WorldWideScience

Sample records for colostrum-derived inhibitory lipid

  1. Inhibitory effects of soluble algae products (SAP) released by Scenedesmus sp. LX1 on its growth and lipid production.

    Zhang, Tian-Yuan; Yu, Yin; Wu, Yin-Hu; Hu, Hong-Ying

    2013-10-01

    Soluble algal products (SAP) accumulated in culture medium via water reuse may affect the growth of microalga during the cultivation. Scenedesmus sp. LX1, a freshwater microalga, was used in this study to investigate the effect of SAP on growth and lipid production of microalga. Under the SAP concentrations of 6.4-25.8 mg L(-1), maximum algal density (K) and maximum growth rate (Rmax) of Scenedesmus sp. LX1 were decreased by 50-80% and 35-70% compared with the control group, respectively. The effect of SAP on lipid accumulation of Scenedesmus sp. LX1 was non-significant. According to hydrophilic-hydrophobic and acid-base properties, SAP was fractionized into six fractions. All of the fractions could inhibit the growth of Scenedesmus sp. LX1. Organic bases (HIB, HOB) and hydrophilic acids (HIA) showed the strongest inhibition. HIA could also decrease the lipid content of Scenedesmus sp. LX1 by 59.2%. As the inhibitory effect, SAP should be seriously treated before water reuse. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Lipid Oxidation Inhibitory Effects and Phenolic Composition of Aqueous Extracts from Medicinal Plants of Colombian Amazonia

    José Ignacio Ruiz-Sanz

    2012-05-01

    Full Text Available Diverse plants of ethnobotanic interest in Amazonia are commonly used in traditional medicine. We determined the antioxidant potential against lipid peroxidation, the antimicrobial activity, and the polyphenol composition of several Amazonian plants (Brownea rosademonte, Piper glandulosissimum, Piper krukoffii, Piper putumayoense, Solanum grandiflorum, and Vismia baccifera. Extracts from the plant leaf, bark, and stem were prepared as aqueous infusions, as used in folk medicine, and added to rat liver microsomes exposed to iron. The polyphenolic composition was detected by reverse-phase HPLC coupled to diode-array detector and MS/MS analysis. The antimicrobial activity was tested by the spot-on-a-lawn method against several indicator microorganisms. All the extracts inhibited lipid oxidation, except the P. glandulosissimum stem. The plant extracts exhibiting high antioxidant potential (V. baccifera and B. rosademonte contained high levels of flavanols (particularly, catechin and epicatechin. By contrast, S. grandiflorum leaf, which exhibited very low antioxidant activity, was rich in hydroxycinnamic acids. None of the extracts showed antimicrobial activity. This study demonstrates for the first time the presence of bioactive polyphenolic compounds in several Amazonian plants, and highlights the importance of flavanols as major phenolic contributors to antioxidant activity.

  3. Inhibitory Effects of Red Wine on Lipid Oxidation in Fish Oil Emulsion and Angiogenesis in Zebrafish Embryo.

    Sun, Haiyan; Zhang, Yulin; Shen, Yixiao; Zhu, Yongchao; Wang, Hua; Xu, Zhimin

    2017-03-01

    The capabilities of red wine against lipid oxidation and angiogenesis were evaluated by using a fish oil emulsion system and an in vivo zebrafish embryos model, respectively. The red wine contained 12 different antioxidant phenolics which levels were led by anthocyanins (140.46 mg/L), catechin (55.08 mg/L), and gallic acid (46.76 mg/L). The diversity of the phenolics in red wine was greater than the tea, coffee, or white wine selected as a peer control in this study. The total phenolics concentration of red wine was 305.53 mg/L, although the levels of tea, coffee, and white wine were 85.59, 76.85, and 26.57 mg/L, respectively. The activity of red wine in scavenging DPPH (2,2-diphenyl-1-picrylhydrazyl) free radicals was approximately 4 times higher than the tea and 8 times than the coffee or white wine. The red wine showed the highest capability in preventing long chain PUFA oxidation in the fish oil emulsion. Because of the outstanding antioxidant activity of red wine, the red wine dried extract was used to monitor its inhibitory effect against angiogenesis by using transgenic zebrafish embryos (Tg[fli1:egfp] y1 ) with fluorescent blood vessels. After incubated in 100 μg/mL of the extract solution for 26 h pf, each of the embryos had a lower number of intersegmental vessel than the control embryo. The inhibition rate of red wine extract against growing of angiogenic blood vessel reached 100%. © 2017 Institute of Food Technologists®.

  4. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism.

    Zhang, Xuxiao; Vadas, Oscar; Perisic, Olga; Anderson, Karen E; Clark, Jonathan; Hawkins, Phillip T; Stephens, Len R; Williams, Roger L

    2011-03-04

    Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110β/p85β complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110β catalytic subunit, which is essential for lipid kinase activity. In vitro, p110β basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110β. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Inhibitory effects of black pepper (Piper nigrum) extracts and compounds on human tumor cell proliferation, cyclooxygenase enzymes, lipid peroxidation and nuclear transcription factor-kappa-B.

    Liu, Yunbao; Yadev, Vivek R; Aggarwal, Bharat B; Nair, Muraleedharan G

    2010-08-01

    Black pepper (Piper nigrum) and hot pepper (Capsicum spp.) are widely used in traditional medicines. Although hot Capsicum spp. extracts and its active principles, capsaicinoids, have been linked with anticancer and anti-inflammatory activities, whether black pepper and its active principle exhibit similar activities is not known. In this study, we have evaluated the antioxidant, anti-inflammatory and anticancer activities of extracts and compounds from black pepper by using proinflammatory transcription factor NF-kappaB, COX-1 and -2 enzymes, human tumor cell proliferation and lipid peroxidation (LPO). The capsaicinoids, the alkylamides, isolated from the hot pepper Scotch Bonnet were also used to compare the bioactivities of alkylamides and piperine from black pepper. All compounds derived from black pepper suppressed TNF-induced NF-kappaB activation, but alkyl amides, compound 4 from black pepper and 5 from hot pepper, were most effective. The human cancer cell proliferation inhibitory activities of piperine and alklyl amides in Capsicum and black pepper were dose dependant. The inhibitory concentrations 50% (IC50) of the alklylamides were in the range 13-200 microg/mL. The extracts of black pepper at 200 microg/mL and its compounds at 25 microg/mL inhibited LPO by 45-85%, COX enzymes by 31-80% and cancer cells proliferation by 3.5-86.8%. Overall, these results suggest that black pepper and its constituents like hot pepper, exhibit anti-inflammatory, antioxidant and anticancer activities.

  6. Inhibitory effect of magnesium sulfate on reaction of lipid hyperoxidation after radiation-induced acute brain injuries

    Wang Lili; Zhou Juying; Yu Zhiying; Qin Songbing; Xu Xiaoting; Li Li; Tu Yu

    2007-01-01

    Objective: To explore the protection of magnesium sulfate (MgSO 4 ) on radiation-induced acute brain injuries. Methods: 60 maturity Sprague-Dawley (SD) rats were randomly divided into 3 groups: blank control group, experimental control group and experimental-therapeutic group. The whole brain of SD rats of experimental control group and experimental-therapeutic group was irradiated to a dose of 20 Gy using 6 MeV electron. MgSO 4 was injected intraperitoneally into the rats of experimental-therapeutic group before and after irradiation for five times. At different time points ranging from the 1 d, 7 d, 14 d, 30 d after irradiation, the brain tissue were taken. The xanthine oxidase and colorimetric examination were used to measure the superoxide dismutase (SOD) and malonyldialdehyde (MDA) respectively in the rat brain respectively. Results: Compared with blank control group, the SOD in brain of experimental control group decreased significantly (P 4 used in early stage can inhibit the lipid peroxidation after radiation-induced acute brain injuries and alleviate the damage induced by free radicals to brain tissue. (authors)

  7. Inhibitory Effect of Phragmanthera Incana (Schum.) Harvested from Cocoa (Theobroma Cacao) and Kolanut (Cola Nitida) Trees on Fe2+ induced Lipid Oxidative Stress in Some Rat Tissues - In Vitro

    Ogunmefun, O. T.; Fasola, T. R.; Saba, A. B.; Akinyemi, A. J.

    2015-01-01

    Evidence in both experimental and clinical studies has shown the participation of oxidative stress in the development and progression of diabetes mellitus. This study therefore, sought to investigate the inhibitory effect of methanolic extract of Phragmanthera incana leaves, a mistletoe species harvested from Cocoa (Theobroma cacao) and Kolanut (Cola nitida) on FeSO4 induced lipid peroxidation in rat pancreas, liver, kidney, heart and brain in vitro. The methanolic extract was prepared with 90% methanol (v/v); subsequently, the antioxidant properties and inhibitory effect of the extract on Fe2+ induced lipid peroxidation in some rat tissues were determined in vitro. Incubation of the different rat tissues homogenate in the presence of Fe caused a significant increase in the malondialdehyde (MDA) contents of the tissues. However, the methanolic extracts of Phragmanthera incana leaves harvested from both Cocoa and Kolanut trees caused a significant decrease in the MDA contents of all the tissues tested in a dose-dependent manner. However, the extract of Phragmanthera incana leaves harvested from kolanut trees had a better inhibitory effect on Fe2+- induced lipid peroxidation in the rat tissues homogenates than that of Phragmanthera incana leaves harvested from cocoa trees. This higher inhibitory effect could be attributed to its significantly higher antioxidant properties as typified by their phenolic content, DPPH radical scavenging ability and reducing power. Therefore, oxidative stress associated with diabetes and its other complications could be potentially managed/prevented by harnessing Phragmanthera incana leaves as cheap nutraceuticals. However, Phragmanthera incana leaves harvested from kolanut trees exhibited better antioxidant properties.

