorophyllide oxidoreductase.

    Directory of Open Access Journals (Sweden)

    Derren J Heyes

    Full Text Available The light-driven enzyme protochlorophyllide oxidoreductase (POR catalyzes the reduction of protochlorophyllide (Pchlide to chlorophyllide (Chlide. This reaction is a key step in the biosynthesis of chlorophyll. Ultrafast photochemical processes within the Pchlide molecule are required for catalysis and previous studies have suggested that a short-lived excited-state species, known as I675*, is the first catalytic intermediate in the reaction and is essential for capturing excitation energy to drive subsequent hydride and proton transfers. The chemical nature of the I675* excited state species and its role in catalysis are not known. Here, we report time-resolved pump-probe spectroscopy measurements to study the involvement of the I675* intermediate in POR photochemistry. We show that I675* is not unique to the POR-catalyzed photoreduction of Pchlide as it is also formed in the absence of the POR enzyme. The I675* species is only produced in samples that contain both Pchlide substrate and Chlide product and its formation is dependent on the pump excitation wavelength. The rate of formation and the quantum yield is maximized in 50∶50 mixtures of the two pigments (Pchlide and Chlide and is caused by direct energy transfer between Pchlide and neighboring Chlide molecules, which is inhibited in the polar solvent methanol. Consequently, we have re-evaluated the mechanism for early stage photochemistry in the light-driven reduction of Pchlide and propose that I675* represents an excited state species formed in Pchlide-Chlide dimers, possibly an excimer. Contrary to previous reports, we conclude that this excited state species has no direct mechanistic relevance to the POR-catalyzed reduction of Pchlide.

  7. Continuous time-resolved regional methane leak detection with on-line background estimation using a novel combination of dual frequency comb laser spectroscopy and atmospheric inversions

    Science.gov (United States)

    Alden, C. B.; Coburn, S.; Wright, R.; Baumann, E.; Cossel, K.; Sweeney, C.; Ghosh, S.; Newbury, N.; Prasad, K.; Coddington, I.; Rieker, G. B.

    2017-12-01

    Advances in natural gas extraction technology have led to increased US production and transport activity, and as a consequence, an increased need for monitoring of methane leaks. Current leak detection methods provide time snapshots, and not continuous, time-varying estimates of emissions. Most approaches also require specific atmospheric conditions, operators, or the use of a tracer gas, requiring site access. Given known intermittency in fugitive methane emissions, continuous monitoring is a critical need for emissions mitigation. We present a novel leak detection method that employs dual frequency comb spectrometry to offer continuous, autonomous, leak detection and quantification over square-km scale areas. The spectrometer is situated in a field of natural gas pads, and a series of retroreflectors around the field direct light back to a detector. The laser light spans 1620-1680 nm with 0.002 nm line spacing, measuring thousands of individual absorption features from multiple species. The result is high-stability trace gas (here CH4, CO2, and H2O) measurements over long (1 km+) open paths through the atmosphere. Measurements are used in an atmospheric inversion to estimate the time variability of emissions at each location of interest. Importantly, the measurement framework and inversion solve explicitly for background concentrations, which vary rapidly in fields of active oil and gas production. We present the results of controlled-leak field tests in rural Colorado. We demonstrate the ability to locate and size a leak located 1 km away from the spectrometer and varying in strength from 1.5 to 7.7 g/min, resulting in mean atmospheric enhancements of 20 ppb. The inversion correctly identifies when the leak turned on and off over a 24-hour period, and determines the mean leak strength to within 10% of the true controlled rate. We further demonstrate the ability of the system to correctly locate and size the start and end of simultaneous 2.7 to 4.8 g/min leaks

  8. Equilibrium and disequilibrium chemistry of adiabatic, solar-composition planetary atmospheres

    Science.gov (United States)

    Lewis, J. S.

    1976-01-01

    The impact of atmospheric and cloud-structure models on the nonequilibrium chemical behavior of the atmospheres of the Jovian planets is discussed. Quantitative constraints on photochemical, lightning, and charged-particle production of organic matter and chromophores are emphasized whenever available. These considerations imply that inorganic chromophore production is far more important than that of organic chromophores, and that lightning is probably a negligibly significant process relative to photochemistry on Jupiter. Production of complex molecules by gas-phase disequilibrium processes on Saturn, Uranus, and Neptune is severely limited by condensation of even simple intermediates.

  9. The role of computational chemistry in the science and measurements of the atmosphere

    Science.gov (United States)

    Phillips, D. H.

    1978-01-01

    The role of computational chemistry in determining the stability, photochemistry, spectroscopic parameters, and parameters for estimating reaction rates of atmospheric constituents is discussed. Examples dealing with the photolysis cross sections of HOCl and (1 Delta g) O2 and with the stability of gaseous NH4Cl and asymmetric ClO3 are presented. It is concluded that computational chemistry can play an important role in the study of atmospheric constituents, particularly reactive and short-lived species which are difficult to investigate experimentally.

  10. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China

    Science.gov (United States)

    Zhang, Gen; Xu, Honghui; Qi, Bing; Du, Rongguang; Gui, Ke; Wang, Hongli; Jiang, Wanting; Liang, Linlin; Xu, Wanyun

    2018-02-01

    combined importance of local atmospheric photochemistry and synoptic conditions during the accumulation (related with anticyclones) and dilution process (related with cyclones). Apart from supplementing a general picture of the air pollution state in the city of Hangzhou in the YRD region, this study specifically elucidates the role of local emission and regional transport, and it interprets the physical and photochemical processes during haze and photochemical pollution episodes. Moreover, this work suggests that cross-regional control measures are crucial to improve air quality in the YRD region, and it further emphasizes the importance of local thermally induced circulation for air quality.

  11. Solid-State Photochemistry as a Formation Mechanism for Titan's Stratospheric C4N2 Ice Clouds

    Science.gov (United States)

    Anderson, C. M.; Samuelson, R. E.; Yung, Y. L.; McLain, J. L.

    2016-01-01

    We propose that C4N2 ice clouds observed in Titan's springtime polar stratosphere arise due to solid-state photochemistry occurring within extant ice cloud particles of HCN-HC3N mixtures. This formation process resembles the halogen-induced ice particle surface chemistry that leads to condensed nitric acid trihydrate (NAT) particles and ozone depletion in Earth's polar stratosphere. As our analysis of the Cassini Composite Infrared Spectrometer 478 per centimeter ice emission feature demonstrates, this solid-state photochemistry mechanism eliminates the need for the relatively high C4N2 saturation vapor pressures required (even though they are not observed) when the ice is produced through the usual procedure of direct condensation from the vapor.

  12. Titan 2D: Understanding Titan’s Seasonal Atmospheric Cycles

    Science.gov (United States)

    Wong, Michael; Zhang, X.; Li, C.; Hu, R.; Shia, R.; Newman, C.; Müller-Wodarg, I.; Yung, Y.

    2013-10-01

    In this study, we present results from a novel two-dimensional (2D) model that simulates the physics and chemistry of Titan’s atmosphere. Despite being an icy moon of Saturn, Titan is the only Solar System object aside from Earth that is sheathed by a thick nitrogen-dominated atmosphere. This vulnerable gaseous envelope—an embodiment of a delicate coupling between photochemistry, radiation, and dynamics—is Nature’s laboratory for the synthesis of complex organic molecules. Titan’s large obliquity generates pronounced seasonal cycles in its atmosphere, and the Cassini spacecraft has been observing these variations since 2004. In particular, Cassini measurements show that the latitudinal distribution of Titan’s rich mélange of hydrocarbon species follows seasonal patterns. The mixing ratios of hydrocarbons increase with latitude towards the winter pole, suggesting a pole-to-pole circulation that reverses after equinox. Using a one-dimensional photochemical model of Titan’s atmosphere, we show that photochemistry alone cannot produce the observed meridional hydrocarbon distribution. This necessitates the employment of a 2D chemistry-transport model that includes meridional circulation as well as diffusive processes and photochemistry. Of additional concern, no previous 2D model of Titan extends beyond 500 km altitude—a critical limitation since the peak of methane photolysis is at 800 km. Our 2D model is the first to include Titan’s stratosphere, mesosphere, and thermosphere. The meridional circulation in our 2D model is derived from the outputs of two general circulation models (GCMs): the TitanWRF GCM (Newman et al. 2011) covering the troposphere, stratosphere, and lower mesosphere, and a thermosphere general circulation model (TGCM) covering the remainder of the atmosphere through the thermosphere (Müller-Wodarg et al. 2003; 2008). This presentation will focus on the utilization of these advances applied to the 2D Caltech/JPL KINETICS model to

  13. Photochemistry and Gas-Phase FTIR Spectroscopy of Formic Acid Interaction with Anatase Ti18O2 Nanoparticles

    Czech Academy of Sciences Publication Activity Database

    Civiš, Svatopluk; Ferus, Martin; Zukalová, Markéta; Kubát, Pavel; Kavan, Ladislav

    2012-01-01

    Roč. 116, č. 20 (2012), s. 11200-11205 ISSN 1932-7447 R&D Projects: GA AV ČR IAAX00100903; GA AV ČR IAA400400804; GA AV ČR KAN200100801; GA ČR GAP208/10/1678; GA MŠk OC09044 Institutional support: RVO:61388955 Keywords : photochemistry * FTIR spectroscopy * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 4.814, year: 2012

  14. Triplet state photochemistry and the three-state crossing of acetophenone within time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Huix-Rotllant, Miquel, E-mail: miquel.huix@gmail.com; Ferré, Nicolas, E-mail: nicolas.ferre@univ-amu.fr [Institut de Chimie Radicalaire (UMR-7273), Aix-Marseille Université, CNRS, 13397 Marseille Cedex 20 (France)

    2014-04-07

    Even though time-dependent density-functional theory (TDDFT) works generally well for describing excited states energies and properties in the Franck-Condon region, it can dramatically fail in predicting photochemistry, notably when electronic state crossings occur. Here, we assess the ability of TDDFT to describe the photochemistry of an important class of triplet sensitizers, namely, aromatic ketones. We take acetophenone as a test molecule, for which accurate ab initio results exist in the literature. Triplet acetophenone is generated thanks to an exotic three-state crossing involving one singlet and two triplets states (i.e., a simultaneous intersystem crossing and triplet conical intersection), thus being a stringent test for approximate TDDFT. We show that most exchange-correlation functionals can only give a semi-qualitative picture of the overall photochemistry, in which the three-state crossing is rather represented as a triplet conical intersection separated from the intersystem crossing. The best result overall is given by the double hybrid functional mPW2PLYP, which is even able to reproduce quantitatively the three-state crossing region. We rationalize this results by noting that double hybrid functionals include a larger portion of double excitation character to the excited states.

  15. Biweekly list of papers on radiation chemistry and photochemistry. Annual cumulation with keyword and author indexes. Volume 16. 1983

    International Nuclear Information System (INIS)

    Carmichael, I.C.; Helman, W.P.; Hug, G.L.; Ross, A.B.

    1983-01-01

    The Biweekly List of Papers on Radiation Chemistry and Photochemistry is a current-awareness service published by the Radiation Chemistry Data Center (RCDC), with special emphasis on the kinetics and other properties of transient ions, radicals, and excited species. Papers are included on the radiation chemistry and photochemistry of organic and inorganic systems, biological molecules and polymers, with references to ESR and luminescence studies. Complete coverage is attempted only for those studies which are initiated by light or ionizing radiation, and which provide quantitative physical chemical data such as quantum yields, specific rates, G values, etc. No attempt is made to cover topics such as mechanistic and preparative photochemistry, photosynthesis, photography, and irradiation of metals. The references listed herein are obtained from scanning about 60 current journals as well as Chemical Abstracts, INIS Atomindex and several other publications listing current references. The reference lists, which are issued biweekly, are cumulated annually with the addition of keyword and author indexes. Indexed cumulations were published semiannually for Vol. 4-6 (1971-73) and are published annually for Vol. 7+ (1974+); back copies are available from the National Technical Information Service (NTIS)

  16. Atmospheric ionisation in Snowdonia

    Energy Technology Data Exchange (ETDEWEB)

    Aplin, K L [Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH UK (United Kingdom); Williams, J H, E-mail: k.aplin1@physics.ox.ac.uk [Envirodata-Eyri, Bryn Goleu, Penmaen Park, Llanfairfechan, Gwynedd LL33 0RL (United Kingdom)

    2011-06-23

    Atmospheric ionisation from natural radioactivity and cosmic rays has been measured at several sites in Snowdonia from 2005-present. The motivation for this project was a combination of public engagement with science, and research into the effects of ionisation on climate. A four-component atmospheric radiometer instrument is co-located with the ionisation detectors and the data is remotely logged and displayed on the Web. Atmospheric ionisation from natural radioactivity varies with local geology, and the cosmic ray ionisation component is modulated by solar activity and altitude. Variations due to all these effects have been identified and are described.

  17. Using the Flipchem Photochemistry Model When Fitting Incoherent Scatter Radar Data

    Science.gov (United States)

    Reimer, A. S.; Varney, R. H.

    2017-12-01

    The North face Resolute Bay Incoherent Scatter Radar (RISR-N) routinely images the dynamics of the polar ionosphere, providing measurements of the plasma density, electron temperature, ion temperature, and line of sight velocity with seconds to minutes time resolution. RISR-N does not directly measure ionospheric parameters, but backscattered signals, recording them as voltage samples. Using signal processing techniques, radar autocorrelation functions (ACF) are estimated from the voltage samples. A model of the signal ACF is then fitted to the ACF using non-linear least-squares techniques to obtain the best-fit ionospheric parameters. The signal model, and therefore the fitted parameters, depend on the ionospheric ion composition that is used [e.g. Zettergren et. al. (2010), Zou et. al. (2017)].The software used to process RISR-N ACF data includes the "flipchem" model, which is an ion photochemistry model developed by Richards [2011] that was adapted from the Field LineInterhemispheric Plasma (FLIP) model. Flipchem requires neutral densities, neutral temperatures, electron density, ion temperature, electron temperature, solar zenith angle, and F10.7 as inputs to compute ion densities, which are input to the signal model. A description of how the flipchem model is used in RISR-N fitting software will be presented. Additionally, a statistical comparison of the fitted electron density, ion temperature, electron temperature, and velocity obtained using a flipchem ionosphere, a pure O+ ionosphere, and a Chapman O+ ionosphere will be presented. The comparison covers nearly two years of RISR-N data (April 2015 - December 2016). Richards, P. G. (2011), Reexamination of ionospheric photochemistry, J. Geophys. Res., 116, A08307, doi:10.1029/2011JA016613.Zettergren, M., Semeter, J., Burnett, B., Oliver, W., Heinselman, C., Blelly, P.-L., and Diaz, M.: Dynamic variability in F-region ionospheric composition at auroral arc boundaries, Ann. Geophys., 28, 651-664, https

  18. Pluto's atmosphere

    International Nuclear Information System (INIS)

    Elliot, J.L.; Dunham, E.W.; Bosh, A.S.; Slivan, S.M.; Young, L.A.

    1989-01-01

    Airborne CCD photometer observations of Pluto's June 9, 1988 stellar occultation have yielded an occultation lightcurve, probing two regions on the sunrise limb 2000 km apart, which reveals an upper atmosphere overlying an extinction layer with an abrupt upper boundary. The extinction layer may surround the entire planet. Attention is given to a model atmosphere whose occultation lightcurve closely duplicates observations; fits of the model to the immersion and emersion lightcurves exhibit no significant derived atmosphere-structure differences. Assuming a pure methane atmosphere, surface pressures of the order of 3 microbars are consistent with the occultation data. 43 references

  19. Atmospheric electricity

    CERN Document Server

    Chalmers, J Alan

    1957-01-01

    Atmospheric Electricity brings together numerous studies on various aspects of atmospheric electricity. This book is composed of 13 chapters that cover the main problems in the field, including the maintenance of the negative charge on the earth and the origin of the charges in thunderstorms. After a brief overview of the historical developments of atmospheric electricity, this book goes on dealing with the general principles, results, methods, and the MKS system of the field. The succeeding chapters are devoted to some aspects of electricity in the atmosphere, such as the occurrence and d

  20. High-Power 365 nm UV LED Mercury Arc Lamp Replacement for Photochemistry and Chemical Photolithography.

    Science.gov (United States)

    Hölz, K; Lietard, J; Somoza, M M

    2017-01-03

    Ultraviolet light emitting diodes (UV LEDs) have become widespread in chemical research as highly efficient light sources for photochemistry and photopolymerization. However, in more complex experimental setups requiring highly concentrated light and highly spatially resolved patterning of the light, high-pressure mercury arc lamps are still widely used because they emit intense UV light from a compact arc volume that can be efficiently coupled into optical systems. Advances in the deposition and p -type doping of gallium nitride have recently permitted the manufacture of UV LEDs capable of replacing mercury arc lamps also in these applications. These UV LEDs exceed the spectral radiance of mercury lamps even at the intense I-line at 365 nm. Here we present the successful exchange of a high-pressure mercury arc lamp for a new generation UV LED as a light source in photolithographic chemistry and its use in the fabrication of high-density DNA microarrays. We show that the improved light radiance and efficiency of these LEDs offer substantial practical, economic and ecological advantages, including faster synthesis, lower hardware costs, very long lifetime, an >85-fold reduction in electricity consumption and the elimination of mercury waste and contamination.

  1. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    Energy Technology Data Exchange (ETDEWEB)

    De Barros, A. L. F. [Departamento de Física, Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, Av. Maracanã 229, 20271-110 Rio de Janeiro, RJ (Brazil); Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G.A.; Allamandola, L. J. [NASA Ames Research Center, Mail Stop 245-6, Moffett Field, CA 94035-1000 (United States)

    2017-10-20

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C{sub 24}H{sub 12}:H{sub 2}O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H{sub 2}O, pyrene:H{sub 2}O, and benzo[ghi]perylene:H{sub 2}O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO{sub 2} and H{sub 2}CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H{sup +}) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H{sub 2}O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  2. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    Science.gov (United States)

    de Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G. A.; Allamandola, L. J.

    2017-10-01

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C24H12:H2O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H2O, pyrene:H2O, and benzo[ghi]perylene:H2O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO2 and H2CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H+) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H2O photoproducts have mid-infrared spectroscopic signatures in the 5-8 μm region that can contribute to the interstellar ice components described by Boogert et al. as C1-C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  3. Photochemistry of Coronene in Cosmic Water Ice Analogs at Different Concentrations

    International Nuclear Information System (INIS)

    De Barros, A. L. F.; Mattioda, A. L.; Ricca, A.; Cruz-Diaz, G.A.; Allamandola, L. J.

    2017-01-01

    This work presents the photochemistry of ultraviolet (UV) irradiated coronene in water ices at 15 K studied using mid-infrared Fourier transform (FTIR) spectroscopy for C 24 H 12 :H 2 O at concentrations of (1:50), (1:150), (1:200), (1:300), and (1:400). Previous UV irradiation studies of anthracene:H 2 O, pyrene:H 2 O, and benzo[ghi]perylene:H 2 O ices at 15 K have shown that aromatic alcohols and ketones, as well as CO 2 and H 2 CO, are formed at very low temperatures. Likewise, here, in addition to the coronene cation, hydroxy-, keto-, and protonated coronene (coronene H + ) are formed. The rate constants for the decay of neutral coronene and for the formation of photoproducts have been derived. It is shown that Polycyclic Aromatic Hydrocarbons (PAHs) and their UV induced PAH:H 2 O photoproducts have mid-infrared spectroscopic signatures in the 5–8 μ m region that can contribute to the interstellar ice components described by Boogert et al. as C1–C5. Our results suggest that oxygenated and hydrogenated PAHs could be in UV-irradiated regions of the interstellar medium where water-rich ices are important.

  4. Energy transfer and photochemistry on a metal surface: Mo(CO)6 on Rh(100)

    International Nuclear Information System (INIS)

    Germer, T.A.; Ho, W.

    1989-01-01

    The occurrence of photoinduced reactions on solid surfaces depends on the relative rates between the excited-state decomposition and the energy transfer to the surface. In this study, the photodecomposition of Mo(CO) 6 on Rh(100) at 90 K by 325-nm UV irradiation has been studied as a function of coverage and surface preparation using thermal desorption spectroscopy, electron energy-loss spectroscopy, and photoinduced desorption spectroscopy. It is found that Mo(CO) 6 adsorbs dissociatively on Rh(100) into carbonyl fragments and CO in the first monolayer and molecularly in multilayers. Photoinduced desorption of CO is observed for the multilayers adsorbed onto the dissociated first layer via a nonthermal electronic excitation of adsorbed metal carbonyls. The presence of the metal surface prevents complete decarbonylation as in the gas phase; deexcitation of electronically excited carbonyls is not sufficiently fast to quench all the observed photochemistry. It is also found that Mo(CO) 6 adsorbs molecularly on a presaturated CO ordered overlayer on Rh(100) and undergoes photodissociation to a greater degree than on the dissociated and disordered surface of carbonyl fragments. The ordered CO layer effectively screens the interaction between the molecular carbonyls and the Rh(100) layer surface

  5. What do PANs Tell us about VOC-NOx Photochemistry in the Urban/Rural Interface?

    Science.gov (United States)

    Roberts, J. M.; Flocke, F. M.; Zheng, W.; Bertman, S.; Marchewka, M.; Williams, E.; Lerner, B.; Kuster, W.; Goldan, P.; Gilman, J.; Sommariva, R.; Trainer, M.; Fehsenfeld, F.

    2006-12-01

    Peroxycarboxylic Nitric Anhydrides (PANs) are co-products of the VOC-NOx photochemistry that is responsible for O3 and secondary organic aerosol (SOA) formation in the troposphere. The relative abundance of the various PAN type compounds can provide important diagnostic information as to the contribution of different VOC sources to these processes. Anthropogenic, biogenic and petrochemical VOC sources have shown distinct profiles of PAN, PPN, MPAN, PiBN, and APAN, which can be analyzed using simple numerical models and compared to the results of detailed chemical mechanisms. One result of these studies is that the PAN compounds can be used to better define the contribution of isoprene to O3 production in the urban/rural interface. Another result is that high relative concentrations of APAN are characteristic of high petrochemical source impact. In addition, changes in the relative abundance of PPN and PAN can indicate the aging of a continental photochemical plume. This paper will present selected results from five field experiments and modeling studies from the Nashville 1999 Southern Oxidant Study up through the TexAQS 2006 study, in and around Houston, TX.

  6. A novel synthesis of polymeric CO via useful hard X-ray photochemistry

    Directory of Open Access Journals (Sweden)

    Michael Pravica

    2016-12-01

    Full Text Available We report on the synchrotron hard X-ray-induced decomposition of strontium oxalate (SrC2O4 pressurized to 7 GPa inside a diamond anvil cell (DAC. After some 4 h of irradiation in a white X-ray synchrotron beam, a dark reddish/brown region formed in the area of irradiation which was surrounded by a yellowish brown remainder in the rest of the sample. Upon depressurization of the sample to ambient conditions, the reacted/decomposed sample was recoverable as a dark brown/red and yellow waxy solid. Synchrotron infrared spectroscopy confirmed the strong presence of CO2 even under ambient conditions with the sample exposed to air and other strongly absorbing regions, suggesting that the sample may likely be polymerized CO (in part with dispersed CO2 and SrO trapped within the polymer. These results will have significant implications in the ability to readily produce and trap CO2 in situ via irradiation of a simple powder for useful hard X-ray photochemistry and in the ability to easily manufacture polymeric CO (via loading of powders in a DAC or high volume press without the need for the dangerous and complex loading of toxic CO. A novel means of X-ray-induced polymerization under extreme conditions has also been demonstrated.

  7. The photochemistry of pyrimidine in realistic astrophysical ices and the production of nucleobases

    International Nuclear Information System (INIS)

    Nuevo, Michel; Materese, Christopher K.; Sandford, Scott A.

    2014-01-01

    Nucleobases, together with deoxyribose/ribose and phosphoric acid, are the building blocks of DNA and RNA for all known life. The presence of nucleobase-like compounds in carbonaceous chondrites delivered to the Earth raises the question of an extraterrestrial origin for the molecules that triggered life on our planet. Whether these molecules are formed in interstellar/protostellar environments, in small parent bodies in the solar system, or both, is currently unclear. Recent experiments show that the UV irradiation of pyrimidine (C 4 H 4 N 2 ) in H 2 O-rich ice mixtures that contain NH 3 , CH 3 OH, or CH 4 leads to the formation of the pyrimidine-based nucleobases uracil, cytosine, and thymine. In this work, we discuss the low-temperature UV irradiation of pyrimidine in realistic astrophysical ice mixtures containing H 2 O, CH 3 OH, and NH 3 , with or without CH 4 , to search for the production of nucleobases and other prebiotic compounds. These experiments show the presence of uracil, urea, glycerol, hexamethylenetetramine, small amino acids, and small carboxylic acids in all samples. Cytosine was only found in one sample produced from ices irradiated with a higher UV dose, while thymine was not found in any sample, even after irradiation with a higher UV dose. Results are discussed to evaluate the role of the photochemistry of pyrimidine in the inventory of organic molecules detected in meteorites and their astrophysical/astrobiological implications.

  8. Articulating Atmospheres

    DEFF Research Database (Denmark)

    Kinch, Sofie

    2011-01-01

    This paper presents an architectural approach to designing computational interfaces by articulating the notion of atmosphere in the field of interaction design. It draws upon the concept of kinesthetic interaction and a philosophical notion on atmosphere emphasizing the importance of bodily...

  9. Atmospheric electrodynamics

    International Nuclear Information System (INIS)

    Volland, H.

    1984-01-01

    The book Atmospheric Electrodynamics, by Hans Voland is reviewed. The book describes a wide variety of electrical phenomena occurring in the upper and lower atmosphere and develops the mathematical models which simulate these processes. The reviewer finds that the book is of interest to researchers with a background in electromagnetic theory but is of only limited use as a reference work

  10. Evaluated kinetic and photochemical data for atmospheric chemistry: Supplement VIII, halogen species evaluation for atmospheric chemistry

    International Nuclear Information System (INIS)

    Atkinson, R.; Baulch, D.L.; Cox, R.A.; Hampson, R.F. Jr.; Kerr, J.A.; Rossi, M.J.; Troe, J.

    2000-01-01

    This paper updates and extends part of the previous data base of critical evaluations of the kinetics and photochemistry of gas-phase chemical reactions of neutral species involved in atmospheric chemistry [J. Phys. Chem. Ref. Data 9, 295 (1980); 11, 327 (1982); 13, 1259 (1984); 18, 881 (1989); 21, 1125 (1992); 26, 521 (1997); 26, 1329 (1997); 28, 191 (1999)]. The present evaluation is limited to the inorganic halogen family of atmospherically important reactions. The work has been carried out by the authors under the auspices of the IUPAC Subcommittee on Gas Phase Kinetic Data Evaluation for Atmospheric Chemistry. Data sheets have been prepared for 102 thermal and photochemical reactions, containing summaries of the available experimental data with notes giving details of the experimental procedures. For each thermal reaction, a preferred value of the rate coefficient at 298 K is given together with a temperature dependence where possible. The selection of the preferred value is discussed and estimates of the accuracies of the rate coefficients and temperature coefficients have been made for each reaction. For each photochemical reaction the data sheets list the preferred values of the photoabsorption cross sections and the quantum yields of the photochemical reactions together with comments on how they were selected. The data sheets are intended to provide the basic physical chemical data needed as input for calculations that model atmospheric chemistry. A table summarizing the preferred rate data is provided, together with an appendix listing the available values of enthalpies of formation of the reactant and product species

  11. Urban atmospheres.

    Science.gov (United States)

    Gandy, Matthew

    2017-07-01

    What is an urban atmosphere? How can we differentiate an 'atmosphere' from other facets of urban consciousness and experience? This essay explores some of the wider cultural, political, and philosophical connotations of atmospheres as a focal point for critical reflections on space and subjectivity. The idea of an 'affective atmosphere' as a distinctive kind of mood or shared corporeal phenomenon is considered in relation to recent developments in phenomenology, extended conceptions of agency, and new understandings of materialism. The essay draws in particular on the changing characteristics of air and light to reflect on different forms of sensory experience and their wider cultural and political connotations. The argument highlights some of the tensions and anomalies that permeate contemporary understandings of urban atmospheres.

  12. Solvent effects on the photochemistry of dimethyl sulfoxide-Cl complexes studied by combined pulse radiolysis and laser flash photolysis

    International Nuclear Information System (INIS)

    Sumiyoshi, Takashi; Minegishi, Hideki; Fujiyoshi, Ryoko; Sawamura, Sadashi

    2006-01-01

    Photolysis of complexes of dimethyl sulfoxide (DMSO) with chlorine atoms results in rapid and permanent photobleaching which may be due to intramolecular hydrogen abstraction. The effects of solvent polarity were examined in a wide variety of DMSO-carbon tetrachloride mixed solvents. The quantum yields of photobleaching decreased from 0.27 to 0.08 as the solvent polarity increased, while significant changes were observed in the low DMSO concentration range ( -3 ). This cannot be accounted for by simple solvent polarity effects. The effects of polar and nonpolar additives were also examined and it is concluded that the specific solvation effect of DMSO was the main cause of the significant change in quantum yields in the low concentration range of DMSO

  13. Exoplanet atmospheres physical processes

    CERN Document Server

    Seager, Sara

    2010-01-01

    Over the past twenty years, astronomers have identified hundreds of extrasolar planets--planets orbiting stars other than the sun. Recent research in this burgeoning field has made it possible to observe and measure the atmospheres of these exoplanets. This is the first textbook to describe the basic physical processes--including radiative transfer, molecular absorption, and chemical processes--common to all planetary atmospheres, as well as the transit, eclipse, and thermal phase variation observations that are unique to exoplanets. In each chapter, Sara Seager offers a conceptual introduction, examples that combine the relevant physics equations with real data, and exercises. Topics range from foundational knowledge, such as the origin of atmospheric composition and planetary spectra, to more advanced concepts, such as solutions to the radiative transfer equation, polarization, and molecular and condensate opacities. Since planets vary widely in their atmospheric properties, Seager emphasizes the major p...

  14. Planetary Atmosphere and Surfaces Chamber (PASC: A Platform to Address Various Challenges in Astrobiology

    Directory of Open Access Journals (Sweden)

    Eva Mateo-Marti

    2014-08-01

    Full Text Available The study of planetary environments of astrobiological interest has become a major challenge. Because of the obvious technical and economical limitations on in situ planetary exploration, laboratory simulations are one of the most feasible research options to make advances both in planetary science and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum technology to the design of versatile vacuum chambers devoted to the simulation of planetary atmospheres’ conditions. These vacuum chambers are able to simulate atmospheres and surface temperatures representative of the majority of planetary objects, and they are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Vacuum chambers are a promising potential tool in several scientific and technological fields, such as engineering, chemistry, geology and biology. They also offer the possibility of discriminating between the effects of individual physical parameters and selected combinations thereof. The implementation of our vacuum chambers in combination with analytical techniques was specifically developed to make feasible the in situ physico-chemical characterization of samples. Many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these experimental systems. Instruments and engineering technology for space applications could take advantage of our environment-simulation chambers for sensor calibration. Our systems also provide the opportunity to gain a greater understanding of the chemical reactivity of molecules on surfaces under different environments, thereby leading to a greater understanding of interface processes in prebiotic chemical reactions and facilitating studies of UV photostability and photochemistry on surfaces

  15. Atmospheric Electricity

    Science.gov (United States)

    Aplin, Karen; Fischer, Georg

    2018-02-01

    Electricity occurs in atmospheres across the Solar System planets and beyond, spanning spectacular lightning displays in clouds of water or dust, to more subtle effects of charge and electric fields. On Earth, lightning is likely to have existed for a long time, based on evidence from fossilized lightning strikes in ancient rocks, but observations of planetary lightning are necessarily much more recent. The generation and observations of lightning and other atmospheric electrical processes, both from within-atmosphere measurements, and spacecraft remote sensing, can be readily studied using a comparative planetology approach, with Earth as a model. All atmospheres contain charged molecules, electrons, and/or molecular clusters created by ionization from cosmic rays and other processes, which may affect an atmosphere's energy balance both through aerosol and cloud formation, and direct absorption of radiation. Several planets are anticipated to host a "global electric circuit" by analogy with the circuit occurring on Earth, where thunderstorms drive current of ions or electrons through weakly conductive parts of the atmosphere. This current flow may further modulate an atmosphere's radiative properties through cloud and aerosol effects. Lightning could potentially have implications for life through its effects on atmospheric chemistry and particle transport. It has been observed on many of the Solar System planets (Earth, Jupiter, Saturn, Uranus, and Neptune) and it may also be present on Venus and Mars. On Earth, Jupiter, and Saturn, lightning is thought to be generated in deep water and ice clouds, but discharges can be generated in dust, as for terrestrial volcanic lightning, and on Mars. Other, less well-understood mechanisms causing discharges in non-water clouds also seem likely. The discovery of thousands of exoplanets has recently led to a range of further exotic possibilities for atmospheric electricity, though lightning detection beyond our Solar System

  16. Gas-to-particle conversion in the atmospheric environment by radiation-induced and photochemical reactions

    International Nuclear Information System (INIS)

    Vohra, K.G.

