WorldWideScience

Sample records for combination electron-beam radiation

  1. Electron beams in radiation therapy

    International Nuclear Information System (INIS)

    Bruinvis, I.A.D.

    1987-01-01

    Clinical electron beams in interaction with beam flattening and collimating devices are studied, in order to obtain the means for adequate electron therapy. A treatment planning method for arbitrary field shapes is developed that takes the properties of the collimated electron beams into account. An electron multiple-scattering model is extended to incorporate a model for the loss of electrons with depth, in order to improve electron beam dose planning. A study of ionisation measurements in two different phantom materials yields correction factors for electron beam dosimetry. (Auth.)

  2. Radiation dermatitis following electron beam therapy

    International Nuclear Information System (INIS)

    Price, N.M.

    1978-01-01

    Ten patients, who had been treated for mycosis fungoides with electron beam radiation ten or more years previously, were examined for signs of radiation dermatitis. Although most patients had had acute radiation dermatitis, only a few manifested signs of mild chronic changes after having received between 1,000 and 2,800 rads

  3. Radiation processing of carrageenan using electron beam

    International Nuclear Information System (INIS)

    Abad, L.V.; Aranilla, C.T.; Relleve, L.; Dela Rosa, A.M.

    2005-01-01

    Electron beam accelerator has been widely employed in the modification of natural polymers for the development of materials used in biomedical and agricultural applications. The carrageenans are among these materials that show a vast potential for these types of applications. Previous studies at the Philippine Nuclear Research Institute focused on the utilization of gamma radiation to modify the carrageenans. Radiation degradation of carrageenan found valuable use as plant growth promoter. Hydrogels for burn dressing using blends of carrageenan and synthetic polymers have also been made using gamma radiation. While previous studies have been focused on the use of gamma radiation to modify the carrageenans, recent studies expanded the technology to electron beam. Concretely, researches are along the following two areas: a) Degradation studies of aqueous carrageenan using the LEEB and b) Preparation of blend polysaccharide derivatives such as carboxymethylcellulose (CMC), and hydroxypropylcellulose (HPC) with kappa-carrageenan (KC) by EB radiation. These works were done at the Takasaki Radiation Chemistry Research Establishment (TRCRE) by two PNRI colleagues under the nuclear researcher exchange program of the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT). The first area had already been reported and discussed in the last project meeting held in Malaysia. (author)

  4. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  5. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  6. Transition radiation electron beam diagnostic study at ATF

    International Nuclear Information System (INIS)

    Qiu, X.Z.; Wang, X.J.; Batchelor, K.; Ben-Zvi, I.

    1995-01-01

    Recently we have started a program to develop transition radiation based electron beam diagnostics at the Accelerator Test Facility at Brookhaven National Laboratory. In this paper, we will discuss a technique to estimate the lower limit in electron beam divergence measurement with single foil transition radiation and two-foil transition radiation interferometer. Preliminary experimental data from 4.5 MeV electron beam will be presented

  7. Spin-polarized free electron beam interaction with radiation and superradiant spin-flip radiative emission

    Directory of Open Access Journals (Sweden)

    A. Gover

    2006-06-01

    Full Text Available The problems of spin-polarized free-electron beam interaction with electromagnetic wave at electron-spin resonance conditions in a magnetic field and of superradiant spin-flip radiative emission are analyzed in the framework of a comprehensive classical model. The spontaneous emission of spin-flip radiation from electron beams is very weak. We show that the detectivity of electron spin resonant spin-flip and combined spin-flip/cyclotron-resonance-emission radiation can be substantially enhanced by operating with ultrashort spin-polarized electron beam bunches under conditions of superradiant (coherent emission. The proposed radiative spin-state modulation and the spin-flip radiative emission schemes can be used for control and noninvasive diagnostics of polarized electron/positron beams. Such schemes are of relevance in important scattering experiments off nucleons in nuclear physics and off magnetic targets in condensed matter physics.

  8. Silicon radiation detector analysis using back electron beam induced current

    International Nuclear Information System (INIS)

    Guye, R.

    1987-01-01

    A new technique for the observation and analysis of defects in silicon radiation detectors is described. This method uses an electron beam from a scanning electron microscope (SEM) impinging on the rear side of the p + n junction of the silicon detector, which itself is active and detects the electron beam induced current (EBIC). It is shown that this current is a sensitive probe of localized trapping centers, either at the junction surface or somewhere in the volume of the silicon crystal. (orig.)

  9. Dosimetry study for electron beam irradiation in radiation processing

    International Nuclear Information System (INIS)

    Sunaga, Hiromi; Haruyama, Yasuyuki; Takizawa, Haruki; Kojima, Takuji; Yotsumoto, Keiichi

    1995-01-01

    For certain critical applications such as medical device sterilization and food irradiation, accurate calibration of electron energy and absorbed dose is required to assure the quality of irradiated products. To meet this requirement, TRCRE, JAERI has carried out research and development on high dose radiation dosimetry for electron beams in the energy range used in radiation processing (0.15 - 3.0 MeV). JAERI has developed a simultaneous electron beam energy and dosimeter calibration system that consist of a total absorption calorimeter, an electron current density meter, and a stacked thin-film dosimeter set. For low energy electrons, where it is important to measure the depth-dose profile in materials with high depth resolution, we studied the feasibility of a method using Gafchromic film dosimeters. This film, which has an 8-μm thick sensitive layer, is combined with a stepped array of absorber films of the same thickness to produce a high-resolution depth-dose profile on the Gafchromic film. The depth-dose profile obtained in this manner has about five times greater resolution than conventional radiochromic film dosimetry. (author)

  10. New Combined Electron-Beam Methods of Wastewater Purification

    International Nuclear Information System (INIS)

    Pikaev, A.K.; Makarov, I.E.; Ponomarev, A.V.; Kartasheva, L.I.; Podzorova, E.A.; Chulkov, V.N.; Han, B.; Kim, D.K.

    1999-01-01

    The paper is a brief review of the results obtained with the participation of the authors from the study on combined electron-beam methods for purification of some wastewaters. The data on purification of wastewaters containing dyes or hydrogen peroxide and municipal wastewater in the aerosol flow are considered

  11. Combined electron beam and UV lithography in SU-8

    DEFF Research Database (Denmark)

    Gersborg-Hansen, Morten; Thamdrup, Lasse Højlund; Mironov, Andrej

    2007-01-01

    We present combined electron beam and UV lithography (CEUL) in SU-8 as a fast and flexible lithographic technique for prototyping of functional polymer devices and pattern transfer applications. CEUL is a lithographic technique suitable for defining both micrometer and nanometer scale features...

  12. Electron beam instrumentation techniques using coherent radiation

    International Nuclear Information System (INIS)

    Wang, D.X.

    1997-01-01

    Much progress has been made on coherent radiation research since coherent synchrotron radiation was first observed in 1989. The use of coherent radiation as a bunch length diagnostic tool has been studied by several groups. In this paper, brief introductions to coherent radiation and far-infrared measurement are given, the progress and status of their beam diagnostic application are reviewed, different techniques are described, and their advantages and limitations are discussed

  13. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  14. Gelatin/piassava composites treated by Electron Beam Radiation

    International Nuclear Information System (INIS)

    Takinami, Patricia Yoko Inamura; Shimazaki, Kleber; Moura, Esperidiana Augusta Barretos de; Mastro, Nelida Lucia del; Colombo, Maria Aparecida

    2010-01-01

    Piassava (Attalea funifera Mart) fiber has been investigated as reinforcement for polymer composites with potential for practical applications. The purpose of the present work was to assess the behavior of specimens of piassava fiber and gelatin irradiated with electron beam at different doses and percentage. The piassava/gelatin specimens were made with 5 and 10% (w/w) piassava fiber, gelatin 25% (w/w), glycerin as plasticizer and acrylamide as copolymer. The samples were irradiated up to 40 kGy using an electron beam accelerator, at room temperature in presence of air. Preliminary results showed mechanical properties enhancement with the increase in radiation dose. (author)

  15. Scattered radiation from applicators in clinical electron beams.

    NARCIS (Netherlands)

    Battum, L.J. van; Zee, W. van der; Huizenga, H.

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight

  16. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between conventional disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (author)

  17. The technology and economics of treating waste water with electron beam radiation

    International Nuclear Information System (INIS)

    Cleland, M.R.

    1976-01-01

    The use of ionizing radiation from electron beam accelerators is considered in this paper for the disinfection of waste water. Combinations of radiation with oxygen, chlorine, heat and retention media are discussed as possible methods to reduce the dosage requirements and the treatment costs. The production of ozone by the irradiation of oxygen is also evaluated as an alternative method of using this form of energy. The capital and operating costs for large electron beam facilities are analyzed to show the favorable trends with rising power levels. Cost comparisons between 'conventional' disinfection processes and two radiation processes are presented and discussed. The results of these cost analyses support the premise that electron beam radiation should be evaluated as a likely competitor to ozonation or carbon filtration for large sewage treatment plants. (orig.) [de

  18. Measurement of microwave radiation from electron beam in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Ohta, I.S.; Akimune, H. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Fukushima, M.; Ikeda, D. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Inome, Y. [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan); Matthews, J.N. [University of Utah, Salt Lake City, UT 4112-0830 (United States); Ogio, S. [Graduate School of Science, Osaka City University, Osaka 558-8585 (Japan); Sagawa, H. [Institute of Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba 277-8582 (Japan); Sako, T. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Shibata, T. [High Energy Accelerator Research Organization (KEK), Tsukuba 305-0801 (Japan); Yamamoto, T., E-mail: tokonatu@konan-u.ac.jp [Faculty of Science and Engineering, Konan University, Kobe 658-8501 (Japan)

    2016-02-21

    We report the use of an electron light source (ELS) located at the Telescope Array Observatory in Utah, USA, to measure the isotropic microwave radiation from air showers. To simulate extensive air showers, the ELS emits an electron beam into the atmosphere and a parabola antenna system for the satellite communication is used to measure the microwave radiation from the electron beam. Based on this measurement, an upper limit on the intensity of a 12.5 GHz microwave radiation at 0.5 m from a 10{sup 18} eV air shower was estimated to be 3.96×10{sup −16} W m{sup −2} Hz{sup −1} with a 95% confidence level.

  19. Scattered radiation from applicators in clinical electron beams

    International Nuclear Information System (INIS)

    Battum, L J van; Zee, W van der; Huizenga, H

    2003-01-01

    In radiotherapy with high-energy (4-25 MeV) electron beams, scattered radiation from the electron applicator influences the dose distribution in the patient. In most currently available treatment planning systems for radiotherapy this component is not explicitly included and handled only by a slight change of the intensity of the primary beam. The scattered radiation from an applicator changes with the field size and distance from the applicator. The amount of scattered radiation is dependent on the applicator design and on the formation of the electron beam in the treatment head. Electron applicators currently applied in most treatment machines are essentially a set of diaphragms, but still do produce scattered radiation. This paper investigates the present level of scattered dose from electron applicators, and as such provides an extensive set of measured data. The data provided could for instance serve as example input data or benchmark data for advanced treatment planning algorithms which employ a parametrized initial phase space to characterize the clinical electron beam. Central axis depth dose curves of the electron beams have been measured with and without applicators in place, for various applicator sizes and energies, for a Siemens Primus, a Varian 2300 C/D and an Elekta SLi accelerator. Scattered radiation generated by the applicator has been found by subtraction of the central axis depth dose curves, obtained with and without applicator. Scattered radiation from Siemens, Varian and Elekta electron applicators is still significant and cannot be neglected in advanced treatment planning. Scattered radiation at the surface of a water phantom can be as high as 12%. Scattered radiation decreases almost linearly with depth. Scattered radiation from Varian applicators shows clear dependence on beam energy. The Elekta applicators produce less scattered radiation than those of Varian and Siemens, but feature a higher effective angular variance. The scattered

  20. The Theory of Coherent Radiation by Intense Electron Beams

    CERN Document Server

    Buts, Vyacheslav A; Kurilko, V.I

    2006-01-01

    Spurred by the development of high-current, high-energy relativistic electron beams this books delves into the foundations of a device and geometry independent theoretical treatment of a large collection of interacting and radiating electron bunches. Part I deals with the basics of the radiation emission of a single charged particle, paying particular attention to the effect of radiation reaction and dwelling on the corresponding well-known paradoxes. Part II investigates the collective behaviour of a high-density electron bunch where both discrete and continous beam modelling is explored. Part III treats the application to modern systems while still keeping the treatment as general as possible. This book will be mandatory reading for anyone working on the foundations of modern devices such as free electron lasers, plasma accelerators, synchroton sources and other modern sources of bright, coherent radiation with high spectral density.

  1. Electron beam radiation effects on recycled polyamide-6

    International Nuclear Information System (INIS)

    Evora, Maria Cecilia; Silva, Leonardo G. de Andrade e

    2001-01-01

    Applications of electron beam processing in the treatment of polymers are commonly used. The interaction of high energy radiation with polymers may cause permanent modifications in the polymer's physicochemical structure. The induced modifications may result in degradation of the polymer or in improvement of its properties (crosslinking), which are simultaneous and competing processes, depending on the radiation dose utilized. Crosslinking occurs more readily in the polymer's amorphous content and this process makes the glass transition temperature (Tg) of the polymers to increase. Successive recycling cycles promote changes in polymers properties, such as breaking of structure, molecular weight reduction, melt index increase and mechanical resistance reduction. The polyamide-6 resin was recycled for three successive recycling cycles and thi polyamide-6 specimens were molded by the process of injection molding. These specimens were irradiated at the Nuclear Energetic Research Institute (IPEN) radiation facility, on a JOB 188 model accelerator, with a 1.5 MeV electron beam, doses of 200, 300, 400, 500 and 600 kGy, and dose rate of 22.61 kGy/s. The DMA tests were performed using DMA-983 equipment from TA Instruments and two heatings were adopted in order to eliminate the moisture absorption. The X-ray diffraction analysis wa carried out at the Philips PW 1830 model equipment

  2. Cherenkov Radiation from a Pseudospark-sourced Electron Beam

    International Nuclear Information System (INIS)

    Phelps, A.D.R.; Yin, H.; Cross, A.W.; He, W.; Ronald, K.

    2003-01-01

    Electron beam generation from a multi-gap pseudospark discharge was investigated. A pseudospark-sourced electron beam has two phases, an initial hollow cathode phase (HCP) beam followed by a conductive phase (CP) beam. The beam brightness was measured by a field-free collimator to be 109 and 1011 Am-2rad-2 for the hollow cathode phase (HCP) beam and the conductive phase (CP) beam respectively. The initial HCP beam from an eight-gap pseudospark discharge was applied in a Cherenkov interaction between the electron beam and the TM01 mode of a 60-cm long alumina-lined waveguide. It was found experimentally that significant microwave radiation was generated only when the dielectric was present in the interaction space. If there was no dielectric in the cylindrical waveguide, then a very small background microwave output was detected even when the guide B-field was absent. This demonstrated, in conjunction with the observation that the microwave output signal was independent of the guide magnetic field over the range 0.13 to 0.26 T, that the radiation from the experiment was due to the Cherenkov interaction mechanism. In addition, two components of the microwave pulse were observed corresponding to the two energy components of the electron beam during the pseudospark discharge breakdown. These results demonstrated that the microwave radiation was generated by Cherenkov amplification of the broadband emission from the pseudospark discharge itself. A background signal level of around 100 W was measured in the frequency range 20 - 50 GHz with a percentage of (2.7 ± 0.6)% in the frequency range 25.5 - 28.6 GHz, when the dielectric lining was removed from the maser. The frequency of the microwave output after the Cherenkov maser interaction was measured to be mainly around 25.5 GHz and the dominating mode was identified as being TM01. The duration of the microwave pulse was approximately 80 ns, with a peak power of around 2 ± 0.2 kW. The gain of this amplifier was measured

  3. Radiation disinfestation of used packagings: irradiation trials with electron beams

    International Nuclear Information System (INIS)

    Ignatowicz, S.; Zaedee, I.

    1994-01-01

    Used bags, sacks and other packagings are often infested with insects and mites - pest of stored products. Such packagings provide a source of infestation of a new lot or unit of agricultural products. Cleaning of repeatedly used packages is the most important preventive method. After using, the bags and sacks should be carefully beaten with a mechanical or hand beater. When pests are found, the packages should be disinfested with hot air or hot water. Larger numbers of bags are usually fumigated in a special fumigation chamber. Disinfestation by radiation processing is potentially a feasible substitute for chemical fumigation. In the present paper trials of radiation disinfestation of used bags are described and discussed. Information about using electron beams for pest disinfestation of jute and polyvinyl chloride bags (plastic bags) is provided. The absorbed dose is the most important irradiation process parameter. The lethal effects equivalent to chemical insecticides are obtained by high doses of ionizing radiation. Control of insect and/or mite infestation of the repeatedly used packagings may be secured by ionizing radiation applied at 2-3 kGy. These doses result in complete mortality of stored product pests within a few days. The radiation must penetrate deeply into the target product at sufficient level. Gamma rays and X-rays penetrate into the treated products easily but electron radiation penetrating is much lower, depending on electron energy applied. The results of this study indicate that bags made of polyvinyl chloride may be disinfested with electron beams when are created as separate units or batches up to 50 bags. Penetrability of jute bags is lower than the plastic bags. Therefore the jute bags should be irradiated with electrons as batches containing no more than 30 bags. (author)

  4. Radiation processing of natural polymers using low energy electron beam

    International Nuclear Information System (INIS)

    Kume, Tamikazu

    2004-01-01

    Radiation processing is widely used in Japan and the economic scale of radiation application amounted to about 71 b$ (ratio relative to GDP: 1.7%) in total. It consisted of 60 b$ (85%) in industry, 10 b$ (14%) in medicine and 1 b$ (1%) in agriculture. Irradiation using gamma-ray from 60 Co and electron beam is commercially used for the sterilization and modification of materials. Utilization of natural polymers by radiation has been investigated for recycling the natural resources and reducing the environmental pollution. Polysaccharides such as chitosan, sodium alginate, carrageenan, cellulose, pectin were easily degraded by irradiation and induced various kinds of biological activities, i.e. anti-bacterial activity, elicitor activity, plant growth promotion, suppression of environmental stress on plants. Radiation degraded chitosan was effective to enhance the growth of plants in tissue culture. Low energy electron beam (EB) irradiation has a variety of applications and good safety. A self-shielded low energy electron accelerator system needs an initial investment much lower than a 60 Co facility. It was demonstrated that the liquid sample irradiation system using low energy EB was effective not only for the preparation of degraded polysaccharides but also for radiation vulcanization of natural rubber latex (RVNRL). Some carbohydrate derivatives, carboxymethylcellulose (CMC), carboxymethyl-starch and carboxymethyl-chitin/chitosan, can be crosslinked under certain radiation condition and produced the biodegradable hydrogel for medical and agricultural use. Treatment of soybean seeds by low energy EB enhanced the growth and the number of rhizobia on the root. (author)

  5. Electron beam combined with hydrothermal treatment for enhancing the enzymatic convertibility of sugarcane bagasse

    International Nuclear Information System (INIS)

    Duarte, C.L.; Ribeiro, M.A.; Oikawa, H.; Mori, M.N.; Napolitano, C.M.; Galvão, C.A.

    2012-01-01

    The use of microbial cellulolytic enzymes is the most efficient process to liberate glucose from cellulose in biomass without the formation of fermentation inhibitors. A combination of pretreatment technologies is an alternative way to increase the access of enzymes to cellulose, and consequently, the conversion yield. In this way, the present study reports on the enzymatic hydrolysis of SCB submitted to three kinds of pretreatment: electron beam processing (EBP), and EBP followed by hydrothermal (TH) and diluted acid (AH) treatment. SCB samples were irradiated using a radiation dynamics electron beam accelerator, and then submitted to thermal and acid (0.1% sulfuric acid) hydrolysis for 40 and 60 min at 180 °C. These samples were submitted to enzymatic hydrolysis (EH) using commercial preparations, including Celluclast 1.5 L and beta-glycosidase. The addition of diluted acid improved TH treatment allowing for a shorter application time. EBP with 50 kGy increased the enzymatic hydrolysis yield of cellulose by 20% after TH and 30% after AH. - Highlights: ► We study the enzymatic hydrolysis of cellulose and hemicellulose in sugarcane bagasse. ► We study the combination of three pretreatments: electron beam processing, EBP followed by hydrothermal and by diluted acid treatment. ► The electron beam processing increased the enzymatic hydrolysis from 8% to 15% with 20 kGy. ► The enzymes used were commercial preparations, as Celluclast 1.5 L and β-glycosidase. ► The EBP with 50 kGy increased on 20% the yield of EH of cellulose after TH and 30% after AH.

  6. Electron beam characterization of a combined diode rf electron gun

    Directory of Open Access Journals (Sweden)

    R. Ganter

    2010-09-01

    Full Text Available Experimental and simulation results of an electron gun test facility, based on pulsed diode acceleration followed by a two-cell rf cavity at 1.5 GHz, are presented here. The main features of this diode-rf combination are: a high peak gradient in the diode (up to 100  MV/m obtained without breakdown conditioning, a cathode shape providing an electrostatic focusing, and an in-vacuum pulsed solenoid to focus the electron beam between the diode and the rf cavity. Although the test stand was initially developed for testing field emitter arrays cathodes, it became also interesting to explore the limits of this electron gun with metallic photocathodes illuminated by laser pulses. The ultimate goal of this test facility is to fulfill the requirements of the SwissFEL project of Paul Scherrer Institute [B. D. Patterson et al., New J. Phys. 12, 035012 (2010NJOPFM1367-263010.1088/1367-2630/12/3/035012]; a projected normalized emittance below 0.4  μm for a charge of 200 pC and a bunch length of less than 10 ps (rms. A normalized projected emittance of 0.23  μm with 13 pC has been measured at 5 MeV using a Gaussian laser longitudinal intensity distribution on the photocathode. Good agreements with simulations have been obtained for different electron bunch charge and diode geometries. Emittance measurements at a bunch charge below 1 pC were performed for different laser spot sizes in agreement with intrinsic emittance theory [e.g. 0.54  μm/mm of laser spot size (rms for Cu at 274 nm]. Finally, a projected emittance of 1.25+/-0.2  μm was measured with 200 pC and 100  MV/m diode gradient.

  7. Crosslinking of thermoplastic composites using electron beam radiation

    International Nuclear Information System (INIS)

    Strong, A.B.; Black, S.R.; Bryce, G.R.; Olcott, D.D.

    1991-01-01

    The crosslinking of thermoset materials has been clearly demonstrated to improve many desirable physical and chemical properties for composite applications. While thermoplastic resins also offer many advantages for composite applications, they are not crosslinked and, therefore, may not meet the same property criteria as crosslinked thermosets. Electron beams have been used successfully for crosslinking non-reinforced thermoplastic materials. Electron beams have also been used for curing composite thermoset materials. This research utilizes electron beams to crosslink high performance thermoplastic composite materials (PEEK and PPS with glass and carbon fibers). The tensile strength and tensile modulus are compared under various crosslinking conditions. The method is found to have some advantages in potentially improving physical properties of thermoplastic composite materials

  8. The effect of electron beam radiations on testicular damage in mice, Mus musculus

    International Nuclear Information System (INIS)

    Vikram, S.; Nair, Vijay Mala Grover

    2013-01-01

    Adult male Swiss albino mice, Mus musculus (8-10 weeks old) weighing 28±2.5 gm were exposed to varying doses (2-12 Gy) of electron beam radiations and maintained in animal house at 26-28 C. The animals were sacrificed following 35 and 60 days following exposure to electron beam radiations. The LD-50 value, change in the weight and histological details of the testis, sperm count, sperm shape abnormalities and sperm motility were recorded. The data suggests that electron beam radiations is a potential inducer to cause reproductive system dysfunctions which probably may be responsible leading to infertility. (author)

  9. Electron Beam Induced Radiation Damage of the Semiconductor Radiation Detector based on Silicon

    International Nuclear Information System (INIS)

    Kim, Han Soo; Kim, Yong Kyun; Park, Se Hwan; Haa, Jang Ho; Kang, Sang Mook; Chung, Chong Eun; Cho, Seung Yeon; Park, Ji Hyun; Yoon, Tae Hyung

    2005-01-01

    A Silicon Surface Barrier (SSB) semiconductor detector which is generally used to detect a charged particle such as an alpha particle was developed. The performance of the developed SSB semiconductor detector was measured with an I-V curve and an alpha spectrum. The response for an alpha particle was measured by Pu-238 sources. A SSB semiconductor detector was irradiated firstly at 30sec, at 30μA and secondly 40sec, 40μA with a 2MeV pulsed electron beam generator in KAERI. And the electron beam induced radiation damage of a homemade SSB detector and the commercially available PIN photodiode were investigated. An annealing effect of the damaged SSB and PIN diode detector were also investigated using a Rapid Thermal Annealing (RTA). This data may assist in designing the silicon based semiconductor radiation detector when it is operated in a high radiation field such as space or a nuclear power plant

  10. DEVELOPMENT OF SHORT UNDULATORS FOR ELECTRON-BEAM-RADIATION INTERACTION STUDIES

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [NICADD, DeKalb; Andorf, M. B. [NICADD, DeKalb; Fagerberg, G. [Northern Illinois U.; Figora, M. [Northern Illinois U.; Sturtz, A. [Northern Illinois U.

    2016-10-19

    Interaction of an electron beam with external field or its own radiation has widespread applications ranging from coherent-radiation generation, phase space cooling or formation of temporally-structured beams. An efficient coupling mechanism between an electron beam and radiation field relies on the use of a magnetic undulator. In this contribution we detail our plans to build short (11-period) undulators with 7-cm period refurbishing parts of the aladdin U3 undulator [1]. Possible use of these undulators at available test facilities to support experiments relevant to cooling techniques and radiation sources are outlined.

  11. Study of radiation-thermal effect of electron beam on steel and cast iron

    International Nuclear Information System (INIS)

    Machurin, E.S.; Lonchin, G.M.

    1980-01-01

    Studied is the influence of radiation-heat treatment by high energy (3-4.5 MeV) electron beam on the structure and properties of carbon steels (65G, 90KhF) and cast iron. Metallography and electron microscopy methods are used to study microstructure. It is shown that after the treatment by the electron beam there is observed noticeable structure grinding, sample fracture viscosity (even in a quenched state), increase of hardness and impact strength. The mechanism of metal heating process by electron beam is calculated and temperature field is defined in a heating region accounting for electron beam characteristics, medium and geometric factor. Theoretical data are close to experimental ones obtained in a course of determining the microhardness of irradiated samples for the cases of electron treatment duration up to 10 s

  12. INFLUENCE OF INCUBATION TIME, GAMMA RAYS AND ELECTRON BEAM ON RADIATION RESISTANCE OF SOME SELECTED PATHOGENS

    International Nuclear Information System (INIS)

    EL-HIFNAWI, H.N.; EL-TABLAWY, S.Y.

    2009-01-01

    The effect of different growth phases on the radiation resistance, antibiotic susceptibility and pathogenicity of certain selected pathogens (Escherichia coli, Candida albicans and Staphylococcus aureus) was studied in mice. The obtained results showed that Escherichia coli was slightly more resistant to gamma radiation in 18 h than 24 h or 48 h but it was relatively more resistant to electron beam in 24 h and 48 h than 18 h. Candida albicans showed radiation resistance nearly the same in all incubation times in the case of gamma radiation while for electron beam, its radiation resistance was slightly more in 24 h and 48 h than in 18 h. On the other hand, Staphylococcus aureus recorded much more resistance to gamma radiation in the 48 h than in 24 h or 18 h whereas in the case of electron beam, it was slightly more resistant in 18 h than in 24 h and 48 h.The antibiotic susceptibility of Escherichia coli reported that the exposure to gamma radiation at 3 kGy and electron beam at 6 kGy increase the susceptibility to the nalidixic acid and nitrofurantoin. When Candida albicans was exposed to 3 kGy gamma radiation and 6 kGy electron beam, the same sensitivity to nystatin was observed in comparison with the unexposed one while the sensitivity of Staphylococcus aureus to some antibiotics (amoxicillin, nitrofurantoin and tetracycline) was decreased after exposure to gamma radiation at 0.75 and 2 kGy and electron beam at 6 kGy, but for other antibiotics (trimethoprim/ sulfamethoxazole), the sensitivity was increased at 6 kGy electron beam.The lethality percent recorded after the oral ingestion of the mice with the unexposed Escherichia coli and Candida albicans were 25% and 100%, respectively, and for 6 kGy exposure to electron beam was 0% . The cotaneous disease and abscesses caused by the intradermal injection of the mice with unexposed Staphylococcus aureus was 75% and for 6 kGy exposure to electron beam was 25%.

  13. Transverse velocity modulator and generator schemes based on non-collinear radiation and electron beams

    CERN Document Server

    Varfolomeev, A A

    2000-01-01

    New non-collinear schemes are suggested for transverse velocity modulation of electron beams and for the generation of coherent spontaneous radiation by these transversely modulated beams. It is shown that due to the non-collinearity some orders of magnitude enhancement can be achieved for the coherent spontaneous radiation (CSR) power at both the fundamental and harmonic frequencies.

  14. Electron beam extraction system with a ring radiation field

    International Nuclear Information System (INIS)

    Auslender, V.L.; Kuksanov, N.K.; Polyakov, V.A.; Salimov, R.A.; Chertok, I.L.

    1979-01-01

    Description and results of testings of two electron beam extraction systems for shaping of a circular irradiation field are given. One of the systems contains three 20 cm long outlet windows arranged at 120 deg angle with respect to each other. Tests at the ILU-6 accelerator have shown that the given system provides 150 mm zone irradiation from three sides. Beam utilization factor when irradiating three 40 mm dia tubes amounted to 35% which provides capacity of 2.5 txMrad/h at 20 kW beam power. The other extraction system includes two C-form magnets producing nonuniform and opposing magnetic fields. This system tests at the EhLV-2 accelerator have shown that at 0.8-1.5 MeV electron energy it is possible to irradiate of 60 and 100 mm dia objects, accordingly. The system may be used together with both constant-action and pulse-action accelerators having extraction with linear scanning [ru

  15. Effect of electron beam radiations on anxiety in experimental animal models

    International Nuclear Information System (INIS)

    Deepa, B; Suchetha Kumari; Sanjeev, Ganesh; Rao, Satheesh

    2013-01-01

    Exposures to ionizing radiation have been an inevitable part of the environment. This type of radiation can disrupt atoms, creating positive and negative charged particles, and cause biological harm. Ionizing radiation includes X-rays, gamma rays, alpha particles, beta particles and neutrons. They have the potential to cause both beneficial and harmful effects. There are concerns about these radiations as they are widely used in hospitals for treatment and diagnosis of various diseases. The present work was designed to test the effect of whole body electron beam radiation on anxiety in mice using the Elevated plus maze and Light dark arena, the commonly used models for assessing anxiety in rodents. Mice were irradiated with three different doses (2 Gy, 4 Gy and 6 Gy) of electron beam radiations. Statistical analysis revealed that whole body irradiation of the moderate dose range (2-6 Gy) of electron beam leads to a significant (p<0.001) anxiogenic activity in irradiated mice. Electron beam induced anxiety can be due to radiation induced reactive oxygen species in brain. (author)

  16. Schemes of Superradiant Emission from Electron Beams and "Spin-Flip Emission of Radiation"

    CERN Document Server

    Gover, A

    2005-01-01

    A unified analysis for Superradiant emission from bunched electron beams in various kinds of radiation scheme is presented. Radiation schemes that can be described by the formulation include Pre-bunched FEL (PB-FEL), Coherent Synchrotron Radiation (CSR), Smith-Purcell Radiation, Cerenkov-Radiation, Transition-Radiation and more. The theory is based on mode excitation formulation - either discrete or continuous (the latter - in open structures). The discrete mode formulation permits simple evaluation of the spatially coherent power and spectral power of the source. These figures of merit of the radiation source are useful for characterizing and comparing the performance of different radiation schemes. When the bunched electron beam emits superradiantly, these parameters scale like the square of the number of electrons, orders of magnitude more than spontaneous emission. The formulation applies to emission from single electron bunches, periodically bunched beams, or emission from a finite number of bunches in a...

  17. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    International Nuclear Information System (INIS)

    Lim, D.G.; Seol, K.H.; Jeon, H.J.; Jo, C.; Lee, M.

    2008-01-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage

  18. Application of electron-beam irradiation combined with antioxidants for fermented sausage and its quality characteristic

    Science.gov (United States)

    Lim, D. G.; Seol, K. H.; Jeon, H. J.; Jo, C.; Lee, M.

    2008-06-01

    The effects of various doses of electron-beam irradiation on the changes in microbiological attributes of fermented sausage and the combined effect of electron-beam irradiation and various antioxidants on the oxidative stability and sensory properties during cold storage were investigated. Results indicated that 2 kGy of irradiation was the most effective in manufacturing a fermented sausage, and the addition of rosemary extracts was effective in controlling the production of off-flavor and development of lipid oxidation during cold storage.

  19. Enhanced coherent undulator radiation from bunched electron beams

    International Nuclear Information System (INIS)

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.; Smith, T.I.

    1996-01-01

    When energetic bunches of electrons traverse an undulator field, they can spontaneously emit radiation both coherently and incoherently. Although it has generally been assumed that undulator radiation is incoherent at wavelengths short compared to the longitudinal size of the electron bunch, several recent observations have proved this assumption false. Furthermore, the appearance of coherent radiation is often accompanied by a significant increase in radiated power. Here we report observations of strongly enhanced coherent spontaneous radiation together with direct measurements, using transition radiation techniques, of the electron distributions responsible for the coherent emission. We also report demonstrated enhancements in the predicted spontaneous radiated power by as much as 6x10 4 using electron bunch compression. copyright 1996 American Institute of Physics

  20. Treatment of liquid separated from sludge by the method using electron beam and ozone in combination

    International Nuclear Information System (INIS)

    Hosono, Masakazu; Arai, Hidehiko; Aizawa, Masaki; Shimooka, Toshio; Shimizu, Ken; Sugiyama, Masashi.

    1995-01-01

    Since the liquid separated from sludge in the dehydration or concentration process of sewer sludge contains considerable amount of organic compositions that are hard to be decomposed by microorganisms, it has become difficult to be treated by conventional activated sludge process. In the case of discharging the separated liquid into closed water areas, the higher quality treatment is required. The method of using electron beam irradiation and ozone oxidation in combination for cleaning the liquid separated from sludge was examined, therefore, the results are reported. The water quality of the sample from the sludge treatment plant in A City is shown. The method of bio-pretreatment, the treatment method by using electron beam and ozone in combination, and the method of analyzing the water quality are described. The effect of the treatment by activated sludge process, as the effect of the treatment by the combined use of electron beam and ozone, the change of COD and TOC, the change of chromaticity, the change of gel chromatogram, and the reaction mechanism are reported. In this paper, only the basic concept on the model plant for applying the method of the combined use of electron beam and ozone to the treatment of the liquid separated from sludge is discussed. (K.I.)

  1. Crosslinking of oriented polyethylene by electron beam radiation. Influence of morphology induced by drawing

    International Nuclear Information System (INIS)

    Aerle, N.A.J.M. van; Crevecoeur, G.; Lemstra, P.J.

    1988-01-01

    The influence of drawing on the crosslinking efficiency for electron beam radiation is reported for solution-crystallized ultra-high molecular weight polyethylene. A maximum in crosslinking efficiency is found at a draw ratio of approximately five, indicating an optimum morphology for inducing crosslinks during the hot-drawing process. (author)

  2. Target size analysis of bioactive substances by radiation inactivation. Comparison with electron beam and. gamma. -ray

    Energy Technology Data Exchange (ETDEWEB)

    Kume, Tamikazu; Watanabe, Yuhei; Ishigaki, Isao; Hirose, Shigehisa

    1988-11-01

    The molecular sizes of various bioactive substances can be measured by the radiation inactivation method. The high energy electron beam (10 MeV) and /sup 60/Co-..gamma.. ray are mainly used for radiation inactivation method. When the practical electron accelerator (/similar to/ 3 MeV) is used for the method, the problems such as penetration and increase of temperature will arise. In this paper the radiation inactivation using 3MeV electron beam is investigated by comparison with ..gamma..-ray. When the plate type glass ampules (glass thickness 1 +- 0.1 mm) were used as the irradiation vessels, relatively uniform dose distribution was obtained. The temperature increased only from 21 degC to 35 degC by irradiation (0.77 mA, 100 passes, 100 kGy). Under the irradiation condition mentioned above, the molecular size of three enzymes were calculated from D/sub 37/ doses. The molecular sizes obtained by electron beam and ..gamma..-ray were 14,000 and 17,000 respectively for lysozyme, 33,000 for pepsin, and 191,000 and 164,000 for yeast alcohol dehydrogenase. These values agreed closely with the reported molecular weight, suggesting that the 3 MeV electron beam can also be used for the radiation inactivation under limited conditions.

  3. An analysis of whistler mode radiation from a 100 mA electron beam

    International Nuclear Information System (INIS)

    Goerke, R.T.; Kellogg, P.J.; Monson, S.J.

    1990-01-01

    Observations of whistler mode radiation generated by 2-, 4-, and 8-keV electron beams with a current of 100 mA, are analyzed. The electron accelerator was carried to ionospheric heights by a Nike Black Brant V rocket (National Research Council of Canada NVB-06). The instability causing the whistler mode radiation is investigated. Spectral measurements (0.1-13.0 MHz), from a sweeping receiver located on the ejected forward payload, are used to determine the nature of the instability. The sweeping receiver was connected alternatively to an electric or a magnetic dipole antenna. Most of the whistler mode radiation detected was consistent with Cerenkov radiation. The radiation fields observed were too large (cB ∼ 0.1 μV/m Hz 1/2 ) to be explained by incoherent processes. If electrostatic bunching in the beam at the plasma frequency is responsible for the whistler radiation, there would be a correlation between the plasma frequency radiation, and the whistler mode radiation for electron beams that are fired toward the detector. The observed correlation is minimal. Hence no evidence was found to support the hypothesis that electrostatic bunching at the plasma frequency was responsible for the enhancement of the whistler mode radiation produced by the NVB-06 electron beam

  4. Coherent spontaneous radiation from highly bunched electron beams

    International Nuclear Information System (INIS)

    Berryman, K.W.; Crosson, E.R.; Ricci, K.N.

    1995-01-01

    Coherent spontaneous radiation has now been observed in several FELs, and is a subject of great importance to the design of self-amplified spontaneous emission (SASE) devices. We report observations of coherent spontaneous radiation in both FIREFLY and the mid-infrared FEL at the Stanford Picosecond FEL Center. Coherent emission has been observed at wavelengths as short as 5 microns, and enhancement over incoherent levels by as much as a factor of 4x10 4 has been observed at longer wavelengths. The latter behavior was observed at 45 microns in FIREFLY with short bunches produced by off-peak acceleration and dispersive compression. We present temporal measurements of the highly bunched electron distributions responsible for the large enhancements, using both transition radiation and energy-phase techniques

  5. Economical aspects of radiation sterilization with electron beam

    International Nuclear Information System (INIS)

    Zimek, Z.; Kaluska, I.

    1998-01-01

    Radiation sterilization has been introduced in Poland in the early seventies. Since then continuous progress is observed in quantity of sterilized products. The commercial irradiation facility was built in 1993 to fulfill growing demands for radiation service. The real costs of running this plant were shown. The share of the cost of investment and the cost of maintenance and spare parts in accelerator exploitation, as well as the cost of one hour accelerator exploitation against time of one year accelerator exploitation were taken into account

  6. Radiation hygienization of cattle and swine slurry with high energy electron beam

    International Nuclear Information System (INIS)

    Skowron, Krzysztof; Olszewska, Halina; Paluszak, Zbigniew; Zimek, Zbigniew; Kałuska, Iwona; Skowron, Karolina Jadwiga

    2013-01-01

    The research was carried out to assess the efficiency of radiation hygienization of cattle and swine slurry of different density using the high energy electron beam based on the inactivation rate of Salmonella ssp, Escherichia coli, Enterococcus spp and Ascaris suum eggs. The experiment was conducted with use of the linear electron accelerator Elektronika 10/10 in Institute of Nuclear Chemistry and Technology in Warsaw. The inoculated slurry samples underwent hygienization with high energy electron beam of 1, 3, 5, 7 and 10 kGy. Numbers of reisolated bacteria were determined according to the MPN method, using typical microbiological media. Theoretical lethal doses, D 90 doses and hygienization efficiency of high energy electron beam were determined. The theoretical lethal doses for all tested bacteria ranged from 3.63 to 8.84 kGy and for A. suum eggs from 4.07 to 5.83 kGy. Salmonella rods turned out to be the most sensitive and Enterococcus spp were the most resistant to electron beam hygienization. The effectiveness or radiation hygienization was lower in cattle than in swine slurry and in thick than in thin one. Also the species or even the serotype of bacteria determined the dose needed to inactivation of microorganisms. - Highlights: ► The hygienic efficiency of electron beam against slurry was researched. ► The hygienization efficiency depended on the slurry characteristics and microorganism species. ► In most of the cases 7 kGy dose was sufficient for slurry hygienization. ► Dose below 1 kGy allowed for 90% elimination of microorganism population. ► The radiation hygienization is a good alternative for typical slurry treatment methods

  7. Monte Carlo calculation of scattered radiation from applicators in low energy clinical electron beams

    International Nuclear Information System (INIS)

    Jabbari, N.; Hashemi-Malayeri, B.; Farajollahi, A. R.; Kazemnejad, A.

    2007-01-01

    In radiotherapy with electron beams, scattered radiation from an electron applicator influences the dose distribution in the patient. The contribution of this radiation to the patient dose is significant, even in modern accelerators. In most of radiotherapy treatment planning systems, this component is not explicitly included. In addition, the scattered radiation produced by applicators varies based on the applicator design as well as the field size and distance from the applicators. The aim of this study was to calculate the amount of scattered dose contribution from applicators. We also tried to provide an extensive set of calculated data that could be used as input or benchmark data for advanced treatment planning systems that use Monte Carlo algorithms for dose distribution calculations. Electron beams produced by a NEPTUN 10PC medical linac were modeled using the BEAMnrc system. Central axis depth dose curves of the electron beams were measured and calculated, with and without the applicators in place, for different field sizes and energies. The scattered radiation from the applicators was determined by subtracting the central axis depth dose curves obtained without the applicators from that with the applicator. The results of this study indicated that the scattered radiation from the electron applicators of the NEPTUN 10PC is significant and cannot be neglected in advanced treatment planning systems. Furthermore, our results showed that the scattered radiation depends on the field size and decreases almost linearly with depth. (author)

  8. Radiation-Induced Graft Polymerization: Gamma Radiation and Electron Beam Technology for Materials Development

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Cabalar, Patrick Jay; Lopez, Girlie Eunice; Abad, Lucille V.

    2015-01-01

    The formation of functional hybrid materials by attaching polymer chains with advantageous tailored properties to the surface of a base polymer with desirable bulk character is an attractive application of graft copolymerization. Radiation-induced graft polymerization (RIGP) has been a popular approach for surface modification of polymers because of its merits over conventional chemical processes. RIGP, which proceeds primarily via free radical polymerization process, has the advantages such as simplicity, low cost, control over process and adjustment of the materials composition and structure. RIGP can be performed using either electron beam or gamma radiation and it can be applied to both synthetic and natural polymers. These merits make RIGP a popular research topic worldwide. Moreover, the materials synthesized and produced via RIGP has found applications, and were proposed to produce continuous impact, in the fields of medicine, agriculture, pollution remediation, rare earth and valuable metals recovery, fuel cell membrane synthesis and catalysis to name a few. From 2012 our group has performed electron beam and gamma radiation-induced graft polymerization of various monomers onto polymers of natural and synthetic origins (e.g. monomers - glycidyl methacrylate, styrene, acrylonitrile, N,N-dimethylaminoethyl methacrylate; base polymers – polyethylene/polypropylene nonwoven fabric, polypropylene nonwoven fabric pineapple fibers, cellulose nonwoven fabric microcrystalline cellulose). We tested these grafted materials for heavy metals (Pb, Ni, Cu) and organic molecule removal from aqueous solutions and E. coli activity (using reversible addition fragmentation chain transfer RAFT mediated grafting). The results clearly showed the success of materials modified via FIGP in these applications. Currently, we are studying the applications of grafted materials on treatment of waste waters from tanning industry, value addition to abaca nonwoven fabrics cell sheet

  9. Process for hardening an alkyd resin composition using ionizing radiation. [electron beams, gamma radiation

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, T; Murata, K; Maruyama, T

    1969-11-27

    In an alkyd resin composition having free hydroxide radicals and containing a conjugated unsaturated fatty acid and/or oil as a component thereof, a process for hardening an alkyd resin composition comprises the steps of dissolving into a vinyl monomer, the product obtained by the semi-esterification reaction of said hydroxide radicals with acid anhydrides having polymerizable radicals and hardening by ionizing radiation to provide a coating with a high degree of cross-linking, with favorable properties such as toughness, hardness, chemical resistance and resistance to weather and with the feasibility of being applied as the ground and finish coat on metals, wood, paper, outdoor construction or the like. Any kind of ionization radiation, particularly accelerated electron beams, ..gamma.. radiation can be used at 50/sup 0/C to -5/sup 0/C for a few seconds or minutes, permitting continuous operation. In one example, 384 parts of phthalic anhydride, 115 parts of pentaerythritol, 233 parts of trimethylol ethane, 288 parts of tung fatty acid and 49 parts of para-tertiary-butyl benzoic acid are mixed and heated with 60 parts of xylene to an acid value of 12. In addition, 271 parts of maleic anhydride and 0.6 parts of hydroquinone are admixed with the content and heated to terminate the reaction. 100 parts of a 50% stylene solution of this alkyd resin are mixed with 1 part of a 60% toluene solution of cobalt naphthenate, and then coated on a glass plate and irradiated with high energy electron beams of 300 kV with a dose of 5 Mrad for 1 sec.

  10. Chromium Waste Treatment from Leather Manufacture Using Electron Beam Radiation Technic

    International Nuclear Information System (INIS)

    Didiek Herhady, R.; Sukarsono, R.

    2007-01-01

    Leather manufacture chromium waste treatment using chemical methods have an essential disadvantage, because of the production of the secondary contamination of wastes and separated sediments used by reagents. Therefore, a new technique is needed to solve this problem. The aim of the research to learn the advantages of electron beam radiation for chromium waste treatment. Water radiolysis can be produced by the interaction between electron beam and water or liquid substances. This phenomenon produces many reducing agents and ions that could reduce chromium concentrations in the liquid waste. Ethyl alcohol as a scavenger was added in the waste samples, then the pH of varied from 1, 4, 8 to 12, then were irradiated. Irradiation were done by Electron Beam Machine with dose 15, 25, and 35 kGy. After irradiation, chromium concentration in the samples were analyzed by AAS and UV-vis spectrophotometer. The results had shown that chromium could be reduced by high dose electron beam. The optimum reduction of chromium was achieved at liquid waste pH 8 and irradiation dose 35 kGy. (author)

  11. Two-parametric model of electron beam in computational dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Lazurik, V.M.; Lazurik, V.T.; Popov, G.; Zimek, Z.

    2016-01-01

    Computer simulation of irradiation process of various materials with electron beam (EB) can be applied to correct and control the performances of radiation processing installations. Electron beam energy measurements methods are described in the international standards. The obtained results of measurements can be extended by implementation computational dosimetry. Authors have developed the computational method for determination of EB energy on the base of two-parametric fitting of semi-empirical model for the depth dose distribution initiated by mono-energetic electron beam. The analysis of number experiments show that described method can effectively consider random displacements arising from the use of aluminum wedge with a continuous strip of dosimetric film and minimize the magnitude uncertainty value of the electron energy evaluation, calculated from the experimental data. Two-parametric fitting method is proposed for determination of the electron beam model parameters. These model parameters are as follow: E 0 – energy mono-energetic and mono-directional electron source, X 0 – the thickness of the aluminum layer, located in front of irradiated object. That allows obtain baseline data related to the characteristic of the electron beam, which can be later on applied for computer modeling of the irradiation process. Model parameters which are defined in the international standards (like E p – the most probably energy and R p – practical range) can be linked with characteristics of two-parametric model (E 0 , X 0 ), which allows to simulate the electron irradiation process. The obtained data from semi-empirical model were checked together with the set of experimental results. The proposed two-parametric model for electron beam energy evaluation and estimation of accuracy for computational dosimetry methods on the base of developed model are discussed. - Highlights: • Experimental and computational methods of electron energy evaluation. • Development

  12. Radioprotective efficacy of bisarylidene cyclopentanone on electron beam radiation induced oxidative stress in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Darshan Raj, C.G.; Sarojini, B.K.; Musthafa Khaleel, V.; Ramesh, S.R.; Ramakrishna, M.K.; Narayana, B.; Sanjeev, Ganesh

    2010-01-01

    Present study was carried out for evaluating the radioprotective effect of bischalcone (2E, 5E) - 2,5-bis (3-methoxy-4-hydroxy-benzylidene) cyclopentanone (curcumin analog (CA)), on electron beam radiation induced oxidative stress in Drosophila melanogaster adults. The oxidative stress markers and antioxidants included superoxide dismutase (SOD) and catalase (CAT). The oxidative stress was induced at 1.5 Gy. (author)

  13. Generation and characterization of ultra-short electron beams for single spike infrared FEL radiation at SPARC_LAB

    Science.gov (United States)

    Villa, F.; Anania, M. P.; Artioli, M.; Bacci, A.; Bellaveglia, M.; Bisesto, F. G.; Biagioni, A.; Carpanese, M.; Cardelli, F.; Castorina, G.; Chiadroni, E.; Cianchi, A.; Ciocci, F.; Croia, M.; Curcio, A.; Dattoli, G.; Gallo, A.; Di Giovenale, D.; Di Palma, E.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Giannessi, L.; Giribono, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Petralia, A.; Petrarca, M.; Petrillo, V.; Piersanti, L.; Pioli, S.; Pompili, R.; Romeo, S.; Rossi, A. R.; Scifo, J.; Shpakov, V.; Vaccarezza, C.

    2017-09-01

    The technique for producing and measuring few tens of femtosecond electron beams, and the consequent generation of few tens femtoseconds single spike FEL radiation pulses at SPARC_LAB is presented. The undulator has been used in the double role of radiation source and diagnostic tool for the characterization of the electron beam. The connection between the electron bunch length and the radiation bandwidth is analyzed.

  14. Study of Textile Surface Characteristic Modification by Using Electron Beam Radiation

    International Nuclear Information System (INIS)

    Iswani Gitawati; Rany Saptaaji

    2007-01-01

    The success of accelerator technology application in various field of industry, medical and pharmacy, environment, agricultural, food increase each year as the increasing of people needs, not excepted for surface treatment of fibers and textiles in textile industry. This writing aim is to asses the application of electron beam accelerator for textile surface treatment on finishing step. Surface treatment was done with electron beam low energy (100 - 500 keV), and because of its low penetration it was suitable used to gain the improvement of chemical, physical and mechanical properties of textile surface such as adhesion, wettability, printability, dyes-intake, crease recovery, wrinkle-resistance, flammability, abrasion resistance, soil and stain release to get better result. Modification of fibers and textiles surface properties on finishing process can be caused by crosslinking, grafting and degradation reactions. The assesment results showed that the greatest impact on commercial application of radiation in textiles were crease recovery and surface modification of wetting properties (soil and stain release). The radiation dose used for those purposes were 5 - 50 kGy. The bach process of graft textiles surface modification before and after irradiation by Co-60 source (gamma energies of 1.33 and 1.17 MeV) and continue process by electron beam were presented. The assesment results were reported in this paper. (author)

  15. Hydrogel wound dressing preparation at the laboratory scale by using electron beam and gamma radiation

    International Nuclear Information System (INIS)

    Rapado Raneque, Manuel; Rodriguez Rodriguez, Alejandro; Peniche Covas, Carlos

    2013-01-01

    The present work describes the preparation of hydrogel based on cross-linked networks of poly (N-vinylpirrolidone), PVP, with polyethyleneglicol and agar with 90% water and PVP nancomposites with a synthetic nanoclay, Laponite XLG, for use as burn dressings. These systems were obtained in two ways: using gamma Co-60 and electron beam radiation. The gelation obtained dose was D g = 1.72 kGy. The elastic modulus of hydrogel was independent of the method of irradiation. It was 0.39 MPa for the hydrogel irradiated with gamma Co-60 and 0.38 MPa for electron beam irradiation. The elastic modulus of the nanocomposite membrane was 1.25 MPa, three times higher. These results indicate that the PVP/Laponite XLG nanocomposite hydrogel membrane is the best choice for wound dressing applications due to its high water sorption capacity and its superior mechanical properties.

  16. Beam diagnostics using transition radiation produced by a 100 Mev electron beam

    International Nuclear Information System (INIS)

    Jablonka, M.; Leroy, J.; Hanus, X.; Derost, J.C.; Wartski, L.

    1991-01-01

    We report on several experiments using the optical transition radiation (OTR) produced by a 100 MeV electron beam. In using a sensitive video camera coupled with a digital image processing system an accurate and simple beam profile monitor has been devised. In measuring with a photo-multiplier the radiation emitted in a small solid angle around the direction of the OTR emission, a signal very sensitive to beam energy variations has been obtained. These experiments have been carried out on the Saclay ALS linac

  17. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  18. Protective effect of allium sativum ethanol extract on cultured human lymphocytes against electron beam radiation

    International Nuclear Information System (INIS)

    Rao, Shama; Shetty, Sukanya; Suchetha Kumari; Madhu, L.N.

    2013-01-01

    The development of radioprotective agent has been the subject of intense research because exposure to ionizing radiation causes DNA damage which may cause mutation and ultimately leads to cancer, on the other hand radiotherapy has become an integral part in treatment of cancer which uses ionizing radiations like X rays, gamma rays to kill the cancer cells. Amifostine is a well-known radioprotector which is clinically approved. There are many other radioprotectors like cysteine, cystamine, serotine but they are not used because of its normal tissue toxicity. Allium sativum is commonly known as garlic which has already been reported for its medicinal properties. In this study we evaluated radioprotection property of Allium sativum on DNA damage caused by electron beam radiation in cultured human lymphocytes. Allium sativum ethanol extract was used for this study. Cell viability was performed by MTT assay. DNA damage was assessed by comet assay parameters. The cultured lymphocytes were incubated with different concentrations 10, 50 and 100 μg/mL of Allium sativum extracts for 2, 4, 6 and 24 hour time intervals. Treatment of lymphocytes with various concentration of Allium sativum extract resulted in significant decrease in the level of DNA damage (Percentage tail DNA 6%) and increase in cell viability 93% (p>0.05) compare to the radiation control group. Results of this study revealed that Allium sativum protects cultured lymphocytes when exposed to electron beam radiation at its sub lethal dose. (author)

  19. Treatment of local recurrent breast cancer by divided dose electron beam radiation twice a week

    International Nuclear Information System (INIS)

    Ito, Ichiro; Suzuki, Yoshihiko; Miyaishi, Kazuo; Mitsuhashi, Norio; Kimura, Makoto

    1978-01-01

    The objectives of this study were to investigate the effects of divided dose electron beam radiation twice a week (with a focal dose of 600 rads at a time) on local recurrent tumors of postoperative breast cancer and to compare it with the conventional photon radiation in the hope that it might be better tolerated by the patients, with less damage to normal skin and lung tissues. Out of 261 patients with breast cancer who came to the Department of Radiology, at Gunma Univ. Hospital, Maebashi, during the period Jan., 1970, through Jun., 1976, 41 patients who received electron beam radiation for local recurrence (in 81 sites) and 31 who received prophylactic radiation over the chest wall postoperatively. Tumors completely disappeared from 73 out of 81 sites irradiated for local recurrence (accounting 90% of the 81 sites). The local recurrent lesions were classified to the ''disseminated'' and the ''focal'' type to compare the effects of the radiation, and it was found that the radiation eliminated the tumors from all (100%) of the 63 sites of the former type, while the radiation was capable of eliminating the tumors from only 10 out of the 18 sites of the latter type (56%). When the focal type tumors were classified by histopathologic typing to compare the effects of the radiation, the radiation was assessed effective in papillotubular carcinoma, medullary tubular carcinoma and scirrhous carcinoma in the decreasing sequence of significance. Pulmonary disorders occurred in 12% of all the observed sites. However, it is possible to further reduce this incidence by the adequate use of the tissue compensating filter, Mix-R. A skin disorder (erosion) was observed in 59% of all the sites observed. However, it may be anticipated that the topical application of a suitable corticoid (Beta-methasone-17-valerate cream) preparation will by prophylactically effective. (auth.)

  20. Tailoring of Highly Intense THz Radiation Through High Brightness Electron Beams Longitudinal Manipulation

    Directory of Open Access Journals (Sweden)

    Flavio Giorgianni

    2016-02-01

    Full Text Available The ultra-short electron beams, produced through the velocity bunching compression technique at the SPARC_LAB test Facility (Frascati, Italy, are used to produce Coherent Transition Radiation in the terahertz (THz range. This paper reports on the main features of this THz source, which have a spectral coverage up to 5 THz, a pulse duration down to 100 fs, and an energy per pulse on the order of tens of μJ. These figures of merits open the possibility to apply this source for nonlinear and THz pump-probe experiments in Solid-State Physics and material science.

  1. Feasibility of Optical Transition Radiation Imaging for Laser-driven Plasma Accelerator Electron-Beam Diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A. H. [Fermilab; Rule, D. W. [Unlisted, US, MD; Downer, M. C. [Texas U.

    2017-10-09

    We report the initial considerations of using linearly polarized optical transition radiation (OTR) to characterize the electron beams of laser plasma accelerators (LPAs) such as at the Univ. of Texas at Austin. The two LPAs operate at 100 MeV and 2-GeV, and they currently have estimated normalized emittances at ~ 1-mm mrad regime with beam divergences less than 1/γ and beam sizes to be determined at the micron level. Analytical modeling results indicate the feasibility of using these OTR techniques for the LPA applications.