  8. Inhibitory effects of ethyl acetate-soluble fraction from morus alba on lipid accumulation in 3T3-L1 cells.

    Park, Hee-Sook; Shim, Soon-Mi; Kim, Gun-Hee

    2013-11-01

    Fruits of mulberry (Morus alba) have been widely used for therapeutic purposes in Asian countries for centuries. Treatment of 3T3-L1 cells with ethanolic extracts of M. alba decreased adipocyte differentiation at 100 microg/mL by 18.6%. Treatment suppressed mRNA levels of PPARgamma and C/EBPalpha expression in 3T3-L1 cells. However, the extract did not change free glycerol release from mature adipocytes. Thus, M. alba inhibited lipid accumulation by regulating transcription factors in 3T3-L1 adipocytes without a lipolytic effect. Among the soluble- fractions, the ethyl acetate-soluble fraction had the highest antiadipogenic effects on 3T3-L1 cells. This fraction decreasing intracellular lipid accumulation by 38.5% in response to treatment with 100 microg/mL. In addition, HPLC analysis of the ethyl acetate-soluble fraction of M. alba contained 167.7 microM of protocatechulic acid in 1 mg/mL of fraction, which inhibited lipid accumulation by 44.8% in response to treatment with 100 microM. From these results, M. alba is a possible candidate for regulating lipid accumulation in obesity.

  9. Inhibitory effect of Piper betel leaf extracts on copper-mediated LDL oxidation and oxLDL-induced lipid accumulation via inducing reverse cholesterol transport in macrophages.

    Ma, Gwo-Chin; Wu, Pei-Fang; Tseng, Hsien-Chun; Chyau, Charng-Cherng; Lu, Hsiu-Chin; Chou, Fen-Pi

    2013-12-15

    Piper betel leaf (PBL) has the biological capabilities of detoxification and can work as an anti-inflammatory agent and an anti-oxidant. In this study, we evaluated the anti-oxidative activity of the extract of Piper betel leaves (PBLs) on the basis of Cu(2+)-mediated oxidation, and its ability to prevent foam cell formation in a model for oxidised low density lipoprotein (oxLDL)-induced lipid accumulation in macrophages. Our data demonstrated that PBLs were able to inhibit LDL oxidation in vitro and are able to reduce the lipid accumulation in macrophages. We showed the underlying mechanisms to be the following: PBLs up-regulated the protein levels of the class A and class B scavenger receptors, the membrane lipid transporter ABCA1, and its upstream regulator Liver X receptor (LXR) in the macrophages exposed to oxLDL. The results suggested that PBLs activated the reverse cholesterol transport mechanism to enhance the metabolism of the oxLDL that could prevent both lipid accumulation and foam cell formation and further minimise the possible damage of vessels caused by the oxLDL. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Inhibitory noise

    Alain Destexhe

    2010-03-01

    Full Text Available Cortical neurons in vivo may operate in high-conductance states, in which the major part of the neuron's input conductance is due to synaptic activity, sometimes several-fold larger than the resting conductance. We examine here the contribution of inhibition in such high-conductance states. At the level of the absolute conductance values, several studies have shown that cortical neurons in vivo are characterized by strong inhibitory conductances. However, conductances are balanced and spiking activity is mostly determined by fluctuations, but not much is known about excitatory and inhibitory contributions to these fluctuations. Models and dynamic-clamp experiments show that, during high-conductance states, spikes are mainly determined by fluctuations of inhibition, or by inhibitory noise. This stands in contrast to low-conductance states, in which excitatory conductances determine spiking activity. To determine these contributions from experimental data, maximum likelihood methods can be designed and applied to intracellular recordings in vivo. Such methods indicate that action potentials are indeed mostly correlated with inhibitory fluctuations in awake animals. These results argue for a determinant role for inhibitory fluctuations in evoking spikes, and do not support feed-forward modes of processing, for which opposite patterns are predicted.

  11. In vitro evaluation of inhibitory effect of Phoenix dactylifera bark ...

    investigate its in vitro inhibitory effects on lipid peroxidation in the brain, liver, and kidney tissues of rat, ... diseases associated with lipid peroxidation such as cancers and Alzheimer's disease, but further studies ... the family Arecaceae.

  12. Mechanism of the Inhibitory Effects of Eucommia ulmoides Oliv. Cortex Extracts (EUCE in the CCl4-Induced Acute Liver Lipid Accumulation in Rats

    Chang-Feng Jin

    2013-01-01

    Full Text Available Eucommia ulmoides Oliv. (EU has been used for treatment of liver diseases. The protective effects of Eucommia Ulmoides Oliv. cortex extracts (EUCE on the carbon tetrachloride- (CCl4- induced hepatic lipid accumulation were examined in this study. Rats were orally treated with EUCE in different doses prior to an intraperitoneal injection of 1 mg/kg CCl4. Acute injection of CCl4 decreased plasma triglyceride but increased hepatic triglyceride and cholesterol as compared to control rats. On the other hand, the pretreatment with EUCE diminished these effects at a dose-dependent manner. CCl4 treatment decreased glutathione (GSH and increased malondialdehyde (MDA accompanied by activated P450 2E1. The pretreatment with EUCE significantly improved these deleterious effects of CCl4. CCl4 treatment increased P450 2E1 activation and ApoB accumulation. Pretreatment with EUCE reversed these effects. ER stress response was significantly increased by CCl4, which was inhibited by EUCE. One of the possible ER stress regulatory mechanisms, lysosomal activity, was examined. CCl4 reduced lysosomal enzymes that were reversed with the EUCE. The results indicate that oral pretreatment with EUCE may protect liver against CCl4-induced hepatic lipid accumulation. ER stress and its related ROS regulation are suggested as a possible mechanism in the antidyslipidemic effect of EUCE.

  13. Characterisation, immunolocalisation and antifungal activity of a lipid transfer protein from chili pepper (Capsicum annuum) seeds with novel α-amylase inhibitory properties.

    Diz, Mariângela S; Carvalho, Andre O; Ribeiro, Suzanna F F; Da Cunha, Maura; Beltramini, Leila; Rodrigues, Rosana; Nascimento, Viviane V; Machado, Olga L T; Gomes, Valdirene M

    2011-07-01

    Lipid transfer proteins (LTPs) were thus named because they facilitate the transfer of lipids between membranes in vitro. This study was triggered by the characterization of a 9-kDa LTP from Capsicum annuum seeds that we call Ca-LTP(1) . Ca-LTP(1) was repurified, and in the last chromatographic purification step, propanol was used as the solvent in place of acetonitrile to maintain the protein's biological activity. Bidimensional electrophoresis of the 9-kDa band, which corresponds to the purified Ca-LTP(1) , showed the presence of three isoforms with isoelectric points (pIs) of 6.0, 8.5 and 9.5. Circular dichroism (CD) analysis suggested a predominance of α-helices, as expected for the structure of an LTP family member. LTPs immunorelated to Ca-LTP(1) from C. annuum were also detected by western blotting in exudates released from C. annuum seeds and also in other Capsicum species. The tissue and subcellular localization of Ca-LTP(1) indicated that it was mainly localized within dense vesicles. In addition, isolated Ca-LTP(1) exhibited antifungal activity against Colletotrichum lindemunthianum, and especially against Candida tropicalis, causing several morphological changes to the cells including the formation of pseudohyphae. Ca-LTP(1) also caused the yeast plasma membrane to be permeable to the dye SYTOX green, as verified by fluorescence microscopy. We also found that Ca-LTP(1) is able to inhibit mammalian α-amylase activity in vitro. Copyright © Physiologia Plantarum 2011.

  14. Inhibitory effect of a new orally active cedrol-loaded nanostructured lipid carrier on compound 48/80-induced mast cell degranulation and anaphylactic shock in mice

    Chakraborty S

    2017-07-01

    Full Text Available Shreyasi Chakraborty, Nabanita Kar, Leena Kumari, Asit De, Tanmoy Bera Laboratory of Nanomedicine, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India Background: Type I hypersensitivity is an allergic reaction characterized by the overactivity of the immune system provoked by normally harmless substances. Glucocorticoids, anti-histamines, or mast cell stabilizers are the choices of treatment for type I hypersensitivity. Even though these drugs have the anti-allergic effect, they can have several side effects in prolong use. Cedrol is the main bioactive compound of Cedrus atlantica with anti-tumor, anti-oxidative, and platelet-activating factor inhibiting properties.Methods: In this study, the preparation and anti-anaphylactic effect of cedrol-loaded nanostructured lipid carriers (NLCs were evaluated. NLCs were prepared using Compritol® 888 ATO and triolein as lipid phase and vitamin E D-α-tocopherylpolyethyleneglycol 1000 succinate, soya lecithin, and sodium deoxycholate as nanoparticle stabilizers.Results: The average diameter of cedrol-NLCs (CR-NLCs was 71.2 nm (NLC-C1 and 91.93 nm (NLC-C2. The particle had negative zeta potential values of –31.9 mV (NLC-C1 and –44.5 mV (NLC-C2. Type I anaphylactoid reaction in the animal model is significantly reduced by cedrol and cedrol-NLC. This in vivo activity of cedrol resulted that cedrol suppressed compound 48/80-induced peritoneal mast cell degranulation and histamine release from mast cells. Furthermore, compound 48/80-evoked Ca2+ uptake into mast cells was reduced in a dose-dependent manner by cedrol and cedrol-NLC. Studies confirmed that the inhibition of type I anaphylactoid response in vivo in mice and compound 48/80-induced mast cell activation in vitro are greatly enhanced by the loading of cedrol into the NLCs. The safety of cedrol and CR-NLC was evaluated as selectivity index (SI with prednisolone and cromolyn sodium as positive control. SI of CR

  15. Response surface optimisation of extraction of antioxidants from strawberry fruit, and lipid peroxidation inhibitory potential of the fruit extract in cooked chicken patties.