    1975-01-01

    During the last few years a fascinating new area of research involving ionizing radiations and photochemistry in gas-to-particle conversion in the atmosphere has been developing at a rapid pace. Two problems of major interest and concern in which this is of paramount importance are: (1) radiation induced and photochemical aerosol formation in the stratosphere and, (2) role of radiations and photochemistry in smog formation. The peak in cosmic ray intensity and significant solar UV flux in the stratosphere lead to complex variety of reactions involving major and trace constituents in this region of the atmosphere, and some of these reactions are of vital importance in aerosol formation. The problem is of great current interest because the pollutant gases from industrial sources and future SST operations entering the stratosphere could increase the aerosol burden in the stratosphere and affect the solar energy input of the troposphere with consequent ecological and climatic changes. On the other hand, in the nuclear era, the atmospheric releases from reactors and processing plants could lead to changes in the cloud nucleation behaviour of the environment and possible increase in smog formation in the areas with significant levels of radiations and conventional pollutants. A review of the earlier work, current status of the problem, and conventional pollutants. A review of the earlier work, current status of the problem, and some recent results of the experiments conducted in the author's laboratory are presented. The possible mechanisms of gas-to-particle conversion in the atmosphere have been explained

  17. The molecular physics of photolytic fractionation of sulfur and oxygen isotopes in planetary atmospheres (Invited)

    Science.gov (United States)

    Johnson, M. S.; Schmidt, J. A.; Hattori, S.; Danielache, S.; Meusinger, C.; Schinke, R.; Ueno, Y.; Nanbu, S.; Kjaergaard, H. G.; Yoshida, N.

    2013-12-01

    Atmospheric photochemistry is able to produce large mass independent anomalies in atmospheric trace gases that can be found in geological and cryospheric records. This talk will present theoretical and experimental investigations of the molecular mechanisms producing photolytic fractionation of isotopes with special attention to sulfur and oxygen. The zero point vibrational energy (ZPE) shift and reflection principle theories are starting points for estimating isotopic fractionation, but these models ignore effects arising from isotope-dependent changes in couplings between surfaces, excited state dynamics, line densities and hot band populations. The isotope-dependent absorption spectra of the isotopologues of HCl, N2O, OCS, CO2 and SO2 have been examined in a series of papers and these results are compared with experiment and ZPE/reflection principle models. Isotopic fractionation in planetary atmospheres has many interesting applications. The UV absorption of CO2 is the basis of photochemistry in the CO2-rich atmospheres of the ancient Earth, and of Mars and Venus. For the first time we present accurate temperature and isotope dependent CO2 absorption cross sections with important implications for photolysis rates of SO2 and H2O, and the production of a mass independent anomaly in the Ox reservoir. Experimental and theoretical results for OCS have implications for the modern stratospheric sulfur budget. The absorption bands of SO2 are complex with rich structure producing isotopic fractionation in photolysis and photoexcitation.

  18. Atmosphere Impact Losses

    Science.gov (United States)

    Schlichting, Hilke E.; Mukhopadhyay, Sujoy

    2018-02-01

    } ρ0 (π h R)^{3/2}, r_{cap}˜25 km for the current Earth), that are able to eject all the atmosphere above the tangent plane of the impact site, where h, R and ρ0 are the atmospheric scale height, radius of the target, and its atmospheric density at the ground. 3) Small impactors (m_{min}>4 πρ0 h3, r_{min}˜ 1 km for the current Earth), that are only able to eject a fraction of the atmospheric mass above the tangent plane. We demonstrate that per unit impactor mass, small impactors with r_{min} < r < r_{cap} are the most efficient impactors in eroding the atmosphere. In fact for the current atmospheric mass of the Earth, they are more than five orders of magnitude more efficient (per unit impactor mass) than giant impacts, implying that atmospheric mass loss must have been common. The enormous atmospheric mass loss efficiency of small impactors is due to the fact that most of their impact energy and momentum is directly available for local mass loss, where as in the giant impact regime a lot of energy and momentum is 'wasted' by having to create a strong shock that can transverse the entirety of the planet such that global atmospheric loss can be achieved. In the absence of any volatile delivery and outgassing, we show that the population of late impactors inferred from the lunar cratering record containing 0.1% M_{\\oplus } is able to erode the entire current Earth's atmosphere implying that an interplay of erosion, outgassing and volatile delivery is likely responsible for determining the atmospheric mass and composition of the early Earth. Combining geochemical observations with impact models suggest an interesting synergy between small and big impacts, where giant impacts create large magma oceans and small and larger impacts drive the atmospheric loss.

  19. Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign

    Directory of Open Access Journals (Sweden)

    G. Li

    2011-06-01

    Full Text Available In the present study, the impact of aerosols on the photochemistry in Mexico City is evaluated using the WRF-CHEM model for the period from 24 to 29 March during the MCMA-2006/MILAGRO campaign. An aerosol radiative module has been developed with detailed consideration of aerosol size, composition, and mixing. The module has been coupled into the WRF-CHEM model to calculate the aerosol optical properties, including optical depth, single scattering albedo, and asymmetry factor. Calculated aerosol optical properties are in good agreement with the surface observations and aircraft and satellite measurements during daytime. In general, the photolysis rates are reduced due to the absorption by carbonaceous aerosols, particularly in the early morning and late afternoon hours with a long aerosol optical path. However, with the growth of aerosol particles and the decrease of the solar zenith angle around noontime, aerosols can slightly enhance photolysis rates when ultraviolet (UV radiation scattering dominates UV absorption by aerosols at the lower-most model layer. The changes in photolysis rates due to aerosols lead to about 2–17 % surface ozone reduction during daytime in the urban area in Mexico City with generally larger reductions during early morning hours near the city center, resulting in a decrease of OH level by about 9 %, as well as a decrease in the daytime concentrations of nitrate and secondary organic aerosols by 5–6 % on average. In addition, the rapid aging of black carbon aerosols and the enhanced absorption of UV radiation by organic aerosols contribute substantially to the reduction of photolysis rates.

  20. Ultrafast infrared and UV-vis studies of the photochemistry of methoxycarbonylphenyl azides in solution.

    Science.gov (United States)

    Xue, Jiadan; Luk, Hoi Ling; Eswaran, S V; Hadad, Christopher M; Platz, Matthew S

    2012-06-07

    The photochemistry of 4-methoxycarbonylphenyl azide (2a), 2-methoxycarbonylphenyl azide (3a), and 2-methoxy-6-methoxycarbonylphenyl azide (4a) were studied by ultrafast time-resolved infrared (IR) and UV-vis spectroscopies in solution. Singlet nitrenes and ketenimines were observed and characterized for all three azides. Isoxazole species 3g and 4g are generated after photolysis of 3a and 4a, respectively, in acetonitrile. Triplet nitrene 4e formation correlated with the decay of singlet nitrene 4b. The presence of water does not change the chemistry or kinetics of singlet nitrenes 2b and 3b, but leads to protonation of 4b to produce nitrenium ion 4f. Singlet nitrenes 2b and 3b have lifetimes of 2 ns and 400 ps, respectively, in solution at ambient temperature. The singlet nitrene 4b in acetonitrile has a lifetime of about 800 ps, and reacts with water with a rate constant of 1.9 × 10(8) L·mol(-1)·s(-1) at room temperature. These results indicate that a methoxycarbonyl group at either the para or ortho positions has little influence on the ISC rate, but that the presence of a 2-methoxy group dramatically accelerates the ISC rate relative to the unsubstituted phenylnitrene. An ortho-methoxy group highly stabilizes the corresponding nitrenium ion and favors its formation in aqueous solvents. This substituent has little influence on the ring-expansion rate. These results are consistent with theoretical calculations for the various intermediates and their transition states. Cyclization from the nitrene to the azirine intermediate is favored to proceed toward the electron-deficient ester group; however, the higher energy barrier is the ring-opening process, that is, azirine to ketenimine formation, rendering the formation of the ester-ketenimine (4d') to be less favorable than the isomeric MeO-ketenimine (4d).

  1. Photochemistry and photobiology of actinic erythema: defensive and reparative cutaneous mechanisms

    Directory of Open Access Journals (Sweden)

    A.C. Tedesco

    1997-05-01

    Full Text Available Sunlight is part of our everyday life and most people accept it as beneficial to our health. With the advance of our knowledge in cutaneous photochemistry, photobiology and photomedicine over the past four decades, the terrestrial solar radiation has become a concern of dermatologists and is considered to be a major damaging environmental factor for our skin. Most photobiological effects (e.g., sunburn, suntanning, local and systemic immunosuppression, photoaging or dermatoheliosis, skin cancer and precancer, etc. are attributed to ultraviolet radiation (UVR and more particularly to UVB radiation (290-320 nm. UVA radiation (320-400 nm also plays an important role in the induction of erythema by the photosensitized generation of reactive oxygen species (singlet oxygen (1O2, superoxide (O2.- and hydroxyl radicals (.OH that damage DNA and cellular membranes, and promote carcinogenesis and the changes associated with photoaging. Therefore, research efforts have been directed at a better photochemical and photobiological understanding of the so-called sunburn reaction, actinic or solar erythema. To survive the insults of actinic damage, the skin appears to have different intrinsic defensive mechanisms, among which antioxidants (enzymatic and non-enzymatic systems play a pivotal role. In this paper, we will review the basic aspects of the action of UVR on the skin: a photochemical reactions resulting from photon absorption by endogenous chromophores; b the lipid peroxidation phenomenon, and c intrinsic defensive cutaneous mechanisms (antioxidant systems. The last section will cover the inflammatory response including mediator release after cutaneous UVR exposure and adhesion molecule expression

  2. Pluto's atmosphere in 2015 from high-resolution spectroscopy

    Science.gov (United States)

    Roe, Henry G.; Cook, Jason C.; Mace, Gregory N.; Holler, Bryan J.; Young, Leslie A.; McLane, Jacob N.; Jaffe, Daniel T.

    2015-11-01

    Pluto's thin N2/CH4 atmosphere is in vapor-pressure equilibrium with ices on its surface. The atmosphere evolves seasonally with the varying insolation pattern on Pluto's heterogenous surface, perhaps even largely freezing out to the surface during the coldest portion of Pluto's year. We use high-resolution (R≈25,000-50,000) near-infrared spectroscopy to resolve atmospheric methane absorption lines from Pluto's continuum spectra, as well as separate Pluto's atmospheric lines from the telluric spectrum. In addition to measuring the abundance and temperature of Pluto's atmospheric CH4, with broad wavelength coverage we are able to search for the inevitable products of N2/CH4 photochemistry. In 2015 we are undertaking an intensive campaign using NIRSPEC at Keck Observatory and IGRINS (Immersion Grating INfrared Spectrometer) at McDonald Observatory to coincide with the New Horizons Pluto encounter. We will report initial results from this 2015 campaign and compare the state of Pluto's atmosphere at the time of the New Horizons encounter with earlier years.

  3. Mars: Atmosphere

    Science.gov (United States)

    Moroz, V.; Murdin, P.

    2001-07-01

    The atmosphere of MARS is much thinner than the terrestrial one. However, even the simplest visual telescopic observations show a set of atmospheric events such as seasonal exchange of material between polar caps, temporal appearance of clouds and changes of visibility of dark regions on the disk of the planet. In 1947 the prominent CO2 bands in the near-infrared part of the Martian spectrum were...

  4. Photosystem II Photochemistry and Phycobiliprotein of the Red Algae Kappaphycus alvarezii and Their Implications for Light Adaptation

    OpenAIRE

    Guan, Xiangyu; Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng

    2013-01-01

    Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ -carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k ) of this algal species was less than 115  μ mol m−2 s−1. Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200  μ mol m−2 s−1. Under dim light, yield II declined at first and then increas...

  5. Sunscreen synthesis and their immobilisation on polymethylmethacrylate: an integrated project in organic chemistry, polymer chemistry and photochemistry

    International Nuclear Information System (INIS)

    Murtinho, Dina Maria B.; Serra, Maria Elisa S.; Pineiro, Marta

    2010-01-01

    Dibenzalacetone and other aldol condensation products are known sunscreens commonly used in cosmetics. This type of compounds can easily be prepared in an Organic Chemistry Lab by reaction of aldehydes with ketones in basic medium. These compounds can be incorporated in poly(methyl methacrylate) and used as UV light absorbers, for example in sunglasses. This project has the advantage of using inexpensive reagents which are readily available in Chemistry Laboratories. This experiment can also be a base starting point for discussions of organic, polymer and photochemistry topics. (author)

  6. Atmospheric chemistry of polycyclic aromatic compounds with special emphasis on nitro derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Feilberg, A.

    2000-04-01

    Field measurements of polycyclic aromatic compounds (PAC) have been carried out at a semi-rural site and at an urban site. Correlation analyses, PAC indicators, and PAC ratios have been used to evaluate the importance of various sources of nitro-PAHs. A major source of nitro-PAHs is atmospheric transformation of PAHs initiated by OH radicals. Especially during long-range transport (LRT) of air pollution from Central Europe, the nitro-PAH composition in Denmark is dominated by nitro-PAHs formed in the atmosphere. Locally emitted nitro-PAHs are primarily from diesel vehicles. Levels of unsubstituted PAHs can also be strongly elevated in connection with LRT episodes. The ratio of 2-nitrofluoranthene relative to 1-nitropyrene is proposed as a measure of the relative photochemical age of particulate matter. Using this ratio, the relative mutagenicity of particle extracts appears to increase with increasing photochemical age. In connection with the field measurements, a method for measuring nitro-PAHs in particle extracts based on MS-MS detection has been developed. The atmospheric chemistry of nitronaphthalenes has been investigated with a smog chamber system combined with simulation with photochemical kinetics software. A methodology to implement gas-particle partitioning in a model based on chemical kinetics is described. Equilibrium constants (KP) for gas-particle partitioning of 1- and 2-nitronaphthalene have been determined. Mass transfer between the two phases appears to occur on a very short timescale. The gas phase photolysis of the nitronaphthalenes depends upon the molecular conformation. Significantly faster photolysis of 1-nitronaphthalene than of 2-nitronaphthalene is observed. The photochemistry of nitro-PAHs, and to some extent other PAC, associated with organic aerosols, has been studied with model systems simulating organic aerosol material. A number of aerosol constituents, including substituted phenols, benzaldehydes, and oxy-PAHs, are demonstrated to

  7. Atmospheric thermodynamics

    CERN Document Server

    Iribarne, J V

    1973-01-01

    The thermodynamics of the atmosphere is the subject of several chapters in most textbooks on dynamic meteorology, but there is no work in English to give the subject a specific and more extensive treatment. In writing the present textbook, we have tried to fill this rather remarkable gap in the literature related to atmospheric sciences. Our aim has been to provide students of meteorology with a book that can playa role similar to the textbooks on chemical thermodynamics for the chemists. This implies a previous knowledge of general thermodynamics, such as students acquire in general physics courses; therefore, although the basic principles are reviewed (in the first four chapters), they are only briefly discussed, and emphasis is laid on those topics that will be useful in later chapters, through their application to atmospheric problems. No attempt has been made to introduce the thermodynamics of irreversible processes; on the other hand, consideration of heterogeneous and open homogeneous systems permits a...

  8. Atmospheric pollution

    International Nuclear Information System (INIS)

    Lambrozo, J.; Guillossou, G.

    2008-01-01

    The atmosphere is the reservoir of numerous pollutants (nitrogen oxides, sulfur oxides, carbon oxides, particulates, volatile organic compounds, polycyclic aromatic hydrocarbons) from natural origin or anthropogenic origin ( industry, transport, agriculture, district heating). With epidemiologic studies the atmospheric pollution is associated with an increase of respiratory and cardiovascular diseases. At the european level, the technological progress, the legislation have allowed a reduction of pollutant emissions, however these efforts have to be continued because the sanitary impact of atmospheric pollution must not be underestimated, even if the risks appear less important that these ones in relation with tobacco, inside pollution or others factors of cardiovascular risks. Indeed, on these last factors an individual action is possible for the exposure to air pollution people have no control. (N.C.)

  9. Effect of modified atmosphere packaging and addition of calcium hypochlorite on the atmosphere composition, colour and microbial quality of mushrooms

    CSIR Research Space (South Africa)

    Kuyper, L

    1993-01-01

    Full Text Available The effect of modified atmosphere packaging in combination with the addition of calcium hypochlorite on the atmosphere composition, colour and microbial quality of mushrooms was investigated. A modified atmosphere which slowed down discolouration...

  10. The influence of scales of atmospheric motion on air pollution over Portugal

    Science.gov (United States)

    Russo, Ana; Trigo, Ricardo; Mendes, Manuel; Jerez, Sonia; Gouveia, Célia Marina

    2014-05-01

    Air pollution is determined by the combination of different factors, namely, emissions, physical constrains, meteorology and chemical processes [1,2,3]. The relative importance of such factors is influenced by their interaction on diverse scales of atmospheric motion. Each scale depicts different meteorological conditions, which, when combined with the different air pollution sources and photochemistry, result in varying ambient concentrations [2]. Identifying the dominant scales of atmospheric motion over a given airshed can be of great importance for many applications such as air pollution and pollen dispersion or wind energy management [2]. Portugal has been affected by numerous air pollution episodes during the last decade. These episodes are often related to peak emissions from local industry or transport, but can also be associated to regional transport from other urban areas or to exceptional emission events, such as forest fires. This research aims to identify the scales of atmospheric motion which contribute to an increase of air pollution. A method is proposed for differentiating between the scales of atmospheric motion that can be applied on a daily basis from data collected at several wind-measuring sites in a given airshed and to reanalysis datasets. The method is based on the daily mean wind recirculation and the mean and standard deviation between sites. The determination of the thresholds between scales is performed empirically following the approach of Levy et al. [2] and also through a automatic statistical approach computed taking into account the tails of the distributions (e.g. 95% and 99% percentile) of the different wind samples. A comparison is made with two objective approaches: 1) daily synoptic classification for the same period over the region [4] and 2) a 3-D backward trajectory approach [5,6] for specific episodes. Furthermore, the outcomes are expected to support the Portuguese authorities on the implementation of strategies for a

  11. Investigation of atmospheric waves on Neptune

    Science.gov (United States)

    Eshleman, Von R.; Hinson, David P.

    1994-01-01

    This document constitutes the final report for grant NAGW-2442 of the Neptune Data Analysis Program, which supported research concerning atmospheric dynamics on Neptune. Professor Von R. Eshleman was the principal investigator. David P. Hinson was a Co-Investigator. The grant covered the period 1 March 1991 through 31 August 1994, including a six month no-cost extension. Funding from this grant resulted in publication of one journal article and one book chapter as well as presentation of results at two conferences and in numerous seminars. A complete bibliography is given below. A copy of the journal article is attached along with abstracts from the book chapter and the conference presentations. With support from this grant we extended our analysis and interpretation of the Voyager Project. This research contributed to an improvement in our basic understanding of atmospheric dynamics on Neptune. The highlight was the discovery and characterization of inertio-gravity waves in the troposphere and stratosphere. Results include measures of basic wave properties, such as amplitudes and vertical wavelengths, as well as estimates of the effect of the waves on the photochemistry and momentum balance of the stratosphere. This investigation also yielded a better understanding of the potential of radio occultation experiments for studies of atmospheric waves. At the same time we developed new methods of data analysis for exploiting these capabilities. These are currently being applied to radio occultation data obtained with the Magellan spacecraft to study waves in the atmosphere of Venus. Future planetary missions, such as Mars Global Surveyor and Cassini, will benefit from these accomplishments.

  12. Photochemistry of 1,1,1-Trifluoroacetone on Rutile TiO2(110)

    International Nuclear Information System (INIS)

    Zehr, Robert T.; Deskins, N. Aaron; Henderson, Michael A.

    2010-01-01

    The ultraviolet (UV) photon-induced photodecomposition of 1,1,1-trifluoroacetone (TFA) adsorbed on the rutile TiO2(110) surface has been investigated with photon stimulated desorption (PSD), temperature programmed desorption (TPD) and density functional theory (DFT). TFA adsorbed molecularly on the reduced surface (8% oxygen vacancies) in states desorbing below 300 K with trace thermal decomposition observed in TPD. Adsorption of TFA on a preoxidized TiO2(110) surface (accomplished by pre-exposure with 20 L O2) led to formation of a new TFA desorption state at 350 K, assigned to decomposition of a TFA-diolate species ((CF3)(CH3)COO). No TFA photochemistry was detected on the reduced surface. UV irradiation of TFA on the oxidized surface depleted TFA in the 350 K state, with TFA molecules in other TPD states unaffected. PSD measurements reveal that both carbonyl substituents (CH3 and CF3), as well as CO, were liberated during UV exposure at 95 K. Post-irradiation TPD showed evidence for both acetate (evolving as ketene at 650 K) and trifluoroacetate (evolving as CO2 at 600 K) as surface-bound photodecomposition products. The CO PSD product was not due to adsorbed CO, to mass spectrometer cracking of a CO-containing PSD product, or from background effects, but originated from complete fragmentation of an unidentified adsorbed TFA species. Thermodynamic analysis using DFT indicated that the photodecomposition of the TFA-diolate was likely not driven by thermodynamics alone as both pathways (CH3+trifluoroacetate and CF3+acetate) were detected when thermodynamics shows a clear preference for only one (CF3+acetate). These observations are in contrast to the photochemical behavior of acetone, butanone and acetaldehyde on TiO2(110), where only one of the two carbonyl substituent groups was observed, with a stoichiometric amount of carboxylate containing the other substituent left on the surface. We conclude that fluorination significantly alters the electronic structure of

  13. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue.

    Science.gov (United States)

    Wang, Guangyang; Bi, Aoyue; Amombo, Erick; Li, Huiying; Zhang, Liang; Cheng, Cheng; Hu, Tao; Fu, Jinmin

    2017-01-01

    Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue ( Festuca arundinacea Schreber) treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype "TF133" were subjected to the control (CK), salinity (S), salinity + calcium nitrate (SC), and salinity + ethylene glycol tetraacetic acid (SE). Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size), N (number of [Formula: see text] redox turnovers until F m is reached), ψE 0 , or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from Q A to Q B or PSI acceptors), ABS/RC (Absorbed photon flux per RC). All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond [Formula: see text]) and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca 2+ , and K + in the SC regime than S regime. Interrelated analysis indicated that ψE 0 , δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca 2+ and K + content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role

  14. Exogenous Calcium Enhances the Photosystem II Photochemistry Response in Salt Stressed Tall Fescue

    Directory of Open Access Journals (Sweden)

    Guangyang Wang

    2017-11-01

    Full Text Available Calcium enhances turfgrass response to salt stress. However, little is known about PSII photochemical changes when exogenous calcium was applied in salinity-stressed turfgrass. Here, we probe into the rearrangements of PSII electron transport and endogenous ion accumulation in tall fescue (Festuca arundinacea Schreber treated with exogenous calcium under salt stress. Three-month-old seedlings of genotype “TF133” were subjected to the control (CK, salinity (S, salinity + calcium nitrate (SC, and salinity + ethylene glycol tetraacetic acid (SE. Calcium nitrate and ethylene glycol tetraacetic acid was used as exogenous calcium donor and calcium chelating agent respectively. At the end of a 5-day duration treatment, samples in SC regime had better photochemistry performance on several parameters than salinity only. Such as the Area (equal to the plastoquinone pool size, N (number of QA- redox turnovers until Fm is reached, ψE0, or δRo (Efficiencdy/probability with which a PSII trapped electron is transferred from QA to QB or PSI acceptors, ABS/RC (Absorbed photon flux per RC. All the above suggested that calcium enhanced the electron transfer of PSII (especially beyond QA- and prevented reaction centers from inactivation in salt-stressed tall fescue. Furthermore, both grass shoot and root tissues generally accumulated more C, N, Ca2+, and K+ in the SC regime than S regime. Interrelated analysis indicated that ψE0, δRo, ABS/RC, C, and N content in shoots was highly correlated to each other and significantly positively related to Ca2+ and K+ content in roots. Besides, high salt increased ATP6E and CAMK2 transcription level in shoot at 1 and 5 day, respectively while exogenous calcium relieved it. In root, CAMK2 level was reduced by Salinity at 5 day and exogenous calcium recovered it. These observations involved in electron transport capacity and ion accumulation assist in understanding better the protective role of exogenous calcium in tall

  15. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures – Application to the petroleomic analysis of bio-oils

    Energy Technology Data Exchange (ETDEWEB)

    Hertzog, Jasmine [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Carré, Vincent, E-mail: vincent.carre@univ-lorraine.fr [LCP-A2MC, FR 2843 Institut Jean Barriol de Chimie et Physique Moléculaires et Biomoléculaires, FR 3624 Réseau National de Spectrométrie de Masse FT-ICR à très haut champ, Université de Lorraine, ICPM, 1 boulevard Arago, 57078 Metz Cedex 03 (France); Le Brech, Yann [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mackay, Colin Logan [SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, Scotland (United Kingdom); Dufour, Anthony [LRGP, CNRS, Université de Lorraine, ENSIC, 1, Rue Grandville, 54000 Nancy (France); Mašek, Ondřej [UK Biochar Research Center, School of Geosciences, University of Edinburgh, Kings Buildings, Edinburgh, EH9 3JN (United Kingdom); and others

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C{sub x}H{sub y}O{sub z} with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. - Highlights: • Non-targeted mass spectrometry by combining electrospray ionization, atmospheric pressure photoionization and laser/desorption ionization. • Exhaustive description of pyrolytic bio-oil components. • Distinction of sugaric derivatives, lignin derivatives and lipids contained in a woody-based pyrolytic bio-oil.

  16. Alarming atmospheres

    DEFF Research Database (Denmark)

    Højlund, Marie; Kinch, Sofie

    2014-01-01

    Nurses working in the Neuro-Intensive Care Unit at Aarhus University Hospital lack the tools to prepare children for the alarming atmosphere they will enter when visiting a hospitalised relative. The complex soundscape dominated by alarms and sounds from equipment is mentioned as the main stressor...

  17. Surface Photochemistry of Adsorbed Nitrate: The Role of Adsorbed Water in the Formation of Reduced Nitrogen Species on α-Fe2O3 Particle Surfaces

    NARCIS (Netherlands)

    Nanayakkara, C.E.; Jayaweera, P.M.; Rubasinghege, G; Baltrusaitis, Jonas; Grassian, V.H.

    2014-01-01

    The surface photochemistry of nitrate, formed from nitric acid adsorption, on hematite (α-Fe2O3) particle surfaces under different environmental conditions is investigated using X-ray photoelectron spectroscopy (XPS). Following exposure of α-Fe2O3 particle surfaces to gas-phase nitric acid, a peak

  18. ATOMIC CARBON IN THE UPPER ATMOSPHERE OF TITAN

    International Nuclear Information System (INIS)

    Zhang, X.; Yung, Y. L.; Ajello, J. M.

    2010-01-01

    The atomic carbon emission C I line feature at 1657 A ( 3 P 0 J - 3 P J ) in the upper atmosphere of Titan is first identified from the airglow spectra obtained by the Cassini Ultra-violet Imaging Spectrograph. A one-dimensional photochemical model of Titan is used to study the photochemistry of atomic carbon on Titan. Reaction between CH and atomic hydrogen is the major source of atomic carbon, and reactions with hydrocarbons (C 2 H 2 and C 2 H 4 ) are the most important loss processes. Resonance scattering of sunlight by atomic carbon is the dominant emission mechanism. The emission intensity calculations based on model results show good agreement with the observations.

  19. Heterofunctional Glycopolypeptides by Combination of Thiol-Ene Chemistry and NCA Polymerization.

    Science.gov (United States)

    Krannig, Kai-Steffen; Schlaad, Helmut

    2016-01-01

    Glycopolypeptides are prepared either by the polymerization of glycosylated amino acid N-carboxyanhydrides (NCAs) or by the post-polymerization functionalization of polypeptides with suitable functional groups. Here we present a method for the in-situ functionalization and (co-) polymerization of allylglycine N-carboxyanhydride in a facile one-pot procedure, combining radical thiol-ene photochemistry and nucleophilic ring-opening polymerization techniques, to yield well-defined heterofunctional glycopolypeptides.

  20. Mapping Vinyl Cyanide and Other Nitriles in Titan’s Atmosphere Using ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Lai, J. C.-Y.; Cordiner, M. A.; Nixon, C. A.; Achterberg, R. K.; Molter, E. M.; Palmer, M. Y.; Charnley, S. B.; Lindberg, J. E.; Mumma, M. J. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Teanby, N. A. [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ (United Kingdom); Kisiel, Z. [Institute of Physics, Polish Academy of Sciences, Al. Lotnikøw 32/46, 02-668 Warszawa (Poland); Irwin, P. G. J., E-mail: martin.cordiner@nasa.gov [Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom)

    2017-11-01

    Vinyl cyanide (C{sub 2}H{sub 3}CN) is theorized to form in Titan’s atmosphere via high-altitude photochemistry and is of interest regarding the astrobiology of cold planetary surfaces due to its predicted ability to form cell membrane-like structures (azotosomes) in liquid methane. In this work, we follow up on the initial spectroscopic detection of C{sub 2}H{sub 3}CN on Titan by Palmer et al. with the detection of three new C{sub 2}H{sub 3}CN rotational emission lines at submillimeter frequencies. These new, high-resolution detections have allowed for the first spatial distribution mapping of C{sub 2}H{sub 3}CN on Titan. We present simultaneous observations of C{sub 2}H{sub 5}CN, HC{sub 3}N, and CH{sub 3}CN emission, and obtain the first (tentative) detection of C{sub 3}H{sub 8} (propane) at radio wavelengths. We present disk-averaged vertical abundance profiles, two-dimensional spatial maps, and latitudinal flux profiles for the observed nitriles. Similarly to HC{sub 3}N and C{sub 2}H{sub 5}CN, which are theorized to be short-lived in Titan’s atmosphere, C{sub 2}H{sub 3}CN is most abundant over the southern (winter) pole, whereas the longer-lived CH{sub 3}CN is more concentrated in the north. This abundance pattern is consistent with the combined effects of high-altitude photochemical production, poleward advection, and the subsequent reversal of Titan’s atmospheric circulation system following the recent transition from northern to southern winter. We confirm that C{sub 2}H{sub 3}CN and C{sub 2}H{sub 5}CN are most abundant at altitudes above 200 km. Using a 300 km step model, the average abundance of C{sub 2}H{sub 3}CN is found to be 3.03 ± 0.29 ppb, with a C{sub 2}H{sub 5}CN/C{sub 2}H{sub 3}CN abundance ratio of 2.43 ± 0.26. Our HC{sub 3}N and CH{sub 3}CN spectra can be accurately modeled using abundance gradients above the tropopause, with fractional scale-heights of 2.05 ± 0.16 and 1.63 ± 0.02, respectively.

  1. Mapping Vinyl Cyanide and Other Nitriles in Titan’s Atmosphere Using ALMA

    Science.gov (United States)

    Lai, J. C.-Y.; Cordiner, M. A.; Nixon, C. A.; Achterberg, R. K.; Molter, E. M.; Teanby, N. A.; Palmer, M. Y.; Charnley, S. B.; Lindberg, J. E.; Kisiel, Z.; Mumma, M. J.; Irwin, P. G. J.

    2017-11-01

    Vinyl cyanide (C2H3CN) is theorized to form in Titan’s atmosphere via high-altitude photochemistry and is of interest regarding the astrobiology of cold planetary surfaces due to its predicted ability to form cell membrane-like structures (azotosomes) in liquid methane. In this work, we follow up on the initial spectroscopic detection of C2H3CN on Titan by Palmer et al. with the detection of three new C2H3CN rotational emission lines at submillimeter frequencies. These new, high-resolution detections have allowed for the first spatial distribution mapping of C2H3CN on Titan. We present simultaneous observations of C2H5CN, HC3N, and CH3CN emission, and obtain the first (tentative) detection of C3H8 (propane) at radio wavelengths. We present disk-averaged vertical abundance profiles, two-dimensional spatial maps, and latitudinal flux profiles for the observed nitriles. Similarly to HC3N and C2H5CN, which are theorized to be short-lived in Titan’s atmosphere, C2H3CN is most abundant over the southern (winter) pole, whereas the longer-lived CH3CN is more concentrated in the north. This abundance pattern is consistent with the combined effects of high-altitude photochemical production, poleward advection, and the subsequent reversal of Titan’s atmospheric circulation system following the recent transition from northern to southern winter. We confirm that C2H3CN and C2H5CN are most abundant at altitudes above 200 km. Using a 300 km step model, the average abundance of C2H3CN is found to be 3.03 ± 0.29 ppb, with a C2H5CN/C2H3CN abundance ratio of 2.43 ± 0.26. Our HC3N and CH3CN spectra can be accurately modeled using abundance gradients above the tropopause, with fractional scale-heights of 2.05 ± 0.16 and 1.63 ± 0.02, respectively.