  2. Evaluation of the electron beam radiation effects on the mechanical properties of the polypropylene

    International Nuclear Information System (INIS)

    Souza, Clecia M.; Moura, Esperidiana A.B.; Chinellato, Anne

    2009-01-01

    This paper studied the electron beam radiation effects on the mechanical properties of the polypropylene (PP) resin. The PP resin was submitted to 150-250 kGy radiation dose, at the dose rate of 14 kGy/s, room temperature and presence of air, using a 1.5 MeV electron accelerator. After the irradiation, the irradiated and non irradiated resin samples were submitted to the mechanical testes of traction resistance and impact Izod resistance. The results shown that the traction resistance at drainage of PP samples have not experienced significant modifications (p < 0.05) after the irradiation. However, the original PP rupture resistance (non irradiated samples) presented a gain up to 100 % as function of the applied radiation dose; the percentage of deformation in the rupture presented a reduction up to 65 % and the Izod impact resistance presented a reduction up to 70 % with the increase of the radiation dose (p < 0.05)

  3. Installation And Test Of Electron Beam Generation System To Produce Far-Infrared Radiation And X-Ray Pulses

    International Nuclear Information System (INIS)

    Wichaisirimongkol, Pathom; Jinamoon, Witoon; Khangrang, Nopadon; Kusoljariyakul, Keerati; Rhodes, Michael W.; Rimjaem, Sakhorn; Saisut, Jatuporn; Chitrlada, Thongbai; Vilaithong, Thiraphat; Wiedemann, Helmut

    2005-10-01

    SURIYA project at the Fast Neutron Research Facility, Chiang Mai University, aims to establish a facility to generate femtosecond electron beams. This electron beam can be used to generate high intensity far-infrared radiation and ultra-short X-ray pulses. The main components of the system are a 3 MeV RF electron gun with a thermionic cathode, an a-magnet as a bunch compressor, and post acceleration 15-20 MeV by a linear accelerator (linac). Between the main components, there are focusing quadrupole magnets and steering magnets to maintain the electron beam within a high vacuum tube. At the end of the beam transport line, a dipole magnet has been installed to function as a beam dump and an energy spectrometer. After the installation and testing of individual major components were completed, we have been investigating the generation of the electron beam, intense far- infrared radiation and ultra short X-ray pulses

  4. Results of a 5-Week Schedule of Modern Total Skin Electron Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Morris, Stephen Lloyd, E-mail: stephen.morris@gstt.nhs.uk [St Johns Institute of Dermatology, Guys and St Thomas Hospital, London (United Kingdom); McGovern, Mark; Bayne, Sally; Wain, Mary; Child, Fiona; Whittaker, Sean [St Johns Institute of Dermatology, Guys and St Thomas Hospital, London (United Kingdom)

    2013-08-01

    Purpose: To report the outcomes of a 5-week schedule of total skin electron beam radiation therapy (TSEB) for mycosis fungoides (MF). Methods: Over 5 years, 41 patients with confirmed MF were treated with a modern TSEB technique delivering 30 Gy in 20 fractions over 5 weeks to the whole skin surface. Data were collected prospectively and entered into the skin tumor unit research database. Skin modified skin weighted assessment tool score data were collected to determine response, duration of response, survival, and toxicity. The outcomes were analyzed according to the patient's stage before TSEB, prognostic factors, and adjuvant treatments. Results: Seventeen patients were stage 1B, 19 were stage IIB, 3 were stage III, and 2 were stage IV. The overall response rate was 95%, with a complete response rate of 51%. Seventy-six percent of patients had relapsed at median follow-up of 18 months. The median time to relapse was 12 months, to systemic therapy was 15 months, and to modified skin weighted assessment tool progression above baseline was 44 months. The complete response rate was 59% in stage IB and 47% in stage IIB patients. The median time to skin relapse was longer in stage IB compared with stage IIB, 18 months versus 9 months. The median time to systemic therapy was longer in stage IB compared with stage IIB, >56 months versus 8 months. The median overall survival was 35 months: >56 months for stage IB, 25 months for stage IIB, 46 months for stage III, and 23.5 months for stage IV. Fifteen patients received adjuvant psoralen + ultraviolet A treatment with no difference seen in the time to relapse. Conclusions: This 5-week schedule of TSEB for MF has a high response rate with comparable duration of response to other regimens. Future studies are needed to find adjuvant and combination treatments to improve the duration of response.

  5. Radiation processing of polymers with high energy electron beams: novel materials and processes

    International Nuclear Information System (INIS)

    Sarma, K.S.S.; Sabharwal, Sunil

    2002-01-01

    High-energy ionizing radiation available from electron beam (EB) accelerators has the ability to create extremely reactive species like free radicals or ions at room temperature or even at low temperature in any phase and in a variety of substrates without addition of external additives. This unique advantage of high energy has been utilized in the recent years to produce better quality materials in an environment friendly and cost-effective manner. The availability of high power and reliable EB accelerators has provided new tools to modify the materials and/or processes for a variety of applications. At BARC, a 2 MeV, 20 kW electron beam accelerator has been the nucleus of developing industrial applications of radiation processing in India for last 10 years. The focus has been on developing technologies that are of relevance to Indian socio-economic conditions and also provide economic benefits to the industry. In the areas of polymer processing industry, commercial success has already been achieved while for exploring its applications in the areas of food and agriculture and environment, technology demonstration plants are being set up. The current status of the programme, the new developments and future direction of radiation processing technology shall be presented in this paper. (author)

  6. Measured Radiation and Background Levels During Transmission of Megawatt Electron Beams Through Millimeter Apertures

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Ricardo [Arizona State University, Glendale, AZ (United States); Balascuta, S. [Arizona State University, Glendale, AZ (United States); Benson, Stephen V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Bertozzi, William [Massachusetts Institute of Technology, Cambridge, MA (United States); Boyce, James R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Cowan, Ray [Massachusetts Institute of Technology, Cambridge, MA (United States); Douglas, David R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Evtushenko, Pavel [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Fisher, P. [Massachusetts Institute of Technology, Cambridge, MA (United States); Ihloff, Ernest E. [Hampton University, Hampton, VA (United States); Kalantarians, Narbe [Hampton University, Hampton, VA (United States); Kelleher, Aidan Michael [Massachusetts Institute of Technology, Cambridge, MA (United States); Krossler, W. J. [William and Mary College, Williamsburg, VA (United States); Legg, Robert A. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Long, Elena [University of New Hampshire, Durham, NH (United States); Milner, Richard [Massachusetts Institute of Technology, Cambridge, MA (United States); Neil, George R. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Ou, Longwu [Massachusetts Institute of Technology, Cambridge, MA (United States); Schmookler, Barack Abraham [Massachusetts Institute of Technology, Cambridge, MA (United States); Tennant, Christopher D. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Tschalar, C. [Massachusetts Institute of Technology, Cambridge, MA (United States); Williams, Gwyn P. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Zhang, Shukui [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2013-11-01

    We report measurements of photon and neutron radiation levels observed while transmitting a 0.43 MW electron beam through millimeter-sized apertures and during beam-off, but accelerating gradient RF-on, operation. These measurements were conducted at the Free-Electron Laser (FEL) facility of the Jefferson National Accelerator Laboratory (JLab) using a 100 MeV electron beam from an energy-recovery linear accelerator. The beam was directed successively through 6 mm, 4 mm, and 2 mm diameter apertures of length 127 mm in aluminum at a maximum current of 4.3 mA (430 kW beam power). This study was conducted to characterize radiation levels for experiments that need to operate in this environment, such as the proposed DarkLight Experiment. We find that sustained transmission of a 430 kW continuous-wave (CW) beam through a 2 mm aperture is feasible with manageable beam-related backgrounds. We also find that during beam-off, RF-on operation, multipactoring inside the niobium cavities of the accelerator cryomodules is the primary source of ambient radiation when the machine is tuned for 130 MeV operation.

  7. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  8. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  9. The use of different type of electron beam radiation equipment for biotechnological materials

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Oproiu, C.; Ferdes, M.

    1998-01-01

    The potential of using electron beam radiation and bremsstrahlung for some biotechnological materials treatment is presented based on the results of the R and D programme established in 1993 at the Institute of Lasers, Plasma and Radiation Physics Bucharest, Electron Accelerator Laboratory. The main parameters of different electron accelerator types used to process biotechnological materials are presented as these machines were designed, developed and improved. In order to fulfil the radiation processing requirements for biotechnology and environmental protection, betatron, linear and microtron-type electron accelerators are considered and there is an interest to develop a dedicated one as well. The results of irradiation of different biotechnological items as cell cultures, microbial strains, enzymes and biopreparates and cellulose-based wastes are presented

  10. Signatures of quantum radiation reaction in laser-electron-beam collisions

    International Nuclear Information System (INIS)

    Wang, H. Y.; Yan, X. Q.; Zepf, M.

    2015-01-01

    Electron dynamics in the collision of an electron beam with a high-intensity focused ultrashort laser pulse are investigated using three-dimensional QED particle-in-cell (PIC) simulations, and the results are compared with those calculated by classical Landau and Lifshitz PIC simulations. Significant differences are observed from the angular dependence of the electron energy distribution patterns for the two different approaches, because photon emission is no longer well approximated by a continuous process in the quantum radiation-dominated regime. The stochastic nature of photon emission results in strong signatures of quantum radiation-reaction effects under certain conditions. We show that the laser spot size and duration greatly influence these signatures due to the competition of QED effects and the ponderomotive force, which is well described in the classical approximation. The clearest signatures of quantum radiation reaction are found in the limit of large laser spots and few cycle pulse durations

  11. Removal of diclofenac from surface water by electron beam irradiation combined with a biological aerated filter

    Science.gov (United States)

    He, Shijun; Wang, Jianlong; Ye, Longfei; Zhang, Youxue; Yu, Jiang

    2014-12-01

    The degradation of DCF was investigated in aqueous solution by using electron beam (EB) technology. When the initial concentration was between 10 and 40 mg/L, almost 100% of the DCF was degraded at a dose of 0.5 kGy. However, only about 6.5% of DCF was mineralized even at 2 kGy according to total organic carbon (TOC) measurements. A combined process of EB and biological aerated filter (BAF) was therefore developed to enhance the treatment of DCF contaminated surface water. The effluent quality of combined process was substantially improved by EB pretreatment due to the degradation of DCF and related intermediates. Both irradiation and biological treatment reduced the toxicity of the treated water. The experimental results showed that EB is effective for removing DCF from artificial aqueous solution and real surface water.

  12. Quantum radiation reaction in head-on laser-electron beam interaction

    International Nuclear Information System (INIS)

    Vranic, Marija; Grismayer, Thomas; Fonseca, Ricardo A; Silva, Luis O

    2016-01-01

    In this paper, we investigate the evolution of the energy spread and the divergence of electron beams while they interact with different laser pulses at intensities where quantum effects and radiation reaction are of relevance. The interaction is modelled with a quantum electrodynamic (QED)-PIC code and the results are compared with those obtained using a standard PIC code with a classical radiation reaction module. In addition, an analytical model is presented that estimates the value of the final electron energy spread after the interaction with the laser has finished. While classical radiation reaction is a continuous process, in QED, radiation emission is stochastic. The two pictures reconcile in the limit when the emitted photons energy is small compared to the energy of the emitting electrons. The energy spread of the electron distribution function always tends to decrease with classical radiation reaction, whereas the stochastic QED emission can also enlarge it. These two tendencies compete in the QED-dominated regime. Our analysis, supported by the QED module, reveals an upper limit to the maximal attainable energy spread due to stochasticity that depends on laser intensity and the electron beam average energy. Beyond this limit, the energy spread decreases. These findings are verified for different laser pulse lengths ranging from short ∼30 fs pulses presently available to the long ∼150 fs pulses expected in the near-future laser facilities, and compared with a theoretical model. Our results also show that near future experiments will be able to probe this transition and to demonstrate the competition between enhanced QED induced energy spread and energy spectrum narrowing from classical radiation reaction. (paper)

  13. Hypofractionated electron-beam radiation therapy for keloids. Retrospective study of 568 cases with 834 lesions

    International Nuclear Information System (INIS)

    Shen Jie; Lian Xin; Sun Yuliang

    2015-01-01

    We aimed to analyze the outcomes of hypofractionated high-energy electron beam radiotherapy for the treatment of keloids. From February 1998 to January 2012, 568 patients with a total of 834 keloids underwent radiotherapy: 826 lesions with postoperative radiotherapy, and 36 with skin-grafting. Lesion size was >5 cm in 335 keloids. An electron-beam of 6 or 7 MeV was used, with a total dose of 18 Gy (two fractions with a 1-week interval) covering the lesion with a 1-cm margin. The time between surgery and radiotherapy was 24–48 h. Skin-grafted patients underwent radiotherapy 10–15 days after the operation. The median follow-up was 40 months (range: 12–160 months). The local control rate was 88.25% (736/834). The relapse rate was 9.59% (80/834), and the time to relapse was 6–28 months (median: 12 months). Univariate analyses showed that gender, age, keloid size, keloid site, skin grafting, and operation-to-irradiation interval influenced the local control rate. Multivariate analysis showed that the relapse rate was correlated with gender (P = 0.048), age (P < 0.01), operation-to-irradiation interval (P < 0.01), keloid site (P < 0.01), surgical method (P = 0.04) and keloid size (P < 0.02). Adverse effects were observed in 9.83% (82/834). No radiation-induced cancers were observed. Hypofractionated high-energy electron beam radiotherapy for keloids yielded excellent outcomes, especially in cases without skin grafting. Early postoperative radiotherapy with limited hypofractionation could be a good choice for keloid treatment. (author)

  14. Value of electron beam tomography (EBT). II. non-cardiac applications and radiation exposure

    International Nuclear Information System (INIS)

    Enzweiler, C.N.H.; Lembcke, A.; Rogalla, P.; Taupitz, M.; Wiese, T.H.; Hamm, B.; Becker, C.R.; Bruening, R.; Reiser, M.F.; Schoepf, U.J.; Felix, R.; Knollmann, F.D.; Georgi, M.; Weisser, G.; Lehmann, K.J.

    2004-01-01

    Electron beam tomography (EBT) has been scientifically evaluated to a much lesser degree for non-cardiac indications than for cardiac purposes. Therefore, four groups of investigators in Berlin (2), Mannheim and Muenchen, which were supported by the Deutsche Forschungsgemeinschaft (DFG), included applications outside the heart in their evaluation of EBT technology. EBT has proven useful to look for pulmonary embolism and to assess other vessels (aorta, aortic branches, and intracranial arteries). Imaging of the lung parenchyma benefits from its intrinsic high contrast and from the fast data acquisition of EBT. Limited photon efficiency, higher radiation exposure, increased noise levels and other artifacts, however markedly reduce the value of EBT for imaging of low contrast objects compared to conventional spiral CT and multislice CT (MSCT), compromising, in particular, the morphologic depiction of parenchymal abdominal organs and the brain. Consequently, scientific studies to further evaluate EBT for scanning of the brain and parenchymal abdominal organs were not pursued. Radiation exposure for non-cardiac EBT studies is up to three times higher than that for respective spiral CT studies, and in children EBT can only be advocated in select cases. Radiation exposure for the various prospectively triggered cardiac examination protocols of EBT is lower than that for conventional coronary angiography. Radiation exposure in cardiac multislice CT exceeds severalfold that of EBT, but the dose efficiency of EBT and MSCT are similar due to higher spatial resolution and less image noise of MSCT. In addition, modifications of MSCT (ECG pulsing) can further reduce radiation exposure to the level of EBT. Technical improvements of the EBT successor scanner 'e-Speed' enable faster data acquisiton at higher spatial resolution. Within comparative studies, the 'e-Speed' will have to prove its value and competitiveness, particularly in comparison with multislice CT. After profound

  15. Preparation and characterization of polyethylene glycol diacrylate microgels using electron beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, Mohd Yusof [Makmal Nanoteknologi, Bahagian Teknologi Sinaran (Malaysia); Isa, Naurah Mat; Napia, Liyana M. Ali [ALURTRON, Bahagian Kemudahan Iradiasi, Malaysian Nuclear Agency, 43000, Kajang, Selangor (Malaysia)

    2014-02-12

    The use of microemulsion in the development of nanosized gels based on polyethylene glycol diacrylate (PEGDA) is demonstrated. PEGDA was solubilized in n-heptane with use of sodium docusate (AOT) at 0.15M concentration to form reverse micelles. These micelles were than irradiated at 5, 10, 15, 20 and 25 kGy using electron beam (EB) to crosslink the entrapped polymer in the micelles. Ionizing radiation was imparted to the emulsions to generate crosslinking reaction in the micelles formed. The nanosized gels were evaluated in terms of particle diameter using dynamic light scattering (DLS) and the images of the nanosized gels were studied using transmission electron microscopy (TEM). Results show that the size and shape of the particles are influenced by concentration of PEGDA and radiation dose. This study showed that this method can be utilized to produce nanosized gels.

  16. First measurements of subpicosecond electron beam structure by autocorrelation of coherent diffraction radiation

    CERN Document Server

    Lumpkin, Alex H; Rule, D W

    2001-01-01

    We report the initial measurements of subpicosecond electron beam structure using a nonintercepting technique based on the autocorrelation of coherent diffraction radiation (CDR). A far infrared (FIR) Michelson interferometer with a Golay detector was used to obtain the autocorrelation. The radiation was generated by a thermionic rf gun beam at 40 MeV as it passed through a 5-mm-tall slit/aperture in a metal screen whose surface was at 45 deg. to the beam direction. For the observed bunch lengths of about 450 fs (FWHM) with a shorter time spike on the leading edge, peak currents of about 100 A are indicated. Also a model was developed and used to calculate the CDR from the back of two metal strips separated by a 5-mm vertical gap. The demonstrated nonintercepting aspect of this method could allow on-line bunch length characterizations to be done during free-electron laser experiments.

  17. Research On Degradation Of Silk Fibroin By Combination Of Electron Beam Irradiation And Hydrothermal Processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The protein content increased from 0.4617 to 0.6530 mg/mg when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  18. Electron-beam and combined e-b and microwave processing of dried food ingredients

    International Nuclear Information System (INIS)

    Ferdes, O.; Minea, R.; Martin, D.; Tirlea, A.; Badea, M.; Oproiu, C.

    1998-01-01

    Complete text of publication follows. There are summarized and presented the results on the irradiated dried food ingredients, as starches, flour, spices, enzymes, pigments. It has investigated the electron-beam and microwave processing to achieve the hygienic and microbiological quality requirements for these materials. There are presented the results regarding the e-b and microwave effects on the main specific parameters (nutritional; microbiological; physical and chemical) for each item. Irradiation has carried out to different electron accelerators, mainly to ALIN-7 linac (W e ∼6 MeV) and using a special designed microwave equipment (2.45 GHz magnetron of 850 W maximum output power). The samples have been irradiated up to 25 kGy (dose rate ∼ 2.0 kGy/min) and there were treated by microwaves (250 W-550 W) for different exposure time. There have analyzed and presented the influence of these two physical fields on some common physical, biochemical and microbiological properties (mainly the total germ count, CFU/g) of these food materials. The main technological and physical characteristics of the materials are preserved, under irradiation up to 10 kGy and microwave treatment in the case of satisfying the national requirements for food and food grade additives microbiological load. The combined treatment seems to be present a synergistic effect arising on non-thermal basis. From these results it could be pointed out that electron-beam and microwave treatment is feasible and represents an alternative to other hygienization techniques for the dried food ingredients. It should be considered that combined treatments lead to reducing irradiation dose without losing the microbicidal effects

  19. Dicolorization of Reactive Dyes in Aqueous Solutions Using Ionizing Electron Beam Radiation

    Directory of Open Access Journals (Sweden)

    Abbas Behjat

    2009-09-01

    Full Text Available Experiments were carried out to study the effects of high-energy electron beam irradiation on reactive azo dyes (Remazol blue 133%, and Remazol red which are widely used in Yazd textile plants. Laboratory scale experiments were carried out using advanced 10 MeV electron beam accelerator service in Yazd Radiation Processing Center (YRPC. The irradiation dose was varied over 1, 3, 5, 8, and11 kGy. Dicoloration of the prepared dye solution was monitored by comparing the absorption spectra of the samples before and after irradiation. Mineralization of the dye solutions were estimated by measuring COD and PH of the irradiated samples. Our results show a color removal efficeincy of 83% in from different samples by applying 1 kGy irradiation dose. This value increases by up to 96%  under 3kGy irradiation. pH and COD values decrease with increasing absorbed doses.  COD removals for Remazol blue 133% and Remazol  red samples were calculated as 20% and 18% for an absorbed dose of 1 kGy and 60% and 72% for an absorbed dose of 11 kGy, respectively.

  20. Improvement of the fracture toughness matrix cured by electron beam radiation, by incorporation of thermoplastic

    International Nuclear Information System (INIS)

    Chauray, E.

    2003-07-01

    The aim of the present study is to improve the fracture toughness of a vinyl-ester matrix cured by electron beam radiation, by incorporation of a thermoplastic polymer. The ultimate plan is to improve the fracture toughness of the composite material made of this reinforced matrix and carbon fibres. The first step deals with the study of an epoxy matrix reinforced by a polyether-sulfone. This well-known material, as it is used in industrial formulation, allowed us to characterize all the parameters needed to obtain a good reinforcement as for instance the morphology, and also to compare two kinds of processes: thermal and electron beam curing. In fact, we are really interested in increasing fracture toughness of a vinyl-ester matrix that is not miscible with polyether-sulfone. So a copolymer which has a similar structure as polyether-sulfone is synthesized in order to obtain a miscible blend. The corresponding material has good fracture toughness, with an increase of 80 % for 15 % addition of thermoplastic. (author)

  1. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    International Nuclear Information System (INIS)

    Moraes, M.C.F.; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I.

    2004-01-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced

  2. Whole acute toxicity removal from industrial and domestic effluents treated by electron beam radiation: emphasis on anionic surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, M.C.F. E-mail: mariacristinafm@uol.com.br; Romanelli, M.F; Sena, H.C.; Pasqualini da Silva, G.; Sampa, M.H.O.; Borrely, S.I

    2004-10-01

    Electron beam radiation has been applied to improve real industrial and domestic effluents received by Suzano wastewater treatment plant. Radiation efficacy has been evaluated as toxicity reduction, using two biological assays. Three sites were sampled and submitted for toxicity assays, anionic surfactant determination and electron beam irradiation. This paper shows the reduction of acute toxicity for both test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. The raw toxic effluents exibitted from 0.6 ppm up to 11.67 ppm for anionic surfactant before being treated by the electron beam. Radiation processing resulted in reduction of the acute toxicity as well as surfactant removal. The final biological effluent was in general less toxic than other sites but the presence of anionic surfactants was evidenced.

  3. Study of the properties of inverted liquid sugar processed with gamma radiation and electron beam

    International Nuclear Information System (INIS)

    Podadera, Priscilla

    2007-01-01

    Brazil occupies position of prominence in the sugar market and high consumption of this ingredient in the liquid form, in special for the beverages and food industries. The liquid sugar presents advantages in relation to the bulk granulated system such as easiness of the handling and dosage, reduced space for the storage, reduction of the losses, costs and hand of workmanship, improvement of the sanitizing and great possible variation in the ratios of different mixtures of sugars. The inverted liquid sugar is a solution of sucrose, glucose and fructose in water. This ingredient receives this name because during its production it has an inversion of the optic power of rotation of the solution. In the productive process of the inverted sugar some points occur that can generate contamination by microorganisms, so its become important the development of techniques that propitiate the efficient sanitizing of this raw material. This work aims at to consider two alternative techniques of microbiologic control: gamma radiation with source of cobalto-60 and radiation with electron beam. The study was lead in the doses of 5, 10, 20, 30 and 50 kGy. Concentration of sucrose presented in syrup decreased with the radiation indicating the scission of glycosidic linkage in addition with the glucose and fructose formation, generating the increase in solids soluble. The acid compounds formation occurred, confirmed by the reduction of pH, that it was proportional with the increase of the radiation dose. The biggest doses had provoked change of color in the syrup by the long molecular chain polymers formation. Viscosity in the samples processed by gamma radiation increased in relation to the control, indicating the prevalence of polymerization of molecules, whereas in the radiation with electron beam the polymerization was only observed in the sample that received the dose of 50 kGy, In the sensorial analysis, the judges had pointed significant difference (5%) in the flavor among

  4. Visualizing Electron Beam Dynamics and Instabilities with Synchrotron Radiation at the APS

    CERN Document Server

    Yang Bing Xin

    2005-01-01

    The Advanced Photon Source (APS) is a third generation hard x-ray source serving a large user community. In order to characterize the high-brilliance beams, the APS diagnostics beamlines have been developed into a full photon diagnostics suite. We will describe the design and capabilities of the APS visible light imaging line, the bend magnet x-ray pinhole camera, and a unique diagnostics undulator beamline. Their primary functions are to support the APS user operations by providing information on beam sizes (20 - 100 micrometers), divergence (3 – 25 microradians), and bunch length (20 – 50 ps). Through the use of examples, we will show how these complementary imaging tools are used to visualize the electron dynamics and investigate beam instabilities. Special emphasis will be put on the use of undulator radiation, which is uniquely suitable for time-resolved imaging of electron beam with high spatial resolution, and for measurements of longitudinal beam properties such as beam energy spread...

  5. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  6. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.; Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-12-31

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  7. Further time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States). Advanced Photon Source Accelerator Systems Div.); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 [mu]s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatialposition and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kick effects are reported as a function of charge.

  8. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. (Argonne National Lab., IL (United States)); Wilke, M.D. (Los Alamos National Lab., NM (United States))

    1992-01-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  9. Time-resolved electron-beam characterizations with optical transition radiation

    Energy Technology Data Exchange (ETDEWEB)

    Lumpkin, A.H. [Argonne National Lab., IL (United States); Wilke, M.D. [Los Alamos National Lab., NM (United States)

    1992-09-01

    Time-resolved characterizations of electron beams using optical transition radiation (OTR) as a prompt conversion mechanism have recently been extended on the Los Alamos Free-electron Laser (FEL) facility 40-MeV linac. Two key timescales for rf-linac driven FELs are the micropulse (10 ps) and the macropulse (5 {mu}s to 1 ms). In the past we have used gated, intensified cameras to select a single or few micropulses (25 to 400 ns gate width) out of the pulse train to evaluate submacropulse effects. Recently, we have obtained some of the first measurements of micropulse bunch length (7 to 10 ps) and submacropulse spatial position and profile using OTR and a Hamamatsu streak camera. Additionally, micropulse elongation effects and head-to-tail transverse kicks are reported as a function of charge.

  10. Ultra-High Density Electron Beams for Beam Radiation and Beam Plasma Interaction

    CERN Document Server

    Anderson, Scott; Frigola, Pedro; Gibson, David J; Hartemann, Fred V; Jacob, Jeremy S; Lim, Jae; Musumeci, Pietro; Rosenzweig, James E; Travish, Gil; Tremaine, Aaron M

    2005-01-01

    Current and future applications of high brightness electron beams, which include advanced accelerators such as the plasma wake-field accelerator (PWFA) and beam-radiation interactions such as inverse-Compton scattering (ICS), require both transverse and longitudinal beam sizes on the order of tens of microns. Ultra-high density beams may be produced at moderate energy (50 MeV) by compression and subsequent strong focusing of low emittance, photoinjector sources. We describe the implementation of this method used at LLNL's PLEIADES ICS x-ray source in which the photoinjector-generated beam has been compressed to 300 fsec duration using the velocity bunching technique and focused to 20 μm rms size using an extremely high gradient, permanent magnet quadrupole (PMQ) focusing system.

  11. Monochromaticity of optical radiation of Smith-Purcell generated by electron beam with 75 keV energy

    International Nuclear Information System (INIS)

    Adishchev, Yu.N.; Vukolov, A.V.; Karlovets, D.V.; Potylitsyn, A.P.; Kube, G.

    2005-01-01

    The monochromatism of the Smith-Purcell optical radiation generated by a 75-keV electron beam with a final emittance of ε = 0.65 x 10 -4 mm rad that passes over an optical grating with a period of D = 0.833 μm has been analyzed. It has been shown that the monochromatism (line width) of the Smith-Purcell radiation is determined not only by the angular aperture of a monochromator but also by the divergence of the electron beam [ru

  12. Disinfestation of agricultural products with electron beams and their radiation tolerance

    International Nuclear Information System (INIS)

    Hayashi, Toru

    1996-01-01

    Some agricultural products contaminated with insect pests are fumigated with methyl bromide for quarantine purposes. However, the use of methyl bromide is preferably restricted because of its ozone depleting effect. Therefore, establishing alternative quarantine techniques is highly desirable; one such technique is exposure to ionizing radiation. Few data are available on the effects of radiation on insect pests other than fruit flies and stored-product insects and on the radiation tolerance of host commodities. Radiation technology as an alternative to methyl bromide fumigation will be used to inactivate not only insects but also mites, spider mites, thrips, nematodes, scales, mealybugs and thrips contaminating fruits, grains, cut flowers, vegetables, timbers, seedlings and seeds. In order to collect data on the effects of irradiation on pests and host commodities, IAEA and FAO have conducted an international project, 'FAO/IAEA Coordinated Research Programme on Irradiation as a Quarantine Treatment of Mites, Nematodes and Insects other than Fruit Fly' since 1992. The project determines the minimum doses necessary to inactivate pests and the maximum doses host commodities tolerate. All pests except nematodes can be inactivated at doses 400Gy or lower. Various varieties of cut flowers and herbs are tolerant to 400Gy of radiation, although some flowers and herbs such as chrysanthemum, rose, lily, calla, anthurium, sweet pea, iris, dill, basil and arugula are intolerant to 200Gy of radiation. Japanese research project on treatment of cut flowers with electron beams carried out mainly by Yokohama Plant Protection Station greatly contributes to these conclusions. Aqueous solution (2%) of sucrose, glucose, fructose or maltose prevents radiation-induced detrimental effects of radiation on chrysanthemums. Sugars reduce radiation-induced physiological deterioration of chrysanthemums. (author)

  13. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  14. Evaluation of toxicity reduction of sodium dodecyl sulfate submitted to electron beam radiation

    Science.gov (United States)

    Romanelli, M. F.; Moraes, M. C. F.; Villavicencio, A. L. C. H.; Borrely, S. I.

    2004-09-01

    Surfactants, as detergent active substances, are an important source of pollution causing biological adverse effects to aquatic organisms. Several data have been showing ecological disturbance due to the high concentration of surfactants on receiving waters and on wastewater treatment plants. Ionizing radiation has been proved as an effective technology to decompose organic substances and few papers have included ecotoxicological aspects. This paper shows the reduction of acute toxicity of a specific surfactant, sodium dodecyl sulfate (SDS), when diluted in distilled water and submitted to electron beam radiation. The study included two test-organisms, the marine bacteria Vibrio fischeri and the crustacean Daphnia similis. Radiation processing resulted in an important acute toxicity removal for both assays, which can be summarized between 70% and 96%, using 3.0, 6.0, 9.0 and 12.0 kGy as radiation doses. Nevertheless, lower doses demonstrated better effect than 9.0 and 12.0 kGy and the bacterium assay was more sensitive to SDS than crustacean assay.

  15. Concept of a tunable source of coherent THz radiation driven by a plasma modulated electron beam

    Science.gov (United States)

    Zhang, H.; Konoplev, I. V.; Doucas, G.; Smith, J.

    2018-04-01

    We have carried out numerical studies which consider the modulation of a picosecond long relativistic electron beam in a plasma channel and the generation of a micro-bunched train. The subsequent propagation of the micro-bunched beam in the vacuum area was also investigated. The same numerical model was then used to simulate the radiation arising from the interaction of the micro-bunched beam with a metallic grating. The dependence of the radiation spectrum on the parameters of the micro-bunched beam has been studied and the tunability of the radiation by the variation of the micro-bunch spacing has been demonstrated. The micro-bunch spacing can be changed easily by altering the plasma density without changing the beam energy or current. Using the results of these studies, we develop a conceptual design of a tunable source of coherent terahertz (THz) radiation driven by a plasma modulated beam. Such a source would be a potential and useful alternative to conventional vacuum THz tubes and THz free-electron laser sources.

  16. Generation of EM radiations using intense electron beam produced in vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, R.; Shyam, A.; Verma, R.; Deb, P.; Mishra, E.; Meena, M., E-mail: rshukla@barc.gov.in [Energetics and Electromagnetics Division, Bhabha Atomic Research Centre Facility, Visakhapatnam (India)

    2014-07-01

    The results of a pulse power generator driving an axial virtual cathode oscillator are being presented in this paper as a source of high power microwave (HPM) radiations. The electron beam generator is also modified to attain the intense X-ray burst. The pulse power generator used for these applications is common and is having 10 ohms as its characteristic impedance with 50nS of pulse width. The peak charging voltage of the pulse forming line is 450 kV and hence 225 kV and 22.5 kA is peak voltage and peak current delivery capabilities respectively for the pulse power generator. The peak electrical power of the generator is 5GW for a matched load. The charging power supply for the pulse forming line consists of a high voltage generator made by pulse transformer and charging the pulse forming line in the first cycle of the charging pulse. To utilize the energy of the primary capacitive storage efficiently the pulse transformer is having 0.8 coupling coefficient between its primary and the secondary. The axial vircator chamber is evacuated to attain the vacuum of 2 x 10{sup -4} torr for the HPM application. In the case of modified electron beam chamber for the generation of X-rays the vacuum of same order is used. The pulse forming line is made using equal lengths of high voltage transmission lines, each having a length of 10 meters, connected in the parallel to give a net source impedance of 10 ohm. The pulse power generator can operate in repetitive mode and hence the HPM as well as X-rays may be generated in the repetitive burst. (author)

  17. Local deposition of high-purity Pt nanostructures by combining electron beam induced deposition and atomic layer deposition

    NARCIS (Netherlands)

    Mackus, A.J.M.; Mulders, J.J.L.; Sanden, van de M.C.M.; Kessels, W.M.M.

    2010-01-01

    An approach for direct-write fabrication of high-purity platinum nanostructures has been developed by combining nanoscale lateral patterning by electron beam induced deposition (EBID) with area-selective deposition of high quality material by atomic layer deposition (ALD). Because virtually pure,

  18. Antigenotoxic potential of Asparagus racemosus root extract against electron beam radiation induced micronuclei formation in Swiss albino mice

    International Nuclear Information System (INIS)

    Bhandary, B. Satheesh Kumar; Sharmila, K.P.; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To evaluate the antigenotoxic potential of Asparagus Racemosus Root ethanolic extract (ARE) against electron beam radiation induced micronuclei formation in Swiss albino mice. Micronucleus assay was performed in the bone marrow of Swiss albino mice according to the method of Hosseinimehr et al., 2003. The experimental animals were orally administered 200 mg/kg body weight of ARE once daily for 15 consecutive days. At the end of experimental period, the animals were euthanized and the bone marrow was collected from the femur. Control (C), Radiation control (RC) and drug control (DC) group was also maintained. The number of radiation induced Micronucleated Polychromatic Erythrocytes (MnPCE) and Micronucleated Normochromatic Erythrocytes were decreased in the ARE treated mice which was statistically significant (p<0.05) compared to radiation control group. Present findings demonstrate the antigenotoxic potential of ARE against electron beam radiation induced micronuclei formation which may be attributed to scavenging of radiation-induced free radicals

  19. The effectiveness of the microbiological radiation decontamination process of agricultural products with the use of low energy electron beam

    Science.gov (United States)

    Gryczka, Urszula; Migdał, Wojciech; Bułka, Sylwester

    2018-02-01

    The effectiveness of the radiation decontamination process was tested for electron beam of energy 200 keV and 300 keV. The energy of electrons was controlled by the measurements of its penetration ability in stack of B3 dosimetric film. In the presented work, the reduction of total aerobic bacteria count was observed, depending on time of irradiation for samples of dried black pepper, onion flakes and bay leaves. The results were compared with the effect observed for the process where high energy electron beam was used.

  20. Role of lutein in alleviating the effects of electron beam radiation induced hematological and biochemical changes in Swiss albino mice

    International Nuclear Information System (INIS)

    Vidya, V.; Krishna, A.P.; Patil, Shrikant; Fernandes, Ronald

    2016-01-01

    Lutein is a naturally occurring xanthophyll pigment derived from α-carotene. It is abundantly present in Tagetes erecta L. (marigold) and also present in a few vegetables, fruits and in animal sources. Lutein was evaluated for its protective role in electron beam radiation induced damages in Swiss albino mice. The drug was optimized for its radioprotective activity

  1. Research on degradation of silk fibroin by combination of electron beam irradiation and hydrothermal processing

    International Nuclear Information System (INIS)

    Nguyen Thi Kim Lan; Dang Van Phu; Le Anh Quoc; Nguyen Quoc Hien

    2014-01-01

    Silk fibers and silk proteins have been demonstrated to be useful to apply in the textile industry, biomedical, cosmetics, pharmaceuticals. In this study, the effects of electron beam (EB) irradiation combined with hydrothermal processing to the solubility of silk fibroin and generation of soluble silk protein were investigated. The solubility of unirradiated and irradiated fibroin samples were greater than 80 % when hydrothermal degradation was performed in the sodium hydroxide solution at an appropriate concentration of 0.05 M. However, the solubility of irradiated fibroin was greater than that of unirradiated sample. The soluble silk protein content increased from 0.462 to 0.653 mg protein/mg silk fibroin when irradiation doses increased from 0 to 200 kGy, respectively. The molecular weight of protein was determined by SDS-PAGE method. The characteristics of silk protein were confirmed by scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and X-ray diffraction (XRD). (author)

  2. A study on size effect of carboxymethyl starch nanogel crosslinked by electron beam radiation

    International Nuclear Information System (INIS)

    Doan Binh; Pham Thi Thu Hong; Nguyen Ngoc Duy; Nguyen Thanh Duoc; Nguyen Nguyet Dieu

    2012-01-01

    The formation of carboxymethyl starch (CMS) nanogel with 50 nm less particle size was carried out through a radiation crosslinked process on the electron beam (EB) linear accelerator. Changes of intrinsic viscosities and weight averaged molecular weight in the CMS concentration, which ranged from 3 to 10 mg ml −1 in absorbed doses were investigated. There were some new peaks in the 1 H NMR spectra of CMS nanogel compared with those of CMS polymer. These results were anticipated that the predominant intramolecular crosslinking of dilute CMS aqueous solution occurred while being exposed to a short intense pulse of ionizing radiation. Hydrodynamic radius (often called particle size, R h ) and distribution of particle size were measured by a dynamic light scattering technique. The radiation yield of intermolecular crosslinking of CMS solution was calculated from the expression of G x (). The influence of the “size effect” was demonstrated by testing culture of Lactobacillus bacteria on MRS agar culture medium containing CMS nanogel and polymer. Results showed that the number of Lactobacillus bacteria growing on nanogel containing culture medium is about 170 cfu/ml and on polymer containing culture medium is only 6 cfu/ml. - Highlights: ► Carboxymethyl starch (CMS) nanogel consists of radiation intramolecular cross-linked polymeric particles, which are rather well dispersed and swollen in water. ► The nano-sized particles can be obtained from a high energy electron pulse triggered radiation process in a dilute CMS solution. ► Once Lactobacillus bacteria are cultured on a CMS nanogel containing medium, the “size effect” of the CMS nanogel will prove to be clearly superior to that of a CMS polymer.

  3. Electron beam radiation of dried fruits and nuts to reduce yeast and mold bioburden.

    Science.gov (United States)

    Ic, Erhan; Kottapalli, Bala; Maxim, Joseph; Pillai, Suresh D

    2007-04-01

    Dried fruits and nuts make up a significant portion of the commodities traded globally, and the presence of yeasts and molds on dried fruits and nuts can be a public health risk because of the potential for exposure to toxigenic fungi. Since current postharvest treatment technologies are rather limited for dried fruits and nuts, electron beam (E-beam) radiation experiments were performed to determine the doses required to reduce the yeast and mold bioburden of raisins, walnuts, and dates. The indigenous yeast and mold bioburden on a select number of commodities sold at retail ranged from 10(2) to 10(3) CFU/g. E-beam inactivation kinetics based on the linear model suggest that the decimal reduction dose required to eliminate 90% of the microbial population (D10-value) of these indigenous fungal populations ranges from 1.09 to 1.59 kGy. Some samples, however, exhibited inactivation kinetics that were better modeled by a quadratic model. The results indicate that different commodities can contain molds and yeasts of varying resistance to ionizing radiation. It is thus essential for the dried fruit and nut industry to determine empirically the minimum E-beam dose that is capable of reducing or eliminating the bioburden of yeasts and molds in their specific commodities.

  4. Radiation shielding analysis of a special linear accelerator for electron beam and X-ray.

    Science.gov (United States)

    Kang, W G; Pyo, S H; Alkhuraiji, T S; Han, B S; Kang, C M

    2017-01-01

    The King AbdulAziz City for Science & Technology in the Kingdom of Saudi Arabia plans to build a 10 MeV, 15 kW linear accelerator (LINAC) for electron beam and X-ray. The accelerator will be supplied by EB Tech, Republic of Korea, and the design and construction of the accelerator building will be conducted in the cooperation with EB Tech. This report presents the shielding analysis of the accelerator building using the Monte Carlo N-Particle Transport Code (MCNP). In order to improve the accuracy in estimating deep radiation penetration and to reduce computation time, various variance reduction techniques, including the weight window (WW) method, the deterministic transport (DXTRAN) spheres were considered. Radiation levels were estimated at selected locations in the shielding facility running MCNP6 for particle histories up to 1.0×10+8. The final results indicated that the calculated doses at all selected detector locations met the dose requirement of 50 mSv/yr, which is the United State Nuclear Regulatory Commission (U.S. NRC) requirement.

  5. Intraoperative Electron-Beam Radiation Therapy for Pediatric Ewing Sarcomas and Rhabdomyosarcomas: Long-Term Outcomes

    International Nuclear Information System (INIS)

    Sole, Claudio V.; Calvo, Felipe A.; Polo, Alfredo; Cambeiro, Mauricio; Gonzalez, Carmen; Desco, Manuel; Martinez-Monge, Rafael

    2015-01-01

    Purpose: To assess long-term outcomes and toxicity of intraoperative electron-beam radiation therapy (IOERT) in the management of pediatric patients with Ewing sarcomas (EWS) and rhabdomyosarcomas (RMS). Methods and Materials: Seventy-one sarcoma (EWS n=37, 52%; RMS n=34, 48%) patients underwent IOERT for primary (n=46, 65%) or locally recurrent sarcomas (n=25, 35%) from May 1983 to November 2012. Local control (LC), overall survival (OS), and disease-free survival were estimated using Kaplan-Meier methods. For survival outcomes, potential associations were assessed in univariate and multivariate analyses using the Cox proportional hazards model. Results: After a median follow-up of 72 months (range, 4-310 months), 10-year LC, disease-free survival, and OS was 74%, 57%, and 68%, respectively. In multivariate analysis after adjustment for other covariates, disease status (P=.04 and P=.05) and R1 margin status (P<.01 and P=.04) remained significantly associated with LC and OS. Nine patients (13%) reported severe chronic toxicity events (all grade 3). Conclusions: A multimodal IOERT-containing approach is a well-tolerated component of treatment for pediatric EWS and RMS patients, allowing reduction or substitution of external beam radiation exposure while maintaining high local control rates

  6. High-brightness electron beams for production of high intensity, coherent radiation for scientific and industrial applications

    International Nuclear Information System (INIS)

    Kim, K.-J.

    1999-01-01

    Relativistic electron beams with high six-dimensional phase space densities, i.e., high-brightness beams, are the basis for efficient generation of intense and coherent radiation beams for advanced scientific and industrial applications. The remarkable progress in synchrotrons radiation facilities from the first generation to the current, third-generation capability illustrates this point. With the recent development of the high-brightness electron gun based on laser-driven rf photocathodes, linacs have become another important option for high-brightness electron beams. With linacs of about 100 MeV, megawatt-class infrared free-electron lasers can be designed for industrial applications such as power beaming. With linacs of about 10 GeV, 1- angstrom x-ray beams with brightness and time resolution exceeding by several orders of magnitude the current synchrotrons radiation sources can be generated based on self-amplified spontaneous emission. Scattering of a high-brightness electron beam by high power laser beams is emerging as a compact method of generating short-pulse, bright x-rays. In the high-energy frontier, photons of TeV quantum energy could be generated by scattering laser beams with TeV electron beams in future linear colliders

  7. Gamma, electron beam and ultraviolet radiation on control of storage rots and quality of Walla Walla onions

    International Nuclear Information System (INIS)

    Lu, J.Y.; Stevens, C.; Yakubu, P.; Loretan, P.A.; Eakin, D.

    1988-01-01

    Walla Walla onions were irradiated with doses of 0.1, 0.3, 1.0, 2.0 and 3.0 kGy of gamma rays; 0.1, 1.0, 2.0, 3.0 and 5.0 kGy of electron beams; or 0.44 × 10 4 1.32 × 10 4 , 3.52 × 10 4 , 7.33 × 10 4 and 19.1 × 10 4 erg/mm± of UV. The onions were stored up to four weeks at 20–25 C. UV irradiated onions exhibited the greatest percentage of marketable onions and reduction in postharvest rots. Sprouting was obsened with control, UV and electron beam irradiated onions but not with gamma irradiated onions. Effect of gamma, electron beams and UV on pH, moisture, ascorbic acid and color were not significant. Onions became soft with the high dose of gamma radiation (3.0 kGy). Total sugar content was not affected by UV and electron beam but tended to be greatest at the 1.0 kGy gamma radiation. The effect of the radiation on the onion sensory scores was not clearly indicated except that 3.0 kGy gamma ray irradiated onions had the lowest firmness score

  8. The use of intensity-modulated radiation therapy photon beams for improving the dose uniformity of electron beams shaped with MLC.

    Science.gov (United States)

    Mosalaei, Homeira; Karnas, Scott; Shah, Sheel; Van Doodewaard, Sharon; Foster, Tim; Chen, Jeff

    2012-01-01

    Electrons are ideal for treating shallow tumors and sparing adjacent normal tissue. Conventionally, electron beams are collimated by cut-outs that are time-consuming to make and difficult to adapt to tumor shape throughout the course of treatment. We propose that electron cut-outs can be replaced using photon multileaf collimator (MLC). Two major problems of this approach are that the scattering of electrons causes penumbra widening because of a large air gap, and available commercial treatment planning systems (TPSs) do not support MLC-collimated electron beams. In this study, these difficulties were overcome by (1) modeling electron beams collimated by photon MLC for a commercial TPS, and (2) developing a technique to reduce electron beam penumbra by adding low-energy intensity-modulated radiation therapy (IMRT) photons (4 MV). We used blocks to simulate MLC shielding in the TPS. Inverse planning was used to optimize boost photon beams. This technique was applied to a parotid and a central nervous system (CNS) clinical case. Combined photon and electron plans were compared with conventional plans and verified using ion chamber, film, and a 2D diode array. Our studies showed that the beam penumbra for mixed beams with 90 cm source to surface distance (SSD) is comparable with electron applicators and cut-outs at 100 cm SSD. Our mixed-beam technique yielded more uniform dose to the planning target volume and lower doses to various organs at risk for both parotid and CNS clinical cases. The plans were verified with measurements, with more than 95% points passing the gamma criteria of 5% in dose difference and 5 mm for distance to agreement. In conclusion, the study has demonstrated the feasibility and potential advantage of using photon MLC to collimate electron beams with boost photon IMRT fields. Copyright © 2012 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  9. Enacting laws concerning radiation safety management for students using X-rays and electron beams under 1 MeV

    International Nuclear Information System (INIS)

    Nishizawa, Kunihide; Shibata, Michihiro; Saze, Takuya

    2004-01-01

    Laws concerning radiation safety management were analyzed from the point of view of defining precisely what is meant by radiation and what is meant by the subject. There are no laws to protect students from radiation hazards when using X-rays and electron beams under 1 MeV for research and/or education. The Law concerning Technical Standards for Preventing Radiation Hazards gives the authorities the power to enact new rules and regulations that will protect the students. The Radiation Council must take charge for enactment of all laws regarding radiation safety management. (author)

  10. Physico-chemical effects of electron beam radiation on polypropylene film and its polyphenolic antioxydant

    International Nuclear Information System (INIS)

    Aymes-Chodur, C.; Legendre, B.; Yagoubi, N.; Betz, N.

    2002-01-01

    Complete text of publication follows. Even though plastics are widely used in various industrial applications, problems have occurred concerning the quality of the packaged products, due to the presence of potentially toxic additives that can migrate out of the polymer and thus contaminate the surrounding medium. This phenomenon is due to the fact that the additives are only mixed with the polymer powder before the plastic is molded, and as no chemical bond keeps them into the polymer matrix, additives are able to migrate as the plastic ages. In order to avoid this phenomenon, which can lead to the rejection of biomaterials, or food or drugs contamination problems, we intend to graft the additives into the polymer matrix by means of ionizing radiation. Indeed, previous studies have shown that radiation induces the formation of free radicals and hydroperoxides that can react with monomers to create covalent bonds. Our work deals with electron beam irradiation of polypropylene (PP) containing a known concentration of Irganox 1010, a polyphenolic antioxidant. High performance liquid chromatography (HPLC) measurements have been performed in order to evaluate the behavior of the additives under ionizing radiation, but the polymer matrix must also be characterized as a function of the absorbed radiation dose. This present study gives FTIR, high temperature size exclusion chromatography (SEC) and differential scanning calorimetry (DSC) results performed on both PP and Irganox 1010. They evidence the formation of oxidative groups such as free alcohols and hydroperoxides, and the formation of double bonds in the PP. SEC results highlight the scission of the polymer chains correlated to the degradation of the crystalline domains observed by DSC. Those physico-chemical modifications must be characterized for the understanding of the grafting and before the antioxidant activity is evaluated

  11. Combination of electron beam irradiation and thermal treatment to enhance the shelf-life of traditional Indian fermented food (Idli)

    Science.gov (United States)

    Mulmule, Manoj D.; Shimmy, Shankar M.; Bambole, Vaishali; Jamdar, Sahayog N.; Rawat, K. P.; Sarma, K. S. S.

    2017-02-01

    Idli, a steam-cooked breakfast food item consumed in India, is famous as a staple food for its spongy texture and unique fermented taste. Idli preparation is a time consuming process; although instant Idli pre-mixes as powder or batter are available in the market, they do not have the distinctive taste and aroma similar to the Idli prepared at home. Hence ready-to-eat (RTE) form of this food is in demand. Therefore, an attempt was made to prepare RTE Idli bearing similar taste as home-cooked Idli with an extended shelf-life of up to two months at an ambient temperature using Electron Beam Irradiation (EBI) at dosages 2.5 kGy, 5 kGy and 7.5 kGy and combination processing comprised of EBI dosage at 2.5 kGy and thermal treatment (80 °C for 20 min). The treated Idli's were microbiologically and sensorially evaluated at storage periods of zero day, 14 days, 30 days and 60 days. Idli's irradiated at 7.5 kGy and subjected to combination processing at 2.5 kGy and thermal treatment were shelf-stable for 60 days. 2.5 kGy and 5 kGy radiation dosages alone were not sufficient to preserve Idli samples for more than 14 days. Undesirable change in sensory properties of Idli was observed at an EBI dosage of 7.5 kGy. Sensory properties of combination processed Idli's were found to undergo minor change over the storage period. The present work suggests that lowest radiation dosage in combination with thermal treatment could be useful to achieve the extended shelf-life without considerably impairing the organoleptic quality of Ready-to-Eat Idli.

  12. Observation of coherent Smith-Purcell and transition radiation driven by single bunch and micro-bunched electron beams

    Science.gov (United States)

    Liang, Yifan; Du, Yingchao; Su, Xiaolu; Wang, Dan; Yan, Lixin; Tian, Qili; Zhou, Zheng; Wang, Dong; Huang, Wenhui; Gai, Wei; Tang, Chuanxiang; Konoplev, I. V.; Zhang, H.; Doucas, G.

    2018-01-01

    Generation of coherent Smith-Purcell (cSPr) and transition/diffraction radiation using a single bunch or a pre-modulated relativistic electron beam is one of the growing research areas aiming at the development of radiation sources and beam diagnostics for accelerators. We report the results of comparative experimental studies of terahertz radiation generation by an electron bunch and micro-bunched electron beams and the spectral properties of the coherent transition and SP radiation. The properties of cSPr spectra are investigated and discussed, and excitations of the fundamental and second harmonics of cSPr and their dependence on the beam-grating separation are shown. The experimental and theoretical results are compared, and good agreement is demonstrated.

  13. Kinetic modelling of NO heterogeneous radiation-catalytic oxidation on the TiO2 surface in humid air under the electron beam irradiation

    Directory of Open Access Journals (Sweden)

    Nichipor Henrietta

    2017-09-01

    Full Text Available Theoretical study of NOx removal from humid air by a hybrid system (catalyst combined with electron beam was carried out. The purpose of this work is to study the possibility to decrease energy consumption for NOx removal. The kinetics of radiation catalytic oxidation of NO on the catalyst TiO2 surface under electron beam irradiation was elaborated. Program Scilab 5.3.0 was used for numerical simulations. Influential parameters such as inlet NO concentration, dose, gas fl ow rate, water concentration and catalyst contents that can affect NOx removal efficiency were studied. The results of calculation show that the removal efficiency of NOx might be increased by 8-16% with the presence of a catalyst in the gas irradiated field.

  14. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    International Nuclear Information System (INIS)

    Tiznado-Orozco, Gaby E.; Reyes-Gasga, José; Elefterie, Florina; Beyens, Christophe; Maschke, Ulrich; Brès, Etienne F.

    2015-01-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time

  15. Carboxymethyl starch cross-linked by electron beam radiation in presence of acrylic acid sensitizer

    International Nuclear Information System (INIS)

    Doan Binh; Nguyen Thanh Duoc; Pham Thi Thu Hong

    2013-01-01

    Carboxymethyl starch (CMS) can be cross-linked by electron beam radiation to form a biocompatible and environment-friendly hydrogel at a high absorbed dose and a condensed CMS concentration. Acrylic acid (AAc) can be used as a sensitizer in order to reduce the absorbed doses to an acceptable certain level. At an absorbed dose of 3-4 kGy, the gel content of crosslinked CMS can be obtained about 50% with 5% (w/w) AAc concentration used. The compressive strength of CMS samples increased with increasing their cross-linked densities due to raising absorbed doses. The swelling ratio of cross-linked CMS was also attainable at a maximum of 50 times in the distilled water. The enzymatic degradation of cross-linked CMS was carried out in acetate buffer pH 4.6 with 0.1% α-amylase enzymatic solution incubated at 40℃ for 6 h. The crosslinked CMS samples were degraded slower than uncrosslinked CMS ones. The results indicated that the highly cross-linked CMS was almost fully degradable when the enzymatic hydrolysis was performed during 6 h. The FT IR spectra of cross-linked CMS in the presence of AAc were examined to observe the carboxyl group of AAc in the structure of cross-linked CMS. The hydrophilic of cross-linked CMS surface was determined by a contact-angle analysis. (authors)

  16. Wettability modification of human tooth surface by water and UV and electron-beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Tiznado-Orozco, Gaby E., E-mail: gab0409@gmail.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Unidad Académica de Odontología, Universidad Autónoma de Nayarit, Edificio E7, Ciudad de la Cultura “Amado Nervo”, C.P. 63190 Tepic, Nayarit (Mexico); Reyes-Gasga, José, E-mail: jreyes@fisica.unam.mx [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Instituto de Física, UNAM, Circuito de la Investigación s/n, Ciudad Universitaria, 04510 Coyoacan, México, D.F. (Mexico); Elefterie, Florina, E-mail: elefterie_florina@yahoo.com [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Beyens, Christophe, E-mail: christophe.beyens@ed.univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Maschke, Ulrich, E-mail: Ulrich.Maschke@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France); Brès, Etienne F., E-mail: etienne.bres@univ-lille1.fr [UMET, Bâtiment C6, Université de Lille 1, Sciences et Technologies, 59650 Villeneuve d' Ascq (France)

    2015-12-01

    The wettability of the human tooth enamel and dentin was analyzed by measuring the contact angles of a drop of distilled water deposited on the surface. The samples were cut along the transverse and longitudinal directions, and their surfaces were subjected to metallographic mirror-finish polishing. Some samples were also acid etched until their microstructure became exposed. Wettability measurements of the samples were done in dry and wet conditions and after ultraviolet (UV) and electron beam (EB) irradiations. The results indicate that water by itself was able to increase the hydrophobicity of these materials. The UV irradiation momentarily reduced the contact angle values, but they recovered after a short time. EB irradiation raised the contact angle and maintained it for a long time. Both enamel and dentin surfaces showed a wide range of contact angles, from approximately 10° (hydrophilic) to 90° (hydrophobic), although the contact angle showed more variability on enamel than on dentin surfaces. Whether the sample's surface had been polished or etched did not influence the contact angle value in wet conditions. - Highlights: • Human tooth surface wettability changes in dry/wet and UV/EB radiation conditions. • More variability in contact angle is observed on enamel than on dentin surfaces. • Water by itself increases the hydrophobicity of the human tooth surface. • UV irradiation reduces momentarily the human tooth surface hydrophobicity. • EB irradiation increases and maintains the hydrophobicity for a long time.

  17. The suppression of radiation reaction and laser field depletion in laser-electron beam interaction

    Science.gov (United States)

    Ong, J. F.; Moritaka, T.; Takabe, H.

    2018-03-01

    The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

  18. Development of a calorimetric system for electron beam dosimetry in radiation processing

    International Nuclear Information System (INIS)

    Banados P, H.E.

    1994-01-01

    A calorimetric system for electron beam dosimetry in radiation processing was developed. The system is composed of a graphite core calorimeter, the temperature measuring and electrical calibrating instrumentation, a microcomputer and the software for the system automation. The research aimed at the optimization of the project parameters, the development of advanced methodologies for calibrating the temperature sensor, the determination of the thermal capacity as a function of the temperature, the measurement of the absorbed dose, and the development of the software needed for the system operation. The operating range extends from 0.1 kGy to 30 kGy. The uncertainty in the measurement of the absorbed dose was estimated to be ± 1.8% at the 95% confidence level. Comparative tests of the absorbed dose measurements were made using the IPEN electron accelerator. The results obtained showed an excellent agreement between the absorbed dose determined by the calorimeter and the absorbed dose calculated from the nominal power delivered by the accelerator. (author). 67 refs, 63 figs, 2 tabs

  19. Materials of the Regional Training Course on Validation and Process Control for Electron Beam Radiation Processing

    International Nuclear Information System (INIS)

    Kaluska, I.; Gluszewski, W.

    2007-01-01

    Irradiation with electron beams is used in the polymer industry, food, pharmaceutical and medical device industries for sterilization of surfaces. About 20 lectures presented during the Course were devoted to all aspects of control and validation of low energy electron beam processes. They should help the product manufacturers better understand the application of the ANSI/AAMI/ISO 11137 norm, which defines the requirements and standard practices for validation of the irradiation process and the process controls required during routine processing

  20. Decomposition and decoloration of a direct dye by electron beam radiation

    International Nuclear Information System (INIS)

    Vahdat, Ali; Bahrami, S.H.; Arami, M.; Motahari, A.

    2010-01-01

    The wastewaters released by textile industries to the environment contain hazardous compounds like toxic refractory dye stuff at high concentration. In this study, electron beam irradiation-induced decoloration and decomposition of C.I. Direct Black 22 aqueous solutions were investigated. The influences of absorbed doses and initial dye concentration on the percent of decoloration, COD and pH of the solutions are described. The results show that the direct dye solutions can be effectively degraded by electron beam irradiation.

  1. Electron beam processing of wastewater in Malaysia

    International Nuclear Information System (INIS)

    Zulkafli Ghazali; Khairul Zaman Dahlan; Ting Teo Ming; Khomsaton A. Bakar

    2006-01-01

    Electron beam processing technology started in Malaysia in 1991 when two accelerators were installed through JICA cooperation to perform medical product sterilization project. Since then several private companies have installed electron accelerators to develop in removing volatile organic materials and to demonstrate flue gas treatment. In this country report, effort on electron beam processing of wastewater or contaminated groundwater is presented: After de-coloration tests using gamma rays as function of radiation doses, electron beam treatment of textile industry wastewater as function of beam energy and current intensity as well as with combined treatment such as aeration or biological treatment to examine the effectiveness in color and BOD or COD change has been carried out and the main results are reported. Furthermore, the present technique was examined to apply in river water treatment for use as drinking water. Techno-economic feasibility study for recycling of industrial waste water using electron beam technology is now underway. (S. Ohno)

  2. Ionizing radiation effect study by electron beam on acrylonitrile butadiene styrene - ABS terpolymer

    International Nuclear Information System (INIS)

    Landi, Tania Regina Lourenco

    2003-01-01

    The great advantage in the researches involving development has as objective to increase significantly the quality of the products. The ABS (acrylonitrile, butadiene, styrene) resins are terpolymers formed by an elastomer and two thermoplastics amorphous components. The three different monomeric units from the terpolymer ABS contribute separately to the material characteristics exhibited. The molecular stiffness originating from polystyrene and the benzene ring hanging on the chain is responsible for the flexion module ABS. The acrylonitrile and the styrene incorporated butadiene exercises strong influence in the resistance to the impact because it reduces the bonding among them. The engineering use of this terpolymer became important due their mechanical properties and mainly, for the responses of this to tensions or deformations applied. The polymeric materials, when submitted to the ionizing radiation are modified by the transference of energy to these materials, introducing excitation and ionization of the molecules, generating chemical reactions that can produce permanent modifications in the polymeric physicochemical structure. The induced modifications can result in the polymeric material degradation or crosslinking, which can result in the improvement of some properties. This work has, as objective, to study the electron beam ionizing radiation effect, at different doses, in the properties of the polymer ABS. The studied properties were: tensile strength at break, elongation at break, Izod impact strength, flexural strength, melt flow index, Vicat softening temperature and the thermic distortion temperature. Also researches on Differential Scanning Calorimetry (DSC) and Thermogravimetric Analyses (TGA) were accomplished. From the experimental results, it was showed that for doses until 500 kGy, at 22.6 kGy/s dose rate, in the presence of air, the crosslinking process of ABS prevails. (author)

  3. Disinfection of sewage sludge by gamma radiation, electron beams and alternative methods

    International Nuclear Information System (INIS)

    Lessel, T.