    Saha, Jayati; Debnath, Moumita; Saha, Arnab; Ghosh, Tanaya; Sarkar, Prabir K

    2011-08-15

    Strawberries contain high levels of antioxidants and have beneficial effects against oxidative stress-mediated diseases, such as cancer. They contain multiple phenolic compounds, which contribute to their biological properties. Hence, a study was carried out to optimise the extraction of antioxidants and evaluate the antioxidant potential of strawberry fruit extract (SE) in cooked chicken patties during refrigerated storage. The activity of SE was compared with that of butylhydroxytoluene (BHT). The effect of solvent type (MeOH and EtOH), concentration (0-70%) of EtOH in the system, temperature (30-60 °C), and time (30-150 min) on DPPH•-scavenging activity of SE was investigated. Response surface methodology was used to estimate the optimum extraction conditions for each parameter. The maximum predicted DPPH• scavenging under the optimised conditions (100% MeOH, 30 °C, 150 min) was 43% at 1 mg SE mL⁻¹. Freshly prepared chicken patties were treated with 5% and 10% SE and 2% BHT, and stored aerobically at 4 °C for 6 days. SE had no influence (P extraction of compounds from strawberry that had the scavenging activity. The study shows that the extraction of natural antioxidants from strawberry can be improved by optimising several key extraction parameters. SE also acted as an effective antioxidant and suppressed lipid peroxidation in cooked chicken patties. Copyright © 2011 Society of Chemical Industry.

  16. Effect of partially purified angiotensin converting enzyme inhibitory ...

    This study evaluated the effect of partially-purified angiotensin converting enzyme (ACE) inhibitory proteins obtained from the leaves of Moringa oleifera on blood glucose, serum ACE activity and lipid profile of alloxaninduced diabetic rats. Twenty-five apparently healthy male albino rats were divided into five groups of five ...

  17. Lipid somersaults

    Günther-Pomorski, Thomas; Menon, Anant K.

    2016-01-01

    Membrane lipids diffuse rapidly in the plane of the membrane but their ability to flip spontaneously across a membrane bilayer is hampered by a significant energy barrier. Thus spontaneous flip-flop of polar lipids across membranes is very slow, even though it must occur rapidly to support diverse...... aspects of cellular life. Here we discuss the mechanisms by which rapid flip-flop occurs, and what role lipid flipping plays in membrane homeostasis and cell growth. We focus on conceptual aspects, highlighting mechanistic insights from biochemical and in silico experiments, and the recent, ground......-breaking identification of a number of lipid scramblases....

  18. Lipid Nanotechnology

    Gijsje Koenderink

    2013-02-01

    Full Text Available Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.

  19. Lipid Panel

    ... A routine cardiac risk assessment typically includes a fasting lipid panel. Beyond that, research continues into the usefulness of other non-traditional markers of cardiac risk, such as Lp-PLA 2 . A health practitioner may choose to evaluate one or more ...

  20. LipidPedia: a comprehensive lipid knowledgebase.

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  1. INHIBITORY EFFECT OF SALVIA SCLAREA

    rakoe

    2011-11-02

    Nov 2, 2011 ... This study demonstrated anti-herpes simplex virus (HSV) activity of lavender, sage and ... Green monkey kidney cells were protected from HSV-2 infection by ... The highest inhibitory effect against HSV-2 was observed after treatment ..... some nuclear-replicating eukaryotic DNA viruses with large genomes.

  2. Inhibitory control in childhood stuttering

    Eggers, K.; de Nil, L.; Van den Bergh, B.R.H.

    2013-01-01

    Purpose The purpose of this study was to investigate whether previously reported parental questionnaire-based differences in inhibitory control (IC; Eggers, De Nil, & Van den Bergh, 2010) would be supported by direct measurement of IC using a computer task. Method Participants were 30 children who

  3. Impulsivity: A deficiency of inhibitory control?

    Lansbergen, M.M.

    2007-01-01

    Impulsivity has been defined as acting without thinking. Impulsivity can be quantified by impulsivity questionnaires, but also by behavioral paradigms which tax inhibitory control. Previous research has repeatedly demonstrated deficient inhibitory control in psychopathological samples characterized

  4. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Ming, Guang-feng [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Xiao, Di; Gong, Wei-jing [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Hui-xia; Liu, Jun [Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, Hunan (China); Zhou, Hong-hao [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China); Liu, Zhao-qian, E-mail: liuzhaoqian63@126.com [Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha 410078, Hunan (China)

    2014-03-14

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders.

  5. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes

    Ming, Guang-feng; Xiao, Di; Gong, Wei-jing; Liu, Hui-xia; Liu, Jun; Zhou, Hong-hao; Liu, Zhao-qian

    2014-01-01

    Highlights: • JAZF1 was significantly upregulated during the differentiation of 3T3-L1 preadipocytes. • JAZF1 overexpression inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes. • JAZF1 overexpression inhibited the expression of SREBP1, ACC, and FAS. • JAZF1 overexpression upregulated the expression of HSL and ATGL. • SREBP1 and JAZF1 could regulate each other in adipocytes. - Abstract: JAZF1 is a newly identified gene with unknown functions. A recent genome-wide association study showed that JAZF1 is associated with type 2 diabetes and is highly expressed in liver and adipose tissue. Studies have demonstrated that JAZF1 is the co-repressor for nuclear orphan receptor TAK1, whereas most nuclear orphan receptor family members are involved in the regulation of lipid metabolism. Therefore, JAZF1 could be closely related to glycolipid metabolism. In this study, JAZF1 was significantly upregulated during the induced differentiation process of 3T3-L1 preadipocytes. The overexpression of JAZF1 inhibited lipid accumulation in differentiated mature 3T3-L1 adipocytes and significantly inhibited the expression of SREBPl, ACC, and FAS, which were important in lipid synthesis, while upregulating the expression of key enzyme hormone-sensitive lipase in lipoclasis. Moreover, SREBPl exhibited an inhibitory function on the expression of JAZF1. SREBP1 reversed the inhibitory action on lipid accumulation of JAZF1. SREBP1 and JAZF1 were observed to regulate each other in adipocytes. Therefore, JAZF1 could regulate the expression of particular genes related to lipid metabolism and inhibit lipid accumulation in adipocytes. This result suggests that JAZF1 may be a potential target for the treatment of diseases, such as obesity and lipid metabolism disorders

  6. Spontaneous charged lipid transfer between lipid vesicles.

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  7. Copepod reproduction is unaffected by diatom aldehydes or lipid composition

    Dutz, Jörg; Koski, Marja; Jonasdottir, Sigrun

    2008-01-01

    We investigated whether reduced reproductive success of copepods fed with diatoms was related to nutritional imbalances with regard to essential lipids or to the production of inhibitory aldehydes. In 10-d laboratory experiments, feeding, egg production, egg hatching success, and fecal pellet...

  8. The Diversity of Cortical Inhibitory Synapses

    Yoshiyuki eKubota

    2016-04-01

    Full Text Available The most typical and well known inhibitory action in the cortical microcircuit is a strong inhibition on the target neuron by axo-somatic synapses. However, it has become clear that synaptic inhibition in the cortex is much more diverse and complicated. Firstly, at least ten or more inhibitory non-pyramidal cell subtypes engage in diverse inhibitory functions to produce the elaborate activity characteristic of the different cortical states. Each distinct non-pyramidal cell subtype has its own independent inhibitory function. Secondly, the inhibitory synapses innervate different neuronal domains, such as axons, spines, dendrites and soma, and their IPSP size is not uniform. Thus cortical inhibition is highly complex, with a wide variety of anatomical and physiological modes. Moreover, the functional significance of the various inhibitory synapse innervation styles and their unique structural dynamic behaviors differ from those of excitatory synapses. In this review, we summarize our current understanding of the inhibitory mechanisms of the cortical microcircuit.

  9. Degree of synchronization modulated by inhibitory neurons in clustered excitatory-inhibitory recurrent networks

    Li, Huiyan; Sun, Xiaojuan; Xiao, Jinghua

    2018-01-01

    An excitatory-inhibitory recurrent neuronal network is established to numerically study the effect of inhibitory neurons on the synchronization degree of neuronal systems. The obtained results show that, with the number of inhibitory neurons and the coupling strength from an inhibitory neuron to an excitatory neuron increasing, inhibitory neurons can not only reduce the synchronization degree when the synchronization degree of the excitatory population is initially higher, but also enhance it when it is initially lower. Meanwhile, inhibitory neurons could also help the neuronal networks to maintain moderate synchronized states. In this paper, we call this effect as modulation effect of inhibitory neurons. With the obtained results, it is further revealed that the ratio of excitatory neurons to inhibitory neurons being nearly 4 : 1 is an economic and affordable choice for inhibitory neurons to realize this modulation effect.

  10. Length and coverage of inhibitory decision rules

    Alsolami, Fawaz

    2012-01-01

    Authors present algorithms for optimization of inhibitory rules relative to the length and coverage. Inhibitory rules have a relation "attribute ≠ value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. Paper contains also comparison of length and coverage of inhibitory rules constructed by a greedy algorithm and by the dynamic programming algorithm. © 2012 Springer-Verlag.