  2. Aerosol influence on energy balance of the middle atmosphere of Jupiter.

    Science.gov (United States)

    Zhang, Xi; West, Robert A; Irwin, Patrick G J; Nixon, Conor A; Yung, Yuk L

    2015-12-22

    Aerosols are ubiquitous in planetary atmospheres in the Solar System. However, radiative forcing on Jupiter has traditionally been attributed to solar heating and infrared cooling of gaseous constituents only, while the significance of aerosol radiative effects has been a long-standing controversy. Here we show, based on observations from the NASA spacecraft Voyager and Cassini, that gases alone cannot maintain the global energy balance in the middle atmosphere of Jupiter. Instead, a thick aerosol layer consisting of fluffy, fractal aggregate particles produced by photochemistry and auroral chemistry dominates the stratospheric radiative heating at middle and high latitudes, exceeding the local gas heating rate by a factor of 5-10. On a global average, aerosol heating is comparable to the gas contribution and aerosol cooling is more important than previously thought. We argue that fractal aggregate particles may also have a significant role in controlling the atmospheric radiative energy balance on other planets, as on Jupiter.

  3. Impact of lightning-NO on eastern United States photochemistry during the summer of 2006 as determined using the CMAQ model

    Directory of Open Access Journals (Sweden)

    D. J. Allen

    2012-02-01

    Full Text Available A lightning-nitrogen oxide (NO algorithm is implemented in the Community Multiscale Air Quality Model (CMAQ and used to evaluate the impact of lightning-NO emissions (LNOx on tropospheric photochemistry over the United States during the summer of 2006.

    For a 500 mole per flash lightning-NO source, the mean summertime tropospheric NO2 column agrees with satellite-retrieved columns to within −5 to +13%. Temporal fluctuations in the column are moderately well simulated; however, the addition of LNOx does not lead to a better simulation of day-to-day variability. The contribution of lightning-NO to the model column ranges from ∼10% in the northern US to >45% in the south-central and southeastern US. Lightning-NO adds up to 20 ppbv to upper tropospheric model ozone and 1.5–4.5 ppbv to 8-h maximum surface layer ozone, although, on average, the contribution of LNOx to model surface ozone is 1–2 ppbv less on poor air quality days. LNOx increases wet deposition of oxidized nitrogen by 43% and total deposition of nitrogen by 10%. This additional deposition reduces the mean magnitude of the CMAQ low-bias in nitrate wet deposition with respect to National Atmospheric Deposition monitors to near zero.

    Differences in urban/rural biases between model and satellite-retrieved NO2 columns were examined to identify possible problems in model chemistry and/or transport. CMAQ columns were too large over urban areas. Biases at other locations were minor after accounting for the impacts of lightning-NO emissions and the averaging kernel on model columns.

    In order to obtain an upper bound on the contribution of uncertainties in NOy chemistry to upper tropospheric NOx low biases, sensitivity calculations with updated chemistry were run for the time period of the Intercontinental Chemical Transport Experiment (INTEX-A field campaign (summer 2004

  4. Atmospheric Production of Perchlorate on Earth and Mars

    Science.gov (United States)

    Claire, M.; Catling, D. C.; Zahnle, K. J.

    2009-12-01

    Natural production and preservation of perchlorate on Earth occurs only in arid environments. Isotopic evidence suggests a strong role for atmospheric oxidation of chlorine species via pathways including ozone or its photochemical derivatives. As the Martian atmosphere is both oxidizing and drier than the driest places on Earth, we propose an atmospheric origin for the Martian perchlorates measured by NASA's Phoenix Lander. A variety of hypothetical formation pathways can be proposed including atmospheric photochemical reactions, electrostatic discharge, and gas-solid reactions. Here, we investigate gas phase formation pathways using a 1-D photochemical model (Catling et al. 2009, accepted by JGR). Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we start with a study of the means to produce Atacama perchlorate. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. These results are sensitive to estimated reaction rates for ClO3 species. The feasibility of gas phase production for the Atacama provides justification for further investigations of gas phase photochemistry as a possible source for Martian perchlorate. In addition to the Atacama results, we will present a preliminary study incorporating chlorine chemistry into an existing Martian photochemical model (Zahnle et al. JGR 2008).

  5. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Science.gov (United States)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-07-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N2, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  6. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    International Nuclear Information System (INIS)

    Justino, Licínia L. G.; Reva, Igor; Fausto, Rui

    2016-01-01

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N 2 , Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  7. Estimated SAGE II ozone mixing ratios in early 1993 and comparisons with Stratospheric Photochemistry, Aerosols and Dynamic Expedition measurements

    Science.gov (United States)

    Yue, G. K.; Veiga, R. E.; Poole, L. R.; Zawodny, J. M.; Proffitt, M. H.

    1994-01-01

    An empirical time-series model for estimating ozone mixing ratios based on Stratospheric Aerosols and Gas Experiment II (SAGE II) monthly mean ozone data for the period October 1984 through June 1991 has been developed. The modeling results for ozone mixing ratios in the 10- to 30- km region in early months of 1993 are presented. In situ ozone profiles obtained by a dual-beam UV-absorption ozone photometer during the Stratospheric Photochemistry, Aerosols and Dynamics Expedition (SPADE) campaign, May 1-14, 1993, are compared with the model results. With the exception of two profiles at altitudes below 16 km, ozone mixing ratios derived by the model and measured by the ozone photometer are in relatively good agreement within their individual uncertainties. The identified discrepancies in the two profiles are discussed.

  8. Thermally and vibrationally induced conformational isomerizations, infrared spectra, and photochemistry of gallic acid in low-temperature matrices

    Energy Technology Data Exchange (ETDEWEB)

    Justino, Licínia L. G., E-mail: liciniaj@ci.uc.pt; Reva, Igor; Fausto, Rui [CQC, Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal)

    2016-07-07

    Near-infrared (near-IR) narrowband selective vibrational excitation and annealing of gallic acid (3,4,5-trihydroxybenzoic acid) isolated in cryogenic matrices were used to induce interconversions between its most stable conformers. The isomerizations were probed by infrared spectroscopy. An extensive set of quantum chemical calculations, carried out at the DFT(B3LYP)/6-311++G(d,p) level of approximation, was used to undertake a detailed analysis of the ground state potential energy surface of the molecule. This investigation of the molecule conformational space allowed extracting mechanistic insights into the observed annealing- or near-IR-induced isomerization processes. The infrared spectra of the two most stable conformers of gallic acid in N{sub 2}, Xe, and Ar matrices were fully assigned. Finally, the UV-induced photochemistry of the matrix isolated compound was investigated.

  9. Compact Solid-State 213 nm Laser Enables Standoff Deep Ultraviolet Raman Spectrometer: Measurements of Nitrate Photochemistry.

    Science.gov (United States)

    Bykov, Sergei V; Mao, Michael; Gares, Katie L; Asher, Sanford A

    2015-08-01

    We describe a new compact acousto-optically Q-switched diode-pumped solid-state (DPSS) intracavity frequency-tripled neodymium-doped yttrium vanadate laser capable of producing ~100 mW of 213 nm power quasi-continuous wave as 15 ns pulses at a 30 kHz repetition rate. We use this new laser in a prototype of a deep ultraviolet (UV) Raman standoff spectrometer. We use a novel high-throughput, high-resolution Echelle Raman spectrograph. We measure the deep UV resonance Raman (UVRR) spectra of solid and solution sodium nitrate (NaNO3) and ammonium nitrate (NH4NO3) at a standoff distance of ~2.2 m. For this 2.2 m standoff distance and a 1 min spectral accumulation time, where we only monitor the symmetric stretching band, we find a solid state NaNO3 detection limit of ~100 μg/cm(2). We easily detect ~20 μM nitrate water solutions in 1 cm path length cells. As expected, the aqueous solutions UVRR spectra of NaNO3 and NH4NO3 are similar, showing selective resonance enhancement of the nitrate (NO3(-)) vibrations. The aqueous solution photochemistry is also similar, showing facile conversion of NO3(-) to nitrite (NO2(-)). In contrast, the observed UVRR spectra of NaNO3 and NH4NO3 powders significantly differ, because their solid-state photochemistries differ. Whereas solid NaNO3 photoconverts with a very low quantum yield to NaNO2, the NH4NO3 degrades with an apparent quantum yield of ~0.2 to gaseous species.

  10. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.; Maltoni, M.; Rojo, J.

    2006-06-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation. (author)

  11. Determination of the atmospheric neutrino fluxes from atmospheric neutrino data

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, Concepcion; Maltoni, Michele; Rojo, Joan

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based on the convolution of the primary cosmic ray spectrum with the expected yield of neutrinos per incident cosmic ray. In this work we present an alternative approach to the determination of the atmospheric neutrino fluxes based on the direct extraction from the experimental data on neutrino event rates. The extraction is achieved by means of a combination of artificial neural networks as interpolants and Monte Carlo methods for faithful error estimation

  12. Astronomy and Atmospheric Optics

    Science.gov (United States)

    Cowley, Les; Gaina, Alex

    2011-12-01

    The authors discusse the insuccess of the observation of the Total Eclipse of the Moon from 10 december 2011 in Romania and relate them with meteoconditions. Only a very short part of the last penumbral phase was observed, while the inital part and the totality was not observed due to very dense clouds. The change in color and brightness during this phase was signaled. Meanwhile, there is an area of science where clouds are of great use and interest. This area is Atmospheric optics, while the science which study clouds is meteorology. Clouds in combination with Solar and Moon light could give rise to a variety of strange, rare and unobvious phenomena in the atmosphere (sky), sometimes confused with Unidentified Flying Objects (UFO). The importance of meteorology for astronomy and atmospheric optics is underlined and an invitation to astronomers to use unfavourable days for athmospheric observations was sent. The web address of the site by Les Cowley, designed for atmospheric optics phenomena is contained in the text of the entry.

  13. Radionuclide dispersion in the atmosphere

    International Nuclear Information System (INIS)

    Moura Neto, C. de; Amorim, E.S. do; Panetta, J.

    1979-05-01

    The instantaneous liberation of radionuclides in the atmosphere is studied in three dimensions, according to the formalism of the diffusion theory. The analytical solution, expose to gravitational and an atmospherical effects, is combined with the discretization of space and time in the calculation of levels of exposure. A typical inventory (for a PWR) was considered in the calculation of immersion doses, and the results permitted a comparative analysis among the different existing models. (Author) [pt

  14. Collision-Induced Dissociation Study of Strong Hydrogen-Bonded Cluster Ions Y-(HF) n (Y=F, O2) Using Atmospheric Pressure Corona Discharge Ionization Mass Spectrometry Combined with a HF Generator.

    Science.gov (United States)

    Sakamoto, Kenya; Sekimoto, Kanako; Takayama, Mitsuo

    2017-01-01

    Hydrogen fluoride (HF) was produced by a homemade HF generator in order to investigate the properties of strong hydrogen-bonded clusters such as (HF) n . The HF molecules were ionized in the form of complex ions associated with the negative core ions Y - produced by atmospheric pressure corona discharge ionization (APCDI). The use of APCDI in combination with the homemade HF generator led to the formation of negative-ion HF clusters Y - (HF) n (Y=F, O 2 ), where larger clusters with n ≥4 were not detected. The mechanisms for the formation of the HF, F - (HF) n , and O 2 - (HF) n species were discussed from the standpoints of the HF generator and APCDI MS. By performing energy-resolved collision-induced dissociation (CID) experiments on the cluster ions F - (HF) n ( n =1-3), the energies for the loss of HF from F - (HF) 3 , F - (HF) 2 , and F - (HF) were evaluated to be 1 eV or lower, 1 eV or higher, and 2 eV, respectively, on the basis of their center-of-mass energy ( E CM ). These E CM values were consistent with the values of 0.995, 1.308, and 2.048 eV, respectively, obtained by ab initio calculations. The stability of [O 2 (HF) n ] - ( n =1-4) was discussed on the basis of the bond lengths of O 2 H-F - (HF) n and O 2 - H-F(HF) n obtained by ab initio calculations. The calculations indicated that [O 2 (HF) 4 ] - separated into O 2 H and F - (HF) 3 .

  15. Atmospheric Circulation, Chemistry, and Infrared Spectra of Titan-like Exoplanets around Different Stellar Types

    Science.gov (United States)

    Lora, Juan M.; Kataria, Tiffany; Gao, Peter

    2018-01-01

    With the discovery of ever smaller and colder exoplanets, terrestrial worlds with hazy atmospheres must be increasingly considered. Our solar system’s Titan is a prototypical hazy planet, whose atmosphere may be representative of a large number of planets in our Galaxy. As a step toward characterizing such worlds, we present simulations of exoplanets that resemble Titan but orbit three different stellar hosts: G, K, and M dwarf stars. We use general circulation and photochemistry models to explore the circulation and chemistry of these Titan-like planets under varying stellar spectra, in all cases assuming a Titan-like insolation. Due to the strong absorption of visible light by atmospheric haze, the redder radiation accompanying later stellar types produces more isothermal stratospheres, stronger meridional temperature gradients at mbar pressures, and deeper and stronger zonal winds. In all cases, the planets’ atmospheres are strongly superrotating, but meridional circulation cells are weaker aloft under redder starlight. The photochemistry of hydrocarbon and nitrile species varies with stellar spectra, with variations in the FUV/NUV flux ratio playing an important role. Our results tentatively suggest that column haze production rates could be similar under all three hosts, implying that planets around many different stars could have similar characteristics to Titan’s atmosphere. Lastly, we present theoretical emission spectra. Overall, our study indicates that, despite important and subtle differences, the circulation and chemistry of Titan-like exoplanets are relatively insensitive to differences in the host star. These findings may be further probed with future space-based facilities, like WFIRST, LUVOIR, HabEx, and OST.

  16. Rate Constant for the Reaction CH3 + CH3 Yields C2H6 at T = 155 K and Model Calculation of the CH3 Abundance in the Atmospheres of Saturn and Neptune

    Science.gov (United States)

    Cody, Regina J.; Romani, Paul N.; Nesbitt, Fred L.; Iannone, Mark A.; Tardy, Dwight C.; Stief, Louis J.

    2003-01-01

    The column abundances of CH3 observed by the Infrared Space Observatory (ISO) satellite on Saturn and Neptune were lower than predicted by atmospheric photochemical models, especially for Saturn. It has been suggested that the models underestimated the loss of CH3 due to poor knowledge of the rate constant k of the CH3 + CH3 self-reaction at the low temperatures and pressures of these atmospheres. Motivated by this suggestion, we undertook a combined experimental and photochemical modeling study of the CH3 + CH3 reaction and its role in determining planetary CH3 abundances. In a discharge flow-mass spectrometer system, k was measured at T = 155 K and three pressures of He. The results in units of cu cm/molecule/s are k(0.6 Torr) = 6.82 x 10(exp -11), k(1.0 Torr) = 6.98 x 10(exp -11), and k(1.5 Torr) = 6.91 x 10(exp -11). Analytical expressions for k were derived that (1) are consistent with the present laboratory data at T = 155 K, our previous data at T = 202 K and 298 K, and those of other studies in He at T = 296-298 K and (2) have some theoretical basis to provide justification for extrapolation. The derived analytical expressions were then used in atmospheric photochemical models for both Saturn and Neptune. These model results reduced the disparity with observations of Saturn, but not with observations of Neptune. However, the disparity for Neptune is much smaller. The solution to the remaining excess CH3 prediction in the models relative to the ISO observations lies, to a large extent, elsewhere in the CH3 photochemistry or transport, not in the CH3 + CH3 rate.

  17. Multi-wavelength search for complex molecules in Titan's Atmosphere

    Science.gov (United States)

    Nixon, C. A.; Cordiner, M. A.; Greathouse, T. K.; Richter, M.; Kisiel, Z.; Irwin, P. G.; Teanby, N. A.; Kuan, Y. J.; Charnley, S. B.

    2017-12-01

    Titan's atmosphere is one of the most complex astrochemical environments known: the photochemistry of methane and nitrogen, induced by solar UV and Saturn magnetospheric electron impacts, creates a bonanza of organic molecules like no other place in the solar system. Cassini has unveiled the first glimpses of Titan's chemical wonderland, but many gaps remain. In particular, interpreting the mass spectra of Titan's upper atmosphere requires external knowledge, to disentangle the signature of molecules from their identical-mass brethren. Cassini infrared spectroscopy with CIRS has helped to some extent, but is also limited by low spectral resolution. Potentially to the rescue, comes high-resolution spectroscopy from the Earth at infrared and sub-millimeter wavelengths, where molecules exhibit vibrational and rotational transitions respectively. In this presentation, we describe the quest to make new, unique identifications of large molecules in Titan's atmosphere, focusing specifically on cyclic molecules including N-heterocycles. This molecular family is of high astrobiological significance, forming the basic ring structure for DNA nucleobases. We present the latest spectroscopic observations of Titan from ALMA and NASA's IRTF telescope, discussing present findings and directions for future work.

  18. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China

    Directory of Open Access Journals (Sweden)

    G. Zhang

    2018-02-01

    suggested the combined importance of local atmospheric photochemistry and synoptic conditions during the accumulation (related with anticyclones and dilution process (related with cyclones. Apart from supplementing a general picture of the air pollution state in the city of Hangzhou in the YRD region, this study specifically elucidates the role of local emission and regional transport, and it interprets the physical and photochemical processes during haze and photochemical pollution episodes. Moreover, this work suggests that cross-regional control measures are crucial to improve air quality in the YRD region, and it further emphasizes the importance of local thermally induced circulation for air quality.

  19. UV-Photochemistry of the Disulfide Bond: Evolution of Early Photoproducts from Picosecond X-ray Absorption Spectroscopy at the Sulfur K-Edge.

    Science.gov (United States)

    Ochmann, Miguel; Hussain, Abid; von Ahnen, Inga; Cordones, Amy A; Hong, Kiryong; Lee, Jae Hyuk; Ma, Rory; Adamczyk, Katrin; Kim, Tae Kyu; Schoenlein, Robert W; Vendrell, Oriol; Huse, Nils

    2018-05-30

    We have investigated dimethyl disulfide as the basic moiety for understanding the photochemistry of disulfide bonds, which are central to a broad range of biochemical processes. Picosecond time-resolved X-ray absorption spectroscopy at the sulfur K-edge provides unique element-specific insight into the photochemistry of the disulfide bond initiated by 267 nm femtosecond pulses. We observe a broad but distinct transient induced absorption spectrum which recovers on at least two time scales in the nanosecond range. We employed RASSCF electronic structure calculations to simulate the sulfur-1s transitions of multiple possible chemical species, and identified the methylthiyl and methylperthiyl radicals as the primary reaction products. In addition, we identify disulfur and the CH 2 S thione as the secondary reaction products of the perthiyl radical that are most likely to explain the observed spectral and kinetic signatures of our experiment. Our study underscores the importance of elemental specificity and the potential of time-resolved X-ray spectroscopy to identify short-lived reaction products in complex reaction schemes that underlie the rich photochemistry of disulfide systems.

  20. Atmospheric chemistry and climate

    OpenAIRE

    Satheesh, SK

    2012-01-01

    Atmospheric chemistry is a branch of atmospheric science where major focus is the composition of the Earth's atmosphere. Knowledge of atmospheric composition is essential due to its interaction with (solar and terrestrial) radiation and interactions of atmospheric species (gaseous and particulate matter) with living organisms. Since atmospheric chemistry covers a vast range of topics, in this article the focus is on the chemistry of atmospheric aerosols with special emphasis on the Indian reg...

  1. Photochemistry of polycyclic aromatic hydrocarbons in cosmic water ice. II. Near UV/VIS spectroscopy and ionization rates

    Science.gov (United States)

    Bouwman, J.; Cuppen, H. M.; Steglich, M.; Allamandola, L. J.; Linnartz, H.

    2011-05-01

    Context. Mid-infrared emission features originating from polycyclic aromatic hydrocarbons (PAHs) are observed towards photon dominated regions in space. Towards dense clouds, however, these emission features are quenched. Observations of dense clouds show that many simple volatile molecules are frozen out on interstellar grains, forming thin layers of ice. Recently, observations have shown that more complex non-volatile species, presumably including PAHs, also freeze out and contribute to the ongoing solid-state chemistry. Aims: The study presented here aims at obtaining reaction rate data that characterize PAH photochemistry upon vacuum ultraviolet (VUV) irradiation in an interstellar H2O ice analogue to explore the potential impact of PAH:H2O ice reactions on overall interstellar ice chemistry. To this end, the experimental results are implemented in a chemical model under simple interstellar cloud conditions. Methods: Time-dependent near-UV/VIS spectroscopy on the VUV photochemistry of anthracene, pyrene, benzo[ghi]perylene and coronene containing interstellar H2O ice analogs is performed at 25 and 125 K, using an optical absorption setup. Results: Near-UV/VIS absorption spectra are presented for these four PAHs and their photoproducts including cationic species trapped in H2O ice. Oscillator strengths of the cation absorption bands are derived relative to the oscillator strength of the neutral parent PAH. The loss of the parent and growth of PAH photoproducts are measured as a function of VUV dose, yielding solid state reaction constants. The rate constants are used in an exploratory astrochemical model, to assess the importance of PAH:H2O ice photoprocessing in UV exposed interstellar environments, compared with the timescales in which PAH molecules are incorporated in interstellar ices. Conclusions: All four PAHs studied here are found to be readily ionized upon VUV photolysis when trapped in H2O ice and exhibit similar rates for ionization at astronomically

  2. BIOSIGNATURE GASES IN H{sub 2}-DOMINATED ATMOSPHERES ON ROCKY EXOPLANETS

    Energy Technology Data Exchange (ETDEWEB)

    Seager, S.; Bains, W.; Hu, R. [Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2013-11-10

    Super-Earth exoplanets are being discovered with increasing frequency and some will be able to retain stable H{sub 2}-dominated atmospheres. We study biosignature gases on exoplanets with thin H{sub 2} atmospheres and habitable surface temperatures, using a model atmosphere with photochemistry and a biomass estimate framework for evaluating the plausibility of a range of biosignature gas candidates. We find that photochemically produced H atoms are the most abundant reactive species in H{sub 2} atmospheres. In atmospheres with high CO{sub 2} levels, atomic O is the major destructive species for some molecules. In Sun-Earth-like UV radiation environments, H (and in some cases O) will rapidly destroy nearly all biosignature gases of interest. The lower UV fluxes from UV-quiet M stars would produce a lower concentration of H (or O) for the same scenario, enabling some biosignature gases to accumulate. The favorability of low-UV radiation environments to accumulate detectable biosignature gases in an H{sub 2} atmosphere is closely analogous to the case of oxidized atmospheres, where photochemically produced OH is the major destructive species. Most potential biosignature gases, such as dimethylsulfide and CH{sub 3}Cl, are therefore more favorable in low-UV, as compared with solar-like UV, environments. A few promising biosignature gas candidates, including NH{sub 3} and N{sub 2}O, are favorable even in solar-like UV environments, as these gases are destroyed directly by photolysis and not by H (or O). A more subtle finding is that most gases produced by life that are fully hydrogenated forms of an element, such as CH{sub 4} and H{sub 2}S, are not effective signs of life in an H{sub 2}-rich atmosphere because the dominant atmospheric chemistry will generate such gases abiologically, through photochemistry or geochemistry. Suitable biosignature gases in H{sub 2}-rich atmospheres for super-Earth exoplanets transiting M stars could potentially be detected in transmission

  3. Atmospheres in a Test Tube

    Science.gov (United States)

    Claudi, R.; Erculiani, M. S.; Giro, E.; D'Alessandro, M.; Galletta, G.

    2013-09-01

    The "Atmosphere in a Test Tube" project is a laboratory experiment that will be able to reproduce condition of extreme environments by means of a simulator. These conditions span from those existing inside some parts of the human body to combinations of temperatures, pressures, irradiation and atmospheric gases present on other planets. In this latter case the experiments to be performed will be useful as preliminary tests for both simulation of atmosphere of exoplanets and Solar System planets and Astrobiology experiments that should be performed by planetary landers or by instruments to be launched in the next years. In particular at INAF Astronomical Observatory of Padova Laboratory we are approaching the characterization of extrasolar planet atmospheres taking advantage by innovative laboratory experiments with a particular focus on low mass Neptunes and Super earths and low mass M dwarfs primaries.

  4. Conservação da qualidade de caqui 'Fuyu' em ambiente refrigerado pela combinação de 1-MCP e atmosfera modificada Quality maintenance of 'Fuyu' persimmon in cold storage by combining 1-MCP and modified atmosphere

    Directory of Open Access Journals (Sweden)

    Luiz Carlos Argenta

    2009-06-01

    AM sobre a redução desses distúrbios e do amolecimento dos frutos foram consistentes para todos os pomares. Os resultados indicam que a combinação de 1-MCP e AM é um método efetivo para retardar a deterioração de caqui 'Fuyu' durante e após a armazenagem refrigerada.This study examined the effects of ethylene action inhibitor 1-MCP (1-methylcyclopropene,MA (modified atmosphere and ethylene oxidant KMnO4 (potassium permanganate on the quality of 'Fuyu'persimmon fruit after cold storage. The factors 1-MCP, MA and KMnO were combined in four manners corresponding to the following treatments: T1 Control + MA + KMnO4, T2(4 1-MCP + MA + KMnO4, T3 1-MCP + MA, and T4 1-MCP + AA (AA= atmosphere of air. Mature-firm fruit with predominant yellow colorwere harvested from seven commercial orchards in the northeast of Rio Grande do Sul state. Some of fruit were exposed to 0.3 µL L-1 of 1-MCP for 12 h in 24 h after the harvest. After that, fruit were stored in AA or MA induced by polyethylene bags (0.04 mm thick, by 20, 40, 60 or 80 days at -0.1±0.8ºC. Two pellets of 8.5 g alumina-KMnO4 were added into the polyethylene bags of treatments one and two before they weresealed. Fruit were analyzed after 0, 3, 6 or 9 days of shelf in AA at 22±1ºC. 1-MCP treatment delayed fleshsoftening, but did not consistently affect the development of skin disorders (lined dark dots and blackspots on fruit stored in MA containing KMnO4. However, the incidence of skin disorders on 1-MCP treated fruit stored in MA was significantly less than that of 1-MCP treated fruit stored in AA. There were additiveeffects of 1-MCP and MA on the retention of firmness and on the reduction of chilling injury appeared bythe formation of firm gel texture of flesh and translucent stains on the skin. The use of KMnO4 did not improve the retention of fruit quality when treated with 1-MCP and stored in MA. The development of skindisorders was orchard- and storage period-dependent. However, the benefits of 1-MCP

  5. Atmospheric Science Without Borders

    Science.gov (United States)

    Panday, Arnico; Praveen, Ps; Adhikary, Bhupesh; Bhave, Prakash; Surapipith, Vanisa; Pradhan, Bidya; Karki, Anita; Ghimire, Shreta; Thapa, Alpha; Shrestha, Sujan

    2016-04-01

    The Indo-Gangetic Plains (IGP) in northern South Asia are among the most polluted and most densely populated places in the world, and they are upwind of vulnerable ecosystems in the Himalaya mountains. They are also fragmented across 5 countries between which movement of people, data, instruments and scientific understanding have been very limited. ICIMOD's Atmosphere Initiative has for the past three years been working on filling data gaps in the region, while facilitating collaborations across borders. It has established several atmospheric observatories at low and mid elevations in Bhutan and Nepal that provide new data on the inflow of pollutants from the IGP towards the mountains, as well as quantify the effects of local emissions on air quality in mountain cities. EGU will be the first international conference where these data will be presented. ICIMOD is in the process of setting up data servers through which data from the region will be shared with scientists and the general public across borders. Meanwhile, to promote cross-border collaboration among scientists in the region, while addressing an atmospheric phenomenon that affects the lives of the several hundred million people, ICIMOD' Atmosphere Initiative has been coordinating an interdisciplinary multi-year study of persistent winter fog over the Indo-Gangetic Plains, with participation by researchers from Pakistan, India, China, Nepal, Bhutan and Bangladesh. Using a combination of in-situ measurements and sample collection, remote sensing, modeling and community based research, the researchers are studying how changing moisture availability and air pollution have led to increases in fog frequency and duration, as well as the fog's impacts on local communities and energy demand that may affect air pollution emissions. Preliminary results of the Winter 2015-2016 field campaign will be shown.

  6. Titan's hydrodynamically escaping atmosphere

    Science.gov (United States)

    Strobel, Darrell F.

    2008-02-01

    The upper atmosphere of Titan is currently losing mass at a rate ˜(4-5)×10 amus, by hydrodynamic escape as a high density, slow outward expansion driven principally by solar UV heating by CH 4 absorption. The hydrodynamic mass loss is essentially CH 4 and H 2 escape. Their combined escape rates are restricted by power limitations from attaining their limiting rates (and limiting fluxes). Hence they must exhibit gravitational diffusive separation in the upper atmosphere with increasing mixing ratios to eventually become major constituents in the exosphere. A theoretical model with solar EUV heating by N 2 absorption balanced by HCN rotational line cooling in the upper thermosphere yields densities and temperatures consistent with the Huygens Atmospheric Science Investigation (HASI) data [Fulchignoni, M., and 42 colleagues, 2005. Nature 438, 785-791], with a peak temperature of ˜185-190 K between 3500-3550 km. This model implies hydrodynamic escape rates of ˜2×10 CHs and 5×10 Hs, or some other combination with a higher H 2 escape flux, much closer to its limiting value, at the expense of a slightly lower CH 4 escape rate. Nonthermal escape processes are not required to account for the loss rates of CH 4 and H 2, inferred by the Cassini Ion Neutral Mass Spectrometer (INMS) measurements [Yelle, R.V., Borggren, N., de la Haye, V., Kasprzak, W.T., Niemann, H.B., Müller-Wodarg, I., Waite Jr., J.H., 2006. Icarus 182, 567-576].

  7. Millimeter Wave Atmospheric Radiometry Observations.

    Science.gov (United States)

    1981-03-27

    structure of the atmosphere would be very important. Rufton [20] combined thermal sensor technology for microthermal measurements with radiosonde...fromT2 h n relationships with CT(h) at least for optical effects. Bufton obtained the mean-square temperature difference between two microthermal probes

  8. Atmospheric contamination during ultrasonic scaling

    NARCIS (Netherlands)

    Timmerman, MF; Menso, L; Steinfort, J; van Winkelhoff, AJ; van der Weijden, GA

    Objective: The aim of this study was to determine the microbial atmospheric contamination during initial periodontal treatment using a piezoelectric ultrasonic scaler in combination with either high-volume evacuation (HVE) or conventional dental suction (CDS). Methods: The study included 17

  9. Kinetics programs for simulation of tropospheric photochemistry on the global scale

    International Nuclear Information System (INIS)

    Elliott, S.; Kao, C.Y.J.; Turco, R.P.; Zhao, X.P.

    1993-08-01

    The study of tropospheric kinetics underlies global change because key greenhouse gases are photochemically active. Modeling of tropospheric chemistry on a global scale is essential because some indirect greenhouse gases are short-lived and interact in a non-linear fashion. It is also extremely challenging, however; the global change grid is extensive in both the physical and temporal domains, and critical lower atmospheric species include the organics and their oxidized derivatives, which are numerous. Several types of optimization may be incorporated into kinetics modules to enhance their ability to simulate the complete lower atmospheric gas phase chemical system. (1) The photochemical integrator can be accelerated by avoiding matrix and iterative solutions and by establishing families. Accuracy and mass conservation are sacrificed in the absence of iteration, but atom balancing is restorable post hoc. (2) Chemistry can be arranged upon the massive grid to exploit parallel processing, and solutions to its continuity equations can be automated to permit experimentation with species and reaction lists or family definitions. Costs in programming effort will be incurred in these cases. (3) Complex hydrocarbon decay sequences can be streamlined either through structural lumping methods descended from smog investigations, which require considerable calibration, or by defining surrogates for classes of compounds, with a loss in constituent detail. From among the available options, the most advantageous permutations will vary with the specific nature of any eventual global scale study, and there is likely to be demand for many approaches. Tracer transport codes serve as a foundation upon which tropospheric chemistry packages will be tested. Encroachment of the NO x sphere of influence upon tropical rain forests and the upper free troposphere are two examples of specific problems to which full three-dimensional chemical simulations might be applied

  10. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  11. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    Science.gov (United States)

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    remove O 2 that masks its biosphere over a wide range of conditions). Key Words: Early Earth-Proterozoic-Archean-Oxygen-Atmosphere-Biogeochemistry-Photochemistry-Biosignatures-Earth-like planets. Astrobiology 16, 27-54.