    1997-01-01

    Sewage sludges generally contain high concentrations of pathogens, even after digestion or other conventional treatments for stabilization. Disinfection can be effected by irradiation (e.g. gamma or electron beam), by heat treatment (pasteurization or thermophilic stabilization), and by changing the pH (lime treatment). Irradiation is a simple and reliable process for disinfection with special advantages and favorable side-effects. Irradiation can be combined with oxygenation, heat or other treatments, with favorable synergistic effects. The total costs for the irradiation treatment of sewage sludges are comparable to those of alternative disinfection methods. Most of the worldwide practical experience has been obtained at the sewage-sludge irradiation plant in Geiselbullach (10 km west of Munich, Germany), which was continuously in operation from 1973 to 1993. A multidisciplinary research programme was conducted during the first 8 years. In subsequent years, the plant was operated commercially for sewage-sludge disinfection, without public funds. Other demonstration or research plants for sewage-sludge irradiation have been reported in the USA, India, Russia, Japan, Austria, Germany and Hungary. (author)

  4. Destruction of benzene (VOC) using electron beam radiation in flue gas treatment

    International Nuclear Information System (INIS)

    Mohd Nahar Othman; Mohd Noor Muhd Yunus

    2004-01-01

    In this study, Benzene, one of the volatile organic compounds (VOCs) is used to destruct by electron beam. As we know Benzene is one of the most stable compound and very difficult to break. By using the powerful energy produced by electron beam, the benzene compound can be broken up to form new compounds. The technique used in this experiment is by using static process in a control condition where other gases are not allowed to enter the Tedlar bag or glass jar. The Tedlar Bag and Glass jar are used as media for benzene gas to be irradiated. From the experiment it was found that the Tedlag Bag is more suitable than the glass jar the electron beam can easily penetrate and destroy benzene gas. Nitrogen and Helium gas is used as a cleaning gas. The concentrations of benzene gas used for this study are 100 ppm. (part per million), 1 ppmv, and 1 ppmv each for 32 types of VOC. From the result it can be concluded that the electron beam technique used for destruction of benzene (VOQ is very suitable for the low concentration of benzene, the dose needed for the destruction to reach 85-95% is only between 8-12 kGy. It was also observed that many new compound can be produced when benzene is destruct by electron beam. (Author)

  5. Combination of electron beam irradiation and thermal treatment to enhance the shelf-life of traditional Indian fermented food (Idli)

    International Nuclear Information System (INIS)

    Mulmule, Manoj D.; Shimmy, Shankar M.; Bambole, Vaishali; Jamdar, Sahayog N.; Rawat, K.P.; Sarma, K.S.S.

    2017-01-01

    Idli, a steam-cooked breakfast food item consumed in India, is famous as a staple food for its spongy texture and unique fermented taste. Idli preparation is a time consuming process; although instant Idli pre-mixes as powder or batter are available in the market, they do not have the distinctive taste and aroma similar to the Idli prepared at home. Hence ready-to-eat (RTE) form of this food is in demand. Therefore, an attempt was made to prepare RTE Idli bearing similar taste as home-cooked Idli with an extended shelf-life of up to two months at an ambient temperature using Electron Beam Irradiation (EBI) at dosages 2.5 kGy, 5 kGy and 7.5 kGy and combination processing comprised of EBI dosage at 2.5 kGy and thermal treatment (80 °C for 20 min). The treated Idli's were microbiologically and sensorially evaluated at storage periods of zero day, 14 days, 30 days and 60 days. Idli's irradiated at 7.5 kGy and subjected to combination processing at 2.5 kGy and thermal treatment were shelf-stable for 60 days. 2.5 kGy and 5 kGy radiation dosages alone were not sufficient to preserve Idli samples for more than 14 days. Undesirable change in sensory properties of Idli was observed at an EBI dosage of 7.5 kGy. Sensory properties of combination processed Idli's were found to undergo minor change over the storage period. The present work suggests that lowest radiation dosage in combination with thermal treatment could be useful to achieve the extended shelf-life without considerably impairing the organoleptic quality of Ready-to-Eat Idli. - Highlights: • Idli (traditional Indian fermented food) was prepared in ready-to-eat (RTE) form. • Ready-to-eat Idli was then subjected to combination processing comprised of lowest irradiation dosage of 2.5 kGy with mild heat treatment to extend its shelf life. • Increase in hardness and decrease in brightness of combination processed Idli was observed. • Combination processed Idli was microbiologically safe and

  6. Investigation of the combined effect of neutron irradiation and electron beam exposure on pure tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Van Renterghem, W., E-mail: wvrenter@sckcen.be; Uytdenhouwen, I., E-mail: iuytdenh@sckcen.be

    2016-08-15

    Pure tungsten samples were neutron irradiated in the BR2 reactor of SCK·CEN to fluences of 1.47 × 10{sup 20} n/cm{sup 2} and 4.74 × 10{sup 20} n/cm{sup 2} at 300 °C under Helium atmosphere and exposed to the electron beam of the Judith 1 installation The effect of these treatments on the defect structure was studied with transmission electron microscopy. In the irradiated samples the defect structure in the bulk is compared to the structure at the surface. The neutron irradiation created a large amount of a/2‹111› type dislocation loops forming dislocation rafts. The loop density increased from 8.5 × 10{sup 21}/m³ to 9 × 10{sup 22}/m³ with increasing dose, while the loop size decreased from 5.2 nm to 3.5 nm. The electron beam exposure induced significant annealing of the defects and almost all of the dislocation loops were removed. The number of line dislocations in that area increased as a result of the thermal stresses from the thermal shock. - Highlights: • Neutron irradiated and electron beam exposed tungsten samples were studied with transmission electron microscopy. • Neutron irradiation creates dislocation loops and rafts, while voids are created at higher irradiation dose. • No precipitates of transmutation products were found under these low dose irradiation conditions. • Electron beam exposure annihilates the dislocation loops and rafts.

  7. The tension adjuster used at the work line of electron beam radiation cross-linking wire and cable

    International Nuclear Information System (INIS)

    Zhang Yingfa; Liu Zhenhao; Yin Xuejun

    1999-01-01

    The tension adjuster is an important equipment in the transport system at the work line of electron beam radiation cross-linking wire and cable to realize the velocity synchronism. There are many kinds of the adjuster. By putting various adjusters together properly, the authors can keep the line work stable and raise the quality of the product. Two kinds of standing adjuster and their mechanism are introduced. Also the corresponding figures and formulas are shown

  8. Structural stability of PAN fiber under high electron beam radiation doses

    International Nuclear Information System (INIS)

    Pino, Eddy S.; Machado, Luci D.B.; Arruda, Clarissa P. Zelinschi de; Carvalho, Alvaro A. Silva de; Giovedi, Claudia

    2009-01-01

    Fiber-reinforced composite are an important class of engineering material. A relevant task of composite technology in order to produce materials for structures of high mechanical performance is to obtain the best carbon fiber. One of the main ways to produce carbon fibers of high Young's modulus and tensile strength is to use as starting material polyacrylonitrile (PAN) fibers which after a rigorous and carefully thermal process become carbon fibers. Since some chemical modifications produced in the thermal treatment can be induced by ionizing radiation, the aim of this paper is to evaluate the effect of high electron beam (EB) doses on a commercial PAN fiber in order to evaluate the use of this technology as an alternative treatment to improve the properties and characteristics of the produced carbon fiber. The doses applied were: 0.2, 0.4, 0.6, 0.8, 1.0 and 1.2 MGy. The irradiation effects induced on the PAN fiber were evaluated by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and thermogravimetry (TG). FTIR obtained data have shown that the main functional groups remain practically unchanged in the non-irradiated and irradiated samples. The single DSC exothermic peak obtained for non-irradiated sample, becomes a double peak after the irradiation, presenting lower initial and higher final temperatures for exothermic DSC curves. The enthalpy involved in the chemical reaction decreases for irradiated samples as compared with the non-irradiated PAN fiber. TG data have shown that irradiated samples start a decomposition process at lower temperatures compared to the non-irradiated sample. (author)

  9. Sugarcane bagasse ash reinforced HDPE composites: effects of electron-beam radiation crosslinking on tensile and morphological properties

    International Nuclear Information System (INIS)

    Teixeira, Jaciele G.; Gomes, Michelle G.; Oliveira, Rene R.; Silva, Valquiria A.; Sartori, Mariana M.; Ortiz, Angel V.; Moura, Esperidiana A.B.

    2013-01-01

    Environmental issues have led to the development of polymeric materials reinforced with fibers originated from renewable agricultural sources such as pineapple leaf, sisal, jute, piassava, coir, and sugarcane bagasse. Although sugarcane bagasse fiber residues has been extensively studied and used as a source of reinforcement of polymers, the major portion of these residues is currently burnt for energy supply in the sugar and alcohol industries and as a result of its burning, tons of ashes are produced. Due to the inorganic composition, ashes can be used as reinforcement in polymeric materials. This study presents the preparation and characterization of a composite based on HDPE matrix and sugarcane bagasse ashes as reinforcement cross-linked by electron-beam radiation. The HDPE /Ash composite (95:5 wt %) was obtained by using a twin-screw extruder machine followed by injection molding. After extrusion and injection molding process, the composites were subjected to electron-beam radiation, at radiation doses of 150 kGy and 250 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The irradiated and non-irradiated composite specimens were characterization by tensile and MFI tests, scanning electron microscopy (SEM), X-ray diffraction (XRD) and sol-gel analysis. In addition, ash from bagasse fiber was characterized by WDXRF. (author)

  10. Sugarcane bagasse ash reinforced HDPE composites: effects of electron-beam radiation crosslinking on tensile and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jaciele G.; Gomes, Michelle G.; Oliveira, Rene R.; Silva, Valquiria A.; Sartori, Mariana M.; Ortiz, Angel V.; Moura, Esperidiana A.B., E-mail: jacielegteixeira@yahoo.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Environmental issues have led to the development of polymeric materials reinforced with fibers originated from renewable agricultural sources such as pineapple leaf, sisal, jute, piassava, coir, and sugarcane bagasse. Although sugarcane bagasse fiber residues has been extensively studied and used as a source of reinforcement of polymers, the major portion of these residues is currently burnt for energy supply in the sugar and alcohol industries and as a result of its burning, tons of ashes are produced. Due to the inorganic composition, ashes can be used as reinforcement in polymeric materials. This study presents the preparation and characterization of a composite based on HDPE matrix and sugarcane bagasse ashes as reinforcement cross-linked by electron-beam radiation. The HDPE /Ash composite (95:5 wt %) was obtained by using a twin-screw extruder machine followed by injection molding. After extrusion and injection molding process, the composites were subjected to electron-beam radiation, at radiation doses of 150 kGy and 250 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The irradiated and non-irradiated composite specimens were characterization by tensile and MFI tests, scanning electron microscopy (SEM), X-ray diffraction (XRD) and sol-gel analysis. In addition, ash from bagasse fiber was characterized by WDXRF. (author)

  11. Drug eruptions presenting at sites of prior radiation damage (sunlight and electron beam)

    International Nuclear Information System (INIS)

    Shelley, W.B.; Shelley, E.D.; Campbell, A.C.; Weigensberg, I.J.

    1984-01-01

    Two patients are described in whom sunburn and electron beam radiodermatitis, respectively, were critical determinants in localizing the initial presentation of drug eruptions. In the first instance, a severe sunburn of the back and thighs was followed 7 months later by the appearance of a toxic epidermal necrolysis drug reaction to trimethoprim-sulfamethoxazole in the exact sites of the previous bullous sunburn reaction. In the second patient, a radiodermatitis of the left upper arm due to electron beam therapy for metastatic breast cancer was followed 7 weeks later by a codeine drug reaction confined to the area of the radiodermatitis. In both instances, oral rechallenge with the offending drug reproduced the eruption

  12. Crystallinity changes of electron-beam irradiated ethylene-vinyl alcohol copolymer (EVOH) as a function of radiation dose

    International Nuclear Information System (INIS)

    Nogueira, Beatriz R.; Martins, Joao F.T.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2011-01-01

    The treatment with electron-beam radiation is a promising approach to the controllable modification of the properties of the polymeric materials, in order to adjust their properties. In recent years, electron-beam irradiation have been efficiently applied in the flexible packaging industry to promote cross-linking and scission of the polymeric chains in order to improve material mechanical properties. On the other hand, ionizing irradiation can also affect the polymeric materials itself leading to a production of free radicals. These free radicals can in turn lead to degradation and or cross-linking phenomena. In the present work the changes in thermal properties of electron-beam irradiated ethylene-vinyl alcohol copolymer (EVOH) resin were investigated. The EVOH resin was irradiated up to 500 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The EVOH samples irradiated from 300 kGy presented increases in melting temperature, except for 350 kGy. The changes in properties of the EVOH resin after irradiation were evaluated by differential scanning calorimetry (DSC) and X-Rays Diffraction (XRD). The correlation between the properties of EVOH non-irradiated and irradiated EVOH samples were discussed. The XRD results showed a slight shift of diffraction peaks, as well as an increase of width, DSC results also showed differences on crystallinity degree, for irradiated EVOH samples, which suggests that a decrease or an increase in degree crystallinity of EVOH will depends on radiation dose applied. These results are very important because shows a slight decrease in crystallinity of irradiated EVOH, a decrease in the crystallinity degree usually is related with an increase of the amorphous phase due to, probably, the predominance of molecular chain cross-linking of EVOH over the molecular chain scission and degradation process, caused by ionizing radiation, and a consequent improvement of their properties, such as thermal, mechanical

  13. Degradation of Dextran Produced by Leuconostoc mesenteroides ATCC 13146 using Electron Beam Radiation

    International Nuclear Information System (INIS)

    Hong, Jun Tack; Yoo, Sun Kyun; Kang, Hyun Suk; Lee, Byung Cheol

    2010-01-01

    Dextrans make up a family of glucans that have contiguous alpha-1.6 glucose linkages. Differences in the different dextrans in volve the types, amount, length, and arrangements of the arrangements of the branch chains. The principle type of branch linkages found are alpha-1.3, but alpha-1.2 and-1.4 branch linkages have been also observed. In recent days. dextrans have been investigated as potential macromolecular carriers for delivery of drugs and proteins, primarily to increase the longeveity of therapeutic agents in the circulation. In most previous researches, linear type of dextrans with molecular weigh of Μ w 10,000 to 100,000 have been applied for development of new type of drug delivery agent. Such a size of dextrans have been manufactured by acid hydrolysis, of which processes are multi-steps and time-consumed. Therefore, this objective of this research is to evaluate the characterization of branched degraded by a electron beam radiation. L. mesenteroides ATCC 13146 was cultured on te agar slant medium with the composition of 3.0 g K 2 HPO 4 , 0.01 g FeSO 4 . H 2 O, 0.01 g MnSO 4 . 7H 2 O, 0.01 g NaCl, 0.05 g CaCl 2 , 0.5g yeast extract, 15 g agar and 30 g sucrose per liter deionized water. Medium pH was adjusted to 6.0 prior to sterilization. Dextran production was conducted in a fermentor a working volume of 5 1 by using 18% sucrose under optimum pH condition. The inoculum was 2% of the working volume. Fermentation conditions are 28 C, 100 rpm agitation, and 1 vvm of aeration. The fermentation process continued until sucrose was consumed completely. The branch degree of dextran was evaluated using dextranase and analyzed by TLC. The air-dry dextran and solution dextran was irradiated at room temperature using a electrostatic accelerator. The irradiation doses ranged between 30 kGy to 80 kGy. After irradiation, processed dextran showed still a large of branched form. The degradation degree was increased as radiation intensity. The average molecular weight

  14. Application of electron beam radiation for peat sterilization and suppression of microbe contaminants

    International Nuclear Information System (INIS)

    Tsai, David

    2006-01-01

    Inoculation of root nodule bacteria into legume seeds such as soybean [Glycine max. (L.)], common bean (Phaseolus vulgaris L.) and forage pasture has been effective and convenient as this simple procedure may introduce effective strains of Bradyrhizobium/Rhizobium into agricultural soils without a past history of successful cropping systems with the legume hosts. Peat-based substrates previously sterilized have been used for decades as bacteria carrier, protecting them from the prevailing harsh conditions in tropical soils and ensuring their survival with nutrient and protection against the soil antagonists. The Brazilian Government requires that all peat-based substrates must be gamma-sterilized from a cobalt-60 ( 60 Co) source, prior the introduction of the root nodule bacteria into the package. The recommendation is for a dose up to 50 kGy for an effective suppression of pathogens and saprophytes, in order to avoid competition among the substrate microbiota. Recently, the use of the electron beam (EB) accelerator has shown to be a new alternative for peat pre-sterilization, as this technique may promote reactive free-radicals which are efficient to suppress microbial contaminants. This fast technology is considered more environment and ecology friendly-sound than gamma radiation (γ). The disadvantage of not reaching higher depth than gamma rays from 60 Co must be considered, and attempts of optimizing the technique are crucial. This study compared both methods by using increasing rates of radiation by 60 Co by the EB method - O, 10, 20, 30, 40 e 50 kGy in a commercial peat used for inoculants. Experimental data from days 7, 14, 21 and 28 days (growth period) and 150, 180 and 210 days (storage period) indicated high numbers of the strain Rhizobium tropici CM-01, labelled with gusA + (Study 1) and celB + (Study 2) from both eat-sterilizing techniques, reaching values above the minimum of 1x10 8 cells g -1 peat. At high rates, above 40 kGy, and after long

  15. Effects of electron beam radiation on trait mutation in azuki bean ...

    African Journals Online (AJOL)

    Dry seeds of azuki bean (Vigna angularisi), Jingnong 6 and Hebei 801 varieties were irradiated by electron beam of 100, 300, 600, 700 and 900 Gy, respectively. Mutations of leaf shape and color, seed size and shape, trailing, more branching, dwarfing, early or late flowering time and high yield were created in M2 and M3 ...

  16. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  17. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  18. Compatibility of polyamide 6.6 and low density polyethylene polymeric blend using electron beam ionizing radiation

    International Nuclear Information System (INIS)

    Feitosa, Marcos Antonio Fernandes

    2008-01-01

    The plastic industry has recognized that mixture of polymers, called polymeric blends, yields new materials with improve properties and better features of those of the polymer blended. In most of the cases, blends are formed by immiscible components presenting separated phases, micro-structures or morphologies. One of the main factors for good mechanical performance is the interfacial adhesion of the blend components. The improvement of miscibility between the polymer components and the enhancement of blend performance is denominated of compatibility. This compatibility can be achieved by chemical methods or using ionizing radiation. The present work has as a main objective the study of the effect of the ionizing radiation from electron beam in the compatibility of the polyamide (PA) 6.6 and low density polyethylene (LDPE) 75%/25% wt blend, in the range of applied doses from 50 to 250 kGy. The compatibility effect was evaluated by mechanical test, which has shown improvement in the tensile strength and hardness properties and a reduction of the impact resistant. This mechanical behavior can be considered as a combination effect of the cross-linking, induced in the molecular structure on the polymers, and the increase of the miscibility of the blend components. The degree of compatibility was evaluated by the behavior of the glass transition temperatures (T g ) for the blend components obtained by dynamic mechanical analysis (DMA) measurements. The results have shown that the values of T g for PA 6.6 and LDPE get near by 8 deg C showing that the ionizing radiation have promoted a compatibility effect on the irradiated blend. (author)

  19. Protective role of Carica papaya (Linn.) in electron beam radiation induced hematological and cytogenetic damages in Swiss albino mice

    International Nuclear Information System (INIS)

    Yogish Somayaji, T.; Suchetha Kumari, N.

    2014-01-01

    Carica papaya (Linn.) is known to possess various biomedical applications. It has remarkable antioxidant properties. The main objective of the study was to evaluate the leaf extracts of Carica papaya (Linn.) on hematologic and cytogenetic changes occurring due to irradiation of mice to sub-lethal doses of Electron Beam Radiation (EBR). Analysis of hematological changes occurring due to irradiation of mice to sub-lethal doses of EBR, and the effects of Carica papaya (Linn.) extract on the same. The Assessment of hematopoietic stress by spleen colony forming unit and spleen body weight index. The analysis of cell proliferation and immunomodulation with response to the effects of Carica papaya (Linn.) extract by estimation of IL-6. The estimation of serum total antioxidants, lipid peroxidation and analyzing the activities of enzymes like SOD, ALP, and AST. Male Swiss albino mice were fed orally with papaya aqueous leaf extract for 15 days. They were irradiated with a whole body dose of 6 Gy Electron Beam radiation. The mice were dissected for liver, kidney, bone marrow, spleen and brain. The hematological studies were done using blood cell count in an automated cell counter. The biochemical estimations like urea, creatinine, SGOT, SGPT, Total Protein, Albumin, Bilirubin were done using the serum and homogenates. The total antioxidant capacity, the antioxidant enzymes were estimated. The Interleukin-6 levels were estimated in serum to assess immune modulation. The results show a decrease in the hematological parameters in radiated animals. The papaya treated groups have shown modulation in the hematological parameters. The extract has also reduced the suppression of the bone marrow induced by radiation. The radiation induced liver damage is also reduced in papaya treated groups. The aqueous extract of Carica papaya (Linn.) has shown protective effects in electron beam radiation induced tissue damages in Swiss Albino mice (author)

  20. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  1. Observation of optical Smith-Purcell radiation at an electron beam energy of 855 MeV

    International Nuclear Information System (INIS)

    Kube, G.; Backe, H.; Euteneuer, H.; Grendel, A.; Hagenbuck, F.; Hartmann, H.; Kaiser, K.H.; Lauth, W.; Schoepe, H.; Wagner, G.; Walcher, Th.; Kretzschmar, M.

    2002-01-01

    Smith-Purcell radiation, generated when a beam of charged particles passes close to the surface of a diffraction grating, has been studied in the visible spectral range at wavelengths of 360 and 546 nm with the low emittance 855 MeV electron beam of the Mainz Microtron MAMI. The beam focused to a spot size of 4 μm (full width at half maximum) passed over optical diffraction gratings of echelle profiles with blaze angles of 0.8 deg., 17.27 deg., and 41.12 deg. and grating periods of 0.833 and 9.09 μm. Taking advantage of the specific emission characteristics of Smith-Purcell radiation a clear separation from background components, such as diffracted synchrotron radiation from upstream beam optical elements and transition radiation, was possible. The intensity scales with a modified Bessel function of the first kind as a function of the distance between electron beam and grating surface. Experimental radiation factors have been determined and compared with calculations on the basis of Van den Berg's theory [P.M. Van den Berg, J. Opt. Soc. Am. 63, 689 (1973)]. Fair agreement has been found for gratings with large blaze angles while the measurement with the shallow grating (blaze angle 0.8 deg.) is at variance with this theory. Finally, the optimal operational parameters of a Smith-Purcell radiation source in view of already existing powerful undulator sources are discussed

  2. Wastewater purification. Combined electron-beam and ozone action in the aerosol flow

    International Nuclear Information System (INIS)

    Podzorova, E.A.; Pikaev, A.K.

    1998-01-01

    Complete text of publication follows. Ozone is forming with high enough radiation chemical yield during work of electron accelerator. It is useful to use oxidizing properties of ozone with combination of ionizing radiation. The combined action of ionized radiation and ozone on aqueous solutions increases efficiency of water purification. But at the same time, this kind process of water purification is characterized by some limited stages: 1. Ozone mass transfer rate from gaseous phase (where it is formed) into liquid phase (where pollutants present); 2. Small solubility ozone in water; 3. High rate constant of radiation induced decomposition of ozone. We have proposed some optimizations for this kind of process. The most effective action of ionized radiation and radiolytic ozone on polluted water is running this process in aerosol flow. The highly developed surface of phase division is provided the maximum rate of reaction of ozone with pollutants. The volatile pollutants react with radiolytic ozone in gaseous phase in ozone creation moment. Ozonoradiolysis of real municipal wastewater in an aerosol flow was investigated on a facility with electron accelerator with electron energy E=0,3 MeV, power up to 15 kWatt, productivity 500 m 3 /day. Density of the irradiated aerosol was 0,02-0,05 g/cm 3 . It is increase low-energy electron range on 1-2 orders of magnitude as compared with liquid water and increases effective depth of uniformed irradiated layer. Because aerosol density is much higher compare with air density, it is clear, that water drops in aerosol flow absorbed main energy. The treated municipal wastewater in this facility was cleaned from organic and inorganic pollutants. COD and BOD values were reduced. Water disinfecting is achieved to sanitary standards

  3. Radiation vulcanization of natural rubber latex (NRL) using low energy electron beam accelerator

    International Nuclear Information System (INIS)

    Feroza Akhtar; Keizo Makuuchi; Fumio Yoshii

    1996-01-01

    The electron beam induced vulcanization of natural rubber latex has been studied using low energy Electron Beam (EB) accelerators of 300, 250 and 175 keV ne latex was irradiated in a special type stainless steel reaction reactor with a stirrer at the bottom of the reactor. From the results it was found that 300 and 250 keV accelerators could effectively vulcanize NRL. But accelerator of 175 keV is too low energy to vulcanize the latex. At the same time a drum type irradiator where thin layer of NRL was irradiated by accelerator, was used for vulcanization of NRL. This type of irradiator also showed good physical properties of vulcanized latex. The effects of beam current and stirrer speed on vulcanization were studied

  4. Measurement of the radiative cooling rates for high-ionization species of krypton using an electron beam ion trap

    International Nuclear Information System (INIS)

    Radtke, R.; Biedermann, C.; Fuchs, T.; Fussmann, G.; Beiersdorfer, P.

    2000-01-01

    We describe a measurement of the radiative cooling rate for krypton made at the Berlin electron beam ion trap (EBIT). The EBIT was tuned to a charge-state distribution approaching the ionization balance of a plasma at a temperature of about 5 keV. To determine the cooling rate, we made use of EBIT's capabilities to sample a wide range of electron-beam energies and distinguish between different radiation channels. We have measured the x-ray emission from bremsstrahlung, radiative recombination, dielectronic recombination, and line radiation following electron-impact excitation. The dominant contribution to the cooling rate is made by the n=3-2, n=4-2,... x rays of the L-shell spectra of krypton, which produce more than 75% of the total radiation loss. A difference with theoretical calculations is noted for the measured total cooling rate. The predicted values are lower by a factor of 1.5-2, depending on the theoretical model. For our measurement of the cooling rate, we estimate an uncertainty interval of 22-30 %. (c) 2000 The American Physical Society

  5. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate

    Science.gov (United States)

    Kassem, M. E.; Gaafar, M.; Abdel Gawad, M. M. H.; El-Muraikhi, M.; Ragab, I. M.

    2004-02-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature Tc, as well as the value of specific heat CPmax at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.

  6. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate

    International Nuclear Information System (INIS)

    Kassem, M.E.; Gaafar, M.; Abdel Gawad, M.M.H.; El-Muraikhi, M.; Ragab, I.M.

    2004-01-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO 4 have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature T c , as well as the value of specific heat C P max at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically

  7. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  8. Detailed spectra of high power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy are observed uniformly across a wide frequency band when a relativistic electron beam (REB) penetrates a plasma. Measurement calculations are illustrated. A model of Compton-like boosting of ambient plasma waves by beam electrons, with collateral emission of high frequency photons, qualitatively explain the spectra. A transition in spectral behavior is observed from the weak to strong turbulence theories advocated for Type III solar burst radiation, and further into the regime the authors characterize as super-strong REB-plasma interactions

  9. Cytogenetic effects of electron-beam radiation on dry seed storage

    International Nuclear Information System (INIS)

    Baojiang, G.; Qishen, P.; Kohlman, A.

    1989-01-01

    Dry seeds of Viciafaba were exposed to 5 MeV electron beam (10–30 Krad) and stored afterwards during 20,40 and 60 days- Induction of chromosomal aberrations in root-tip cells of irradiated seeds has been found dose-dependent. The frequency of chromosomal aberrations (particularly, the bridges and the rings) and the frequency of micronucleated cells is proportional to the length of storage time, but is not significantly influenced by low temperatures (0–6°C) during storage. (author)

  10. Radiation-induced decomposition and enzymatic hydrolysis of cellulose. [Electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, M; Kaetsu, I

    1978-08-01

    Preirradiation as a means for solubilization of cellulosic raw materials, such as rice straw, wheat straw, chaff, and sawdust, with subsequent cellulase treatment was investigated. The results showed that electron beam irradiation caused a slow increase in the reducing sugar formation with increasing dose above 1 x 10/sup 8/ R. It then increased more rapidly in the dose range between 1 x 10/sup 8/ and 5 x 10/sup 8/ R. Reducing sugar formation in samples irradiated after fine mechanical crushing was higher than that in samples crushed after irradiation. (JSR)

  11. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    Science.gov (United States)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  12. Protective effect of Asparagus racemosus root extract against lethal total - body electron beam radiation induced damage in Swiss albino mice

    International Nuclear Information System (INIS)

    Sharmila, K.P.; Bhandary, B. Satheesh Kumar; Suchetha Kumari, N.; Bhat, Vadish S.; Shetty, Jayaram; Peter, Alex John; Jose, Jerish M.; Fernandes, Ronald

    2016-01-01

    To investigate the protective effect of Asparagus Racemosus Root ethanolic extract (ARE) in Swiss albino mice against acute lethal total - body Electron beam irradiation. Swiss Albino mice were used for the assessment of radiation induced sickness and 30 day survival analysis. Survival studies were determined using the Kaplan-Meier survival curves. The maximum survival was observed in the experimental mice pretreated with 200 mg/kg.b.wt. of ARE which also reduced the radiation sickness characteristics. This dose was considered as an optimal dose for radioprotection. Treatment of mice with ARE before irradiation delayed the onset of mortality as compared with the untreated irradiated controls. Present findings demonstrate the potential of ARE in mitigating radiation-induced mortality, which may be attributed to its free radical scavenging and increased antioxidant potential

  13. Development of a coherent THz radiation source based on the ultra-short electron beam and its applications

    International Nuclear Information System (INIS)

    Kuroda, R.; Yasumoto, M.; Toyokawa, H.; Sei, N.; Koike, M.; Yamada, K.

    2011-01-01

    At the National Institute of Advanced Industrial Science and Technology (AIST), a coherent terahertz (THz) radiation source has been developed based on an ultra-short electron beam using an S-band compact electron linac. The designed THz pulse has a high peak power of more than 1 kW in the frequency range 0.1-2 THz. The entire system is located in one research room of about 10 m square. The linac consists of a laser photocathode rf gun (BNL type) with a Cs 2 Te photocathode load-lock system and two 1.5-m-long S-band accelerator tubes. The electron beam can be accelerated up to approximately 42 MeV. The electron bunch was compressed to less than 1 ps (rms) with a magnetic bunch compressor. The coherent synchrotron radiation (CSR) of the THz region was generated from the ultra-short electron bunch at the 90 o bending magnet, and it was extracted from a z-cut quartz window for THz applications. In this work, the THz scanning transmission imaging was successfully demonstrated for measuring the freshness of a vegetable leaf over a period of time.

  14. Increased apoptotic potential and dose-enhancing effect of gold nanoparticles in combination with single-dose clinical electron beams on tumor-bearing mice

    International Nuclear Information System (INIS)

    Chang Mengya; Chen Yuhung; Chang Chihjui; Chen Helen H-W; Wu Chaoliang; Shiau Aili

    2008-01-01

    High atomic number material, such as gold, may be used in conjunction with radiation to provide dose enhancement in tumors. In the current study, we investigated the dose-enhancing effect and apoptotic potential of gold nanoparticles in combination with single-dose clinical electron beams on B16F10 melanoma tumor-bearing mice. We revealed that the accumulation of gold nanoparticles was detected inside B16F10 culture cells after 18 h of incubation, and moreover, the gold nanoparticles were shown to be colocalized with endoplasmic reticulum and Golgi apparatus in cells. Furthermore, gold nanoparticles radiosensitized melanoma cells in the colony formation assay (P=0.02). Using a B16F10 tumor-bearing mouse model, we further demonstrated that gold nanoparticles in conjunction with ionizing radiation significantly retarded tumor growth and prolonged survival compared to the radiation alone controls (P<0.05). Importantly, an increase of apoptotic signals was detected inside tumors in the combined treatment group (P<0.05). Knowing that radiation-induced apoptosis has been considered a determinant of tumor responses to radiation therapy, and the length of tumor regrowth delay correlated with the extent of apoptosis after single-dose radiotherapy, these results may suggest the clinical potential of gold nanoparticles in improving the outcome of melanoma radiotherapy. (author)

  15. Characterization of a microDiamond detector in high-dose-per-pulse electron beams for intra operative radiation therapy.

    Science.gov (United States)

    Di Venanzio, C; Marinelli, Marco; Tonnetti, A; Verona-Rinati, G; Falco, M D; Pimpinella, M; Ciccotelli, A; De Stefano, S; Felici, G; Marangoni, F

    2015-12-01

    To characterize a synthetic diamond dosimeter (PTW Freiburg microDiamond 60019) in high dose-per-pulse electron beams produced by an Intra Operative Radiation Therapy (IORT) dedicated accelerator. The dosimetric properties of the microDiamond were assessed under 6, 8 and 9 MeV electron beams by a NOVAC11 mobile accelerator (Sordina IORT Technologies S.p.A.). The characterization was carried out with dose-per-pulse ranging from 26 to 105 mGy per pulse. The microDiamond performance was compared with an Advanced Markus ionization chamber and a PTW silicon diode E in terms of dose linearity, percentage depth dose (PDD) curves, beam profiles and output factors. A good linearity of the microDiamond response was verified in the dose range from 0.2 Gy to 28 Gy. A sensitivity of 1.29 nC/Gy was measured under IORT electron beams, resulting within 1% with respect to the one obtained in reference condition under (60)Co gamma irradiation. PDD measurements were found in agreement with the ones by the reference dosimeters, with differences in R50 values below 0.3 mm. Profile measurements evidenced a high spatial resolution of the microDiamond, slightly worse than the one of the silicon diode. The penumbra widths measured by the microDiamond resulted approximately 0.5 mm larger than the ones by the Silicon diode. Output factors measured by the microDiamond were found within 2% with those obtained by the Advanced Markus down to 3 cm diameter field sizes. The microDiamond dosimeter was demonstrated to be suitable for precise dosimetry in IORT applications under high dose-per-pulse conditions. Copyright © 2015 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  16. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  17. Study on the radiation degradation of polyether-polyurethane induced by electron beam

    International Nuclear Information System (INIS)

    Huang Wei; Xiong Jie; Chen Xiaojun; Gao Xiaoling; Xu Yunshu; Fu Yibei

    2007-01-01

    Polyether-urethane samples were irradiated at the dose range from 10 to 2000 kGy by 2 MeV electron beams. Volatile species from the polymer degradation were analyzed quantitatively and qualitatively with GC/MS. Thermal properties and micro-phase separation of the samples were examined by TG and the morphology was studied by TEM and SEM. The results show that the irradiated polyether-polyurethane evolves CO 2 , H 2 , CH 4 and C 2 H 6 , etc. The thermal stabilities between the hard and soft segments in the irradiated samples are different. At high doses, the phase separation in the sample is predominant and the hard segment of sample is more stable. The dose rate affects the soft segment of the irradiated sample much more. (author)

  18. Radiosensitizing effect of Chitosan on HeLa and LN 18 brain tumor cells exposed to electron beam radiation

    International Nuclear Information System (INIS)

    Rao, Shama; Shetty, Sukanya; Suchetha Kumari, N.; Madhu, L.N.

    2014-01-01

    Chitosan has been widely used for multiple applications because it is a non-toxic biocompatible, biodegradable, and adsorptive material. A previous study has shown that low-molecular-weight chitosan (LMWC) exerts a cytotoxic effect on oral cancer cells. Although a higher concentration of LMWC in comparison to cisplatin was needed in order to kill cancer cells, it was relatively less cytotoxic to non-cancer cells. Some of the well known anticancer drugs have the property of sensitizing the cell to radiation, which will be more applicable during combination therapy of cancer. The present study was undertaken to find the radiosensitizing effect of chitosan on Hela and Brain tumor (LN18) cells against electron beam radiation (EBR). Both the cancer cell lines, Hela and LN 18 were treated with different concentration of chitosan (50 and 100 μg/ml) pre and post exposure to 4 Gy EBR. The percentage of cell viability, percentage of apoptosis and ssDNA damage in the treated cells were assessed by MTT assay, DNA diffusion assay and comet assay respectively. The obtained results showed 62.13 1 5.08 and 65.24 1 2.45 percent Hela and LN 18 viable cells at 24 hour after the exposure to 4 Gy EBR. The percentage of viability was found to be decreased in cells exposed to EBR in the presence of chitosan. Supporting to this, percentage of apoptotic cells was found to be more in treated groups (28.13 1 4.34 and 25.13 1 3.76) when compared with control (23.19 1 1.07 and 20.79 1 4.86). Treatment of HeLa and LN18 before and after the exposure of EBR showed significantly (P<0.05) more frequency of micronucleus and % of DNA damage than the 4 Gy EBR control group. These results conclude the sensitizing effect of chitosan on cancer cell line against EBR exposure. (author)

  19. Polymer electrolyte membranes for fuel cells by radiation induced grafting with electron beam irradiation: state-of-the-art

    International Nuclear Information System (INIS)

    Nasef, M.M.; Nasef, M.M.

    2010-01-01

    Polymer electrolyte membranes have generated considerable interest in various fields of industrial interest due to their wide spread applications in fuel cells, batteries, electrolyzers sensors and actuators. Such diversity in applications implies a strong demand to architect the membranes towards particular properties for specific applications. Radiation induced grafting of vinyl and acrylic monomers into polymeric films, is an appealing method for producing various polymer electrolyte membranes. This method has the advantages of simplicity, controllability over the composition leading to tailored membrane properties and absence of shaping problem as preparation starts with substrate in a film form. It also has the flexibility of using various types of radiation sources such as gamma-rays and electron beam. Of all, electron beam (EB) accelerator is an advantageous source of high energy radiation that can initiate grafting reactions required for preparation of the membranes particularly when pilot scale production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes depending on the acceleration energy. This lecture reviews the-state of- the-art in the use of EB irradiation in preparation of composite and grafted polymer electrolyte membranes for fuel cell applications by radiation induced grafting with simultaneous irradiation and preirradiation methods. The use of simultaneous EB irradiation method was found to simplify the process and reduce the reaction time as well as the monomer consumption whereas the use of preirradiation method in a single-step route provides a shorter route to prepare polymer electrolyte membranes with improved properties and reduced cost in addition of setting basis for designing a continuous line to produce these membranes with dedicated EB facilities

  20. Contribution to the theoretical study of a high power microwave radiation produced by a relativistic electron beam

    International Nuclear Information System (INIS)

    Sellem, F.

    1997-01-01

    This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.)

  1. Novel digital K-edge imaging system with transition radiation from an 855-MeV electron beam

    CERN Document Server

    Hagenbuck, F; Clawiter, N; Euteneuer, H; Görgen, F; Holl, P; Johann, K; Kiser, K H; Kemmer, J; Kerschner, T; Kettig, O; Koch, H; Kube, G; Lauth, W; Mauhay, H; Schütrumpf, M; Stotter, R; Strüder, L; Walcher, T; Wilms, A; von Zanthier, C; Zemter, M

    2001-01-01

    A novel K-edge imaging method has been developed at the Mainz Microtron MAMI aiming at a very efficient use of the transition radiation (TR) flux generated by the external 855-MeV electron beam in a foil stack. A fan-like quasi-monochromatic hard X-ray beam is produced from the +or-1-mrad-wide TR cone with a highly oriented pyrolytic graphite (HOPG) crystal. The absorption of the object in front of a 30 mm*10 mm pn charge-coupled device (pn-CCD) photon detector is measured at every pixel by a broad-band energy scan around the K-absorption edge. This is accomplished by a synchronous variation of the lateral crystal position and the electron beam direction which defines also the direction of the TR cone. The system has been checked with a phantom consisting of a 2.5- mu m thick molybdenum sample embedded in a 136- or 272- mu m-thick copper bulk foil. A numerical analysis of the energy spectrum for every pixel demonstrates that data as far as +or-0.75 keV away from the K edge of molybdenum at 20 keV still improv...

  2. Effects of electron beam radiation dose on the compatibilization behaviour in recycled polypropylene/microcrystalline cellulose composites

    Science.gov (United States)

    Samat, N.; Motsidi, S. N. R.; Lazim, N. H. M.

    2018-01-01

    The purpose of this research was to evaluate the influence of dose level of electron beam on the compatibilization behavior of recycled polypropylene (rPP) in rPP/microcrystalline cellulose (MCC) composites. Initially, the rPP was irradiated with various dose of electron beam (5 kGy up to 250 kGy) which then mixed with unirradiated rPP (u-rPP) at a ratio of 30:70 respectively. The composites were prepared by incorporating a series wt% of MCC fibers into rPP (u-rPP : i-rPP) using extruder and finally moulded with an injection moulding machine. The compatibility behavior of irradiated rPP (i-rPP) were analysed with mechanical tensile and thermal methods. The results of mechanical analysis showed great improvement in tensile modulus but an increase in radiation dosage gradually decreased this property. Nevertheless, the tensile strength exhibited a minor effect. The thermal stability of composites is lowered with increase in the absorbed dose, more significantly at higher content of MCC. Fracture surface observations reveal adhesion between the cellulose and rPP matrix.

  3. Three-dimensional high dose rate dosimetry of electron beams. A combined radiochromic film, EPR and calorimetric dosimetry

    International Nuclear Information System (INIS)

    Secerov, B.; Milosavljevic, B.H.; Bacic, G.; Belgrade Univ.

    2002-01-01

    Complete text of publication follows. Aim. To examine the suitability of radiochromic film (RCF) dosimeters in determining 3D dose distribution from a pulsed electron beam source by comparing their response with alanine EPR dosimetry and calorimetry. Experimental. A FWT-60 radiochromic films (Far West Technology Inc) were used while alanine films were home made. To obtain the dose vs. penetration depth relationship, a stack of 13 films separated by aluminium plates and/or alanine films was placed perpendicular to the electron beam (Febetron, 20 ns, 1.8 MeV, 10 12 Gy/s, dose range up to 100 kGy). RC films were calibrated using 60-Co source and Fricke dosimetry. The absorbance of irradiated films was measured using 2D microdensitometry. Calorimetry was performed with a homemade quasy-adiabatic aluminum calorimeter. Results and Discussion. Microdensitometry of films (5 x 5 cm) enabled the 3D mapping of the entire radiation field with in plane resolution of 0.12 mm. The total dose for each film was obtained by image segmentation to correct for the non-linear response of films. Integrated dose for the entire stack was in good agreement (within 5%) with total absorbed energy as determined with calorimetry. The dose distribution along the beam center was determined using alanine films (1 x 1 cm) and EPR spectroscopy, and again a good agreement with the dose determined by microdensitometry of the central portion of RC films. In conclusion, the results indicate that RC films can be used for determination of 3D dose distribution even at very high dose rates

  4. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo, E-mail: somessar@ipen.br, E-mail: esomessa@ipen.br, E-mail: cgsilvei@ipen.br, E-mail: wapcalvo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Dynamitron DC1500/25/04 type electron beam accelerator (EBA), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN/CNEN-SP in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: for sterilization of medical, pharmaceutical and biological products; treatment of industrial and domestic effluents and sludge; preservation and disinfestation of foods and agricultural products; lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; treatment of effluent from petroleum production units; crosslinking of foams, wires and electric cables; composite and nanocomposite materials and carbon fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; natural polymers and multilayer packages irradiation, and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the point of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC1500/25/04 accelerator, such as, voltage and root-mean-square (RMS) current in the oscillator system, high voltage generator and waveform, using software developed in the

  5. Analysis of the power system from an electron beam accelerator and the correlation with the theoretical dosimetry for radiation processing

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz; Somessari, Elizabeth S. Ribeiro; Silveira, Carlos Gaia da; Calvo, Wilson Aparecido Parejo

    2013-01-01

    Dynamitron DC1500/25/04 type electron beam accelerator (EBA), model JOB 188, was manufactured by IBA Industrial (Radiation Dynamics, Inc.) and installed at IPEN/CNEN-SP in 1978. The technical specifications of the EBA are: energy 0.5 to 1.5 MeV; beam current: 0.3 to 25.0 mA; beam scanning: 60 to 120 cm; beam width: 25.4 mm and frequency: 100 Hz. Nowadays, this accelerator has been used for innumerable applications, such as: for sterilization of medical, pharmaceutical and biological products; treatment of industrial and domestic effluents and sludge; preservation and disinfestation of foods and agricultural products; lignocellulosic material irradiation as a pre-treatment to produce ethanol bio-fuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; treatment of effluent from petroleum production units; crosslinking of foams, wires and electric cables; composite and nanocomposite materials and carbon fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; natural polymers and multilayer packages irradiation, and biodegradable blends production. The energy of the electron beam is calculated as a function of the current in the accelerator high-voltage divisor, taking into account the thickness and density of the material to be irradiated. This energy is calculated considering the electron through the entire material and the distance from the titanium foil window, so that the absorbed doses at the point of entrance and exit are equivalent on the material. The dose is directly proportional to the beam current and the exposure time of the material under the electron beam and inversely proportional to the scan width. The aim of this paper is to analyze the power system parameters of the EBA Dynamitron DC1500/25/04 accelerator, such as, voltage and root-mean-square (RMS) current in the oscillator system, high voltage generator and waveform, using software developed in the

  6. The prophylactic effect of neck irradiation combined with intra-oral electron beam irradiation for early tongue cancer

    International Nuclear Information System (INIS)

    Kawamori, Jiro; Kamata, Rikisaburo; Sanuki, Eiichi

    1993-01-01

    Between 1967 and 1988, 102 patients with Stage T1-2N0 squamous cell carcinoma of the tongue were treated with uneven fractional irradiation therapy (intra-oral electron beam irradiation with and without prophylactic ipsilateral upper neck irradiation at the Dept. of Radiology, Nihon University School of Medicine. Of 102 primary lesions, 89 cases were controlled with this therapy. In this study, these 89 cases were investigated in order to analyze the prophylactic effect of upper neck irradiation. Of the 89 patients, 42 received only intra-oral electron beam irradiation, while the remaining 47 received a combination of intra-oral electron beam irradiation and prophylactic irradiation to the ipsilateral upper neck. Twenty three of the 89 (25.8%) developed metastasis to the neck after the radiotherapy. A breakdown of these 23 cases reveals that 3/21 (14.3%) received 40-50 Gy to the neck, 9/26 (34.6%) received 20-40 Gy to the neck, and 11/42 (26.2%) received no irradiation to the neck (p<0.05 between first and second groups, and between first and third groups). The neck metastasis was classified into one of three categories based on the region in which it first appeared (ipsilateral upper neck, ipsilateral lower neck or contralateral neck). The first metastasis was seen in the ipsilateral upper neck, in the ipsilateral lower neck and in the contralateral neck in 17, 4 and 2 patients, respectively. In 1/19 who had received 40-50 Gy, in 5/21 who had received 20-40 Gy and in 11/42 who had not received neck irradiation the first metastasis appeared in the ipsilateral upper neck. The five year survival rate was 94%, 75% and 85% in the patients receiving 40-50 Gy, 20-40 Gy and no neck irradiation, respectively. These results suggest that prophylactic irradiation of 40-50 Gy to the ipsilateral upper neck might decrease the incidence of neck metastasis and slightly prolong survival time. (author)

  7. Coherent effects in relativistic electron beams radiation in the presence of beat waves; Kogerentnye ehffekty v izluchenii relyativistskogo ehlektronnogo sgustka pri nalichii voln bienij

    Energy Technology Data Exchange (ETDEWEB)

    Gevorgyan, L A; Shamamian, A N

    1992-12-31

    The problem of relativistic electron beam-laser beat waves interaction is considered. Due to interaction the electron density is changed as opposed to the case, when it interacts with still electron plasma, the change of density gets less. But it is interesting to research the coherent spontaneous radiation of the electron beam interacting with. It is shown that this interaction brings to an increase of the partial coherent effect. The radiation efficiency depends essentially on the beam parameters, i.e. on the radio of the distinctive longitudinal dimension density. The maximum amplification takes place when the beam length makes room for an odd number of wave length quarters. Since the gain factor decreases with the radiation wave length, we offer to use high-current relativistic electron beams to generate micro radio waves. 4 refs.

  8. Assessment of environmental impact of ultraviolet radiation or electron beam cured print inks on plastic packaging materials

    International Nuclear Information System (INIS)

    Bardi, Marcelo Augusto Goncalves

    2014-01-01

    The high level of pollution generated by the inadequate disposal of polymeric materials has motivated the search for environmentally friendly systems and techniques such as the application of biodegradable polymers and the replacement of the solvent-based paint systems by those with high solids content, based water or cured by radiation, practically free of volatile organic compounds. However, the cured polymer coatings are neither soluble nor molten, increasing the complexity of the reprocessing, recycling and degradation. Thus, this work aimed to develop print inks modified with pro-degrading agents, cured by ultraviolet radiation or electron beam, for printing or decoration in plastic packaging products of short lifetime, which are biodegradable or not. Six coatings (varnish and inks in five colors: yellow, blue, white, black and red), three pro-degrading agents (cobalt stearate, cerium stearate and manganese stearate), five polymeric substrates (Ecobras®, low density polyethylene and its respective modifications with pro-degrading agents). The coatings were applied to the substrates and cured by ultraviolet radiation or electron beam, resulting in 180 samples. These materials were then exposed to accelerated aging chamber, type 'QUV', and composting in natural environment. In order to assess the effects of the polymer coatings on the degradation process of the specimens, only the yellow and black samples were exposed to a controlled composting environment via respirometry, reducing to 16 the number of samples. The organic compound generated by the biodegradation process was analyzed by the ecotoxicity tests. It was observed that the coating layer acted as a barrier that inhibits degradation of the plastic when exposed to weathering. The addition of pro-degrading agents promoted acceleration in the degradation process, promoting the migration of the metal ion to the medium without affecting the final quality of the organic compost. (author)

  9. Coherent infrared radiation from the ALS generated via femtosecond laser modulation of the electron beam

    International Nuclear Information System (INIS)

    Byrd, J.M.; Hao, Z.; Martin, M.C.; Robin, D.S.; Sannibale, F.; Schoenlein, R.W.; Venturini, M.; Zholents, A.A.; Zolotorev, M.S.

    2004-01-01

    Interaction of an electron beam with a femtosecond laser pulse co-propagating through a wiggler at the ALS produces large modulation of the electron energies within a short ∼100 fs slice of the electron bunch. Propagating around the storage ring, this bunch develops a longitudinal density perturbation due to the dispersion of electron trajectories. The length of the perturbation evolves with a distance from the wiggler but is much shorter than the electron bunch length. This perturbation causes the electron bunch to emit short pulses of temporally and spatially coherent infrared light which are automatically synchronized to the modulating laser. The intensity and spectra of the infrared light were measured in two storage ring locations for a nominal ALS lattice and for an experimental lattice with the higher momentum compaction factor. The onset of instability stimulated by laser e-beam interaction had been discovered. The infrared signal is now routinely used as a sensitive monitor for a fine tuning of the laser beam alignment during data accumulation in the experiments with femtosecond x-ray pulses

  10. An Innovative Tool for Intraoperative Electron Beam Radiotherapy Simulation and Planning: Description and Initial Evaluation by Radiation Oncologists

    Energy Technology Data Exchange (ETDEWEB)

    Pascau, Javier, E-mail: jpascau@mce.hggm.es [Unidad de Medicina y Cirugia Experimental, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Departamento de Bioingenieria e Ingenieria Aeroespacial, Universidad Carlos III de Madrid, Madrid (Spain); Santos Miranda, Juan Antonio [Servicio de Oncologia Radioterapica, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain); Calvo, Felipe A. [Servicio de Oncologia Radioterapica, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain); Departamento de Oncologia, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Bouche, Ana; Morillo, Virgina [Consorcio Hospitalario Provincial de Castellon, Castellon (Spain); Gonzalez-San Segundo, Carmen [Servicio de Oncologia Radioterapica, Hospital General Universitario Gregorio Maranon, Madrid (Spain); Facultad de Medicina, Universidad Complutense de Madrid, Madrid (Spain); Ferrer, Carlos; Lopez Tarjuelo, Juan [Consorcio Hospitalario Provincial de Castellon, Castellon (Spain); and others

    2012-06-01

    Purpose: Intraoperative electron beam radiation therapy (IOERT) involves a modified strategy of conventional radiation therapy and surgery. The lack of specific planning tools limits the spread of this technique. The purpose of the present study is to describe a new simulation and planning tool and its initial evaluation by clinical users. Methods and Materials: The tool works on a preoperative computed tomography scan. A physician contours regions to be treated and protected and simulates applicator positioning, calculating isodoses and the corresponding dose-volume histograms depending on the selected electron energy. Three radiation oncologists evaluated data from 15 IOERT patients, including different tumor locations. Segmentation masks, applicator positions, and treatment parameters were compared. Results: High parameter agreement was found in the following cases: three breast and three rectal cancer, retroperitoneal sarcoma, and rectal and ovary monotopic recurrences. All radiation oncologists performed similar segmentations of tumors and high-risk areas. The average applicator position difference was 1.2 {+-} 0.95 cm. The remaining cancer sites showed higher deviations because of differences in the criteria for segmenting high-risk areas (one rectal, one pancreas) and different surgical access simulated (two rectal, one Ewing sarcoma). Conclusions: The results show that this new tool can be used to simulate IOERT cases involving different anatomic locations, and that preplanning has to be carried out with specialized surgical input.

  11. Radioprotective effect of Tamarindus indica pod extract in Swiss albino mice exposed to whole body electron beam radiation

    International Nuclear Information System (INIS)

    Nandini, S.; Suchetha Kumari, N.; Ganesh Sanjeev; D'sa, Prima

    2013-01-01

    The objective of the study was to investigate the radioprotective effect of Tamarindus indica pod extract against radiation induced damage.The effect of 100 mg of hydroalcoholic extract of Tamarindus indica pod was studied in Swiss albino mice exposed to 6 Gy whole body electron beam radiation. Treatment of mice with extract for 15 days before irradiation reduced the symptoms of radiation sickness when compared with the untreated irradiated group. The irradiated animals showed an elevation in lipid peroxidation and reduction in glutathione, total antioxidants and antioxidant enzymes such as glutathione peroxidase and catalase activities. Radiation induced mice has shown micronucleus in the bone marrow cells. Treatment of mice with Tamarindus indica pod extract before irradiation caused a significant reduction in lipid peroxidation followed by significant elevation in reduced glutathione, total antioxidants, glutathione peroxidase and catalase activity. It also showed a reduction in the micronucleus formation in bone marrow cells. Results indicate that the radioprotective activity of Tamarindus indica pod extract may be due to free radical scavenging attributed as a result of increased antioxidant level in mice. (author)

  12. Electron beam accelerators—trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean

    International Nuclear Information System (INIS)

    Parejo Calvo, Wilson A.; Duarte, Celina L.; Machado, Luci Diva B.; Manzoli, Jose E.; Geraldo, Aurea Beatriz C.; Kodama, Yasko; Silva, Leonardo Gondim A.; Pino, Eddy S.; Somessari, Elizabeth S.R.; Silveira, Carlos G.

    2012-01-01

    The radiation processing technology for industrial and environmental applications has been developed and used worldwide. In Latin America and the Caribbean and particularly in Brazil there are 24 and 16 industrial electron beam accelerators (EBA) respectively with energy from 200 keV to 10 MeV, operating in private companies and governmental institutions to enhance the physical and chemical properties of materials. However, there are more than 1500 high-current electron beam accelerators in commercial use throughout the world. The major needs and end-use markets for these electron beam (EB) units are R and D, wire and electric cables, heat shrinkable tubes and films, PE foams, tires, components, semiconductors and multilayer packaging films. Nowadays, the emerging opportunities in Latin America and the Caribbean are paints, adhesives and coatings cure in order to eliminate VOCs and for less energy use than thermal process; disinfestations of seeds; and films and multilayer packaging irradiation. For low-energy EBA (from 150 keV to 300 keV). For mid-energy EBA (from 300 keV to 5 MeV), they are flue gas treatment (SO 2 and NO X removal); composite and nanocomposite materials; biodegradable composites based on biorenewable resources; human tissue sterilization; carbon and silicon carbide fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; electrocatalysts nanoparticles production; and natural polymers irradiation and biodegradable blends production. For high-energy EBA (from 5 MeV to 10 MeV), they are sterilization of medical, pharmaceutical and biological products; gemstone enhancement; treatment of industrial and domestic effluents and sludge; preservation and disinfestations of foods and agricultural products; soil disinfestations; lignocellulosic material irradiation as a pretreatment to produce ethanol biofuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; and

  13. Electron beam accelerators—trends in radiation processing technology for industrial and environmental applications in Latin America and the Caribbean

    Science.gov (United States)

    Parejo Calvo, Wilson A.; Duarte, Celina L.; Machado, Luci Diva B.; Manzoli, Jose E.; Geraldo, Aurea Beatriz C.; Kodama, Yasko; Silva, Leonardo Gondim A.; Pino, Eddy S.; Somessari, Elizabeth S. R.; Silveira, Carlos G.; Rela, Paulo R.

    2012-08-01

    The radiation processing technology for industrial and environmental applications has been developed and used worldwide. In Latin America and the Caribbean and particularly in Brazil there are 24 and 16 industrial electron beam accelerators (EBA) respectively with energy from 200 keV to 10 MeV, operating in private companies and governmental institutions to enhance the physical and chemical properties of materials. However, there are more than 1500 high-current electron beam accelerators in commercial use throughout the world. The major needs and end-use markets for these electron beam (EB) units are R and D, wire and electric cables, heat shrinkable tubes and films, PE foams, tires, components, semiconductors and multilayer packaging films. Nowadays, the emerging opportunities in Latin America and the Caribbean are paints, adhesives and coatings cure in order to eliminate VOCs and for less energy use than thermal process; disinfestations of seeds; and films and multilayer packaging irradiation. For low-energy EBA (from 150 keV to 300 keV). For mid-energy EBA (from 300 keV to 5 MeV), they are flue gas treatment (SO2 and NOX removal); composite and nanocomposite materials; biodegradable composites based on biorenewable resources; human tissue sterilization; carbon and silicon carbide fibers irradiation; irradiated grafting ion-exchange membranes for fuel cells application; electrocatalysts nanoparticles production; and natural polymers irradiation and biodegradable blends production. For high-energy EBA (from 5 MeV to 10 MeV), they are sterilization of medical, pharmaceutical and biological products; gemstone enhancement; treatment of industrial and domestic effluents and sludge; preservation and disinfestations of foods and agricultural products; soil disinfestations; lignocellulosic material irradiation as a pretreatment to produce ethanol biofuel; decontamination of pesticide packing; solid residues remediation; organic compounds removal from wastewater; and

  14. Research on the electromagnetic radiation characteristics of the gas main switch of a capacitive intense electron-beam accelerator

    Directory of Open Access Journals (Sweden)

    Yongfeng Qiu

    2017-11-01

    Full Text Available Strong electromagnetic fields are radiated during the operation of the intense electron-beam accelerator (IEBA, which may lead to the nearby electronic devices out of order. In this paper, the research on the electromagnetic radiation characteristic of the gas main switch of a capacitive IEBA is carried out by the methods of theory analysis and experiment investigation. It is obtained that the gas main switch is the dominating radiation resource. In the absence of electromagnetic shielding for the gas main switch, when the pulse forming line of the IEBA is charged to 700 kV, the radiation field with amplitude of 3280 V/m, dominant frequency of 84 MHz and high frequency 100 MHz is obtained at a distance of 10 meters away from the gas main switch. The experimental results of the radiation field agree with the theoretical calculations. We analyze the achievements of several research groups and find that there is a relationship between the rise time (T of the transient current of the gas main switch and the dominant frequency (F of the radiation field, namely, F*T=1. Contrast experiment is carried out with a metal shield cover for the gas main switch. Experimental results show that for the shielded setup the radiation field reduces to 115 V/m, the dominant frequency increases to 86.5 MHz at a distance of 10 away meters from the gas main switch. These conclusions are beneficial for further research on the electromagnetic radiation and protection of the IEBA.