  11. Monetary rewards modulate inhibitory control

    Paula Marcela Herrera

    2014-05-01

    Full Text Available The ability to override a dominant response, often referred to as behavioural inhibiton, is considered a key element of executive cognition. Poor behavioural inhibition is a defining characteristic of several neurological and psychiatric populations. Recently, there has been increasing interest in the motivational dimension of behavioural inhibition, with some experiments incorporating emotional contingencies in classical inhibitory paradigms such as the Go/Nogo and Stop Signal Tasks. Several studies have reported a positive modulatory effect of reward on the performance of such tasks in pathological conditions such as substance abuse, pathological gambling, and ADHD. However, experiments that directly investigate the modulatory effects of reward magnitudes on the performance of inhibitory paradigms are rare and consequently, little is known about the finer grained relationship between motivation and self-control. Here, we probed the effect of reward and reward magnitude on behavioural inhibition using two modified version of the widely used Stop Signal Task. The first task compared no reward with reward, whilst the other compared two different reward magnitudes. The reward magnitude effect was confirmed by the second study, whereas it was less compelling in the first study, possibly due to the effect of having no reward in some conditions. In addition, our results showed a kick start effect over global performance measures. More specifically, there was a long lasting improvement in performance throughout the task, when participants received the highest reward magnitudes at the beginning of the protocol. These results demonstrate that individuals’ behavioural inhibition capacities are dynamic not static because they are modulated by the reward magnitude and initial reward history of the task at hand.

  12. In Vivo Inhibition of Lipid Accumulation in Caenorhabditis elegans

    Sulistiyani; Purwakusumah, E. P.; Andrianto, D.

    2017-03-01

    This is a preliminary research report on the use of Caenorhabditis elegans as a model to establish anti-obesity screening assay of the natural plant resources. Nematode C. elegans has been used as experimental animal model for understanding lipid accumulation. The objective of this research was to investigate the effect of selected plant extracts on lipid accumulation in C. elegans. Currently no report could be found regarding lipid accumulation in C.elegans treated with ethanolic leaf extracts of jabon merah (Anthocephalus macrophyllus), jati belanda (Guazuma ulmifolia), and Mindi (Melia Azedarach) plants. Lipid accumulation was determined qualitatively using lipid staining method and quantitatively by colorimetry using sulpho-phospho-vanillin reagent. Data showed that lipid accumulation was inhibited up to 72% by extract of M. azedarach, about 35% by both of A. macrophyllus and G. ulmifolia extracts, and up to 25% by orlistat (a synthetic slimming drug). Ethanolic extract of A. macrophyllus, G. ulmifolia, and M. azedarach leaves were shown to inhibit lipid accumulation in C. elegans and M. azedarach leaves extracts was the most effective inhibitor. C.elegans were shown to be an effective model for in vivo lipid accumulation mechanism and potential to be used as a rapid screening assay for bioactive compounds with lipid accumulation inhibitory activity.

  13. Plasticity of cortical excitatory-inhibitory balance.

    Froemke, Robert C

    2015-07-08

    Synapses are highly plastic and are modified by changes in patterns of neural activity or sensory experience. Plasticity of cortical excitatory synapses is thought to be important for learning and memory, leading to alterations in sensory representations and cognitive maps. However, these changes must be coordinated across other synapses within local circuits to preserve neural coding schemes and the organization of excitatory and inhibitory inputs, i.e., excitatory-inhibitory balance. Recent studies indicate that inhibitory synapses are also plastic and are controlled directly by a large number of neuromodulators, particularly during episodes of learning. Many modulators transiently alter excitatory-inhibitory balance by decreasing inhibition, and thus disinhibition has emerged as a major mechanism by which neuromodulation might enable long-term synaptic modifications naturally. This review examines the relationships between neuromodulation and synaptic plasticity, focusing on the induction of long-term changes that collectively enhance cortical excitatory-inhibitory balance for improving perception and behavior.

  14. Lipid exchange by ultracentrifugation

    Drachmann, Nikolaj Düring; Olesen, Claus

    2014-01-01

    , and the complex interplay between the lipids and the P-type ATPases are still not well understood. We here describe a robust method to exchange the majority of the lipids surrounding the ATPase after solubilisation and/or purification with a target lipid of interest. The method is based on an ultracentrifugation...... step, where the protein sample is spun through a dense buffer containing large excess of the target lipid, which results in an approximately 80-85 % lipid exchange. The method is a very gently technique that maintains protein folding during the process, hence allowing further characterization...

  15. Lipid Structure in Triolein Lipid Droplets

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    of a mass of hydrophobic lipid esters coved by phospholipid monolayer. The small size and unique architecture of LDs makes it complicated to study LD structure by modern experimental methods. We discuss coarse-grained molecular dynamics (MD) simulations of LD formation in systems containing 1-palmitoyl-2...... to coarse-grained simulations, the presence of PE lipids at the interface has a little impact on distribution of components and on the overall LD structure. (4) The thickness of the lipid monolayer at the surface of the droplet is similar to the thickness of one leaflet of a bilayer. Computer simulations......Lipid droplets (LDs) are primary repositories of esterified fatty acids and sterols in animal cells. These organelles originate on the lumenal or cytoplasmic side of endoplasmic reticulum (ER) membrane and are released to the cytosol. In contrast to other intracellular organelles, LDs are composed...

  16. Phytochemical screening and in vitro acetylcholinesterase inhibitory ...

    Phytochemical screening and in vitro acetylcholinesterase inhibitory activity of seven plant extracts. Titilayo Johnson, Oduje A. Akinsanmi, Enoch J. Banbilbwa, Tijani A. Yahaya, Karima Abdulaziz, Kolade Omole ...

  17. COMPARATIVE EVALUATION OF INHIBITORY ACTIVITY OF ...

    Osondu

    2013-02-26

    Feb 26, 2013 ... especially the four bacteria isolates used in this study are present in the epiphgram of both normal and ... Keyword: Albino snail, Archachatina marginata, Inhibitory activity, Epiphgram, Bacteria isolate. Introduction .... evolution.

  18. Polyene-lipids: a new tool to image lipids

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  19. The evolution of lipids

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  20. Lysosomal lipid storage diseases.

    Schulze, Heike; Sandhoff, Konrad

    2011-06-01

    Lysosomal lipid storage diseases, or lipidoses, are inherited metabolic disorders in which typically lipids accumulate in cells and tissues. Complex lipids, such as glycosphingolipids, are constitutively degraded within the endolysosomal system by soluble hydrolytic enzymes with the help of lipid binding proteins in a sequential manner. Because of a functionally impaired hydrolase or auxiliary protein, their lipid substrates cannot be degraded, accumulate in the lysosome, and slowly spread to other intracellular membranes. In Niemann-Pick type C disease, cholesterol transport is impaired and unesterified cholesterol accumulates in the late endosome. In most lysosomal lipid storage diseases, the accumulation of one or few lipids leads to the coprecipitation of other hydrophobic substances in the endolysosomal system, such as lipids and proteins, causing a "traffic jam." This can impair lysosomal function, such as delivery of nutrients through the endolysosomal system, leading to a state of cellular starvation. Therapeutic approaches are currently restricted to mild forms of diseases with significant residual catabolic activities and without brain involvement.

  1. Lipid bilayers and interfaces

    Kik, R.A.

    2007-01-01

    In biological systems lipid bilayers are subject to many different interactions with other entities. These can range from proteins that are attached to the hydrophilic region of the bilayer or transmembrane proteins that interact with the hydrophobic region of the lipid bilayer. Interaction between

  2. Inhibitory effects of chickpea and Tribulus terrestris on lipase, α-amylase and α-glucosidase.

    Ercan, Pınar; El, Sedef Nehir

    2016-08-15

    The total saponin content and its in vitro bioaccessibilities in Tribulus terrestris and chickpea were determined by a static in vitro digestion method (COST FA1005 Action INFOGEST). Also, in vitro inhibitory effects of the chosen food samples on lipid and starch digestive enzymes were determined by evaluating the lipase, α-amylase and α-glucosidase activities. The tested T. terrestris and chickpea showed inhibitory activity against α-glucosidase (IC50 6967 ± 343 and 2885 ± 85.4 μg/ml, respectively) and α-amylase (IC50 343 ± 26.2 and 167 ± 6.12 μg/ml, respectively). The inhibitory activities of T. terrestris and chickpea against lipase were 15.3 ± 2.03 and 9.74 ± 1.09 μg/ml, respectively. The present study provides the first evidence that these food samples (T. terrestris, chickpea) are potent inhibitors of key enzymes in digestion of carbohydrates and lipids in vitro. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Effects of some inhibitors on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides and preparation of biodiesel by enzymatic transesterification of the lipid.

    Zhao, Xuebing; Peng, Feng; Du, Wei; Liu, Canming; Liu, Dehua

    2012-08-01

    Microbial lipid produced using yeast fermentation with inexpensive carbon sources such as lignocellulosic hydrolyzate can be an alternative feedstock for biodiesel production. Several inhibitors that can be generated during acid hydrolysis of lignocellulose were added solely or together into the culture medium to study their individual inhibitory actions and their synergistic effects on the growth and lipid accumulation of oleaginous yeast Rhodosporidium toruloides. When the inhibitors were present in isolation in the medium, to obtain a high cell biomass accumulation, the concentrations of formic acid, acetic acid, furfural and vanillin should be lower than 2, 5, 0.5 and 1.5 g/L, respectively. However, the synergistic effects of these compounds could dramatically decrease the minimum critical inhibitory concentrations leading to significant growth and lipid production inhibitions. Unlike the above-cited inhibitors, sodium lignosulphonate had no negative influence on biomass accumulation when its concentration was in the range of 0.5-2.0 g/L; in effect, it was found to facilitate cell growth and sugar-to-lipid conversion. The fatty acid compositional profile of the yeast lipid was in the compositional range of various plant oils and animal tallow. Finally, the crude yeast lipid from bagasse hydrolyzate could be well converted into fatty acid methyl ester (FAME, biodiesel) by enzymatic transesterification in a tert-butanol system with biodiesel yield of 67.2% and lipid-to-biodiesel conversion of 88.4%.