  12. Ancillary Ligand Effects upon the Photochemistry of Mn(bpy)(CO)3X Complexes (X = Br-, PhCC-).

    Science.gov (United States)

    Yempally, Veeranna; Moncho, Salvador; Hasanayn, Faraj; Fan, Wai Yip; Brothers, Edward N; Bengali, Ashfaq A

    2017-09-18

    The photochemistry of two Mn(bpy)(CO) 3 X complexes (X = PhCC - , Br - ) has been studied in the coordinating solvents THF (terahydrofuran) and MeCN (acetonitrile) employing time-resolved infrared spectroscopy. The two complexes are found to exhibit strikingly different photoreactivities and solvent dependencies. In MeCN, photolysis of 1-(CO)(Br) [1 = Mn(bpy)(CO) 2 ] affords the ionic complex [1-(MeCN) 2 ]Br as a final product. In contrast, photolysis of 1-(CO)(CCPh) in MeCN results in facial to meridional isomerization of the parent complex. When THF is used as solvent, photolysis results in facial to meridional isomerization in both complexes, though the isomerization rate is larger for X = Br - . Pronounced differences are also observed in the photosubstitution chemistry of the two complexes where both the rate of MeCN exchange from 1-(MeCN)(X) by THFA (tetrahydrofurfurylamine) and the nature of the intermediates generated in the reaction are dependent upon X. DFT calculations are used to support analysis of some of the experiments.

  13. Photosystem II Photochemistry and Phycobiliprotein of the Red Algae Kappaphycus alvarezii and Their Implications for Light Adaptation

    Directory of Open Access Journals (Sweden)

    Xiangyu Guan

    2013-01-01

    Full Text Available Photosystem II photochemistry and phycobiliprotein (PBP genes of red algae Kappaphycus alvarezii, raw material of κ-carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (Ik of this algal species was less than 115 μmol m−2 s−1. Its actual PSII efficiency (yield II increased when light intensity enhanced and decreased when light intensity reached 200 μmol m−2 s−1. Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.

  14. Photosystem II photochemistry and phycobiliprotein of the red algae Kappaphycus alvarezii and their implications for light adaptation.

    Science.gov (United States)

    Guan, Xiangyu; Wang, Jinfeng; Zhu, Jianyi; Yao, Chunyan; Liu, Jianguo; Qin, Song; Jiang, Peng

    2013-01-01

    Photosystem II photochemistry and phycobiliprotein (PBP) genes of red algae Kappaphycus alvarezii, raw material of κ -carrageenan used in food and pharmaceutical industries, were analyzed in this study. Minimum saturating irradiance (I k) of this algal species was less than 115 μmol m(-2) s(-1). Its actual PSII efficiency (yield II) increased when light intensity enhanced and decreased when light intensity reached 200 μmol m(-2) s(-1). Under dim light, yield II declined at first and then increased on the fourth day. Under high light, yield II retained a stable value. These results indicate that K. alvarezii is a low-light-adapted species but possesses regulative mechanisms in response to both excessive and deficient light. Based on the PBP gene sequences, K. alvarezii, together with other red algae, assembled faster and showed a closer relationship with LL-Prochlorococcus compared to HL-Prochlorococcus. Many amino acid loci in PBP sequences of K. alvarezii were conserved with those of LL-Prochlorococcus. However, loci conserved with HL-Prochlorococcus but divergent with LL-Prochlorococcus were also found. The diversities of PE and PC are proposed to have played some roles during the algal evolution and divergence of light adaption.

  15. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes.

    Science.gov (United States)

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (td,E) and hydroxyl-radical oxidation half-lives (tOH,E) in sunlit surface waters. The td,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas tOH,E ranges from 3.24h to 33.6h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. Copyright © 2015. Published by Elsevier B.V.

  16. Synthesis of Superparamagnetic Iron Oxide Nanoparticles Modified with MPEG-PEI via Photochemistry as New MRI Contrast Agent

    Directory of Open Access Journals (Sweden)

    Yancong Zhang

    2015-01-01

    Full Text Available Novel method for synthesis of superparamagnetic iron oxide nanoparticles (SPIONs coated with polyethylenimine (PEI and modified with poly(ethylene glycol methyl ether (MPEG, MPEG-PEI-SPIONs, was developed. PEI-SPIONs were successfully prepared in aqueous system via photochemistry, and their surface was modified with poly(ethylene glycol methyl ether (MPEG. The so-obtained MPEG-PEI-SPIONs had a uniform hydrodynamic particle size of 34 nm. The successful coating of MPEG-PEI on the SPIONs was ascertained from FT-IR analysis, and the PEI and MPEG fractions in MPEG-PEI-SPIONs were calculated to account for 31% and 12%, respectively. Magnetic measurement revealed that the saturated magnetization of MPEG-PEI-SPIONs reached 46 emu/g and the nanoparticles showed the characteristic of being superparamagnetic. The stability experiment revealed that the MPEG-PEI modification improved the nanoparticles stability greatly. T2 relaxation measurements showed that MPEG-PEI-SPIONs show similar R2 value to the PEI-SPIONs. The T2-weighted magnetic resonance imaging (MRI of MPEG-PEI-SPIONs showed that the magnetic resonance signal was enhanced significantly with increasing nanoparticle concentration in water. These results indicated that the MPEG-PEI-SPIONs had great potential for application in MRI.

  17. Photoreactivity of condensed species in Titan lower atmosphere

    Science.gov (United States)

    Fleury, Benjamin; Gudipati, Murthy; Couturier-Tamburelli, Isabelle; Carrasco, Nathalie

    2017-10-01

    Photochemical processes initiated in the thermosphere of Titan at about 1000 km by the dissociation and the ionization of N2 and CH4 by the VUV solar photons [1] lead to the formation of a number of hydrocarbons and nitriles species. Some of these species can condense in the troposphere and the lower stratosphere of Titan ( 300 nm) can reach these lower atmospheric layers [4], ongoing possible further solid-state chemistry as demonstrated experimentally [5]. We will present here an experimental study simulating the reactivity of ices in the atmosphere of Titan and will discuss the photoreactivity occurring in the lower atmospheric layers of Titan despite the absorption of the most energetic photons.AcknowledgmentsThis work is supported by NASA Solar System Workings grant " Photochemistry in Titan’s Lower Atmosphere". The research work has been carried out at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. NC acknowledges the European Research Council for their financial support (ERC Starting Grant PRIMCHEM, grant agreement n°636829).References[1] Waite, J. H., et al., The process of Tholin formation in Titan’s upper atmosphere, (2007), Science 316, 870-875.[2] Barth, E. L., Modeling survey of ices in Titan’s stratosphere, (2017), Planetary and Space Science 137, 20-31.[3] Fulchignoni, M., et al., In situ measurements of the physical characteristics of Titan’s environment, (2005), Nature 438, 785-791.[4] Tomasko, M. G., et al., Rain, winds and haze during the Huygens probe’s descent to Titan’s surface, (2005), Nature 438, 765-778.[5] Gudipati, M. S., et al., Photochemical activity of Titan’s low-altitude condensed haze, (2013), Nature Communications, 4: p1648.

  18. Source-receptor relationships for atmospheric mercury in urban Detroit, Michigan

    Science.gov (United States)

    Lynam, Mary M.; Keeler, Gerald J.

    Speciated hourly mercury measurements were made in Detroit, Michigan during four sampling campaigns from 2000 to 2002. In addition, other chemical and meteorological parameters were measured concurrently. These data were analyzed using principal components analysis (PCA) in order to develop source receptor relationships for mercury species in urban Detroit. Reactive gaseous mercury (RGM) was found to cluster on two main factors; photochemistry and a coal combustion factor. Particulate phase mercury, Hg p, tended to cluster with RGM on the same factor. The photochemistry factor corroborates previous observations of the presence of RGM in highly oxidizing atmospheres and does not point to a specific source emission type. Instead, it likely represents local emissions and regional transport of photochemically processed air masses. The coal combustion factor is indicative of emissions from coal-fired power plants near the receptor site. Elemental mercury was found on a factor for combustion from automobiles and points to the influence these emissions have on the receptor site, which was located proximate to two major interstate highways and the largest border crossing in the United States. This analysis reveals that the receptor site which is located in an industrialized sector of the city of Detroit experienced impacts from both stationary and point sources of mercury that are both local and regional in nature.

  19. Blow-out limits of nonpremixed turbulent jet flames in a cross flow at atmospheric and sub-atmospheric pressures

    KAUST Repository

    Wang, Qiang; Hu, Longhua; Yoon, Sung Hwan; Lu, Shouxiang; Delichatsios, Michael; Chung, Suk-Ho

    2015-01-01

    The blow-out limits of nonpremixed turbulent jet flames in cross flows were studied, especially concerning the effect of ambient pressure, by conducting experiments at atmospheric and sub-atmospheric pressures. The combined effects of air flow

  20. Comparison of the N+2 photochemistry at different phases of the solar cycle

    International Nuclear Information System (INIS)

    Torr, M.R.; Torr, D.G.; Ong, R.A.

    1980-01-01

    Over the increasing phase of solar activity from 1974 to 1978 the F/sub 10.7/ index increased from approx.70 to approx.180. Earlier studies of the N + 2 ion based on the Atmosphere Explorer satellite measurements used data gathereed in 1974. A study of N + 2 using 1978 measurements made during significantly higher solar EUV fluxes reveals a change in the relative importance of the major chemical processes. Photoionization of N 2 is found to be the major source of N + 2 in the F 2 layer, by contrast with the charge exchange reaction of O + ( 2 D) with N 2 , which was dominant for the lower solar activity. The increased electron concentrations enhance the importance of reactions involving electrons, thus permitting good determinations of the relevant reaction rate coefficients, which could not be done in the earlier studies. As such, the 1978 data provide a useful opportunity to confirm the photochemical scheme established earlier and to improve the accuracy of the determination of the rate coefficients for certain processes. Specifically, we determine the rate coefficients for dissociative recombination of N + 2 with electrons, confirming laboratory measurements; we refine an earlier determination of the charge exchange rate coefficient for O + ( 2 D) with N 2 to (7 +- 3) x 10 -11 cm 3 s -1 ; and we determine the rate coefficient for quenching of O + ( 2 D) by electrons, confirming a theoretical calculation

  1. Flight Demonstration of Novel Atmospheric Satellite Concept

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dual-Aircraft Platform (DAP) is a novel concept for achieving a low-cost atmospheric satellite in the lower stratosphere which utilizes a combination of wind and...

  2. Swell impact on wind stress and atmospheric mixing in a regional coupled atmosphere-wave model

    DEFF Research Database (Denmark)

    Wu, Lichuan; Rutgersson, Anna; Sahlée, Erik

    2016-01-01

    Over the ocean, the atmospheric turbulence can be significantly affected by swell waves. Change in the atmospheric turbulence affects the wind stress and atmospheric mixing over swell waves. In this study, the influence of swell on atmospheric mixing and wind stress is introduced into an atmosphere-wave-coupled...... regional climate model, separately and combined. The swell influence on atmospheric mixing is introduced into the atmospheric mixing length formula by adding a swell-induced contribution to the mixing. The swell influence on the wind stress under wind-following swell, moderate-range wind, and near......-neutral and unstable stratification conditions is introduced by changing the roughness length. Five year simulation results indicate that adding the swell influence on atmospheric mixing has limited influence, only slightly increasing the near-surface wind speed; in contrast, adding the swell influence on wind stress...

  3. Impacts of Brown Carbon from Biomass Burning on Surface UV and Ozone Photochemistry in the Amazon Basin

    Science.gov (United States)

    Mok, Jungbin; Krotkov, Nickolay A.; Arola, Antti; Torres, Omar; Jethva, Hiren; Andrade, Marcos; Labow, Gordon; Eck, Thomas F.; Li, Zhangqing; Dickerson, Russell R.; hide

    2016-01-01

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or brown carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305368nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18 and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17, 15, and 14, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  4. Impacts of brown carbon from biomass burning on surface UV and ozone photochemistry in the Amazon Basin

    KAUST Repository

    Mok, Jungbin

    2016-11-11

    The spectral dependence of light absorption by atmospheric particulate matter has major implications for air quality and climate forcing, but remains uncertain especially in tropical areas with extensive biomass burning. In the September-October 2007 biomass-burning season in Santa Cruz, Bolivia, we studied light absorbing (chromophoric) organic or “brown” carbon (BrC) with surface and space-based remote sensing. We found that BrC has negligible absorption at visible wavelengths, but significant absorption and strong spectral dependence at UV wavelengths. Using the ground-based inversion of column effective imaginary refractive index in the range 305–368 nm, we quantified a strong spectral dependence of absorption by BrC in the UV and diminished ultraviolet B (UV-B) radiation reaching the surface. Reduced UV-B means less erythema, plant damage, and slower photolysis rates. We use a photochemical box model to show that relative to black carbon (BC) alone, the combined optical properties of BrC and BC slow the net rate of production of ozone by up to 18% and lead to reduced concentrations of radicals OH, HO2, and RO2 by up to 17%, 15%, and 14%, respectively. The optical properties of BrC aerosol change in subtle ways the generally adverse effects of smoke from biomass burning.

  5. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    International Nuclear Information System (INIS)

    Solberg, S.; Walker, S.-E.; Knudsen, S.; Lazaridis, M.; Beine, H.J.; Semb, A.

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m 2 at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  6. The contribution to nitrogen deposition and ozone formation in South Norway from atmospheric emissions related to the petroleum activity in the North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Solberg, S; Walker, S -E; Knudsen, S; Lazaridis, M; Beine, H J; Semb, A

    1999-03-01

    A photochemical plume model has been developed and refined. The model is designed to simulate the advection and photochemistry for several simultaneous point sources as well as the atmospheric mixing. the model has been used to calculate nitrogen deposition and ozone formation due to offshore emissions in the North Sea. Based on meteorological data for 1992 the calculations give a total contribution of 60-80 mg (N)/m{sub 2} at most in South Norway. Emission from British and Norwegian sector is calculated to contribute less than 5% each to the AOT40 index for ozone. (author)

  7. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Linke; Na, Guangshui [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Siyu [Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Kai [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Zhang, Peng, E-mail: pzhang@nmemc.org.cn [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China); Ren, Honglei; Yao, Ziwei [Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian 116023 (China)

    2015-09-15

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (t{sub d,E}) and hydroxyl-radical oxidation half-lives (t{sub ·OH,E}) in sunlit surface waters. The t{sub d,E} values range from 0.56 min to 28.8 min at 45° N latitude, whereas t{sub ·OH,E} ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways.

  8. New insights into the aquatic photochemistry of fluoroquinolone antibiotics: Direct photodegradation, hydroxyl-radical oxidation, and antibacterial activity changes

    International Nuclear Information System (INIS)

    Ge, Linke; Na, Guangshui; Zhang, Siyu; Li, Kai; Zhang, Peng; Ren, Honglei; Yao, Ziwei

    2015-01-01

    The ubiquity and photoreactivity of fluoroquinolone antibiotics (FQs) in surface waters urge new insights into their aqueous photochemical behavior. This study concerns the photochemistry of 6 FQs: ciprofloxacin, danofloxacin, levofloxacin, sarafloxacin, difloxacin and enrofloxacin. Methods were developed to calculate their solar direct photodegradation half-lives (t d,E ) and hydroxyl-radical oxidation half-lives (t ·OH,E ) in sunlit surface waters. The t d,E values range from 0.56 min to 28.8 min at 45° N latitude, whereas t ·OH,E ranges from 3.24 h to 33.6 h, suggesting that most FQs tend to undergo fast direct photolysis rather than hydroxyl-radical oxidation in surface waters. However, a case study for levofloxacin and sarafloxacin indicated that the hydroxyl-radical oxidation induced risky photochlorination and resulted in multi-degradation pathways, such as piperazinyl hydroxylation and clearage. Changes in the antibacterial activity of FQs caused by photodegradation in various waters were further examined using Escherichia coli, and it was found that the activity evolution depended on primary photodegradation pathways and products. Primary intermediates with intact FQ nuclei retained significant antibacterial activity. These results are important for assessing the fate and risk of FQs in surface waters. - Highlights: • It is first reported on hydroxyl-radical oxidation of 6 fluoroquinolone antibiotics. • Methods were developed to assess photolysis and oxidation fate in surface waters. • The neutral form reacted faster with hydroxyl radical than protonated forms. • The main oxidation intermediates and transformation pathways were clarified. • The antibacterial activity changes depend on dominant photolysis pathways

  9. The photochemistry and kinetics of chlorine compounds important to stratospheric mid-latitude ozone destruction

    Science.gov (United States)

    Goldfarb, Leah

    1997-09-01

    The catalytic destruction of stratospheric ozone via chlorinated species was first proposed in the 1970's. Since that time a decline in column ozone abundance in the polar regions as well as at mid-latitudes has been observed. Much of this reduction has been attributed to the increases in anthropogenic chlorine compounds such as CFCs. This study summarizes experimental results obtained using pulsed-photolysis resonance fluorescence and pulsed- photolysis long-path absorption methods to study processes important to chlorine-catalyzed ozone destruction: the quantum yields of the products in the dissociation of ClONO2 and the reactions of free radicals with ClONO2 and ClO. The quantum yields for the production of O, Cl and ClO from ClONO2 were studied at specific laser wavelengths (193, 222, 248, and 308 nm). Cl and ClO yields were comparable at nearly all the wavelengths, expect for 193 nm, where the O atom yield was appreciable. The yields at 308 nm (a wavelength available in the stratosphere) were 0.64 ± 0.17 for Cl, 0.37 ± 0.18 for ClO and product yield for the former reaction, previously unreported, was determined to be ~1. The kinetics of the reaction of O atoms with ClO were measured using a new experimental system built specifically to investigate such radical-radical reactions. A slight negative temperature dependence (E/B = -90 ± 30) was observed over the temperature range (227-363 K). From the measured Arrhenius equation the rate constant at 240 K is 4.1 × 10-11 cm3molecule-1s-1 which is in excellent agreement (l.4% greater) with the currently recommended value. This observation is significant, since this reaction is the rate limiting the dominate chlorine catalytic cycle that destroys O3 near 40 km. To analyze the implications of the kinetic and photochemical information from this work, a box model was constructed. The vertical profile of ozone concentrations and loss rates calculated by this simple model compare well with atmospheric measurements and

  10. Photochemistry and reactions of OH- defects and F centers in alkali halides

    International Nuclear Information System (INIS)

    Morato, S.P.; Luety, F.

    1978-01-01

    Aditively colored KCl:OH - crystals showed under a combined UV and VIS irradiation, a nearly complete and irreversible destruction of all F centers and visible absorption in the crystal. Only upon heating the crystal above 650 0 C the F center coloration becomes partially restored. The photodissociation of the OH - (under UV light) together with the photoionization of the F center (under VIS light) produces a not effects where all the F centers are converted into U centers. These photoreactions produces high contrast visible images that are completely stable under light at RT. Besides the optical information storage aspect of this effect these photoreaction s can also be used for controlled production of Usub(A) centers if the crystal also contains a foreign metallic impurity such a Na + ion [pt

  11. Infrared spectroscopy and photochemistry of NCCN+ and CNCN+ trapped in solid neon

    International Nuclear Information System (INIS)

    Jacox, Marilyn E.; Thompson, Warren E.

    2007-01-01

    When a Ne:NCCN sample is codeposited at 4.3 K with neon atoms that have been excited in a microwave discharge, the infrared and near infrared spectra of the resulting deposit include a prominent peak at 1799.5 cm -1 , previously assigned to ν 3 of NCCN + , and several new absorptions at higher frequencies which are contributed by combination bands of ground-state NCCN + . The exposure of the deposit to near infrared and red light results in the appearance of two new absorptions which are attributed to CNCN + . The reverse isomerization occurs when the sample is exposed to near ultraviolet radiation, but the two new absorptions are regenerated upon subsequent irradiation with near infrared and red light

  12. Soil HONO Emissions and Its Potential Impact on the Atmospheric Chemistry and Nitrogen Cycle

    Science.gov (United States)

    Su, H.; Chen, C.; Zhang, Q.; Poeschl, U.; Cheng, Y.

    2014-12-01

    Hydroxyl radicals (OH) are a key species in atmospheric photochemistry. In the lower atmosphere, up to ~30% of the primary OH radical production is attributed to the photolysis of nitrous acid (HONO), and field observations suggest a large missing source of HONO. The dominant sources of N(III) in soil, however, are biological nitrification and denitrification processes, which produce nitrite ions from ammonium (by nitrifying microbes) as well as from nitrate (by denitrifying microbes). We show that soil nitrite can release HONO and explain the reported strength and diurnal variation of the missing source. The HONO emissions rates are estimated to be comparable to that of nitric oxide (NO) and could be an important source of atmospheric reactive nitrogen. Fertilized soils appear to be particularly strong sources of HONO. Thus, agricultural activities and land-use changes may strongly influence the oxidizing capacity of the atmosphere. A new HONO-DNDC model was developed to simulate the evolution of HONO emissions in agriculture ecosystems. Because of the widespread occurrence of nitrite-producing microbes and increasing N and acid deposition, the release of HONO from soil may also be important in natural environments, including forests and boreal regions. Reference: Su, H. et al., Soil Nitrite as a Source of Atmospheric HONO and OH Radicals, Science, 333, 1616-1618, 10.1126/science.1207687, 2011.

  13. Gas response behaviour and photochemistry of borondiketonate in acrylic polymer matrices for sensing applications.

    Science.gov (United States)

    Arias Espinoza, Juan Diego; Sazhnikov, Viacheslav; Smits, Edsger C P; Ionov, Dmirity; Kononevich, Yuriy; Yakimets, Iryna; Alfimov, Mikael; Schoo, Herman F M

    2014-11-01

    The fluorescent spectra in combination with gas response behavior of acrylic polymers doped with dibenzoyl(methanato)boron difluoride (DBMBF2) were studied by fluorescence spectroscopy and time-resolved fluorescence lifetime. The role of acrylic matrix polarity upon the fluorescence spectra and fluorescence lifetime was analyzed. Changes in emission of the dye doped polymers under exposure to toluene, n-hexane and ethanol were monitored. The fluorescence lifetimes were measured for the singlet excited state as well as the exciplex formed between DBMBF2 and toluene. A reduction of the transition energy to the first singlet-excited state in the four polymers was observed, compared to solution. Reversible exciplex formation, viz. a red shifted fluorescence emission was perceived when exposing the polymers to toluene, while for hexane and ethanol only reversible reduction of the fluorescence occurred. Longer singlet and shorter exciplex lifetimes were observed for non-polar matrixes. The latter mechanism is explained in function of the lower charge transfer character of the exciplex in non-polar matrixes. Additionally, the quantum yield of the dye in the polymer matrix increased almost seventh-fold compared to values for solution.

  14. Vacuum ultraviolet photochemistry of CH4 and isotopomers. II. Product channel fields and absorption spectra

    International Nuclear Information System (INIS)

    Wang, Jen-Han; Liu, Kopin; Min, Zhiyuan; Su, Hongmei; Bersohn, Richard; Preses, Jack; Larese, John Z.

    2000-01-01

    In part I of this work the relative velocities and anisotropies of the atomic H and D fragments from methane photolysis at 10.2 eV were measured. In this paper the relative abundance of the methyl and methylene fragments are reported. A complete set of quantum yields for the different photodissociation channels of each isotopomer is obtained by combining the two sets of data. Previously it was found that H atoms are almost four times more likely than D atoms to be ejected; now it is found that hydrogen molecule photofragments are much richer in H atoms than in D. Overall, the heavier D atoms are more likely than the H atoms to remain attached to the carbon atom. An implication for astrophysics is discussed. The VUV absorption spectra of CH 4 and CH 3 D are almost identical both at room temperature and 75 K. There is, as expected, no variation in the absorption spectrum with temperature. Evidence is given that all or almost all of the methylene is produced in the a 1 A 1 and not in the ground 3 B 1 state. (c) 2000 American Institute of Physics

  15. Fluorescence Microscopy Gets Faster and Clearer: Roles of Photochemistry and Selective Illumination

    Science.gov (United States)

    Wolenski, Joseph S.; Julich, Doerthe

    2014-01-01

    Significant advances in fluorescence microscopy tend be a balance between two competing qualities wherein improvements in resolution and low light detection are typically accompanied by losses in acquisition rate and signal-to-noise, respectively. These trade-offs are becoming less of a barrier to biomedical research as recent advances in optoelectronic microscopy and developments in fluorophore chemistry have enabled scientists to see beyond the diffraction barrier, image deeper into live specimens, and acquire images at unprecedented speed. Selective plane illumination microscopy has provided significant gains in the spatial and temporal acquisition of fluorescence specimens several mm in thickness. With commercial systems now available, this method promises to expand on recent advances in 2-photon deep-tissue imaging with improved speed and reduced photobleaching compared to laser scanning confocal microscopy. Superresolution microscopes are also available in several modalities and can be coupled with selective plane illumination techniques. The combination of methods to increase resolution, acquisition speed, and depth of collection are now being married to common microscope systems, enabling scientists to make significant advances in live cell and in situ imaging in real time. We show that light sheet microscopy provides significant advantages for imaging live zebrafish embryos compared to laser scanning confocal microscopy. PMID:24600334

  16. Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry

    Directory of Open Access Journals (Sweden)

    J. P. DiGangi

    2012-10-01

    Full Text Available We present simultaneous fast, in-situ measurements of formaldehyde and glyoxal from two rural campaigns, BEARPEX 2009 and BEACHON-ROCS, both located in Pinus Ponderosa forests with emissions dominated by biogenic volatile organic compounds (VOCs. Despite considerable variability in the formaldehyde and glyoxal concentrations, the ratio of glyoxal to formaldehyde, RGF, displayed a very regular diurnal cycle over nearly 2 weeks of measurements. The only deviations in RGF were toward higher values and were the result of a biomass burning event during BEARPEX 2009 and very fresh anthropogenic influence during BEACHON-ROCS. Other rapid changes in glyoxal and formaldehyde concentrations have hardly any affect on RGF and could reflect transitions between low and high NO regimes. The trend of increased RGF from both anthropogenic reactive VOC mixtures and biomass burning compared to biogenic reactive VOC mixtures is robust due to the short timescales over which the observed changes in RGF occurred. Satellite retrievals, which suggest higher RGF for biogenic areas, are in contrast to our observed trends. It remains important to address this discrepancy, especially in view of the importance of satellite retrievals and in situ measurements for model comparison. In addition, we propose that RGF represents a useful metric for biogenic or anthropogenic reactive VOC mixtures and, in combination with absolute concentrations of glyoxal and formaldehyde, furthermore represents a useful metric for the extent of anthropogenic influence on overall reactive VOC processing via NOx. In particular, RGF yields information about not simply the VOCs dominating reactivity in an airmass, but the VOC processing itself that is directly coupled to ozone and secondary organic aerosol production.

  17. Numerical simulation and variational data assimilation for atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Quelo, Denis

    2004-01-01

    This work has led to the development of a three-dimensional chemistry-transport model Polair3D which simulates photochemistry. Model-to-data comparison of ozone and nitrogen oxides measurements over Lille in 1998 has proven its reliability at regional scale. 4 D-var data assimilation has been implemented. It relies on the adjoint model of Polair3D obtained through automatic differentiation. An application of inverse modelling of emissions over Lille with real measurements has been performed. It has proven that the inversion of temporal parameters of nitrogen oxides emissions leads to a significant improvement of forecasts. The so-called second-order sensitivity allows to study the sensitivity of the inversion with respect to the data assimilation system itself by computing its conditioning. This is illustrated by two test cases: short-range dispersion of radionuclides and gas-phase atmospheric chemistry characterized by a wide range of timescales. (author) [fr

  18. Numerical simulation and variational data assimilation for atmospheric dispersion of pollutants

    International Nuclear Information System (INIS)

    Quelo, D.

    2004-12-01

    This work has led to the development of a three-dimensional chemistry-transport model Polair3D which simulates photochemistry. Model-to-data comparison of ozone and nitrogen oxides measurements over the city of Lille in 1998 has proven its reliability at regional scale. 4-dimensional-variational data assimilation has been implemented. It relies on the adjoint model of Polair3D obtained through automatic differentiation. An application of inverse modelling of emissions over Lille city with real measurements has been performed. It has proven that the inversion of temporal parameters of nitrogen oxides emissions leads to a significant improvement of forecasts. The so-called second-order sensitivity allows the study of the sensitivity of the inversion with respect to the data assimilation system itself by computing its conditioning. This is illustrated by two test cases: short-range dispersion of radionuclides and gas-phase atmospheric chemistry characterized by a wide range of timescales. (author)

  19. Photochemistry and transport of tropospheric ozone and its precursors in urban and remote environments

    Science.gov (United States)

    Anderson, Daniel Craig

    Tropospheric ozone (O3) adversely affects human health, reduces crop yields, and contributes to climate forcing. To limit these effects, the processes controlling O3 abundance as well as that of its precursor molecules must be fully characterized. Here, I examine three facets of O 3 production, both in heavily polluted and remote environments. First, using in situ observations from the DISCOVER-AQ field campaign in the Baltimore/Washington region, I evaluate the emissions of the O 3 precursors CO and NOx (NOx = NO + NO2) in the National Emissions Inventory (NEI). I find that CO/NOx emissions ratios derived from observations are 21% higher than those predicted by the NEI. Comparisons to output from the CMAQ model suggest that CO in the NEI is accurate within 15 +/- 11%, while NOx emissions are overestimated by 51-70%, likely due to errors in mobile sources. These results imply that ambient ozone concentrations will respond more efficiently to NOx controls than current models suggest. I then investigate the source of high O3 and low H2O structures in the Tropical Western Pacific (TWP). A combination of in situ observations, satellite data, and models show that the high O3 results from photochemical production in biomass burning plumes from fires in tropical Southeast Asia and Central Africa; the low relative humidity results from large-scale descent in the tropics. Because these structures have frequently been attributed to mid-latitude pollution, biomass burning in the tropics likely contributes more to the radiative forcing of climate than previously believed. Finally, I evaluate the processes controlling formaldehyde (HCHO) in the TWP. Convective transport of near surface HCHO leads to a 33% increase in upper tropospheric HCHO mixing ratios; convection also likely increases upper tropospheric CH 3OOH to ~230 pptv, enough to maintain background HCHO at ~75 pptv. The long-range transport of polluted air, with NO four times the convectively controlled background

  20. Functionalization of the PEG Corona of Nanoparticles by Clip Photochemistry in Water: Application to the Grafting of RGD Ligands on PEGylated USPIO Imaging Agent.

    Science.gov (United States)

    Pourcelle, Vincent; Laurent, Sophie; Welle, Alexandre; Vriamont, Nicolas; Stanicki, Dimitri; Vander Elst, Luce; Muller, Robert N; Marchand-Brynaert, Jacqueline

    2015-05-20

    The fast development of nanomedicines requires more and more reliable chemical tools in order to accurately design materials and control the surface properties of the nano-objects used in biomedical applications. In this study we describe a smooth and simple photografting technique, i.e., the clip photochemistry, that allows the introduction of molecules of interest in inert polymers or on stealth nanoparticles directly in aqueous solution. First we developed the methodology on polyethylene glycol (PEG) and looked for critical parameters of the process (irradiation times, concentrations, washings) by using several molecular probes and adapted analytical techniques ((19)F qNMR, EA, LSC). We found that the clip photochemistry in water is a robust and efficient method to functionalize PEG. Second we applied it on PEGylated USPIO (USPIO-PEG) magnetic resonance imaging agent and succeeded in introducing RGD peptide and homemade peptidomimetics on their PEG segments. The magnetic abilities of the conjugated nanoparticles were unchanged by the derivatization process as evidenced by their relaxometric properties and their NMRD profile. When tested on Jurkat lymphocyte T Cells, which express αvβ3 integrins, the USPIO conjugated with RGD ligands leads to an increase of the transverse relaxation rate (R2) by a factor 10 to 14 as compared to USPIO-PEG. Consequently, it makes them good candidates for targeted imaging technology in cancer therapy.

  1. Two case studies on the interaction of large-scale transport, mesoscale photochemistry, and boundary-layer processes on the lower tropospheric ozone dynamics in early spring

    Energy Technology Data Exchange (ETDEWEB)

    Broennimann, S.; Siegrist, F.C.; Eugster, W.; Cattin, R.; Sidle, C.; Wanner, H. [Inst. of Geography, Univ. of Bern (Switzerland); Hirschberg, M.M. [Lehrstuhl fuer Bioklimatologie und Immissionsforschung, TU Muenchen, Freising-Weihenstephan (Germany); Schneiter, D. [MeteoSwiss, Station Aerologique, Payerne (Switzerland); Perego, S. [IBM Switzerland, Zuerich (Switzerland)

    2001-04-01

    The vertical distribution of ozone in the lower troposphere over the Swiss Plateau is investigated in detail for two episodes in early spring (February 1998 and March 1999). Profile measurements of boundary-layer ozone performed during two field campaigns with a tethered balloon sounding system and a kite are investigated using regular aerological and ozone soundings from a nearby site, measurements from monitoring stations at various altitudes, backward trajectories, and synoptic analyses of meteorological fields. Additionally, the effect of in situ photochemistry was estimated for one of the episodes employing the Metphomod Eulerian photochemical model. Although the meteorological situations were completely different, both cases had elevated layers with high ozone concentrations, which is not untypical for late winter and early spring. In the February episode, the highest ozone concentrations of 55 to 60 ppb, which were found at around 1100 m asl, were partly advected from Southern France, but a considerable contribution of in situ photochemistry is also predicted by the model. Below that elevation, the local chemical sinks and surface deposition probably overcompensated chemical production, and the vertical ozone distribution was governed by boundary-layer dynamics. In the March episode, the results suggest that ozone-rich air parcels, probably of stratospheric or upper tropospheric origin, were advected aloft the boundary layer on the Swiss Plateau. (orig.)