  15. Effects of gamma radiation and electron beam on samples of the Brazil nuts artificially inoculated with Aspergillus flavus

    International Nuclear Information System (INIS)

    Coelho, Ednei Assuncao Antunes

    2012-01-01

    The high level of contamination by aflatoxin produced by fungi in lots of Brazil nuts and the strict control by importing countries in relation to the levels of toxins in food, European Union countries decided in 2003 by the return of these lots products from Brazil. Despite the economic loss represented by contamination by toxigenic fungi in Brazil nuts, a major product of extractive Northern of Brazil, studies are still preliminary as the control of contamination aflatoxigenic fungal using methods such as gamma radiation (G.R) and mainly, electron beam (E.B). These facts motivated this research, which aimed to evaluate the effects of gamma radiation and application of electron beam in samples of Brazil nut artificially inoculated with Aspergillus flavus. This goal, we were studied 50 samples of the Brazil nut previously inoculated with spores of A. flavus and subsequently incubated at 30 °C in relative humidity controlled at 93%. After incubation, period of 15 days, the average water activity of the samples was 0.80, the samples were divided into 5 groups that received the following doses of radiation: control (0 kGy), 5 and 10 kGy 5 E.B and G.R. The mycobiota was performed by serial dilution, plated on surface using potato dextrose agar. The results demonstrated that treatment with E.B using a dose of 5 kGy and 10 kGy resulted in reduced growth of A. flavus in 74% (37/50) and 94% (47/50) of samples. The samples treated with G.R at the dose of 5 kGy and 10 kGy no fungal growth occurred in 92% (46/50) 100% (50/50) of. The study of aflatoxins showed that doses of E.B of 5 kGy and 10 kGy reduced levels of AFB1 at 53.32% and 65.66% respectively. The application of gamma rays at doses of 5 and 10 kGy reduced levels of toxins in 70.61% and 84.15% respectively. This result may be attributed to higher penetrability of gamma radiation. Sensory analysis showed greater acceptance of the judges for the samples irradiated with E.B and G.R at the dose of 10 kGy. We concluded

  16. Variation of oxygen enhancement ratio with radiation dose studies using 8 MeV electron beam

    International Nuclear Information System (INIS)

    Yerol, Narayana; Nairy, Rajesha K.; Sanjeev, Ganesh

    2014-01-01

    The radiobiological effects can be modified by physical, chemical and biological factors. Oxygen is one of the best known modifiers, and the biological effects are greater in the presence of oxygen. Failure to achieve complete response following radiotherapy of large tumors is attributed to the presence of radio-resistant hypoxic cells; therefore clarifying the mechanism of the oxygen effect is important. In the present study, an attempt was made to quantify Oxygen Enhancement Ratio (OER) and variation of OER as a function of dose with experimental and theoretical formulations using Saccharomyces cerevisiae D7, X2180 and rad 52 and 8 MeV electron beam from Microtron accelerator. The single cell stationary-phase cultures were obtained by growing the cells in Yeast extract: Peptone: Dextrose (YEPD) (1%:2%:2%) medium for several generations in stationary phase to a density of approximately 3 x 10 8 cells mL -1 . Cells were washed thrice by centrifugation and re-suspended to a cell concentration of 1 x 10 8 cells mL -1 in a sterile polypropylene vial for irradiation. Hypoxic conditions were achieved by incubating the samples in air tight vials at 30℃ for 30 min prior to irradiation. For euoxic samples, a cell suspension of 1 x 10 6 cells mL -1 was prepared and was thoroughly aerated by mixing before irradiation. Treated and untreated samples were suitably diluted and plated in quadruplicate on YEPD agar medium. Plates were incubated for 2-3 days at 30℃ in dark and normal atmospheric conditions and the colonies were counted. The study confirmed that, the variation of OER with dose depends upon type of cell and repair proficiency of cells. For repair proficient cells OER value has been found to increase with dose, while remain constant for repair deficient cell lines. A theoretical model has been formulated to estimate OER values. The OER value varies from 1.51 to 2.53 for D7, 2.02 to 2.98 for X2180, and 2.58 for rad 52. (author)

  17. Development of biological treatment known as SBR process for supporting radiation treatment of industrial wastewater using electron beam

    International Nuclear Information System (INIS)

    Khomsaton Abu Bakar; Siti Aishah Hashim; Zulkafli Ghazali; Khairul Zaman Dahlan; Ismail Yaziz

    2005-01-01

    Electron beam irradiation of wastewater is capable of degrading stable non-biodegradable compound. However it requires high dose and in turn increase the cost of operation. A combination of irradiation and biological treatment is expected to overcome this problem. In this study, the treatment system will use a biological process known as Sequencing Batch Reactor (SBR). The SBR will be developed in a series and each series consist of reaction tank and clarifier tank. Filling and reaction step will occur in reaction tank while settling, decanting and idling step will ensue in the clarifier tank. The process is designed as such to enable rapid and simultaneous analysis on treated sample in order to achieve reliable results. (Author)

  18. Coherent radiation from high-current electron beams of linear accelerators and its applications

    International Nuclear Information System (INIS)

    Okuda, Shuichi; Takanaka, Makoto; Nakamura, Mitsumi; Kato, Ryukou; Takahashi, Toshiharu; Nam, Soon-Kwon; Taniguchi, Ryouichi; Kojima, Takao

    2006-01-01

    The characteristics of the far-infrared light source using the coherent radiation emitted from a high-energy short electron bunch have been investigated. The coherent radiation has a continuous spectrum in a submillimeter to millimeter wavelength range and the brightness is relatively high. The spectrum of the radiation is determined by the longitudinal form factor of the electron bunch. The operational conditions of a high-current linear accelerator have been optimized using an electron bunch shape monitor. The coherent transition radiation light source has been applied to absorption spectroscopy for liquid water and to an imaging experiment for a leaf of rose

  19. Effects of electron beam irradiation combined with hot water immersion treatment for shelf life extension of bananas

    International Nuclear Information System (INIS)

    Russly Abdul Rahman

    1996-01-01

    A study of the effects of minimal processing treatments, both individually or in combinations, was carried out in order to extend the shelf life and to improve the quality of bananas. Pre climacteric bananas at light full three-quarter grade, were either treated with hot water immersion for 1-30 min at 45-55 degree C, or irradiated with electron beams (2.0 MeV, Van de Graaff accelerator), to a dose of 0.1-1.5 kGy. All fruit was stored at 21 ± 1 degree C and relative humidity of 85-95 %. There was no significant delay in ripening of fruit treated with hot water immersion at the above temperatures. Some damage to fruit particularly peel scalding at ends occurred at the higher temperatures (>50 degree C). The 50 degree C, 5 minutes immersion was selected for further study. Irradiation to 0.1-0.3 kGy delayed the ripening (up to 3 days) without affecting fruit quality. Doses greater than 0.4 kGy resulted in extensive discoloration and fruit splitting. No significant differences could be detected organoleptically between bananas irradiated at 0.15 kGy and the control. Results of the physico-chemical attributes of the bananas were reported for fruits at colour stage 5 and after 10 and 15 days of storage. The combination treatment of hot water immersion and irradiation at the above settings further extended the shelf life of the banana fruits

  20. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Guven, Olgun; Moura, Esperidiana A.B.

    2014-01-01

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron-beam

  1. Short vegetal-fiber reinforced HDPE—A study of electron-beam radiation treatment effects on mechanical and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil); Guven, Olgun [Hacettepe University, Department of Chemistry, Polymer Chemistry Division, Beytepe, zip code 06800 Ankara (Turkey); Moura, Esperidiana A.B., E-mail: eabmoura@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP, Av. Prof. Lineu Prestes 2242, zip code 05508-000 São Paulo, SP (Brazil)

    2014-08-15

    Graphical abstract: - Highlights: • HDPE reinforced with short piassava fiber composites were prepared by melt-mixing processing. • Glycidyl methacrylate (GMA) was tested as a radiation cross-linking agent. • The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. • The better interfacial adhesion between fiber and HDPE matrix was observed for composites with GMA addition irradiated with radiation dose of 200 kGy. - Abstract: The effects of electron-beam radiation treatment on fiber-matrix adhesion and mechanical properties of short piassava fibers reinforced high density polyethylene (HDPE) matrix were studied. Glycidyl methacrylate (GMA) was added at 2.5% and 5.0% (on piassava fiber wt) as a cross-linking agent and the effects upon the properties of the resulting composites treated by electron-beam radiation were also examined. HDPE reinforced with short piassava fiber composites was prepared by melt-mixing processing, using a twin screw extruder machine. The materials were irradiated with 100 and 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. Material samples were submitted to mechanical and thermo-mechanical tests and SEM analyses. Correlation between properties was discussed. The comparison of mechanical and thermo-mechanical properties of the composites showed that electron-beam radiation treatment produced a significant improvement in mechanical properties, when compared with the non-irradiated composite sample and neat HDPE. Scanning electron microscopy (SEM) studies of the composite failure surfaces indicated that there was an improved adhesion between fiber and matrix. Examination of the failure surfaces indicated dependence of the interfacial adhesion upon the radiation dose and GMA content. Better interfacial adhesion between fiber and HDPE matrix was observed for composites with 5.0% GMA addition and treated with electron-beam

  2. Chemical effects of ionizing radiations and electron beam in polymers: industrial uses

    International Nuclear Information System (INIS)

    Yamasaki, M.C.R.; Reis, R.V.V. dos; Araujo, E.P.

    1991-01-01

    The results obtained from the development PVC dose indicator films, from the PE and PP hydrophilization and from the formulations of crosslink able resins and curable inks and varnishes by radiation, are herein discussed. (author)

  3. Pulse shape and spectrum of coherent diffraction-limited transition radiation from electron beams

    Energy Technology Data Exchange (ETDEWEB)

    van Tilborg, J.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2003-12-20

    The electric field in the temporal and spectral domain of coherent diffraction-limited transition radiation is studied. An electron bunch, with arbitrary longitudinal momentum distribution, propagating at normal incidence to a sharp metal-vacuum boundary with finite transverse dimension is considered. A general expression for the spatiotemporal electric field of the transition radiation is derived, and closed-form solutions for several special cases are given. The influence of parameters such as radial boundary size, electron momentum distribution, and angle of observation on the waveform (e.g., radiation pulse length and amplitude) are discussed. For a Gaussian electron bunch, the coherent radiation waveform is shown to have a single-cycle profile. Application to a novel THz source based on a laser-driven accelerator is discussed.

  4. Design of compact system with wide electron beam for radiation technologies

    International Nuclear Information System (INIS)

    Korolyov, A.N.; Simonov, K.G.; Pirozhenko, V.M.

    2001-01-01

    Design of a compact system for radiation processing of products and materials has been developed. The system provides two modes of irradiation, i.e. irradiation of continuously moving tapes and fixed samples. The irradiation is performed in a hermetically sealed chamber filled by nitrogen. This ecologically pure system includes the radiation protection,autonomous water cooling system and automated PC-control. It can be placed in any production or clinical room

  5. Design of compact system with wide electron beam for radiation technologies

    CERN Document Server

    Korolyov, A N; Pirozhenko, Vitaly M

    2001-01-01

    Design of a compact system for radiation processing of products and materials has been developed. The system provides two modes of irradiation, i.e. irradiation of continuously moving tapes and fixed samples. The irradiation is performed in a hermetically sealed chamber filled by nitrogen. This ecologically pure system includes the radiation protection,autonomous water cooling system and automated PC-control. It can be placed in any production or clinical room.

  6. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Science.gov (United States)

    Cole, J. M.; Behm, K. T.; Gerstmayr, E.; Blackburn, T. G.; Wood, J. C.; Baird, C. D.; Duff, M. J.; Harvey, C.; Ilderton, A.; Joglekar, A. S.; Krushelnick, K.; Kuschel, S.; Marklund, M.; McKenna, P.; Murphy, C. D.; Poder, K.; Ridgers, C. P.; Samarin, G. M.; Sarri, G.; Symes, D. R.; Thomas, A. G. R.; Warwick, J.; Zepf, M.; Najmudin, Z.; Mangles, S. P. D.

    2018-02-01

    The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today's lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ɛ >500 MeV ) with an intense laser pulse (a0>10 ). We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays), consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ɛcrit>30 MeV .

  7. Experimental Evidence of Radiation Reaction in the Collision of a High-Intensity Laser Pulse with a Laser-Wakefield Accelerated Electron Beam

    Directory of Open Access Journals (Sweden)

    J. M. Cole

    2018-02-01

    Full Text Available The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, today’s lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We present evidence of radiation reaction in the collision of an ultrarelativistic electron beam generated by laser-wakefield acceleration (ϵ>500  MeV with an intense laser pulse (a_{0}>10. We measure an energy loss in the postcollision electron spectrum that is correlated with the detected signal of hard photons (γ rays, consistent with a quantum description of radiation reaction. The generated γ rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy ϵ_{crit}>30  MeV.

  8. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    Science.gov (United States)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  9. Electron beam bunch length characterizations using incoherent and coherent transition radiation on the APS SASE FEL project

    CERN Document Server

    Lumpkin, Alex H; Berg, W J; Lewellen, J W; Sereno, N S; Happek, U

    2000-01-01

    The Advanced Photon Source (APS) injector linac has been reconfigured with a low-emittance RF thermionic gun and a photocathode (PC) RF gun to support self-amplified spontaneous emission (SASE) free-electron laser (FEL) experiments. One of the most critical parameters for optimizing SASE performance (gain length) is the electron beam peak current, which requires a charge measurement and a bunch length measurement capability. We report here initial measurements of the latter using both incoherent optical transition radiation (OTR) and coherent transition radiation (CTR). A visible light Hamamatsu C5680 synchroscan streak camera was used to measure the thermionic RF gun beam's bunch length (sigma approx 2-3 ps) via OTR generated by the beam at 220 MeV and 200 mA macropulse average current. In addition, a CTR monitor (Michelson Interferometer) based on a Golay cell as the far-infrared (FIR) detector has been installed at the 40-MeV station in the beamline. Initial observations of CTR signal strength variation wi...

  10. Radiation chemical studies on the electron-beam treatment of exhaust gases

    International Nuclear Information System (INIS)

    Washino, Masamitsu; Tokunaga, Okihiro; Nishimura, Koichi; Suzuki, Nobutake

    1980-03-01

    This report summarizes the radiation chemical studies on the synthetic models of exhaust gases which has been done in JAERI-Takasaki. Radiation-induced reactions of low concentrations of SO 2 and NO was studied in dry and moist mixtures of N 2 and O 2 . SO 2 was oxidized to H 2 SO 4 only in the moist mixtures. Oxidation of NO and reduction of NO 2 took place simultaneously and approached to a radiation-chemical stationary state in the dry N 2 -O 2 systems. NO was easily oxidized to NO 2 and finally to HNO 3 in the moist systems. Addition of NH 3 in the mixture enhanced the NO-removing reactions and suppressed the NO 2 - and HNO 3 -formations. A set of reaction mechanisms deduced is proposed. The reaction proceeds by the mechanism of such indirect effect of radiation as the energies absorbed by the main components are transferred and utilized effectively to the SO 2 - and NO sub(x)-removing reactions. (author)

  11. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  12. Intraoperative electron beam radiation therapy (IOEBRT) for carcinoma of the exocrine pancreas

    International Nuclear Information System (INIS)

    Dobelbower, R.R. Jr.; Konski, A.A.; Merrick, H.W. III; Bronn, D.G.; Schifeling, D.; Kamen, C.

    1991-01-01

    The abdominal cavities of 50 patients were explored in a specially constructed intraoperative radiotherapy operating amphitheater at the Medical College of Ohio. Twenty-six patients were treated with intraoperative and postoperative precision high dose external beam therapy, 12 with intraoperative irradiation but no external beam therapy, and 12 with palliative surgery alone. All but two patients completed the postoperative external beam radiation therapy as initially prescribed. The median survival time for patients treated with palliative surgery alone was 4 months, and that for patients treated with intraoperative radiotherapy without external beam therapy was 3.5 months. Patients undergoing intraoperative irradiation and external beam radiation therapy had a median survival time of 10.5 months. Four patients died within 30 days of surgery and two patients died of gastrointestinal hemorrhage 5 months posttreatment

  13. Techniques used in CAPRI for the dosimetry of γ radiations and electron beams

    International Nuclear Information System (INIS)

    Laizier, J.

    1980-01-01

    The radiation sources of CAPRI are: Pagure - 60 Co - 20Kcie, Poseidon - 60 Co - 1MCie (presently the activity is 200 Kcie), Vulcain - e - - 3MeV (variable from 0.5 MeV) - 1mA, Promethee - e - - 300 kV - 100 mA. The activities of CAPRI are research and development in industrial applications of irradiation, pilot and small scale production, irradiation (sterilization), nuclear qualification. Dosimetry techniques are: plastic dosimetry, chemical dosimetry, films [fr

  14. Advanced electron beam techniques

    International Nuclear Information System (INIS)

    Hirotsu, Yoshihiko; Yoshida, Yoichi

    2007-01-01

    After 100 years from the time of discovery of electron, we now have many applications of electron beam in science and technology. In this report, we review two important applications of electron beam: electron microscopy and pulsed-electron beam. Advanced electron microscopy techniques to investigate atomic and electronic structures, and pulsed-electron beam for investigating time-resolved structural change are described. (author)

  15. Plasma Wave Turbulence and Particle Heating Caused by Electron Beams, Radiation and Pinches.

    Science.gov (United States)

    1979-11-01

    current as dP K .2 Td - _c 2 . dt (K 2 (28a) where r 2 2 [ W (r)] , (28b) is the principal wave vector of the emitted radiation, and w p(r) is the...resulting from the angular average of coa 260, Tis research was supported In part by Hughes In the lowest bound state, which t an a state. TD . F. DuBois ad...Pbs.-JEW7, 21. 1127). and Sbsvchenko. V. 1. 1975, Fiz. Plasmy. 1, 10 (English Smith, D. F. 1977, J~ . (Leoaer). 214. L53 . tram!. in Soviet J. Plasim

  16. Radiation vulcanization of natural rubber latex using 250 keV electron beam machine

    Energy Technology Data Exchange (ETDEWEB)

    Chirinos, H.; Yoshii, F.; Makuuchi, K.; Lugao, A. E-mail: ablugao@net.ipen.br

    2003-08-01

    The sensitized radiation vulcanization of natural rubber latex has been carried out with 250 keV electrons. Latex was irradiated over a range of the beam current from 5 to 20 mA in the presence of sensitizers like the n-butyl acrylate (n-BA). The vulcanization dose decreases with increasing beam current condition. The rate of vulcanization (R{sub vul}) depends on the beam current (I) as given by the equation R{sub vul}=kI{sup 0.6}.

  17. Resonance effects of transition radiation emitted from thin foil stacks using electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Awata, Takaaki; Yajima, Kazuaki; Tanaka, Takashi [Kyoto Univ. (Japan). Faculty of Engineering; and others

    1997-03-01

    Transition Radiation(TR) X rays are expected to be a high brilliant X-ray source because the interference among TR X rays emitted from many thin foils placed periodically in vacuum can increase their intensity and make them quasi-monochromatic. In order to study the interference (resonance) effects of TR, we measured the energy spectra of TR for several sets of thin-foil stacks at various emission angles. It was found that the resonance effects of TR are classified into intrafoil and interfoil resonances and the intensity of TR X rays increases nonlinearly with increasing foil number, attributing to the interfoil resonance. It became evident that the brilliance of TR is as high as that of SR. (author)

  18. Monte Carlo based treatment planning for modulated electron beam radiation therapy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Michael C. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)]. E-mail: mclee@reyes.stanford.edu; Deng Jun; Li Jinsheng; Jiang, Steve B.; Ma, C.-M. [Radiation Physics Division, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States)

    2001-08-01

    A Monte Carlo based treatment planning system for modulated electron radiation therapy (MERT) is presented. This new variation of intensity modulated radiation therapy (IMRT) utilizes an electron multileaf collimator (eMLC) to deliver non-uniform intensity maps at several electron energies. In this way, conformal dose distributions are delivered to irregular targets located a few centimetres below the surface while sparing deeper-lying normal anatomy. Planning for MERT begins with Monte Carlo generation of electron beamlets. Electrons are transported with proper in-air scattering and the dose is tallied in the phantom for each beamlet. An optimized beamlet plan may be calculated using inverse-planning methods. Step-and-shoot leaf sequences are generated for the intensity maps and dose distributions recalculated using Monte Carlo simulations. Here, scatter and leakage from the leaves are properly accounted for by transporting electrons through the eMLC geometry. The weights for the segments of the plan are re-optimized with the leaf positions fixed and bremsstrahlung leakage and electron scatter doses included. This optimization gives the final optimized plan. It is shown that a significant portion of the calculation time is spent transporting particles in the leaves. However, this is necessary since optimizing segment weights based on a model in which leaf transport is ignored results in an improperly optimized plan with overdosing of target and critical structures. A method of rapidly calculating the bremsstrahlung contribution is presented and shown to be an efficient solution to this problem. A homogeneous model target and a 2D breast plan are presented. The potential use of this tool in clinical planning is discussed. (author)

  19. Application of the Sunna dosimeter film in gamma and electron beam radiation processing

    DEFF Research Database (Denmark)

    Kovács, A.; Baranyai, M.; Wojnárovits, L.

    2000-01-01

    The OSL (optically stimulated luminescence) based Sunna film containing a microcrystalline dispersion of LIF in a polymer matrix has been recently introduced for high-dose dosimetry. Our previous investigations revealed the applicability of the system in the dose range of 0.01-100 kGy, but irradi...... significant in the case of OSL analysis for doses above 5 kGy. The applicability of two types of Sunna films in electron and gamma radiation processing is discussed in the paper. (C) 2000 Elsevier Science Ltd. All rights reserved.......The OSL (optically stimulated luminescence) based Sunna film containing a microcrystalline dispersion of LIF in a polymer matrix has been recently introduced for high-dose dosimetry. Our previous investigations revealed the applicability of the system in the dose range of 0.01-100 k......Gy, but irradiation temperature and dose rate effects above 5 kGy reduced its usefulness. The recent discovery of the use of spectrophotometric analysis in the UV range for measuring doses above 5 kGy is a suitable option, while the OSL analysis can be applied for measuring lower doses due to the lack of temperature...

  20. Application of the ethanol-chlorobenzene dosimeter to electron beam and γ-radiation

    International Nuclear Information System (INIS)

    Razem, D.; Ocic, G.; Jamicic, J.; Dvornik, I.

    1981-01-01

    A spectrophotometric read-out method for the ethanol-chlorobenzene radiation dosimeter is described. The method is based on the reaction of radiolytically generated Cl - ions with mercury (II) thiocyanate and the subsequent reaction of the liberated thiocyanate ions with iron (III) to give the familiar red colour of the ferric thiocyanate complex. Molar absorptivity of the complex at the maximum optical absorption, 485 nm, was determined as 3990 +- 60 mol -1 cm -1 . The Lambert-Beer Law is obeyed in the concentration range 1 x 10 -6 to 1.5 x 10 -5 M Cl - . Doses in the range 10 to 10 4 Gy were determined using dosimeter solutions containing four characteristic concentrations of chlorobenzene. The same G(Cl - ) values were found to apply throughout the entire dose range, indicating that the same mechanism is responsible for the evolution of Cl - ions. The system is characterized by favourable energy absorption characteristics, a linear response vs dose relationship, and a wide dose range; it is not affected by γ-ray dose rate between 10 and 600 Gy min -1 . Acceptable accuracy and reproducibility are easily accomplished with ordinary, commercial grade chemicals. (author)

  1. Biodegradability enhancement of textile wastewater by electron beam irradiation

    International Nuclear Information System (INIS)

    Kim, Tak-Hyun; Lee, Jae-Kwang; Lee, Myun-Joo

    2007-01-01

    Textile wastewater generally contains various pollutants, which can cause problems during biological treatment. Electron beam radiation technology was applied to enhance the biodegradability of textile wastewater for an activated sludge process. The biodegradability (BOD 5 /COD) increased at a 1.0 kGy dose. The biorefractory organic compounds were converted into more easily biodegradable compounds such as organic acids having lower molecular weights. In spite of the short hydraulic retention time (HRT) of the activated sludge process, not only high organic removal efficiencies, but also high microbial activities were achieved. In conclusion, textile wastewater was effectively treated by the combined process of electron beam radiation and an activated sludge process

  2. On the possibility of gamma-laser pumping occurring at a charged particle counter motion and in density-modulated electron beams by a high frequency intensive radiation

    International Nuclear Information System (INIS)

    Maksyuta, N.V.

    1999-01-01

    The given report deals with the problem of motion and radiation of relativistic electron in a field of opposite plane density-modulated relativistic electron beam. Physical essence of high-frequency intensive radiation origin could be explained, first by the additional Lorentz reduction of the electron beam modulation period (modulation period Λ in a laboratory co-ordinate system reduces by a factor γ as compared with the modulation period in a beam co-ordinate system) and, secondly, a simultaneous γ-fold increase of transverse components of relativistic electrons of the beam electric and magnetic fields. Such a moving modulated electron beam can be regarded as a dynamic micro-ondulator. Unlike static micro-ondulators we can observe here one more positive moment along with a small period Λ = Λ'/γ, i.e. the electric and magnetic fields in a transverse direction are changed according to the law of exp(-2πx/Λ'). It means that charged particle interaction with a dynamic micro-ondulator will be effective in a wide range of transverse distances, i.e., to get an intensive short wave radiation one can use charged particle beams with rather large apertures which leads to an additional radiation intensity increase. A discussion is given showing that the proposed dynamic modulator possesses some essential merits. A detailed calculation is presented. (author)

  3. Electron beam processing of polymers

    International Nuclear Information System (INIS)

    Silva, Leonardo G. Andrade e; Dias, Djalma B.; Calvo, Wilson A.P.; Miranda, Leila F. de

    2011-01-01

    The aim of this work is the use of electron beam produced by industrial electron accelerators to process polymers. There are several applications, such as, irradiation of wires and electric cables for automotive, aerospace, household appliance, naval and computing industries. The effect of different radiation doses in low density polyethylene (LDPE) was also studied. After irradiation and crosslinking it was thermally expanded forming LDPE foam. In addition, poly(N-vinyl-2-pyrrolidone) (PVP) hydrogels using electron beam processing were prepared. In all cases studied crosslinking percentages of the samples were determined. (author)

  4. Electron beam writing on semiconductors

    International Nuclear Information System (INIS)

    Bierhenke, H.; Kutzer, E.; Pascher, A.; Plitzner, H.; Rummel, P.; Siemens A.G., Muenchen; Siemens A.G., Muenchen

    1979-08-01

    Reported are the results of the 3 1/2 year research project 'Electron beam Writing on Semiconductors'. Work has been done in the field of direct wafer exposure techniques, and of mask making. Described are resist technology, setting up of a research device, exploration of alignment procedures, manufacturing of devices and their radiation influence. Furthermore, investigations and measurements of an electron beam machine bought for mask making purposes, the development of LSI-circuits with this machine, the software necessary and important developments of digital subsystems are reported. (orig.) [de

  5. Removal of toxicity the pharmaceutical propranolol and your mixture with fluoxetine hydrochloride in aqueous solution using radiation with electron beam

    International Nuclear Information System (INIS)

    Boiani, Nathalia Fonseca

    2016-01-01

    Environmental health has been damage due to incorrect disposal of products and by-products. Among emerging pollutants it is possible to account with several pharmaceuticals, causing those problems when disposed in the environment by effluents. Conventional processing techniques are insufficient in removal of the pharmaceuticals, for having resistant waste and low biodegradability. Thus the advanced oxidation processes have been studied as an alternative for the treatment of different types of effluents. The objective of this study was to apply the process of irradiation with electron beam in order to reduce the toxic effects of propranolol, and the mixture with fluoxetine hydrochloride in aqueous solution. Ecotoxicological tests conducted with propranolol, and the mixture with fluoxetine hydrochloride, for Daphnia similis microcrustacean, and the Vibrio fischeri bacterium. It was observed that D. similis was more sensitive to propranolol drug and to the mixture, when compared to bacterium V.fischeri. After being subjected to the treatment with ionizing radiation, all applied doses to the propranolol and the mixture, showed significant reduction of toxicity, for D. similis. Different were the results for V. fischeri, when only 5.0 kGy reduced toxicity to propranolol. The mixture of pharmaceuticals required 2.5 and 5.0 kGy for reducing toxicity. 5.0 kGy showed the best removal efficiency for toxicity: 79.94 % for D. similis and 15.64 % for V. fischeri, when exposed to propranolol. The mixture reduction efficacy were 81.59% and 26.93 % for D.similis and V.fischeri, respectively. (author)

  6. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    Science.gov (United States)

    Van Lancker, Marc; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-05-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat à l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production.

  7. The IBA Rhodotron: an industrial high-voltage high-powered electron beam accelerator for polymers radiation processing

    International Nuclear Information System (INIS)

    Lancker, Marc van; Herer, Arnold; Cleland, Marshall R.; Jongen, Yves; Abs, Michel

    1999-01-01

    The Rhodotron is a high-voltage, high-power electron beam accelerator based on a design concept first proposed in 1989 by J. Pottier of the French Atomic Agency, Commissariat a l'Energie Atomique (CEA). In December 1991, the Belgian particle accelerator manufacturer, Ion Beam Applications s.a. (IBA) entered into an exclusive agreement with the CEA to develop and industrialize the Rhodotron. Electron beams have long been used as the preferential method to cross-link a variety of polymers, either in their bulk state or in their final form. Used extensively in the wire and cable industry to toughen insulating jackets, electron beam-treated plastics can demonstrate improved tensile and impact strength, greater abrasion resistance, increased temperature resistance and dramatically improved fire retardation. Electron beams are used to selectively cross-link or degrade a wide range of polymers in resin pellets form. Electron beams are also used for rapid curing of advanced composites, for cross-linking of floor-heating and sanitary pipes and for cross-linking of formed plastic parts. Other applications include: in-house and contract medical device sterilization, food irradiation in both electron and X-ray modes, pulp processing, electron beam doping of semi-conductors, gemstone coloration and general irradiation research. IBA currently markets three models of the Rhodotron, all capable of 10 MeV and alternate beam energies from 3 MeV upwards. The Rhodotron models TT100, TT200 and TT300 are typically specified with guaranteed beam powers of 35, 80 and 150 kW, respectively. Founded in 1986, IBA, a spin-off of the Cyclotron Research Center at the University of Louvain (UCL) in Belgium, is a pioneer in accelerator design for industrial-scale production

  8. Application of electron beam irradiation, (1). Development and application of electron beam processors

    International Nuclear Information System (INIS)

    Katsumura, Yosuke

    1994-01-01

    This paper deals with characteristics, equipment (principle and kinds), present conditions, and future issues in the application of electron beam irradiation. Characteristics of electron beams are described in terms of the following: chemical and biological effects of radiation; energy and penetrating power of electron beams; and principle and kinds of electron beam accelerator. Industrial application of electron beam irradiation has advantages of high speed procedure and producibility, less energy, avoidance of poisonous gas, and extreme reduction of organic solvents to be used. The present application of electron beam irradiation cen be divided into the following: (1) hardening of resin or coated membrane; (2) improvement of macromolecular materials; (3) environmental protection; (4) sterilization; (5) food sterilization. The present equipment for electron beam irradiation is introduced according to low energy, medium energy, and high energy equipment. Finally, future issues focuses on (1) the improvement of traceability system and development of electron dosimetric techniques and (2) food sterilization. (N.K.)

  9. Structure and properties of combined coatings on C (graphite)/Al/Al2O3 base after Ti ion implantation with subsequent electron beam irradiation

    International Nuclear Information System (INIS)

    Pogrebnjak, A.D.; Pogrebnjak, N.A.; Gritsenko, B.P.; Kylyshkanov, M.K.; Ruzimov, Sh.M.

    2004-01-01

    Full text: The presented report deals with new results on deposition of combined coatings using Al metallization (by a plasma jet) and micro-arc (discharge) Al oxidation. After this, the coating was implanted by Ti ions with 5·10 I7 cm -2 dose (60 and 90 kV and about 200 μs duration). One series of samples with such coatings was irradiated using the accelerator Y-112 by an electron beam in melting regime (two regimes). Analysis of the structure and element composition was performed using SIMS, RBS, SEM with micro-analysis (WDS), XRD as well as measurements of microhardness, wear and adhesion. It had been demonstrated that the coating was able to sustain very high temperatures and oxidation medium. However, after electron beam irradiation temperature resistance decreased because the oxide coating was melted almost to the graphite surface. The work was funded by the Project of NANU 'Nanosystems, nanomaterials and nanotechnology'

  10. Electron beam welding

    International Nuclear Information System (INIS)

    Schwartz, M.M.

    1974-01-01

    Electron-beam equipment is considered along with fixed and mobile electron-beam guns, questions of weld environment, medium and nonvacuum welding, weld-joint designs, tooling, the economics of electron-beam job shops, aspects of safety, quality assurance, and repair. The application of the process in the case of individual materials is discussed, giving attention to aluminum, beryllium, copper, niobium, magnesium, molybdenum, tantalum, titanium, metal alloys, superalloys, and various types of steel. Mechanical-property test results are examined along with the areas of application of electron-beam welding

  11. High-quality electron beam generation and bright betatron radiation from a cascaded laser wakefield accelerator (Conference Presentation)

    Science.gov (United States)

    Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Yu, Changhai; Wang, Cheng; Liu, Jiaqi; Qing, Zhiyong; Ming, Fang; Xu, Yi; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2017-05-01

    betatron radiation via manipulating the e-beam transverse oscillation in the wakefield. Very brilliant quasi-monochromatic betatron x-rays in tens of keV with significant enhancement both in photon yield and peak energy have been generated. Besides, by employing a self-synchronized all-optical Compton scattering scheme, in which the electron beam collided with the intense driving laser pulse via the reflection of a plasma mirror, we produced tunable quasi-monochromatic MeV γ-rays ( 33% full-width at half-maximum) with a peak brilliance of 3.1×1022 photons s-1 mm-2 mrad-2 0.1% BW at 1 MeV, which is one order of magnitude higher than ever reported value in MeV regime to the best of our knowledge. 1. J. S. Liu, et al., Phys. Rev. Lett. 107, 035001 (2011). 2. X. Wang, et al., Nat. Commun. 4, 1988 (2013). 3. W. P. Leemans, et al., Phys. Rev. Lett. 113, 245002 (2014) 4. W. T. Wang et al., Phys. Rev. Lett. 117, 124801 (2016). 5. Z. J. Zhang et al., Phys. Plasmas 23, 053106 (2016). 6. C. H. Yu et al., Sci. Rep. 6, 29518 (2016).

  12. Electron beam treatment of industrial wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, JinKyu; Kim, Yuri

    2004-01-01

    For industrial wastewater with low impurity levels such as contaminated ground water, cleaning water and etc., purification only with electron beam is possible, but it should be managed carefully with reducing required irradiation doses as low as possible. Also for industrial wastewater with high impurity levels such as dyeing wastewater, leachate and etc., purification only with electron beam requires high amount of doses and far beyond economies. Electron beam treatment combined with conventional purification methods such as coagulation, biological treatment, etc. is suitable for reduction of non-biodegradable impurities in wastewater and will extend the application area of electron beam. A pilot plant with electron beam for treating 1,000 m 3 /day of wastewater from dyeing industries has constructed and operated continuously since Oct 1998. Electron beam irradiation instead of chemical treatment shows much improvement in removing impurities and increases the efficiency of biological treatment. Actual plant is under consideration based upon the experimental results. (author)

  13. Industrial applications or electron beams

    International Nuclear Information System (INIS)

    Martin, J. I.

    2001-01-01

    Industrial use of electron beams began in the 1950's with the crosslinking of polyethylene film and wire insulation. Today the number of electron beam Processing Systems installed for industrial applications throughout the world has grown to more than six hundred stations in over 35 countries. Total installed power is now approaching 40 megawatts (over 8 million tons of products per year). Electron beam is now utilized by many major industries including plastics, automotive, rubber goods, wire and cable, electrical insulation, semiconductor, medical, packaging, or pollution control. The principal effect of high-energy electrons is to produce ions in the materials treated, resulting in the liberation of orbital electrons. As a result, the original molecule is modified and the ree radicals combine to form new molecules with new chemical reactions or dis organisation od the DNA chains of living organisms (insects, fungus, microorganisms, etc.). (Author) 8 refs

  14. Industrial applications of electron beam

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1997-01-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs

  15. Industrial applications of electron beam technology

    International Nuclear Information System (INIS)

    Khairul Zaman Mohd Dahlan

    1997-01-01

    Electron beam technology was first introduced in Malaysia in 1989 with the conclusion of the bilateral cooperation between the Malaysian Institute for Nuclear Technology Research (MINT) and Japan International Co-operation Agency (JICA) on Radiation Application Projects. Two electron beam accelerators with energy of 3.0 MeV and 200 keV were installed at MINT. These two accelerators pave the way for R and D to be carried out in radiation processing of polymers for cross-linking and surface curing. In 1994, another electron beam accelerator was installed in the private sector for cross-linking of home appliance wires. Since then, two more accelerators were installed in the private sector for cross-linking of heat shrinkable plastic films. Recently, a local company has acquired a low energy electron beam machine for cross-linking of plastic film. Within a period of 7 years, industrial applications of electron beam technology in Malaysia have increased significantly

  16. Device for electron beam machining

    International Nuclear Information System (INIS)

    Panzer, S.; Ardenne, T. von; Liebergeld, H.

    1984-01-01

    The invention concerns a device for electron beam machining, in particular welding. It is aimed at continuous operation of the electron irradiation device. This is achieved by combining the electron gun with a beam guiding chamber, to which vacuum chambers are connected. The working parts to be welded can be arranged in the latter

  17. Effect of electron beam radiation processing on mechanical and thermal properties of fully biodegradable crops straw/poly (vinyl alcohol) biocomposites

    Science.gov (United States)

    Guo, Dan

    2017-01-01

    Fully biodegradable biocomposites based on crops straw and poly(vinyl alcohol) was prepared through thermal processing, and the effect of electron beam radiation processing with N,N-methylene double acrylamide as radiation sensitizer on mechanical and thermal properties of the biocomposites were investigated. The results showed that, when the radiation dose were in the range of 0-50 kGy, the mechanical and thermal properties of the biocomposites could be improved significantly through the electron beam radiation processing, and the interface compatibility was also improved because of the formation of stable cross-linked network structure, when the radiation dose were above the optimal value (50 kGy), the comprehensive properties of the biocomposites were gradually destroyed. EB radiation processing could be used as an effective technology to improve the comprehensive performance of the biocomposites, and as a green and efficient processing technology, radiation processing takes place at room temperature, and no contamination and by-product are possible.

  18. Electron beam welding

    International Nuclear Information System (INIS)

    Gabbay, M.

    1972-01-01

    The bead characteristics and the possible mechanisms of the electron beam penetration are presented. The different welding techniques are exposed and the main parts of an electron beam welding equipment are described. Some applications to nuclear, spatial and other industries are cited [fr

  19. Electron beam simulation applicators

    International Nuclear Information System (INIS)

    Purdy, J.A.

    1983-01-01

    A system for simulating electron beam treatment portals using low-temperature melting point alloy is described. Special frames having the same physical dimensions as the electron beam applicators used on the Varian Clinac 20 linear accelerator were designed and constructed

  20. Evaluation of the oxidative stress induced by the electron beam radiation on various organs of Swiss Albino mice - in-vivo study

    International Nuclear Information System (INIS)

    Vishakh, R.; Moodithaya, Shailaja S.; Suchetha Kumari, N.; Sanjeev, Ganesh

    2014-01-01

    Radiation is one of the important threats in the modern world. Though the radiation injuries by natural means is very less common, advancement in the nuclear warfare research had increased the threat of radiation induced damage to biological system. Since years researchers are in search of a novel radio-protector, but without complete success. The reason behind may be its toxicity in higher doses. All the above research challenges lead many researchers to investigate radiation induced damage. Most of the studies had been done to investigate radiation induced damage in the lethal dose of radiation. But less work had been done to study the effect of radiation on tissues at sublethal dose. Therefore this study aims to evaluate the effect of radiation on the various organs in mice model. Swiss albino mice of 6 to 8 weeks old were divided into 2 groups i.e., Control, Radiation control with 6 mice in each group. 6 Gy sub lethal dose of electron beam radiation was used as radiation source. The liver, kidney and brain were dissected and used for biochemical analysis. The significant decrease in total antioxidant levels were observed in Liver and Kidney of irradiated mice, Glutathione levels were found to be decreased in Liver, Kidney and Brain, Glutathione S - transferase levels were found to be significantly decreased in Liver and Brain, Catalase activity was found to be decreased in Liver, Super oxide dismutase activity was found to be significantly decreased in Liver, Kidney and Brain homogenates when compared with the tissue homogenates of control group. From the results we can conclude that the liver is the most sensitive organ for the electron beam radiation induced oxidative stress when compared with Kidney and Brain. (author)

  1. Laser-plasma acceleration with multi-color pulse stacks: Designer electron beams for advanced radiation sources

    Science.gov (United States)

    Kalmykov, Serge; Shadwick, Bradley; Ghebregziabher, Isaac; Davoine, Xavier

    2015-11-01

    Photon engineering offers new avenues to coherently control electron beam phase space on a femtosecond time scale. It enables generation of high-quality beams at a kHz-scale repetition rate. Reducing the peak pulse power (and thus the average laser power) is the key to effectively exercise such control. A stepwise negative chirp, synthesized by incoherently stacking collinear sub-Joule pulses from conventional CPA, affords a micron-scale bandwidth. It is sufficient to prevent rapid compression of the pulse into an optical shock, while delaying electron dephasing. This extends electron energy far beyond the limits suggested by accepted scalings (beyond 1 GeV in a 3 mm plasma), without compromising beam quality. In addition, acceleration with a stacked pulse in a channel favorably modifies electron beam on a femtosecond time scale, controllably producing synchronized sequences of 100 kA-scale, quasi-monoenergetic bunches. These comb-like, designer GeV electron beams are ideal drivers of polychromatic, tunable inverse Thomson γ-ray sources. The work of SYK and BAS is supported by the US DOE Grant DE-SC0008382 and NSF Grant PHY-1104683. Inverse Thomson scattering simulations were completed utilizing the Holland Computing Center of the University of Nebraska.

  2. Simulation of equivalent dose due to accidental electron beam loss in Indus-1 and Indus-2 synchrotron radiation sources using FLUKA code

    International Nuclear Information System (INIS)

    Sahani, P.K.; Dev, Vipin; Singh, Gurnam; Haridas, G.; Thakkar, K.K.; Sarkar, P.K.; Sharma, D.N.

    2008-01-01

    Indus-1 and Indus-2 are two Synchrotron radiation sources at Raja Ramanna Centre for Advanced Technology (RRCAT), India. Stored electron energy in Indus-1 and Indus-2 are 450MeV and 2.5GeV respectively. During operation of storage ring, accidental electron beam loss may occur in addition to normal beam losses. The Bremsstrahlung radiation produced due to the beam losses creates a major radiation hazard in these high energy electron accelerators. FLUKA, the Monte Carlo radiation transport code is used to simulate the accidental beam loss. The simulation was carried out to estimate the equivalent dose likely to be received by a trapped person closer to the storage ring. Depth dose profile in water phantom for 450MeV and 2.5GeV electron beam is generated, from which percentage energy absorbed in 30cm water phantom (analogous to human body) is calculated. The simulation showed the percentage energy deposition in the phantom is about 19% for 450MeV electron and 4.3% for 2.5GeV electron. The dose build up factor in 30cm water phantom for 450MeV and 2.5GeV electron beam are found to be 1.85 and 2.94 respectively. Based on the depth dose profile, dose equivalent index of 0.026Sv and 1.08Sv are likely to be received by the trapped person near the storage ring in Indus-1 and Indus-2 respectively. (author)

  3. High-brightness electron beam diagnostics at the ATF

    International Nuclear Information System (INIS)

    Wang, X.J.; Ben-Zvi, I.

    1996-01-01

    The Brookhaven Accelerator Test Facility (ATF) is a dedicated user facility for accelerator physicists. Its design is optimized to explore laser acceleration and coherent radiation production. To characterize the low-emittance, picoseconds long electron beam produced by the ATF's photocathode RF gun, we have installed electron beam profile monitors for transverse emittance measurement, and developed a new technique to measure electron beam pulse length by chirping the electron beam energy. We have also developed a new technique to measure the ps slice emittance of a 10 ps long electron beam. Stripline beam position monitors were installed along the beam to monitor the electron beam position and intensity. A stripline beam position monitor was also used to monitor the timing jitter between the RF system and laser pulses. Transition radiation was used to measure electron beam energy, beam profile and electron beam bunch length

  4. Effects of combined electron-beam irradiation and sous-vide treatments on microbiological and other qualities of chicken breast meat

    International Nuclear Information System (INIS)

    Shamsuzzaman, K.; Lucht, L.; Chuaqui-Offermanns, N.

    1994-01-01

    The microbiological safety, refrigeration shelf-life, and nutritional quality of chicken breast meat were investigated following combined electron-beam irradiation and cooking under vacuum (sous-vide). Chicken breast meat inoculated with 10 6 CFU/g of Listeria monocytogenes was irradiated with an electron beam at doses up to 3.1 kGy under vacuum in barrier bags, cooked in a boiling water bath for 3 min 45 s (previously determined to achieve an internal temperature of 71.1 o C), and stored at 8 o C for up to 5 weeks. Listeria was undetectable in samples treated with combined sous-vide and irradiation at 3.1 kGy, but the organism survived the sous-vide treatment without irradiation and multiplied during storage. A similar study, conducted with uninoculated chicken breast meat, revealed that the product which received both irradiation (3 kGy) and sous-vide treatment had a shelf-life of at least 8 weeks at 8 o C, whereas the unirradiated samples treated sous-vide spoiled in 16 days. Listeria was undetectable in combination treated samples, but some of the unirradiated sous-vide samples tested after long storage showed high levels of Listeria. Some loss of thiamine occurred with the combined treatments. (author)

  5. The dose distribution determination in two kinds of polyethylene materials irradiated by electron beams-an experimental method for optimizing technology of radiation processing

    International Nuclear Information System (INIS)

    Zhang Daming

    2000-01-01

    The dose distribution in two kinds of polyethylene materials were determined by use of electron beam from 1.0-3.0 MeV electron accelerator. The effects of four different metal base-plate such as Al, Fe, Cu and Pb for dose depth distribution in materials were compared. And the boundary effects of absorbed dose were also observed. The expand uncertainty of absorbed dose measurement was 7.8%. This work is a useful experimental method for optimizing technology of radiation processing and realizing quality control of irradiation products

  6. Study On Preparing Carboxymethyl Starch Hydrogel Radiation-Crosslinked On The Electron Beam Accelerator To Do The Moisturizing Material In Cosmetic

    International Nuclear Information System (INIS)

    Nguyen Thanh Duoc; Doan Binh; Pham Thi Thu Hong; Nguyen Anh Tuan

    2014-01-01

    Hydrogel of carboxymethyl starch (CMS) matrix was prepared by crosslinking of electron beam (EB) radiation on the EB linear accelerator UERL-10-15S2 (energy of 10 MeV, capacity of 15 kW, Russia) with support substances such as polyvinyl pyrrolidone (PVP), Kappa-Carragenan and Montmorillonit (MMT). The characteristic properties of hydrogel membrane such as gel content, degree of swelling, mechanical strength, adhesion force, water vapor transmission rate (WVTR) and skin allergy were experimented. This research will be firstly oriented in applications of CMS hydrogel material in cosmetic and personal care field such as facial mask for skin care, moisturizing membrane for skin and so on. (author)

  7. Measurements of radiation near an atomic spectral line from the interaction of a 30 GeV electron beam and a long plasma

    International Nuclear Information System (INIS)

    Catravas, P.E.; Chattopadhyay, S.; Esarey, E.; Leemans, W.P.; Assmann, R.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; Siemann, R.H.; Walz, D.; Whittum, D.; Blue, B.; Clayton, C; Joshi, C.; Marsh, K.A.; Mori, W.B.; Wang, S.; Katsouleas, T.; Lee, S.; Muggli, P.

    2000-01-01

    Emissions produced or initiated by a 30 GeV electron beam propagating through a ∼ 1 m long heat pipe oven containing neutral and partially ionized vapor have been measured near atomic spectral lines in a beam-plasma wakefield experiment. The Cerenkov spatial profile has been studied as a function of oven temperature and pressure, observation wavelength, and ionizing laser intensity and delay. The Cerenkov peak angle is affected by the creating of plasma, and estimates of neutral and plasma density have been extracted. Increases in visible background radiation, consistent with increased plasma recombination emissions due to dissipation of wakefields, were simultaneously measured

  8. Electron-beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. (UK)

  9. Electron beam lithography

    International Nuclear Information System (INIS)

    Harriott, L.; Liddle, A.

    1997-01-01

    As part of a commemorative series of articles to mark the hundredth anniversary of the discovery of the electron, this article describes the use of electron beams to write features on silicon wafers. Recent advances in electron beam lithography, as it is known, could enable this technology to be used for the mass manufacture of silicon chips. The validation of space-charge optimization and evaluation of printing techniques is underway. 5 figs

  10. Effect of electron beam radiation on the structure and mechanical properties of ultra high molecular weight polyethylene fibers

    International Nuclear Information System (INIS)

    Li Shujun; Sun Weijun; Liu Xiuju; Gao Yongzhong; Li Huisheng

    1998-01-01

    Ultra high molecular weight polyethylene fibers have been crosslinked by electron beam. The structure and mechanical properties of them have been investigated in different irradiation atmospheres. The obtained results show that the gel content and crosslinking density increase with the increase of dose, the swelling ratio and average molecular weight of crosslinked net decrease with the increase of dose, the tensile strength and failure elongation decrease with the increase of dose, the tensile modulus increases with the increase of dose. When the samples are irradiated in air, vacuum and acetylene atmospheres, the effect of irradiation in acetylene atmosphere is best

  11. Electron beam curing of polymer matrix composites

    International Nuclear Information System (INIS)

    Janke, C.J.; Wheeler, D.; Saunders, C.

    1998-01-01

    The purpose of the CRADA was to conduct research and development activities to better understand and utilize the electron beam PMC curing technology. This technology will be used to replace or supplement existing PMC thermal curing processes in Department of Energy (DOE) Defense Programs (DP) projects and American aircraft and aerospace industries. This effort involved Lockheed Martin Energy Systems, Inc./Lockheed Martin Energy Research Corp. (Contractor), Sandia National Laboratories, and ten industrial Participants including four major aircraft and aerospace companies, three advanced materials companies, and three electron beam processing organizations. The technical objective of the CRADA was to synthesize and/or modify high performance, electron beam curable materials that meet specific end-use application requirements. There were six tasks in this CRADA including: Electron beam materials development; Electron beam database development; Economic analysis; Low-cost Electron Beam tooling development; Electron beam curing systems integration; and Demonstration articles/prototype structures development. The contractor managed, participated and integrated all the tasks, and optimized the project efforts through the coordination, exchange, and dissemination of information to the project participants. Members of the Contractor team were also the principal inventors on several electron beam related patents and a 1997 R and D 100 Award winner on Electron-Beam-Curable Cationic Epoxy Resins. The CRADA achieved a major breakthrough for the composites industry by having successfully developed high-performance electron beam curable cationic epoxy resins for use in composites, adhesives, tooling compounds, potting compounds, syntactic foams, etc. UCB Chemicals, the world's largest supplier of radiation-curable polymers, has acquired a license to produce and sell these resins worldwide

  12. Electron Beam Polarization Measurement Using Touschek Lifetime Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Changchun; /Duke U., DFELL; Li, Jingyi; /Duke U., DFELL; Mikhailov, Stepan; /Duke U., DFELL; Popov, Victor; /Duke U., DFELL; Wu, Wenzhong; /Duke U., DFELL; Wu, Ying; /Duke U., DFELL; Chao, Alex; /SLAC; Xu, Hong-liang; /Hefei, NSRL; Zhang, Jian-feng; /Hefei, NSRL

    2012-08-24

    Electron beam loss due to intra-beam scattering, the Touschek effect, in a storage ring depends on the electron beam polarization. The polarization of an electron beam can be determined from the difference in the Touschek lifetime compared with an unpolarized beam. In this paper, we report on a systematic experimental procedure recently developed at Duke FEL laboratory to study the radiative polarization of a stored electron beam. Using this technique, we have successfully observed the radiative polarization build-up of an electron beam in the Duke storage ring, and determined the equilibrium degree of polarization and the time constant of the polarization build-up process.

  13. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    International Nuclear Information System (INIS)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz; Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana

    2011-01-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and α-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h -1 ) and electron beam (2.9 kGy.s -1 ). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and α-tocopherol (A2). (author)

  14. Effect of antioxidants on thiobarbituric acid reactive substances of mechanically de boned chicken meat irradiated with ionizing radiation: cobalt-60 and electron beam sources

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Poliana de Paula; Azevedo, Heliana de; Pomarico Neto, Walter; Roque, Claudio Vitor; Brusqui, Armando Luiz, E-mail: hgomes@cnen.gov.b, E-mail: pbrito@cnen.gov.b, E-mail: cvroque@cnen.gov.b, E-mail: abrusqui@cnen.gov.b [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Haguiwara, Marcia Mayumi Harada; Miyagusku, Luciana, E-mail: marciamh@ital.gov.b, E-mail: lucianam@ital.gov.b [Food Technology Institute (ITAL), SP (Brazil). Meat Technology Center

    2011-07-01

    Samples of MDCM with skin were divided into three groups: control (without antioxidants), Antioxidant 1 - A1 (0.3% Sodium Polyphosphate and Sodium Erythorbate 0.05%) and Antioxidant 2 - A2 (Rosemary Extract 0.02% and {alpha}-Tocopherol 0.01%). The three batches of samples were divided into nine groups: no antioxidant and non-irradiated (Cn/I), with antioxidant A1 and non-irradiated (A1n/I), with antioxidant A2 and non-irradiated (A2n/I) without antioxidant and irradiated in Cobalt-60 source (CCo), with antioxidant A1 irradiated in Cobalt 60 source (A1Co) with antioxidant A2 irradiated in Cobalt-60 source (A2Co) with antioxidant A1 irradiated in Electron beam (A1Eb) and with antioxidant A2 irradiated in Electron beam (A2Eb). Each 100 g sample was conditioned in a transparent, low density polyethylene oxygen permeable bag, frozen overnight at a temperature of -18 +- 1 deg C in a chamber, and irradiated in this state, maintaining the temperature low with dry ice. The samples were irradiated with a dose of 3.0 kGy, used two sources of radiation: Cobalt-60 (3.1 kGy.h{sup -1}) and electron beam (2.9 kGy.s{sup -1}). After this process, the samples were evaluated during the refrigeration period (2 +- 1 deg C) for 11 days for the following analysis: total psychotropic bacteria count, thiobarbituric acid reactive substances (TBARS). The addition of antioxidants was able to reduce lipid oxidation caused by the irradiation. There were no differences between the radiation sources used in the same parameters. The better antioxidants mixture in the TBARS reducing it was rosemary extract and {alpha}-tocopherol (A2). (author)

  15. A flexible method for the preparation of thin film samples for in situ TEM characterization combining shadow-FIB milling and electron-beam-assisted etching

    Energy Technology Data Exchange (ETDEWEB)

    Liebig, J.P., E-mail: jan.p.liebig@fau.de [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany); Göken, M. [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany); Richter, G. [Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569 Stuttgart (Germany); Mačković, M.; Przybilla, T.; Spiecker, E. [Institute of Micro, and Nanostructure Research & Center for Nanoanalysis and Electron Microscopy (CENEM), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 6, 91058 Erlangen (Germany); Pierron, O.N. [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States); Merle, B. [Department of Materials Science and Engineering, Institute I, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Martensstr. 5, 91058 Erlangen (Germany)

    2016-12-15

    A new method for the preparation of freestanding thin film samples for mechanical testing in transmission electron microscopes is presented. It is based on a combination of focused ion beam (FIB) milling and electron-beam-assisted etching with xenon difluoride (XeF{sub 2}) precursor gas. The use of the FIB allows for the target preparation of microstructural defects and enables well-defined sample geometries which can be easily adapted in order to meet the requirements of various testing setups. In contrast to existing FIB-based preparation approaches, the area of interest is never exposed to ion beam irradiation which preserves a pristine microstructure. The method can be applied to a wide range of thin film material systems compatible with XeF{sub 2} etching. Its feasibility is demonstrated for gold and alloyed copper thin films and its practical application is discussed. - Highlights: • A new method for the preparation of sub-micron tensile specimens from thin films is presented. • The method is based on the combination of focused ion beam milling and electron-beam-assisted xenon difluoride etching. • It enables the target preparation of individual microstructural defects. • The sample section is protected from ion beam damage by the use of a shadow milling geometry.

  16. Applications and technology of electron beam accelerators

    International Nuclear Information System (INIS)

    Sethi, R.C.

    2005-01-01

    Traditionally, accelerators have been employed for pursuing research in basic sciences. But over the last couple of decades their uses have proliferated into the applied fields as well. The major credit for which goes to the electron beams. Electron beams or the radiations generated by them are being extensively used in almost all the applied areas. This article is a brief account of the impact made by the accelerator based electron beams and the attempts initiated by DAE for building a base in this technology. (author)

  17. Recent developments in electron beam machine technology

    International Nuclear Information System (INIS)

    Sadat, T.; Ross, A.; Leveziel, H.

    1994-01-01

    Electron beam accelerator provides ionisation energy for industrial processing. Electron beam accelerators are increasingly used for decontamination, conservation and disinfestation of food, for sterilization of medical products, and for polymerisation of materials. These machines are easy to install into a production factory as the radiation stops as soon as the machine is switched off. This safety advantage, together with the flexibility of use of these highly automated machines, has allowed the electron beam accelerator to become an important production tool. (author). 23 refs., 6 figs., 2 tabs

  18. Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

    Directory of Open Access Journals (Sweden)

    Domagoj Belić

    2017-11-01

    Full Text Available This work presents a highly effective approach for the chemical purification of directly written 2D and 3D gold nanostructures suitable for plasmonics, biomolecule immobilisation, and nanoelectronics. Gold nano- and microstructures can be fabricated by one-step direct-write lithography process using focused electron beam induced deposition (FEBID. Typically, as-deposited gold nanostructures suffer from a low Au content and unacceptably high carbon contamination. We show that the undesirable carbon contamination can be diminished using a two-step process – a combination of optimized deposition followed by appropriate postdeposition cleaning. Starting from the common metal-organic precursor Me2-Au-tfac, it is demonstrated that the Au content in pristine FEBID nanostructures can be increased from 30 atom % to as much as 72 atom %, depending on the sustained electron beam dose. As a second step, oxygen-plasma treatment is established to further enhance the Au content in the structures, while preserving their morphology to a high degree. This two-step process represents a simple, feasible and high-throughput method for direct writing of purer gold nanostructures that can enable their future use for demanding applications.