  4. The frontal lobes and inhibitory function

    Konishi, Seiki

    2011-01-01

    Neuropsychological studies using traditional tasks of inhibitory functions, such as the Wisconsin card sorting test (WCST) and the Go/No-Go Task have revealed that the frontal lobe is responsible for several types of inhibitory functions. However, the detailed psychological nature of the inhibitory functions and the precise location of their critical foci within the frontal lobe remain to be investigated. Functional magnetic resonance imaging provides spatial and temporal resolution that allowed us to illuminate at least 4 frontal regions involved in inhibitory functions: the dorsolateral, ventrolateral, and rostral parts of the frontal lobe and the presupplementary motor area (preSMA). The ventrolateral part of the frontal lobe in the right hemisphere was activated during response inhibition. The preSMA in the left hemisphere was activated during inhibition of proactive interference immediately after the dimension changes of the WCST. The rostral part of the frontal lobe in the left hemisphere was activated during inhibition long after the dimension changes. The dorsolateral part of the frontal lobe in the left hemisphere was activated at the dimension changes in the first time, but not in the second time. These findings provide clues to our understanding of functional differentiation of inhibitory functions and their localization in the frontal lobe. (author)

  5. Flexible brain network reconfiguration supporting inhibitory control.

    Spielberg, Jeffrey M; Miller, Gregory A; Heller, Wendy; Banich, Marie T

    2015-08-11

    The ability to inhibit distracting stimuli from interfering with goal-directed behavior is crucial for success in most spheres of life. Despite an abundance of studies examining regional brain activation, knowledge of the brain networks involved in inhibitory control remains quite limited. To address this critical gap, we applied graph theory tools to functional magnetic resonance imaging data collected while a large sample of adults (n = 101) performed a color-word Stroop task. Higher demand for inhibitory control was associated with restructuring of the global network into a configuration that was more optimized for specialized processing (functional segregation), more efficient at communicating the output of such processing across the network (functional integration), and more resilient to potential interruption (resilience). In addition, there were regional changes with right inferior frontal sulcus and right anterior insula occupying more central positions as network hubs, and dorsal anterior cingulate cortex becoming more tightly coupled with its regional subnetwork. Given the crucial role of inhibitory control in goal-directed behavior, present findings identifying functional network organization supporting inhibitory control have the potential to provide additional insights into how inhibitory control may break down in a wide variety of individuals with neurological or psychiatric difficulties.

  6. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  7. Organizers of inhibitory synapses come of age.

    Krueger-Burg, Dilja; Papadopoulos, Theofilos; Brose, Nils

    2017-08-01

    While the postsynaptic density of excitatory synapses is known to encompass a highly complex molecular machinery, the equivalent organizational structure of inhibitory synapses has long remained largely undefined. In recent years, however, substantial progress has been made towards identifying the full complement of organizational proteins present at inhibitory synapses, including submembranous scaffolds, intracellular signaling proteins, transsynaptic adhesion proteins, and secreted factors. Here, we summarize these findings and discuss future challenges in assigning synapse-specific functions to the newly discovered catalog of proteins, an endeavor that will depend heavily on newly developed technologies such as proximity biotinylation. Further advances are made all the more essential by growing evidence that links inhibitory synapses to psychiatric and neurological disorders. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Synthesis of Lipidated Proteins.

    Mejuch, Tom; Waldmann, Herbert

    2016-08-17

    Protein lipidation is one of the major post-translational modifications (PTM) of proteins. The attachment of the lipid moiety frequently determines the localization and the function of the lipoproteins. Lipidated proteins participate in many essential biological processes in eukaryotic cells, including vesicular trafficking, signal transduction, and regulation of the immune response. Malfunction of these cellular processes usually leads to various diseases such as cancer. Understanding the mechanism of cellular signaling and identifying the protein-protein and protein-lipid interactions in which the lipoproteins are involved is a crucial task. To achieve these goals, fully functional lipidated proteins are required. However, access to lipoproteins by means of standard expression is often rather limited. Therefore, semisynthetic methods, involving the synthesis of lipidated peptides and their subsequent chemoselective ligation to yield full-length lipoproteins, were developed. In this Review we summarize the commonly used methods for lipoprotein synthesis and the development of the corresponding chemoselective ligation techniques. Several key studies involving full-length semisynthetic lipidated Ras, Rheb, and LC3 proteins are presented.

  9. Bilingual Contexts Modulate the Inhibitory Control Network

    Jing Yang

    2018-03-01

    Full Text Available The present functional magnetic resonance imaging (fMRI study investigated influences of language contexts on inhibitory control and the underlying neural processes. Thirty Cantonese–Mandarin–English trilingual speakers, who were highly proficient in Cantonese (L1 and Mandarin (L2, and moderately proficient in English (L3, performed a picture-naming task in three dual-language contexts (L1-L2, L2-L3, and L1-L3. After each of the three naming tasks, participants performed a flanker task, measuring contextual effects on the inhibitory control system. Behavioral results showed a typical flanker effect in the L2-L3 and L1-L3 condition, but not in the L1-L2 condition, which indicates contextual facilitation on inhibitory control performance by the L1-L2 context. Whole brain analysis of the fMRI data acquired during the flanker tasks showed more neural activations in the right prefrontal cortex and subcortical areas in the L2-L3 and L1-L3 condition on one hand as compared to the L1-L2 condition on the other hand, suggesting greater involvement of the cognitive control areas when participants were performing the flanker task in L2-L3 and L1-L3 contexts. Effective connectivity analyses displayed a cortical-subcortical-cerebellar circuitry for inhibitory control in the trilinguals. However, contrary to the right-lateralized network in the L1-L2 condition, functional networks for inhibitory control in the L2-L3 and L1-L3 condition are less integrated and more left-lateralized. These findings provide a novel perspective for investigating the interaction between bilingualism (multilingualism and inhibitory control by demonstrating instant behavioral effects and neural plasticity as a function of changes in global language contexts.

  10. Perspectives on marine zooplankton lipids

    Kattner, G.; Hagen, W.; Lee, R.F.

    2007-01-01

    We developed new perspectives to identify important questions and to propose approaches for future research on marine food web lipids. They were related to (i) structure and function of lipids, (ii) lipid changes during critical life phases, (iii) trophic marker lipids, and (iv) potential impact...... of climate change. The first addresses the role of lipids in membranes, storage lipids, and buoyancy with the following key question: How are the properties of membranes and deposits affected by the various types of lipids? The second deals with the importance of various types of lipids during reproduction......, development, and resting phases and addresses the role of the different storage lipids during growth and dormancy. The third relates to trophic marker lipids, which are an important tool to follow lipid and energy transfer through the food web. The central question is how can fatty acids be used to identify...

  11. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Secoiridoids from the stem barks of Fraxinus rhynchophylla with pancreatic lipase inhibitory activity.

    Ahn, Jong Hoon; Shin, Eunjin; Liu, Qing; Kim, Seon Beom; Choi, Kyeong-Mi; Yoo, Hwan-Soo; Hwang, Bang Yeon; Lee, Mi Kyeong

    2013-01-01

    Pancreatic lipase digests dietary fats by hydrolysis, which is a key enzyme for lipid absorption. Therefore, reduction of fat absorption by the inhibition of pancreatic lipase is suggested to be a therapeutic strategy for obesity. From the EtOAc-soluble fraction of the stem barks of Fraxinus rhynchophylla (Oleaceae), four secoiridoids such as ligstroside (1), oleuropein (2), 2"-hydroxyoleuropein (3) and hydroxyframoside B (4) were isolated. The inhibitory activity of these compounds on pancreatic lipase was assessed using porcine pancreatic lipase as an in vitro assay system. Compound 4 showed the strongest inhibition on pancreatic lipase, which followed by compounds 1-3. In addition, compound 4 exerted inhibitory effect on pancreatic lipase in a mixed mechanism of competitive and noncompetitive manner. Taken together, F. rhynchophylla and its constituents might be beneficial to obesity.

  13. Selective LXRα inhibitory effects observed in plant extracts of MEH184 (Parthenocissua tricuspidata) and MEH185 (Euscaphis japonica)

    Kim, Kang Ho; Choi, Seung Hyun; Lee, Thomas S.; Oh, Won Keun; Kim, Dong Sun; Kim, Jae Bum

    2006-01-01

    Liver X receptors (LXRs) are nuclear hormone receptors that behave as lipid sensors of cellular cholesterol and fatty acid. Although LXR activation can alleviate hypercholesterolemia by inducing cholesterol efflux, it also results in undesirable effects of fatty acid synthesis, resulting in hepatic steatosis and hyperlipidemia. Therefore, it is critical to identify LXRα inhibitory agents that would repress fatty acid synthesis and hepatic lipid accumulation. In current study, screening of plant extracts used for traditional oriental medicine resulted in the identification of two candidates demonstrating selective LXRα inhibitory activity. These were whole leaf methanol extracts of Parthenocissua tricuspidata (MEH184) and Euscaphis japonica (MEH185). Both MEH184 and MEH185 decreased transcriptional activity of LXRα and the expression of LXRα target genes, such as FAS and ADD1/SREBP1c. Additionally, MEH184 and MEH184 significantly reduced lipogenesis and adipocyte differentiation. Together, the data imply that MEH184 and MEH185 possess selective antagonistic properties on LXRα to downregulate lipogenesis

  14. Correlation between enzymes inhibitory effects and antioxidant ...

    ... and phytochemical content of fractions was investigated. The n-butanol fraction showed significant α-glucosidase and α-amylase inhibitory effects (IC50 values 15.1 and 39.42 μg/ml, respectively) along with the remarkable antioxidant activity when compared to the other fractions. High performance liquid chromatography ...