  2. Ozone in the atmosphere. Basic principles, natural and human impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fabian, Peter [Technical Univ. Munich (Germany). Immission Research; Dameris, Martin [German Aerospace Center (DLR), Oberpfaffenhofen-Wessling (Germany). Inst. of Atmospheric Physics

    2014-09-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  3. Ozone in the atmosphere. Basic principles, natural and human impacts

    International Nuclear Information System (INIS)

    Fabian, Peter; Dameris, Martin

    2014-01-01

    Comprehensive coverage of ozone both in the upper and the lower atmosphere. Essential overview of atmospheric ozone research written by two experienced and acknowledged experts. Numerous qualified references to the scientific literature. Peter Fabian and Martin Dameris provide a concise yet comprehensive overview of established scientific knowledge about ozone in the atmosphere. They present both ozone changes and trends in the stratosphere, as well as the effects of overabundance in the troposphere including the phenomenon of photosmog. Aspects such as photochemistry, atmospheric dynamics and global ozone distribution as well as various techniques for ozone measurement are treated. The authors outline the various causes for ozone depletion, the effects of ozone pollution and the relation to climate change. The book provides a handy reference guide for researchers active in atmospheric ozone research and a useful introduction for advanced students specializing in this field. Non-specialists interested in this field will also profit from reading the book. Peter Fabian can look back on a life-long active career in ozone research, having first gained international recognition for his measurements of the global distribution of halogenated hydrocarbons. He also pioneered photosmog investigations in the metropolitan areas of Munich, Berlin, Athens and Santiago de Chile, and his KROFEX facility provided controlled ozone fumigation of adult tree canopies for biologists to investigate the effects of ozone increases on forests. Besides having published a broad range of scientific articles, he has also been the author or editor of numerous books. From 2002 to 2005 he served the European Geosciences Union (EGU) as their first and Founding President. Martin Dameris is a prominent atmospheric modeler whose interests include the impacts of all kinds of natural and man-made disturbances on the atmospheric system. His scientific work focuses on the connections between ozone and

  4. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    Science.gov (United States)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  5. Evaluation of Packed Distillation Columns I - Atmospheric Pressure

    National Research Council Canada - National Science Library

    Reynolds, Thaine

    1951-01-01

    .... Four column-packing combinations of the glass columns and four column-packing combinations of the steel columns were investigated at atmospheric pressure using a test mixture of methylcyclohexane...

  6. Our shared atmosphere

    Science.gov (United States)

    Our atmosphere is a precious and fascinating resource, providing air to breath, shielding us from harmful ultraviolet radiation (UV), and maintaining a comfortable climate. Since the industrial revolution, people have significantly altered the composition of the atmosphere throu...

  7. Evaluation of local versus remote areas of CH4 sources at IC3 stations using a combined analysis of 222Rn tracer and Atmospheric Particles Transport Model (APTM) results. Application at the Gredos and Iruelas station (GIC3), Spain.

    Science.gov (United States)

    Grossi, Claudia; Morguí, Josep Anton; Curcoll, Roger; Àgueda, Alba; Arnold, Delia; Batet, Oscar; Cañas, Lidia; Nofuentes, Manel; Occhipinti, Paola; Vogel, Felix; Vargas, Arturo; Rodó, Xavier

    2014-05-01

    The Gredos and Iruelas station (GIC3) is part of the IC3 (Institut Català de Ciències del Clima) atmospheric monitoring network. This station is located in the Gredos Natural Park (40.22º N; -5.14º E) in the Spanish central plateau. The IC3 network consists of 8 stations distributed across Spain. It has been developed with the aim of studying climatic processes and the responses of impacted systems at different temporal and spatial scales. Since 2012, CO2, CH4, 222Rn (a natural radioactive gas) and meteorological variables are continuously measured at GIC3 at 20 m a.g.l. (1100 m a.s.l.). Furthermore, 4-days backward simulations are run daily for each IC3 station using the FLEXPART model. Simulations use ECMWF meteorological data as input and a horizontal spatial resolution of 0.2 degrees. The Laboratory of the Atmosphere and the Oceans (LAO) of the IC3 has elaborated a new approach to evaluate the local or remote greenhouse gases emissions using the radon gas as tracer and the atmospheric particles transport model FLEXPART under nocturnal and winter conditions. The ratios between the normalized and rescaled measured concentrations of CH4 and 222Rn during nocturnal hours (21h, 00h, 03h and 06h) and in the winter season, in order to reduce local radon flux and methane source due to seasonal livestock migration and to get stable atmospheric conditions, have been analyzed in relation to the influence of the local area (set to an initial dimension of 20x20 km2). The influence area (IA) has been defined as the percentage of the ratio between the residence time of the fictitious particles released in FLEXPART simulations over the area of interest (TLocal Area) and the residence time of these fictitious particles over the total area included in the simulation (TTotal Area ), i.e. IA = (TLocal Area/TTotal Area * 100). First results considering an area of interest of 20x20 km2 show a linear increase of the radon concentration with IA until reaching a maximum when IA is

  8. Development of a coupled diffusion denuder system combined with gas chromatography/mass spectrometry for the separation and quantification of molecular iodine and the activated iodine compounds iodine monochloride and hypoiodous acid in the marine atmosphere.

    Science.gov (United States)

    Huang, Ru-Jin; Hoffmann, Thorsten

    2009-03-01

    This study concerns the development of a coupled diffusion denuder system capable of separating and quantifying gaseous molecular iodine (I(2)) and two other highly reactive iodine species, ICl and HOI, which are collectively named activated iodine compounds (AIC). Both I(2) and AIC are key species in the atmospheric chemistry of iodine. 1,3,5-Trimethoxybenzene (1,3,5-TMB)- and alpha-cyclodextrin/(129)I(-) (alpha-CD/(129)I(-))-coated denuders proved to be suitable for the collection of gaseous AIC and I(2), respectively. The experimental collection efficiencies for AIC (tested as ICl) and I(2) agreed well with the theoretical values for gas flow rates in the range between 300 and 1800 mL min(-1). The coupled denuder system (1,3,5-TMB-coated denuder as front-denuder coupled upstream of an alpha-CD/(129)I(-)-coated denuder) was applied successfully to separate test gas mixtures of ICl and I(2) at various mixing ratios in the laboratory. The operation of both denuder systems was demonstrated to be independent of relative humidity (0-100%) and storage period (at least 2 weeks prior to and after sampling). Detection limits were achieved at sub-parts-per-trillion-by-volume (sub-pptv) level. The presented method provides a reliable and practical approach for the speciation of gaseous iodine compounds. In addition, we report for the first time ambient air measurements of AIC mixing ratios, carried out at the atmospheric research station in Mace Head, Ireland. A maximum concentration of AIC of 30.2 pptv was observed for nighttime measurements and 6.0 pptv for daytime measurements. A similar diurnal pattern was found for I(2) with an average concentration level of 23.2 pptv during daytime and 85.1 pptv during nighttime, indicating a strong correlation with AIC.

  9. Coupled Photochemical and Condensation Model for the Venus Atmosphere

    Science.gov (United States)

    Bierson, Carver; Zhang, Xi; Mendonca, Joao; Liang, Mao-Chang

    2017-10-01

    Ground based and Venus Express observations have provided a wealth of information on the vertical and latitudinal distribution of many chemical species in the Venus atmosphere [1,2]. Previous 1D models have focused on the chemistry of either the lower [3] or middle atmosphere [4,5]. Photochemical models focusing on the sulfur gas chemistry have also been independent from models of the sulfuric acid haze and cloud formation [6,7]. In recent years sulfur-bearing particles have become important candidates for the observed SO2 inversion above 80 km [5]. To test this hypothesis it is import to create a self-consistent model that includes photochemistry, transport, and cloud condensation.In this work we extend the domain of the 1D chemistry model of Zhang et al. (2012) [5] to encompass the region between the surface to 110 km. This model includes a simple sulfuric acid condensation scheme with gravitational settling. It simultaneously solves for the chemistry and condensation allowing for self-consistent cloud formation. We compare the resulting chemical distributions to observations at all altitudes. We have also validated our model cloud mass against pioneer Venus observations [8]. This updated full atmosphere chemistry model is also being applied in our 2D solver (altitude and altitude). With this 2D model we can model how the latitudinal distribution of chemical species depends on the meridional circulation. This allows us to use the existing chemical observations to place constraints on Venus GCMs [9-11].References: [1] Arney et al., JGR:Planets, 2014 [2] Vandaele et al., Icarus 2017 (pt. 1 & 2) [3] Krasnopolsky, Icarus, 2007 [4] Krasnopolsky, Icarus, 2012 [5] Zhang et al., Icarus 2012 [6] Gao et al., Icarus, 2014 [7] Krasnopolsky, Icarus, 2015 [8] Knollenberg and Hunten, JGR:Space Physics, 1980 [9] Lee et al., JGR:Planets, 2007 [10] Lebonnois et al., Towards Understanding the Climate of Venus, 2013 [11] Mendoncca and Read, Planetary and Space Science, 2016

  10. Prototype of a Laser-Induced Fluorescence Ground-Based Instrument for Measurements of Atmospheric Iodine Monoxide (IO)

    Science.gov (United States)

    Thurlow, M. E.; Co, D. T.; Hanisco, T. F.; Lapson, L. B.; Anderson, J. G.

    2008-12-01

    High abundances of iodine monoxide (IO) are known to exist and to participate in local photochemistry of the marine boundary layer: (1) IO participates in depletion episodes of O3 and in the removal of mercury in the Arctic polar spring by enhancing atomic Br mixing ratios. Recent observations and computer simulations suggest that mercury sequestration is closely tied to halogen photochemistry and that gaseous atomic Hg depletion can be enhanced significantly by the presence of small amounts of iodine-containing compounds. (2) IO and higher- order iodine oxides are involved in the formation of new particles in coastal marine environments. Studies using smog chamber experiments simulating coastal atmospheric conditions have demonstrated that new particles can form from condensable iodine-containing vapors and that their concentrations over the open ocean are sufficient to influence marine particle formation. (3) IO has also been shown to affect the oxidizing capacity of the troposphere by altering the partitioning of NO2/NO and HO2/HO and by activating chlorine and bromine in sea salt aerosols. In the stratosphere, these same processes can lead to enhanced ozone loss rates. Detailed photochemical models that include iodine photochemistry, however, are hampered by the lack of observational data. The distribution of IO in vertical, horizontal, and temporal coordinates is unknown, so the impact of IO on global photochemistry cannot be predicted. The resolution of these important scientific issues requires an in situ IO instrument. A fully functional nanosecond Nd:YAG-pumped Ti:Sapphire laser system and a prototype IO ground-based instrument have been built in our lab. With the current setup, the laser system was situated 10 m from the field station, and the laser light was coupled via an optical fiber. With the use of highly efficient fluorescence detection optics and photon counting techniques, sensitivities of better than 0.1 ppt in 1 s for IO was achieved in the

  11. Atmospheric refraction : a history

    NARCIS (Netherlands)

    Lehn, WH; van der Werf, S

    2005-01-01

    We trace the history of atmospheric refraction from the ancient Greeks up to the time of Kepler. The concept that the atmosphere could refract light entered Western science in the second century B.C. Ptolemy, 300 years later, produced the first clearly defined atmospheric model, containing air of

  12. Photochemical Energy Storage and Electrochemically Triggered Energy Release in the Norbornadiene-Quadricyclane System: UV Photochemistry and IR Spectroelectrochemistry in a Combined Experiment.

    Science.gov (United States)

    Brummel, Olaf; Waidhas, Fabian; Bauer, Udo; Wu, Yanlin; Bochmann, Sebastian; Steinrück, Hans-Peter; Papp, Christian; Bachmann, Julien; Libuda, Jörg

    2017-07-06

    The two valence isomers norbornadiene (NBD) and quadricyclane (QC) enable solar energy storage in a single molecule system. We present a new photoelectrochemical infrared reflection absorption spectroscopy (PEC-IRRAS) experiment, which allows monitoring of the complete energy storage and release cycle by in situ vibrational spectroscopy. Both processes were investigated, the photochemical conversion from NBD to QC using the photosensitizer 4,4'-bis(dimethylamino)benzophenone (Michler's ketone, MK) and the electrochemically triggered cycloreversion from QC to NBD. Photochemical conversion was obtained with characteristic conversion times on the order of 500 ms. All experiments were performed under full potential control in a thin-layer configuration with a Pt(111) working electrode. The vibrational spectra of NBD, QC, and MK were analyzed in the fingerprint region, permitting quantitative analysis of the spectroscopic data. We determined selectivities for both the photochemical conversion and the electrochemical cycloreversion and identified the critical steps that limit the reversibility of the storage cycle.

  13. Atmospheric Habitable Zones in Y Dwarf Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Yates, Jack S.; Palmer, Paul I. [School of GeoSciences, University of Edinburgh (United Kingdom); Biller, Beth; Cockell, Charles S., E-mail: j.s.yates@ed.ac.uk [Centre for Exoplanet Science, University of Edinburgh (United Kingdom)

    2017-02-20

    We use a simple organism lifecycle model to explore the viability of an atmospheric habitable zone (AHZ), with temperatures that could support Earth-centric life, which sits above an environment that does not support life. To illustrate our model, we use a cool Y dwarf atmosphere, such as WISE J085510.83–0714442.5, whose 4.5–5.2 μ m spectrum shows absorption features consistent with water vapor and clouds. We allow organisms to adapt to their atmospheric environment (described by temperature, convection, and gravity) by adopting different growth strategies that maximize their chance of survival and proliferation. We assume a constant upward vertical velocity through the AHZ. We found that the organism growth strategy is most sensitive to the magnitude of the atmospheric convection. Stronger convection supports the evolution of more massive organisms. For a purely radiative environment, we find that evolved organisms have a mass that is an order of magnitude smaller than terrestrial microbes, thereby defining a dynamical constraint on the dimensions of life that an AHZ can support. Based on a previously defined statistical approach, we infer that there are of the order of 10{sup 9} cool Y brown dwarfs in the Milky Way, and likely a few tens of these objects are within 10 pc from Earth. Our work also has implications for exploring life in the atmospheres of temperate gas giants. Consideration of the habitable volumes in planetary atmospheres significantly increases the volume of habitable space in the galaxy.

  14. Atmospheric origins of perchlorate on Mars and in the Atacama

    Science.gov (United States)

    Catling, D. C.; Claire, M. W.; Zahnle, K. J.; Quinn, R. C.; Clark, B. C.; Hecht, M. H.; Kounaves, S.

    2010-01-01

    Isotopic studies indicate that natural perchlorate is produced on Earth in arid environments by the oxidation of chlorine species through pathways involving ozone or its photochemical products. With this analogy, we propose that the arid environment on Mars may have given rise to perchlorate through the action of atmospheric oxidants. A variety of hypothetical pathways can be proposed including photochemical reactions, electrostatic discharge, and gas-solid reactions. Because perchlorate-rich deposits in the Atacama desert are closest in abundance to perchlorate measured at NASA's Phoenix Lander site, we made a preliminary study of the means to produce Atacama perchlorate to help shed light on the origin of Martian perchlorate. We investigated gas phase pathways using a 1-D photochemical model. We found that perchlorate can be produced in sufficient quantities to explain the abundance of perchlorate in the Atacama from a proposed gas phase oxidation of chlorine volatiles to perchloric acid. The feasibility of gas phase production for the Atacama provides justification for future investigations of gas phase photochemistry as a possible source for Martian perchlorate.

  15. Combination of electrospray ionization, atmospheric pressure photoionization and laser desorption ionization Fourier transform ion cyclotronic resonance mass spectrometry for the investigation of complex mixtures - Application to the petroleomic analysis of bio-oils.

    Science.gov (United States)

    Hertzog, Jasmine; Carré, Vincent; Le Brech, Yann; Mackay, Colin Logan; Dufour, Anthony; Mašek, Ondřej; Aubriet, Frédéric

    2017-05-29

    The comprehensive description of complex mixtures such as bio-oils is required to understand and improve the different processes involved during biological, environmental or industrial operation. In this context, we have to consider how different ionization sources can improve a non-targeted approach. Thus, the Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been coupled to electrospray ionization (ESI), laser desorption ionization (LDI) and atmospheric pressure photoionization (APPI) to characterize an oak pyrolysis bio-oil. Close to 90% of the all 4500 compound formulae has been attributed to C x H y O z with similar oxygen class compound distribution. Nevertheless, their relative abundance in respect with their double bound equivalent (DBE) value has evidenced significant differences depending on the ion source used. ESI has allowed compounds with low DBE but more oxygen atoms to be ionized. APPI has demonstrated the efficient ionization of less polar compounds (high DBE values and less oxygen atoms). The LDI behavior of bio-oils has been considered intermediate in terms of DBE and oxygen amounts but it has also been demonstrated that a significant part of the features are specifically detected by this ionization method. Thus, the complementarity of three different ionization sources has been successfully demonstrated for the exhaustive characterization by petroleomic approach of a complex mixture. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Recent Advances in Photochemistry

    Indian Academy of Sciences (India)

    Unknown

    The next one was held in Taejon, Korea in 1999. Both the Conferences were highly successful. The third conference APC-2002 was awarded to India and was organized at the Hotel. Centaur, Juhu Beach, Mumbai, during 6–11 January 2002. Nearly 80 invited and 150 poster contributions were presented at the Conference.

  17. Photochemistry at Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Eisenthal, Kenneth B [Columbia Univ., New York, NY (United States)

    2015-02-24

    We have advanced our capabilities to investigate ultrafast excited state dynamics at a liquid interface using a pump to excite molecules to higher electronic states and then probe the subsequent time evolution of the interfacial molecules with femtosecond time delayed vibrational SFG.

  18. Modeling of atmospheric pollutant transfers

    International Nuclear Information System (INIS)

    Jourdain, F.

    2007-01-01

    Modeling is today a common tool for the evaluation of the environmental impact of atmospheric pollution events, for the design of air monitoring networks or for the calculation of pollutant concentrations in the ambient air. It is even necessary for the a priori evaluation of the consequences of a pollution plume. A large choice of atmospheric transfer codes exist but no ideal tool is available which allows to model all kinds of situations. The present day approach consists in combining different types of modeling according to the requested results and simulations. The CEA has a solid experience in this domain and has developed independent tools for the impact and safety studies relative to industrial facilities and to the management of crisis situations. (J.S.)

  19. Models for infrared atmospheric radiation

    Science.gov (United States)

    Tiwari, S. N.

    1976-01-01

    Line and band models for infrared spectral absorption are discussed. Radiative transmittance and integrated absorptance of Lorentz, Doppler, and voigt line profiles were compared for a range of parameters. It was found that, for the intermediate path lengths, the combined Lorentz-Doppler (Voigt) profile is essential in calculating the atmospheric transmittance. Narrow band model relations for absorptance were used to develop exact formulations for total absorption by four wide band models. Several continuous correlations for the absorption of a wide band model were compared with the numerical solutions of the wide band models. By employing the line-by-line and quasi-random band model formulations, computational procedures were developed for evaluating transmittance and upwelling atmospheric radiance. Homogeneous path transmittances were calculated for selected bands of CO, CO2, and N2O and compared with experimental measurements. The upwelling radiance and signal change in the wave number interval of the CO fundamental band were also calculated.

  20. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  1. Fair weather atmospheric electricity

    International Nuclear Information System (INIS)

    Harrison, R G

    2011-01-01

    Not long after Franklin's iconic studies, an atmospheric electric field was discovered in 'fair weather' regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson's model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

  2. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  3. Subsurface low pH and carbonate saturation state of aragonite on China side of the North Yellow Sea: combined effects of global atmospheric CO2 increase, regional environmental changes, and local biogeochemical processes

    Science.gov (United States)

    Zhai, W.-D.; Zheng, N.; Huo, C.; Xu, Y.; Zhao, H.-D.; Li, Y.-W.; Zang, K.-P.; Wang, J.-Y.; Xu, X.-M.

    2013-02-01

    Based upon seven field surveys conducted between May 2011 and January 2012, we investigated pH, carbonate saturation state of aragonite (Ωarag), and ancillary parameters on the Chinese side of the North Yellow Sea, a western North Pacific continental margin of major economic importance. Subsurface waters were nearly in equilibrium with air in May and June. From July to October, the fugacity of CO2 (fCO2) of bottom water gradually increased to 697 ± 103 μatm and pH decreased to 7.83 ± 0.07 due to respiration/remineralization processes of primary production induced biogenic particles. In November and January, bottom water fCO2 decreased and pH gradually returned to an air-equilibrated level due to cooling enhanced vertical mixing. The corresponding bottom water Ωarag was 1.74 ± 0.17 (May), 1.77 ± 0.26 (June), 1.70 ± 0.26 (July), 1.72 ± 0.33 (August), 1.32 ± 0.31 (October), 1.50 ± 0.28 (November), and 1.41 ± 0.12 (January). Critically low Ωarag values of 1.0 to 1.2 were mainly observed in subsurface waters in a salinity range of 31.5-32.5 psu in October and November, accounting for ~ 10% of the North Yellow Sea area. Water mass derived from the adjacent Bohai Sea had a typical water salinity of 30.5-31.5 psu, and bottom water Ωarag values ranged mostly between 1.6 and 2.4. This study showed that the carbonate system in the North Yellow Sea was substantially influenced by global atmospheric CO2 increase. The community respiration/remineralization rates in typical North Yellow Sea bottom water mass were estimated at 0.55-1.0 μmol O2 kg-1 d-1 in warm seasons, leading to seasonal drops in subsurface pH and Ωarag. Outflow of the Bohai Sea water mass counteracted the subsurface Ωarag reduction in the North Yellow Sea.

  4. Phytoremediation of Atmospheric Methane

    Science.gov (United States)

    2013-04-15

    REPORT Phytoremediation of Atmospheric Methane 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: We have transformed a plant, Arabidopsis thaliana, with the...298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - 31-Mar-2012 Phytoremediation of Atmospheric Methane Report Title ABSTRACT We have transformed a...DD882) Scientific Progress See attachment Technology Transfer 1    Final Report for DARPA project W911NF1010027  Phytoremediation  of Atmospheric

  5. Oscillations in stellar atmospheres

    International Nuclear Information System (INIS)

    Costa, A.; Ringuelet, A.E.; Fontenla, J.M.

    1989-01-01

    Atmospheric excitation and propagation of oscillations are analyzed for typical pulsating stars. The linear, plane-parallel approach for the pulsating atmosphere gives a local description of the phenomenon. From the local analysis of oscillations, the minimum frequencies are obtained for radially propagating waves. The comparison of the minimum frequencies obtained for a variety of stellar types is in good agreement with the observed periods of the oscillations. The role of the atmosphere in the globar stellar pulsations is thus emphasized. 7 refs

  6. High resolution inner-shell spectroscopies of atoms and molecules in gas phase using the soft x-ray photochemistry beamline at SPring-8

    International Nuclear Information System (INIS)

    Ueda, Kiyoshi

    2003-01-01

    This article describes recent activities on inner-shell spectroscopies of atoms and molecules on beamline 27SU, nicknamed soft X-ray photochemistry beamline, at SPring-8, an 8-GeV synchrotron radiation facility in Japan. This beamline provides linearly polarized monochromatic soft X-rays at the resolution higher than 10,000. The end station is designed so that one can perform various kinds of excitation and de-excitation spectroscopies as well as coincidence spectroscopies. Following the description of the beamline and the end station, we present recent results for inner-shell spectroscopies on Ne, CO 2 , BF 3 , and CF 4 . Emphasis is given to illustrate the strategy of the research on this beamline and performance of the beamline and the end station. (author)

  7. Nucleation in the atmosphere

    International Nuclear Information System (INIS)

    Hegg, D A; Baker, M B

    2009-01-01

    Small particles play major roles in modulating radiative and hydrological fluxes in the atmosphere and thus they impact both climate (IPCC 2007) and weather. Most atmospheric particles outside clouds are created in situ through nucleation from gas phase precursors and most ice particles within clouds are formed by nucleation, usually from the liquid. Thus, the nucleation process is of great significance in the Earth's atmosphere. The theoretical examination of nucleation in the atmosphere has been based mostly on classical nucleation theory. While diagnostically very useful, the prognostic skill demonstrated by this approach has been marginal. Microscopic approaches such as molecular dynamics and density functional theory have also proven useful in elucidating various aspects of the process but are not yet sufficiently refined to offer a significant prognostic advantage to the classical approach, due primarily to the heteromolecular nature of atmospheric nucleation. An important aspect of the nucleation process in the atmosphere is that the degree of metastability of the parent phase for the nucleation is modulated by a number of atmospheric processes such as condensation onto pre-existing particles, updraft velocities that are the main driving force for supersaturation of water (a major factor in all atmospheric nucleation), and photochemical production rates of nucleation precursors. Hence, atmospheric nucleation is both temporally and spatially inhomogeneous

  8. Atmospheric Measurements Laboratory (AML)

    Data.gov (United States)

    Federal Laboratory Consortium — The Atmospheric Measurements Laboratory (AML) is one of the nation's leading research facilities for understanding aerosols, clouds, and their interactions. The AML...

  9. Jets in Planetary Atmospheres

    Science.gov (United States)

    Dowling, Tim

    2018-05-01

    Jet streams, "jets" for short, are remarkably coherent streams of air found in every major atmosphere. They have a profound effect on a planet's global circulation, and have been an enigma since the belts and zones of Jupiter were discovered in the 1600s. The study of jets, including what processes affect their size, strength, direction, shear stability, and predictability, are active areas of research in geophysical fluid dynamics. Jet research is multidisciplinary and global, involving collaborations between observers, experimentalists, numerical modelers, and applied mathematicians. Jets in atmospheres have strong analogies with shear instability in nonneutral plasmas, and these connections are highlighted throughout the article. The article begins with a description of four major challenges that jet researchers face: nonlinearity, non-intuitive wave physics, non-constant-coefficients, and copious nondimensional numbers. Then, two general fluid-dynamical tenets, the practice of rendering expressions dimensionally homogeneous (nondimensional), and the universal properties of shocks are applied to the open question of what controls the on-off switch of shear instability. The discussion progresses to how the physics of jets varies in equatorial, midlatitude, and polar regions, and how jets are observed to behave in each of these settings. The all-in-one conservation law of potential vorticity (PV), which combines the conservation laws of mass, momentum, and thermal energy into a single expression, is the common language of jet research. Earth and Uranus have weak retrograde equatorial jets, but most planets exhibit super-rotating equatorial jets, which require eddies to transport momentum up gradient in a non-intuitive manner. Jupiter and Saturn exhibit multiple alternating jets in their midlatitudes. The theory for why jets are invariably zonal (east-west orientated) is reviewed, and the particular challenges that Jupiter's sharp westward jets present to existing

  10. Constraining the Volatile Composition and Coma Photochemistry in Jupiter Family Comet 41P/Tuttle-Giacobini-Kresak with High Resolution IR and Optical Spectroscopy

    Science.gov (United States)

    McKay, Adam; DiSanti, Michael; Cochran, Anita; Dello Russo, Neil; Bonev, Boncho; Vervack, Ronald; Gibb, Erika; Roth, Nathan; Kawakita, Hideyo

    2018-01-01

    Over the past 20 years optical and IR spectroscopy of cometary comae has expanded our understanding both of cometary volatile composition and coma photochemistry. However, these observations tend to be biased towards Nearly Isotropic Comets (NIC'S) from the Oort Cloud, rather than the generally fainter and less active Jupiter Family Comets (JFC's) that are thought to originate from the Scattered Disk. However, early 2017 provided a rare opportunity to study several JFC's. We present preliminary results from IR and optical spectroscopy of JFC 41P/Tuttle-Giacobini-Kresak obtained during its 2017 apparition. IR spectra were obtained with the NIRSPEC instrument on Keck II and the new iSHELL spectrograph on NASA IRTF. High spectral resolution optical spectra were obtained with the Tull Coude spectrograph on the 2.7-meter Harlan J. Smith Telescope at McDonald Observatory. We will discuss mixing ratios of HCN, NH3, C2H6, C2H2, H2CO, and CH3OH compared to H2O and compare these to previous observations of comets. Preliminary results from the NIRSPEC observations indicate that 41P has typical C2H2 and HCN abundances compared to other JFC's, while the C2H6 abundance is similar to that of NIC's, but is enriched compared to other JFC's. H2CO appears to be heavily depleted in 41P. Analysis of the iSHELL spectra is underway and we will include results from these observations, which complement those from NIRSPEC and extend the scope or our compositional study by measuring additional molecules. We will also present abundances for CN, C2, NH2, C3, and CH obtained from the optical spectra and discuss the implications for the coma photochemistry.This work is supported by the NASA Postdoctoral Program, administered by the Universities Space Research Association, with additional funding from the NSF and NASA PAST.

  11. Potential biosignatures in super-Earth atmospheres II. Photochemical responses.

    Science.gov (United States)

    Grenfell, J L; Gebauer, S; Godolt, M; Palczynski, K; Rauer, H; Stock, J; von Paris, P; Lehmann, R; Selsis, F

    2013-05-01

    Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earth's stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with

  12. Reflections on O2 as a Biosignature in Exoplanetary Atmospheres.

    Science.gov (United States)

    Meadows, Victoria S

    2017-10-01

    Oxygenic photosynthesis is Earth's dominant metabolism, having evolved to harvest the largest expected energy source at the surface of most terrestrial habitable zone planets. Using CO 2 and H 2 O-molecules that are expected to be abundant and widespread on habitable terrestrial planets-oxygenic photosynthesis is plausible as a significant planetary process with a global impact. Photosynthetic O 2 has long been considered particularly robust as a sign of life on a habitable exoplanet, due to the lack of known "false positives"-geological or photochemical processes that could also produce large quantities of stable O 2 . O 2 has other advantages as a biosignature, including its high abundance and uniform distribution throughout the atmospheric column and its distinct, strong absorption in the visible and near-infrared. However, recent modeling work has shown that false positives for abundant oxygen or ozone could be produced by abiotic mechanisms, including photochemistry and atmospheric escape. Environmental factors for abiotic O 2 have been identified and will improve our ability to choose optimal targets and measurements to guard against false positives. Most of these false-positive mechanisms are dependent on properties of the host star and are often strongest for planets orbiting M dwarfs. In particular, selecting planets found within the conservative habitable zone and those orbiting host stars more massive than 0.4 M ⊙ (M3V and earlier) may help avoid planets with abundant abiotic O 2 generated by water loss. Searching for O 4 or CO in the planetary spectrum, or the lack of H 2 O or CH 4 , could help discriminate between abiotic and biological sources of O 2 or O 3 . In advance of the next generation of telescopes, thorough evaluation of potential biosignatures-including likely environmental context and factors that could produce false positives-ultimately works to increase our confidence in life detection. Key Words: Biosignatures

  13. THE ROLE OF NITROGEN IN TITAN’S UPPER ATMOSPHERIC HYDROCARBON CHEMISTRY OVER THE SOLAR CYCLE

    Energy Technology Data Exchange (ETDEWEB)

    Luspay-Kuti, A.; Mandt, K. E.; Greathouse, T. K. [Department of Space Research, Southwest Research Institute, San Antonio, TX 78228 (United States); Westlake, J. H. [Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723 (United States); Plessis, S., E-mail: aluspaykuti@swri.edu [Fund Kis, F-92160 Antony (France)

    2016-06-01

    Titan’s thermospheric photochemistry is primarily driven by solar radiation. Similarly to other planetary atmospheres, such as Mars’, Titan’s atmospheric structure is also directly affected by variations in the solar extreme-UV/UV output in response to the 11-year-long solar cycle. Here, we investigate the influence of nitrogen on the vertical production, loss, and abundance profiles of hydrocarbons as a function of the solar cycle. Our results show that changes in the atmospheric nitrogen atomic density (primarily in its ground state N({sup 4}S)) as a result of photon flux variations have important implications for the production of several minor hydrocarbons. The solar minimum enhancement of CH{sub 3}, C{sub 2}H{sub 6}, and C{sub 3}H{sub 8}, despite the lower CH{sub 4} photodissociation rates compared with solar maximum conditions, is explained by the role of N({sup 4}S). N({sup 4}S) indirectly controls the altitude of termolecular versus bimolecular chemical regimes through its relationship with CH{sub 3}. When in higher abundance during solar maximum at lower altitudes, N({sup 4}S) increases the importance of bimolecular CH{sub 3} + N({sup 4}S) reactions producing HCN and H{sub 2}CN. The subsequent remarkable CH{sub 3} loss and decrease in the CH{sub 3} abundance at lower altitudes during solar maximum affects the overall hydrocarbon chemistry.