  19. Development and Application of Chlorinated, Fluorinated and Technological Polymer Films Modified by Grafting Process Using Electron Beam and Gamma Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Manzoli, J E [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Geraldo, A B.C.; Moura, E; Somesari, E S.R.; Silveira, C G; Oikawa, H; Moreira, N S; Forbicini, C [Nuclear Energy National Commission, Nuclear and Energetic Research Institute, Sao Paulo (Brazil); Tenorio, E [FATEC, Tatui (Brazil); Augusto, C G [IFSP, Sao Paulo (Brazil); Universidade Sao Judas Tadeu, Sao Paulo (Brazil); Panzarini, L C.G.A. [FEI, Sao Bernardo do Campo (Brazil)

    2012-09-15

    The ionizing irradiation (electron beam and gamma irradiation) induced grafting to fluorinated and chlorinated polymeric films were studied. Styrene grafting onto fluorinated and perfluorinated polymers and their ulterior sulfonation constitute a process to produce ionomers for many applications. The modification of polyvinylchloride with dimethylaminethylmethacrylate-heparin grafting attempt for the fact that grafting can be applied in packaging industry as an alternative for decreasing of plasticizer or another chemical species migration, in many cases nocivus contaminant for human health, and, in the specific study of this project, to obtain a less thrombogenic polymer surface to be used in medical applications. The results indicate mutual styrene grafting performed by industrial EB accelerator can be a fast alternative to produce ionomers that can compete in market. The numerical method to simulate diffusion process evolved is simple and fast and applied to fit experimental results. (author)

  20. Synthesis of non-ionic and ionic resins for BEP intaglio inks curing by electron-beam radiation. Annual report

    International Nuclear Information System (INIS)

    Bauer, B.J.; Dickens, B.

    1992-01-01

    The inks currently used to print US postage stamps on web presses are dried by heat evaporation of solvents. Emission of solvents into the atmosphere is governed by Local and Federal Government Regulations. Reduction of these emissions to acceptable levels can be accomplished by either of two methods available to the BEP. The work was part of a continuing effort to produce resins for use in formulation of intaglio inks for the printing of postage stamps and security documents. The inks are to be cured by exposure to an electron beam. The uncured inks are cleaned from the roller and wiping blade by washing the wiping blade with neutral water or with caustic water. Laboratory scale work on the urethane/polyethylene oxide/methacrylate resins has now been concluded and information on the synthesis has been provided to BEP for patenting and scaleup. Some effort on nonionic resins continued into FY88

  1. External-beam radiation therapy after surgical resection and intraoperative electron-beam radiation therapy for oligorecurrent gynecological cancer. Long-term outcome

    International Nuclear Information System (INIS)

    Sole, C.V.; Calvo, F.A.; Lozano, M.A.; Gonzalez-Sansegundo, C.; Gonzalez-Bayon, L.; Alvarez, A.; Lizarraga, S.; Garcia-Sabrido, J.L.

    2014-01-01

    The goal of the present study was to analyze prognostic factors in patients treated with external-beam radiation therapy (EBRT), surgical resection and intraoperative electron-beam radiotherapy (IOERT) for oligorecurrent gynecological cancer (ORGC). From January 1995 to December 2012, 61 patients with ORGC [uterine cervix (52 %), endometrial (30 %), ovarian (15 %), vagina (3 %)] underwent IOERT (12.5 Gy, range 10-15 Gy), and surgical resection to the pelvic (57 %) and paraaortic (43 %) recurrence tumor bed. In addition, 29 patients (48 %) also received EBRT (range 30.6-50.4 Gy). Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Median follow-up time for the entire cohort of patients was 42 months (range 2-169 months). The 10-year rates for overall survival (OS) and locoregional control (LRC) were 17 and 65 %, respectively. On multivariate analysis, no tumor fragmentation (HR 0.22; p = 0.03), time interval from primary tumor diagnosis to locoregional recurrence (LRR) < 24 months (HR 4.02; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.95; p = 0.02) retained significance with regard to LRR. Time interval from primary tumor to LRR < 24 months (HR 2.32; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.77; p = 0.04) showed a significant association with OS after adjustment for other covariates. External-beam radiation therapy at the time of pelvic recurrence, time interval for relapse ≥24 months and not multi-involved fragmented resection specimens are associated with improved LRC in patients with ORGC. As suggested from the present analysis a significant group of ORGC patients could potentially benefit from multimodality rescue treatment. (orig.)

  2. External-beam radiation therapy after surgical resection and intraoperative electron-beam radiation therapy for oligorecurrent gynecological cancer. Long-term outcome

    Energy Technology Data Exchange (ETDEWEB)

    Sole, C.V. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Instituto de Radiomedicina, Service of Radiation Oncology, Santiago (Chile); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Calvo, F.A. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lozano, M.A.; Gonzalez-Sansegundo, C. [Hospital General Universitario Gregorio Maranon, Department of Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Gonzalez-Bayon, L. [Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Alvarez, A. [Hospital General Universitario Gregorio Maranon, Service of Radiation Oncology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Lizarraga, S. [Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Institute of Research Investigation, Madrid (Spain); Garcia-Sabrido, J.L. [Complutense University, School of Medicine, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Service of General Surgery, Madrid (Spain); Hospital General Universitario Gregorio Maranon, Department of Gynecology, Madrid (Spain)

    2014-02-15

    The goal of the present study was to analyze prognostic factors in patients treated with external-beam radiation therapy (EBRT), surgical resection and intraoperative electron-beam radiotherapy (IOERT) for oligorecurrent gynecological cancer (ORGC). From January 1995 to December 2012, 61 patients with ORGC [uterine cervix (52 %), endometrial (30 %), ovarian (15 %), vagina (3 %)] underwent IOERT (12.5 Gy, range 10-15 Gy), and surgical resection to the pelvic (57 %) and paraaortic (43 %) recurrence tumor bed. In addition, 29 patients (48 %) also received EBRT (range 30.6-50.4 Gy). Survival outcomes were estimated using the Kaplan-Meier method, and risk factors were identified by univariate and multivariate analyses. Median follow-up time for the entire cohort of patients was 42 months (range 2-169 months). The 10-year rates for overall survival (OS) and locoregional control (LRC) were 17 and 65 %, respectively. On multivariate analysis, no tumor fragmentation (HR 0.22; p = 0.03), time interval from primary tumor diagnosis to locoregional recurrence (LRR) < 24 months (HR 4.02; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.95; p = 0.02) retained significance with regard to LRR. Time interval from primary tumor to LRR < 24 months (HR 2.32; p = 0.02) and no EBRT at the time of pelvic recurrence (HR 3.77; p = 0.04) showed a significant association with OS after adjustment for other covariates. External-beam radiation therapy at the time of pelvic recurrence, time interval for relapse ≥24 months and not multi-involved fragmented resection specimens are associated with improved LRC in patients with ORGC. As suggested from the present analysis a significant group of ORGC patients could potentially benefit from multimodality rescue treatment. (orig.)

  3. Electron beam processing system

    International Nuclear Information System (INIS)

    Kashiwagi, Masayuki

    2004-01-01

    Electron beam Processing Systems (EPS) are used as useful and powerful tools in many industrial application fields such as the production of cross-linked wire, rubber tire, heat shrinkable film and tubing, curing, degradation of polymers, sterilization and environmental application. In this paper, the feature and application fields, the selection of machine ratings and safety measures of EPS will be described. (author)

  4. New flexible origination technology based on electron-beam lithography and its integration into security devices in combination with covert features based on DNA authentication

    Science.gov (United States)

    Drinkwater, John K.; Ryzi, Zbynek; Outwater, Chris S.

    2002-04-01

    Embossed diffractive optically variable devices are becoming increasingly familiar security items on plastic cards, banknotes, security documents and on branded goods and media to protect against counterfeit, protect copyright and to evidence tamper. Equally as this devices become both more widely available there is a pressing requirement for security technology upgrades to keep ahead of technology advances available to potential counterfeiters. This paper describes a new generation electron beam DOVID origination technology particularly suitable for high security applications. Covert marking of security devices is provided using the DNA matrix by creating and verifying unique DNA sequences. This integration of this into practical security features in combination with covert features based on DNA matrix authentication and other more straightforwardly authenticable features to provide multi- technology security solutions will be described.

  5. Detailed spectra of high-power broadband microwave radiation from interactions of relativistic electron beams with weakly magnetized plasmas

    International Nuclear Information System (INIS)

    Kato, K.G.; Benford, G.; Tzach, D.

    1983-01-01

    Prodigious quantities of microwave energy distributed uniformly across a wide frequency band are observed when a relativistic electron beam (REB) penetrates a plasma. Typical measured values are 20 MW total for Δνapprox. =40 GHz with preliminary observations of bandwidths as large as 100 GHz. An intense annular pulsed REB (Iapprox. =128 kA; rapprox. =3 cm; Δrapprox. =1 cm; 50 nsec FWHM; γapprox. =3) is sent through an unmagnetized or weakly magnetized plasma column (n/sub plasma/approx.10 13 cm -3 ). Beam-to-plasma densities of 0.01 >ω/sub p/ and weak harmonic structure is wholly unanticipated from Langmuir scattering or soliton collapse models. A model of Compton-like boosting of ambient plasma waves by the beam electrons, with collateral emission of high-frequency photons, qualitatively explains these spectra. Power emerges largely in an angle approx.1/γ, as required by Compton mechanisms. As n/sub b//n/sub p/ falls, ω/sub p/-2ω/sub p/ structure and harmonic power ratios consistent with soliton collapse theories appear. With further reduction of n/sub b//n/sub p/ only the ω/sub p/ line persists

  6. Effect of Gamma Radiation and Electron Beam on Microbiological Quality and Protein Patterns of 4 Selected Beans

    International Nuclear Information System (INIS)

    Chookaew, S.; Eamsir, J.; Pewlong, W.; Sajjabut, S.

    2014-01-01

    The aim of the present study was to evaluate the effect of gamma ray and electron beam on microbiological quality and protein pattern of four selected beans: mung beans, soy beans, peanuts and black beans. All beans samples were exposed to irradiation at doses of 0, 0.5, 1, and 2 kGy before evaluated for their microbiological quality using AOAC method and protein analysis by gel electrophoresis. Results showed that the amount of bacteria, yeast and mold of irradiated mung beans and peanuts were reduced, whereas these microbiological quality values remained relatively the same for irradiated soy beans and black beans compared to non-irradiated samples. In terms of protein analysis, the protein patterns of the irradiated beans were of the same quality as the non-irradiated samples. To further tested the effect of irradiation on the bean's protein at higher doses, all four selected beans were exposed to gamma ray at 10, 50, 100, 150 and 200 kGy. We found that the protein patterns of mung beans, peanuts and black beans were altered at doses above 50 kGy.

  7. Preparation and mechanical properties of PLA-PEG copolymers modified by radiation-induced crosslinking of low energy electron beams

    International Nuclear Information System (INIS)

    Peikai Miao; Wenrui Tang; Ke Zeng; Yan Tang; Yipeng Wang; Hongfei Zhou; Ke Zhou; Tao Liu; Gang Yang

    2007-01-01

    PLA-PEG copolymer is wildly applied in medical and pharmaceutical fields, but its mechanical properties are not so good, such as the tensile intensity and elongation at break. To improve these properties, PLA-PEG copolymers were synthesized and irradiated using low energy electron beams (EB) with various irradiation doses in the presence of 3 wt% polyfunctional monomer (triallylcyanurate, TAC) as crosslinking agent to introduce crosslinking between polymer chains. It was found that with the increase of the irradiation doses, the tensile intensity of the PLA-PEG increased, while the elongation at break decreased, the most optimal irradiation dose was 80 kGy, the tensile intensity was 12.5 MPa and 19.9 MPa, corresponding to the elongation at break of 282.8 % and 28.7% for PLA9-PEG6 and PLA11-PEG6, respectively. Meanwhile, the solvent resistance of crosslinked sample was improved obviously at this dose. The crosslinked PLA-PEG copolymer can be applied to packaging materials, tubes and so on. (Author)

  8. Plastic coating on paper by electron beam irradiation

    International Nuclear Information System (INIS)

    Ametani, Kazuo; Tsuchiya, Mitsuaki; Sawai, Takeshi

    1984-01-01

    It has been known long since that the resin system of unsaturated polyester and vinylmonomer mixture cures by irradiation. Ford of USA for the first time industrialized the radiation curing reaction of resins for the coating of automobile parts. Thereafter, accompanying the development and technical advance of the low energy electron beam irradiation apparatus which is suitable to surface treatment such as coating and easy to handle and the development of resins, the electron beam curing method has become to be utilized for coating hardboard and wooden doors, coating automobile tire rims, adhering printing papers and others. The electron beam curing method has advantage such as energy conservation, resource saving and little pollution because solvent is not used, high production rate and small floor space. In glossing industry, for the purpose of developing the techniques to apply electron beam curing method to glazed paper production, the selection of the composition of resins suitable to glazed papers, the irradiating condition and the properties of cured films were examined. The films withstanding bending can be obtained at low dose with urethane group, ester group or the combination of monomers. (Kako, I.)

  9. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  10. Electron beam puts a shine on leather

    International Nuclear Information System (INIS)

    Berberich, S.

    1986-01-01

    A technique for curing leather using either ultraviolet or electron-beam radiation has been developed. This type of radiation curing saves at least 60 percent of the energy cost of conventional leather finishing and can also result in considerable savings in plant space and labor. The implications of the new technology in international balance of trade are discussed

  11. Utilisation of optical radiation in the study of space time characteristics of an electron beam. Applications to TTF

    International Nuclear Information System (INIS)

    Variola, Alessandro

    1998-01-01

    This thesis contains six chapters divided into three parts. After a brief presentation of the TTF project, the first part describes the theoretical basis of the thesis. We have applied the virtual photon method to the subject of transition radiation and compared our results with those obtained by L. Wartski. The description of the beam-emittance measurement method and the definition of the main optical functions set out in the following chapters constitutes the second part. We have analyzed the three gradient technique that allows one, thanks to a statistical approach, to determine the emittance and the associated error. As regards to optics, we have introduced and measured the main functions that gives the resolution of the measurement of the beam, optimized the optical line for the bunch-length measurement and calculated contributions to the optical resolution. The last chapter contains the results and the analysis of the transverse emittance and bunch length measurements. The results obtained in the energy range 8 - 12 MeV are shown. We present also the results for the emittance measurements performed by taking slices of 8μs within the 30μs macro-pulse. The second part is devoted to an analysis of the beam profiles taken in 1μs slices. These observation allows us to create a 'moving film' and to highlight the importance of certain parameters on the dynamical behaviour of the beam. In the last part we present the bunch length measurements performed by means of Cherenkov radiation coupled to a streak camera. We show the longitudinal profiles for different settings of the TTF injector. These measurements, combined with measurements of the energy spread, provide us with the value of 6 D emittance. (author)

  12. MODULATED PLASMA ELECTRON BEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, L. H.

    1963-08-15

    Techniques have been developed for producing electron beams of two amperes or more, from a plasma within a hollow cathode. Electron beam energies of 20 kilovolts are readily obtained and power densities of the order of 10,000 kilowatts per square inch can be obtained with the aid of auxiliary electromagnetic focusing. An inert gas atmosphere of a few microns pressure is used to initiate and maintain the beam. Beam intensity increases with both gas pressure and cathode potential but may be controlled by varying the potential of an internal electrode. Under constant pressure and cathode potential the beam intensity may be varied over a wide range by adjusting the potential of the internal control electrode. The effects of cathode design on the volt-ampere characteristics of the beam and the design of control electrodes are described. Also, performance data in both helium and argon are given. A tentative theory of the origin of electrons and of beam formation is proposed. Applications to vacuum metallurgy and to electron beam welding are described and illustrated. (auth)

  13. Effects of electron beam radiation on mechanical properties and on the resistance to punctures caused by Plodia interpunctella in cereal bar packaging

    International Nuclear Information System (INIS)

    Alves, Juliana N.; Moura, Esperidiana A.B.; Oliveira, Vitor M.; Potenza, Marcos R.; Arthur, Valter

    2009-01-01

    Plodia interpunctella is an important pest in stored products in the tropical and subtropical regions, infesting grains and flours. The adult of P. interpunctella is a small butterfly with about 15 - 20mm of spread and the female places separately of 100 the 400 eggs in groups on the grains whose hard incubation some days. This insect infesting diverse types of food packaging, depreciating the products and causing economic losses. It is therefore critical for these products a packaging that presents, in addition to good mechanical, barrier and machinability properties, a good resistance to puncture by insects, in order to prevent the contact and spread of pests in the packaged food. This study evaluates the changes on mechanical properties and puncture resistance by P. interpunctella in BOPPmet/BOPP structure, used commercially as cereal bar packaging, after electron beam irradiation. The material samples were irradiated up to 120 kGy using a 1.5 MeV electrostatic accelerator, at room temperature, in air, dose rate 11.22 kGy/s. Irradiation doses were measured using cellulose triacetate film dosimeters 'CTA-FTR-125' from Fuji Photo Film Co. Ltd. After irradiation the BOPPmet/BOPP samples were subjected to tests of puncture resistance by P. interpunctella, tensile tests and penetration resistance. The results showed significant decreases (p<0.05) in the original mechanical properties of the structures according to the radiation doses applied and effective resistance against punctures by P. interpunctella for irradiated and nonirradiated BOPPmet/BOPP samples. These results indicate that non-irradiated and irradiated BOPPmet/BOPP structure presents puncture resistance against P. interpunctella and that electron-beam irradiation, in conditions studied in this work, may turn the structure inappropriate for cereal bar packaging, due to high reduction its mechanical properties after irradiation. (author)

  14. Irradiation of Gemstones using Electron Beam

    International Nuclear Information System (INIS)

    Sarada Idris; Mohd Suhaimi Jusoh; Siti Aiasah Hashim

    2011-01-01

    Gemstone irradiation treatment using radiation is one of the studies conducted in the ALURTRON. The purpose of radiation is to study the effects of radiation on the gems. Through studies conducted on freshwater pearls and stones such as Topaz, Kunzite, TOURMALINE, Aquamarine, Quartz and so on, electron beam irradiation method can highlight the jewel colors but also to reduce the effects of haze on gemstones. The dose of radiation used is 25 kGy to 200 kGy. (author)

  15. Calculation of radiative corrections to virtual compton scattering - absolute measurement of the energy of Jefferson Lab. electron beam (hall A) by a magnetic method: arc project

    International Nuclear Information System (INIS)

    Marchand, D.

    1998-11-01

    This thesis presents the radiative corrections to the virtual compton scattering and the magnetic method adopted in the Hall A at Jefferson Laboratory, to measure the electrons beam energy with an accuracy of 10 4 . The virtual compton scattering experiments allow the access to the generalised polarizabilities of the protons. The extraction of these polarizabilities is obtained by the experimental and theoretical cross sections comparison. That's why the systematic errors and the radiative effects of the experiments have to be controlled very seriously. In this scope, a whole calculation of the internal radiative corrections has been realised in the framework of the quantum electrodynamic. The method of the dimensional regularisation has been used to the treatment of the ultraviolet and infra-red divergences. The absolute measure method of the energy, takes into account the magnetic deviation, made up of eight identical dipoles. The energy is determined from the deviation angle calculation of the beam and the measure of the magnetic field integral along the deviation

  16. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    International Nuclear Information System (INIS)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A.R.; Zigler, A.

    2016-01-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  17. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  18. Technique of radiation polymerization in fine art conservation: a potentially new method of restoration and preservation. [Uv and electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Garnett, J.L. (Univ. of New South Wales, Kensington, Australia); Major, G.

    1982-01-01

    The technique of using radiation polymerization for the restoration and preservation of art treasures is considered. The processes discussed include both radiation grafting and rapid cure procedures, particularly reactions initiated by uv and eb. Representative examples where the technique has already been used are treated including typical applications with paintings, tapestries, leather and archival repair. The structure of the monomers and oligomers used in both grafting and rapid cure systems is outlined. The experimental conditions where grafting may occur during radiation rapid cure processing are discussed. Possible future developments of the technique are outlined. 1 figure, 8 tables.

  19. Anticipated Intraoperative Electron Beam Boost, External Beam Radiation Therapy, and Limb-Sparing Surgical Resection for Patients with Pediatric Soft-Tissue Sarcomas of the Extremity: A Multicentric Pooled Analysis of Long-Term Outcomes

    Energy Technology Data Exchange (ETDEWEB)

    Sole, Claudio V., E-mail: cvsole@uc.cl [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Service of Radiation Oncology, Instituto de Radiomedicina, Santiago (Chile); Calvo, Felipe A. [Department of Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); School of Medicine, Complutense University, Madrid (Spain); Polo, Alfredo [Service of Radiation Oncology, Hospital Universitario Ramón y Cajal, Madrid (Spain); Cambeiro, Mauricio [Service of Radiation Oncology, Clínica Universidad de Navarra, Pamplona (Spain); Alvarez, Ana; Gonzalez, Carmen [Service of Radiation Oncology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); Gonzalez, Jose [Service of Pediatric Orthopedics and Traumatology, Hospital General Universitario Gregorio Marañón, Madrid (Spain); San Julian, Mikel [Service of Orthopedics and Traumatology, Clínica Universidad de Navarra, Pamplona (Spain); Martinez-Monge, Rafael [Service of Radiation Oncology, Clínica Universidad de Navarra, Pamplona (Spain)

    2014-09-01

    Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up of 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results.

  20. Anticipated Intraoperative Electron Beam Boost, External Beam Radiation Therapy, and Limb-Sparing Surgical Resection for Patients with Pediatric Soft-Tissue Sarcomas of the Extremity: A Multicentric Pooled Analysis of Long-Term Outcomes

    International Nuclear Information System (INIS)

    Sole, Claudio V.; Calvo, Felipe A.; Polo, Alfredo; Cambeiro, Mauricio; Alvarez, Ana; Gonzalez, Carmen; Gonzalez, Jose; San Julian, Mikel; Martinez-Monge, Rafael

    2014-01-01

    Purpose: To perform a joint analysis of data from 3 contributing centers within the intraoperative electron-beam radiation therapy (IOERT)-Spanish program, to determine the potential of IOERT as an anticipated boost before external beam radiation therapy in the multidisciplinary treatment of pediatric extremity soft-tissue sarcomas. Methods and Materials: From June 1993 to May 2013, 62 patients (aged <21 years) with a histologic diagnosis of primary extremity soft-tissue sarcoma with absence of distant metastases, undergoing limb-sparing grossly resected surgery, external beam radiation therapy (median dose 40 Gy) and IOERT (median dose 10 Gy) were considered eligible for this analysis. Results: After a median follow-up of 66 months (range, 4-235 months), 10-year local control, disease-free survival, and overall survival was 85%, 76%, and 81%, respectively. In multivariate analysis after adjustment for other covariates, tumor size >5 cm (P=.04) and R1 margin status (P=.04) remained significantly associated with local relapse. In regard to overall survival only margin status (P=.04) retained association on multivariate analysis. Ten patients (16%) reported severe chronic toxicity events (all grade 3). Conclusions: An anticipated IOERT boost allowed for external beam radiation therapy dose reduction, with high local control and acceptably low toxicity rates. The combined radiosurgical approach needs to be tested in a prospective trial to confirm these results

  1. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    CERN Document Server

    Neuman, C P; Barnett, G A; Madey, J M J; O'Shea, P G

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 sup 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these m...

  2. A non-destructive electron beam diagnostic for a SASE FEL using coherent off-axis undulator radiation

    International Nuclear Information System (INIS)

    Neuman, C.P.; Ponds, M.L.; Barnett, G.A.; Madey, J.M.J.; O'Shea, P.G.

    1999-01-01

    We show that by observing coherent off-axis undulator radiation (COUR) from a short diagnostic wiggler, it may be possible to determine the length and structure of a short electron bunch. Typically the on-axis undulator radiation is incoherent, but at angles of a few degrees, the wavelength of the emitted radiation may be comparable to the length of a short electron bunch, and thus coherence effects emerge. Due to such coherence effects, the intensity of the emitted radiation may change by up to a factor of 10 9 as the angle of observation is increased. The radiation becomes coherent in a way which depends on the length and structure of the electron bunch. Observing COUR disturbs the electron bunch negligibly. Thus, COUR can be used as a non-destructive diagnostic which would allow for optimization of FEL performance while an FEL is operating. Such a diagnostic could be used for proposed SASE FELs, which use short electron bunches. We present two methods to describe the theory for COUR, and we use these methods to calculate the expected outcome of a COUR experiment. We propose an experiment to demonstrate COUR effects and their applications to SASE FELs

  3. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    CERN Document Server

    Byrd, John; Martin, Michael C; Robin, David; Sannibale, Fernando; Schönlein, Robert W; Zholents, Alexander; Zolotorev, Max S

    2005-01-01

    At the Advanced Light Source (ALS), the "femtoslicing" beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. This CSR, whose measured intensity is routinely used as a diagnostics for the tune-up of the femtoslicing experiments, represents a potential source of terahertz radiation with very interesting features. Several measurements have been performed for its characterization and in this paper an updated description of the experimental results and of their interpretation is presented.

  4. Effects of Rice Husk Modification with Liquid Natural Rubber and Exposure to Electron Beam Radiation on the Mechanical Properties of NR/ HDPE/ Rice Husk Composites

    International Nuclear Information System (INIS)

    Lane, C.E.; Ishak Ahmad; Ibrahim Abdullah; Dahlan Mohd

    2011-01-01

    Rice husk (RH) powder is a natural fibre capable of reinforcing natural rubber thermoplastic (TPNR) NR/ HDPE composites on specific modification of the particle surface. In this study the modification of RH powder involved pre-treatment with 5 % sodium hydroxide (NaOH) solution, soaking in LNR solution and exposure of LNR coated RH to electron beam (EB) irradiation. Preparation of NR/ HDPE/ RH composites was via melt-mixing in an internal mixer at predetermined conditions. Morphology study of the composites using scanning electron microscope (SEM) showed a homogeneous distribution of modified RH particles and particle-matrix interaction in the composite. Modified RH filled composites exhibited a significant change in mechanical properties. The maximum stress and impact strength were 6.7 MPa and 13.2 kJ/ m 2 , respectively at 20 kGy radiation, while the tensile modulus was 79 MPa at 30 kGy dose. The interfacial RH-TPNR interaction for the LNR-EB treated RH particles had improved in the EB dosage range of 20-30 kGy. However, over exposure to radiation caused degradation of rubber coat and interaction between particles to increase. Agglomeration of filler particles would occur and caused inhomogeneous distribution of filler in the composite. (author)

  5. Monte Carlo simulation and experimental verification of radiotherapy electron beams

    International Nuclear Information System (INIS)

    Griffin, J.; Deloar, H. M.

    2007-01-01

    Full text: Based on fundamental physics and statistics, the Monte Carlo technique is generally accepted as the accurate method for modelling radiation therapy treatments. A Monte Carlo simulation system has been installed, and models of linear accelerators in the more commonly used electron beam modes have been built and commissioned. A novel technique for radiation dosimetry is also being investigated. Combining the advantages of both water tank and solid phantom dosimetry, a hollow, thin walled shell or mask is filled with water and then raised above the natural water surface to produce a volume of water with the desired irregular shape.

  6. Review of electron beam therapy physics

    International Nuclear Information System (INIS)

    Hogstrom, Kenneth R; Almond, Peter R

    2006-01-01

    For over 50 years, electron beams have been an important modality for providing an accurate dose of radiation to superficial cancers and disease and for limiting the dose to underlying normal tissues and structures. This review looks at many of the important contributions of physics and dosimetry to the development and utilization of electron beam therapy, including electron treatment machines, dose specification and calibration, dose measurement, electron transport calculations, treatment and treatment-planning tools, and clinical utilization, including special procedures. Also, future changes in the practice of electron therapy resulting from challenges to its utilization and from potential future technology are discussed. (review)

  7. The profile of the electron beam in the PTB synchrotron, and its influence on radiometric measurements with synchrotron radiation

    International Nuclear Information System (INIS)

    Kaase, H.

    1976-01-01

    A simple method is described to determine the beam profile in an electron synchrotron; the measured results are compared with calculated values. Moreover, the influence of synchrotron- and betatron-oscillations on synchrotron radiation measurements is discussed, and a method is given to correct this. (orig.) [de

  8. Radiation control at the Continuous Electron Beam Accelerator Facility (CEBAF), a new high power CW electron accelerator installation

    International Nuclear Information System (INIS)

    Stapleton, G.B.; Thomas, R.H.

    1989-01-01

    A description is given of the design goals and radiation control measures, for a new 4 GeV, 1 MW electron accelerator under construction in the USA. The paper illustrates the importance of cooperation between designers and regulators. 15 refs., 1 fig., 3 tabs

  9. Monitor tables for electron beams in radiotherapy

    International Nuclear Information System (INIS)

    Christ, G.; Dohm, O.S.

    2007-01-01

    The application of electron beams in radiotherapy is still based on tables of monitor units, although 3-D treatment planning systems for electron beams are available. This have several reasons: The need for 3-D treatment planning is not recognized; there is no confidence in the calculation algorithm; Monte-Carlo algorithms are too time-consuming; and the effort necessary to measure basic beam data for 3-D planning is considered disproportionate. However, the increasing clinical need for higher dosimetric precision and for more conformal electron beams leads to the requirement for more sophisticated tables of monitor units. The present paper summarizes and discusses the main aspects concerning the preparation of tables of monitor units for electron beams. The measurement equipment and procedures for measuring basic beam data needed for tables of monitor units for electron beams are described for a standard radiation therapy linac. The design of tables of monitor units for standard electron applicators is presented; this design can be extended for individual electron inserts, to variable applicator surface distances, to oblique beam incidence, and the use of bolus material. Typical data of an Elekta linac are presented in various tables. (orig.)

  10. Radiation from a Relativistic Electron Beam in a Molecular Medium due to Parametric Pumping by a Strong Electromagnetic Wave,

    Science.gov (United States)

    1981-02-01

    UNIVERSITY OF MARYLAND DEPARTMENT OF PHYSICS 4WJD ASTRONOMY COLLG PAM A 2 3i 81 4 30) 235. RADIATION FROM A .ELATIVISTIC_§LECTRON BEAM IN AZOLECULAR...A MOLECULAR MEDIUM DUE TO PARAMETRIC PUMPING BY A STRONG ELECTROMAGNETIC WAVE L. Stenflo Department of Plasma Physics Umel University S-90187 Umel...GUteborg, Sweden and Laboratory for Plasma and Fusion Energy Studies University of Maryland College Park, Maryland 20742 Physics Publication Number 81

  11. Effect of ionizing electron beam radiation on properties of edible biopolymers based on isolated soybean protein and cassava starch

    International Nuclear Information System (INIS)

    Uehara, Vanessa Bernardo

    2017-01-01

    In recent decades, there has been a substantial increase in the amount of research focusing on the development and characterization of biodegradable materials, particularly edible films. The use of polymers from renewable sources, prepared from plant products, has gained importance in this approach. Soy protein concentrate and cassava starch may be considered an alternative to petrochemical polymers. Processing by ionizing radiation can be used for the modification of polymers and macromolecules, resulting in new materials with great prospects of industrial use. The food industry, one of the traditionally most innovative industries, requires the constant development of new products. The widely known ability of film forming proteins and polysaccharides is a starting point for the development of new materials that meet the varying requirements of this pungent industry. In this work, films based on manioc starch and isolated soy protein were prepared in two different proportions and later irradiated and analyzed for their mechanical properties, color, water absorption, water vapor permeability, TGA and DSC thermal analysis between others. The films became apparently more soluble and less resistant to drilling with the increased radiation dose applied. Regarding the thermal properties, it was observed that the films with greater protein orientation are more resistant. Properties such as water vapor permeability and water absorption, the films were less permeable at the 40 kGy dose. With regard to water absorption, it was reduced as a function of the radiation dose. Films with good resistance to water vapor and with low absorption are considered efficient for food packaging. Radiation has proven to be a convenient tool in the modification of polymeric materials mainly for the production of soluble films where it is a new trend for bioactive packaging. (author)

  12. Terahertz Coherent Synchrotron Radiation from Femtosecond Laser Modulation of the Electron Beam at the Advanced Light Source

    International Nuclear Information System (INIS)

    Byrd, John M.; Hao, Zhao; Martin, Michael C.; Robin, David S.; Sannibale, Fernando; Schoenlein, Robert W.; Zholents, Alexander A.; Zolotorev, Max S.

    2005-01-01

    At the Advanced Light Source (ALS), the ''femtoslicing'' beamline is in operation since 1999 for the production of x-ray synchrotron radiation pulses with femtosecond duration. The mechanism used for generating the short x-ray pulses induces at the same time temporary structures in the electron bunch longitudinal distribution with very short characteristic length. Such structures emit intense coherent synchrotron radiation (CSR) in the terahertz frequency range. These CSR pulses were first observed at the ALS, and the measurement of their intensity is now routinely used as a diagnostics for the tune-up of the femtoslicing x-ray experiments. At the same time, these CSR pulses synchronous with the modulating laser, represent a potential source of terahertz radiation with very interesting features. Several measurements have been performed for their characterization and in this paper we present an updated description of the experimental results and of their interpretation. In particular, we include more data on the interesting interaction, previously observed at the ALS, between the slicing and the microbunching instability (MBI), where under particular circumstances, the slicing seems to trigger the onset of the instability

  13. Electron beam depolarization in a damping ring

    International Nuclear Information System (INIS)

    Minty, M.

    1993-04-01

    Depolarization of a polarized electron beam injected into a damping ring is analyzed by extending calculations conventionally applied to proton synchrotrons. Synchrotron radiation in an electron ring gives rise to both polarizing and depolarizing effects. In a damping ring, the beam is stored for a time much less than the time for self polarization. Spin flip radiation may therefore be neglected. Synchrotron radiation without spin flips, however, must be considered as the resonance strength depends on the vertical betatron oscillation amplitude which changes as the electron beam is radiation damped. An expression for the beam polarization at extraction is derived which takes into account radiation damping. The results are applied to the electron ring at the Stanford Linear Collider and are compared with numerical matrix formalisms

  14. Electron beam effects on gelatin polymer

    Energy Technology Data Exchange (ETDEWEB)

    Inamura, Patricia Y.; Shimazaki, Kleber; Souza, Clecia de M.; Moura, Esperidiana A.B.; Mastro, Nelida L. del, E-mail: patyoko@yahoo.co [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Colombo, Maria A., E-mail: mascolombo@yahoo.com.b [Faculdade de Tecnologia da Zona Leste, Sao Paulo, SP (Brazil)

    2009-07-01

    The main field of electron-beam radiation processing applications is the modification of polymeric material. Polymer development includes new pathways to produce natural polymers with better mechanical and barrier properties and thermal stability. The aim of this paper was to investigate the behavior of a gelatin/acrylamide polymer treated by electron-beam radiation. Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular mass derived by hydrolytic action from animal collagen, a fibrous insoluble protein, which is widely found in nature as the major constituent of skin, bones and connective tissue. Hydrolyzed collagen is composed of a unique sequence of amino acids, characterized particularly by the high content of glycine, proline and hydroxyproline. Among biomaterials, gelatin is an interesting material because is a partially crystalline polymer and has a relatively low melting point. Samples of gelatin together with glycerin as plasticizer and acrylamide as copolymer were irradiated with doses of 10 kGy and 40 kGy, using an electron beam accelerator, dose rate 22.41kGy/s, at room temperature in presence of air. After irradiation, some preliminary analyses were done like viscometry, texture analyses and colorimetry. The results of the diverse tests showed changes that can be ascribed to radiation-induced crosslinking. The electron-beam processed acrylamide-gelatin polymer using glycerin as plasticizer must be first extensively characterized before to be used for general applications. (author)

  15. Electron beam effects on gelatin polymer

    International Nuclear Information System (INIS)

    Inamura, Patricia Y.; Shimazaki, Kleber; Souza, Clecia de M.; Moura, Esperidiana A.B.; Mastro, Nelida L. del; Colombo, Maria A.

    2009-01-01

    The main field of electron-beam radiation processing applications is the modification of polymeric material. Polymer development includes new pathways to produce natural polymers with better mechanical and barrier properties and thermal stability. The aim of this paper was to investigate the behavior of a gelatin/acrylamide polymer treated by electron-beam radiation. Gelatin is a heterogeneous mixture of water-soluble proteins of high average molecular mass derived by hydrolytic action from animal collagen, a fibrous insoluble protein, which is widely found in nature as the major constituent of skin, bones and connective tissue. Hydrolyzed collagen is composed of a unique sequence of amino acids, characterized particularly by the high content of glycine, proline and hydroxyproline. Among biomaterials, gelatin is an interesting material because is a partially crystalline polymer and has a relatively low melting point. Samples of gelatin together with glycerin as plasticizer and acrylamide as copolymer were irradiated with doses of 10 kGy and 40 kGy, using an electron beam accelerator, dose rate 22.41kGy/s, at room temperature in presence of air. After irradiation, some preliminary analyses were done like viscometry, texture analyses and colorimetry. The results of the diverse tests showed changes that can be ascribed to radiation-induced crosslinking. The electron-beam processed acrylamide-gelatin polymer using glycerin as plasticizer must be first extensively characterized before to be used for general applications. (author)

  16. Electron beam irradiating device

    Energy Technology Data Exchange (ETDEWEB)

    Shinohara, K

    1969-12-20

    The efficiency of an electron beam irradiating device is heightened by improving the irradiation atmosphere and the method of cooling the irradiation window. An irradiation chamber one side of which incorporates the irradiation windows provided at the lower end of the scanner is surrounded by a suitable cooling system such as a coolant piping network so as to cool the interior of the chamber which is provided with circulating means at each corner to circulate and thus cool an inert gas charged therewithin. The inert gas, chosen from a group of such gases which will not deleteriously react with the irradiating equipment, forms a flowing stream across the irradiation window to effect its cooling and does not contaminate the vacuum exhaust system or oxidize the filament when penetrating the equipment through any holes which the foil at the irradiation window may incur during the irradiating procedure.

  17. Electron Beam Ion Sources

    CERN Document Server

    Zschornacka, G.; Thorn, A.

    2013-12-16

    Electron beam ion sources (EBISs) are ion sources that work based on the principle of electron impact ionization, allowing the production of very highly charged ions. The ions produced can be extracted as a DC ion beam as well as ion pulses of different time structures. In comparison to most of the other known ion sources, EBISs feature ion beams with very good beam emittances and a low energy spread. Furthermore, EBISs are excellent sources of photons (X-rays, ultraviolet, extreme ultraviolet, visible light) from highly charged ions. This chapter gives an overview of EBIS physics, the principle of operation, and the known technical solutions. Using examples, the performance of EBISs as well as their applications in various fields of basic research, technology and medicine are discussed.

  18. Electron beam silicon purification

    Energy Technology Data Exchange (ETDEWEB)

    Kravtsov, Anatoly [SIA ' ' KEPP EU' ' , Riga (Latvia); Kravtsov, Alexey [' ' KEPP-service' ' Ltd., Moscow (Russian Federation)

    2014-11-15

    Purification of heavily doped electronic grade silicon by evaporation of N-type impurities with electron beam heating was investigated in process with a batch weight up to 50 kilos. Effective temperature of the melt, an indicative parameter suitable for purification process characterization was calculated and appeared to be stable for different load weight processes. Purified material was successfully approbated in standard CZ processes of three different companies. Each company used its standard process and obtained CZ monocrystals applicable for photovoltaic application. These facts enable process to be successfully scaled up to commercial volumes (150-300 kg) and yield solar grade silicon. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Radiation Shielding Analyses of A 10 MeV, 15kW LINAC for Electron Beam and X-ray at KACST

    Energy Technology Data Exchange (ETDEWEB)

    Kang, W. G.; Pyo, S. H.; Han, B. S.; Kang, C. M. [EB Tech Co., Daejeon (Korea, Republic of); Alkhuraiji, T. S. [King AbdulAziz City for Science and Technology, Riyadh (Saudi Arabia)

    2016-10-15

    The King AbdulAziz City for Science and Technology (KACST) in the Kingdom of Saudi Arabia has a plan to build a 10 MeV, 15kW linear accelerator (LINAC) for electron beam and X-ray, which is to be supplied by EB Tech in Republic of Korea. The design and construction of the accelerator building will be carried out jointly between EB Tech and KACST. Recommendations for the design and installation of radiation shielding for x-ray and gamma-ray can be found in NCRP No. 49(1976) and for accelerators with energies over 10 MeV in NCRP No. 151 (2005). Monte Carlo calculations were conducted using the MCNP6 code to determine photon fluxes and doses at the point detectors locations around the accelerator building. The problem was run as an electron, photon and neutron transport problem to account for all reactions including the (γ,n) reaction. The detectors where the DXTRAN spheres were used are indicated in the table. The computation was continued until electrons reached a total of 1x10{sup +8} histories.

  20. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    International Nuclear Information System (INIS)

    Salih, A. M.; Ahmad, Mansor Bin; Ibrahim, Nor Azowa; Dahlan, Khairul Zaman Hj Mohd; Tajau, Rida; Mahmood, Mohd Hilmi; Yunus, Wan Md. Zin Wan

    2014-01-01

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA

  1. Thermal and mechanical properties of palm oil-based polyurethane acrylate/clay nanocomposites prepared by in-situ intercalative method and electron beam radiation

    Energy Technology Data Exchange (ETDEWEB)

    Salih, A. M. [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor, Malaysia and Department of Radiation Processing, Sudan Atomic Energy Commission, Khartoum 1111 (Sudan); Ahmad, Mansor Bin; Ibrahim, Nor Azowa [Department of Chemistry, Faculty of Science, University Putra Malaysia 43400, UPM, Serdang, Selangor (Malaysia); Dahlan, Khairul Zaman Hj Mohd [Polycomposite Sdn Bhd, No.75-2, Jalan TKS 1, Taman Kajang Sentral, 43000 Kajang, Selangor (Malaysia); Tajau, Rida [Radiation Processing Technology Division, Nuclear Malaysia, Bangi, 43000 Kajang, Selangor (Malaysia); Mahmood, Mohd Hilmi [No. 107, Jalan 2, Taman Kajang Baru, Sg Jelok, 43000 Kajang, Selangor (Malaysia); Yunus, Wan Md. Zin Wan [Department of Chemistry, Centre for Defence Foundation Studies, National Defence University of Malaysia, 57000, Sungai Besi Camp, Kuala Lumpur (Malaysia)

    2014-02-12

    Palm oil based-polyurethane acrylate (POBUA)/clay nanocomposites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5%wt), and then subjected to polycondensation reaction with MDI. Nanocomposites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nanoclay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Å, while the structure morphology of the nanocomposites was investigated by TEM and SEM. The nanocomposites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nanocomposites was significantly increased by incorporation of nanoclay into the polymer matrix. DSC results reveal that the Tg was shifted to higher values, gradually with increasing the amount of filler in the nanocomposites. Tensile strength and Young's modulus of the nanocomposites showed remarkable improvement compared to the neat POBUA.

  2. Thermal and mechanical properties of palm oil-based polyurethane acrylate/ clay nano composites prepared by in-situ intercalative method and electron beam radiation

    International Nuclear Information System (INIS)

    Salih, A.M.; Mansor Ahmad; Nor Azowa Ibrahim; Rida Tajau; Wan Mohd Zin Wan Yunus

    2013-01-01

    Full-text: Palm oil based-polyurethane acrylate (POBUA)/ clay nano composites were prepared via in-situ intercalative polymerization using epoxidized palm oil acrylate (EPOLA) and 4,4 ' methylene diphenyl diisocyante (MDI). Organically modified Montmorillonite (ODA-MMT) was incorporated in EPOLA (1, 3 and 5 % wt), and then subjected to polycondensation reaction with MDI. Nano composites solid films were obtained successfully by electron beam radiation induced free radical polymerization (curing). FTIR results reveal that the prepolymer was obtained successfully, with nano clay dispersed in the matrix. The intercalation of the clay in the polymer matrix was investigated by XRD and the interlayer spacing of clay was found to be increased up to 37 Angstrom, while the structure morphology of the nano composites was investigated by TEM and SEM. The nano composites were found to be a mixture of exfoliated and intercalated morphologies. The thermal stability of the nano composites was significantly increased by incorporation of nano clay into the polymer matrix. DSC results reveal that the T g was shifted to higher values, gradually with increasing the amount of filler in the nano composites. Tensile strength and Young's modulus of the nano composites showed remarkable improvement compared to the neat POBUA. (author)

  3. Development of a calorimetric system for electron beam dosimetry in radiation processing; Desenvolvimento de um sistema calorimetrico para dosimetria de feixe de eletrons em processos por radiacao

    Energy Technology Data Exchange (ETDEWEB)

    Banados P, H E

    1994-12-31

    A calorimetric system for electron beam dosimetry in radiation processing was developed. The system is composed of a graphite core calorimeter, the temperature measuring and electrical calibrating instrumentation, a microcomputer and the software for the system automation. The research aimed at the optimization of the project parameters, the development of advanced methodologies for calibrating the temperature sensor, the determination of the thermal capacity as a function of the temperature, the measurement of the absorbed dose, and the development of the software needed for the system operation. The operating range extends from 0.1 kGy to 30 kGy. The uncertainty in the measurement of the absorbed dose was estimated to be {+-} 1.8% at the 95% confidence level. Comparative tests of the absorbed dose measurements were made using the IPEN electron accelerator. The results obtained showed an excellent agreement between the absorbed dose determined by the calorimeter and the absorbed dose calculated from the nominal power delivered by the accelerator. (author). 67 refs, 63 figs, 2 tabs.

  4. Electron beam processing programme: Wastewater and sludge treatment in Brazil

    International Nuclear Information System (INIS)

    Sampa, M.H.O.; Rela, P.R.; Duarte, C.L.; Borrely, S.I.; Vieira, J.M.

    1998-01-01

    The Institute for Energetic and Nuclear Research, working on environmental applications, has an extensive research programme using high energy electron beam in treating industrial wastewater and sludge. The experiments are being conducted in a pilot plant using an industrial electron beam 1.5MeV, 25mA, where the streams are presented to the scanned electron beam in counter flow. This pilot plant is designed to process approximately 3.0m 3 /h with an average dose 5kGy and the absorbed dose measurement is performed continuously by calorimetric system in real time. Combined biological and radiation treatment of domestic sewage and sludge were carried out to investigate disinfestation and removal of organic matter. The experiments showed that total and fecal coliforms were decreased by about 5 logs cycles with a 3.0kGy radiation dose in raw sewage and biological effluents, respectively. Concerning the industrial wastewater in the first stage of the programme, the irradiation was conducted using batch systems with samples originating from a Governmental Wastewater Treatment Plant. The data showed a significant color reduction effect when delivered dose was increased, and the opposite was noted for turbidity and total suspended solids. Other experiments were focused to process real industrial effluents from one of the most important chemical and pharmaceutical industries in Brazil. A special transport truck was used to transfer the liquid waste from the Industry to the Electron Beam Pilot Plant. Large quantities of liquid waste were irradiated with and without air addition with the doses from 2kGy to 20kGy. Such experiences performed in association with the Industry demonstrated that this technology has a great potential to be transferred and to contribute with a permanent cleanup alternative for hazardous wastes

  5. Compact electron beam focusing column

    Science.gov (United States)

    Persaud, Arun; Leung, Ka-Ngo; Reijonen, Jani

    2001-12-01

    A novel design for an electron beam focusing column has been developed at LBNL. The design is based on a low-energy spread multicusp plasma source which is used as a cathode for electron beam production. The focusing column is 10 mm in length. The electron beam is focused by means of electrostatic fields. The column is designed for a maximum voltage of 50 kV. Simulations of the electron trajectories have been performed by using the 2D simulation code IGUN and EGUN. The electron temperature has also been incorporated into the simulations. The electron beam simulations, column design and fabrication will be discussed in this presentation.

  6. Electron beam induced modification of grafted polyamides

    International Nuclear Information System (INIS)

    Timus, D.M.; Brasoveanu, M.M.; Bradley, D.A.; Popov, A.M.

    1998-01-01

    It is well known that irradiation, when applied on its own or in combination with other physical and chemical treatments, can manifest in radiation damage to materials. Radiation processing technology focuses upon producing favourable modification of materials through use of relatively high dose and dose rates. Current interest is in modifying the thermal and electrical properties of textured polymers in an effort to improve safety and wear comfort of clothing. No less important is the production of textiles which are safe to use, both in homes and offices. Present investigations provide additional data in support of findings which show that polyamides, a particular class of textured polymer, are amenable to radiation processing. Accelerated electron beam irradiation of sheets of polyamide fibre results in induced grafting of acrylic and methacrylic acids. The degree of grafting is critically dependent upon irradiation dose and the extent of monomers dilution. Of particular importance is the high correlation which is found between degree of grafting and a decrease in the softening rate of the modified polyamide. A systematic modification of electrical conductivity is also observed. (author)

  7. Coherent optical transition radiation and self-amplified spontaneous emission generated by chicane-compressed electron beams

    Directory of Open Access Journals (Sweden)

    A. H. Lumpkin

    2009-04-01

    Full Text Available Observations of strongly enhanced optical transition radiation (OTR following significant bunch compression of photoinjector beams by a chicane have been reported during the commissioning of the Linac Coherent Light Source accelerator and recently at the Advanced Photon Source (APS linac. These localized transverse spatial features involve signal enhancements of nearly a factor of 10 and 100 in the APS case at the 150-MeV and 375-MeV OTR stations, respectively. They are consistent with a coherent process seeded by noise and may be evidence of a longitudinal space charge microbunching instability which leads to coherent OTR emissions. Additionally, we suggest that localized transverse structure in the previous self-amplified spontaneous emission (SASE free-electron laser (FEL data at APS in the visible regime as reported at FEL02 may be attributed to such beam structure entering the FEL undulators and inducing the SASE startup at those “prebunched” structures. Separate beam structures 120 microns apart in x and 2.9 nm apart in wavelength were reported. The details of these observations and operational parameters will be presented.

  8. Ionizing radiation effect study by electron beam on ultra high molecular weight polyethylene virgin and recycled industrial

    International Nuclear Information System (INIS)

    Rosario, Salmo Cordeiro do

    2006-01-01

    Ultra High Molecular Weight Polyethylene (UHMWPE) is an engineering plastic which has several applications, chiefly, in specific areas of the industry and medicine. UHMWPE can be even for other applications such as: port fenders, current guide, bucket coating, silos and gutters, plugs, pulleys and surgical prosthesis. This range of applications is due to the excellent technical characteristics that this material owns, such as; high resistance to wear, high resistance to impact, anti-adherence, non toxic, excellent chemical resistance, low specific weight, easy mill processing, and high resistance to fatigue. The UHMWPE type used in this work were UTEC 3041 and UTEC 6541 of the Braskem. The recycling process of UHMWPE raised much interest, because the utilization of this raw material grew over 600% in the last decade, becoming one of the most used engineering plastics for attainment of mill processed parts after polyamide. As the utilization of this polymer in the manufacturing of parts for machinery has grown, its waste is very big, because the rest of this material is thrown out, usually not being reused. The goal of this work is to recycle the UHMWPE UTEC 3041 and study the properties of this recycled and virgin material and compare the results between both with these materials submitted to different radiation dose. (author)

  9. Analysis of emissions from prebunched electron beams

    Directory of Open Access Journals (Sweden)

    Jia Qika

    2017-07-01

    Full Text Available The emissions of the prebunched electron beam, including the coherent spontaneous emission and the self-amplified stimulated emission, are analyzed by using one-dimensional FEL theory. Neglecting the interaction of the electrons and the radiation field, the formula of the coherent spontaneous emission is given, the power of which is proportional to the square of the initial bunching factor and of the undulator length. For the general emission case of the prebunched electron beam, the evolution equation of the optical field is deducted. Then the analytical expression of the emission power is obtained for the resonant case; it is applicable to the regions from the low gain to the high gain. It is found that when the undulator length is shorter than four gain lengths, the emission is just the coherent spontaneous emission, and conversely, it is the self-amplified stimulated emission growing exponentially. For the nonresonant prebunched electron beam, the variations of the emission intensity with the detuning parameter for different interaction length are presented. The radiation field characters of the prebunched electron beam are discussed and compared with that of the seeded FEL amplifier.

  10. Introduction to electron beam processing

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Waichiro [Japan Atomic Energy Research Inst., Takasaki, Gunma (Japan). Takasaki Radiation Chemistry Research Establishment

    1994-12-31

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs.

  11. Introduction to electron beam processing

    International Nuclear Information System (INIS)

    Waichiro Kawakami

    1994-01-01

    The contents are general features in the irradiation of polymers, electron beam machines - low energy, medium energy, high energy; application of EB machine in industries, engineering of EB processing, dosimetry of EB (electron beam) safe operation of EB machine, recent topics on EB processing under development. 3 tabs., 4 figs., 17 refs

  12. Analyser of sweeping electron beam

    International Nuclear Information System (INIS)

    Strasser, A.

    1993-01-01

    The electron beam analyser has an array of conductors that can be positioned in the field of the sweeping beam, an electronic signal treatment system for the analysis of the signals generated in the conductors by the incident electrons and a display for the different characteristics of the electron beam

  13. Electron beams and applications

    International Nuclear Information System (INIS)

    Haouat, G.; Couillaud, C.

    1998-01-01

    Studies of the physical properties of the ELSA-linac electron beam are presented. They include measurements of the characteristic beam parameter and analyzes of the beam transport using simulation codes. The aim of these studies is to determine the best conditions for production of intense and very short electron bunches and to optimize the transport of space-charge dominated beams. Precise knowledge of the transport dynamics allows to produce beams with the required characteristics for light production in Free-Electron Laser (FEL), and to give a good description of energy-transfer phenomena between electrons and photons in the wriggler. The particular features of ELSA authorize studies of high-intensity, high-brightness beam properties, especially the halo surrounding the dense core of the electron bunches, which is formed by the space charge effects. It is also shown that the ELSA facility is well suited for the fabrication of very short γ and X-rays sources for applied research in nuclear and plasma physics, or for time response studies of fast detectors. (author)

  14. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q. [Duke University Medical Center (United States)

    2015-06-15

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics.

  15. WE-A-207-02: Electron Beam Therapy - Current Status and Future Directions

    International Nuclear Information System (INIS)

    Wu, Q.

    2015-01-01

    In memory of the significant contribution of Dr. Jacques Ovadia to electron beam techniques, this session will review recent, advanced techniques which are reinvigorating the science of electron beam radiation therapy. Recent research efforts in improving both the applicability and quality of the electron beam therapy will be discussed, including modulated electron beam radiotherapy (MERT) and dynamic electron arc radiotherapy (DEAR). Learning Objectives: To learn about recent advances in electron beam therapy, including modulated electron beam therapy and dynamic electron arc therapy (DEAR). Put recent advances in the context of work that Dr. Ovadia pursued during his career in medical physics

  16. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  17. Clarification of leachate from reclaimed ground by electron beam irradiation

    International Nuclear Information System (INIS)

    Yamazaki, Masao; Sawai, Teruko; Shimokawa, Toshinari; Sawai, Takeshi

    1985-01-01

    To decompose organic matters such as humic acid and fulvous acid in the leachate from reclaimed ground, an electron beam irradiation technique was examined because of availability of higher dose rate than a 60 Co γ-ray source. This paper describes results of the above-mentioned preliminary examination. Test water was collected from No.15 dumping site at the Tokyo Bay. Irradiation sample was prepared by filtration with a filter and decarbonation with sulfuric acid. Fulvous acid solution by eliminating humic acid was also served for the examination. Electron beam irradiation of the sample solution was made with a Van de Graaf accelerator by 1.5 MeV, 140 Gy/sec of irradiation condition and with a dynamitron by 2.0 MeV, 25 kGy/pass of the condition. It was clarified that oxygen bubbling velocity during the irradiation did not affect much for the decrease rate of total organic matters (TOC) within 0.5 to 3.0 1/min of an experimental condition. As for radiation doses and TOC decrease, TOC was decreased much for lower dose rate irradiation (Van de Graaf accelerator), lower initial TOC concentration, or addition of hydrogen peroxide. For the combined treatment of radiation and flocculation to aim at irradiation dose decrease, fulvous acid solution was served for the test. Lower dose irradiation with a 60 Co source showed better TOC elimination and it was concluded that combination with flocculation was effective for the dose reduction. It was also found experimentally that TOC decrease behavior by the both radiation source was different due to temperature effect and further study should be made for the development of the practical electron beam irradiation technique. (Takagi, S.)

  18. Chirping the LCLS Electron Beam

    International Nuclear Information System (INIS)

    Emma, P.

    2005-01-01

    We explore scenarios for generating a linear time-correlated energy spread in the LCLS electron bunch, prior to the undulator, that is needed for optical (x-ray) pulse compression. The correlated energy spread (''chirp'') is formed by generating an energy gradient along the length of the electron bunch using RF phasing and/or longitudinal wakefields of the accelerating structures. The sign of the correlation is an important limitation. Excluding a complete re-design of the compression systems, the best possibility is to use ''over-compression'' to effect the required energy chirp. This is easily done with only a slight strength increase (∼10%) in the chicane bends of the second compressor. In this case, the bend-plane emittance dilution associated with the increased coherent synchrotron radiation (CSR) in the bunch compressor may, however, significantly compromise the electron beam density. The CSR calculations for the momentary extremely short (∼1 (micro)m) electron bunch during over-compression are quite subtle and an adequate confidence level may not be achievable. A practical limit in this short-pulse scenario may be to use spontaneous rather than FEL radiation. Ignoring the potential emittance growth, a FWHM electron energy spread of 2% is possible

  19. A study about the effects of gamma radiation and electron beam irradiation in the detection of genetically modified maize (Zea Mays)

    International Nuclear Information System (INIS)

    Crede, Ricardo Gandara

    2005-01-01

    Cell-220 and electron beam irradiation (Radiation Dynamics Inc. USA) were used (Atomic Energy of Canada, LTD), applying doses of 1, 25 and 50 kGy. After irradiating the samples, the detection results were compared with non-irradiated samples, showing that, when the PCR technique, was used, the irradiation does not affect the perception of the genetically modified maize. (author)

  20. Electron-beam synthesis of fuel in the gas phase

    International Nuclear Information System (INIS)

    Ponomarev, A.V.; Holodkova, E.M.; Ershov, B.G.

    2011-01-01

    Complete text of publication follows. Tendencies of world development focus attention on a vegetative biomass as on the major raw resource for future chemistry and a fuel industry. The significant potential for perfection of biomass conversion processes is concentrated in the field of radiation-chemical methods. Both the mode of post-radiation distillation and mode of electron-beam distillation of biomass have been investigated as well as the mode of gas-phase synthesis of liquid engine fuel from of biomass distillation products. Synergistic action of radiation and temperature has been analyzed at use of the accelerated electron beams allowing to combine radiolysis with effective radiation heating of a material without use of additional heaters. At dose rate above 1 kGy/s the electron-beam irradiation results in intensive decomposition of a biomass and evaporation of formed fragments with obtaining of a liquid condensate (∼ 60 wt%), CO 2 and Co gases (13-18 wt%) and charcoal in the residue. Biomass distillation at radiation heating allows to increase almost three times an organic liquid yield in comparison with pyrolysis. The majority of liquid products from cellulose is represented by the furan derivatives considered among the very perspective components for alternative engine fuels. Distilled-off gases and vapors are diluted with gaseous C 1 -C 5 alkanes and again are exposed to an irradiation to produce liquid fuel from a biomass. This transformation is based on a method of electron-beam circulation conversion of gaseous C 1 -C 5 alkanes (Ponomarev, A.V., Radiat. Phys. Chem., 78, 48, 2009) which consists in formation and removal of liquid products with high degree of carbon skeleton branching. The isomers ratio in a liquid may be controlled by means of change of an irradiation condition and initial gas composition. The irradiation of gaseous alkanes together with vaporous products of biomass destruction allows to synthesize the fuel enriched by conventional

  1. Method of determining the position of an irradiated electron beam

    International Nuclear Information System (INIS)

    Fukuda, Wataru.