  15. Phenotypic characterisation and assessment of the inhibitory ...

    Six strains of Lactobacillus spp. were isolated from fermenting corn slurry, fresh cow milk, and the faeces of pig, albino rat, and human infant. Their inhibitory action was tested against some spoilage and pathogenic bacteria. Lactobacillus acidophilus isolated from milk was found to display a higher antagonistic effect with ...

  16. Phenotypic characterisation and assessment of the inhibitory ...

    Fred

    inhibitory potential of Lactobacillus isolates from different sources. Oyetayo, V.O.. Department of ... Six strains of Lactobacillus spp. were isolated from fermenting corn slurry, fresh cow milk, and the faeces of pig, albino rat, and human ... the growth of some pathogens by Lactobacillus reuteri BSA 13, obtained from pig faeces.

  17. Inhibitory ability of children with developmental dyscalculia.

    Zhang, Huaiying; Wu, Hanrong

    2011-02-01

    Inhibitory ability of children with developmental dyscalculia (DD) was investigated to explore the cognitive mechanism underlying DD. According to the definition of developmental dyscalculia, 19 children with DD-only and 10 children with DD&RD (DD combined with reading disability) were selected step by step, children in two control groups were matched with children in case groups by gender and age, and the match ratio was 1:1. Psychological testing software named DMDX was used to measure inhibitory ability of the subjects. The differences of reaction time in number Stroop tasks and differences of accuracy in incongruent condition of color-word Stroop tasks and object inhibition tasks between DD-only children and their controls reached significant levels (P<0.05), and the differences of reaction time in number Stroop tasks between dyscalculic and normal children did not disappear after controlling the non-executive components. The difference of accuracy in color-word incongruent tasks between children with DD&RD and normal children reached significant levels (P<0.05). Children with DD-only confronted with general inhibitory deficits, while children with DD&RD confronted with word inhibitory deficits only.

  18. Acyl-Lipid Metabolism

    Li-Beisson, Yonghua; Shorrosh, Basil; Beisson, Fred; Andersson, Mats X.; Arondel, Vincent; Bates, Philip D.; Baud, Sébastien; Bird, David; DeBono, Allan; Durrett, Timothy P.; Franke, Rochus B.; Graham, Ian A.; Katayama, Kenta; Kelly, Amélie A.; Larson, Tony; Markham, Jonathan E.; Miquel, Martine; Molina, Isabel; Nishida, Ikuo; Rowland, Owen; Samuels, Lacey; Schmid, Katherine M.; Wada, Hajime; Welti, Ruth; Xu, Changcheng; Zallot, Rémi; Ohlrogge, John

    2013-01-01

    Acyl lipids in Arabidopsis and all other plants have a myriad of diverse functions. These include providing the core diffusion barrier of the membranes that separates cells and subcellular organelles. This function alone involves more than 10 membrane lipid classes, including the phospholipids, galactolipids, and sphingolipids, and within each class the variations in acyl chain composition expand the number of structures to several hundred possible molecular species. Acyl lipids in the form of triacylglycerol account for 35% of the weight of Arabidopsis seeds and represent their major form of carbon and energy storage. A layer of cutin and cuticular waxes that restricts the loss of water and provides protection from invasions by pathogens and other stresses covers the entire aerial surface of Arabidopsis. Similar functions are provided by suberin and its associated waxes that are localized in roots, seed coats, and abscission zones and are produced in response to wounding. This chapter focuses on the metabolic pathways that are associated with the biosynthesis and degradation of the acyl lipids mentioned above. These pathways, enzymes, and genes are also presented in detail in an associated website (ARALIP: http://aralip.plantbiology.msu.edu/). Protocols and methods used for analysis of Arabidopsis lipids are provided. Finally, a detailed summary of the composition of Arabidopsis lipids is provided in three figures and 15 tables. PMID:23505340

  19. Inhibitory coupling between inhibitory interneurons in the spinal cord dorsal horn

    Ribeiro-da-Silva Alfredo

    2009-05-01

    Full Text Available Abstract Local inhibitory interneurons in the dorsal horn play an important role in the control of excitability at the segmental level and thus determine how nociceptive information is relayed to higher structures. Regulation of inhibitory interneuron activity may therefore have critical consequences on pain perception. Indeed, disinhibition of dorsal horn neuronal networks disrupts the balance between excitation and inhibition and is believed to be a key mechanism underlying different forms of pain hypersensitivity and chronic pain states. In this context, studying the source and the synaptic properties of the inhibitory inputs that the inhibitory interneurons receive is important in order to predict the impact of drug action at the network level. To address this, we studied inhibitory synaptic transmission in lamina II inhibitory interneurons identified under visual guidance in spinal slices taken from transgenic mice expressing enhanced green fluorescent protein (EGFP under the control of the GAD promoter. The majority of these cells fired tonically to a long depolarizing current pulse. Monosynaptically evoked inhibitory postsynaptic currents (eIPSCs in these cells were mediated by both GABAA and glycine receptors. Consistent with this, both GABAA and glycine receptor-mediated miniature IPSCs were recorded in all of the cells. These inhibitory inputs originated at least in part from local lamina II interneurons as verified by simultaneous recordings from pairs of EGFP+ cells. These synapses appeared to have low release probability and displayed potentiation and asynchronous release upon repeated activation. In summary, we report on a previously unexamined component of the dorsal horn circuitry that likely constitutes an essential element of the fine tuning of nociception.

  20. Lipid Cell Biology: A Focus on Lipids in Cell Division.

    Storck, Elisabeth M; Özbalci, Cagakan; Eggert, Ulrike S

    2018-06-20

    Cells depend on hugely diverse lipidomes for many functions. The actions and structural integrity of the plasma membrane and most organelles also critically depend on membranes and their lipid components. Despite the biological importance of lipids, our understanding of lipid engagement, especially the roles of lipid hydrophobic alkyl side chains, in key cellular processes is still developing. Emerging research has begun to dissect the importance of lipids in intricate events such as cell division. This review discusses how these structurally diverse biomolecules are spatially and temporally regulated during cell division, with a focus on cytokinesis. We analyze how lipids facilitate changes in cellular morphology during division and how they participate in key signaling events. We identify which cytokinesis proteins are associated with membranes, suggesting lipid interactions. More broadly, we highlight key unaddressed questions in lipid cell biology and techniques, including mass spectrometry, advanced imaging, and chemical biology, which will help us gain insights into the functional roles of lipids.

  1. Preschool Inhibitory Control Predicts ADHD Group Status and Inhibitory Weakness in School.

    Jacobson, Lisa A; Schneider, Heather; Mahone, E Mark

    2017-12-26

    Discriminative utility of performance measures of inhibitory control was examined in preschool children with and without ADHD to determine whether performance measures added to diagnostic prediction and to prediction of informant-rated day-to-day executive function. Children ages 4-5 years (N = 105, 61% boys; 54 ADHD, medication-naïve) were assessed using performance measures (Auditory Continuous Performance Test for Preschoolers-Commission errors, Conflicting Motor Response Test, NEPSY Statue) and caregiver (parent, teacher) ratings of inhibition (Behavior Rating Inventory of Executive Function-Preschool version). Performance measures and parent and teacher reports of inhibitory control significantly and uniquely predicted ADHD group status; however, performance measures did not add to prediction of group status beyond parent reports. Performance measures did significantly predict classroom inhibitory control (teacher ratings), over and above parent reports of inhibitory control. Performance measures of inhibitory control may be adequate predictors of ADHD status and good predictors of young children's classroom inhibitory control, demonstrating utility as components of clinical assessments. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Pharmacogenetics of lipid diseases

    Ordovas Jose M

    2004-01-01

    Full Text Available Abstract The genetic basis for most of the rare lipid monogenic disorders have been elucidated, but the challenge remains in determining the combination of genes that contribute to the genetic variability in lipid levels in the general population; this has been estimated to be in the range of 40-60 per cent of the total variability. Therefore, the effect of common polymorphisms on lipid phenotypes will be greatly modulated by gene-gene and gene-environment interactions. This approach can also be used to characterise the individuality of the response to lipid-lowering therapies, whether using drugs (pharmacogenetics or dietary interventions (nutrigenetics. In this regard, multiple studies have already described significant interactions between candidate genes for lipid and drug metabolism that modulate therapeutic response--although the outcomes of these studies have been controversial and call for more rigorous experimental design and analytical approaches. Once solid evidence about the predictive value of genetic panels is obtained, risk and therapeutic algorithms can begin to be generated that should provide an accurate measure of genetic predisposition, as well as targeted behavioural modifications or drugs of choice and personalised dosages of these drugs.