  14. VUV-absorption cross section of CO2 at high temperatures and impact on exoplanet atmospheres

    Directory of Open Access Journals (Sweden)

    Venot Olivia

    2014-02-01

    Full Text Available Ultraviolet (UV absorption cross sections are an essential ingredient of photochemical atmosphere models. Exoplanet searches have unveiled a large population of short-period objects with hot atmospheres, very different from what we find in our solar system. Transiting exoplanets whose atmospheres can now be studied by transit spectroscopy receive extremely strong UV fluxes and have typical temperatures ranging from 400 to 2500 K. At these temperatures, UV photolysis cross section data are severely lacking. Our goal is to provide high-temperature absorption cross sections and their temperature dependency for important atmospheric compounds. This study is dedicated to CO2, which is observed and photodissociated in exoplanet atmospheres. We performed these measurements for the 115 - 200 nm range at 300, 410, 480, and 550 K. In the 195 - 230 nm range, we worked at seven temperatures between 465 and 800 K. We found that the absorption cross section of CO2 is very sensitive to temperature, especially above 160 nm. Within the studied range of temperature, the CO2 cross section can vary by more than two orders of magnitude. This, in particular, makes the absorption of CO2 significant up to wavelengths as high as 230 nm, while it is negligible above 200 nm at 300 K. To investigate the influence of these new data on the photochemistry of exoplanets, we implemented the measured cross section into a 1D photochemical model. The model predicts that accounting for this temperature dependency of CO2 cross section can affect the computed abundances of NH3, CO2, and CO by one order of magnitude in the atmospheres of hot Jupiter and hot Neptune.

  15. A Southern Hemisphere atmospheric history of carbon monoxide from South Pole firn air

    Science.gov (United States)

    Verhulst, K. R.; Aydin, M.; Novelli, P. C.; Holmes, C. D.; Prather, M. J.; Saltzman, E. S.

    2013-12-01

    Carbon monoxide (CO) is a reactive trace gas and is important to tropospheric photochemistry as a major sink of hydroxyl radicals (OH). Major sources of CO are fossil fuel combustion, linked mostly to automotive emissions, biomass burning, and oxidation of atmospheric methane. Understanding changes in carbon monoxide over the past century will improve our understanding of man's influence on the reactivity of the atmosphere. Little observational information is available about CO levels and emissions prior to the 1990s, particularly for the Southern Hemisphere. The NOAA global flask network provides the most complete instrumental record of CO, extending back to 1988. Annually averaged surface flask measurements suggest atmospheric CO levels at South Pole were relatively stable from 2004-2009 at about 51 nmol mol-1 [Novelli and Masarie, 2013]. In this study, a 20th century atmospheric history of CO is reconstructed from South Pole firn air measurements, using a 1-D firn air diffusion model. Firn air samples were collected in glass flasks from two adjacent holes drilled from the surface to 118 m at South Pole, Antarctica during the 2008/2009 field season and CO analysis was carried out by NOAA/CCG. Carbon monoxide levels increase from about 45 nmol mol-1 in the deepest firn sample at 116 m to 52 nmol mol-1 at 107 m, and remain constant at about 51-52 nmol mol-1 at shallower depths. Atmospheric histories based on the firn air reconstructions suggest that CO levels over Antarctica increased by roughly 40% (from about 36 to 50 nmol mol-1) between 1930-1990, at a rate of about 0.18 nmol mol-1 yr-1. Firn air and surface air results suggest the rate of CO increase at South Pole slowed considerably after 1990. The firn air-based atmospheric history is used to infer changes in Southern Hemisphere CO emissions over the 20th century.

  16. Deuterium in atmospheric cycle

    International Nuclear Information System (INIS)

    Pontikis, M.C.

    Interest of the study concerning the deuterium content variation (HDO) in the atmospheric water. Standards and measurement methods. Molecule HDO cycle in the atmospheric water. Application to the study of hail-generating cumulus-nimbus and of the mantle of snow [fr

  17. Urban atmospheric contamination

    International Nuclear Information System (INIS)

    Baldasano Jose, M.

    1997-01-01

    The problems of contamination are not only limited to this century, pale pathology evidences of the effects of the contamination of the air exist in interiors in the health of the old ones; the article mention the elements that configure the problem of the atmospheric contamination, atmospheric pollutants and emission sources, orography condition and effects induced by the urbanization process

  18. Controlled Atmosphere Stunning

    NARCIS (Netherlands)

    Lambooij, E.; Gerritzen, M.A.

    2009-01-01

    Controlled atmosphere (CAS) stunning includes several variations of gaseous mixtures given to induce an anaesthetic state before slaughter poultry. One method of multi phase CAS is to unload the birds out of the crate on a conveyor belt and subject the birds to an atmosphere of 30% O2, 40% CO2 and

  19. A Synergistic Approach to Interpreting Planetary Atmospheres

    Science.gov (United States)

    Batalha, Natasha E.

    We will soon have the technological capability to measure the atmospheric composition of temperate Earth-sized planets orbiting nearby stars. Interpreting these atmospheric signals poses a new challenge to planetary science. In contrast to jovian-like atmospheres, whose bulk compositions consist of hydrogen and helium, terrestrial planet atmospheres are likely comprised of high mean molecular weight secondary atmospheres, which have gone through a high degree of evolution. For example, present-day Mars has a frozen surface with a thin tenuous atmosphere, but 4 billion years ago it may have been warmed by a thick greenhouse atmosphere. Several processes contribute to a planet's atmospheric evolution: stellar evolution, geological processes, atmospheric escape, biology, etc. Each of these individual processes affects the planetary system as a whole and therefore they all must be considered in the modeling of terrestrial planets. In order to demonstrate the intricacies in modeling terrestrial planets, I use early Mars as a case study. I leverage a combination of one-dimensional climate, photochemical and energy balance models in order to create one self-consistent model that closely matches currently available climate data. One-dimensional models can address several processes: the influence of greenhouse gases on heating, the effect of the planet's geological processes (i.e. volcanoes and the carbonatesilicate cycle) on the atmosphere, the effect of rainfall on atmospheric composition and the stellar irradiance. After demonstrating the number of assumptions required to build a model, I look towards what exactly we can learn from remote observations of temperate Earths and Super Earths. However, unlike in-situ observations from our own solar system, remote sensing techniques need to be developed and understood in order to accurately characterize exo-atmospheres. I describe the models used to create synthetic transit transmission observations, which includes models of

  20. LIGHT SCATTERING FROM EXOPLANET OCEANS AND ATMOSPHERES

    International Nuclear Information System (INIS)

    Zugger, M. E.; Kane, T. J.; Kasting, J. F.; Williams, D. M.; Philbrick, C. R.

    2010-01-01

    Orbital variation in reflected starlight from exoplanets could eventually be used to detect surface oceans. Exoplanets with rough surfaces, or dominated by atmospheric Rayleigh scattering, should reach peak brightness in full phase, orbital longitude (OL) = 180 0 , whereas ocean planets with transparent atmospheres should reach peak brightness in crescent phase near OL = 30 0 . Application of Fresnel theory to a planet with no atmosphere covered by a calm ocean predicts a peak polarization fraction of 1 at OL = 74 0 ; however, our model shows that clouds, wind-driven waves, aerosols, absorption, and Rayleigh scattering in the atmosphere and within the water column dilute the polarization fraction and shift the peak to other OLs. Observing at longer wavelengths reduces the obfuscation of the water polarization signature by Rayleigh scattering but does not mitigate the other effects. Planets with thick Rayleigh scattering atmospheres reach peak polarization near OL = 90 0 , but clouds and Lambertian surface scattering dilute and shift this peak to smaller OL. A shifted Rayleigh peak might be mistaken for a water signature unless data from multiple wavelength bands are available. Our calculations suggest that polarization alone may not positively identify the presence of an ocean under an Earth-like atmosphere; however, polarization adds another dimension which can be used, in combination with unpolarized orbital light curves and contrast ratios, to detect extrasolar oceans, atmospheric water aerosols, and water clouds. Additionally, the presence and direction of the polarization vector could be used to determine planet association with the star, and constrain orbit inclination.

  1. Dynamics of Massive Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Chemke, Rei; Kaspi, Yohai, E-mail: rei.chemke@weizmann.ac.il [Department of Earth and Planetary Sciences, Weizmann Institute of Science, 234 Herzl st., 76100, Rehovot (Israel)

    2017-08-10

    The many recently discovered terrestrial exoplanets are expected to hold a wide range of atmospheric masses. Here the dynamic-thermodynamic effects of atmospheric mass on atmospheric circulation are studied using an idealized global circulation model by systematically varying the atmospheric surface pressure. On an Earth analog planet, an increase in atmospheric mass weakens the Hadley circulation and decreases its latitudinal extent. These changes are found to be related to the reduction of the convective fluxes and net radiative cooling (due to the higher atmospheric heat capacity), which, respectively, cool the upper troposphere at mid-low latitudes and warm the troposphere at high latitudes. These together decrease the meridional temperature gradient, tropopause height and static stability. The reduction of these parameters, which play a key role in affecting the flow properties of the tropical circulation, weakens and contracts the Hadley circulation. The reduction of the meridional temperature gradient also decreases the extraction of mean potential energy to the eddy fields and the mean kinetic energy, which weakens the extratropical circulation. The decrease of the eddy kinetic energy decreases the Rhines wavelength, which is found to follow the meridional jet scale. The contraction of the jet scale in the extratropics results in multiple jets and meridional circulation cells as the atmospheric mass increases.

  2. Reference Atmosphere for Mercury

    Science.gov (United States)

    Killen, Rosemary M.

    2002-01-01

    We propose that Ar-40 measured in the lunar atmosphere and that in Mercury's atmosphere is due to current diffusion into connected pore space within the crust. Higher temperatures at Mercury, along with more rapid loss from the atmosphere will lead to a smaller column abundance of argon at Mercury than at the Moon, given the same crustal abundance of potassium. Because the noble gas abundance in the Hermean atmosphere represents current effusion, it is a direct measure of the crustal potassium abundance. Ar-40 in the atmospheres of the planets is a measure of potassium abundance in the interiors, since Ar-40 is a product of radiogenic decay of K-40 by electron capture with the subsequent emission of a 1.46 eV gamma-ray. Although the Ar-40 in the Earth's atmosphere is expected to have accumulated since the late bombardment, Ar-40 in the atmospheres of Mercury and the Moon is eroded quickly by photoionization and electron impact ionization. Thus, the argon content in the exospheres of the Moon and Mercury is representative of current effusion rather than accumulation over the lifetime of the planet.

  3. New atmospheric program

    Science.gov (United States)

    The National Science Foundation's Division of Atmospheric Sciences has established an Upper Atmospheric Facilities program within its Centers and Facilities section. The program will support the operation of and the scientific research that uses the longitudinal chain of incoherent scatter radars. The program also will ensure that the chain is maintained as a state-of-the-art research tool available to all interested and qualified scientists.For additional information, contact Richard A. Behnke, Division of Atmospheric Sciences, National Science Foundation, 1800 G Street, N.W., Washington, DC 20550 (telephone: 202-357-7390).

  4. Atmospheres of Brown Dwarfs

    Science.gov (United States)

    Wang, Ruoyan; Seay, Christopher

    2018-01-01

    We construct a grid of brown dwarf model atmospheres spanning a wide range of atmospheric metallicity (0.3x ≤ met ≤ 100x), C/O ratios (0.25x ≤ C/O ≤ 2.5x), and cloud properties, encompassing atmospheres of effective temperatures 200 ≤ Teff ≤ 2400 K and gravities 2.5 ≤ log g ≤ 5.5. We produce the expected temperature-pressure profiles and emergent spectra from an atmosphere in radiative-convective equilibrium. We can then compare our predicted spectra to observations and retrieval results to aid in their predictions and influence future missions and telescopic observations. In our poster we briefly describe our modeling methodology and present our progress on model grid construction, spanning solar and subsolar C/O and metallicity.

  5. Results from atmospheric neutrinos

    Indian Academy of Sciences (India)

    Africa and South India first detected the natural neutrinos and observed .... lucky coincidences, such as the angular diameter of the moon and sun being ... (where there is some peaking due to longer flight paths for pions in the atmosphere).

  6. Students 'Weigh' Atmospheric Pollution.

    Science.gov (United States)

    Caporaloni, Marina

    1998-01-01

    Describes a procedure developed by students that measures the mass concentration of particles in a polluted urban atmosphere. Uses a portable fan and filters of various materials. Compares students' data with official data. (DDR)

  7. CARBON NEUTRON STAR ATMOSPHERES

    International Nuclear Information System (INIS)

    Suleimanov, V. F.; Klochkov, D.; Werner, K.; Pavlov, G. G.

    2014-01-01

    The accuracy of measuring the basic parameters of neutron stars is limited in particular by uncertainties in the chemical composition of their atmospheres. For example, the atmospheres of thermally emitting neutron stars in supernova remnants might have exotic chemical compositions, and for one of them, the neutron star in Cas A, a pure carbon atmosphere has recently been suggested by Ho and Heinke. To test this composition for other similar sources, a publicly available detailed grid of the carbon model atmosphere spectra is needed. We have computed this grid using the standard local thermodynamic equilibrium approximation and assuming that the magnetic field does not exceed 10 8  G. The opacities and pressure ionization effects are calculated using the Opacity Project approach. We describe the properties of our models and investigate the impact of the adopted assumptions and approximations on the emergent spectra

  8. Origin of atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Marx, Gy [Eotvos Lorand Tudomanyegyetem, Budapest (Hungary). Atomfizikai Tanszek

    1975-01-01

    The evolution of the atmosphere of the Earth is described. Starting from the hot Universe the main steps of the ''cooling-down'' process as the different states of the condensation of the matter are discussed. After this nuclear evolution the chemical evolution could start on the solid Earth's crust. In the reductive primordial atmosphere mainly due to ultraviolet rays the basic molecules for life as sugars and amino acids were formed. The photosynthesis of the plants has later produced the oxygen being present in the recent atmosphere. The question whether pollution could affect the auto-stabilization loop of the atmosphere is also discussed. Finally the possibility of life on the Mars is studied.

  9. The origin of atmosphere

    International Nuclear Information System (INIS)

    Marx, Gy.

    1975-01-01

    The evolution of the atmosphere of the Earth is described. Starting from the hot Universe the main steps of the ''cooling-down'' process as the different states of the condensation of the matter are discussed. After this nuclear evolution the chemical evolution could start on the solid Earth's crust. In the reductive primordial atmosphere mainly due to ultraviolet rays the basic molecules for life as sugars and amino acids were formed. The photosynthesis of the plants has later produced the oxygen being present in the recent atmosphere. The question whether the pollution could affect the auto-stabilization loop of the atmosphere is also discussed. Finally the possibility of life on the Mars is studied. (Sz.Z.)

  10. Proterozoic atmospheric oxygen

    DEFF Research Database (Denmark)

    Canfield, Donald Eugene

    2014-01-01

    This article is concerned with the evolution of atmospheric oxygen concentrations through the Proterozoic Eon. In particular, this article will seek to place the history of atmospheric oxygenation through the Proterozoic Eon in the context of the evolving physical environment including the history...... of continental growth and volcanic outgassing, as well as biogeochemical processing of elements within the oceans. The author will seek to explore constraints on the history of oxygenation and understand which processes have regulated oxygen through this eon....

  11. Global atmospheric changes.

    OpenAIRE

    Piver, W T

    1991-01-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the proces...

  12. Intensifying the Atmospheric

    DEFF Research Database (Denmark)

    Liebst, Lasse Suonperä

    2012-01-01

    The phenomenological concept of urban atmospheres is more often applied as an aesthetic description of the metropolitan space as such. This conceptualization is supported in this paper; however, I strive to give the concept a post-phenomenological axial turn. While phenomenology, due to its under...... sufficiently intense. All things considered, the paper should be read as a sociological contribution to theoretically reconstruct the concept of urban atmospheres in the light of spatial morphology....

  13. Atmospheric release advisory capability

    International Nuclear Information System (INIS)

    Sullivan, T.J.

    1981-01-01

    The ARAC system (Atmospheric Release Advisory Capability) is described. The system is a collection of people, computers, computer models, topographic data and meteorological input data that together permits a calculation of, in a quasi-predictive sense, where effluent from an accident will migrate through the atmosphere, where it will be deposited on the ground, and what instantaneous and integrated dose an exposed individual would receive

  14. High-Resolution Mass Spectrometry and Molecular Characterization of Aqueous Photochemistry Products of Common Types of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Romonosky, Dian E.; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2015-03-19

    A significant fraction of atmospheric organic compounds is predominantly found in condensed phases, such as aerosol particles and cloud droplets. Many of these compounds are photolabile and can degrade through direct photolysis or indirect photooxidation processes on time scales that are comparable to the typical lifetimes of aqueous droplets (hours) and particles (days). This paper presents a systematic investigation of the molecular level composition and the extent of aqueous photochemical processing in different types of secondary organic aerosol (SOA) from biogenic and anthropogenic precursors including α-pinene, β-pinene, β-myrcene, d- limonene, α-humulene, 1,3,5-trimethylbenzene, and guaiacol, oxidized by ozone (to simulate a remote atmosphere) or by OH in the presence of NOx (to simulate an urban atmosphere). Chamber- and flow tube-generated SOA samples were collected, extracted in a methanol/water solution, and photolyzed for 1 h under identical irradiation conditions. In these experiments, the irradiation was equivalent to about 3-8 h of exposure to the sun in its zenith. The molecular level composition of the dissolved SOA was probed before and after photolysis with direct-infusion electrospray ionization high-resolution mass spectrometry (ESI-HR-MS). The mass spectra of unphotolyzed SOA generated by ozone oxidation of monoterpenes showed qualitatively similar features, and contained largely overlapping subsets of identified compounds. The mass spectra of OH/NOx generated SOA had more unique visual appearance, and indicated a lower extent of products overlap. Furthermore, the fraction of nitrogen containing species (organonitrates and nitroaromatics) was highly sensitive to the SOA precursor. These observations suggest that attribution of high-resolution mass spectra in field SOA samples to specific SOA precursors should be more straightforward under OH/NOx oxidation conditions compared to the ozone driven oxidation. Comparison of the SOA constituents

  15. Atmospheric pollution in Lisbon urban atmosphere

    Science.gov (United States)

    Oliveira, C.

    2009-04-01

    Lisbon is the capital city of Portugal with about 565,000 residents in 2008 and a population density of 6,600 inhabitants per square kilometre. Like several other major metropolis, the town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants, a quarter of the overall Portuguese population. Besides their local residents, it is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams, with important consequences on air pollution levels and obvious negative impacts on human health. Airborne particulate matter limit values are frequently exceeded, making urgent the existence of consistent programs to monitor and help taking measures to control them. Within the Portuguese project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere) financed by the Portuguese Science Foundation ("Fundação para a Ciência e a Tecnologia"), an aerosol and vapour phase sampling program is being implemented in the city of Lisbon at two selected contrasting zones, namely a typically busy area with intense road traffic and frequent exceedences of the particulate matter standard for the maximum allowable concentration, and a residential quieter area, thus with a cleaner atmosphere characterised as an urban background site. An one month-long sampling campaign was performed during the summer of 2008, where particulate matter was collected in two fractions (coarse 2.5µmwork are expected to cover a lack of reliable information regarding sources of atmospheric pollutants in Portugal and present, for the first time, systematic data of PAHs levels in Lisbon. Acknowledgement: This work was performed under Project PAHLIS (PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia". C. Oliveira thanks Project PAHLIS his scholarship.

  16. Atmospheric Boundary Layer, Integrating Air Chemistry and Land Interactions

    NARCIS (Netherlands)

    Vilà-Guerau De Arellano, J.; Heerwaarden, van C.C.; Stratum, van B.J.H.; Dries, van den C.L.A.M.

    2015-01-01

    This textbook provides an introduction to the interactions between the atmosphere and the land for advanced undergraduate and graduate students and a reference text for researchers in atmospheric physics and chemistry, hydrology, and plant physiology. The combination of the book, which provides the

  17. Concentration and photochemistry of PAHs, NPAHs, and OPAHs and toxicity of PM2.5 during the Beijing Olympic Games.

    Science.gov (United States)

    Wang, Wentao; Jariyasopit, Narumol; Schrlau, Jill; Jia, Yuling; Tao, Shu; Yu, Tian-Wei; Dashwood, Roderick H; Zhang, Wei; Wang, Xuejun; Simonich, Staci L Massey

    2011-08-15

    Atmospheric particulate matter with diameter cells were also measured. Significant reductions in BC (45%), OC (31%), MW< 300 PAH (26-73%), MW 302 PAH (22-77%), NPAH (15-68%), and OPAH (25-53%) concentrations were measured during the source control and Olympic periods. However, the mutagenicity of the PM(2.5) was significantly reduced only during the Olympic period. The PAH, NPAH, and OPAH composition of the PM(2.5) was similar throughout the study, suggesting similar sources during the different periods. During the source control period, the parent PAH concentrations were correlated with NO, CO, and SO(2) concentrations, indicating that these PAHs were associated with both local and regional emissions. However, the NPAH and OPAH concentrations were only correlated with the NO concentrations, indicating that the NPAH and OPAH were primarily associated with local emissions. The relatively high 2-nitrofluoranthene/1-nitropyrene ratio (25-46) and 2-nitrofluoranthene/2-nitropyrene ratio (3.4-4.8), suggested a predominance of photochemical formation of NPAHs through OH-radical-initiated reactions in the atmosphere. On average, the ∑NPAH and ∑OPAH concentrations were 8% of the parent PAH concentrations, while the direct-acting mutagenicity (due to the NPAH and OPAH) was 200% higher than the indirect-acting mutagenicity (due to the PAH). This suggests that NPAH and OPAH make up a significant portion of the overall mutagenicity of PM(2.5) in Beijing.

  18. Evaluation of the combined effect of the irradiation process and packaging in different atmospheres on microbiological and sensory quality of beef (Longissimus dorsi) fresh chilled and frozen; Avaliacao do efeito combinado do processo de irradiacao e da embalagem em diferentes atmosferas na qualidade microbiologica e sensorial de carne bovina (Longissimus dorsi) fresca refrigerada e congelada

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Maria Luz Garcia

    2001-07-01

    Meat, a nutritious food, allows the development of a wide variety of microorganisms which not only spoils it but offers risk to public health. Irradiation with medium doses can be efficiently use to control the presence of microorganisms in meat. Depending upon the dose, irradiation of meat can lead to formation of off-flavours, off odours and discoloration of meat packed with oxygen. These problems can probably be overcome using vacuum package or freezing temperatures. The aim of this research was to evaluate the effect of irradiation, vacuum packaging and temperature on the meat quality. Forty beef pieces (approx. 100g each) were packed under normal atmosphere, 40 were vacuum packed and 40 under N{sub 2} atmosphere. Half of each group was kept overnight under refrigeration and half was frozen. Refrigerated samples were irradiated with 0, 1, 1.5 and 2 kGy. Frozen samples were irradiated with 0, 1, 2 and 3 kGy. Number of microorganisms was significantly reduced (p<0.05) by de process. The temperature effect on the radioresistance of all microorganisms was not observed. Brochothrix thermosphacta was present in numbers of 10{sup 3} CFU/g in control samples and remained the same during all study and was detected only in refrigerated irradiated samples. Lactic acid bacteria were less affected by irradiation. Bacterial spores were found in both control and irradiated samples in low numbers (1-67 spores/g). Salmonella sp. and Staphylococcus sp. were not detected. The best combination of treatments to extend the shelf-life of refrigerated meat was vacuum packaging and an irradiation dose of 2 kGy. Nitrogen did not improve the color of irradiated meat. Refrigerated irradiated aerobically packaged meat was darker and less red than control samples. Frozen irradiated aerobically packaged meat was less red and lightener. The effectiveness of food irradiation is based on good quality of raw product. (author)

  19. combination Dictionary

    African Journals Online (AJOL)

    rbr

    of the idiomatic expression as a whole" (Crystal 2003: 225-226). Idiomatic .... nations and idioms.11 Nonetheless, free combinations of words have not been .... those who thronged Emmett place last night wanted to see the film, and they.

  20. Winning Combinations

    DEFF Research Database (Denmark)

    Criscuolo, Paola; Laursen, Keld; Reichstein, Toke

    2018-01-01

    examine the effectiveness of different combinations of knowledge sources for achieving innovative performance. We suggest that combinations involving integrative search strategies – combining internal and external knowledge – are the most likely to generate product and process innovation. In this context......, we present the idea that cognitively distant knowledge sources are helpful for innovation only when used in conjunction with knowledge sources that are closer to the focal firm. We also find important differences between product and process innovation, with the former associated with broader searches......Searching for the most rewarding sources of innovative ideas remains a key challenge in management of technological innovation. Yet, little is known about which combinations of internal and external knowledge sources are triggers for innovation. Extending theories about searching for innovation, we...

  1. Atmospheric Propagation and Combining of High-Power Lasers

    Science.gov (United States)

    2015-09-08

    Brightness-scaling potential of actively phase- locked solid state laser arrays,” IEEE J. Sel. Topics Quantum Electron., vol. 13, no. 3, pp. 460–472, May...attempting to phase- lock high-power lasers, which is not encountered when phase- locking low-power lasers, for example mW power levels. Regardless, we...technology does not currently exist. This presents a challenging problem when attempting to phase- lock high-power lasers, which is not encountered when

  2. Photochemistry and aerosol in alpine region: mixing and transport; Photochimie et aerosol en region alpine: melange et transport

    Energy Technology Data Exchange (ETDEWEB)

    Chaxel, E

    2006-11-15

    The Alpine arc deeply interacts with general circulation of atmosphere. By studying configurations in summer and winter over various Alpine areas, this work explains how mixing and transport of airborne pollutants happen, both gaseous and particulate matter, from their emission sources to free troposphere. Using observational results and a comprehensive Eulerian modelling system, one focuses on mechanisms of pollution by ozone in summer and by particulate matter and benzene in winter. After having validated the modelling system using datasets from field experiments POVA, GRENOPHOT and ESCOMPTE, it is applied on two periods with principal interest in the Grenoble area: one is the heat-wave August 2003 and the other is a long episode of thermal inversion in February 2005. Uncertainties are also calculated. One finishes by applying the modelling chain to understand how a stratospheric intrusion following a tropopause fold affected the Alpine region in July 2004. (author)

  3. Atmospheric ions and pollution

    International Nuclear Information System (INIS)

    Renoux, A.

    1977-01-01

    The various types of atmospheric ions are defined, the main sources of natural atmospheric radioactivity inducing the formation of radioactive ions in the air are then recalled. The basic equations governing the formation of these ions are indicated and the most current experimental methods used for detecting them are described (Zeleny tubes, Erikson tubes). The special properties of these ions are examined, they are particularly emphasized for the smaller ones. The existence of a discret spectrum of mobilities is shown and the presence of big negative radioactive ions is investigated. Indicative information are given on the granulometric distribution of the atmospheric radioactivity in the air, from small positive Ra A ion fixation on aerosols [fr

  4. Phenomenology of atmospheric neutrinos

    Directory of Open Access Journals (Sweden)

    Fedynitch Anatoli

    2016-01-01

    Full Text Available The detection of astrophysical neutrinos, certainly a break-through result, introduced new experimental challenges and fundamental questions about acceleration mechanisms of cosmic rays. On one hand IceCube succeeded in finding an unambiguous proof for the existence of a diffuse astrophysical neutrino flux, on the other hand the precise determination of its spectral index and normalization requires a better knowledge about the atmospheric background at hundreds of TeV and PeV energies. Atmospheric neutrinos in this energy range originate mostly from decays of heavy-flavor mesons, which production in the phase space relevant for prompt leptons is uncertain. Current accelerator-based experiments are limited by detector acceptance and not so much by the collision energy. This paper recaps phenomenological aspects of atmospheric leptons and calculation methods, linking recent progress in flux predictions with particle physics at colliders, in particular the Large Hadron Collider.

  5. Atmosphere and Ambient Space

    DEFF Research Database (Denmark)

    Schmidt, Ulrik

    Atmosphere and Ambient Space This paper explores the relation between atmosphere and ambient space. Atmosphere and ambient space share many salient properties. They are both ontologically indeterminate, constantly varying and formally diffuse and they are both experienced as a subtle, non......-signifying property of a given space. But from a certain point of view, the two concepts also designate quite dissimilar experiences of space. To be ’ambient’ means to surround. Accordingly, ambient space is that space, which surrounds something or somebody. (Gibson 1987: 65) Since space is essentially...... of a surrounding character, all space can thus be described as having a fundamentally ambient character. So what precisely is an ambient space, then? As I will argue in my presentation, ambient space is a sensory effect of spatiality when a space is experienced as being particularly surrounding: a ‘space effect...

  6. PHOTOCHEMISTRY IN THE INNER LAYERS OF CLUMPY CIRCUMSTELLAR ENVELOPES: FORMATION OF WATER IN C-RICH OBJECTS AND OF C-BEARING MOLECULES IN O-RICH OBJECTS

    International Nuclear Information System (INIS)

    Agundez, Marcelino; Cernicharo, Jose; Guelin, Michel

    2010-01-01

    A mechanism based on the penetration of interstellar ultraviolet photons into the inner layers of clumpy circumstellar envelopes (CSEs) around asymptotic giant branch stars is proposed to explain the non-equilibrium chemistry observed in such objects. We show through a simple modeling approach that in CSEs with a certain degree of clumpiness or with moderately low mass loss rates (a few 10 -7 M sun yr -1 ) a photochemistry can take place in the warm and dense inner layers, inducing important changes in the chemical composition. In carbon-rich objects water vapor and ammonia would be formed with abundances of 10 -8 -10 -6 relative to H 2 , while in oxygen-rich envelopes ammonia and carbon-bearing molecules such as HCN and CS would form with abundances of 10 -9 -10 -7 relative to H 2 . The proposed mechanism would explain the recent observation of warm water vapor in the carbon-rich envelope IRC+10216 with the Herschel Space Observatory and predict that H 2 O should be detectable in other carbon-rich objects.

  7. Photogeneration of reactive transient species upon irradiation of natural water samples: Formation quantum yields in different spectral intervals, and implications for the photochemistry of surface waters.

    Science.gov (United States)

    Marchisio, Andrea; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2015-04-15

    Chromophoric dissolved organic matter (CDOM) in surface waters is a photochemical source of several transient species such as CDOM triplet states ((3)CDOM*), singlet oxygen ((1)O2) and the hydroxyl radical (OH). By irradiation of lake water samples, it is shown here that the quantum yields for the formation of these transients by CDOM vary depending on the irradiation wavelength range, in the order UVB > UVA > blue. A possible explanation is that radiation at longer wavelengths is preferentially absorbed by the larger CDOM fractions, which show lesser photoactivity compared to smaller CDOM moieties. The quantum yield variations in different spectral ranges were definitely more marked for (3)CDOM* and OH compared to (1)O2. The decrease of the quantum yields with increasing wavelength has important implications for the photochemistry of surface waters, because long-wavelength radiation penetrates deeper in water columns compared to short-wavelength radiation. The average steady-state concentrations of the transients ((3)CDOM*, (1)O2 and OH) were modelled in water columns of different depths, based on the experimentally determined wavelength trends of the formation quantum yields. Important differences were found between such modelling results and those obtained in a wavelength-independent quantum yield scenario. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Multiphase modeling of nitrate photochemistry in the quasi-liquid layer (QLL: implications for NOx release from the Arctic and coastal Antarctic snowpack

    Directory of Open Access Journals (Sweden)

    A. Saiz-Lopez

    2008-08-01

    Full Text Available We utilize a multiphase model, CON-AIR (Condensed Phase to Air Transfer Model, to show that the photochemistry of nitrate (NO3− in and on ice and snow surfaces, specifically the quasi-liquid layer (QLL, can account for NOx volume fluxes, concentrations, and [NO]/[NO2] (γ=[NO]/[NO2] measured just above the Arctic and coastal Antarctic snowpack. Maximum gas phase NOx volume fluxes, concentrations and γ simulated for spring and summer range from 5.0×104 to 6.4×105 molecules cm−3 s−1, 5.7×108 to 4.8×109 molecules cm−3, and ~0.8 to 2.2, respectively, which are comparable to gas phase NOx volume fluxes, concentrations and γ measured in the field. The model incorporates the appropriate actinic solar spectrum, thereby properly weighting the different rates of photolysis of NO3− and NO2−. This is important since the immediate precursor for NO, for example, NO2−, absorbs at wavelengths longer than nitrate itself. Finally, one-dimensional model simulations indicate that both gas phase boundary layer NO and NO2 exhibit a negative concentration gradient as a function of height although [NO]/[NO2] are approximately constant. This gradient is primarily attributed to gas phase reactions of NOx with halogens oxides (i.e. as BrO and IO, HOx, and hydrocarbons, such as CH3O2.

  9. Composition of Estonian atmosphere

    International Nuclear Information System (INIS)

    Punning, J. M.; Karindi, A.