    1967-01-01

    The present invention relates to the method of determining the position of a radiated electron beam, in particular, the method of detecting the position of a p-n junction by a novel method when irradiating the electron beam on to the semi-conductor wafer, controlling the position of the electron beam from said junction. When the electron beam is irradiated on to the semi-conductor wafer which possesses the p-n junction, the position of the p-n junction may be ascertained to determine the position of the irradiated electron beam by detecting the electromotive force resulting from said p-n junction with a metal disposed in the proximity of but without mechanical contact with said semi-conductor wafer. Furthermore, as far as a semi-conductor wafer having at least one p-n junction is concerned, the present invention allows said p-n junction to be used to determine the position of an irradiated electron beam. Thus, according to the present invention, the electromotive force of the electron beam resulting from the p-n junction may easily be detected by electrostatic coupling, enabling the position of the irradiated electron beam to be accurately determined. (Masui, R.)

  2. Application of electron beam radiation for peat sterilization and suppression of microbe contaminants; Aplicacao da radiacao por feixe de eletrons como agente esterilizante de microorganismos em substrato turfoso

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, David

    2006-07-01

    Inoculation of root nodule bacteria into legume seeds such as soybean [Glycine max. (L.)], common bean (Phaseolus vulgaris L.) and forage pasture has been effective and convenient as this simple procedure may introduce effective strains of Bradyrhizobium/Rhizobium into agricultural soils without a past history of successful cropping systems with the legume hosts. Peat-based substrates previously sterilized have been used for decades as bacteria carrier, protecting them from the prevailing harsh conditions in tropical soils and ensuring their survival with nutrient and protection against the soil antagonists. The Brazilian Government requires that all peat-based substrates must be gamma-sterilized from a cobalt-60 ({sup 60}Co) source, prior the introduction of the root nodule bacteria into the package. The recommendation is for a dose up to 50 kGy for an effective suppression of pathogens and saprophytes, in order to avoid competition among the substrate microbiota. Recently, the use of the electron beam (EB) accelerator has shown to be a new alternative for peat pre-sterilization, as this technique may promote reactive free-radicals which are efficient to suppress microbial contaminants. This fast technology is considered more environment and ecology friendly-sound than gamma radiation ({gamma}). The disadvantage of not reaching higher depth than gamma rays from {sup 60}Co must be considered, and attempts of optimizing the technique are crucial. This study compared both methods by using increasing rates of radiation by {sup 60}Co by the EB method - O, 10, 20, 30, 40 e 50 kGy in a commercial peat used for inoculants. Experimental data from days 7, 14, 21 and 28 days (growth period) and 150, 180 and 210 days (storage period) indicated high numbers of the strain Rhizobium tropici CM-01, labelled with gusA{sup +} (Study 1) and celB{sup +} (Study 2) from both eat-sterilizing techniques, reaching values above the minimum of 1x10{sup 8} cells g{sup -1} peat. At high rates

  3. Electron-beam-pumped phosphors

    International Nuclear Information System (INIS)

    Goldhar, J.; Krupke, W.F.

    1985-01-01

    Electron-beam excitation of solid-state scintillators, or phosphors, can result in efficient generation of visible light confined to relatively narrow regions of the spectrum. The conversion efficiency can exceed 20%, and, with proper choice of phosphors, radiation can be obtained anywhere from the near infrared (IR) to the near ultraviolet (UV). These properties qualify the phosphors as a potentially useful pump source for new solid-state lasers. New phosphors are being developed for high-brightness television tubes that are capable of higher power dissipation. Here, an epitaxial film of fluorescing material is grown on a crystalline substrate with good thermal properties. For example, researchers at North American Philips Laboratories have developed a cerium-doped yttrium aluminum garnet (YAG) grown on a YAG substrate, which has operated at 1 A/cm 2 at 20 kV without observed thermal quenching. The input power is higher by almost two orders of magnitude than that which can be tolerated by a conventional television phosphor. The authors describe tests of these new phosphors

  4. Cornell electron beam ion source

    International Nuclear Information System (INIS)

    Kostroun, V.O.; Ghanbari, E.; Beebe, E.N.; Janson, S.W.

    1981-01-01

    An electron beam ion source (EBIS) for the production of low energy, multiply charged ion beams to be used in atomic physics experiments has been designed and constructed. An external high perveance electron gun is used to launch the electron beam into a conventional solenoid. Novel features of the design include a distributed sputter ion pump to create the ultrahigh vacuum environment in the ionization region of the source and microprocessor control of the axial trap voltage supplies

  5. Electron-beam and microwave treatment of some microbial strains

    International Nuclear Information System (INIS)

    Martin, D.; Ferdes, O.S.; Minea, R.; Tirlea, A.; Badea, M.; Plamadeala, S.; Ferdes, M.

    1998-01-01

    The experimental results concerning the combined effects of microwaves and accelerated electron beams on various microbial strains such as E. coli, Salmonella sp. and Monascus purpureus are presented. A special designed microwave applicator with a 2.45 GHz frequency CW magnetron of 850 maximum output power and with associate electronics that allow to control the microwave power, the current intensity, and the exposure time was used. The electron-beam irradiation was performed at different irradiation doses and at a dose rate of 1.5 - 2.0 kGy/min by using a linac at a mean electron energy about 6 MeV, mean bean current of 10 μA, pulse period of 3.5 μs and repetition frequency 100 Hz. The experiments were carried out in 5 variants: microwave treatment; electron-beam irradiation; microwaves followed by electron beam; electrons followed by microwaves; and simultaneous application of microwaves and electron beam. The microbiocidal effect was found to be enhanced by additional use of microwave energy to electron beam irradiation. Enhancement of inactivation rate is only remarkable for the microwave treatment or simultaneous electron beam and microwave irradiation at a temperature above the critical value at which microorganisms begin to perish by heat. Simultaneous irradiation with electron beam and microwaves results in a reduction of temperature and time as well as in the decrease of the upper limit of required electron beam absorbed dose for an assumed microbiological quality parameter. The results obtained indicate the occurrence of a synergistic effect of the two physical fields on a non-thermal basis. Hence, combined microwave-electron beam treatment may be applied as an effective method to reduce microbial load

  6. Application of electron beams to environmental conservation technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    1992-01-01

    The paper is a review of current status of the application of electron beams to environmental conservation technology. Different aspects of radiation treatment of natural and polluted drinking water, radiation purification of industrial and municipal wastes, radiation treatment of sewage sludge and radiation purification of exhaust gases are considered. The special attention is paid to the respective pilot and industrial facilities. (author) 70 refs

  7. High harmonic terahertz confocal gyrotron with nonuniform electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wenjie; Guan, Xiaotong; Yan, Yang [THz Research Center, School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2016-01-15

    The harmonic confocal gyrotron with nonuniform electron beam is proposed in this paper in order to develop compact and high power terahertz radiation source. A 0.56 THz third harmonic confocal gyrotron with a dual arc section nonuniform electron beam has been designed and investigated. The studies show that confocal cavity has extremely low mode density, and has great advantage to operate at high harmonic. Nonuniform electron beam is an approach to improve output power and interaction efficiency of confocal gyrotron. A dual arc beam magnetron injection gun for designed confocal gyrotron has been developed and presented in this paper.

  8. Proposed LLNL electron beam ion trap

    International Nuclear Information System (INIS)

    Marrs, R.E.; Egan, P.O.; Proctor, I.; Levine, M.A.; Hansen, L.; Kajiyama, Y.; Wolgast, R.

    1985-01-01

    The interaction of energetic electrons with highly charged ions is of great importance to several research fields such as astrophysics, laser fusion and magnetic fusion. In spite of this importance there are almost no measurements of electron interaction cross sections for ions more than a few times ionized. To address this problem an electron beam ion trap (EBIT) is being developed at LLNL. The device is essentially an EBIS except that it is not intended as a source of extracted ions. Instead the (variable energy) electron beam interacting with the confined ions will be used to obtain measurements of ionization cross sections, dielectronic recombination cross sections, radiative recombination cross sections, energy levels and oscillator strengths. Charge-exchange recombinaion cross sections with neutral gasses could also be measured. The goal is to produce and study elements in many different charge states up to He-like xenon and Ne-like uranium. 5 refs., 2 figs

  9. Electron beam treatment of wastewater

    International Nuclear Information System (INIS)

    Arai, H.; Hosono, M.; Shimizu, K.; Sugiyama, M.

    1991-01-01

    Supernatant comes from dewaterization of sewage sludge, and contains biologically nondegradable organics so that it is hard to be treated by conventional activated sludge. By electron beam (EB) irradiation, any kinds of organics in water can be oxidized to biodegradable organic acids. We studied the treatment of supernatant by application of this effect. The direct irradiation of the original supernatant was found not to be so effective to decrease COD. In order to increase the irradiation effect, supernatant was pretreated biologically to decrease the biodegradable organics in it. The chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were decreased from 800 and 910 mg/L to 78 and 5 mg/L by this pretreatment, respectively. This pretreated supernatant was irradiated by EB of 2 MeV using a batch type reactor. The COD was gradually decreased with dose. In contrast, BOD was increased markedly, indicating increase in biodegradability. The irradiated sample water was treated biologically again. After the final biological treatment, COD was decreased below 30 mg/L in the case of 10 - 12 kGy irradiation. Finally, the initial COD of 800 mg/L was decreased below 30 mg/L by the combination of EB irradiation and biological treatment. The cost of irradiation for this process was evaluated preliminarily. (author)

  10. Removal of SO2 and NO/sub x/ from flue gas by means of a spray dryer/electron beam combination: a feasibility study

    International Nuclear Information System (INIS)

    Helfritch, D.J.; Feldman, P.L.; Ray, A.B.; Morgan, J.R.; Hildreth, G.A.

    1982-04-01

    This study examines the feasibility of adding an electron beam between the spray dryer and the fabric filter of dry scrubber flue gas desulfurization (FGD) systems. The beam promises effective removal of nitrogen oxides (NO/sub x/) and sulfur dioxide (SO 2 ), even at higher coal-sulfur levels than usually economic for dry scrubbers. The beam excites gas molecules, promoting reactions that convert SO 2 and NO/sub x/ to acids that then react with calcium compounds and are removed by the filter. Concerns examined here are feasibility and waste disposal. The cost findings are promising for both manufacture and operation. The system uses commercially available components. The relatively low temperatures and high humidity downstream of the spray dryer favor economic beam operation. The beam removes SO 2 , so the dryer can be run for economy, not high removal. The beam's incidental heating effect reduces reheat cost. Safe landfilling of the nitrate-rich waste appears practical, with leachate carrying no more nitrate than natural rain and dustfall. We expect natural pozzolanic reactions between alumina-silica compounds in the fly ash and lime compounds from the spray dryer to form an impermeable concrete-like material within 10 days after landfilling. Dry scrubber with electron beam appears competitive with commercial FGD systems, and we recommend a pilot scale operation

  11. Electron beam diagnostics study

    International Nuclear Information System (INIS)

    Garganne, P.

    1989-08-01

    This paper summarizes the results of a study on beam diagnostics, using carbon wire scanners and optical transition radiation (DTR) monitors. The main consideration consists in the material selection, taking their thermal properties and their effect on the beam into account [fr

  12. Low voltage electron beam accelerators

    International Nuclear Information System (INIS)

    Ochi, Masafumi

    2003-01-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  13. METHOD OF ELECTRON BEAM PROCESSING

    DEFF Research Database (Denmark)

    2003-01-01

    As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which is the o......As a rule, electron beam welding takes place in a vacuum. However, this means that the workpieces in question have to be placed in a vacuum chamber and have to be removed therefrom after welding. This is time−consuming and a serious limitation of a process the greatest advantage of which...... is the option of welding workpieces of large thicknesses. Therefore the idea is to guide the electron beam (2) to the workpiece via a hollow wire, said wire thereby acting as a prolongation of the vacuum chamber (4) down to workpiece. Thus, a workpiece need not be placed inside the vacuum chamber, thereby...... exploiting the potential of electron beam processing to a greater degree than previously possible, for example by means of electron beam welding...

  14. Low voltage electron beam accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Masafumi [Iwasaki Electric Co., Ltd., Tokyo (Japan)

    2003-02-01

    Widely used electron accelerators in industries are the electron beams with acceleration voltage at 300 kV or less. The typical examples are shown on manufactures in Japan, equipment configuration, operation, determination of process parameters, and basic maintenance requirement of the electron beam processors. New electron beam processors with acceleration voltage around 100 kV were introduced maintaining the relatively high dose speed capability of around 10,000 kGy x mpm at production by ESI (Energy Science Inc. USA, Iwasaki Electric Group). The application field like printing and coating for packaging requires treating thickness of 30 micron or less. It does not require high voltage over 110 kV. Also recently developed is a miniature bulb type electron beam tube with energy less than 60 kV. The new application area for this new electron beam tube is being searched. The drive force of this technology to spread in the industries would be further development of new application, process and market as well as the price reduction of the equipment, upon which further acknowledgement and acceptance of the technology to societies and industries would entirely depend. (Y. Tanaka)

  15. Combined photon-electron beams in the treatment of the supraclavicular lymph nodes in breast cancer: A novel technique that achieves adequate coverage while reducing lung dose.

    Science.gov (United States)

    Salem, Ahmed; Mohamad, Issa; Dayyat, Abdulmajeed; Kanaa'n, Haitham; Sarhan, Nasim; Roujob, Ibrahim; Salem, Abdel-Fattah; Afifi, Shatha; Jaradat, Imad; Mubiden, Rasmi; Almousa, Abdelateif

    2015-01-01

    Radiation pneumonitis is a well-documented side effect of radiation therapy for breast cancer. The purpose of this study was to compare combined photon-electron, photon-only, and electron-only plans in the radiation treatment of the supraclavicular lymph nodes. In total, 13 patients requiring chest wall and supraclavicular nodal irradiation were planned retrospectively using combined photon-electron, photon-only, and electron-only supraclavicular beams. A dose of 50Gy over 25 fractions was prescribed. Chest wall irradiation parameters were fixed for all plans. The goal of this planning effort was to cover 95% of the supraclavicular clinical target volume (CTV) with 95% of the prescribed dose and to minimize the volume receiving ≥ 105% of the dose. Comparative end points were supraclavicular CTV coverage (volume covered by the 95% isodose line), hotspot volume, maximum radiation dose, contralateral breast dose, mean total lung dose, total lung volume percentage receiving at least 20 Gy (V(20 Gy)), heart volume percentage receiving at least 25 Gy (V(25 Gy)). Electron and photon energies ranged from 8 to 18 MeV and 4 to 6 MV, respectively. The ratio of photon-to-electron fractions in combined beams ranged from 5:20 to 15:10. Supraclavicular nodal coverage was highest in photon-only (mean = 96.2 ± 3.5%) followed closely by combined photon-electron (mean = 94.2 ± 2.5%) and lowest in electron-only plans (mean = 81.7 ± 14.8%, p dose was higher in the electron-only (mean = 69.7 ± 56.1 cm(3)) as opposed to combined photon-electron (mean = 50.8 ± 40.9 cm(3)) and photon-only beams (mean = 32.2 ± 28.1 cm(3), p = 0.114). Heart V(25 Gy) was not statistically different among the plans (p = 0.999). Total lung V(20 Gy) was lowest in electron-only (mean = 10.9 ± 2.3%) followed by combined photon-electron (mean = 13.8 ± 2.3%) and highest in photon-only plans (mean = 16.2 ± 3%, p electron-only beams, in terms of decreasing lung dose, is set back by the dosimetric hotspots

  16. Effect of electron beam on in vitro cultured orchid organs

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Jaihyunk; Bae, Seho; Bae, Changhyu [Sunchon National Univ., Suncheon (Korea, Republic of); Kang, Hyun Suk; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-07-01

    Ionizing radiations have been effective mutagen sources to overcome the limitation of the useful genetic resources in natural environment. The study was conducted to investigate an effect of electron beam on organogenesis, growth patterns and genetic variation in the irradiated orchid organs. The in utero cultured rhizomes of orchids were irradiated with the electron beam in the dose range of 15Gy to 2240Gy under the condition of various beam energy and beam current. Significant decreases in survival, growth and organogenesis were observed by increase of intensity of electron beam irradiation. The irradiation intensity of lethal dose 50 of the in utero cultured orchid was estimated as approximately 500Gy to 1000Gy under 10MeV/n, and 1000Gy was optimal for growth and organogenesis of the cultures under 10MeV/n with 0.05mA treatment, and 15Gy {approx} 48Gy under 2MeV/n and 0.5mA electron beam condition. RAPD and ISSR analyses for the electron beam irradiated organs were performed to analyze genetic variation under the electron beam condition. Both of RAPD and ISSR analyses showed higher polymorphic rate in the electron-beam irradiated C. gangrene and C. Kaner.

  17. Process variation in electron beam sterilization

    International Nuclear Information System (INIS)

    Beck, Jeffrey A.

    2012-01-01

    The qualification and control of electron beam sterilization can be improved by the application of proven statistical analysis techniques such as Analysis of Variance (ANOVA) and Statistical Tolerance Limits. These statistical techniques can be useful tools in: •Locating and quantifying the minimum and maximum absorbed dose in a product. •Estimating the expected process maximum dose, given a minimum sterilizing dose. •Setting a process minimum dose target, based on an allowance for random measurement and process variation. •Determining the dose relationship between a reference dosimeter and process minimum and maximum doses. This study investigates and demonstrates the application of these tools in qualifying electron beam sterilization, and compares the conclusions obtained with those obtained using practices recommended in Guide for Process Control in Radiation Sterilization. The study supports the following conclusions for electron beam processes: 1.ANOVA is a more effective tool for evaluating the equivalency of absorbed doses than methods suggested in . 2.Process limits computed using statistical tolerance limits more accurately reflect actual process variability than the AAMI method, which applies +/−2 sample standard deviations (s) regardless of sample size. 3.The use of reference dose ratios lends itself to qualification using statistical tolerance limits. The current AAMI recommended approach may result in an overly optimistic estimate of the reference dose adjustment factor, as it is based on application of +/−2(s) tolerances regardless of sample size.

  18. Electron beam curing of coatings

    International Nuclear Information System (INIS)

    Schmidt, J.; Mai, H.

    1986-01-01

    Modern low-energy electron beam processors offer the possibility for high-speed curing of coatings on paper, plastics, wood and metal. Today the electron beam curing gets more importance due to the increasing environmental problems and the rising cost of energy. For an effective curing process low-energy electron beam processors as well as very reactive binders are necessary. Generally such binders consist of acrylic-modified unsaturated polyester resins, polyacrylates, urethane acrylates or epoxy acrylates and vinyl monomers, mostly multifunctional acrylates. First results on the production of EBC binders on the base of polyester resins and vinyl monomers are presented. The aim of our investigations is to obtain binders with curing doses ≤ 50 kGy. In order to reduce the curing dose we studied mixtures of resins and acrylates. (author)

  19. Electron Beam Diagnostics in Plasmas Based on Electron Beam Ionization

    Science.gov (United States)

    Leonhardt, Darrin; Leal-Quiros, Edbertho; Blackwell, David; Walton, Scott; Murphy, Donald; Fernsler, Richard; Meger, Robert

    2001-10-01

    Over the last few years, electron beam ionization has been shown to be a viable generator of high density plasmas with numerous applications in materials modification. To better understand these plasmas, we have fielded electron beam diagnostics to more clearly understand the propagation of the beam as it travels through the background gas and creates the plasma. These diagnostics vary greatly in sophistication, ranging from differentially pumped systems with energy selective elements to metal 'hockey pucks' covered with thin layers of insulation to electrically isolate the detector from the plasma but pass high energy beam electrons. Most importantly, absolute measurements of spatially resolved beam current densities are measured in a variety of pulsed and continuous beam sources. The energy distribution of the beam current(s) will be further discussed, through experiments incorporating various energy resolving elements such as simple grids and more sophisticated cylindrical lens geometries. The results are compared with other experiments of high energy electron beams through gases and appropriate disparities and caveats will be discussed. Finally, plasma parameters are correlated to the measured beam parameters for a more global picture of electron beam produced plasmas.

  20. Shimmed electron beam welding process

    Science.gov (United States)

    Feng, Ganjiang; Nowak, Daniel Anthony; Murphy, John Thomas

    2002-01-01

    A modified electron beam welding process effects welding of joints between superalloy materials by inserting a weldable shim in the joint and heating the superalloy materials with an electron beam. The process insures a full penetration of joints with a consistent percentage of filler material and thereby improves fatigue life of the joint by three to four times as compared with the prior art. The process also allows variable shim thickness and joint fit-up gaps to provide increased flexibility for manufacturing when joining complex airfoil structures and the like.

  1. Combined effect of dopant and electron beam-irradiation on phase transition in lithium potassium sulphate[Lithium potassium sulphate; Phase transition; Impurity effect; Thermal properties

    Energy Technology Data Exchange (ETDEWEB)

    Kassem, M.E.; Gaafar, M.; Abdel Gawad, M.M.H.; El-Muraikhi, M.; Ragab, I.M

    2004-02-01

    Thermodynamic studies of polycrystalline ruthenium (Ru) doped LiKSO{sub 4} have been made for different concentrations of Ru in the range 0%, 0.1%, 0.2%, 0.5%, 1%, 2%, 3% by weight. The thermal behaviour has been investigated using a differential scanning calorimeter in the vicinity of high temperature phases. From this, the effect of electron beam-irradiation on the thermal properties of these polycrystalline samples has been studied. The results showed a change in the transition temperature T{sub c}, as well as the value of specific heat C{sub P{sub max}} at the transition temperature due to the change in Ru content and irradiation energies. The change of enthalpy and entropy of the polycrystalline have been estimated numerically.

  2. Electron beam energy monitoring using thermoluminescent dosimeters and electron back scattering

    International Nuclear Information System (INIS)

    Nelson, Vinod; Gray, Alison

    2013-01-01

    Periodic checks of megavoltage electron beam quality are a fundamental requirement in ensuring accurate radiotherapy treatment delivery. In the present work, thermoluminescent dosimeters (TLDs) positioned on either side of a lead sheet at the surface of a water equivalent phantom were used to monitor electron beam quality using the electron backscattering method. TLD100 and TLD100H were evaluated as upstream detectors and TLD200, TLD400 and TLD500 were evaluated as downstream detectors. The evaluation assessed the test sensitivity and correlation, long and short term reproducibility, dose dependence and glow curve features. A prototype of an in-air jig suitable for use in postal TLD dose audits was also developed and an initial evaluation performed. The results indicate that the TLD100-TLD200 combination provides a sensitive and reproducible method to monitor electron beam quality. The light weight and easily fabricated in-air jig was found to produce acceptable results and has the potential to be used by radiation monitoring agencies to carry out TLD postal quality assurance audits, similar to audits presently being conducted for photon beams. -- Highlights: ► Monitoring electron beam quality via electron backscattering was investigated. ► Different thermoluminescent materials were evaluated as detectors. ► A TLD100-TLD200 combination produced the most sensitive and reproducible results. ► An in-air jig was evaluated to allow measurements via postal dose audits

  3. Polyelectrolytes processing at pilot scale level by electron beam irradiation

    International Nuclear Information System (INIS)

    Martin, D.; Cirstea, E.; Craciun, G.; Ighigeanu, D.; Marin, Gheorghe G.

    2002-01-01

    Three years of research, combined with engineering activities, have culminated in the development of a new method of electron beam processing applicable up to the pilot scale level, namely, the polyelectrolytes (acrylamide - acrylic acid copolymers) electron beam processing. This new radiation processing method has been achieved by bilateral co-operation between the National Institute for Laser, Plasma and Radiation Physics (NILPRP) and the Electrical Design and Research Institute, EDRI - Bucharest. The polyelectrolytes electron beam (EB) processing was put in operation at EDRI, where, recently, an industrial electron accelerator of 2 MeV and 20 kW, manufactured by Institute of Nuclear Physics, Novosibirsk, Russia was installed in a specially designed irradiation facility. Automatic start-up via computer control makes it compatible with industrial processing. According to the first conclusions, which resulted from our experimental research with regard to acrylamide - acrylic acid copolymers production by EB irradiation, the proper physical and chemical characteristics can be well controlled by chemical composition to be treated and by suitable adjustment of absorbed dose and absorbed dose rate. So, it was possible to obtain a very large area of characteristics and therefore a large area of applications. The conversion coefficient is very high (> 98%) and concentration of the residual monomer is under 0.05%. The tests applied to some wastewaters from the vegetable oil plants demonstrated that the fatty substances, matters in suspension, chemical oxygen demand and biological oxygen demand over 5 days were much reduced, in comparison with classical treatment. Also, sedimentation time was around four times smaller and sediment volume was 60% smaller than the values obtained in case of classical treatment. The necessary EB absorbed dose for the acrylamide - acrylic acid aqueous solution polymerization, established by optimization of chemical composition and irradiation

  4. UV laser ionization and electron beam diagnostics for plasma lenses

    International Nuclear Information System (INIS)

    Govil, R.; Volfbeyn, P.; Leemans, W.

    1995-04-01

    A comprehensive study of focusing of relativistic electron beams with overdense and underdense plasma lenses requires careful control of plasma density and scale lengths. Plasma lens experiments are planned at the Beam Test Facility of the LBL Center for Beam Physics, using the 50 MeV electron beam delivered by the linac injector from the Advanced Light Source. Here we present results from an interferometric study of plasmas produced in tri-propylamine vapor with a frequency quadrupled Nd:YAG laser at 266 nm. To study temporal dynamics of plasma lenses we have developed an electron beam diagnostic using optical transition radiation to time resolve beam size and divergence. Electron beam ionization of the plasma has also been investigated

  5. Electron beam micromachining of plastics

    Czech Academy of Sciences Publication Activity Database

    Dupák, Libor

    2014-01-01

    Roč. 49, 5-6 (2014), s. 310-314 ISSN 0861-4717 R&D Projects: GA MŠk(CZ) LO1212; GA MŠk ED0017/01/01; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : micromachining of plastics * Electron beam Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering

  6. Coherent electromagnetic radiation of a combined electron-ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, S G; Samoshenkov, Yu K [Vsesoyuznyj Nauchno-Issledovatel' skij Inst. Optiko-Fizicheskikh Izmerenij, Moscow (USSR)

    1977-07-01

    The intensity of coherent electromagnetic radiation due to interaction of a modulated electron beam with a modulated ion beam is calculated. It is shown that the radiation intensity has a sharp maximum at the frequency equal to the difference of the modulation frequency of the electron and ion beams. The results obtained are compared with those corresponding to the scattering of a modulated electron beam on randomly distributed gas ions.

  7. Multipass autogenous electron beam welding

    International Nuclear Information System (INIS)

    Murphy, J.L.; Mustaleski, T.M. Jr.; Watson, L.C.

    1986-01-01

    A multipass, autogenous welding procedure was developed for 7.6 mm (0.3 in.) wall thickness Type 304L stainless steel cylinders. The joint geometry has a 1.5 mm (0.06 in.) root-face width and a rectangular stepped groove that is 0.762 mm (0.03 in.) wide at the top of the root face and extends 1.5 mm in height, terminating into a groove width of 1.27 mm which extends to the outside of the 1.27 mm high weld-boss. One weld pass is made on the root, three passes on the 0.762 mm wide groove and three passes to complete the weld. Multipass, autogenous, electron beam welds maintain the characteristic high depth-to-width ratios and low heat input of single-pass, electron beam welds. The increased part distortion (which is still much less than from arc processes) in multipass weldments is corrected by a preweld machined compensation. Mechanical properties of multipass welds compare well with single-pass welds. The yield strength of welds in aluminum alloy 5083 is approximately the same for single-pass or multipass electron beam and gas, metal-arc welds. The incidence and size of porosity is less in multipass electron beam welding of aluminum as compared to gas, metal-arc welds. The multipass, autogenous, electron beam welding method has proven to be a reliable way to make some difficult welds in multilayer parts or in an instance where inside part temperature or weld underbead must be controlled and weld discontinuities must be minimized

  8. Electron Beam Propagation in a Plasma

    Directory of Open Access Journals (Sweden)

    Kyoung W. Min

    1988-06-01

    Full Text Available Electron beam propagation in a fully ionized plasma has been studied using a one-dimensional particle simulation model. We compare the results of electrostatic simulations to those of electromagnetic simulations. The electrostatic results show the essential features of beam-plasma instability which accelerates ambient plasmas. The results also show the heating of ambient plasmas and the trapping of plasmas due to the locally generated electric field. The level of the radiation generated by the same non-relativistic beam is slightly higher than the noise level. We discuss the results in context of the heating of coronal plasma during solar flares.

  9. Generation and study of relativistic electron beam

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Mittal, K.C.; Goel, A.K.; Ramaswamy, V.; Rohatgi, V.K.

    1977-01-01

    Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)

  10. Environmental applications of electron-beam technology

    International Nuclear Information System (INIS)

    Pikaev, A.K.

    2001-01-01

    The main directions of modern environmental applications of electron-beam technology are the following: 1) treatment of polluted natural and drinking water, municipal and industrial wastewater, other liquid wastes; 2) purification of gases; 3) treatment of sewage sludges; 4) treatment of solid wastes (medical wastes, contaminated soil and so on). In some cases, the results of respective researches and developments found a large-scale application. For example, recently several industrial plants for electron-beam purification of flue gases of thermal power plants from SO2 and NOx were created in China, Poland and Japan. In the report, a brief summary of the most important results obtained in the mentioned directions will be presented. A special attention will be paid to the data in the first direction. In particular, the recent results on radiation treatment of some liquid systems obtained in the laboratory under author's leadership will be considered. One of them is water polluted with petroleum products (motor oil, diesel fuel, residual fuel oil). The pollutants were present in water in dissolved form and as a separate phase. It was found that irradiation (dose 25-40 kGy) decomposes and removes the pollutants as a precipitate. The second system is natural oil gas consisting of gaseous and low-boiling hydrocarbons, water and so on. Laboratory- and pilot-scale (with electron accelerator of 0.7 MeV and 30 kW) studies have shown that electron-beam treatment (in a recycling regime with continuous sampling the liquid phase) of this gas leads to the formation of a mixture of liquid branched hydrocarbons, alcohols, ethers and so on, i.e., there is a radiation-induced liquefaction of the natural oil gas. The mechanism of radiolytic conversions occurring in the mentioned systems will be discussed

  11. Intraoperative electron beam radiation therapy: technique, dosimetry, and dose specification: report of task force 48 of the radiation therapy committee, American association of physicists in medicine

    International Nuclear Information System (INIS)

    Palta, Jatinder R.; Biggs, Peter J.; Hazle, John D.; Huq, M. Saiful; Dahl, Robert A.; Ochran, Timothy G.; Soen, Jerry; Dobelbower, Ralph R.; McCullough, Edwin C.

    1995-01-01

    Intraoperative radiation therapy (IORT) is a treatment modality whereby a large single dose of radiation is delivered to a surgically open, exposed cancer site. Typically, a beam of megavoltage electrons is directed at an exposed tumor or tumor bed through a specially designed applicator system. In the last few years, IORT facilities have proliferated around the world. The IORT technique and the applicator systems used at these facilities vary greatly in sophistication and design philosophy. The IORT beam characteristics vary for different designs of applicator systems. It is necessary to document the existing techniques of IORT, to detail the dosimetry data required for accurate delivery of the prescribed dose, and to have a uniform method of dose specification for cooperative clinical trials. The specific charge to the task group includes the following: (a) identify the multidisciplinary IORT team, (b) outline special considerations that must be addressed by an IORT program, (c) review currently available IORT techniques, (d) describe dosimetric measurements necessary for accurate delivery of prescribed dose, (e) describe dosimetric measurements necessary in documenting doses to the surrounding normal tissues, (f) recommend quality assurance procedures for IORT, (g) review methods of treatment documentation and verification, and (h) recommend methods of dose specification and recording for cooperative clinical trials

  12. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  13. Electron beam solenoid reactor concept

    International Nuclear Information System (INIS)

    Bailey, V.; Benford, J.; Cooper, R.; Dakin, D.; Ecker, B.; Lopez, O.; Putman, S.; Young, T.S.T.

    1977-01-01

    The electron Beam Heated Solenoid (EBHS) reactor is a linear magnetically confined fusion device in which the bulk or all of the heating is provided by a relativistic electron beam (REB). The high efficiency and established technology of the REB generator and the ability to vary the coupling length make this heating technique compatible with several radial and axial enery loss reduction options including multiple-mirrors, electrostatic and gas end-plug techniques. This paper addresses several of the fundamental technical issues and provides a current evaluation of the concept. The enhanced confinement of the high energy plasma ions due to nonadiabatic scattering in the multiple mirror geometry indicates the possibility of reactors of the 150 to 300 meter length operating at temperatures > 10 keV. A 275 meter EBHS reactor with a plasma Q of 11.3 requiring 33 MJ of beam eneergy is presented

  14. APPARATUS FOR ELECTRON BEAM HEATING CONTROL

    Science.gov (United States)

    Jones, W.H.; Reece, J.B.

    1962-09-18

    An improved electron beam welding or melting apparatus is designed which utilizes a high voltage rectifier operating below its temperature saturation region to decrease variations in electron beam current which normally result from the gas generated in such apparatus. (AEC)

  15. Electron beam gaseous pollutants treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.

    1999-01-01

    Emission of gaseous pollutants, mostly during combustion of fossil fuels, creates a threat to the environment. New, economical technologies are needed for flue gas treatment. A physico-chemical basis of the process using electron beam for the simultaneous removal of sulfur and nitrogen oxides and volatile organic compounds are presented in this report. Development of the process and its upscaling has been discussed. (author)

  16. Dosimetry for electron beam sterilization

    International Nuclear Information System (INIS)

    Miller, A.

    2007-01-01

    According to ISO 11137-1 (sect 4.3.4) dosimetry used in the development, validation and routine control of the sterilization process shall have measurement traceability to national or international standards and shall have a known level of uncertainty. It can only be obtained through calibration of the dosimeters. In presented lecture different types of dosimeter systems for electron beams (calorimeters, radiochromic film dosimeters, alanine / EPR) and their calibration are described

  17. Calculation of electron-beam induced displacement in thin films by using parameter-reduced formulas

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Qiang [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Chen, Di [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States); Wang, Qingyu; Li, Zhongyu [College of Nuclear Science and Technology, Harbin Engineering University, Harbin 150001 (China); Shao, Lin, E-mail: lshao@tamu.edu [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-03-01

    Based on the Mott cross sections of relativistic electron collisions with atoms, we calculate displacement creation by electron beams of arbitrary energies (up to 100 MeV) in thin films of arbitrary atomic numbers (up to Z = 90). In a comparison with Mont Carlo full damage cascade simulations, we find that total number of displacements in a film can be accurately estimated as the product of average displacements created per collision and average collision numbers in the film. To calculate average displacements per electron-atom collision, energy transfer from Mott cross section is combined with NRT model. To calculate collision numbers, mean deflection angles and multi-scattering theory are combined to extract collision number dependence on film thickness. For each key parameter, parameter-reduced formulas are obtained from data fitting. The fitting formulas provide a quick and accurate method to estimate radiation damage caused by electron beams.

  18. Contact lens surface by electron beam

    International Nuclear Information System (INIS)

    Shin, Jung Hyuck; Lee, Suk Ju; Hwang, Kwang Ha; Jeon Jin

    2011-01-01

    Contact lens materials needs good biocompatibility, high refractive index, high optical transparency, high water content etc. Surface treat method by using plasma and radiation can modify the physical and/or chemical properties of the contact lens surface. Radiation technology such as electron beam irradiation can apply to polymerization reaction and enhance the functionality of the polymer.The purpose of this study is to modify of contact lens surface by using Eb irradiation technology. Electron beam was irradiated to the contact lens surface which was synthesized thermal polymerization method and commercial contact lens to modify physical and chemical properties. Ft-IR, XP, UV-vis spectrophotometer, water content, oxygen trans-metastability were used to characterize the surface state, physicochemical, and optical property of the contact lens treated with Eb. The water content and oxygen transmissibility of the contact lens treated with Eb were increased due to increase in the hydrophilic group such as O-C=O and OH group on the contact lens surface which could be produced by possible reaction between carbon and oxygen during the Eb irradiation. All of the lenses showed the high optical transmittance above 90%. In this case of B/Es, TES, Ti contact lens, the optical transmittance decreased about 5% with increasing Eb dose in the wavelength of UV-B region. The contact lens modified by Eb irradiation could improve the physical properties of the contact lens such as water content and oxygen transmissibility

  19. Application of electron beam for preparation of membranes

    International Nuclear Information System (INIS)

    Mohamed Mahmoud Nasef

    2004-01-01

    Membranes have generated considerable interest in a number of technologically significant fields, such as chemical, biochemical and biomedical engineering. However, it becomes important to design and develop particular membranes for specific applications. Radiation induced grafting of hydrophilic monomers into polymeric films has been found to be an appealing method for producing various membranes. The method has the flexibility of using various types of radiation, such as γ-rays, electron beam, and plasma, irrespective of the shape and size of the polymer. Of all, electron beam accelerator is an advantageous source of high-energy radiations that can initiate grafting reactions required for preparation of membranes particularly when pilot production and commercial applications are sought. The grafting penetration can be varied from surface to bulk of membranes by applying acceleration energy. This article briefly reviews the use of electron beam radiation to prepare various membranes by radiation induced grafting of vinyl and acrylic monomers onto polymer films. Some basic fundamentals of radiation induced grafting and advantages of electron beam over Co-60 are highlighted. Potential applications of radiation-grafted membranes in various fields are also surveyed. (author)

  20. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  1. Recent advances in electron beam processing of polymers

    International Nuclear Information System (INIS)

    Gueven, Olgun

    2005-01-01

    The synergy achieved through developments on the design and manufacturing of new low, medium and high energy electron accelerators with relatively high powers and innovative solutions in material formulation better responding to radiation processing has opened new application opportunities in electron beam treatment of polymers. All these developments are still based however, on the major ultimate effects of ionizing radiation on polymers namely, crosslinking, curing, grafting and chain scissionning. The objective of this paper is to provide an overview of recent developments and emerging applications toward commercialization of electron beam processing of polymers. (author)

  2. Effective source of bremsstrahlung with multiple crossing of a thin target by an electron beam

    International Nuclear Information System (INIS)

    Grishin, V.K.; Ishkhanov, B.S.; Shvedunov, V.I.

    1996-01-01

    A basically new scheme of electron beam discharge to the target for x ray and gamma radiation generation is proposed. In this case an accelerated electron beam crosses a thin braking target many times, which substantially increases the integral radiation yield. 3 refs.; 2 figs

  3. Safety Aspects of EPS-3000 Electron Beam Machine

    International Nuclear Information System (INIS)

    Siti Aiasah Hashim; Shari Jahar; Ayub Muhamad; Sarada Idris

    2011-01-01

    The EPS-3000 electron beam machine was installed and commission in 1991 at the Alurtron Electron Beam Irradiation Centre. It is utilized as a tool to enhance finished products through electron beam irradiation. The machine and its auxiliary systems were built with highest safety in mind due to the possible dangers that it can cause during the irradiation activities. Automatic stops may be activated via various interlocks to protect the integrity of the machine. This type of interlocks are controlled by the set upper and lower limits, mostly related to the machine high voltage (and beam) generation and cooling systems. Radiation safety is also taken care of by provision of shielding and area monitoring. Other potential hazards include ozone poisoning and electromagnetic field (EMF) could be generated by the high voltage. This paper describes the safety and security systems installed within the facility as measures to protect the workers and general public from radiation and other physical threats. (author)

  4. An Electron-Beam Profile Monitor Using Fresnel Zone Plates

    International Nuclear Information System (INIS)

    Nakamura, Norio; Sakai, Hiroshi; Iida, Kensuke; Shinoe, Kenji; Takaki, Hiroyuki; Fujisawa, Masami; Hayano, Hitoshi; Muto, Toshiya; Nomura, Masaharu; Kamiya, Yukihide; Koseki, Tadashi; Amemiya, Yoshiyuki; Aoki, Nobutada; Nakayama, Koichi

    2004-01-01

    We have developed a beam profile monitor using two Fresnel zone plates (FZPs) at the KEK-ATF (Accelerator Test Facility) damping ring to measure small electron-beam sizes for low-emittance synchrotron radiation sources. The monitor has a structure of an X-ray microscope, where two FZPs constitute an X-ray imaging optics. In the monitor system, the synchrotron radiation from the electron beam at the bending magnet is monochromatized to 3.235-keV X-rays by a crystal monochromator and the transverse electron-beam image is twenty-times magnified by the two FZPs and detected on an X-ray CCD camera. This monitor has the following advantages: (1) high spatial resolution, (2) non-destructive measurement, (3) real-time monitoring, and (4) direct electron-beam imaging. With the beam profile monitor, we have succeeded in obtaining a clear electron-beam image and measuring the extremely small beam size less than 10 μm. The measured magnification of the imaging optics was in good agreement with the design value

  5. Development of high current electron beam generator

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook [and others

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs.

  6. Development of high current electron beam generator

    International Nuclear Information System (INIS)

    Lee, Byeong Cheol; Lee, Jong Min; Kim, Sun Kook

    1997-05-01

    A high-current electron beam generator has been developed. The energy and the average current of the electron beam are 2 MeV and 50 mA, respectively. The electron beam generator is composed of an electron gun, RF acceleration cavities, a 260-kW RF generator, electron beam optics components, and control system, etc. The electron beam generator will be used for the development of a millimeter-wave free-electron laser and a high average power infrared free-electron laser. The machine will also be used as a user facility in nuclear industry, environment industry, semiconductor industry, chemical industry, etc. (author). 15 tabs., 85 figs

  7. Optics of Electron Beam in the Recycler

    International Nuclear Information System (INIS)

    Burov, A.; Kroc, T.; Lebedev, V.; Nagaitsev, S.; Prost, L.; Pruss, S.; Shemyakin, A.; Sutherland, M.; Warner, A.; Kazakevich, G.; Tiunov, M.

    2006-01-01

    Electron cooling of 8.9 GeV/c antiprotons in the Recycler ring (Fermilab) requires high current and good quality of the DC electron beam. Electron trajectories of ∼0.2 A or higher DC electron beam have to be parallel in the cooling section, within ∼ 0.2 mrad, making the beam envelope cylindrical. These requirements yielded a specific scheme of the electron transport from a gun to the cooling section, with electrostatic acceleration and deceleration in the Pelletron. Recuperation of the DC beam limits beam losses at as tiny level as ∼0.001%, setting strict requirements on the return electron line to the Pelletron and a collector. To smooth the beam envelope in the cooling section, it has to be linear and known at the transport start. Also, strength of the relevant optic elements has to be measured with good accuracy. Beam-based optic measurements are being carried out and analysed to get this information. They include beam simulations in the Pelletron, differential optic (beam response) measurements and simulation, beam profile measurements with optical transition radiation, envelope measurements and analysis with orifice scrapers. Current results for the first half-year of commissioning are presented. Although electron cooling is already routinely used for pbar stacking, its efficiency is expected to be improved

  8. Study of the properties of inverted liquid sugar processed with gamma radiation and electron beam; Estudo das propriedades do acucar liquido invertido processado com radiacao gama e feixe de eletrons

    Energy Technology Data Exchange (ETDEWEB)

    Podadera, Priscilla

    2007-07-01

    Brazil occupies position of prominence in the sugar market and high consumption of this ingredient in the liquid form, in special for the beverages and food industries. The liquid sugar presents advantages in relation to the bulk granulated system such as easiness of the handling and dosage, reduced space for the storage, reduction of the losses, costs and hand of workmanship, improvement of the sanitizing and great possible variation in the ratios of different mixtures of sugars. The inverted liquid sugar is a solution of sucrose, glucose and fructose in water. This ingredient receives this name because during its production it has an inversion of the optic power of rotation of the solution. In the productive process of the inverted sugar some points occur that can generate contamination by microorganisms, so its become important the development of techniques that propitiate the efficient sanitizing of this raw material. This work aims at to consider two alternative techniques of microbiologic control: gamma radiation with source of cobalto-60 and radiation with electron beam. The study was lead in the doses of 5, 10, 20, 30 and 50 kGy. Concentration of sucrose presented in syrup decreased with the radiation indicating the scission of glycosidic linkage in addition with the glucose and fructose formation, generating the increase in solids soluble. The acid compounds formation occurred, confirmed by the reduction of pH, that it was proportional with the increase of the radiation dose. The biggest doses had provoked change of color in the syrup by the long molecular chain polymers formation. Viscosity in the samples processed by gamma radiation increased in relation to the control, indicating the prevalence of polymerization of molecules, whereas in the radiation with electron beam the polymerization was only observed in the sample that received the dose of 50 kGy, In the sensorial analysis, the judges had pointed significant difference (5%) in the flavor among

  9. Dosimetry for electron beam application

    International Nuclear Information System (INIS)

    Miller, A.

    1983-12-01

    This report describes two aspects of electron beam dosimetry, on one hand development of film dosimeters and measurements of their properties, and on the other hand development of calorimeters for calibration of routine dosimeters, e.g. thin films. Two types of radiochromic thin film dosimeters have been developed in this department, and the properties of these and commercially available dosimeters have been measured and found to be comparable. Calorimeters which are in use for routine measurements, are being investigated with reference to their application as standardizing instruments, and new calorimeters are being developed. (author)

  10. Electron beam curing of coating

    International Nuclear Information System (INIS)

    Fujioka, S.; Fujikawa, Z.

    1974-01-01

    Electron beam curing (EBC) method, by which hardened coating film is obtained by polymerizing and cross-linking paint with electron beam, has finally reached industrialized stage. While about seven items such as short curing time, high efficiency of energy consumption, and homogeneous curing are enumerated as the advantages of EBC method, it has limitations of the isolation requirement from air needing the injection of inert gas, and considerable amount of initial investment. In the electron accelerators employed in EBC method, the accelerating voltage is 250 to 750 kV, and the tube current is several tens of mA to 200 mA. As an example of EBC applications, EBC ''Erio'' steel sheet was developed by the cooperative research of Nippon Steel Corp., Dai-Nippon Printing Co. and Toray Industries, Inc. It is a high-class pre-coated metal product made from galvanized steel sheets, and the flat sheets with cured coating are sold, and final products are fabricated by being worked in various shapes in users. It seems necessary to develop the paint which enables to raise added value by adopting the EBC method. (Wakatsuki, Y.)

  11. Sterilization of ground spices by electron beams irradiation

    International Nuclear Information System (INIS)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi

    1999-01-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  12. Sterilization of ground spices by electron beams irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Hashigiwa, Masayuki; Nakachi, Ayako; Kobayashi, Hiroshi [K. Kobayashi and Co., Ltd., Kako, Hyogo (Japan)

    1999-09-01

    Each ground spice (Black Pepper, Turmeric, Ginger, Paprika and Basil), which was packaged into polyethylene film, was irradiated by electron beams at 5 different levels: 2, 4, 6, 8 and 10 kGy. Bacteriological tests for total bacterial count were carried out on spices before and after irradiation, but the tests for microfiora were carried out only before irradiation. Total bacterial count decreased in proportion to the level of electron beams. But the decreasing rate for Turmeric, Ginger and Basil was lower compared with that of other spices. The reason seems that rate of contamination by B. pumilus, which is thought as radiation resistant bacteria, was higher on these spices. (author)

  13. Preparation of PbSe nanoparticles by electron beam irradiation

    Indian Academy of Sciences (India)

    A novel method has been developed by electron beam irradiation to prepare PbSe nanoparticles. 2 MeV 10mA GJ-2-II electronic accelerator was used as radiation source. Nanocrystalline PbSe was prepared rapidly at room temperature under atmospheric pressure without any kind of toxic reagents. The structure and ...

  14. Manufacture of polyethylene foam by electron beam cross-linking

    International Nuclear Information System (INIS)

    Tamai, Isamu

    1976-01-01

    The manufacturing process of polyethylene foam, comparison between electron beam cross-linking process and chemical cross-linking process, the electron beam irradiation technique for continuous sheets, the characteristics and uses of polyethylene foam are reviewed. The pore diameter can be controlled by selecting the dose rate, because there is strong relationship between the pore diameter and the dose rate. As the dose if higher, the foam becomes finer. The electron accelerators having large capacity show the lowest cost as the radiation source, and are applicable industrially. If the production capacity exceeds about 200 tons per month, the costs of electron beam irradiation process may be more advantageous than that of chemical process according to the circumstances. It is difficult to obtain the uniform distribution of absorption dose in the direction of thickness. General characteristics of cross-linked polyethylene foam are listed. The special feature of electron beam process is that the degree of cross-linking can be controlled arbitrarily before foaming. The products obtained by the electron beam cross-linking process have finer foams and smoother surfaces than those obtained by the chemical process, because the separation of the decomposition of foaming agents from that of cross-linking agents in the chemical cross-linking is difficult. (Iwakiri, K.)

  15. Electron Beam Curing of Coil Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Morganstern, K. H. [Radiation Dynamics, Inc., Westbury, NY (United States)

    1969-12-15

    The application of electron accelerators for the rapid curing of coatings on coil processing of steel and aluminium appears to have many practical and economic advantages. This paper discusses this particular application, but in the general framework of electron beam application by industry. Although industry has investigated radiation application for two decades, there have been few applications to date. The reasons for this are discussed as well as the shift in attitude now taking place, indicating a more ready acceptance of radiation processing by industry. This shift is apparent particularly in the coatings field, where the benefits of radiation processing are quite evident. In order to pinpoint these benefits a specific coatings application - coil coating - has been chosen. A typical conventional coil coating line is discussed and compared to a line employing a radiation source. Specific engineering information on the types of electron accelerators suitable for this application; the relative economics of radiation vs. heat curing; and a number of other peripheral advantages of radiation are discussed. (author)

  16. Heat shrinkage of electron beam modified EVA

    International Nuclear Information System (INIS)

    Datta, S.K.; Chaki, T.K.; Bhowmick, A.K.

    1997-01-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author)

  17. Heat shrinkage of electron beam modified EVA

    Energy Technology Data Exchange (ETDEWEB)

    Datta, S.K.; Chaki, T.K.; Bhowmick, A.K. [Indian Institute of Technology, Kharagpur (India). Rubber Technology Center; Tikku, V.K.; Pradhan, N.K. [NICCO Corporation Ltd., (Cable Div.), Calcutta (India)

    1997-10-01

    Heat shrinkage of electron beam modified ethylene vinyl acetate copolymer (EVA) has been investigated over a range of times, temperatures, stretching, irradiation doses and trimethylolpropane trimethacrylate (TMPTMA) levels. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) and stretched (100% elongation) sample shrinks to a maximum level when kept at 453K temperature for 60 s. The heat shrinkage of samples irradiated with radiation doses of 20, 50, 100 and 150 kGy increases sharply with increasing stretching in the initial stage. Amnesia rating decreases with increasing radiation dose and TMPTMA level as well as gel content. The high radiation dose and TMPTMA level lower the heat shrinkage due to the chain scission. The effect of temperature at which extension is carried out on heat shrinkage is marginal. The irradiated (radiation dose 50 kGy and TMPTMA level 1%) EVA tubes of different dimensions expanded in a laboratory grade tube expander show similar behaviour at 453K and 60 s. The X-ray and DSC studies reveal that the crystallinity increases on stretching due to orientation of chains and it decreases to a considerable extent on heat shrinking. The theoretical and experimental values of heat shrinkage for tubes and rectangular strips are in good accord, when the radiation dose is 50 kGy and TMPTMA level 1%. (author).

  18. Industrial wastewater treatment with electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho [Central Research Institute of Samsung Heavy Industries Co., Taejon (Korea)

    2001-03-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m{sup 3}/day of wastewater from 80,000m{sup 3}/day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  19. Industrial wastewater treatment with electron beam

    International Nuclear Information System (INIS)

    Han, Bumsoo; Ko, Jaein; Kim, Jinkyu; Kim, Yuri; Chung, Wooho

    2001-01-01

    Global withdrawals of water to satisfy human demands have grown dramatically in this century. Between 1900 and 1945, water consumption increased by over six times, more than double the rate of population growth. This rapid growth in water demand is due to the increasing reliance on irrigation to achieve food security, the growth of industrial uses, and the increasing use per capita for domestic purposes. Given the seriousness of the situation and future risk of crises, there is an urgent need to develop the water-efficient technologies including economical treatment methods of wastewater and polluted water. In the Central Research Institute of Samsung Heavy Industries (SHI), many industrial wastewater including leachate from landfill area, wastewater from papermill, dyeing complex, petrochemical processes, etc. are under investigation with electron beam irradiation. For the study of treating dyeing wastewater combined with conventional facilities, an electron beam pilot plant for treating 1,000m 3 /day of wastewater from 80,000m 3 /day of total dyeing wastewater has constructed and operated in Taegu Dyeing Industrial Complex. A commercial plant for re-circulation of wastewater from Papermill Company is also designed for S-paper Co. in Cheongwon City, and after the successful installation, up to 80% of wastewater could be re-used in paper producing process. (author)

  20. A set of dosimetry systems for electron beam irradiation

    International Nuclear Information System (INIS)

    Lin Min; Lin Jingwen; Chen Yundong; Li Huazhi; Xiao Zhenhong; Gao Juncheng

    1999-01-01

    To follow the rapid development of radiation processing with electron beams, it is urgent to set up a set of dosimetric standards to provide Quality Assurance (QA) of electron beam irradiation and unify the values of the quality of the absorbed dose measurements for electron beams. This report introduces a set of dosimetry systems established in Radiometrology Center of China Institute of Atomic Energy (RCCIAE), which have been or will be used as dosimetric standards in the Nuclear Industry System (NIS) in China. For instance, the potassium (silver) dichromate and ceric-cerous sulfate dosimetry systems will be used as standard dosimeters, while alanine-ESR dosimetry system as a transfer dosimeter, and FJL-01 CTA as a routine dosimeter. (author)

  1. Electron beam interaction with space plasmas.

    Science.gov (United States)

    Krafft, C.; Bolokitin, A. S.

    1999-12-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification.

  2. Sanitation methods using high energy electron beams

    International Nuclear Information System (INIS)

    Levaillant, C.; Gallien, C.L.

    1979-01-01

    Short recycling of waste water and the use of liquid or dehydrated sludge as natural manure for agriculture or animal supplement feed is of great economical and ecological interest. It implies strong biological and chemical disinfection. Ionizing radiations produced by radioactive elements or linear accelerators can be used as a complement of conventional methods in the treatment of liquid and solid waste. An experiment conducted with high-energy electron-beam linear accelerators is presented. Degradation of undesirable metabolites in water occurs for a dose of 50 kRad. Undesirable seeds present in sludge are destroyed with a 200 kRad dose. A 300 kRad dose is sufficient for parasitic and bacterial disinfection (DL 90). Destruction of polio virus (DL 90) is obtained for 400 kRad. Higher doses (1000 to 2000 kRad) produce mineralization of toxic organic mercury, reduce some chemical toxic pollutants present in sludge and improve flocculation. (author)

  3. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    Energy Technology Data Exchange (ETDEWEB)

    Marin, Gh; Marcuta, M [SC ICPE Electrostatica SA, Bucharest (Romania); Jipa, S [' Valahia' University, Targoviste (Romania)

    2001-07-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process.

  4. Accelerated electron beams for production of heat shrinkable polymeric products and PTFE wastes recovery

    International Nuclear Information System (INIS)

    Marin, Gh.; Marcuta, M.; Jipa, S.

    2001-01-01

    Radiation curing, i.e. curing under the action of ionizing radiation (predominantly electron beams) is one of the most important areas of radiation processing. There are many practical applications of electron beam processing. Our research activity was focused on two of them: radiation cross-linking of polymeric materials; recovery of PTFE wastes. For this purpose we have used: an industrial electron accelerator ILU-6 with 2.5 MeV electron energy and 40kW beam power; equipment for the transport of materials under the electron beam; and a technologic line with typical equipment for the expansion process

  5. Effects of gamma radiation and electron beam on samples of the Brazil nuts artificially inoculated with Aspergillus flavus; Efeitos da radiacao gama e feixe de eletrons sobre amostras de castanhas-do-Brasil inoculadas artificialmente com Aspergillus flavus

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Ednei Assuncao Antunes

    2012-07-01

    The high level of contamination by aflatoxin produced by fungi in lots of Brazil nuts and the strict control by importing countries in relation to the levels of toxins in food, European Union countries decided in 2003 by the return of these lots products from Brazil. Despite the economic loss represented by contamination by toxigenic fungi in Brazil nuts, a major product of extractive Northern of Brazil, studies are still preliminary as the control of contamination aflatoxigenic fungal using methods such as gamma radiation (G.R) and mainly, electron beam (E.B). These facts motivated this research, which aimed to evaluate the effects of gamma radiation and application of electron beam in samples of Brazil nut artificially inoculated with Aspergillus flavus. This goal, we were studied 50 samples of the Brazil nut previously inoculated with spores of A. flavus and subsequently incubated at 30 °C in relative humidity controlled at 93%. After incubation, period of 15 days, the average water activity of the samples was 0.80, the samples were divided into 5 groups that received the following doses of radiation: control (0 kGy), 5 and 10 kGy 5 E.B and G.R. The mycobiota was performed by serial dilution, plated on surface using potato dextrose agar. The results demonstrated that treatment with E.B using a dose of 5 kGy and 10 kGy resulted in reduced growth of A. flavus in 74% (37/50) and 94% (47/50) of samples. The samples treated with G.R at the dose of 5 kGy and 10 kGy no fungal growth occurred in 92% (46/50) 100% (50/50) of. The study of aflatoxins showed that doses of E.B of 5 kGy and 10 kGy reduced levels of AFB1 at 53.32% and 65.66% respectively. The application of gamma rays at doses of 5 and 10 kGy reduced levels of toxins in 70.61% and 84.15% respectively. This result may be attributed to higher penetrability of gamma radiation. Sensory analysis showed greater acceptance of the judges for the samples irradiated with E.B and G.R at the dose of 10 kGy. We concluded

  6. Electron beam interaction with space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.S.

    1999-01-01

    Active space experiments involving the controlled injection of electron beams and the formation of artificially generated currents can provide in many cases a calibration of natural phenomena connected with the dynamic interaction of charged particles with fields. They have a long history beginning from the launches of small rockets with electron guns in order to map magnetic fields lines in the Earth's magnetosphere or to excite artificial auroras. Moreover, natural beams of charged particles exist in many space and astrophysical plasmas and were identified in situ by several satellites; a few examples are beams connected with solar bursts, planetary foreshocks or suprathermal fluxes traveling in planetary magnetospheres. Many experimental and theoretical works have been performed in order to interpret or plan space experiments involving beam injection as well as to understand the physics of wave-particle interaction, as wave radiation, beam dynamics and background plasma modification. Recently, theoretical studies of the nonlinear evolution of a thin monoenergetic electron beam injected in a magnetized plasma and interacting with a whistler wave packet have led to new results. The influence of an effective dissipation process connected with whistler wave field leakage out of the beam volume to infinity (that is, effective radiation outside the beam) on the nonlinear evolution of beam electrons distribution in phase space has been studied under conditions relevant to active space experiments and related laboratory modelling. The beam-waves system's evolution reveals the formation of stable nonlinear structures continuously decelerated due to the effective friction imposed by the strongly dissipated waves. The nonlinear interaction between the electron bunches and the wave packet are discussed in terms of dynamic energy exchange, particle trapping, slowing down of the beam, wave dissipation and quasi-linear diffusion. (author)

  7. Stability of electron-beam energy monitor for quality assurance of the electron-beam energy from radiotherapy accelerators

    International Nuclear Information System (INIS)

    Chida, Koichi; Zuguchi, Masayuki; Saito, Haruo; Takai, Yoshihiro; Mitsuya, Masatoshi; Sakakida, Hideharu; Yamada, Shogo; Kohzuki, Masahiro

    2002-01-01

    Information on electron energy is important in planning radiation therapy using electrons. The Geske 3405 electron beam energy monitor (Geske monitor, PTW Nuclear Associates, Carle Place, NY, USA) is a device containing nine ionization chambers for checking the energy of the electron beams produced by radiotherapy accelerators. We wondered whether this might increase the likelihood of ionization chamber trouble. In spite of the importance of the stability of such a quality assurance (QA) device, there are no reports on the stability of values measured with a Geske monitor. The purpose of this paper was therefore to describe the stability of a Geske monitor. It was found that the largest coefficient of variation (CV) of the Geske monitor measurements was approximately 0.96% over a 21-week period. In conclusion, the stability of Geske monitor measurements of the energy of electron beams from a linear accelerator was excellent. (author)

  8. Apparatus for irradiation with electron beam

    International Nuclear Information System (INIS)

    Uehara, K.; Ito, A.; Nishimune, K.; Fujita, K.