  3. Lipids, lipid bilayers and vesicles as seen by neutrons

    Seto, Hideki

    2011-01-01

    Lipid molecules self-assemble into bilayers in water with their hydrocarbon chains facing inward due to their amphiphilic nature. The structural and dynamical properties of lipids and lipid bilayers have been studied by neutron scattering intensively. In this article, 3 topics are shown as typical examples. 1) a time-resolved small-angle neutron scattering on uni-lamellar vesicles composed of deuterated and protonated lipids to determine lipid kinetics, 2) small-angle neutron scattering to investigate spontaneous formation of nanopores on uni-lamellar vesicles, and 3) neutron spin echo study to determine bending modulus of lipid bilayers. (author)

  4. Lipid management in ramadan.

    Slim, Ines; Ach, Koussay; Chaieb, Larbi

    2015-05-01

    During Ramadan fast, Muslims must refrain from smoking, eating, drinking, having sexual activity, and consuming oral medications from sunrise to sunset. It has been previously shown that Ramadan fasting induces favourable changes on metabolic parameters, reduces oxidative stress and inflammation and promotes cardiovascular benefits. Although ill people are exempted from fasting, most patients with chronic diseases are keen on performing this Islamic-ritual. During recent years, Risk stratification and treatment adjustment during Ramadan are well known and structured in several guidelines for patients with diabetes mellitus. Data related to the effect of Ramadan fast on lipid profiles are less known and several controversies have been reported. Here, we focus on lipid profile and lipid management during Ramadan taking into account comorbidities and cardiovascular risk.

  5. Heart, lipids and hormones

    Peter Wolf

    2017-05-01

    Full Text Available Cardiovascular disease is the leading cause of death in general population. Besides well-known risk factors such as hypertension, impaired glucose tolerance and dyslipidemia, growing evidence suggests that hormonal changes in various endocrine diseases also impact the cardiac morphology and function. Recent studies highlight the importance of ectopic intracellular myocardial and pericardial lipid deposition, since even slight changes of these fat depots are associated with alterations in cardiac performance. In this review, we overview the effects of hormones, including insulin, thyroid hormones, growth hormone and cortisol, on heart function, focusing on their impact on myocardial lipid metabolism, cardiac substrate utilization and ectopic lipid deposition, in order to highlight the important role of even subtle hormonal changes for heart function in various endocrine and metabolic diseases.

  6. Exploiting Inhibitory Siglecs to Combat Food Allergies

    2017-10-01

    AWARD NUMBER: W81XWH-16-1-0302 TITLE: Exploiting Inhibitory Siglecs to Combat Food Allergies PRINCIPAL INVESTIGATOR: Michael Kulis, Ph.D...CONTRACTING ORGANIZATION: University of North Carolina at Chapel Hill Chapel Hill, NC 27599 REPORT DATES: October 2017 TYPE OF REPORT: Annual PREPARED FOR...Department of Defense, Washington Headquarters Services , Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite

  7. Inhibitory Interneurons, Oxidative Stress, and Schizophrenia

    Sullivan, Elyse M.; O’Donnell, Patricio

    2012-01-01

    Translational studies are becoming more common in schizophrenia research. The past couple of decades witnessed the emergence of novel ideas regarding schizophrenia pathophysiology that originated from both human and animal studies. The findings that glutamate and gamma-aminobutyric acid transmission are affected in the disease led to the hypothesis of altered inhibitory neurotransmission as critical for cognitive deficits and to an exploration of novel therapeutic approaches aimed at restorin...

  8. Enzyme inhibitory activity of selected Philippine plants

    Sasotona, Joseph S.; Hernandez, Christine C.

    2015-01-01

    In the Philippines, the number one cause of death are cardiovascular diseases. Diseases linked with inflammation are proliferating. This research aims to identify plant extracts that have potential activity of cholesterol-lowering, anti-hypertension, anti-gout, anti-inflammatory and fat blocker agents. Although there are commercially available drugs to treat the aforementioned illnesses, these medicine have adverse side-effects, aside from the fact that they are expensive. The results of this study will serve as added knowledge to contribute to the development of cheaper, more readily available, and effective alternative medicine. 100 plant extracts from different areas in the Philippines have been tested for potential inhibitory activity against Hydroxymethylglutaryl-coenzyme A (HMG-CoA), Lipoxygenase, and Xanthine Oxidase. The plant samples were labeled with codes and distributed to laboratories for blind testing. The effective concentration of the samples tested for Xanthine oxidase is 100 ppm. Samples number 9, 11, 14, 29, 43, 46, and 50 have shown significant inhibitory activity at 78.7%, 78.4%, 70%, 89.2%, 79%, 67.4%, and 67.5% respectively. Samples tested for Lipoxygenase inhibition were set at 33ppm. Samples number 2, 37, 901, 1202, and 1204 have shown significant inhibitory activity at 66, 84.9%, 88.55%, 93.3%, and 84.7% respectively. For HMG-CoA inhibition, the effective concentration of the samples used was 100 ppm. Samples number 1 and 10 showed significant inhibitory activity at 90.1% and 81.8% respectively. (author)

  9. Lipid storage myopathies.

    Bruno, Claudio; Dimauro, Salvatore

    2008-10-01

    The aim of this review is to provide an update on disorders of lipid metabolism affecting skeletal muscle exclusively or predominantly and to summarize recent clinical, genetic, and therapeutic studies in this field. Over the past 5 years, new clinical phenotypes and genetic loci have been described, unusual pathogenic mechanisms have been elucidated, and novel pharmacological approaches have been developed. At least one genetic defect responsible for the myopathic form of CoQ10 deficiency has been identified, causing a disorder that is allelic with the late-onset riboflavine-responsive form of multiple acyl-coenzyme A dehydrogenation deficiency. Novel mechanisms involved in the lipolytic breakdown of cellular lipid depots have been described and have led to the identification of genes and mutations responsible for multisystemic neutral lipid storage disorders, characterized by accumulation of triglyceride in multiple tissues, including muscle. Defects in lipid metabolism can affect either the mitochondrial transport and oxidation of exogenous fatty acid or the catabolism of endogenous triglycerides. These disorders impair energy production and almost invariably involve skeletal muscle, causing progressive myopathy with muscle weakness, or recurrent acute episodes of rhabdomyolysis triggered by exercise, fasting, or infections. Clinical and genetic characterization of these disorders has important implications both for accurate diagnostic approach and for development of therapeutic strategies.

  10. Lipids in airway secretions

    Bhaskar, K.R.; DeFeudis O'Sullivan, D.; Opaskar-Hincman, H.; Reid, L.M.

    1987-01-01

    Lipids form a significant portion of airway mucus yet they have not received the same attention that epithelial glycoproteins have. We have analysed, by thin layer chromatography, lipids present in airway mucus under 'normal' and hypersecretory (pathological) conditions.The 'normals' included (1) bronchial lavage obtained from healthy human volunteers and from dogs and (2) secretions produced ''in vitro'' by human (bronchial) and canine (tracheal) explants. Hypersecretory mucus samples included (1) lavage from dogs made bronchitic by exposure to SO 2 , (2) bronchial aspirates from acute and chronic tracheostomy patients, (3) sputum from patients with cystic fibrosis and chronic bronchitis and (4) postmortem secretions from patients who died from sudden infant death syndrome (SIDS) or from status asthmaticus. Cholesterol was found to be the predominant lipid in 'normal' mucus with lesser amounts of phospholipids. No glycolipids were detected. In the hypersecretory mucus, in addition to neutral and phospholipids, glycolipids were present in appreciable amounts, often the predominant species, suggesting that these may be useful as markers of disease. Radioactive precursors 14 C acetate and 14 C palmitate were incorporated into lipids secreted ''in vitro'' by canine tracheal explants indicating that they are synthesised by the airway. (author)

  11. Exogenous lipid pneumonia

    Bernasconi, A.; Gavelli, G.; Zompatori, M.; Galleri, C.; Zanasi, A.; Fabbri, M.; Bazzocchi, F.

    1988-01-01

    Exogenous lipid pneumonia (ELP) is caused by the aspiration of animal, vegetal or, more often, mineral oils. Even though it may also be acute, ELP is most frequently a chronic disease, affecting people with predisposing factors, such as neuromuscular disorders, structural abnormalities and so on; very often exogenous lipid pneumonia is found in tracheotomized patients. The pathology of lipid pneumonia is a chronic inflammatory process evolving in foreign-body-like reaction, and eventually in ''end-stage lung'' condition. Clinically, most patients are asymptomatic; few cases only present with cough, dyspnea and chest pain. Eight cases of ELP, studied over the past 3 years, are described in this paper. All the patients were examined by chest radiographs and standard tomograms; 3 patients underwent CT. X-ray features were mono/bilateral consolidation of the lower zones, with air bronchogram and variable reduction in volume. CT density was not specific for fat tissue. In all cases the diagnosis was confirmed at biopsy. In 5 patients, followed for at least one year, clinical-radiological features showed no change. Thus, complications of ELP (especially malignant evolution) could be excluded. The authors conclude that lipid pneumonia must be considered in differential diagnosis of patients with history of usage of oils and compatible X-ray findings. The usefulness of an accurate follow-up is stressed

  12. Lipid Therapy for Intoxications

    Robben, Joris Henricus; Dijkman, Marieke Annet

    This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of

  13. Lipid Therapy for Intoxications

    Robben, Joris Henricus; Dijkman, Marieke Annet

    2017-01-01

    This review discusses the use of intravenous lipid emulsion (ILE) in the treatment of intoxications with lipophilic agents in veterinary medicine. Despite growing scientific evidence that ILE has merit in the treatment of certain poisonings, there is still uncertainty on the optimal composition of

  14. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    Noorlidah Abdullah

    2012-01-01

    Full Text Available Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC. Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI. Ganoderma lucidum (30.1%, Schizophyllum commune (27.6%, and Hericium erinaceus (17.7% showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL. Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents.