    1996-01-01

    Atmospheric study, particularly that of its chemical composition, has a long tradition in Estonia. Since middle of this century, in addition to meteorological observations, some chemical compounds in precipitations have been regularly measured in many meteorological stations. The main aim was to acquire information about the state and dynamics of the atmosphere. Therefore, main attention was paid to monitoring chemical compounds which have a direct impact on the human environment. As energy production developed intensively and SO 2 and NO x increased drastically in the atmosphere in acidic rock areas, like Scandinavia, the problem of acid rain became the most important environmental problem in Europe and North-America. As a consequence, monitoring the compounds of sulphur in precipitation was organized in Estonia. In the 1970 s, as related to large operating oil shale-based power plants, Estonia became a country , where emissions of sulphur compounds per capita were extremely high. In 1979, Estonia became a participant in the European Monitoring and Evaluation Programme - the network created to study transboundary air pollution. The aims of the precipitation chemistry study and the related problems of the formation and transformation of the atmospheric composition have varied over the years. But monitoring of pollutant (in particular, sulphur compound) loads has been a central issue. Over recent years, an attempt was made to estimate the spatial regularities of atmospheric impurities and their impact on the pH of mean monthly precipitations. Furthermore, calculations were provided to find out the origin of atmospheric impurities washed out in Estonia. Until the 1990 s, CO 2 , and some other greenhouse gas (GHG) emissions were not studied in Estonia. The first inventory of GHG for Estonia was provided in 1995 using the Intergovernmental Panel on Climate Change (IPCC) methodology

  10. Atmospheric correction of satellite data

    Science.gov (United States)

    Shmirko, Konstantin; Bobrikov, Alexey; Pavlov, Andrey

    2015-11-01

    Atmosphere responses for more than 90% of all radiation measured by satellite. Due to this, atmospheric correction plays an important role in separating water leaving radiance from the signal, evaluating concentration of various water pigments (chlorophyll-A, DOM, CDOM, etc). The elimination of atmospheric intrinsic radiance from remote sensing signal referred to as atmospheric correction.

  11. Natural atmospheric radioactivity

    International Nuclear Information System (INIS)

    Renoux, A.

    1986-01-01

    After having summed up the different old or new units, used in radioactivity and radioprotection, the origins of atmospheric radioactivity are reported. Next the authors deal with the air content in radon, thoron and their radioactive descendants, insisting on the variations of the radon air content and on the radioactive balance between radon and its descendants. Then a few notions concerning the natural radioactive aerosol are developed: electric charge state, granulometric distribution. The possible effects of natural atmospheric radioactivity on man are studied with a distinction between inner irradiation and outer irradiation, an average assessment is shown. Finally the important problem of radon in inhabitations is approached [fr

  12. Atmosphere beyond Poetics

    DEFF Research Database (Denmark)

    Wieczorek, Izabela

    2014-01-01

    Defined by German philosopher Gernot Böhme as a ‘fundamental concept of a new aesthetics’ (Böhme 2003), the notion of atmosphere has been widely discussed across many disciplinary fields over the last few decades. It has taken a central stage also in architectural debate, leading to both conceptual......, the notion of atmosphere is presented as parallactic for designing experience in architectural fields, since it transgresses formal and material boundaries of bodies, opening a new gap that exposes the orthodox space-body-environment relationships to questions. It leads to the dissolution...

  13. Global atmospheric changes.

    Science.gov (United States)

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  14. Atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1977-01-01

    The chairman and contributors are members of the Working Group on Atmospheric Dispersion, Deposition, and Resuspension. This group examined the mathematical approaches for determining the direct and indirect pathways to man of releases of pollutants to the atmosphere. The dose-to-man limitations promulgated by the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Energy Research and Development Administration were presented. The present status of research was discussed, and recommendations for future work were made. Particular emphasis was placed on the need for additional experimental work to develop confidence limits leading to acceptable probability statements of critical pathways for determining the dose-to-man

  15. Atmospheric transport of radionuclides

    International Nuclear Information System (INIS)

    Crawford, T.V.

    1978-01-01

    The chairman and contributors are members of the Working Group on Atmospheric Dispersion, Deposition, and Resuspension. This group examined the mathematical approaches for determining the direct and indirect pathways to man of releases of pollutants to the atmosphere. The dose-to-man limitations promulgated by the Nuclear Regulatory Commission, the Environmental Protection Agency, and the Energy Research and Development Administration were presented. The present status of research was discussed, and recommendations for future work were made. Particular emphasis was placed on the need for additional experimental work to develop confidence limits leading to acceptable probability statements of critical pathways for determining the dose-to-man

  16. Regional Ecosystem-Atmosphere CO2 Exchange Via Atmospheric Budgets

    Energy Technology Data Exchange (ETDEWEB)

    Davis, K J; Richardson, S J; Miles, N L

    2007-03-07

    are captured. Influence functions, derived using a Lagrangian Particle Dispersion model driven by the CSU Regional Atmospheric Modeling System and nudged to NCEP reanalysis meteorological fields, are used to determine source regions for the towers. The influence functions are combined with satellite vegetation observations to interpret the observed trends in CO2 concentration. Full inversions will combine these elements in a more formal analytic framework.

  17. Imaging spectrometers for atmosphere monitoring

    Science.gov (United States)

    Reinert, Thido; Bovensmann, Heinrich; Münzenmayer, Ralf; Weiss, Stefan; Posselt, Winfried

    2017-11-01

    Atmospheric monitoring missions aim at products like O3, H2O, NO2, SO2, BrO, CH4, CO, CO2 as well as aerosols and cloud information. Depending on the application area (Ozone Monitoring, Green House Gas Monitoring, Tropospheric Composition and Air Quality, Chemistry Climate Interaction etc.) total or tropospheric columns as well as profile information is required. The user community of these data as well as their central requirements w.r.t. the payload aspects will be described. A large range of relevant passive instrument types is available, in particular imaging spectrometer, sounder and polarisation measuring systems in the UV-VIS, SWIR and TIR spectral range. Differences between instruments for dedicated missions are highlighted and evolution of requirements is explained, also in comparison with relevant existing instrumentation partly in orbit today. Aspects of technology roadmaps for instrument implementation as well as synergetic effects of instrument combinations and according mission scopes are discussed.

  18. A new plant chamber facility PLUS coupled to the atmospheric simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2015-11-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been build and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees are mixed with synthetic air and are transferred to the SAPHIR chamber where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOC) can be studied in detail. In PLUS all important enviromental parameters (e.g. temperature, PAR, soil RH etc.) are well-controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leafes of the plants is constructed such that gases are exposed to FEP Teflon film and other Teflon surfaces only to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 LED panels which have an emission strength up to 800 μmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOC) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light and temperature dependent BVOC emissions are studied using six Quercus Ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus Ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental set up and the utility of the newly added plant chamber.

  19. A new plant chamber facility, PLUS, coupled to the atmosphere simulation chamber SAPHIR

    Science.gov (United States)

    Hohaus, T.; Kuhn, U.; Andres, S.; Kaminski, M.; Rohrer, F.; Tillmann, R.; Wahner, A.; Wegener, R.; Yu, Z.; Kiendler-Scharr, A.

    2016-03-01

    A new PLant chamber Unit for Simulation (PLUS) for use with the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction Chamber) has been built and characterized at the Forschungszentrum Jülich GmbH, Germany. The PLUS chamber is an environmentally controlled flow-through plant chamber. Inside PLUS the natural blend of biogenic emissions of trees is mixed with synthetic air and transferred to the SAPHIR chamber, where the atmospheric chemistry and the impact of biogenic volatile organic compounds (BVOCs) can be studied in detail. In PLUS all important environmental parameters (e.g., temperature, photosynthetically active radiation (PAR), soil relative humidity (RH)) are well controlled. The gas exchange volume of 9.32 m3 which encloses the stem and the leaves of the plants is constructed such that gases are exposed to only fluorinated ethylene propylene (FEP) Teflon film and other Teflon surfaces to minimize any potential losses of BVOCs in the chamber. Solar radiation is simulated using 15 light-emitting diode (LED) panels, which have an emission strength up to 800 µmol m-2 s-1. Results of the initial characterization experiments are presented in detail. Background concentrations, mixing inside the gas exchange volume, and transfer rate of volatile organic compounds (VOCs) through PLUS under different humidity conditions are explored. Typical plant characteristics such as light- and temperature- dependent BVOC emissions are studied using six Quercus ilex trees and compared to previous studies. Results of an initial ozonolysis experiment of BVOC emissions from Quercus ilex at typical atmospheric concentrations inside SAPHIR are presented to demonstrate a typical experimental setup and the utility of the newly added plant chamber.

  20. Evaluation of satellites and remote sensors for atmospheric pollution measurements

    Science.gov (United States)

    Carmichael, J.; Eldridge, R.; Friedman, E.; Keitz, E.

    1976-01-01

    An approach to the development of a prioritized list of scientific goals in atmospheric research is provided. The results of the analysis are used to estimate the contribution of various spacecraft/remote sensor combinations for each of several important constituents of the stratosphere. The evaluation of the combinations includes both single-instrument and multiple-instrument payloads. Attention was turned to the physical and chemical features of the atmosphere as well as the performance capability of a number of atmospheric remote sensors. In addition, various orbit considerations were reviewed along with detailed information on stratospheric aerosols and the impact of spacecraft environment on the operation of the sensors.

  1. Use of Optical Oxygen Sensors in Non-Destructively Determining the Levels of Oxygen Present in Combined Vacuum and Modified Atmosphere Packaged Pre-Cooked Convenience-Style Foods and the Use of Ethanol Emitters to Extend Product Shelf-Life

    Directory of Open Access Journals (Sweden)

    Andreas W. Hempel

    2013-11-01

    Full Text Available O2 sensors were used to non-destructively monitor O2 levels in commercially packed pre-cooked, convenience modified atmosphere packaging (MAP foods. A substantial level of O2 (>15% was present in packs resulting in a shorter than expected shelf-life, where the primary spoilage mechanism was found to be mould. Various combinations of vacuum (0–0.6 MPa and gas flush (0.02–0.03 MPa (30% CO2/70% N2 settings were assessed as treatments that result in the desired shelf-life (28 days. This was achieved using the combined treatment of vacuum 0.35 MPa and gas flush 0.02 MPa which resulted in a reduction of 6%–9% O2 in all three samples (battered sausages (BS, bacon slices (BA, and meat and potato pies (PP. Reduced O2 levels reflect the microbial quality of products, which has been successfully reduced. Duplicate samples of all product packs were produced using ethanol emitters (EE to see if shelf-life could be further extended. Results showed a further improvement in shelf-life to 35 days. Sensory analysis showed that ethanol flavour and aroma was not perceived by panellists in two of the three products assessed. This study demonstrates how smart packaging technologies, both intelligent and active, can be used to assist in the modification of conventional packaging systems in order to enhance product quality and safety and through the extension of product shelf-life.

  2. Seasonal atmospheric extinction

    International Nuclear Information System (INIS)

    Mikhail, J.S.

    1979-01-01

    Mean monochromatic extinction coefficients at various wavelengths at the Kottamia Observatory site have shown the existence of a seasonal variation of atmospheric extinction. The extinction of aerosol compontnts with wavelengths at winter represent exceedingly good conditions. Spring gives the highest extinction due to aerosol. (orig.)

  3. Atmospheric muons in Hanoi

    International Nuclear Information System (INIS)

    Pham Ngoc Diep; Pham thi Tuyet Nhung; Pierre Darriulat; Nguyen Thi Thao; Dang Quang Thieu; Vo Van Thuan

    2006-01-01

    Recent measurements of the atmospheric muon flux in Hanoi were reviewed. As the measurements were carried out in a region of maximal geomagnetic rigidity cutoff, they provided a sensitive test of air shower models used in the interpretation of neutrino oscillation experiments. The measured data were found to be in a very good agreement with the prediction from the model of M. Honda. (author)

  4. Climate and atmospheric research

    International Nuclear Information System (INIS)

    Kramer, G.; Schumacher, R.

    1992-01-01

    This issue of the scientific journal of the Humboldt university is dedicated to results of research work carried out to the greatest extent at the meteorological institute in the last two years on the area of climate and atmospheric research. The traditional research areas of the institute are climatology and the dynamics of the atmosphere, in particular the atmospherical boundary layer. Considering the high probability of a global climatic fluctuation due to the anthropogenic change of composition of the atmosphere and other climate-relevant factors imminent in the next century, climatological research today is an important part of global and regional environmental research. From the necessity of determination and evaluation of the effect of climatic fluctuations on nature and society the contours of a new interdisciplinary research area are already visible now. This is suitable as hardly any other area to be the supporting idea of environmental research at universities. The contributions contained in the issue already consider, in addition to results on climate diagnosis, also results on aspects of climate effect research. (orig./KW) [de

  5. Contaminants in the Atmosphere

    DEFF Research Database (Denmark)

    Skov, H.; Bossi, R.; Wåhlin, P.

    This report presents the results of atmospheric monitoring in Nuuk, Greenland. A long series of heavy metals and persistent organic Pollutants (POPs) have been measured and model calculations have been carried out supporting the interpretation of the results. Financially, the Danish Environmental...

  6. Atmospheric neutrino challenges

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States)

    2005-08-15

    We briefly review the improvements in the predictions of atmospheric neutrino fluxes since the NOW2000 workshop. In spite of the great progress of the calculational technique the predictions are still not exact because of the uncertainties in the two major sets of input - cosmic ray flux and hadronic interactions on light nuclei.

  7. Atmosphere as colloid

    International Nuclear Information System (INIS)

    Kutsenogij, K.P.; Kutsenogij, P.K.

    2008-01-01

    In the paper review the results of experimental and theoretical investigations on space-time variability of physical, chemical and biological atmospheric characteristics and its influence on climate, ecology and environmental quality under the impact of natural processes and anthropogenic load is submitted

  8. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Perkins, D.H.

    1984-01-01

    The atmospheric neutrino fluxes, which are responsible for the main background in proton decay experiments, have been calculated by two independent methods. There are discrepancies between the two sets of results regarding latitude effects and up-down asymmetries, especially for neutrino energies Esub(ν) < 1 GeV. (author)

  9. Atoms and atmosphere

    International Nuclear Information System (INIS)

    Megie, G.

    1994-01-01

    The ozone sources, roles and distribution are reviewed, and the atmosphere dynamic effects on ozone circulation are discussed; chlorine and CFC are the two main perturbative agents of the ozone layer and their effects are described and analyzed; impacts of the limitation of the CFC and chlorine utilization are discussed. 5 figs., 9 tabs

  10. ESA Atmospheric Toolbox

    Science.gov (United States)

    Niemeijer, Sander

    2017-04-01

    The ESA Atmospheric Toolbox (BEAT) is one of the ESA Sentinel Toolboxes. It consists of a set of software components to read, analyze, and visualize a wide range of atmospheric data products. In addition to the upcoming Sentinel-5P mission it supports a wide range of other atmospheric data products, including those of previous ESA missions, ESA Third Party missions, Copernicus Atmosphere Monitoring Service (CAMS), ground based data, etc. The toolbox consists of three main components that are called CODA, HARP and VISAN. CODA provides interfaces for direct reading of data from earth observation data files. These interfaces consist of command line applications, libraries, direct interfaces to scientific applications (IDL and MATLAB), and direct interfaces to programming languages (C, Fortran, Python, and Java). CODA provides a single interface to access data in a wide variety of data formats, including ASCII, binary, XML, netCDF, HDF4, HDF5, CDF, GRIB, RINEX, and SP3. HARP is a toolkit for reading, processing and inter-comparing satellite remote sensing data, model data, in-situ data, and ground based remote sensing data. The main goal of HARP is to assist in the inter-comparison of datasets. By appropriately chaining calls to HARP command line tools one can pre-process datasets such that two datasets that need to be compared end up having the same temporal/spatial grid, same data format/structure, and same physical unit. The toolkit comes with its own data format conventions, the HARP format, which is based on netcdf/HDF. Ingestion routines (based on CODA) allow conversion from a wide variety of atmospheric data products to this common format. In addition, the toolbox provides a wide range of operations to perform conversions on the data such as unit conversions, quantity conversions (e.g. number density to volume mixing ratios), regridding, vertical smoothing using averaging kernels, collocation of two datasets, etc. VISAN is a cross-platform visualization and

  11. Formation and Evolution of the Atmosphere on Early Titan

    Science.gov (United States)

    Marounina, N.; Tobie, G.; Carpy, S.; Monteux, J.; Charnay, B.; Grasset, O.

    2014-12-01

    The mass and composition of Titan's massive atmosphere, which is dominated by N2 and CH4 at present, have probably varied all along its history owing to a combination of exogenous and endogenous processes. In a recent study, we investigated its fate during the Late Heavy Bombardment (LHB) by modeling the competitive loss and supply of volatiles by cometary impacts and their consequences on the atmospheric balance. We examine the emergence of an atmosphere as well as the evolution of a primitive atmosphere of various sizes and compositions. By considering an impactor population characteristic of the LHB, we showed that an atmosphere with a mass equivalent to the present-day one cannot be formed during the LHB era. Our calculations indicated that the high-velocity impacts during the LHB led to a strong atmospheric erosion, so that the pre-LHB atmosphere should be 5 to 7 times more massive than at present (depending mostly on the albedo), in order to sustain an atmosphere equivalent to the present-day one. This implies that either a massive atmosphere was formed on Titan during its accretion or that the nitrogen-rich atmosphere was generated after the LHB.To investigate the primitive atmosphere of the satellite, we consider chemical exchanges of volatils between a global water ocean at Titan's surface, generated by impact heating during the accretion and an atmosphere. We are currently developing a liquid-vapor equilibrium model for various initial oceanic composition to investigate how a massive atmosphere may be generated during the satellite growth and how it may evolve toward a composition dominated by N2. More generally, our model address how atmosphere may be generated in water-rich objects, which may be common around other stars.

  12. Investigating CO2 Reservoirs at Gale Crater and Evidence for a Dense Early Atmosphere

    Science.gov (United States)

    Niles, P. B.; Archer, P. D.; Heil, E.; Eigenbrode, J.; McAdam, A.; Sutter, B.; Franz, H.; Navarro-Gonzalez, R.; Ming, D.; Mahaffy, P. R.; hide

    2015-01-01

    Hesperian/Noachian boundary. Likewise, the absence of carbonates suggests that CO2- weathering processes similar to those present on Earth were not dominant. Instead it is possible that more exotic CO2 deposition has occurred driven by atmospheric photochemistry and/or degradation of organic carbon.

  13. Comets, impacts, and atmospheres

    Science.gov (United States)

    Owen, Tobias; Bar-Nun, Akiva

    Studies of element abundances and values of D/H in the atmospheres of the giant planets and Titan have emphasized the important role of icy planetesimals in the formation of these bodies. In these atmospheres, C/H and D/H increase as the relative masses of the 'cores' of the planets increase. N/H appears to deviate from this trend in an interesting way. In the inner solar system, the traditional approach of using carbonaceous chondrites as the source of planetary volatiles is in serious trouble because of the depletion of xenon and the unusual pattern of xenon isotopes found in the atmospheres of Earth and Mars, and because of the solar-type abundance ratios of argon, krypton and xenon and the large amounts of neon and argon on Venus. Recent studies of elemental abundances in comets, especially P/Halley, coupled with laboratory studies of the trapping of gas in ice formed at low temperatures by A. Bar-Nun et al. provide a consistent interpretation of all of these results. This interpretation emphasizes the fundamental importance of icy planetesimals (comets) and the randomness of early impacts in the formation of planetary systems. Cometary delivery by itself will not explain the noble gas abundances on the inner planets. There is good evidence for at least one additional source, which presumably consists of the rocky material making up the bulk of the planets. The existence of this rocky reservoir is manifested in the nucleogenic isotopes and in the neon which is found in all these atmospheres and is also present in the Earth's mantle. This neon may well be a relic of the planets' earliest, accretional atmospheres.

  14. Ozone Formation Induced by the Impact of Reactive Bromine and Iodine Species on Photochemistry in a Polluted Marine Environment.

    Science.gov (United States)

    Shechner, M; Tas, E

    2017-12-19

    Reactive iodine and bromine species (RIS and RBS, respectively) are known for altering atmospheric chemistry and causing sharp tropospheric ozone (O 3 ) depletion in polar regions and significant O 3 reduction in the marine boundary layer (MBL). Here we use measurement-based modeling to show that, unexpectedly, both RIS and RBS can lead to enhanced O 3 formation in a polluted marine environment under volatile organic compound (VOC)-limited conditions associated with high nitrogen oxide (NO X = [NO] + [NO 2 ]) concentrations. Under these conditions, the daily average O 3 mixing ratio increased to ∼44 and ∼28% for BrO and IO mixing ratios of up to ∼6.8 and 4.7 ppt, respectively. The increase in the level of O 3 was partially induced by enhanced ClNO 3 formation for higher Br 2 and I 2 emission flux. The increase in the level of O 3 was associated with an increased mixing ratio of hydroperoxyl radical to hydroxyl radical ([HO 2 ]/[OH]) and increased [NO 2 ]/[NO] with higher levels of RBS and/or RIS. NO X -rich conditions are typical of the polluted MBL, near coastlines and ship plumes. Considering that O 3 is toxic to humans, plants, and animals and is a greenhouse gas, our findings call for adequate updating of local and regional air-quality models with the effects of activities of RBS and RIS on O 3 mixing ratios in the polluted MBL.

  15. Forecast combinations

    OpenAIRE

    Aiolfi, Marco; Capistrán, Carlos; Timmermann, Allan

    2010-01-01

    We consider combinations of subjective survey forecasts and model-based forecasts from linear and non-linear univariate specifications as well as multivariate factor-augmented models. Empirical results suggest that a simple equal-weighted average of survey forecasts outperform the best model-based forecasts for a majority of macroeconomic variables and forecast horizons. Additional improvements can in some cases be gained by using a simple equal-weighted average of survey and model-based fore...

  16. Combined homicide

    Directory of Open Access Journals (Sweden)

    Slović Živana

    2017-01-01

    Full Text Available Introduction: Combined homicide is a combination of two or more different modes of killing. These homicides occur when multiple perpetrators have different mode of killing, to hide the true manner of death, or when an initially unsuccessful attack with one weapon is abandoned and changed by another mode which is more successful, or due to availability of weapons at the scene of homicide, or unexpected appearance of possible eyewitness, or else. Case report: This case report is about 65-year old woman who was found in her residence on the floor next to the bed lying on her back with two kitchen knives in her neck. Autopsy revealed an abrasion on the frontal part of the neck and a bruise of the soft tissues of the neck with a double fracture of both greater horns of the hyoid bone and a fracture of both superior horns of the thyroid cartilage. The cause of death was exsanguination into right half of the thoracic cavity from the left subclavian artery which was cut, on the spot of stab wound in the neck. Conclusion: Hemorrhage in the soft tissue near broken hyoid bone and thyroid cartilage indicate that the victim was first strangulated and then stabbed with kitchen knives. Combined homicides are caused by one or more killers in order to accelerate the killing, or to be sure to provide the fatal outcome. This case is also interesting because the killer left weapon in the victim's neck.

  17. Lichens and atmospheric pollution

    Energy Technology Data Exchange (ETDEWEB)

    Tallis, J H

    1964-09-01

    The extreme sensitivity of lichens, particularly the larger ones, to industrialization has been recognized for many years. Most people attribute the absence of lichens from urban areas to the atmospheric pollution prevailing, and a few attribute it to climatic dryness, resulting from efficient drainage systems in towns. The two main components of air pollution are solid matter, or soot, and gaseous sulfur dioxide. The main effects of pollution appear to be: a direct reduction of light intensity by smoke haze, a deposit of soot on the plant surface, an acidification of the soil, and direct damage to plants. A body of evidence indicates that SO/sub 2/ may be the main harmful component for lichens. The distribution of lichens thus might be used to determine the limits within which atmospheric pollution is operating. 5 references.

  18. Atmospheric Release Advisory Capability

    International Nuclear Information System (INIS)

    Dickerson, M.H.; Gudiksen, P.H.; Sullivan, T.J.

    1983-02-01

    The Atmospheric Release Advisory Capability (ARAC) project is a Department of Energy (DOE) sponsored real-time emergency response service available for use by both federal and state agencies in case of a potential or actual atmospheric release of nuclear material. The project, initiated in 1972, is currently evolving from the research and development phase to full operation. Plans are underway to expand the existing capability to continuous operation by 1984 and to establish a National ARAC Center (NARAC) by 1988. This report describes the ARAC system, its utilization during the past two years, and plans for its expansion during the next five to six years. An integral part of this expansion is due to a very important and crucial effort sponsored by the Defense Nuclear Agency to extend the ARAC service to approximately 45 Department of Defense (DOD) sites throughout the continental US over the next three years

  19. Outer atmospheric research

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1988-01-01

    The region above the earth from about 90 km to 150 km is a major part of the upper or outer atmosphere. It is relatively unexplored, being too high for balloons or aircraft and too low for persistent orbiting spacecraft. However, the concept of a tethered subsatellite, deployed downward from an orbiting, more massive craft such as the Space Shuttle, opens the possibility of a research capability that could provide global mapping of this region. The need for research in this thick spherical shell above the earth falls into two major categories: (1) scientific data for understanding and modeling the global atmosphere and thereby determining its role in the earth system, and (2) engineering data for the design of future aerospace vehicles that will operate there. This paper presents an overview and synthesis of the currently perceived research needs and the state-of-the-art of the proposed tethered research capability. 16 references

  20. Atmospheric tides on Neptune

    International Nuclear Information System (INIS)

    Dement'ev, M.S.; Morozhenko, A.V.

    1989-01-01

    The dependence of the equivalent width of the methane absorption band at 619 nm in the Neptune's spectrum upon the Triton's orbital position is discovered. It is assumed that observed changes of the equivalent width of the band and colour index (J - K) (Belton et al., 1981; Brown et al., 1981; Cruikshank, 1978) are due to atmospheric tides (period 2 d .9375) and Neptune's rotation (period 10 h .14)

  1. Dreaming of Atmospheres

    Science.gov (United States)

    Waldmann, I. P.

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  2. Atmospheric benzene and toluene

    International Nuclear Information System (INIS)

    Rasmussen, R.A.; Khalil, M.A.K.

    1983-01-01

    Atmospheric concentrations of benzene (C 6 H 6 ) and toluene (C 7 H 8 )have been observed at nine remote locations of the world ranging in latitude from inside the arctic circle to the south pole. The observations span all seasons at each location. In the northern hemisphere it is observed that C 6 H 6 and C 7 H 8 are most abundant during winter and least abundant during summer. Based on the limited data available, such cycles are not observed in the tropics. These findings are consistent with the expected latitudinal and seasonal variations of OH radicals which cause benzene and toluene to be removed from the atmosphere. The latitude distribution shows high concentrations at mid latitude and low levels in the southern hemisphere. This finding is consistent with the present understanding that the sources of benzene and toluene are primarily anthropogenic. The observed concentration distribution and varibility are consistent with the short expected atmospheric lifetime of the order of months for benzene and days for toluene

  3. DREAMING OF ATMOSPHERES

    International Nuclear Information System (INIS)

    Waldmann, I. P.

    2016-01-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process

  4. Atmospheric radiation monitor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P. [Universidade Federal do ABC (UFABC), SP (Brazil); Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10{sup 17} eV and 10{sup 18} eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < {lambda} < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  5. Atmospheric radiation monitor

    International Nuclear Information System (INIS)

    Oliveira, M.A. Leigui de; Peixoto, C.J. Todero; Leao, M.S.A.B.; Luzio, V.P.; Barbosa, A.F.; Lima Junior, H.P.; Vilar, A.B.; Gama, R.G.; Ferraz, V.A.

    2011-01-01

    Full text: The Atmospheric Radiation Monitor (MonRAt) is a compact telescope designed to detect fluorescence photons generated in the atmosphere by ultra-high energy cosmic rays showers with energies in the interval between 10 17 eV and 10 18 eV. It is composite by a 64 pixels MultiAnodic PhotoMultiplier Tube (MAPMT) placed at the focus of a parabolic mirror mounted in a Newtonian telescope setup and the data acquisition system. In front of the MAPMT photocathode, filters will be positioned to select light with wavelength in the near ultraviolet region (300 nm < λ < 450 nm) where the nitrogen fluorescent emissions occurs. The data acquisition system consists of a set of pre-amplifiers and FPGA-based boards able to record trigger times and waveforms from each channel and send the data to a computer by USB ports. MonRAt will be used to detect fluorescence photons under different atmospheric conditions (pressure, temperature, humidity, local geomagnetic field, etc) and will contribute with a detailed study of the fluorescence radiation yield. The assembly of the telescope is under way and we present in this work the status of the experiment and its first measurements in the laboratory. (author)

  6. The Atmospheric Boundary Layer

    Science.gov (United States)

    Garratt, J. R.

    1994-05-01

    A comprehensive and lucid account of the physics and dynamics of the lowest one to two kilometers of the Earth's atmosphere in direct contact with the Earth's surface, known as the atmospheric boundary layer (ABL). Dr. Garratt emphasizes the application of the ABL problems to numerical modeling of the climate, which makes this book unique among recent texts on the subject. He begins with a brief introduction to the ABL before leading to the development of mean and turbulence equations and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modeling of the ABL is crucially dependent for its realism on the surface boundary conditions, so chapters four and five deal with aerodynamic and energy considerations, with attention given to both dry and wet land surfaces and the sea. The author next treats the structure of the clear-sky, thermally stratified ABL, including the convective and stable cases over homogeneous land, the marine ABL, and the internal boundary layer at the coastline. Chapter seven then extends this discussion to the cloudy ABL. This is particularly relevant to current research because the extensive stratocumulus regions over the subtropical oceans and stratus regions over the Arctic have been identified as key players in the climate system. In the final chapters, Dr. Garratt summarizes the book's material by discussing appropriate ABL and surface parameterization schemes in general circulation models of the atmosphere that are being used for climate stimulation.

  7. DREAMING OF ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Waldmann, I. P., E-mail: ingo@star.ucl.ac.uk [Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT (United Kingdom)

    2016-04-01

    Here, we introduce the RobERt (Robotic Exoplanet Recognition) algorithm for the classification of exoplanetary emission spectra. Spectral retrieval of exoplanetary atmospheres frequently requires the preselection of molecular/atomic opacities to be defined by the user. In the era of open-source, automated, and self-sufficient retrieval algorithms, manual input should be avoided. User dependent input could, in worst-case scenarios, lead to incomplete models and biases in the retrieval. The RobERt algorithm is based on deep-belief neural (DBN) networks trained to accurately recognize molecular signatures for a wide range of planets, atmospheric thermal profiles, and compositions. Reconstructions of the learned features, also referred to as the “dreams” of the network, indicate good convergence and an accurate representation of molecular features in the DBN. Using these deep neural networks, we work toward retrieval algorithms that themselves understand the nature of the observed spectra, are able to learn from current and past data, and make sensible qualitative preselections of atmospheric opacities to be used for the quantitative stage of the retrieval process.

  8. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  9. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  10. Determination of the Atmospheric Neutrino Fluxes from Atmospheric Neutrino Data

    NARCIS (Netherlands)

    Gonzalez-Garcia, M. C.; Maltoni, M.; Rojo, J.

    2006-01-01

    The precise knowledge of the atmospheric neutrino fluxes is a key ingredient in the interpretation of the results from any atmospheric neutrino experiment. In the standard atmospheric neutrino data analysis, these fluxes are theoretical inputs obtained from sophisticated numerical calculations based

  11. Regarding the use and misuse of retinal protonated Schiff base photochemistry as a test case for time-dependent density-functional theory

    Energy Technology Data Exchange (ETDEWEB)

    Valsson, Omar [Department of Chemistry and Applied Biosciences, ETH Zurich and Facoltà di Informatica, Instituto di Scienze Computationali, Università della Svizzera italiana, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Filippi, Claudia, E-mail: c.filippi@utwente.nl [MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Casida, Mark E., E-mail: mark.casida@ujf-grenoble.fr [Laboratoire de Chimie Théorique, Département de Chimie Moléculaire (DCM), Institut de Chimie Moléculaire de Grenoble (ICMG), Université Joseph Fourier, Grenoble I, F-3801 Grenoble (France)

    2015-04-14

    The excited-state relaxation of retinal protonated Schiff bases (PSBs) is an important test case for biological applications of time-dependent (TD) density-functional theory (DFT). While well-known shortcomings of approximate TD-DFT might seem discouraging for application to PSB relaxation, progress continues to be made in the development of new functionals and of criteria allowing problematic excitations to be identified within the framework of TD-DFT itself. Furthermore, experimental and theoretical ab initio advances have recently lead to a revised understanding of retinal PSB photochemistry, calling for a reappraisal of the performance of TD-DFT in describing this prototypical photoactive system. Here, we re-investigate the performance of functionals in (TD-)DFT calculations in light of these new benchmark results, which we extend to larger PSB models. We focus on the ability of the functionals to describe primarily the early skeletal relaxation of the chromophore and investigate how far along the out-of-plane pathways these functionals are able to describe the subsequent rotation around formal single and double bonds. Conventional global hybrid and range-separated hybrid functionals are investigated as the presence of Hartree-Fock exchange reduces problems with charge-transfer excitations as determined by the Peach-Benfield-Helgaker-Tozer Λ criterion and by comparison with multi-reference perturbation theory results. While we confirm that most functionals cannot render the complex photobehavior of the retinal PSB, do we also observe that LC-BLYP gives the best description of the initial part of the photoreaction.