    1976-01-01

    An irradiation apparatus with high energy electrons is disclosed in which a wire shaped or linear object to be irradiated is moved back and forth many times under an electron window so as to irradiate it with an electron beam. According to one feature of the invention, an electron beam, which leaks through gaps between the objects to be irradiated or which penetrates the objects to be irradiated, is reversed by a magnetic field approximately perpendicular to the scanning face of the electron beam by means of a magnet which is disposed under the objects to be irradiated, and the reversed electron beam is thereby again applied to the objects to be irradiated. A high utilization rate of the electron beam is accomplished, and the objects can be thereby uniformly irradiated with the electron beam. 4 claims, 6 drawing figures

  9. Electron beam irradiation of gemstone for color enhancement

    Science.gov (United States)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-09-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  10. Electron beam irradiation of gemstone for color enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A' iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi [Malaysian Nuclear Agency, Bangi, Selangor (Malaysia); School of Chemicals and Material Engineering, NUST Islamabad (Pakistan); Malaysian Nuclear Agency, Bangi, Selangor (Malaysia)

    2012-09-26

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  11. Electron beam irradiation of gemstone for color enhancement

    International Nuclear Information System (INIS)

    Idris, Sarada; Ghazali, Zulkafli; Hashim, Siti A'iasah; Ahmad, Shamshad; Jusoh, Mohd Suhaimi

    2012-01-01

    Numerous treatment of gemstones has been going on for hundreds of years for enhancing color and clarity of gems devoid of these attributes. Whereas previous practices included fraudulent or otherwise processes to achieve the color enhancement, the ionizing radiation has proven to be a reliable and reproducible technique. Three types of irradiation processes include exposure to gamma radiation, electron beam irradiation and the nuclear power plants. Electron Beam Irradiation of Gemstone is a technique in which a gemstone is exposed to highly ionizing radiation electron beam to knock off electrons to generate color centers culminating in introduction of deeper colors. The color centers may be stable or unstable. Below 9MeV, normally no radioactivity is introduced in the exposed gems. A study was conducted at Electron Beam Irradiation Centre (Alurtron) for gemstone color enhancement by using different kind of precious gemstones obtained from Pakistan. The study shows that EB irradiation not only enhances the color but can also improves the clarity of some type of gemstones. The treated stones included kunzite, tourmaline, topaz, quartz, aquamarine and cultured pearls. Doses ranging from 25 kGy to 200 KGy were employed to assess the influence of doses on color and clarity and to select the optimum doses. The samples used included both the natural and the faceted gemstones. It is concluded that significant revenue generation is associated with the enhancement of the color in clarity of gemstones which are available at very cheap price in the world market.

  12. Applications of electron beam technology for healthcare and environment

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2013-01-01

    Radiation technology has matured from lab scale to industrial scale in many areas of interests to industry, healthcare, agriculture and environment. Some of the well established applications include radiation sterilization, wires and cable, composites for automobiles, radiation surface curing, nanomaterials, hydrogels and special materials for nuclear and aerospace industry, radiation treatment of effluents, sewage sludge etc. These applications are as a result of characteristics of high energy radiation like gamma and electron beams which are able to deliver energy directly at molecular level. Unlike nuclear based radiations, electron beam accelerator technology is amenable to easy acceptance by public as well has capability to manipulate processes and product treatment to produce varieties of advanced/smart materials for healthcare and environment. Faster dose rates and depth profiling are the important characteristics of electron beam technology which gives it an edge over gamma radiation processing. Department of Atomic Energy has an ambitious program to indigenously develop accelerator technology and utilize them for national progress. In the presentation some important applications of radiation technology will be discussed. (author)

  13. Electron beam hardened paint binder

    International Nuclear Information System (INIS)

    Johnson, O.B.; Labana, S.S.

    1976-01-01

    The invention concerns a paint binder hardened by the effect of electron beams (0.1-100 Mrad/sec). It consists of a dispersion of (A) an ethylenic unsaturated material in (B) at least one vinyl monomer. The component (A) in a reaction product of degraded rubber particles (0.1-4 μm) and an ethylenic unsaturated component with a reactive epoxy, hydroxy or carboxy group which is bonded to the rubber particles by ester or urethane compounds. The rubber particles possess a nucleus and a cross-linked elastomeric acryl polymer, an outer shell with reactive groups and an intermediate layer formed by the monomers of the nucleus and the shell. The manner of production is described in great detail and supplemented by 157 examples. The coatings are suitable to coat articles which will be subject to deformation. (UWI) [de

  14. Direct measurement of electron beam quality conversion factors using water calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Renaud, James, E-mail: james.renaud@mail.mcgill.ca; Seuntjens, Jan [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4 (Canada); Sarfehnia, Arman [Medical Physics Unit, McGill University, Montréal, Québec H3G 1A4, Canada and Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5S 3E2 (Canada); Marchant, Kristin [Allan Blair Cancer Centre, Saskatchewan Cancer Agency, Regina, Saskatchewan S4T 7T1, Canada and Department of Oncology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A1 (Canada); McEwen, Malcolm; Ross, Carl [Ionizing Radiation Standards, National Research Council of Canada, Ottawa, Ontario K1A 0R6 (Canada)

    2015-11-15

    Purpose: In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. Methods: A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. Results: The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9–20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%–0.40%) and its influence on the perturbation correction (Type B, 0.10%–0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, k{sub ecal}, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM’s TG-51 protocol

  15. Direct measurement of electron beam quality conversion factors using water calorimetry.

    Science.gov (United States)

    Renaud, James; Sarfehnia, Arman; Marchant, Kristin; McEwen, Malcolm; Ross, Carl; Seuntjens, Jan

    2015-11-01

    In this work, the authors describe an electron sealed water calorimeter (ESWcal) designed to directly measure absorbed dose to water in clinical electron beams and its use to derive electron beam quality conversion factors for two ionization chamber types. A functioning calorimeter prototype was constructed in-house and used to obtain reproducible measurements in clinical accelerator-based 6, 9, 12, 16, and 20 MeV electron beams. Corrections for the radiation field perturbation due to the presence of the glass calorimeter vessel were calculated using Monte Carlo (MC) simulations. The conductive heat transfer due to dose gradients and nonwater materials was also accounted for using a commercial finite element method software package. The relative combined standard uncertainty on the ESWcal dose was estimated to be 0.50% for the 9-20 MeV beams and 1.00% for the 6 MeV beam, demonstrating that the development of a water calorimeter-based standard for electron beams over such a wide range of clinically relevant energies is feasible. The largest contributor to the uncertainty was the positioning (Type A, 0.10%-0.40%) and its influence on the perturbation correction (Type B, 0.10%-0.60%). As a preliminary validation, measurements performed with the ESWcal in a 6 MV photon beam were directly compared to results derived from the National Research Council of Canada (NRC) photon beam standard water calorimeter. These two independent devices were shown to agree well within the 0.43% combined relative uncertainty of the ESWcal for this beam type and quality. Absorbed dose electron beam quality conversion factors were measured using the ESWcal for the Exradin A12 and PTW Roos ionization chambers. The photon-electron conversion factor, kecal, for the A12 was also experimentally determined. Nonstatistically significant differences of up to 0.7% were found when compared to the calculation-based factors listed in the AAPM's TG-51 protocol. General agreement between the relative

  16. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-01-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams (with apologies to those who have studied neutrino interactions, polarized beam are defined to refer to the case in which the experimenter has control over the polarization direction). If the discussion is restricted to spin polarized electron beams, the number of experiments becomes countable with the fingers of one hand (with several to spare). There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject. The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons of genearlity and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron-positron collisions

  17. Industrial applications of electron beam accelerators

    International Nuclear Information System (INIS)

    Braid, W.G. Jr.

    1976-01-01

    The use of electron beam accelerators for crosslinking polyolefins for shrinking food packaging is discussed. Irradiation procedures, accelerator characteristics, and industrial operations are described

  18. Integrated control system for electron beam processes

    Science.gov (United States)

    Koleva, L.; Koleva, E.; Batchkova, I.; Mladenov, G.

    2018-03-01

    The ISO/IEC 62264 standard is widely used for integration of the business systems of a manufacturer with the corresponding manufacturing control systems based on hierarchical equipment models, functional data and manufacturing operations activity models. In order to achieve the integration of control systems, formal object communication models must be developed, together with manufacturing operations activity models, which coordinate the integration between different levels of control. In this article, the development of integrated control system for electron beam welding process is presented as part of a fully integrated control system of an electron beam plant, including also other additional processes: surface modification, electron beam evaporation, selective melting and electron beam diagnostics.

  19. Electron beam irradiation and adsorption as possibilities for wastewater reuse

    International Nuclear Information System (INIS)

    Borrely, Sueli I.; Higa, Marcela C.; Pinheiro, Alessandro; Morais, Aline V.; Fungaro, Denise A.

    2013-01-01

    The importance of water for life and for the industrial processes is forcing the development of combined technologies for wastewater improvement. The limitations of biological treatment for reducing micro-pollutants and the constant introduction of different chemical into environment make Ionizing Radiation a more interesting technique for pollutants abatement. Electron Accelerators are the main radiation source for cleaning waters purpose. Remazol Orange and Black B were decomposed by Electron Beam Irradiation. Another research consisted in reuse of burnt coal for cleaning wastewater and the Orange and Red dyes were adsorbed onto zeolitic material. Both color and toxicity were the main parameters to evaluate the efficacy of the process and also the recommended criteria which allow further industrial reuse. Real effluents were also treated by both technologies in batch scale. The radiation dose suggested for real effluents varied from 2.5kGy up to 5kGy. The characteristics of obtained zeolite will be presented. The removal of color and toxicity was enough to allow the industrial reuse of those products (wastewater). (author)

  20. Status report on the relativistic electron beam technology

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.

    1974-01-01

    The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)

  1. Electron beam treatment plant for textile dyeing wastewater

    International Nuclear Information System (INIS)

    Han, B.; Kim, J.; Kim, Y.; Choi, J.; Ahn, S.; Makarov, I.E.; Ponomarev, A.V.

    2006-01-01

    A pilot plant for treating 1,000 m 3 of textile dyeing wastewater per day with electron beam has constructed and operated continuously in Daegu, Korea since 1998. This plant is combined with biological treatment system and it shows the reduction of chemical reagent consumption, and also the reduction in retention time with the increase in removal efficiencies of COD Cr and BOD 5 up to 30∼40%. Increase in biodegradability after radiation treatment of aqueous-organic systems is due to radiolytical conversions of non-biodegradable compounds. On the basis of data obtained from pilot plant operation, construction of actual industrial scale plant has started in 2003, and will be finished by 2005. This plant is located on the area of existing wastewater treatment facility (Daegu Dyeing Industrial Complex) and to have treatment capacity 10,000 m 3 of wastewater per day using one 1 MeV, 400 kW accelerator, and combined with existing bio- treatment facility. The overall construction cost and the operation cost in the radiation processing, when compared to other conventional and advanced oxidation techniques, are more cost-effective and convenient for wastewater treatment. This project is supported by the International Atomic Energy Agency (IAEA) and Korean Government. (author)

  2. Applied dosimetry to ionization techniques by electron beams

    International Nuclear Information System (INIS)

    Kuntz, F.

    1991-12-01

    After a general introduction about electron beam dosimetry, the second part is about the determination of treatment parameter for an electron ionization: are treated the problems of electron path determination, treatment depth of a product and finally, the radiation dose heterogeneities in all the volume of a treated product. The third part describes a process that greatly reduces radiation dose heterogeneity and then industrial interest is analyzed. The fourth part describes 2 applications of diffusion screen utilization. 66 figs

  3. Industrial applications of electron beam; Przemyslowe zastosowamia wiazki elektronow

    Energy Technology Data Exchange (ETDEWEB)

    Chmielewski, A G [Institute of Nuclear Chemistry and Technology, Warsaw (Poland)

    1997-10-01

    The review of industrial applications with use of electron beams has been done. Especially the radiation technologies being developed in Poland have been shown. Industrial installations with electron accelerators as radiation source have been applied for: modification of polymers; modification of thyristors; sterilization of health care materials; radiopreservation of food and other consumer products; purification of combustion flue gases in heat and power plants. 14 refs, 6 tabs, 7 figs.

  4. Radial electron beam laser excitation: the REBLE report

    International Nuclear Information System (INIS)

    Ramirez, J.J.; Prestwich, K.R.

    1978-10-01

    The results of an investigation of techniques to generate high-power radially converging electron beams and the application of these beams to gas lasers is discussed. The design and performance of the REBLE accelerator that was developed for this program is presented. Reliable operation of the radial diode has been obtained at levels up to 1 MV, 200 kA, and 20 ns. It has been demonstrated that the anode current density can be made uniform to better than 15% over 1000 cm 2 areas with 100 to 250 A/cm 2 intensities. The measured total and spatially resolved energy deposition of this radial electron beam in various gases is compared with Monte Carlo calculations. In most cases, these codes give an accurate description of the beam transport and energy deposition. With the electron beam pumping xenon gas, the amplitude of xenon excimer radiation (1720 A 0 ) was radially uniform to within the experimental uncertainty. The efficiency of converting deposited electron beam energy to xenon excimer radiation was 20%

  5. Longitudinal Diagnostics for Short Electron Beam Bunches

    Energy Technology Data Exchange (ETDEWEB)

    Loos, H.; /SLAC

    2010-06-11

    Single-pass free electron lasers require high peak currents from ultra-short electron bunches to reach saturation and an accurate measurement of bunch length and longitudinal bunch profile is necessary to control the bunch compression process from low to high beam energy. The various state-of-the-art diagnostics methods from ps to fs time scales using coherent radiation detection, RF deflection, and other techniques are presented. The use of linear accelerators as drivers for free electron lasers (FEL) and the advent of single-pass (SASE) FELs has driven the development of a wide range of diagnostic techniques for measuring the length and longitudinal distribution of short and ultra-short electron bunches. For SASE FELs the radiation power and the length of the undulator needed to achieve saturation depend strongly on the charge density of the electron beam. In the case of X-ray FELs, this requires the accelerator to produce ultra-high brightness beams with micron size transverse normalized emittances and peak currents of several kA through several stages of magnetic bunch compression. Different longitudinal diagnostics are employed to measure the peak current and bunch profile along these stages. The measurement techniques can be distinguished into different classes. Coherent methods detect the light emitted from the beam by some coherent radiation process (spectroscopic measurement), or directly measure the Coulomb field traveling with the beam (electro-optic). Phase space manipulation techniques map the time coordinate onto a transverse dimension and then use conventional transverse beam diagnostics (transverse deflector, rf zero-phasing). Further methods measure the profile or duration of an incoherent light pulse emitted by the bunch at wavelengths much shorted than the bunch length (streak camera, fluctuation technique) or modulate the electron beam at an optical wavelength and then generate a narrow bandwidth radiation pulse with the longitudinal profile of

  6. Applications of electron beam in nanotechnology

    International Nuclear Information System (INIS)

    Khairul Zaman Hj. Mohd Dahlan; Jamaliah Sharif

    2005-01-01

    The use of radiation technique to process nanostructured materials or to produce nanostructured materials have been shown technically superior as alternative and viable techniques for further commercial exploitation. Research on radiation processing of nanocomposites have been initiated at the Radiation Processing Technology Division of MINT in the past three years. The main focus of this research is to utilize indigenous natural polymer for production of nanocomposites material. Natural rubber/clay composites and thermoplastic natural rubber/clay composites are the important materials that under studied. The natural rubber used in this work is of grade SMRL (Standard Malaysian Rubber) and the clay used was sodium montmorillonite modified with various types of cationic surfactants in order to make the galleries hydrophobic and thus more compatible with the elastomer. The natural rubber/clay nanocomposites were prepared by melt mixing. The compound was then irradiated using electron beam at optimum dose of 250 kGy. X-ray diffraction results indicated intercalation of the natural rubber into silicate interlayer. Upon irradiation at 250 kGy, the tensile strength of the NR/Na-MMT nanocomposites constantly reduced slightly with increasing clay loading, whereas the tensile strengths of NR/DDA-MMT and NR/ODA-MMT increases to optimum levels, 12.1 MPa and 9.5 MPa respectively at 3 phr clay contents. On the other hand, the elongation of NR/DDA-MMT nanocomposites is less affected with increasing clay content up to 3 phr. (author)

  7. Electron beam brightness with field immersed emission

    International Nuclear Information System (INIS)

    Boyd, J.K.; Neil, V.K.

    1985-01-01

    The beam quality or brightness of an electron beam produced with field immersed emission is studied with two models. First, an envelope formulation is used to determine the scaling of brightness with current, magnetic field and cathode radius, and examine the equilibrium beam radius. Second, the DPC computer code is used to calculate the brightness of two electron beam sources

  8. Electron beam selectively seals porous metal filters

    Science.gov (United States)

    Snyder, J. A.; Tulisiak, G.

    1968-01-01

    Electron beam welding selectively seals the outer surfaces of porous metal filters and impedances used in fluid flow systems. The outer surface can be sealed by melting a thin outer layer of the porous material with an electron beam so that the melted material fills all surface pores.

  9. A device for measuring electron beam characteristics

    Directory of Open Access Journals (Sweden)

    M. Andreev

    2017-01-01

    Full Text Available This paper presents a device intended for diagnostics of electron beams and the results obtained with this device. The device comprises a rotating double probe operating in conjunction with an automated probe signal collection and processing system. This provides for measuring and estimating the electron beam characteristics such as radius, current density, power density, convergence angle, and brightness.

  10. Measuring the spectra of low-energy X radiation of heavy-current nanosecond discharge in the diode of relativistic electron beam generator

    International Nuclear Information System (INIS)

    Aranchuk, L.E.; Bogolyubskij, S.L.; Volkov, G.S.

    1986-01-01

    Results of measuring the absolute energy spectrum of pulsed x-radiation of plasma produced by ''Triton'' REB generator (I∼200 kA, τ 1/2 ∼60 ns) are presented. Vacuum photoemission detectors are used to record 0.1-1 keV quanta. The mehod of Ross filters in combimation with detectors with specially selected characteristics was used in 1-20 keV energy interval. The measured radiation power in the E≥1.3 keV area exceeds 10 6 W and in 0.1-1 keV area it is of the order of 3x10 9 W

  11. Combined dose and geometry correction (DMG) for low energy multi electron beam lithography (5kV): application to the 16nm node

    Science.gov (United States)

    Martin, Luc; Manakli, Serdar; Bayle, Sebastien; Belledent, Jérôme; Soulan, Sebastien; Wiedemann, Pablo; Farah, Abdi; Schiavone, Patrick

    2012-03-01

    Lithography faces today many challenges to meet the ITRS road-map. 193nm is still today the only existing industrial option to address high volume production for the 22nm node. Nevertheless to achieve such a resolution, double exposure is mandatory for critical level patterning. EUV lithography is still challenged by the availability of high power source and mask defectivity and suffers from a high cost of ownership perspective. Its introduction is now not foreseen before 2015. Parallel to these mask-based technologies, maskless lithography regularly makes significant progress in terms of potential and maturity. The massively parallel e-beam solution appears as a real candidate for high volume manufacturing. Several industrial projects are under development, one in the US, with the KLA REBL project and two in Europe driven by IMS Nanofabrication (Austria; MAPPER (The Netherlands). Among the developments to be performed to secure the takeoff of the multi-beam technology, the availability of a rapid and robust data treatment solution will be one of the major challenges. Within this data preparation flow, advanced proximity effect corrections must be implemented to address the 16nm node and below. This paper will detail this process and compare correction strategies in terms of robustness and accuracy. It will be based on results obtained using a MAPPER tool within the IMAGINE program driven by CEA-LETI, in Grenoble, France. All proximity effects corrections and the dithering step were performed using the software platform Inscale® from Aselta Nanographics. One important advantage of Inscale® is the ability to combine both model based dose and geometry adjustment to accurately pattern critical features. The paper will focus on the advantage of combining those two corrections at the 16nm node instead of using only geometry corrections. Thanks to the simulation capability of Inscale®, pattern fidelity and correction robustness will be evaluated and compared between

  12. Focusing of high-current electron beams and generation of superhard x radiation pulses; Fokusirovka sil`notochnykh puchkov ehlektronov i generatsiya impul`sov sverkhzhestkogo rentgenovskogo izlucheniya

    Energy Technology Data Exchange (ETDEWEB)

    Zinchenko, V F; Timofeev, V V; Shiyan, V D

    1994-12-31

    Diode geometry and target parameters necessary for optimization of fluence of photons from an X ray source with 1 MeV maximum electron energy are calculated. The basic parameters of the proposed X radiation source of a larger area are presented.

  13. Modification of PLGA Nanofibrous Mats by Electron Beam Irradiation for Soft Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Jae Baek Lee

    2015-01-01

    Full Text Available Biodegradable poly(lactide-co-glycolide (PLGA has found widespread use in modern medical practice. However, the degradation rate of PLGA should be adjusted for specific biomedical applications such as tissue engineering, drug delivery, and surgical implantation. This study focused on the effect of electron beam radiation on nanofibrous PLGA mats in terms of physical properties and degradation behavior with cell proliferation. PLGA nanofiber mats were prepared by electrospinning, and electron beam was irradiated at doses of 50, 100, 150, 200, 250, and 300 kGy. PLGA mats showed dimensional integrity after electron beam irradiation without change of fiber diameter. The degradation behavior of a control PLGA nanofiber (0 kGy and electron beam-irradiated PLGA nanofibers was analyzed by measuring the molecular weight, weight loss, change of chemical structure, and fibrous morphology. The molecular weight of the PLGA nanofibers decreased with increasing electron beam radiation dose. The mechanical properties of the PLGA nanofibrous mats were decreased with increasing electron beam irradiation dose. Cell proliferation behavior on all electron beam irradiated PLGA mats was similar to the control PLGA mats. Electron beam irradiation of PLGA nanofibrous mats is a potentially useful approach for modulating the biodegradation rate of tissue-specific nonwoven nanofibrous scaffolds, specifically for soft tissue engineering applications.

  14. Advanced Electron Beam Diagnostics for the FERMI FEL

    CERN Document Server

    Ferianis, M; D'Auria, G; Di Mitri, S

    2005-01-01

    Fermi is the fourth generation light source currently under design at ELETTRA: based on the Harmonic Generation (HG) scheme it will generate FEL radiation in the 100-10nm range. The successful implementation of the HG scheme calls also for precise knowledge of electron beam emittances and energy spread as well as for very accurate control on the photon to electron interaction, in the Undulator sections. In this paper we present our design for two fundamental Diagnostics foreseen for the new FERMI LINAC: the Beam Position Monitors (BPM) and the Transverse Deflecting cavity set-up. Sensitivity studies on transverse beam displacement effects on global stability of FEL output radiation dictate the ultimate performance to be provided by the BPM system. Due to non negligible longitudinal occupancy of a cavity type BPM, some efforts have been put to study compact cavity BPM configuration. A proper set-up of RF deflecting cavity combined with the vertical ramp foreseen at the end of the LINAC provide a powerful tool ...

  15. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol; Park, Ji Hyun; Bae, Hyung Bin; Park, Changmoon

    2013-01-01

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances

  16. Behaviour of some fresh fruits under electron-beam irradiation

    International Nuclear Information System (INIS)

    Ferdes, O.; Stroia, A.L.; Potcoava, A.; Cojocaru, M.; Mihnea, R.; Oproiu, C.

    1994-01-01

    The use of ionizing radiation in preservation of fruits and vegetables is widely recognized. In this paper it is presented a study of the effect of electron-beam irradiation of some fresh, early and perishable fruits, like strawberries, cherries, and sour cherries concerning their shelf-life time extension. The irradiations were performed on common varieties in normal conditions to the IPTRD's electron-beam accelerator (Bucharest-Magurele) having the following parameters: flow current 10 μA, power 60 W and electron mean energy 6.23 MeV. The irradiation doses varied between 0.5-3.0 kGy and the dose rates between 100-1500 Gy/min. It was observed the fruit preservation capability of the treatment and it was analysed the main characteristics as organoleptic properties, weight of dry component, acidity, total and reducing sugars, ascorbic acid content and others. It was evidenced an increase in freshness and shelf-life extension by 5-7 days for strawberries and up to two weeks for cherries without any significant changes in the values of the considered parameters. Otherwise, for the applied doses, the electron-beam irradiation did not produce any significant changes in the values of fruit characteristic parameters. The results lead to the conclusion that the electron-beam irradiation is a good technological solution for fresh fruit processing. (Author) 1 Tab., 7 Refs

  17. Electron beam sterilization of water discharged from sewage

    International Nuclear Information System (INIS)

    Miyata, Teijiro; Arai, Hidehiko; Tokunaga, Okihiro; Machi, Sueo; Kondo, Masaki; Minemura, Takashi; Nakao, Akio; Seike, Yasuhiko.

    1989-01-01

    At present, the water treated at city sewerages is discharged to rivers after the chlorine sterilization, but it was clarified recently that this chlorine treatment produces carcinogenic organic chlorine compounds, and residual chlorine exerts harmful effect to aquatics, therefore, it is desirable to develop the sterilization techniques substituting for chlorine treatment. Already many reports elucidated that irradiation is effective for the sterilization of the water discharged from sewerage. However, as the technical subject for putting radiation process in practical use, the treatment of large quantity was a problem. Recently by the progress of the technology of manufacturing electron accelerators, the equipment with large power output which can treat in large quantity was developed, and it has become applicable also to sewage treatment. Therefore, the authors examined the practicality of electron beam process as the substitute technology for chlorine sterilizaiton. In the case of using electron beam, though the power output of accelerators is large, the flight range of electron beam in water is short. The comparison of the sterilization effect of electron beam with that of Co-60 gamma ray, the effects of water depth, discharged water quality and water velocity on the sterilization effect and so on were experimentally examined. (K.I.)

  18. Size Control Technology of Silver Nanoparticles Using Electron Beam Irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Suk; Kim, Byungnam; Kim, Hye Won; Koo, Yong Hwan; Lee, Byung Cheol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Ji Hyun [Univ. of Science and Technology, Daejeon (Korea, Republic of); Bae, Hyung Bin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Park, Changmoon [Chungnam National Univ., Daejeon (Korea, Republic of)

    2013-12-15

    The manufacturing of silver nanoparticles using an electron beam is easy, fast, and highly productive, and it is possible at room temperature with no chemical residuals. Its various advantages therefore make this an important method for manufacturing nanoparticles such as silver, copper, and platinum. In particular, despite the use of electron beam irradiation, the results show that this method makes it possible to produce silver nanoparticles at low cost since low beam energy and low doses are used. This means that middle and high-energy electron beam accelerators are very expensive, but a low-energy electron beam accelerator has a relatively low cost of around 4-5 times, and mass production for a flow reaction without the need for extra radiation shielding is possible. Silver nanoparticles are of great interest to many researchers owing to their ability to be used in many applications such as catalysis, nanoelectronics, optical filters, electromagnetic interference shielding, surface Raman scattering, medical supplies, fabrics, cosmetics, hygiene and kitchen supplies, and electric home appliances.

  19. Generation and acceleration of high-current annular electron beam in linear induction accelerator and generation of the power microwave radiation from Cherenkov TWT

    International Nuclear Information System (INIS)

    Abubakirov, E.V.; Arkhipov, O.V.; Bobyleva, L.V.

    1990-01-01

    The section of linear induction accelerator (LIA) with a strong guiding magnetic field (up to 1.5 T), with output beam power up to 2 GW and beam pulse duration 60 ns is created and investigated by experiment. The beam energy gain is equal to 10 keV/sm with explosive emission is used; the large length of the beam propagation (1.5 m) without spolling of the beam with high beam energy gain has been established. The microwave radiation power about 30-100 MW has achieved from relativistic Cherenkov travelling wave tube with high exponential gain on the basis of LIA and high-current diode

  20. Physics with polarized electron beams

    International Nuclear Information System (INIS)

    Swartz, M.L.

    1988-06-01

    As a distinct field, elementary particle physics is now approximately forty years old. In all that time, only a few of the thousands of experiments that have been performed have made use of spin polarized particle beams. There are two reasons for this lack of interest. The first is that spin polarized beams are difficult to produce, accelerate, and transport. The second reason is that any physical process that can occur during the collision of a polarized particle with another (polarized or not) can also occur during the collision of unpolarized particles. One might ask then, why has any effort been expended on the subject? The answer, at least in the case of polarized electron beams, is that electron accelerators and storage rings have in recent years achieved sufficient energy to begin to probe the weak interaction directly. The weak interaction distinguishes between left- and right-handed fermionic currents. Left-handed particles interact in a fundamentally different way than their right-handed counterparts. If the experimenter wishes to explore or exploit this difference, he (or she) must either prepare the spin state of the incident particles or analyze the spin state of outgoing particles. For reasons, of generality and improved statistical precision, the former is usually preferable to the latter. The first of these lectures will review some of the techniques necessary for the production, transport, and monitoring of polarized electron (or positron) beams. The second lecture will survey some of the physics possibilities of polarized electron--positron collisions. 33 refs., 26 figs., 5 tabs

  1. Effect of pulsed electron beam on cell killing

    International Nuclear Information System (INIS)

    Acharya, Santhosh; Joseph, Praveen; Sanjeev, Ganesh; Narayana, Y.; Bhat, N.N.

    2009-01-01

    The extent of repairable and irreparable damage in a living cell produced by ionizing radiation depends on the quality of the radiation. In the case of sparsely ionizing radiation, the dose rate and the pattern of energy deposition of the radiation are the important physical factors which can affect the amount of damage in living cells. In the present study, radio-sensitive and radioresistive bacteria cells were exposed to 8 MeV pulsed electron beam and the efficiency of cell-killing was investigated to evaluate the Do, the mean lethal dose. The dose to the cell was delivered in micro-second pulses at an instantaneous dose rate of 2.6 x 10 5 Gy s -1 . Fricke dosimeter was used to measure the absorbed dose of electron beam. The results were compared with those of gamma rays. The survival curve of radio-resistive Deinococcus-radiodurans (DR) is found to be sigmoidal and the survival response for radio-sensitive Escherichia-coli (E-coli) is found to be exponential without any shoulder. Comparison of Do values indicate that irradiation with pulsed electron beam resulted in more cell-killing than was observed for gamma irradiation. (author)

  2. Radiation, chemicals and combined effects

    International Nuclear Information System (INIS)

    Sinclair, W.K.

    1991-01-01

    A brief background has been provided on current carcinogenic risks from ionizing radiation and their magnitude in background circumstances. The magnitude of the risks from possibly carcinogenic chemicals at background levels in air, water and food are surprisingly similar. The exception is, perhaps, for the single source of radon which, while variable, on the average stands out above all other sources. Some basic principles concerning the interaction of combined radiation and chemicals and some practical examples where the two interact synergistically to enhance radiation effects has also been provided. Areas for human research in the future are discussed. (Author)

  3. Simulation of the electron acoustic instability for a finite-size electron beam system

    International Nuclear Information System (INIS)

    Lin, C.S.; Winske, D.

    1987-01-01

    Satellite observations at midlatitudes (≅20,000 km) near the earth's dayside polar cusp boundary layer indicate that the upward electron beams have a narrow latitudinal width up to 0.1 0 . In the cusp boundary layer where the electron population consists of a finite-size electron beam in a background of uniform cold and hot electrons, the electron acoustic mode is unstable inside the electron beam but damped outside the electron beam. Simulations of the electron acoustic instability for a finite-size beam system are carried out with a particle-in-cell code to investigate the heating phenomena associated with the instability and the width of the heating region. The simulations show that the finite-size electron beam radiates electrostatic electron acoustic waves. The decay length of the electron acoustic waves outside the beam in the simulation agrees with the spatial decay length derived from the linear dispersion equation

  4. Comparison study of the partial-breast irradiation techniques: Dosimetric analysis of three-dimensional conformal radiation therapy, electron beam therapy, and helical tomotherapy depending on various tumor locations

    International Nuclear Information System (INIS)

    Kim, Min-Joo; Park, So-Hyun; Son, Seok-Hyun; Cheon, Keum-Seong; Choi, Byung-Ock; Suh, Tae-Suk

    2013-01-01

    The partial-breast irradiation (PBI) technique, an alternative to whole-breast irradiation, is a beam delivery method that uses a limited range of treatment volume. The present study was designed to determine the optimal PBI treatment modalities for 8 different tumor locations. Treatment planning was performed on computed tomography (CT) data sets of 6 patients who had received lumpectomy treatments. Tumor locations were classified into 8 subsections according to breast quadrant and depth. Three-dimensional conformal radiation therapy (3D-CRT), electron beam therapy (ET), and helical tomotherapy (H-TOMO) were utilized to evaluate the dosimetric effect for each tumor location. Conformation number (CN), radical dose homogeneity index (rDHI), and dose delivered to healthy tissue were estimated. The Kruskal-Wallis, Mann-Whitney U, and Bonferroni tests were used for statistical analysis. The ET approach showed good sparing effects and acceptable target coverage for the lower inner quadrant—superficial (LIQ-S) and lower inner quadrant—deep (LIQ-D) locations. The H-TOMO method was the least effective technique as no evaluation index achieved superiority for all tumor locations except CN. The ET method is advisable for treating LIQ-S and LIQ-D tumors, as opposed to 3D-CRT or H-TOMO, because of acceptable target coverage and much lower dose applied to surrounding tissue

  5. Modeling of electron beams produced by linear accelerator installed at CNSTN / optimization study for the case of radiation sterilization of medical products and pharmaceutical

    International Nuclear Information System (INIS)

    Jellikh, Jihed

    2011-01-01

    The evolution of particle accelerators has led to the disposal of a very wide diversity of applications, such as the technique of treatment with Beta radiations. an electron accelerator has been installed at the National Center for nuclear Sciences and Technologies CNSTN) with the aim of controlling this technology, its development and its use in the areas of agriculture, industry, human health and scientific research. this project is committed for the study of the exploitation of this new facility in the field of radio-sterilization of medical, pharmaceuticals, cosmetics and laboratory products. A numerical tool has been then developed to simulate the radio processing and to simplify this process. Due to this option of dose distribution modeling inside a studied product, it's possible to estimate the best configuration for the accelerator parameter setting. It is a solution allowing to guarantee at once the conformity of the treatment of a product, as well as the reliability of the installation.

  6. Waste water treatment by ionizing radiations. Removal of biological and chemical risks by water and sludge treatment with electron beams. Orientation 10 July 2002

    International Nuclear Information System (INIS)

    2002-01-01

    This report aims at analysing the reliability of the application of electron ionizing radiation in the treatment of waste waters and effluents, and at identifying possible fields of application and associated technological and economic implications. After some recalls on physics, electrochemistry, radiolysis, and water pollution, the report proposes an overview of the technique of irradiation of waters, with its scientific background (water radiolysis, chemical and biological effects), its process (recovery cycle and possible interventions, processed pollutants), the case of irradiation by electrons (power, rate, flexibility), an overview of benefits and drawbacks, and a brief history of this practice and an overview of current researches. After a recall of regulatory and political requirements, the report discusses possible fields of application: waste water treatment plants, domestic, agricultural and urban sewage wasters, hospital and medical wastes, liquid food industry products, industrial waters. The choice of accelerator parameters and components is then discussed

  7. Evaluation of electron beam radiation effects in the incorporation of Piassava fibers (Attalea funifera Mart.) on ethylene vinyl alcohol copolymer (EVOH)

    International Nuclear Information System (INIS)

    Nogueira, Beatriz Ribeiro

    2012-01-01

    The aim of this work is to explore the contribution of ionizing radiation in the incorporation of piassava fibers (derived from wastes from broom factories) in the ethylene vinyl alcohol copolymer (EVOH), to obtain a composite material, E VOH-Piassava , for packaging applications. The interest in this fiber is due to its inherent properties and morphology as well as being biodegradable. The EVOH composite reinforced with 5% or 10%, by weight of piassava fiber powder with a particle size equal to or less than 125 μm, untreated or treated with 1% silane, were obtained by extrusion, using a twin screw extruder. For carrying out the tensile tests and oxygen barrier of the materials obtained, films were produced from composite materials and EVOH resin was obtained using the process of flat extrusion. Samples of EVOH and the composites were irradiated using an electron accelerator, at doses from 0 to 500 kGy. The results of SEM analysis and X-ray diffraction of composites suggest a good fiber-matrix adhesion, which can be also confirmed by its higher tensile strength at break, compared to that of neat EVOH. The results showed that the incorporation of piassava fibers can promote better oxygen barrier compared to the neat EVOH, in conditions of high humidity. It was observed that, after irradiation, the EVOH film showed better oxygen barrier in high humidity condition, when compared to the non-irradiated EVOH under the same condition, indicating radiation as an effective treatment to improve oxygen barrier in the studied conditions. (author)

  8. EIC Electron Beam Polarimetry Workshop Summary

    International Nuclear Information System (INIS)

    Lorenzon, W.

    2008-01-01

    A summary of the Precision Electron Beam Polarimetry Workshop for a future Electron Ion Collider (EIC) is presented. The workshop was hosted by the University of Michigan Physics Department in Ann Arbor on August 23-24, 2007 with the goal to explore and study the electron beam polarimetry issues associated with the EIC to achieve sub-1% precision in polarization determination. Ideas are being presented that were exchanged among experts in electron polarimetry and source and accelerator design to examine existing and novel electron beam polarization measurement schemes

  9. Shielding in electron beams used in radiotherapy

    International Nuclear Information System (INIS)

    Sentenac, Irenee.

    1979-01-01

    The interactions of electron beams with initial energies between 7 and 30 MeV have been studied in various materials including polystyrene, aluminium, copper and lead. The following experimental results have been found: estimation of measurement point displacement in a cylindrical chamber and of its variations with electron beam energy, empirical relations between the energy at the surface and the practical range of the electrons in various materials, an estimation of the relative ionisation due to the 'bremsstrahlung' measured behind different materials with beam complete shielding. Improvement of electron beam collimation is suggested after analysis of the dose distribution behind partial shielding [fr

  10. Evaluation on ecological stability and biodegradation of dyeing wastewater pre-treated by electron beam

    International Nuclear Information System (INIS)

    Lee, M.J.; Park, C.K.; Yoo, D.H.; Lee, J.K.; Lee, B.J.; Han, B.S.; Kim, J.K.; Kim, Y.R.

    2005-01-01

    Biological treatment of dye wastewater pre-treated by electron beam has been performed in order to evaluate the biodegradation and ecological stability of effluent. In the process of electron-beam treatment of wastewater there are utilized chemical transformations of pollutants induced by ionizing radiation. Partial decomposition of pollutant takes place as well as transformations of pollutant molecules that result in improving subsequent purification stages like as biological processing. Dyeing wastewater contains many kind of pollutants which are difficult to be decomposed completely by microorganisms. In this study, biodegradation with dyeing wastewater pre-treated by electron beams was observed. On the other hand, consideration on public acceptance in terms of ecological stability of biological effluent pre-treated by electron beams was given in this study. The results of laboratory investigations on biodegradation and ecological stability of effluent showed that biodegradation of dye wastewater pre-treated by electron beam was enhanced compared to unirradiated one. In the initial stage of biological oxidation regardless of different HRT, dye wastewater pre-treated by electron beam could be oxidized easily compare to without treated one. More number of survived daphnia magna could be observed in the biological effluent pre-treated by electron beam. This means that biological effluent pre-treated by electron beam can be said 'it is safe on the ecological system'

  11. Space-charge dynamics of polymethylmethacrylate under electron beam irradiation

    CERN Document Server

    Gong, H; Ong, C K

    1997-01-01

    Space-charge dynamics of polymethylmethacrylate (PMMA) under electron beam irradiation has been investigated employing a scanning electron microscope. Assuming a Gaussian space-charge distribution, the distribution range (sigma) has been determined using a time-resolved current method in conjunction with a mirror image method. sigma is found to increase with irradiation time and eventually attain a stationary value. These observations have been discussed by taking into account radiation-induced conductivity and charge mobility. (author)

  12. Use of mathematical modelling in electron beam processing: A guidebook

    International Nuclear Information System (INIS)

    2010-01-01

    The use of electron beam irradiation for industrial applications, like the sterilization of medical devices or cross-linking of polymers, has a long and successful track record and has proven itself to be a key technology. Emerging fields, including environmental applications of ionizing radiation, the sterilization of complex medical and pharmaceutical products or advanced material treatment, require the design and control of even more complex irradiators and irradiation processes. Mathematical models can aid the design process, for example by calculating absorbed dose distributions in a product, long before any prototype is built. They support process qualification through impact assessment of process variable uncertainties, and can be an indispensable teaching tool for technologists in training in the use of radiation processing. The IAEA, through various mechanisms, including its technical cooperation programme, coordinated research projects, technical meetings, guidelines and training materials, is promoting the use of radiation technologies to minimize the effects of harmful contaminants and develop value added products originating from low cost natural and human made raw materials. The need to publish a guidebook on the use of mathematical modelling for design processes in the electron beam treatment of materials was identified through the increased interest of radiation processing laboratories in Member States and as a result of recommendations from several IAEA expert meetings. In response, the IAEA has prepared this report using the services of an expert in the field. This publication should serve as both a guidebook and introductory tutorial for the use of mathematical modelling (using mostly Monte Carlo methods) in electron beam processing. The emphasis of this guide is on industrial irradiation methodologies with a strong reference to existing literature and applicable standards. Its target audience is readers who have a basic understanding of electron

  13. Skin protection by sucralfate cream during electron beam therapy

    International Nuclear Information System (INIS)

    Maiche, A.

    1994-01-01

    We performed a double-blind randomized study to compare the efficacy of sucralfate cream to a base cream in 50 breast cancer patients receiving postoperative electron beam therapy to their chest wall. The acute radiation reaction of the skin was statistically significantly prevented by the sucralfate cream. The recovery of the skin was also significantly faster in the sucralfate cream group. Side-effects due to the cream were rare. (orig./MG)

  14. Skin protection by sucralfate cream during electron beam therapy

    Energy Technology Data Exchange (ETDEWEB)

    Maiche, A. (Helsinki Univ. Central Hospital (Finland). Dept. of Radiotherapy and Oncology); Isokangas, O.P. (Helsinki Univ. Central Hospital (Finland). Dept. of Radiotherapy and Oncology); Groehn, P. (Deaconess Hospital, Helsinki (Finland))

    1994-01-01

    We performed a double-blind randomized study to compare the efficacy of sucralfate cream to a base cream in 50 breast cancer patients receiving postoperative electron beam therapy to their chest wall. The acute radiation reaction of the skin was statistically significantly prevented by the sucralfate cream. The recovery of the skin was also significantly faster in the sucralfate cream group. Side-effects due to the cream were rare. (orig./MG).

  15. Investigations of electron beams from a linear accelerator

    International Nuclear Information System (INIS)

    Sweeney, L.E.

    1981-01-01

    The use of high energy electron beams from linear accelerators is becoming more prevalent in Radiation Therapy clinics. Although the basic interactions of electrons in material have been described for many years, the use of the high energy electron beams is based mostly upon measurements in the clinical setting. It is the purpose of this work to experimentally study the physical properties and apply basic concepts to analyze these measurements. Three different topics are addressed in this work. The distance to the virtual source of the electron beam is determined by a series of ionization measurements in air and in a plastic phantom as a function of distance from the accelerator. Scattering effects of the x-ray collimators and electron applicators play an important role in the clinical evaluation of the distance to the virtual source as well as the energy of the electron beam. The ionization distribution of a narrow beam of 21 MeV electrons is measured and compared to theoretical calculations. The transverse ionization distribution is measured in a water phantom and compared with Monte Carlo calculation for this energy. The depth dose distribution is measured in two distinct geometrical configurations and found to be analogous within the errors of measurement. Depth ionization and depth dose properties of a broad 21 MeV electron beam are determined for a number of homogeneous materials having different physical properties. Comparison of these measurements are described by two different scaling factors for polystyrene, water, teflon, and aluminum phantom materials. Basic physical interactions, experimental techniques and results are discussed

  16. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Zbigniew; Przybytniak, Grażyna; Nowicki, Andrzej

    2012-01-01

    The computer simulations based on Monte Carlo (MC) method and the ModeCEB software were carried out in connection with electron beam (EB) radiation set-up for crosslinking of electric wire and cable insulation. The theoretical predictions for absorbed dose distribution in irradiated electric insulation induced by scanned EB were compared to the experimental results of irradiation that was carried out in the experimental set-up based on ILU 6 electron accelerator with electron energy 0.5–2.0 MeV. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for various process parameters, namely electric wire and cable geometry (thickness of insulation layers and copper wire diameter), type of polymer insulation, electron energy, energy spread and geometry of electron beam, electric wire and cable layout in irradiation zone. The geometry of electron beam distribution in the irradiation zone was measured using CTA and PVC foil dosimeters for available electron energy range. The temperature rise of the irradiated electric wire and irradiation homogeneity were evaluated for different experimental conditions to optimize technological process parameters. The results of computer simulation are consistent with the experimental data of dose distribution evaluated by gel-fraction measurements. Such conformity indicates that ModeCEB computer simulation is reliable and sufficient for optimization absorbed dose distribution in the multi-layer circular objects irradiated with scanned electron beams. - Highlights: ► We model wire and cables irradiation process by Monte Carlo simulations. ► We optimize irradiation configuration for various process parameters. ► Temperature rise and irradiation homogeneity were evaluated. ► Calculation (dose) and experimental (gel-fraction) results were compared. ► Computer simulation was found reliable and sufficient for process optimization.

  17. Nonlinear undulator tapering in conventional SASE regime at baseline electron beam parameters as a way to optimize the radiation characteristics of the European XFEL

    Energy Technology Data Exchange (ETDEWEB)

    Serkez, Svitozar; Kocharyan, Vitali; Saldin, Evgeni; Zagorodnov, Igor [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany)

    2013-09-15

    We demonstrate that the output radiation characteristics of the European XFEL sources at nominal operation point can be easily made significantly better than what is currently reported in the TDRs of scientific instruments and X-ray optics. In fact, the output SASE characteristics of the baseline European XFEL have been previously optimized assuming uniform undulators at a nominal operating point of 5 kA peak current, without considering the potential of undulator tapering in the SASE regime. In order to illustrate this point, we analyze the case of an electron bunch with nominal parameters. Based on start-to-end simulations, we demonstrate that nonlinear undulator tapering allows one to achieve up to a tenfold increase in peak power and photon spectral density in the conventional SASE regime, without modification to the baseline design. The FEL code Genesis has been extensively used for these studies. In order to increase our confidence in simulation results, we cross-checked outcomes by reproducing simulations in the deep nonlinear SASE regime with tapered undulator using the code ALICE.

  18. Electron beam welding of dissimilar metals

    International Nuclear Information System (INIS)

    Metzger, G.; Lison, R.

    1976-01-01

    Thirty-three two-memeber combinations of dissimilar metals were electron beam welded as square-groove butt joints in 0.08 and 0.12 in. sheet material. Many joints were ''braze welded'' by offsetting the electron beam about 0.02 in. from the butt joint to achieve fusion of the lower melting point metal, but no significant fusion of the other member of the pair. The welds were evaluated by visual and metallographic examination, transverse tensile tests, and bend tests. The welds Ag/Al, Ag/Ni15Cr7Fe, Cu/Ni15Cr7Fe, Cu/V, Cu20Ni/Ni15Cr7Fe, Fe18Cr8Ni/Ni, Fe18Cr8Ni/Ni15Cr7Fe, Nb/Ti, Nb/V, Ni/Ni15Cr7Fe, and Cb/V10Ti were readily welded and weld properties were excellent. Others which had only minor defects included the Ag/Cu20Ni, Ag/Ti, Ag/V, Cu/Fe18Cr8Ni, Cu/V10Ti, Cu20Ni/Fe18Cr8Ni, and Ti/Zr2Sn welds. The Cu/Ni weld had deep undercut, but was in other respects excellent. The mechanical properties of the Ag/Fe18Cr8Ni weld were poor, but the defect could probably be corrected. Difficulty with cracking was experienced with the Al/Ni and Fe18Cr8Ni/V welds, but sound welds had excellent mechanical properties. The remaining welds Al-Cu, Al/Cu20Ni, Al/Fe18Cr8Ni, Al/Ni15Cr7Fe, Cu20Ni/V, Cu20Ni/V10Ti, Cb/Zr2Sn, Ni/Ti, Ni15Cr7Fe/V, Ni15Cr7Fe/V10Ti, and Ti/V were unsuccessful, due to brittle phases, primarily at the weld metal-base metal interface. In addition to the two-member specimens, several joints were made by buttering. Longitudinal weld specimens of the three-member combination Al/Ni/Fe18Cr8Ni and the five member combination Fe18Cr8Ni/V/Cb/Ti/Zr2Sn showed good tensile strength and satisfactory elongation. 6 tables, 16 figures

  19. Effect of different ionizing radiation doses and dose rates, using Cobalt-60 and electrons beam sources, on the staphylococcal enterotoxin inoculated in mechanically deboned chicken meat

    Energy Technology Data Exchange (ETDEWEB)

    Pomarico Neto, Walter; Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Fukuma, Henrique Takuji, E-mail: pbrito@cnen.gov.br, E-mail: hazevedo@cnen.gov.br, E-mail: cvroque@cnen.gov.br, E-mail: htfukuma@cnen.gov.br [Brazilian Nuclear Energy Commission (LAPOC/CNEN), Pocos de Caldas, MG (Brazil); Kodama, Yasko, E-mail: ykodama@ipen.br [Nuclear and Energy Research Institute (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Miya, Norma Terugo Nago; Pereira, Jose Luiz, E-mail: miya@fea.unicamp.br, E-mail: pereira@fea.unicamp.br [Campinas State University (UNICAMP), SP (Brazil). Dept. of Food Sciences

    2011-07-01

    The purpose of food irradiation is the destruction of present pathogenic microorganisms and the increase of shelf life of foods. To achieve this process, the source of cobalt-60 and the electron accelerator can be used. The mechanically deboned chicken meat (MDCM) is used for the production of traditional meat products, and it may come to present pathogenic microorganisms such as staphylococcus aureus, a bacterium that produces enterotoxin, which causes food poisoning. The objective of this study is to analyze the effect of ionizing irradiation with different doses and dose rates, deriving from different radiation sources, on staphylococcal enterotoxin type B (SEB) in the MDCM. 50 g samples of MDCM were prepared in a batch of 6 kg of MDCM. The samples were contaminated, with the exception of the control, with SEB in amounts of about 100 ng. Then they were conditioned in a transparent bag made of low density polyethylene, frozen at -18{+-}1 deg C overnight and irradiated in these conditions with doses of 0.0 kGy (control), 1.5 kGy and 3.0 kGy, and with three different dose rates, both in the Cobalt-60 and the electron accelerator. The experiments were conducted in quintuplicate. The SEB extraction from the MDCM was performed according to the protocol recommended by the manufacturer of the kit VIDAS Staph Enterotoxin II (bioMerrieux). The principle of mass balance was used to determine the actual amount of SEB removed by irradiation. The treatment that presented the best results was the one with a dose of 1.5 kGy, high dose rate of the electron accelerator. (author)

  20. Effect of different ionizing radiation doses and dose rates, using Cobalt-60 and electrons beam sources, on the staphylococcal enterotoxin inoculated in mechanically deboned chicken meat

    International Nuclear Information System (INIS)

    Pomarico Neto, Walter; Brito, Poliana de Paula; Azevedo, Heliana de; Roque, Claudio Vitor; Fukuma, Henrique Takuji; Kodama, Yasko; Miya, Norma Terugo Nago; Pereira, Jose Luiz

    2011-01-01

    The purpose of food irradiation is the destruction of present pathogenic microorganisms and the increase of shelf life of foods. To achieve this process, the source of cobalt-60 and the electron accelerator can be used. The mechanically deboned chicken meat (MDCM) is used for the production of traditional meat products, and it may come to present pathogenic microorganisms such as staphylococcus aureus, a bacterium that produces enterotoxin, which causes food poisoning. The objective of this study is to analyze the effect of ionizing irradiation with different doses and dose rates, deriving from different radiation sources, on staphylococcal enterotoxin type B (SEB) in the MDCM. 50 g samples of MDCM were prepared in a batch of 6 kg of MDCM. The samples were contaminated, with the exception of the control, with SEB in amounts of about 100 ng. Then they were conditioned in a transparent bag made of low density polyethylene, frozen at -18±1 deg C overnight and irradiated in these conditions with doses of 0.0 kGy (control), 1.5 kGy and 3.0 kGy, and with three different dose rates, both in the Cobalt-60 and the electron accelerator. The experiments were conducted in quintuplicate. The SEB extraction from the MDCM was performed according to the protocol recommended by the manufacturer of the kit VIDAS Staph Enterotoxin II (bioMerrieux). The principle of mass balance was used to determine the actual amount of SEB removed by irradiation. The treatment that presented the best results was the one with a dose of 1.5 kGy, high dose rate of the electron accelerator. (author)

  1. Economic feasibility study to Raise the operational capacity of the Electron Beam Accelerator at the National Centre for Radiation Research and Technology, atomic Energy Authority, Egypt

    International Nuclear Information System (INIS)

    El-Kolaly, M.; Hammad, A.; El-Gameel, E.A.

    2011-01-01

    The study aims to investigate the economic feasibility to raise the operational capacity of the accelerator at the National Center for Radiation Research and Technology, Atomic Energy Authority, Egypt, through proposal of additional processing of power cables as it have 4 thousand operating hours per year of total 6 thousand hours per year. The study involved three sections; the first section included the technical aspects and marketing, the second section was concerned with financial analysis, and the third section included the national return of the project. In the first part, the electronic and technical requirements of the accelerator were studied to raise the capacity of the accelerator and to identify the time trend of demand for services in marketing. The second section included the financial feasibility of the project which was carried out through two parts; the first part deal with the analysis of costs of the project including identifying of investment, spending, labor costs, operating expenses, the annual installment of the annual depreciation expense with the total annual costs and operating costs per hour and ton. The second part was carried out to evaluated business profitability of the project, preparation of the annual cash flow, calculation of the internal rate of return, payback period of capital, and the analysis of sensitivity of the project in terms of its ability to achieve profitable business in the event of increasing costs and decreasing revenue. The third section was carried out to raise the operational capacity of the accelerator at the Egyptian Atomic Energy Authority to generate added value for national income, and to study the social rate of return for the project and examine the project's ability to provide new employment opportunities. The study showed the possibility and the importance of the project implemented at the level of private investment and national security.

  2. Electron beam processing of sugar cane bagasse to cellulose hydrolysis

    International Nuclear Information System (INIS)

    Ribeiro, Marcia A.; Cardoso, Vanessa M.; Mori, Manoel N.; Duarte, Celina L.

    2009-01-01

    Sugarcane bagasse has been considered as a substrate for single cell protein, animal feed, and renewable energy production. Sugarcane bagasse generally contain up to 45% glucose polymer cellulose, 40% hemicelluloses, and 20% lignin. Pure cellulose is readily depolymerised by radiation, but in biomass, the cellulose is intimately bonded with lignin, that protect it from radiation effects. The objective of this study is the evaluation of the electron beam irradiation as a pre-treatment to enzymatic hydrolysis of cellulose in order to facilitate its fermentation and improves the production of ethanol biofuel. Samples of sugarcane bagasse were obtained in sugar/ethanol Iracema Mill sited in Piracicaba, Brazil, and were irradiated using Radiation Dynamics Electron Beam Accelerator with 1.5 MeV energy and 37kW, in batch systems. The applied absorbed doses of the fist sampling, Bagasse A, were 20 kGy, 50 kGy, 100 kGy and 200 kGy. After the evaluation the preliminary obtained results, it was applied lower absorbed doses in the second assay: 5 kGy, 10 kGy, 20 kGy, 30 kGy, 50 kGy, 70 kGy, 100 kGy and 150 kGy. The electron beam processing took to changes in the sugarcane bagasse structure and composition, lignin and cellulose cleavage. The yield of enzymatic hydrolyzes of cellulose increase about 40 % with 30 kGy of absorbed dose. (author)

  3. Electron-beam initiated HF lasers

    International Nuclear Information System (INIS)

    Gerber, R.A.; Patterson, E.L.

    1975-01-01

    Electron beams were used to ignite hydrogen/fluorine mixtures, producing laser energies up to 4.2 kJ, and giving hope that this approach may soon produce energy levels suitable for laser-fusion studies. (auth)

  4. Electron-beam welding of aluminum alloys

    Energy Technology Data Exchange (ETDEWEB)

    Brillant, Marcel; de Bony, Yves

    1980-08-15

    The objective of this article is to describe the status of the application of electron-beam welding to aluminum alloys. These alloys are widely employed in the aeronautics, space and nuclear industries.

  5. Electron beam generation form a superemissive cathode

    International Nuclear Information System (INIS)

    Hsu, T.-Y.; Liou, R.-L.; Kirkman-Amemiya, G.; Gundersen, M.A.

    1991-01-01

    An experimental study of electron beams produced by a superemissive cathode in the Back-Lighted Thyratron (BLT) and the pseudospark is presented. This work is motivated by experiments demonstrating very high current densities (≥10 kA/cm 2 over an area of 1 cm 2 ) from the pseudospark and BLT cathode. This high-density current is produced by field-enhanced thermionic emission from the ion beam-heated surface of a molybdenum cathode. This work reports the use of this cathode as a beam source, and is to be distinguished from previous work reporting hollow cathode-produced electron beams. An electron beam of more than 260 A Peak current has been produced with 15 kV applied voltage. An efficiency of ∼10% is estimated. These experimental results encourage further investigation of the super-emissive cathode as an intense electron beam source for applications including accelerator technology

  6. Method for surface treatment by electron beams

    International Nuclear Information System (INIS)

    Panzer, S.; Doehler, H.; Bartel, R.; Ardenne, T. von.

    1985-01-01

    The invention has been aimed at simplifying the technology and saving energy in modifying surfaces with the aid of electron beams. The described beam-object geometry allows to abandon additional heat treatments. It can be used for surface hardening

  7. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  8. An empirical study into the effect of long term storage (−36±2 °C) of electron-beamed ETFE on the properties of radiation-grafted alkaline anion-exchange membranes

    International Nuclear Information System (INIS)

    Kizewski, Jamie Peter; Mudri, Nurul H.; Varcoe, John R.