  12. Photochemistry and photophysics of the amino and imino tautomers of 1-methylcytosine: tautomerisation as a side product of the radiationless decay.

    Science.gov (United States)

    Li, Quansong; Blancafort, Lluís

    2013-08-01

    The photochemistry and photophysics of the amino-oxo (AO) and imino-oxo (IO) tautomers of 1-methylcytosine are investigated with ab initio calculations, using the CASPT2//CASSCF approach. Our aim is to rationalize recent experimental results which show that the AO tautomer has an excited state lifetime of about 1 ps, similar to cytosine (J.-W. Ho, H.-C. Yen, W.-K. Chou, C.-N. Weng, L.-H. Cheng, H.-Q. Shi, S.-H. Lai and P.-Y. Cheng, J. Phys. Chem. A, 2011, 115, 8406-8418), and that irradiation with wavelengths shorter than 308 nm induces the AO→IO tautomerization (I. Reva, M. J. Nowak, L. Lapinski and R. Fausto, J. Phys. Chem. B, 2012, 116, 5703-5710). For the canonical AO tautomer we find two analogous decay mechanisms to those described previously for cytosine, involving a conical intersection of ethylenic type and one where the amino group is bent out of plane. Decay through these intersections provides an unreactive return path to the AO ground state species. More importantly, we have identified new decay paths that lead from the two intersections to the trans-IO tautomer, without a barrier. These paths provide the possibility of forming the IO tautomer, presumably in small yields, as a side product of the radiationless decay. Thus, we have established for the first time computationally the mechanism of the UV-induced tautomerization, which is compatible with the well-established decay mechanism for cytosine. For the IO tautomer, we also find a mechanism for the excited state interconversion of the cis and trans forms and for efficient radiationless decay through a conical intersection where the imino group is perpendicular to the ring and bent out of the plane. These results are likely to be valid also for cytosine.

  13. Aqueous Photochemistry of Secondary Organic Aerosol of α-Pinene and α-Humulene Oxidized with Ozone, Hydroxyl Radical, and Nitrate Radical

    Energy Technology Data Exchange (ETDEWEB)

    Romonosky, Dian E.; Li, Ying; Shiraiwa, Manabu; Laskin, Alexander; Laskin, Julia; Nizkorodov, Sergey

    2017-01-18

    Formation of secondary organic aerosols (SOA) from biogenic volatile organic compounds 13 (BVOC) occurs via O3- and OH-initiated reactions during the day and reactions with NO3 during the 14 night. We explored the effect of these three oxidation conditions on the molecular composition and 15 aqueous photochemistry of model SOA prepared from two common BVOC. A common monoterpene, α- 16 pinene, and sesquiterpene, α-humulene, were used to form SOA in a smog chamber via BVOC + O3, 17 BVOC + NO3, and BVOC + OH + NOx oxidation. Samples of SOA were collected, extracted in water, 18 and photolyzed in an aqueous solution in order to simulate the photochemical cloud processing of SOA. 19 The extent of change in the molecular level composition of SOA over 4 hours of photolysis (roughly 20 equivalent to 64 hours of photolysis under ambient conditions) was assessed with high-resolution 21 electrospray ionization mass spectrometry. The analysis revealed significant differences in the molecular 22 composition between monoterpene and sesquiterpene SOA formed by the different oxidation pathways. 23 The composition further evolved during photolysis with the most notable change corresponding to the 24 nearly-complete removal of nitrogen-containing organic compounds. Hydrolysis of SOA compounds also 25 occurred in parallel with photolysis. The preferential loss of larger SOA compounds during photolysis 26 and hydrolysis made the SOA compounds more volatile on average. This study suggests that cloud- and 27 fog-processing may under certain conditions lead to a reduction in the SOA loading as opposed to an 28 increase in SOA loading commonly assumed in the literature.

  14. Atmospheric speciation of mercury in two contrasting Southeastern US airsheds

    Science.gov (United States)

    Gabriel, Mark C.; Williamson, Derek G.; Brooks, Steve; Lindberg, Steve

    Simultaneous measurement of gaseous elemental, reactive gaseous, and fine particulate mercury took place in Tuscaloosa AL, (urban airshed) and Cove Mountain, TN (non-urban airshed) during the summers of 2002 and 2003. The objective of this research was to (1) summarize the temporal distribution of each mercury specie at each site and compare to other speciation data sets developed by other researchers and (2) provide insight into urban and non-urban mercury speciation effects using various statistical methods. Average specie concentrations were as follows: 4.05 ng m -3 (GEM), 13.6 pg m -3 (RGM), 16.4 pg m -3 (Hg-p) for Tuscaloosa; 3.20 ng m -3 (GEM), 13.6 pg m -3 (RGM), 9.73 pg m -3 (Hg-p) for Cove Mountain. As a result of urban airshed impacts, short periods of high concentration for all mercury species was common in Tuscaloosa. At Cove Mountain a consistent mid-day rise and evening drop for mercury species was found. This pattern was primarily the result of un-impacted physical boundary layer movement, although, other potential impacts were ambient photochemistry and air-surface exchange of mercury. Meteorological parameters that are known to heavily impact mercury speciation were similar for the study period for Tuscaloosa and Cove Mountain except for wind speed (m s -1), which was higher at Cove Mountain. For both sites statistically significant ( p<0.0001), inverse relationships existed between wind speed and Hg 0 concentration. A weaker windspeed-Hg 0 correlation existed for Tuscaloosa. By analyzing Hg concentration—wind speed magnitude change at both sites it was found that wind speed at Cove Mountain had a greater influence on Hg 0 concentration variability than Tuscaloosa by a factor of 3. Using various statistical tests, we concluded that the nature of Tuscaloosa's atmospheric mercury speciation was the result of typical urban airshed impacts. Cove Mountain showed atmospheric mercury speciation characteristics indicative of a non-urban area along with

  15. DMS photochemistry during the Asian dust-storm period in the Spring of 2001: model simulations vs. field observations.

    Science.gov (United States)

    Shon, Zang-Ho; Kim, Ki-Hyun; Swan, Hilton; Lee, Gangwoong; Kim, Yoo-Keun

    2005-01-01

    This study examines the local/regional DMS oxidation chemistry on Jeju Island (33.17 degrees N, 126.10 degrees E) during the Asian dust-storm (ADS) period of April 2001. Three ADS events were observed during the periods of April 10-12, 13-14, and 25-26, respectively. For comparative purposes, a non-Asian-dust-storm (NADS) period was also considered in this study, which represents the entire measurement periods in April except the ADS events. The atmospheric concentrations of DMS and SO2 were measured at a ground station on Jeju Island, Korea, as part of the ACE-Asia intensive operation. DMS (means of 34-52 pptv) and SO2 (means of 0.96-1.14 ppbv) levels measured during the ADS period were higher than those (mean of 0.45 ppbv) during the NADS period. The enhanced DMS levels during the ADS period were likely due to the increase in DMS flux under reduced oxidant levels (OH and NO3). SO2 levels between the two contrasting periods were affected sensitively by some factors such as air mass origins. The diurnal variation patterns of DMS observed during the two periods were largely different from those seen in the background environment (e.g., the marine boundary layer (MBL)). In contrast to the MBL, the maximum DMS value during the ADS period was seen in the late afternoon at about sunset; this reversed pattern appears to be regulated by certain factors (e.g., enhanced NO3 oxidation). The sea-to-air fluxes of DMS between the ADS and NADS periods were calculated based on the mass-balance photochemical-modeling approach; their results were clearly distinguished with the values of 4.4 and 2.4 micromole m(-2) day(-1), respectively. This study confirmed that the contribution of DMS oxidation to observed SO2 levels on Jeju Island was not significant during our study period regardless of ADS or NADS periods.

  16. Peroxy radical chemistry and the control of ozone photochemistry at Mace Head, Ireland during the summer of 2002

    Directory of Open Access Journals (Sweden)

    Z. L. Fleming

    2006-01-01

    Full Text Available Peroxy radical (HO2+ΣRO2 measurements, using the PEroxy Radical Chemical Amplification (PERCA technique at the North Atlantic Marine Boundary Layer EXperiment (NAMBLEX at Mace Head in summer 2002, are presented and put into the context of marine, boundary-layer chemistry. A suite of other chemical parameters (NO, NO2, NO3, CO, CH4, O3, VOCs, peroxides, photolysis frequencies and meteorological measurements, are used to present a detailed analysis of the role of peroxy radicals in tropospheric oxidation cycles and ozone formation. Under the range of conditions encountered the peroxy radical daily maxima varied from 10 to 40 pptv. The diurnal cycles showed an asymmetric shape typically shifted to the afternoon. Using a box model based on the master chemical mechanism the average model measurement agreement was 2.5 across the campaign. The addition of halogen oxides to the model increases the level of model/measurement agreement, apparently by respeciation of HOx. A good correlation exists between j(HCHO.[HCHO] and the peroxy radicals indicative of the importance of HCHO in the remote atmosphere as a HOx source, particularly in the afternoon. The peroxy radicals showed a strong dependence on [NO2] with a break point at 0.1 ppbv, where the radicals increased concomitantly with the reactive VOC loading, this is a lower value than seen at representative urban campaigns. The HO2/(HO2+ΣRO2 ratios are dependent on [NOx] ranging between 0.2 and 0.6, with the ratio increasing linearly with NOx. Significant night-time levels of peroxy radicals were measured up to 25 pptv. The contribution of ozone-alkenes and NO3-alkene chemistry to night-time peroxy radical production was shown to be on average 59 and 41%. The campaign mean net ozone production rate was 0.11±0.3 ppbv h-1. The ozone production rate was strongly dependent on [NO] having linear sensitivity (dln(P(O3/dln(NO=1.0. The results imply that the N(O3 (the in-situ net photochemical rate of ozone

  17. Internal reflection flash photolysis study of the photochemistry of eosin at TiO sub 2 semiconductor electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, M.A.; Fitzgerald, E.C.; Spitler, M.T. (Polaroid Corp., Cambridge, MA (USA))

    1989-08-10

    It is shown that the photoelectrochemical data on eosin Y sensitized TiO{sub 2} single-crystal electrodes cannot be interpreted unambiguously without concomitant data from flash photolysis measurements on this system. By use of a combination of internal reflection spectroscopy and laser flash photolysis, electron exchange with TiO{sub 2} was observed for the excited singlet state, the triplet state, and the cation radical of the dye. With a temporal resolution of 100 ns, the kinetics of the charge transfer are compared with those of the dye in solution and used to interpret the photoelectrochemistry of the dye at the electrode. Spectroscopic evidence revealed photocurrent production by the triplet state and a reduction of the eosin cation radical by electrons from the TiO{sub 2} conduction band and by hydroquinone.

  18. Evaluation of the reactive nitrogen budget of the remote atmosphere in global models using airborne measurements

    Science.gov (United States)

    Murray, L. T.; Strode, S. A.; Fiore, A. M.; Lamarque, J. F.; Prather, M. J.; Thompson, C. R.; Peischl, J.; Ryerson, T. B.; Allen, H.; Blake, D. R.; Crounse, J. D.; Brune, W. H.; Elkins, J. W.; Hall, S. R.; Hintsa, E. J.; Huey, L. G.; Kim, M. J.; Moore, F. L.; Ullmann, K.; Wennberg, P. O.; Wofsy, S. C.

    2017-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) in the background atmosphere are critical precursors for the formation of tropospheric ozone and OH, thereby exerting strong influence on surface air quality, reactive greenhouse gases, and ecosystem health. The impact of NOx on atmospheric composition and climate is sensitive to the relative partitioning of reactive nitrogen between NOx and longer-lived reservoir species of the total reactive nitrogen family (NOy) such as HNO3, HNO4, PAN and organic nitrates (RONO2). Unfortunately, global chemistry-climate models (CCMs) and chemistry-transport models (CTMs) have historically disagreed in their reactive nitrogen budgets outside of polluted continental regions, and we have lacked in situ observations with which to evaluate them. Here, we compare and evaluate the NOy budget of six global models (GEOS-Chem CTM, GFDL AM3 CCM, GISS E2.1 CCM, GMI CTM, NCAR CAM CCM, and UCI CTM) using new observations of total reactive nitrogen and its member species from the NASA Atmospheric Tomography (ATom) mission. ATom has now completed two of its four planned deployments sampling the remote Pacific and Atlantic basins of both hemispheres with a comprehensive suite of measurements for constraining reactive photochemistry. All six models have simulated conditions climatologically similar to the deployments. The GMI and GEOS-Chem CTMs have in addition performed hindcast simulations using the MERRA-2 reanalysis, and have been sampled along the flight tracks. We evaluate the performance of the models relative to the observations, and identify factors contributing to their disparate behavior using known differences in model oxidation mechanisms, heterogeneous loss pathways, lightning and surface emissions, and physical loss processes.

  19. VULCAN: An Open-source, Validated Chemical Kinetics Python Code for Exoplanetary Atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shang-Min; Grosheintz, Luc; Kitzmann, Daniel; Heng, Kevin [University of Bern, Center for Space and Habitability, Sidlerstrasse 5, CH-3012, Bern (Switzerland); Lyons, James R. [Arizona State University, School of Earth and Space Exploration, Bateman Physical Sciences, Tempe, AZ 85287-1404 (United States); Rimmer, Paul B., E-mail: shang-min.tsai@space.unibe.ch, E-mail: kevin.heng@csh.unibe.ch, E-mail: jimlyons@asu.edu [University of St. Andrews, School of Physics and Astronomy, St. Andrews, KY16 9SS (United Kingdom)

    2017-02-01

    We present an open-source and validated chemical kinetics code for studying hot exoplanetary atmospheres, which we name VULCAN. It is constructed for gaseous chemistry from 500 to 2500 K, using a reduced C–H–O chemical network with about 300 reactions. It uses eddy diffusion to mimic atmospheric dynamics and excludes photochemistry. We have provided a full description of the rate coefficients and thermodynamic data used. We validate VULCAN by reproducing chemical equilibrium and by comparing its output versus the disequilibrium-chemistry calculations of Moses et al. and Rimmer and Helling. It reproduces the models of HD 189733b and HD 209458b by Moses et al., which employ a network with nearly 1600 reactions. We also use VULCAN to examine the theoretical trends produced when the temperature–pressure profile and carbon-to-oxygen ratio are varied. Assisted by a sensitivity test designed to identify the key reactions responsible for producing a specific molecule, we revisit the quenching approximation and find that it is accurate for methane but breaks down for acetylene, because the disequilibrium abundance of acetylene is not directly determined by transport-induced quenching, but is rather indirectly controlled by the disequilibrium abundance of methane. Therefore we suggest that the quenching approximation should be used with caution and must always be checked against a chemical kinetics calculation. A one-dimensional model atmosphere with 100 layers, computed using VULCAN, typically takes several minutes to complete. VULCAN is part of the Exoclimes Simulation Platform (ESP; exoclime.net) and publicly available at https://github.com/exoclime/VULCAN.

  20. Air emissions in France. Metropolitan area substances implied in acidification, eutrophication and photochemistry; Emissions dans l'air en France. Metropole substances impliquees dans les phenomenes d'acidification, d'eutrophisation et de photochimie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    Acidification, eutrophication and photochemistry: SO{sub 2}, NO{sub x}, NH{sub 3}, NMVOCs (total and speciation relating to more than 200 different compounds), CO, acid equivalent index (Aeq) and photochemical ozone creation potential (POCP) are presented. Density ratios relating to population, area, gross product, primary energy consumption, etc. Emissions are presented by the mean of charts for each substance and the main source categories with a five years step until 1990 then yearly beyond. Dates corresponding to the maximum and minimum values are also included. (author)

  1. Heat transfer in the atmosphere

    NARCIS (Netherlands)

    Oerlemans, J.

    1982-01-01

    The atmosphere is almost transparent to solar radiation and almost opaque to terrestrial radiation. This implies that in the mean the atmosphere cools while the earth's surface is heated. Convection in the lower atmosphere must therefore occur. The upward flux of energy associated with it

  2. Atmospheric tritium. Measurement and application

    International Nuclear Information System (INIS)

    Frejaville, Gerard

    1967-02-01

    The possible origins of atmospheric tritium are reviewed and discussed. A description is given of enrichment (electrolysis and thermal diffusion) and counting (gas counters and liquid scintillation counters) processes which can be used for determining atmospheric tritium concentrations. A series of examples illustrates the use of atmospheric tritium for resolving a certain number of hydrological and glaciological problems. (author) [fr

  3. Atmospheric heavy metal deposition accumulated in rural forest soils of southern Scandinavia

    DEFF Research Database (Denmark)

    Hovmand, Mads Frederik; Kemp, Kaare; Kystol, J.

    2008-01-01

    Thirty-three years of measurements of atmospheric heavy metal (HM) deposition (bulk precipitation) in Denmark combined with European emission inventories form the basis for calculating a 50-year accumulated atmospheric input to a remote forest plantation on the island of Laesoe. Soil samples taken...... in atmospheric deposition and in soils. The accumulated atmospheric deposition is of the same magnitude as the increase of these metals in the top soil....

  4. Worldwide trend of atmospheric mercury since 1995

    Directory of Open Access Journals (Sweden)

    F. Slemr

    2011-05-01

    Full Text Available Concern about the adverse effects of mercury on human health and ecosystems has led to tightening emission controls since the mid 1980s. But the resulting mercury emissions reductions in many parts of the world are believed to be offset or even surpassed by the increasing emissions in rapidly industrializing countries. Consequently, concentrations of atmospheric mercury are expected to remain roughly constant. Here we show that the worldwide atmospheric mercury concentrations have decreased by about 20 to 38 % since 1996 as indicated by long-term monitoring at stations in the Southern and Northern Hemispheres combined with intermittent measurements of latitudinal distribution over the Atlantic Ocean. The total reduction of the atmospheric mercury burden of this magnitude within 14 years is unusually large among most atmospheric trace gases and is at odds with the current mercury emission inventories with nearly constant anthropogenic emissions over this period. This suggests a major shift in the biogeochemical cycle of mercury including oceans and soil reservoirs. Decreasing reemissions from the legacy of historical mercury emissions are the most likely explanation for this decline since the hypothesis of an accelerated oxidation rate of elemental mercury in the atmosphere is not supported by the observed trends of other trace gases. Acidification of oceans, climate change, excess nutrient input and pollution may also contribute by their impact on the biogeochemistry of ocean and soils. Consequently, models of the atmospheric mercury cycle have to include soil and ocean mercury pools and their dynamics to be able to make projections of future trends.

  5. Atmospheric natural radioactivity outdoors

    International Nuclear Information System (INIS)

    Renoux, A.

    1985-01-01

    Following a short account of natural atmospheric radioactivity, radon concentrations are given as well as their variations with time obtained by means of a original apparatus developped in Brest. The radioactive equilibrium of radon and its daughters is then considered, many experiments demonstrating that equilibrium is seldom reached even for 218 Po (RaA). Finally, some characteristics of natural radioactive aerosols are studied: charge, particle size distribution (demonstrating they are fine aerosols since only 30 per cent are made of particles with radii exceeding 0,1 μm) [fr

  6. Atmospheres of central stars

    International Nuclear Information System (INIS)

    Hummer, D.G.

    1978-01-01

    The author presents a brief summary of atmospheric models that are of possible relevance to the central stars of planetary nebulae, and then discusses the extent to which these models accord with the observations of both nebulae and central stars. Particular attention is given to the significance of the very high Zanstra temperature implied by the nebulae He II lambda 4686 A line, and to the discrepancy between the Zanstra He II temperature and the considerably lower temperatures suggested by the appearance of the visual spectrum for some of these objects. (Auth.)

  7. Atmospheric neutrino fluxes

    International Nuclear Information System (INIS)

    Honda, M.; Kasahara, K.; Hidaka, K.; Midorikawa, S.

    1990-02-01

    A detailed Monte Carlo simulation of neutrino fluxes of atmospheric origin is made taking into account the muon polarization effect on neutrinos from muon decay. We calculate the fluxes with energies above 3 MeV for future experiments. There still remains a significant discrepancy between the calculated (ν e +antiν e )/(ν μ +antiν μ ) ratio and that observed by the Kamiokande group. However, the ratio evaluated at the Frejus site shows a good agreement with the data. (author)

  8. Rectenna related atmospheric effects

    Science.gov (United States)

    Lee, J.

    1980-01-01

    Possible meteorological effects arising from the existence and operations of a solar power satellite (SPS) system rectenna are examined. Analysis and model simulations in some chosen site situations and meteorological conditions indicate that the meteorological effects of the construction and operation of a rectenna are small, particularly outside the boundary of the structure. From weather and climate points of view, installation of an SPS rectenna seems likely to have effects comparable with those due to other nonindustrial land use changes covering the same area. The absorption and scattering of microwave radiation in the troposphere would have negligible atmospheric effects.

  9. Formation of aqueous-phase α-hydroxyhydroperoxides (α-HHP: potential atmospheric impacts

    Directory of Open Access Journals (Sweden)

    R. Zhao

    2013-06-01

    Full Text Available The focus of this work is on quantifying the degree of the aqueous-phase formation of α-hydroxyhydroperoxides (α-HHPs via reversible nucleophilic addition of H2O2 to aldehydes. Formation of this class of highly oxygenated organic hydroperoxides represents a poorly characterized aqueous-phase processing pathway that may lead to enhanced SOA formation and aerosol toxicity. Specifically, the equilibrium constants of α-HHP formation have been determined using proton nuclear-magnetic-resonance (1H NMR spectroscopy and proton-transfer-reaction mass spectrometry (PTR-MS. Significant α-HHP formation was observed from formaldehyde, acetaldehyde, propionaldehyde, glycolaldehyde, glyoxylic acid, and methylglyoxal, but not from methacrolein and ketones. Low temperatures enhanced the formation of α-HHPs but slowed their formation rates. High inorganic salt concentrations shifted the equilibria toward the hydrated form of the aldehydes and slightly suppressed α-HHP formation. Using the experimental equilibrium constants, we predict the equilibrium concentration of α-HHPs to be in the μM level in cloud water, but it may also be present in the mM level in aerosol liquid water (ALW, where the concentrations of H2O2 and aldehydes can be high. Formation of α-HHPs in ALW may significantly affect the effective Henry's law constants of H2O2 and aldehydes but may not affect their gas-phase levels. The photochemistry and reactivity of this class of atmospheric species have not been studied.

  10. Archean Earth Atmosphere Fractal Haze Aggregates: Light Scattering Calculations and the Faint Young Sun Paradox

    Science.gov (United States)

    Boness, D. A.; Terrell-Martinez, B.

    2010-12-01

    As part of an ongoing undergraduate research project of light scattering calculations involving fractal carbonaceous soot aggregates relevant to current anthropogenic and natural sources in Earth's atmosphere, we have read with interest a recent paper [E.T. Wolf and O.B Toon,Science 328, 1266 (2010)] claiming that the Faint Young Sun paradox discussed four decades ago by Carl Sagan and others can be resolved without invoking heavy CO2 concentrations as a greenhouse gas warming the early Earth enough to sustain liquid water and hence allow the origin of life. Wolf and Toon report that a Titan-like Archean Earth haze, with a fractal haze aggregate nature due to nitrogen-methane photochemistry at high altitudes, should block enough UV light to protect the warming greenhouse gas NH3 while allowing enough visible light to reach the surface of the Earth. To test this hypothesis, we have employed a rigorous T-Matrix arbitrary-particle light scattering technique, to avoid the simplifications inherent in Mie-sphere scattering, on haze fractal aggregates at UV and visible wavelenths of incident light. We generate these model aggregates using diffusion-limited cluster aggregation (DLCA) algorithms, which much more closely fit actual haze fractal aggregates than do diffusion-limited aggregation (DLA) algorithms.

  11. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES

    Energy Technology Data Exchange (ETDEWEB)

    Rimmer, P. B.; Helling, Ch, E-mail: pr33@st-andrews.ac.uk [School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS (United Kingdom)

    2016-05-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO{sub 2}, H{sub 2}, CO, and O{sub 2}, but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  12. A CHEMICAL KINETICS NETWORK FOR LIGHTNING AND LIFE IN PLANETARY ATMOSPHERES

    International Nuclear Information System (INIS)

    Rimmer, P. B.; Helling, Ch

    2016-01-01

    There are many open questions about prebiotic chemistry in both planetary and exoplanetary environments. The increasing number of known exoplanets and other ultra-cool, substellar objects has propelled the desire to detect life and prebiotic chemistry outside the solar system. We present an ion–neutral chemical network constructed from scratch, Stand2015, that treats hydrogen, nitrogen, carbon, and oxygen chemistry accurately within a temperature range between 100 and 30,000 K. Formation pathways for glycine and other organic molecules are included. The network is complete up to H6C2N2O3. Stand2015 is successfully tested against atmospheric chemistry models for HD 209458b, Jupiter, and the present-day Earth using a simple one-dimensional photochemistry/diffusion code. Our results for the early Earth agree with those of Kasting for CO 2 , H 2 , CO, and O 2 , but do not agree for water and atomic oxygen. We use the network to simulate an experiment where varied chemical initial conditions are irradiated by UV light. The result from our simulation is that more glycine is produced when more ammonia and methane is present. Very little glycine is produced in the absence of any molecular nitrogen and oxygen. This suggests that the production of glycine is inhibited if a gas is too strongly reducing. Possible applications and limitations of the chemical kinetics network are also discussed.

  13. A new laboratory source of ozone and its potential atmospheric implications

    Science.gov (United States)

    Slanger, T. G.; Jusinski, L. E.; Black, G.; Gadd, G. E.

    1988-08-01

    Although 248-nm radiation falls 0.12 eV short of the energy needed to dissociate O2, large densities of ozone (O3) can be produced from unfocused 248-nm KrF excimer laser irradiation of pure O2. As soon as any O3 is present, it strongly absorbs the 248-nanometer radiation and dissociates to vibrationally excited ground state O2 (among other products), with a quantum yield of 0.1 to 0.15. During the laser pulse, a portion of these molecules absorb a photon and dissociate, which results in the production of three oxygen atoms for one O3 molecule destroyed. Recombination then converts these atoms to O3, and thus O3 production in the system is autocatalytic. A deficiency exists in current models of O3 photochemistry in the upper stratosphere and mesosphere, in that more O3 is found than can be explained. A detailed analysis of the system as it applies to the upper atmosphere is not yet possible, but with reasonable assumptions about O2 vibrational distributions resulting from O3 photodissociation and about relaxation rates of vibrationally excited O2, a case can be made for the importance of including this mechanism in the models.

  14. On the role of the simplest S-nitrosothiol, HSNO, in atmospheric and biological processes

    Energy Technology Data Exchange (ETDEWEB)

    Hochlaf, Majdi, E-mail: hochlaf@univ-mlv.fr; Linguerri, Roberto [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, MSME UMR 8208 CNRS, 5 bd Descartes, 77454 Marne-la-Vallée (France); Francisco, Joseph S. [Department of Chemistry and Department of Earth and Atmospheric Sciences, Purdue University, West Lafayette, Indiana 47906 (United States)

    2013-12-21

    Using state-of-the-art theoretical methods, we investigate the lowest electronic states of singlet and triplet spin multiplicities of HSNO. These computations are done using configuration interaction ab initio methods and the aug-cc-pV5Z basis set. One-dimensional cuts of the six-dimensional potential energy surfaces of these electronic states along the HS, SN stretches and HSN, SNO bending and torsion coordinates are calculated. Several avoided crossings and conical intersections are found. We computed also radiative lifetimes and spin-orbit couplings of these electronic states. Our work shows that the dynamics on these excited states is very complex, and suggest that multi-step mechanisms will populate the ground state via radiationless processes or lead to predissociation or intramolecular isomerization. For instance, these potentials are used to propose mechanisms for the IR, Vis, and UV light-induced cis-trans interconversions of HSNO and reactivity towards HS + NO and H + SNO products. Our findings are in good agreement with previous experimental studies on the photochemistry of HSNO. The atmospheric implication of HSNO is also discussed.

  15. Atmospheric and Space Sciences: Ionospheres and Plasma Environments

    Science.gov (United States)

    Yiǧit, Erdal

    2018-01-01

    The SpringerBriefs on Atmospheric and Space Sciences in two volumes presents a concise and interdisciplinary introduction to the basic theory, observation & modeling of atmospheric and ionospheric coupling processes on Earth. The goal is to contribute toward bridging the gap between meteorology, aeronomy, and planetary science. In addition recent progress in several related research topics, such atmospheric wave coupling and variability, is discussed. Volume 1 will focus on the atmosphere, while Volume 2 will present the ionospheres and the plasma environments. Volume 2 is aimed primarily at (research) students and young researchers that would like to gain quick insight into the basics of space sciences and current research. In combination with the first volume, it also is a useful tool for professors who would like to develop a course in atmospheric and space physics.

  16. Coupled atmosphere-wildland fire modelling

    Directory of Open Access Journals (Sweden)

    Jacques Henri Balbi

    2009-10-01

    Full Text Available Simulating the interaction between fire and atmosphere is critical to the estimation of the rate of spread of the fire. Wildfire’s convection (i.e., entire plume can modify the local meteorology throughout the atmospheric boundary layer and consequently affect the fire propagation speed and behaviour. In this study, we use for the first time the Méso-NH meso-scale numerical model coupled to the point functional ForeFire simplified physical front-tracking wildfire model to investigate the differences introduced by the atmospheric feedback in propagation speed and behaviour. Both numerical models have been developed as research tools for operational models and are currently used to forecast localized extreme events. These models have been selected because they can be run coupled and support decisions in wildfire management in France and Europe. The main originalities of this combination reside in the fact that Méso-NH is run in a Large Eddy Simulation (LES configuration and that the rate of spread model used in ForeFire provides a physical formulation to take into account the effect of wind and slope. Simulations of typical experimental configurations show that the numerical atmospheric model is able to reproduce plausible convective effects of the heat produced by the fire. Numerical results are comparable to estimated values for fire-induced winds and present behaviour similar to other existing numerical approaches.

  17. DISC ATMOSPHERES AND WINDS IN X-RAY BINARIES

    Directory of Open Access Journals (Sweden)

    Maria Díaz Trigo

    2013-12-01

    Full Text Available We review the current status of studies of disc atmospheres and winds in low mass X-ray binaries. We discuss the possible wind launching mechanisms and compare the predictions of the models with the existent observations. We conclude that a combination of thermal and radiative pressure (the latter being relevant at high luminosities can explain the current observations of atmospheres and winds in both neutron star and black hole binaries. Moreover, these winds and atmospheres could contribute significantly to the broad iron emission line observed in these systems.

  18. Combination N-Way Power Divider/Combiner and Noninvasive Reflected Power Detection

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — An N-way RF/microwave power divider/combiner utilizes one input and N outputs, or conversely N inputs and one output to divide (or combine) RF/microwave power while...

  19. Wind Power Prediction Considering Nonlinear Atmospheric Disturbances

    Directory of Open Access Journals (Sweden)

    Yagang Zhang

    2015-01-01

    Full Text Available This paper considers the effect of nonlinear atmospheric disturbances on wind power prediction. A Lorenz system is introduced as an atmospheric disturbance model. Three new improved wind forecasting models combined with a Lorenz comprehensive disturbance are put forward in this study. Firstly, we define the form of the Lorenz disturbance variable and the wind speed perturbation formula. Then, different artificial neural network models are used to verify the new idea and obtain better wind speed predictions. Finally we separately use the original and improved wind speed series to predict the related wind power. This proves that the corrected wind speed provides higher precision wind power predictions. This research presents a totally new direction in the wind prediction field and has profound theoretical research value and practical guiding significance.

  20. Atmospheric Ionizing Radiation and Human Exposure

    Science.gov (United States)

    Wilson, John W.; Mertens, Christopher J.; Goldhagen, Paul; Friedberg, W.; DeAngelis, G.; Clem, J. M.; Copeland, K.; Bidasaria, H. B.

    2005-01-01

    Atmospheric ionizing radiation is of interest, apart from its main concern of aircraft exposures, because it is a principal source of human exposure to radiations with high linear energy transfer (LET). The ionizing radiations of the lower atmosphere near the Earth s surface tend to be dominated by the terrestrial radioisotopes. especially along the coastal plain and interior low lands, and have only minor contributions from neutrons (11 percent). The world average is substantially larger but the high altitude cities especially have substantial contributions from neutrons (25 to 45 percent). Understanding the world distribution of neutron exposures requires an improved understanding of the latitudinal, longitudinal, altitude and spectral distribution that depends on local terrain and time. These issues are being investigated in a combined experimental and theoretical program. This paper will give an overview of human exposures and describe the development of improved environmental models.