    2013-01-01

    The application of alkaline anion-exchange membranes (AAEM) in solid alkaline fuel cells is growing in prominence mainly due to enhanced tolerance to carbon dioxide, compared to alkaline fuel cells containing aqueous electrolytes, and the potential for using non precious metal catalysts. Radiation grafting is a common methodology for the production of functional polymers and membranes. This statistical study examines the synthesis of radiation grafted AAEMs that are formed from electron beam irradiated poly(ethylene-co-tetrafluoroethylene), EB-ETFE. It is shown that EB-ETFE can be cold stored for at least 16 months and still be used to produce ionically conductive AAEMs. The limitations of routine measurements of properties, such as dimensional increases, ion-exchange capacity, water uptakes and ionic conductivities, are also highlighted. - Highlights: • EB-ETFE films can be used to synthesise viable AAEMs even after storage at −36±2 °C for 16 months. • The AAEMs exhibited ion-exchange capacities in the range 1.0–1.8 mmol g −1 and ionic conductivities (through plane, fully hydrated) in the range 20–40 mS cm −1 at room temperature. • The ionic conductivities of the AAEMs are insensitive to the EB-ETFE storage time (up to the 16 months of this study). • The previously reported bubble formation phenomenon (within the AAEMs) is a major interference in the determination of swelling and water uptake properties. This interference appears more prominent at longer EB-ETFE cold storage times. • Water uptakes are too high for optimal utilisation in fuel cells and AAEMs with both improved ionic conductivities and lower swelling are required

  9. Electron beam crosslinked PVC : structure property relationships

    International Nuclear Information System (INIS)

    Gupta, Neeraj K.; Sabharwal, Sunil

    2001-01-01

    PVC is used extensively for its insulating properties for the manufacture of wires and cables and for other applications. Its gradual degradation, oxidation and even dehydro chlorination restricts use for long lasting period in installations such as high temperature zones, underground cables, communication systems, electro-nuclear facilities, etc. The technological properties and performance characteristics of PVC based insulation can be improved via crosslinking by high-energy electrons. PVC is however a polymer, which on irradiation predominantly undergoes degradation. To avoid degradation, it needs to be compounded with sensitizing agents or multifunctional monomers so that crosslinking is the predominant reaction. Radiation cross linkable formulations are complex mixtures of resin and various additives incorporated for achieving desired technological and performance characteristics, ease of processing and improving quality. The proper choice of additives and sensitizing agents enable low dose requirements for efficient crosslinking and improvements in various technological properties. The purposes of this work was to investigate the effect of using a binary sensitizer blend of a trifunctional monomer and a rubber in PVC, and develop suitable electron beam cross linkable formulations for wire insulation. This paper presents some aspects of the investigations and development of insulation demonstrated at industrial scale

  10. Electron Beam Treatment of Toxic Chemicals

    International Nuclear Information System (INIS)

    Jung, In Ha; Lee, Myun Joo; Lee, Oh Mi; Kim, Tae Hoon

    2011-01-01

    Polychlorinated biphenyls (PCBs) were commercially produced from 1920s as complex mixtures containing multiple isomers for a variety of applications. They are very toxic, chemically stable and resist microbial, photochemical, chemical, and thermal degradation. The public, legal, and scientific concerns about PCBs arose from research indicating they were environmental contaminants that had a potential to adversely impact the environment, and, therefore, were undesirable as commercial products. Eventually, most producers reduced or stopped production of PCBs in the 1970s. Stockholm convention on POPs (Persistent Organic Pollutants), which was effective on May 2004 and 151 nations including Korea were joined on June 2005, asked to dispose of PCBs by 2028 with environmental friendly methods. Korean government also has declared to perform by 2015. According to the Environmental law of Korea, over 2 ppm of PCBs has to be decomposed by legal methods of incineration and thermal destruction. But those are inapplicable owing to the environmental groups. KAERI(Korea Atomic Energy Research Institute) has recently developed a remarkable technology for radiation treatment of toxic chemicals including chlorides using an electron beam accelerator

  11. Electron Beam Processing of Polymers: Facts and Opportunities

    International Nuclear Information System (INIS)

    Gielenz, G.

    2006-01-01

    Electron Beam (EB) processing of polymers is a well established and mature technology in a multitude of industrial polymer applications for more than 40 years. Constant research effort in combination with emerging tailored EB process technologies, have led to numerous new (niche) applications and products within the past decade. Nonetheless, and despite the fact, that nowadays a large variety of EB and related process equipment is readily available for use by the respective industries, EB processing of polymers still takes up only a small niche in comparison to the overall polymer business. In this lecture the author attempts to present a short overview on the current industrial established and emerging radiation processing applications and the related EB equipment suppliers. Then some selected plastics business facts and figures with a forecast of the global plastics consumption situation up to 2010 will be shown. As a conclusion from these facts, some comments will be deduced, regarding the future potential, attractiveness and economical relevance of irradiation processing technologies in present day competitive global markets

  12. Flue gas cleaning by electron beam technology in 21st

    International Nuclear Information System (INIS)

    Xu Guang; Luo Jingyu; Zhang Ming

    2005-01-01

    China is paying great attention to the pollution caused by flue gases including sulfur oxides, nitrogen oxides, fine particles, and volatile organic compounds (VOC) for the environmental protection and sustainable development of China economy for 21st century. Among several promising processes, applicable to industrial scale, the electron beam (EB) scrubbing process can simultaneously remove SO 2 , NOx, PM-10 (particulate matter 10 μm or less in diameter), VOC and CO 2 from the flue gas is a new high technology combined with radiation chemistry and electron accelerator technique. The EB flue gas purification process consists of the producing ionization in the EB irradiated gases followed by the formation of free radicals and active species which ultimately forming foggy sulfur acid and nitrate acid. These acids react further with added ammonia to form ammonium sulfate and nitrates as by-products, which can be fertilizer usable in agriculture. The next stage for this technology is its optimization for the reduction of electricity energy consumption and an effective collection of by-products. Lastly the investment cost for EB method is shown to be the most economic compared with other competing methods. (S. Ohno)

  13. On the physics of electron beams in space plasmas

    International Nuclear Information System (INIS)

    Krafft, C.; Volokitin, A.

    2002-01-01

    This paper discusses the main physical processes related to the injection, the propagation and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the physical linear and nonlinear mechanisms involved in the generation, the stabilization and the saturation of the electromagnetic waves excited by the beams in wide frequency ranges. and the radiation of electron beams in space plasmas as the Earth's ionosphere. The physical mechanisms are shortly explained and illustrated with several examples of experimental results provided by various space missions. In a first part, we discuss important physical processes connected with the response of the ambient space plasma to the beam injection, and in particular, with the mechanisms of electric charge neutralization of the electron beam and of the payload carrying the injector, with the widely studied phenomenon of beam-plasma discharge as well as with the physical features of the spatio-temporal evolution and the dynamic structure of the beam in its interaction with the plasma and the emitted waves. In a second part, the main processes governing the wave emission by electron beams in space are examined; in particular, we focus on the

  14. Electron beam accelerator facilities at IPEN-CNEN/SP

    Energy Technology Data Exchange (ETDEWEB)

    Somessari, Samir L.; Silveira, Carlos G. da; Paes, Helio; Somessari, Elizabeth S.R. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], E-mail: somessar@ipen.br

    2007-07-01

    Electron beam processing is a manufacturing technique, which applies a focused beam of high-energy electrons produced by an electron accelerator to promote chemical changes within a product. At IPEN-CNEN/SP there are two electron beam accelerators Type Dynamitron{sup R} (manufactured by RDI- Radiation Dynamics Inc.) Job 188 and Job 307 models. The technical specifications for the Job 188 energy 1.5 MeV, beam current 25 mA, scan 1.20 m, beam power 37.5 kW and for the Job 307 energy 1.5 MeV, beam current 65 mA, Scan 1.20 m, beam power 97.5 kW. Some applications of the electron beam accelerator for radiation processing are wire and cable insulation crosslinking, rubber vulcanization, sterilization and disinfection of medical products, food preservation, heat shrinkable products, polymer degradation, aseptic packaging, semiconductors and pollution control. For irradiating these materials at IPEN-CNEN/SP, there are some equipment such as, underbeam capstan with speed control from 10 to 700 m/min; a track; a system to roll up and unroll wires and electric cables, polyethylene blankets and other systems to improve the quality of the products. (author)

  15. The tracking of interfaces in an electron-beam vaporizer

    International Nuclear Information System (INIS)

    Westerberg, K.W.; McClelland, M.A.; Finlayson, B.A.

    1993-03-01

    A numerical analysis is made of the material and energy flow in an electron beam vaporizer. In this system the energy from an electron beam heats metal confined in a water-cooled crucible. Metal is vaporized from a liquid pool circulating in a shell of its own solid. A modified Galerkin finite element method is used to calculate the flow and temperature fields along with the interface locations. The mesh is parameterized with spines which stretch and pivot as the phase boundaries move. The discretized equations are arranged in an ''arrow'' matrix and solved using the Newton-Raphson method. Results are given for an experimental aluminum vaporizer. The effects of buoyancy and capillary driven flow are included along with the surface contributions of vapor thrust, latent heat, thermal radiation, and crucible contact resistance

  16. High power microwave emission and diagnostics of microsecond electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Gilgenbach, R; Hochman, J M; Jayness, R; Rintamaki, J I; Lau, Y Y; Luginsland, J; Lash, J S [Univ. of Michigan, Ann Arbor, MI (United States). Intense Electron Beam Interaction Lab.; Spencer, T A [Air Force Phillips Lab., Kirtland AFB, NM (United States)

    1997-12-31

    Experiments were performed to generate high power, long-pulse microwaves by the gyrotron mechanism in rectangular cross-section interaction cavities. Long-pulse electron beams are generated by MELBA (Michigan Electron Long Beam Accelerator), which operates with parameters: -0.8 MV, 1-10 kA, and 0.5-1 microsecond pulse length. Microwave power levels are in the megawatt range. Polarization control is being studied by adjustment of the solenoidal magnetic field. Initial results show polarization power ratios up to a factor of 15. Electron beam dynamics (V{sub perp}/V{sub par}) are being measured by radiation darkening on glass plates. Computer modeling utilizes the MAGIC Code for electromagnetic waves and a single electron orbit code that includes a distribution of angles. (author). 4 figs., 4 refs.

  17. Modular low-voltage electron beams

    International Nuclear Information System (INIS)

    Berejka, A.J.; Avnery, Tovi; Carlson, Carl

    2004-01-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out--plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (<10 μm of titanium foil), solid-state 19 in. (48 cm) rack-mounted power supplies, an innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed

  18. Modular low-voltage electron beams

    Science.gov (United States)

    Berejka, Anthony J.; Avnery, Tovi; Carlson, Carl

    2004-09-01

    Modular, low-voltage systems have simplified electron beam (EB) technology for industrial uses and for research and development. Modular EB units are produced in quantity as sealed systems that are evacuated at the factory eliminating the need for vacuum pumps at the point of use. A simple plug-out—plug-in method of replacement eliminates downtime for servicing. Use of ultra-thin beam windows (innovative design to extract and spread the beam (enabling systems to be placed adjacent to each other to extend beam width) and touch-screen computer controls, combine for ease of use and electrical transfer efficiency at voltages that can be varied between 80 and 150 kV and with high beam currents (up to 40 mA across the 25 cm window). These electron systems are available in three widths, the standard 25 cm and new 5 and 40 cm beams. Traditional uses in the graphic arts and coatings areas as well as uses in surface sterilization have found these compact, lightweight (approximately 15 kg) modular beams of interest. Units have been configured around complex shapes to enable three-dimensional surface curing (as for coatings on aluminum tubing) to be achieved at high production rates. Details of the beam construction and some industrial uses are discussed.

  19. Optimization of electron beam crosslinking of wire and cable insulation

    International Nuclear Information System (INIS)

    Zimek, Z.; Przybytniak, G.; Nowicki, A.

    2011-01-01

    Complete text of publication follows. The computer simulations based on Monte Carlo method and the ModeCEB software program were carried out in connection with EB radiation set-up for crosslinking of electrical wire and cable insulation, located at the Center for Radiation Research and Technology of the Institute of Nuclear Chemistry and Technology. The theoretical predictions for absorbed dose distribution in irradiated electrical wire and cable insulation caused by scanned EB were compared to the experimental results of irradiation which were carried out in the experimental set-up based on ILU 6 electron accelerator, which is characterized by the following parameters: Electron energy 0.5-2.0 MeV; Average beam current 40-10 mA, pulse duration 400 μs; Width of scanning up to 80 cm; Scan frequency up to 50 Hz. The computer simulation of the dose distributions in two-sided irradiation system by a scanned electron beam in multilayer circular objects was performed for different process parameters; electrical wire and cable geometry (thickness of insulation layers and cupper wire diameter), type of polymer isolation, electron energy, energy spread, geometry of electron beam and electrical wire and cable distribution at irradiation zone. The geometry of electron beam distribution in irradiation zone was measured using TVA and PVC foil dosimeters for electron energy range available in ILU 6 accelerator. The temperature rise of irradiated electrical wire and irradiation homogeneity were evaluated for different experimental conditions to optimize process parameters. The obtained results of computer simulation were supported by experimental data of dose distribution based on gel-fraction measurements. Such agreement indicates that computer simulation ModeCEB is correct and sufficient for modelling of absorbed dose distribution in multi-layer circular objects irradiated with scanned electron beams. Acknowledgement: The R and D activities are supported by the European

  20. Electron-beam driven relaxation oscillations in ferroelectric nanodisks

    Energy Technology Data Exchange (ETDEWEB)

    Ng, Nathaniel; Ahluwalia, Rajeev [Institute of High Performance Computing, Singapore 138632 (Singapore); Kumar, Ashok [CSIR-National Physical Laboratory, Delhi 110012 (India); Srolovitz, David J. [Department of Materials Science and Engineering and Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania 19104 (United States); Chandra, Premala [Department of Physics and Astronomy, Center for Materials Theory, Rutgers University, Piscataway, New Jersey 08854 (United States); Scott, James F. [Department of Physics, Cavendish Laboratory, J. J. Thompson Avenue, Cambridge CB3 0HE (United Kingdom); Department of Chemistry and Department of Physics, University of St. Andrews, St. Andrews YX16 9ST (United Kingdom)

    2015-10-12

    Using a combination of computational simulations, atomic-scale resolution imaging and phenomenological modelling, we examine the underlying mechanism for nanodomain restructuring in lead zirconate titanate nanodisks driven by electron beams. The observed subhertz nanodomain dynamics are identified with relaxation oscillations where the charging/discharging cycle time is determined by saturation of charge traps and nanodomain wall creep. These results are unusual in that they indicate very slow athermal dynamics in nanoscale systems, and possible applications of gated versions are discussed.

  1. High-power free-electron laser amplifier using a scalloped electron beam and a two-stage wiggler

    Directory of Open Access Journals (Sweden)

    D. C. Nguyen

    2006-05-01

    Full Text Available High-power free-electron laser (FEL amplifiers present many practical design and construction problems. One such problem is possible damage to any optical beam control elements beyond the wiggler. The ability to increase the optical beam’s divergence angle after the wiggler, thereby reducing the intensity on the first optical element, is important to minimize such damage. One proposal to accomplish this optical beam spreading is to pinch the electron beam thereby focusing the radiation as well. In this paper, we analyze an approach that relies on the natural betatron motion to pinch the electron beam near the end of the wiggler. We also consider a step-tapered, two-stage wiggler to enhance the efficiency. The combination of a pinched electron beam and step-taper wiggler leads to additional optical guiding of the optical beam. This novel configuration is studied in simulation using the MEDUSA code. For a representative set of beam and wiggler parameters, we discuss (i the effect of the scalloped beam on the interaction in the FEL and on the focusing and propagation of the radiation, and (ii the efficiency enhancement in the two-stage wiggler.

  2. Treatment of toxic gases SO2 and NO X by electron beam irradiation

    International Nuclear Information System (INIS)

    Castro Rubio Poli, D. de; Vieira, J.M.; Campos, C.A. de.

    1993-01-01

    The removal of S O 2 and N O x by electron beam irradiation will be studied using a small scale flow system which is being set up in order to obtain basic data for the process technical and economical feasibility concerning industrial applications. The gas irradiation will be performed using a Electron Beam Accelerator with 1,5 MeV power, 25 m A current from Radiation Dynamics, Inc. USA. (author)

  3. Electron beam curable polymer thick film

    International Nuclear Information System (INIS)

    Nagata, Hidetoshi; Kobayashi, Takashi

    1988-01-01

    Currently, most printed circuit boards are produced by the selective etching of copper clads laminated on dielectric substrates such as paper/phenolic resion or nonwoven glass/epoxy resin composites. After the etchig, various components such as transistors and capacitors are mounted on the boards by soldering. But these are troublesome works, therefore, as an alternative, printing method has been investigated recently. In the printing method, conductor circuits and resistors can be made by printing and curing of the specially prepared paste on dielectric substrates. In the near future, also capacitors are made by same method. Usually, conductor paste, resistor paste and dielectric paste are employed, and in this case, the printing is screen printing, and the curing is done thermally. In order to avoid heating and the deterioration of substrates, attention was paid to electron beam curing, and electron beam curable polymer thick film system was developed. The electron beam curable paste is the milled mixture of a filler and an electron beam curable binder of oligomer/monomer. The major advantage of electron beam curable polymer thick film, the typical data of a printed resistor of this type and its trial are reported. (K.I.)

  4. Surface sterilization by low energy electron beams

    International Nuclear Information System (INIS)

    Sekiguchi, Masayuki; Tabei, Masae

    1989-01-01

    The germicidal effectiveness of low energy electron beams (175 KV) against bacterial cells was investigated. The dry spores of Bacillus pumilus ATCC 27142 and Bacillus globigii ATCC 9372 inoculated on carrier materials and irradiated by gamma rays showed the exponential type of survival curves whereas they showed sigmoidal ones when exposed to low energy electron beams. When similarly irradiated, the wet spores inoculated on membrane filter showed the same survival curves as the dry spores inoculated on carrier materials. The wet vegetative cells of Escherichia coli ATCC 25922 showed exponential curves when exposed to gamma and electron beam irradiation. Low energy electron beams in air showed little differences from nitrogen stream in their germicidal effectiveness against dry spores of B. pumilus. The D values of B. pumilus spores inoculated on metal plates decreased as the amounts of backscattering electrons from the plates increased. There was adequate correlation between the D value (linear region of survival curve), average D value (6D/6) and 1% survival dose and backscattering factor. Depth dose profile and backscatterig dose of low energy electron beams were measured by radiochromic dye film dosimeter (RCD). These figures were not always in accord with the observed germicidal effectiveness against B. pumilus spores because of varying thickness of RCD and spores inoculated on carrier material. The dry spores were very thin and this thinness was useful in evaluating the behavior of low energy electrons. (author)

  5. Developing of the protocol for electron beam food irradiation facility

    International Nuclear Information System (INIS)

    Petreska, Svetlana

    2012-01-01

    By establishing the needs for institution of new technologies in the process of food processing, in this case a randomized choice of electron beam accelerator facility, arises the need for designing a protocol for safe and secure performance of the facility. The protocol encompasses safety and security measures for protection from ionizing radiation of the individuals who work at the facility, as well as, the population and the environment in the immediate neighborhood of the facility. Thus, the adopted approach is the establishment of appropriate systems responding to the protocol. Dosimetry system, which includes appropriate procedures for accurate measure and recording of the absorbed dose values, according to the provisions for protection from ionizing radiation. Ionizing radiation protection system and providing the safety and security of the facility for food processing by means of ionizing radiation. System for providing quality and safety control of the facility for food processing by means of ionizing radiation. Pursuant to the designed a protocol for safe and secure performance of the facility for electron beam food processing, contributes to protection against ionizing radiation as occupationally exposed persons as well the population. (Author)

  6. Electron beam curing of EPDM

    International Nuclear Information System (INIS)

    Vroomen, G.L.M.; Visser, G.W.; Gehring, J.

    1991-01-01

    Normally EPDM rubbers are vulcanized by systems based on sulphur, resin or peroxide. The common feature of these systems is that they all require activator energy in the form of heat. The (extremely) high temperatures (approximately 180C) have the disadvantage that the final properties of the finished product may be affected in one way or another by a variety of uncontrolled side reactions which may occur. Radiation curing, on the other hand, is a process which differs from those mentioned above in that the final curing is carried out at about 20C under closely controlled conditions (such as radiation dose, penetration depth, etc.), and this form of curing ultimately results in a more well-defined end product. In the rubber industry, this technique is used by large rubber processors (for example, in roof sheeting and cable production). Its widespread use is, however, impeded by the high investment costs. One way of avoiding these high costs is to arrange for the products to be irradiated by contractors. The optimum radiation dose for EPDM is determined by the required pattern of properties. From this study it may be concluded that the network is primarily built up at a radiation dose of up to approximately 100 kGy. The degree to which it is built up depends partly on the coactivator used and the EPDM type used. In choosing the coactivator, allowance has to be made for its solubility in EPDM. The type of oil chosen and any stabilizer additions will affect the crosslinking efficiency. Contrary to studies published earlier, in this study it was found that when EDMA is used as a coactivator, no difference can be detected between a DCPD type (4%) and an ENB type (4%), provided both have an identical molecular weight distribution. Increasing the ENB content has less effect on the final crosslink density than using a type having a broader molecular weight distribution

  7. A model to determine the initial phase space of a clinical electron beam from measured beam data.

    NARCIS (Netherlands)

    Janssen, J.J.M.; Korevaar, E.W.; Battum, L.J. van; Storchi, P.R.; Huizenga, H.

    2001-01-01

    Advanced electron beam dose calculation models for radiation oncology require as input an initial phase space (IPS) that describes a clinical electron beam. The IPS is a distribution in position, energy and direction of electrons and photons in a plane in front of the patient. A method is presented

  8. Electron beam generation in the fore-vacuum pressure range

    CERN Document Server

    Burachevskij, Y A; Kuzemchenko, M N; Mytnikov, A V; Oks, E M

    2001-01-01

    One presents the results of investigations to generate electron beams within 0.01-0.1 Torr gas pressure range. To generate a beam one used a plasma source based on a hollow cathode discharge in combination with a plane accelerating gap. Peculiar features of electron emission and acceleration within the mentioned pressure range are associated with high probability of gas ionization in an accelerating gap and with generation of ion flow meeting electron beam. It results in reduction of discharge combustion intensification, as well as, in plasma concentration range. The developed design of an electron source enables to generate cylindrical beams with up to 1 A current and with up to 10 keV energy

  9. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  10. Electron Beam Treatment Plant for Textile Dyeing Wastewater

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Yuri; Choi, Jangseung; Ahn, Sangjun

    2006-01-01

    High positive effect of electron-beam treatment involved into the process of wastewater purification is now well established. The most effective for the purpose seem to be combine methods including both electron beam and any conventional treatment stages, i.e., under conditions when some synergistic effects can take place. Daegu Dyeing Industrial Complex (DDIC) includes about hundred factories occupying the area of 600,000m 2 with 13,000 employees in total. The production requires high consumption of water (90,000m 3 /day), steam, and electric power, being characterized by large amount of highly colored industrial wastewater. Because of increase in productivity and increased assortment of dyes and other chemicals, substantial necessity appears in re-equipment of purification facilities by application of efficient methods of wastewater treatment

  11. Development of an irradiation device for electron beam wastewater treatment

    International Nuclear Information System (INIS)

    Rela, Paulo Roberto

    2003-01-01

    When domestic or industrial effluents with synthetic compounds are disposed without an adequate treatment, they impact negatively the environment with damages to aquatic life and for the human being. Both population and use of goods and services that contribute for the hazardous waste are growing. Hazardous regulations are becoming more restrictive and technologies, which do not destroy these products, are becoming less acceptable. The electron beam radiation process is an advanced oxidation process, that produces highly reactive radicals resulting in mineralization of the contaminant. In this work was developed an irradiation system in order to optimize the interaction of electron beam delivered from the accelerator with the processed effluent. It is composed by an irradiation device where the effluent presents to the electron beam in an up flow stream and a process control unit that uses the calorimetric principle. The developed irradiation device has a different configuration from the devices used by others researchers that are working with this technology. It was studied the technical and economic feasibility, comparing with the literature the results of the irradiation device demonstrated that it has a superior performance, becoming an process for use in disinfection and degradation of hazardous organic compounds of wastewater from domestic and industrial origin, contributing as an alternative technology for Sanitary Engineering. (author)

  12. Spatially and temporally resolved diagnostics for microsecond, intense electron beams

    International Nuclear Information System (INIS)

    Gilgenbach, R.M.; Brake, M.; Horton, L.D.; Bidwell, S.; Lucey, R.F.; Smutek, L.; Tucker, J.E.

    1985-01-01

    Experiments are underway to investigate new diagnostics for electron beams in vacuum and in a plasma background. Measured parameters include temporally resolved beam current profile and beam emittance. These characterizations are being performed during electron beam diode closure experiments (1) and beam-plasma interaction experiments with either of two long-pulse accelerators: MELBA (Michigan Electron Long Beam Accelerator): Voltage = -1 MV, Current = 10 kA, at Pulselength = 0.1 to 1μs (1.4μs) for voltage flat to within +.7% (+.10%). The second accelerator is a long-pulse Febetron with parameters: Voltage = -0.5 MV, Current = 1 kA, and Pulselength = 0.3 s. Two different configurations have been developed which use Cerenkov radiation to detect electron beam current profiles as a function of time. The first uses Cerenkov emission by electrons which impinge axially on a single fiberoptic lightguide enclosed in a lucite tube. Plasma light is blocked by graphite spray or thin foil covering the end of the optical fiber. This diagnostic has the following advantages: 1) The threshold energy for Cerenkov emission effectively discriminates between high energy beam electrons and low energy (3-5 eV) plasma electrons, 2) The small, nonconducting probe introduces a minimal perturbation into the beam-plasma system, 3) Excellent signal to noise ratio is obtained because the fiberoptic signal is directly transmitted to a photomultiplier tube in the Faraday cage, 4) Quantitative data is obtained directly

  13. Electron Beam Alignment Strategy in the LCLS Undulators

    International Nuclear Information System (INIS)

    Nuhn, H

    2007-01-01

    The x-ray FEL process puts very tight tolerances on the straightness of the electron beam trajectory (2 (micro)m rms) through the LCLS undulator system. Tight but less stringent tolerances of 80 (micro)m rms vertical and 140 (micro)m rms horizontally are to be met for the placement of the individual undulator segments with respect to the beam axis. The tolerances for electron beam straightness can only be met through beam-based alignment (BBA) based on electron energy variations. Conventional alignment will set the start conditions for BBA. Precision-fiducialization of components mounted on remotely adjustable girders and the use of beam-finder wires (BFW) will satisfy placement tolerances. Girder movement due to ground motion and temperature changes will be monitored continuously by an alignment monitoring system (ADS) and remotely corrected. This stabilization of components as well as the monitoring and correction of the electron beam trajectory based on BPMs and correctors will increase the time between BBA applications. Undulator segments will be periodically removed from the undulator Hall and measured to monitor radiation damage and other effects that might degrade undulator tuning

  14. Development of spin polarized electron beam

    International Nuclear Information System (INIS)

    Nakanishi, Tsutomu

    2001-01-01

    Physical structure of the polarized electron beam production is explained in this paper. Nagoya University group has been improving the quality of beam. The present state of quality and the development objects are described. The new results of the polarized electron reported in 'RES-2000 Workshop' in October 2000, are introduced. The established ground of GaAs type polarized electron beam source, observation of the negative electron affinity (NEA) surface, some problems of NEA surface of high energy polarized electron beam such as the life, time response, the surface charge limited phenomena of NEA surface are explained. The interested reports in the RES-2000 Workshop consisted of observation by SPLEEM (Spin Low Energy Electron Microscope), Spin-STM and Spin-resolved Photoelectron Spectroscopy. To increase the performance of the polarized electron source, we will develop low emittance and large current. (S.Y.)

  15. Apparatus for electron beam irradiation of objects

    International Nuclear Information System (INIS)

    Dmitriev, S.P.; Ivanov, A.S.; Sviniin, M.P.; Fedotov, M.T.

    1984-01-01

    This patent provides an apparatus for electron beam irradiation of objects, comprising a shaper of a ribbon-shaped electron beam and a deflecting electromagnet having a frame-type magnetic circuit and used to direct said electron beam onto an irradiated object substantially at an angle of 90 degrees. The deflecting electromagnet has two poles extended over the width of the irradiated object and comprises two windings embracing said poles and connected to a d.c. source. The deflecting electromagnet is arranged in such a manner that the trajectories of the electrons at an area from the shaper to the electromagnet are inclined to the plane of the frame of its magnetic circuit

  16. Electron beam processing of combustion flue gases

    International Nuclear Information System (INIS)

    1987-07-01

    This report contains the papers presented at the consultants' meeting on electron beam processing of combustion flue gases. The meeting provided an excellent opportunity for exchanging information and reviewing the current status of technology development. Characteristics of the electron beam processing recognized by the meeting are: capability of simultaneous removals of SO 2 and NO x , safe technology and simplicity of control, dry process without waste water to be treated, cost benefit of electron beam processing compared with conventional technology and the conversion of SO 2 and NO x to a by-product that can be used as agricultural fertilizer. A separate abstract was prepared for each of the 22 papers in this technical report

  17. A simple electron-beam lithography system

    DEFF Research Database (Denmark)

    Mølhave, Kristian; Madsen, Dorte Nørgaard; Bøggild, Peter

    2005-01-01

    A large number of applications of electron-beam lithography (EBL) systems in nanotechnology have been demonstrated in recent years. In this paper we present a simple and general-purpose EBL system constructed by insertion of an electrostatic deflector plate system at the electron-beam exit...... of the column of a scanning electron microscope (SEM). The system can easily be mounted on most standard SEM systems. The tested setup allows an area of up to about 50 x 50 pm to be scanned, if the upper limit for acceptable reduction of the SEM resolution is set to 10 run. We demonstrate how the EBL system can...... be used to write three-dimensional nanostructures by electron-beam deposition. (C) 2004 Elsevier B.V. All rights reserved....

  18. Electron Beam Lithography for nano-patterning

    DEFF Research Database (Denmark)

    Greibe, Tine; Anhøj, Thomas Aarøe; Khomtchenko, Elena

    2014-01-01

    in a polymer. Electron beam lithography is a suitable method for nano-sized production, research, or development of semiconductor components on a low-volume level. Here, we present electron beam lithography available at DTU Danchip. We expertize a JEOL 9500FZ with electrons accelerated to an energy of 100ke......, the room temperature is controlled to an accuracy of 0.1 degrees in order to minimize the thermally induced drift of the beam during pattern writing. We present process results in a standard positive tone resist and pattern transfer through etch to a Silicon substrate. Even though the electron beam...... of electrons in the substrate will influence the patterning. We present solutions to overcome these obstacles....

  19. Product conveying system for 10 MeV electron beam accelerator for electron beam centre, Kharghar, Navi Mumbai

    International Nuclear Information System (INIS)

    Bandi, L.N.; Lavale, D.S.; Sarma, K.S.S.; Khader, S.A.; Assadullah, M.; Sabharwal, S.

    2003-01-01

    In industrial radiation processing applications using accelerators, product conveying system plays a vital role in exposing the product to high energy electron beam for imparting specified dose to the product and delivering required through puts. The speed of the conveyor corresponds to a definite time of exposure of the product in the radiation zone. Design of suitable conveyor system for a variety of products with differing dose requirements call for a conveyor with wide speed range. This paper discusses the design features of a suitable under beam conveyor system for 10 MeV, 10 kW accelerator for processing a range of products including medical and food products

  20. Behavioral changes induced by single and multiple electron beam pulses

    International Nuclear Information System (INIS)

    Pease, V.P.; McNulty, P.J.

    1985-01-01

    The effects of single, and low-dose, high-dose-rate and multiple electron beam pulses on passive avoidance behavior in mice were studied. Passive avoidance was measured by recording the time that an animal took to enter a chamber from a narrow platform. There were four conditions in the experiment: (1) no shock no radiation-control, (2) radiation only, (3) shock only, and (4) radiation plus shock. Forty animals were run for each data point. Dose rate was held constant at 9 x 10/sup 7/ rads/sec. Average doses for the two single pulses were 7.18 and 8.72 rads. The average total dose for a 25 pulse per second condition was 324.0 rads. The differences between the single versus multiple pulse radiation-only conditions were significant with longer avoidance latencies in the multiple pulse condition. Avoidance latencies were also significantly longer in the shock plus radiation condition for the multiple beam pulse than the single pulse. It is concluded that single and multiple electron beam pulses significantly effect behavior, in this case producing avoidance

  1. A directly heated electron beam line source

    International Nuclear Information System (INIS)

    Iqbal, M.; Masood, K.; Rafiq, M.; Chaudhry, M.A.

    2002-05-01

    A 140-mm cathode length, Electron Beam Line Source with a high degree of focusing of the beam is constructed. The design principles and basic characteristic considerations for electron beam line source consists of parallel plate electrode geometric array as well as a beam power of 35kW are worked out. The dimensions of the beam at the work site are 1.25xl00mm. The gun is designed basically for the study of evaporation and deposition characteristic of refractory metals for laboratory use. However, it may be equally used for melting and casting of these metals. (author)

  2. Green coffee decontamination by electron beam irradiation

    International Nuclear Information System (INIS)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-01-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties

  3. Development of electron beam deflection circuit

    International Nuclear Information System (INIS)

    Leo Kwee Wah; Lojius Lombigit; Abu Bakar Ghazali; Azaman

    2007-01-01

    This paper describes a development of a power supply circuit to deflect and move the electron beam across the window of the Baby electron beam machine. It comprises a discussion of circuit design, its assembly and the test results. A variety of input and output conditions have been tested and it was found that the design is capable to supply 1.0 A with 50Hz on X-axis coil and 0.4A with 500Hz on Y-axis coil. (Author)

  4. Tesla-transformer-type electron beam accelerator

    International Nuclear Information System (INIS)

    Liu Jinliang; Zhong Huihuang; Tan Qimei; Li Chuanlu; Zhang Jiande

    2002-01-01

    An electron-beam Tesla-transformer accelerator is described. It consists of the primary storage energy system. Tesla transformer, oil Blumlein pulse form line, and the vacuum diode. The experiments of initial stage showed that diode voltage rises up to about 500 kV with an input of 20 kV and the maximum electron-beam current is about 9 kA, the pulse width is about 50 ns. This device can operate stably and be set up easily

  5. High energy polarized electron beams

    International Nuclear Information System (INIS)

    Rossmanith, R.

    1987-01-01

    In nearly all high energy electron storage rings the effect of beam polarization by synchrotron radiation has been measured. The buildup time for polarization in storage rings is of the order of 10 6 to 10 7 revolutions; the spins must remain aligned over this time in order to avoid depolarization. Even extremely small spin deviations per revolution can add up and cause depolarization. The injection and the acceleration of polarized electrons in linacs is much easier. Although some improvements are still necessary, reliable polarized electron sources with sufficiently high intensity and polarization are available. With the linac-type machines SLC at Stanford and CEBAF in Virginia, experiments with polarized electrons will be possible

  6. A non-docking intraoperative electron beam applicator system

    International Nuclear Information System (INIS)

    Palta, J.R.; Suntharalingam, N.

    1989-01-01

    A non-docking intraoperative radiation therapy electron beam applicator system for a linear accelerator has been designed to minimize the mechanical, electrical, and tumor visualization problems associated with a docking system. A number of technical innovations have been used in the design of this system. These include: (a) a new intraoperative radiation therapy cone design that gives a better dose uniformity in the treatment volume at all depths; (b) a collimation system which reduces the leakage radiation dose to tissues outside the intraoperative radiation therapy cone; (c) a non-docking system with a translational accuracy of 2 mm and a rotational accuracy of 0.5 degrees; and (d) a rigid clamping system for the cones. A comprehensive set of dosimetric characteristics of the intraoperative radiation therapy applicator system is presented

  7. Double-sided electron-beam generator for KrF laser excitation

    International Nuclear Information System (INIS)

    Schlitt, L.; Swingle, J.

    1980-05-01

    Several laser systems excited by electron beam have been identified as candidates for pump sources for laser fusion applications. The electron beam generators required must be compact, reliable and capable of synchronization with other system components. A KrF laser producing a minimum output of 25 J was needed for the RAPIER (Raman Amplifier Pumped by Intensified Excimer Radiation) system. A double-sided electron beam system was designed and constructed specifically for this purpose and has produced > 35 J of KrF output. Each of the two electron beam machines in the system operates with an rms jitter of 0.4 ns and together occupy approx. 3.5 m 2 of floor space. The successful operation of this laser has engendered requests for a description of the engineering details of this system. This document contains a brief description of the design issues and a full set of engineering drawings for this KrF laser amplifier

  8. Comparative effects of gamma-rays and electron beams on peroxide formation in phosphatidylcholine

    International Nuclear Information System (INIS)

    Todoriki, S.; Hayashi, T.

    1994-01-01

    Phosphatidylcholine was irradiated in the state of a film or liposome with gamma-rays or electron beams, and the amount of peroxide was determined to compare the effects of the two types of radiation. The amounts of peroxide formed in both the film and liposome with gamma-rays were significantly larger than those with electron beams, when the samples were irradiated at the same dose. Proteins such as bacteriorhodopsin reduced the degree of peroxide formation in liposome, and the effect of gamma-rays was much larger than that of electron beams, even in the presence of protein. The results of the present investigation indicate that the effects of gamma-rays on peroxide formation in phosphatidylcholine were significantly larger than those of electron beams, irrespective of the state of the lipid

  9. Scintillation of lead tungstate crystal studied with single-electron beam from KUFEL

    Energy Technology Data Exchange (ETDEWEB)

    Rizwan, Mohamad, E-mail: rizwan@nucl.kyushu-u.ac.jp; Uozumi, Yusuke; Matsuo, Kazuki [Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University, Fukuoka (Japan); Ohgaki, Hideaki; Kii, Toshiteru; Zen, Heishun [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto (Japan); Tsamalaidze, Zviadi; Evtoukhovitch, Petr; Valentin, Samoilov [Joint Institute for Nuclear Research, JINR, Joliot-Curie Str.6, Dubna (Russian Federation)

    2015-04-29

    Lead tungstate (PWO) crystal has a very fast response, high atomic density and high radiation hardness. Therefore, they are suitable to be used for high-energy nuclear data measurements under high-background circumstances. Although a good electron-ion separation with a pulse shape analysis technique is essential, scintillation pulse shapes have not been observed with electron beams of a wide energy range. A single-electron beam technique has been developed at Kyoto University Free Electron Laser (KUFEL), and electron beams of 4-38 MeV are available. During the experiments, single electron beams bombarded a PWO crystal. By using oscilloscope we observed scintillation pulses of a PWO crystal coupled with a photomultiplier tube. Measured spectra were compared with the simulation code of EGS5 to analyze scattering effects. As the result, the pulse amplitudes show good linearity and the pulse shapes are almost constant in the observed energy range.

  10. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    Science.gov (United States)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz.

  11. Numerical Simulation and Mechanical Design for TPS Electron Beam Position Monitors

    International Nuclear Information System (INIS)

    Hsueh, H. P.; Kuan, C. K.; Ueng, T. S.; Hsiung, G. Y.; Chen, J. R.

    2007-01-01

    Comprehensive study on the mechanical design and numerical simulation for the high resolution electron beam position monitors are key steps to build the newly proposed 3rd generation synchrotron radiation research facility, Taiwan Photon Source (TPS). With more advanced electromagnetic simulation tool like MAFIA tailored specifically for particle accelerator, the design for the high resolution electron beam position monitors can be tested in such environment before they are experimentally tested. The design goal of our high resolution electron beam position monitors is to get the best resolution through sensitivity and signal optimization. The definitions and differences between resolution and sensitivity of electron beam position monitors will be explained. The design consideration is also explained. Prototype deign has been carried out and the related simulations were also carried out with MAFIA. The results are presented here. Sensitivity as high as 200 in x direction has been achieved in x direction at 500 MHz

  12. Penetration of electronic beams in ionizing media

    International Nuclear Information System (INIS)

    Martiarena, M.L.; Zanete, D.H.; Garibotti, C.R.

    1988-01-01

    It is studied the penetration of an electron beam in an ionizable medium by means of a generalized kinetic equation. This equation is related to elastic collisions, processes of creation and destruction of particles. By integrating numerically the transport equation, it can be evaluated the relative effects of all the processes involved in the evolution of the system. (A.C.A.S.) [pt

  13. Economy in utilizing electron beam accelerators

    International Nuclear Information System (INIS)

    Takahashi, Masao

    1980-01-01

    As the typical industrialized processes using electron beam irradiation, the following items may be given: the manufacture of cables covered with cross-linking polyethylene or PVC, heat-contracting material, cross-linking polyethylene foam, etc., and the curing of coatings or surface finishes. The results of investigating economy in these processes are described. First, the running cost of electron beam irradiation equipments is calculated. The result shows that, in general, the unit cost of the equipments becomes small with increasing output, therefore the selection of large power equipments may be advantageous for economy. Other important factors concerning the equipments are the reliability and lifetime which are being improved every year and the improvement of the operational efficiency of the equipments. Next, the comparison of cost was made for each industrialized process of the cables covered with cross-linking polyethylene, polyethylene foam, and the curing of coatings. In general, the processing cost is smaller and the depreciation cost is larger in electron beam irradiation process as compared with conventional processes. In addition, since the productive capacity is larger in electron beam process it is preponderant when the amount of production is large. In the industrialized examples, unique processes or features which are not obtainable by other methods are attained. (Wakatsuki, Y.)

  14. Electron beams, lenses, and optics. Volume 2

    International Nuclear Information System (INIS)

    El-Kareh, A.B.; El-Kareh, J.C.J.

    1970-01-01

    This volume presents a systematic coverage of aberrations. It analyzes the geometrical aberrations and treats the spherical and chromatic aberrations in great detail. The coefficients of spherical and chromatic aberration have been computed for a series of electrostatic and magnetic lenses and are listed in table form. The book also covers space charge and its effect on highly focused electron beams

  15. Electron Beam interaction with an inhomogeneous

    Energy Technology Data Exchange (ETDEWEB)

    Zaki, N G; El-Shorbagy, Kh H [Plasma physics and Nuclear Fusion Dept. Nuclear Research Centre Atomic Energy Authority, Cairo, (Egypt)

    1997-12-31

    The linear and nonlinear interaction of an electron beam with an inhomogeneous semi bounded warm plasma is investigated. The amount of energy absorbed by the plasma is obtained. The formation of waves at double frequency at the inlet of the beam into the plasma is also considered.

  16. Electron beam flue gas treatment process. Review

    International Nuclear Information System (INIS)

    Honkonen, V.A.

    1996-01-01

    The basis of the process for electron beam flue gas treatment are presented in the report. In tabular form the history of the research is reviewed. Main dependences of SO 2 and NO x removal efficiencies on different physico-chemical parameters are discussed. Trends concerning industrial process implementation are presented in the paper,finally. (author). 74 refs, 11 figs, 1 tab

  17. Electron beam welding fundamentals and applications

    International Nuclear Information System (INIS)

    Mara, G.L.; Armstrong, R.E.

    1975-01-01

    The electron beam welding process is described and the unique mode of operation and penetration explained by a description of the forces operating within the weld pool. This penetration model is demonstrated by high speed cinematography of the weld pool on several materials. The conditions under which weld defects are formed are discussed and examples are presented. (auth)

  18. Electron beam instabilities in gyrotron beam tunnels

    International Nuclear Information System (INIS)

    Pedrozzi, M.; Alberti, S.; Hogge, J.P.; Tran, M.Q.; Tran, T.M.

    1997-10-01

    Electron beam instabilities occurring in a gyrotron electron beam can induce an energy spread which might significantly deteriorate the gyrotron efficiency. Three types of instabilities are considered to explain the important discrepancy found between the theoretical and experimental efficiency in the case of quasi-optical gyrotrons (QOG): the electron cyclotron maser instability, the Bernstein instability and the Langmuir instability. The low magnetic field gradient in drift tubes of QOG makes that the electron cyclotron maser instability can develop in the drift tube at very low electron beam currents. Experimental measurements show that with a proper choice of absorbing structures in the beam tunnel, this instability can be suppressed. At high beam currents, the electrostatic Bernstein instability can induce a significant energy spread at the entrance of the interaction region. The induced energy spread scales approximately linearly with the electron beam density and for QOG one observes that the beam density is significantly higher than the beam density of an equivalent cylindrical cavity gyrotron. (author) figs., tabs., refs

  19. Electron beam emittance monitor for the SSC

    International Nuclear Information System (INIS)

    Tsyganov, E.; Meinke, R.; Nexsen, W.; Kauffmann, S.; Zinchenko, A.; Taratin, A.

    1993-05-01

    A nondestructive beam profile monitor for the Superconducting Super Collider (SSC) is presented using as a probe a low-energy electron beam interacting with the proton bunch charge. Results using a full Monte Carlo simulation code look promising for the transverse and longitudinal beam profile measurements

  20. An electron beam imaging system for quality assurance in IORT

    Science.gov (United States)

    Casali, F.; Rossi, M.; Morigi, M. P.; Brancaccio, R.; Paltrinieri, E.; Bettuzzi, M.; Romani, D.; Ciocca, M.; Tosi, G.; Ronsivalle, C.; Vignati, M.

    2004-01-01

    Intraoperative radiation therapy is a special radiotherapy technique, which enables a high dose of radiation to be given in a single fraction during oncological surgery. The major stumbling block to the large-scale application of the technique is the transfer of the patient, with an open wound, from the operating room to the radiation therapy bunker, with the consequent organisational problems and the increased risk of infection. To overcome these limitations, in the last few years a new kind of linear accelerator, the Novac 7, conceived for direct use in the surgical room, has become available. Novac 7 can deliver electron beams of different energies (3, 5, 7 and 9 MeV), with a high dose rate (up to 20 Gy/min). The aim of this work, funded by ENEA in the framework of a research contract, is the development of an innovative system for on-line measurements of 2D dose distributions and electron beam characterisation, before radiotherapy treatment with Novac 7. The system is made up of the following components: (a) an electron-light converter; (b) a 14 bit cooled CCD camera; (c) a personal computer with an ad hoc written software for image acquisition and processing. The performances of the prototype have been characterised experimentally with different electron-light converters. Several tests have concerned the assessment of the detector response as a function of impulse number and electron beam energy. Finally, the experimental results concerning beam profiles have been compared with data acquired with other dosimetric techniques. The achieved results make it possible to say that the developed system is suitable for fast quality assurance measurements and verification of 2D dose distributions.

  1. Experimental investigations of interaction of supercritical electron beams with plasma

    International Nuclear Information System (INIS)

    Chupikov, P.T.; Medvedev, D.V.; Onishchenko, I.N.; Panasenko, B.D.; Faehl, R.J.

    2002-01-01

    The first section of the collective ions acceleration based on simultaneous temporal and spatial modulation of relativistic electron beam (REB) was studied experimentally. The virtual cathode was originated in the electrodynamic structure consisting of two tubes with different diameters (jump of electrodynamics) by REB, produced in magnetically insulated diode. At plasma assistance the low-frequency oscillations of REB current and the low-frequency microwave radiation were obtained due to the virtual cathode periodical relaxation in the processes of charge compensation by ionized residual gas

  2. Study on radiation-induced reaction in microscopic region for basic understanding of electron beam patterning in lithographic process. 2. Relation between resist space resolution and space distribution of ionic species

    International Nuclear Information System (INIS)

    Saeki, Akinori; Kozawa, Takahiro; Yoshida, Yoichi; Tagawa, Seiichi

    2002-01-01

    For basic research on electron beam lithography, the time-dependent distribution was measured. In the case of nano-scale electron beam lithography, the distribution of ionic species is thought to have an influence on the space resolution or the line edge roughness. As a model compound of a resist resin, liquid n-dodecane was used as a sample. The experiment was carried out using the subpicosecond pulse radiolysis. The experimental data was analyzed by Monte Carlo simulation based on the diffusion in an electric field. The simulation data were convoluted by the response function and fitted to the experimental data. By transforming the time-dependent behavior of cation radicals to the distribution function of cation radical-electron distance, the time-dependent distribution was obtained. Subsequently, the relation between the space resolution and the space distribution of ionic species was discussed. (author)

  3. VOC removal by microwave, electron beam and catalyst technique

    International Nuclear Information System (INIS)

    IghigeanuI, D.; Martin, D.; OproiuI, C.; Manaila, E.; Craciun, G.; Calinescu, I.; Zissulescu, E.

    2007-01-01

    A hybrid technique, developed for VOCs removal using microwave (MW) treatment, electron beam (EB) irradiation and catalyst method, is presented. Two hybrid laboratory installations, developed for the study of air pollution control by combined EB irradiation, MW irradiation and catalyst, are described. Air loaded with toluene was treated at different MW power levels, water content, flow rates, and different irradiation modes, separately and combined with MW and EB. Also, simultaneous EB and MW irradiation method was applied to SO 2 and NO x removal. Real synergy effects between EB induced NTP, MW induced NTP and catalysis can be observed

  4. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J. E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R. E.; Maruyama, T.; Miller, R. H.; Wang, J. W.; Zhou, F.

    2007-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of ≥200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while ≥500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  5. Low Emittance Guns for the ILC Polarized Electron Beam

    International Nuclear Information System (INIS)

    Clendenin, J.E.; Brachmann, A.; Ioakeimidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.H.; Wang, J.W.; Zhou, F.; SLAC

    2006-01-01

    Polarized electron beams generated by DC guns are routinely available at several accelerators including JLAB, Mainz and SLAC. These guns operate with a cathode bias on the order of -100 kV. To minimize space charge effects, relatively long bunches are generated at the gun and then compressed longitudinally external to the gun just before and during initial acceleration. For linear colliders, this compression is accomplished using a combination of rf bunchers. For the basic design of the International Linear Collider (ILC), a 120 kV DC photocathode gun is used to produce a series of nanosecond bunches that are each compressed by two sub-harmonic bunchers (SHBs) followed by an L-band buncher and capture section. The longitudinal bunching process results in a significantly higher emittance than produced by the gun alone. While high-energy experiments using polarized beams are not generally sensitive to the source emittance, there are several benefits to a lower source emittance including a simpler more efficient injector system and a lower radiation load during transport especially at bends as at the damping ring. For the ILC, the SHBs could be eliminated if the voltage of the gun is raised sufficiently. Simulations using the General Particle Tracer (GPT) package indicate that a cathode bias voltage of (ge)200 kV should allow both SHBs to be operated at 433 or even 650 MHz, while (ge)500 kV would be required to eliminate the SHBs altogether. Simulations can be used to determine the minimum emittance possible if the injector is designed for a given increased voltage. A possible alternative to the DC gun is an rf gun. Emittance compensation, routinely used with rf guns, is discussed for higher-voltage DC guns

  6. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  7. Pretreatment of sugarcane bagasse using the advanced oxidation process by electron beam for enzymatic hydrolysis of cellulose

    International Nuclear Information System (INIS)

    Ribeiro, Marcia Almeida

    2013-01-01

    The sugar cane bagasse is a renewable energy source and a raw material promise in the biofuel production, once represents about 30% of glucose contained in the plant with the potential to be hydrolyzed and then converted to ethanol. The bagasse is composed of cellulose, straight chain of glucose, of hemicellulose, an amorphous polymer consisting of xylose, arabinose, galactose, and mannose, and of lignin, a complex polymer consisting of fenilpropan units that acts as waterproof coating on the fibers, which is hard to remove due its recalcitrant nature. The aim of this work was to study the electron beam processing as a pretreatment of sugarcane bagasse to enzymatic hydrolysis of cellulose. The pretreatment of sugarcane bagasse is one of the most important steps to make this material economically viable and competitive on the energy production. As a pretreatment the electron beam processing can weak the hemicellulose and lignin structures by the action highly reactive radicals that breaks the links, reducing the degree of polymerization fibers. It was evaluated the chemical and structural modifications on fibers caused by the irradiation, the enzymatic hydrolysis of electron beam as the only pretreatment and combined to steam explosion. For enzymatic hydrolysis it was used the commercial enzymes from Novozymes. The radiation processing promotes changes in structure and composition of sugarcane bagasse, increasing the solubility, that is related to hemicellulose and cellulose cleavage, and also increasing the enzymatic conversion yield. In the case of exploded bagasse there is no changes in the enzymatic hydrolysis yield, however the electron beam processing promoted a 67% reduction of furfural, that is formed in the steam explosion process. (author)

  8. Flame retardant cotton fabrics by electron beam-induced polymerization of vinyl phosphonate oligomer

    International Nuclear Information System (INIS)

    Sawai, Takeshi; Ametani, Kazuo; Enomoto, Ichiro

    1988-01-01

    Vinyl phosphonate oligomer is presently used commercially as a cellulosic flame retardant in conjugation with N-methylol acrylamide, using a persulfate catalyst and a thermal cure. This combination can also be cured at room temperature with electron beams, as can the vinyl phosphonate alone. For the textile application, fixation of flame retardants by electron beams with low energy is one of the most promising applications. For the purpose of preparing flame resistant cotton fabrics such as bed sheets and pajamas, flame retardant curing of vinyl phosphonate oligomer on cotton fabrics was examined using electron beams from a self-sealed electron beam processor and gamma rays from a 60 Co source. A joint investigation was undertaken by the Tokyo Metropolitan Textile Research Institute and Tokyo Metropolitan Isotope Research Center to determine the feasibility of curing vinyl phosphonate oligomer on the cotton fabrics for textile finishing. (author)

  9. Discrimination of damages depending on the types of lactic dehydrogenase isozymes in electron beam irradiation

    International Nuclear Information System (INIS)

    Ohta, Akishige; Matsubayashi, Takashi; Liu Xiaolan; Takizawa, Haruki.

    1995-01-01

    Lactate dehydrogenase (EC 1.1.1.27,LDH) was a tetrameric molecule. The five different combinations of two different polypeptide chains can be readily identified by electrophoresis and ion-exchange chromatography. Injury patterns of LDH activity following electron-beam irradiation was investigated by assaying activities of three isozymes (pig heart LDH;M 4 , rabbit muscle LDH;H 4 , chicken heart LDH;M 3 H 1 ). Following results were obtained in the electron beam irradiation to three kinds of LDH isozymes: 1) Each isozyme has respective different reactivities to the electron beam irradiation. 2) Among the isozymes, M 4 enzyme was increased its enzymatic activity by the irradiations of low-level doses. 3) For the H 4 enzymes, an increasing phenomenon of -SH group was found in the low-level doses of electron beam irradiation. (author)

  10. Development of mobile electron beam plant for environmental applications

    International Nuclear Information System (INIS)

    Han, Bumsoo; Kim, Jinkyu; Kang, Wongu; Choi, Jang Seung; Jeong, Kwang-Young

    2016-01-01

    Due to the necessity of pilot scale test facility for continuous treatment of wastewater and gases on site, a mobile electron beam irradiation system mounted on a trailer has developed. This mobile electron beam irradiation system is designed for the individual field application with self-shielded structure of steel plate and lead block which will satisfy the required safety figures of International Commission on Radiological Protection (ICRP). Shielding of a mobile electron accelerator of 0.7 MeV, 30 mA has been designed and examined by Monte Carlo technique. Based on a 3-D model of electron accelerator shielding which is designed with steel and lead shield, radiation leakage was examined using the Monte Carlo N-Particle Transport (MCNP) Code. Simulations with two different versions (version 4c2 and version 5) of MCNP code showed agreements within statistical uncertainties, and the highest leakage expected is 5.5061×10 −01 (1±0.0454) μSv/h, which is far below the tolerable radiation dose limit for occupational workers. This unit could treat up to 500 m 3 of liquid waste per day at 2 kGy or 10,000 N m 3 of gases per hour at 15 kGy. - Highlights: • A mobile electron beam irradiation system mounted on a trailer has developed. • It is designed for treatment of wastewater and flue gas on site. • Shielding of 0.7 MeV, 30 mA accelerator has done by a Monte Carlo technique. • It can treat up to 500 m 3 /d of liquid waste at 2 kGy or 10,000 N m 3 /h of gas at 15 kGy.

  11. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  12. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  13. Electron beam driven disordering in small particles

    International Nuclear Information System (INIS)

    Vanfleet, R.R.; Mochel, J.

    1997-01-01

    Small metal particles in the range of a few nanometers in diameter are seen to progressively disorder when the 100 keV electron beam of a Scanning Transmission Electron Microscope (STEM) is held stationary on the particle. The diffraction pattern of the individual particle is seen to progress from an initial array of indexable diffraction spots to a mixture of diffraction spots and amorphous-like rings and finally to rings with no persistent diffraction spots. After the electron beam is removed, the particles will recrystallize after minutes or hours. Only particles below a critical size are seen to fully disorder. The authors have observed this in platinum, palladium, rhodium, and iridium and based on the model of disordering process believe it is a universal effect. It has also been observed with a platinum ruthenium alloy. They discuss the mechanism of this disordering and the structure of the resulting disordering particle for the case of platinum clusters

  14. Electron beam extraction from a HVPES

    Energy Technology Data Exchange (ETDEWEB)

    Marghitu, S; Cramariuc, R [Accelerators Laboratory, Institute of Physics and Technology for Radiation Devices, PO Box MG-06, R-76900 Bucharest (Romania); Nicolescu, I; Niculescu, M [Institute of Research and Design for Electrical Engineering, ICPE - Electrostatica, Splaiul Unirii 313, Sect. 3, R-74204 Bucharest (Romania)

    1997-12-31

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, `a discharge space`, filled with plasma and fast electrons and another, `working space`, occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I{sub d} - discharge current, U{sub d} - discharge voltage, were the same as for the reference geometry. (authors) 5 refs., 4 figs., 3 tabs.

  15. Electron beam extraction from a HVPES

    International Nuclear Information System (INIS)

    Marghitu, S.; Cramariuc, R.; Nicolescu, I.; Niculescu, M.

    1996-01-01

    The results of the research concerning the extraction system of the fast electrons from a cold cathode high voltage glow discharge plasma electron source (HVPES) are presented. For using the electron beam in a more flexible way, that is changing the shape of the minimum cross-section, (or beam cross-over), of the beam in a sample S frontal plane, without perturbing the discharge parameters, some modifications to a reference internal geometry were tested. Finally, a geometry was found in which the discharge volume may be separated in two parts, one, 'a discharge space', filled with plasma and fast electrons and another, 'working space', occupied specially by the fast electron beam. In this new geometry the electrical discharge parameters, I d - discharge current, U d - discharge voltage, were the same as for the reference geometry. (authors)

  16. Electron Beam Scanning in Industrial Applications

    Science.gov (United States)

    Jongen, Yves; Herer, Arnold

    1996-05-01

    Scanned electron beams are used within many industries for applications such as sterilization of medical disposables, crosslinking of wire and cables insulating jackets, polymerization and degradation of resins and biomaterials, modification of semiconductors, coloration of gemstones and glasses, removal of oxides from coal plant flue gasses, and the curing of advanced composites and other molded forms. X-rays generated from scanned electron beams make yet other applications, such as food irradiation, viable. Typical accelerators for these applications range in beam energy from 0.5MeV to 10 MeV, with beam powers between 5 to 500kW and scanning widths between 20 and 300 cm. Since precise control of dose delivery is required in many of these applications, the integration of beam characteristics, product conveyance, and beam scanning mechanisms must be well understood and optimized. Fundamental issues and some case examples are presented.

  17. Electron beam facility for divertor target experiments

    International Nuclear Information System (INIS)

    Anisimov, A.; Gagen-Torn, V.; Giniyatulin, R.N.

    1994-01-01

    To test different concepts of divertor targets and bumpers an electron beam facility was assembled in Efremov Institute. It consists of a vacuum chamber (3m 3 ), vacuum pump, electron beam gun, manipulator to place and remove the samples, water loop and liquid metal loop. The following diagnostics of mock-ups is stipulated: (1) temperature distribution on the mock-up working surface (scanning pyrometer and infra-red imager); (2) temperature distribution over mocked-up thickness in 3 typical cross-sections (thermo-couples); (3) cracking dynamics during thermal cycling (acoustic-emission method), (4) defects in the mock-up before and after tests (ultra-sonic diagnostics, electron and optical microscopes). Carbon-based and beryllium mock-ups are made for experimental feasibility study of water and liquid-metal-cooled divertor/bumper concepts