  15. Evaluation of Selected Culinary-Medicinal Mushrooms for Antioxidant and ACE Inhibitory Activities

    Abdullah, Noorlidah; Ismail, Siti Marjiana; Aminudin, Norhaniza; Shuib, Adawiyah Suriza; Lau, Beng Fye

    2012-01-01

    Considering the importance of diet in prevention of oxidative stress-related diseases including hypertension, this study was undertaken to evaluate the in vitro antioxidant and ACE inhibitory activities of selected culinary-medicinal mushrooms extracted by boiling in water for 30 min. Antioxidant capacity was measured using the following assays: DPPH free radical scavenging activity, β-carotene bleaching, inhibition of lipid peroxidation, reducing power ability, and cupric ion reducing antioxidant capacity (CUPRAC). Antioxidant potential of each mushroom species was calculated based on the average percentages relative to quercetin and summarized as Antioxidant Index (AI). Ganoderma lucidum (30.1%), Schizophyllum commune (27.6%), and Hericium erinaceus (17.7%) showed relatively high AI. Total phenolics in these mushrooms varied between 6.19 to 63.51 mg GAE/g extract. In the ACE inhibitory assay, G. lucidum was shown to be the most potent species (IC50 = 50 μg/mL). Based on our findings, culinary-medicinal mushrooms can be considered as potential source of dietary antioxidant and ACE inhibitory agents. PMID:21716693

  16. Big, Fat World of Lipids

    ... offered a more quantitative and systematic approach to lipids research. Much of the effort has been led by a research consortium called LIPID MAPS. With funding from the National Institutes of ...

  17. Amphotericin B Lipid Complex Injection

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did ... respond or are unable to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in ...

  18. Effect of organic acids on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans

    Huang Chao

    2012-01-01

    Full Text Available Abstract Background Microbial lipids have drawn increasing attention in recent years as promising raw materials for biodiesel production, and the use of lignocellulosic hydrolysates as carbon sources seems to be a feasible strategy for cost-effective lipid fermentation with oleaginous microorganisms on a large scale. During the hydrolysis of lignocellulosic materials with dilute acid, however, various kinds of inhibitors, especially large amounts of organic acids, will be produced, which substantially decrease the fermentability of lignocellulosic hydrolysates. To overcome the inhibitory effects of organic acids, it is critical to understand their impact on the growth and lipid accumulation of oleaginous microorganisms. Results In our present work, we investigated for the first time the effect of ten representative organic acids in lignocellulosic hydrolysates on the growth and lipid accumulation of oleaginous yeast Trichosporon fermentans cells. In contrast to previous reports, we found that the toxicity of the organic acids to the cells was not directly related to their hydrophobicity. It is worth noting that most organic acids tested were less toxic than aldehydes to the cells, and some could even stimulate the growth and lipid accumulation at a low concentration. Unlike aldehydes, most binary combinations of organic acids exerted no synergistic inhibitory effects on lipid production. The presence of organic acids decelerated the consumption of glucose, whereas it influenced the utilization of xylose in a different and complicated way. In addition, all the organic acids tested, except furoic acid, inhibited the malic activity of T. fermentans. Furthermore, the inhibition of organic acids on cell growth was dependent more on inoculum size, temperature and initial pH than on lipid content. Conclusions This work provides some meaningful information about the effect of organic acid in lignocellulosic hydrolysates on the lipid production of

  19. Inhibitory neurotransmission and olfactory memory in honeybees.

    El Hassani, Abdessalam Kacimi; Giurfa, Martin; Gauthier, Monique; Armengaud, Catherine

    2008-11-01

    In insects, gamma-aminobutyric acid (GABA) and glutamate mediate fast inhibitory neurotransmission through ligand-gated chloride channel receptors. Both GABA and glutamate have been identified in the olfactory circuit of the honeybee. Here we investigated the role of inhibitory transmission mediated by GABA and glutamate-gated chloride channels (GluCls) in olfactory learning and memory in honeybees. We combined olfactory conditioning with injection of ivermectin, an agonist of GluCl receptors. We also injected a blocker of glutamate transporters (L-trans-PDC) or a GABA analog (TACA). We measured acquisition and retention 1, 24 and 48 h after the last acquisition trial. A low dose of ivermectin (0.01 ng/bee) impaired long-term olfactory memory (48 h) while a higher dose (0.05 ng/bee) had no effect. Double injections of ivermectin and L-trans-PDC or TACA had different effects on memory retention, depending on the doses and agents combined. When the low dose of ivermectin was injected after Ringer, long-term memory was again impaired (48 h). Such an effect was rescued by injection of both TACA and L-trans-PDC. A combination of the higher dose of ivermectin and TACA decreased retention at 48 h. We interpret these results as reflecting the involvement of both GluCl and GABA receptors in the impairment of olfactory long-term memory induced by ivermectin. These results illustrate the diversity of inhibitory transmission and its implication in long-term olfactory memory in honeybees.

  20. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de; Marques, Maria Rita; Leite, Carla Braga

    2009-01-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  1. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Santos, Edson dos Anjos dos; Beatriz, Adilson; Lima, Denis Pires de [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Exatas e Tecnologia. Dept. de Quimica], e-mail: dlima@nin.ufms.br; Marques, Maria Rita; Leite, Carla Braga [Universidade Federal Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil). Centro de Ciencias Biologicas. Dept. de Morfofisiologia

    2009-07-01

    Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H)-one (1) and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H)-one (2). The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in millimolar range. (author)

  2. Synthesis of resorcinolic lipids bearing structural similarities to cytosporone A

    Edson dos Anjos dos Santos

    2009-01-01

    Full Text Available Inspired by the structure and biological activities of resorcinolic lipids and, particularly cytosporone A- a potent inhibitor of plantule germination and growth, we have performed the synthesis of the analogs 3-heptyl-3-hydroxy-5,7-dimethoxy-2-benzofuran-1(3H-one (1 and 3-heptyl-3-hydroxy-4,6-dimethoxy-2-benzofuran-1(3H-one (2. The intermediates and products were submitted to allelopathic test using Lactuca sativa L. seeds. Target compound 1 showed an inhibitory effect on germination and growth of hypocotyl and radicle in milimolar range.

  3. Aldose reductase inhibitory compounds from Xanthium strumarium.

    Yoon, Ha Na; Lee, Min Young; Kim, Jin-Kyu; Suh, Hong-Won; Lim, Soon Sung

    2013-09-01

    As part of our ongoing search for natural sources of therapeutic and preventive agents for diabetic complications, we evaluated the inhibitory effects of components of the fruit of Xanthium strumarium (X. strumarium) on aldose reductase (AR) and galactitol formation in rat lenses with high levels of glucose. To identify the bioactive components of X. strumarium, 7 caffeoylquinic acids and 3 phenolic compounds were isolated and their chemical structures were elucidated on the basis of spectroscopic evidence and comparison with published data. The abilities of 10 X. strumarium-derived components to counteract diabetic complications were investigated by means of inhibitory assays with rat lens AR (rAR) and recombinant human AR (rhAR). From the 10 isolated compounds, methyl-3,5-di-O-caffeoylquinate showed the most potent inhibition, with IC₅₀ values of 0.30 and 0.67 μM for rAR and rhAR, respectively. In the kinetic analyses using Lineweaver-Burk plots of 1/velocity and 1/substrate, methyl-3,5-di-O-caffeoylquinate showed competitive inhibition of rhAR. Furthermore, methyl-3,5-di-O-caffeoylquinate inhibited galactitol formation in the rat lens and in erythrocytes incubated with a high concentration of glucose, indicating that this compound may be effective in preventing diabetic complications.

  4. Rational decision-making in inhibitory control.

    Shenoy, Pradeep; Yu, Angela J

    2011-01-01

    An important aspect of cognitive flexibility is inhibitory control, the ability to dynamically modify or cancel planned actions in response to changes in the sensory environment or task demands. We formulate a probabilistic, rational decision-making framework for inhibitory control in the stop signal paradigm. Our model posits that subjects maintain a Bayes-optimal, continually updated representation of sensory inputs, and repeatedly assess the relative value of stopping and going on a fine temporal scale, in order to make an optimal decision on when and whether to go on each trial. We further posit that they implement this continual evaluation with respect to a global objective function capturing the various reward and penalties associated with different behavioral outcomes, such as speed and accuracy, or the relative costs of stop errors and go errors. We demonstrate that our rational decision-making model naturally gives rise to basic behavioral characteristics consistently observed for this paradigm, as well as more subtle effects due to contextual factors such as reward contingencies or motivational factors. Furthermore, we show that the classical race model can be seen as a computationally simpler, perhaps neurally plausible, approximation to optimal decision-making. This conceptual link allows us to predict how the parameters of the race model, such as the stopping latency, should change with task parameters and individual experiences/ability.

  5. When is an Inhibitory Synapse Effective?

    Qian, Ning; Sejnowski, Terrence J.

    1990-10-01

    Interactions between excitatory and inhibitory synaptic inputs on dendrites determine the level of activity in neurons. Models based on the cable equation predict that silent shunting inhibition can strongly veto the effect of an excitatory input. The cable model assumes that ionic concentrations do not change during the electrical activity, which may not be a valid assumption, especially for small structures such as dendritic spines. We present here an analysis and computer simulations to show that for large Cl^- conductance changes, the more general Nernst-Planck electrodiffusion model predicts that shunting inhibition on spines should be much less effective than that predicted by the cable model. This is a consequence of the large changes in the intracellular ionic concentration of Cl^- that can occur in small structures, which would alter the reversal potential and reduce the driving force for Cl^-. Shunting inhibition should therefore not be effective on spines, but it could be significantly more effective on the dendritic shaft at the base of the spine. In contrast to shunting inhibition, hyperpolarizing synaptic inhibition mediated by K^+ currents can be very effective in reducing the excitatory synaptic potentials on the same spine if the excitatory conductance change is less than 10 nS. We predict that if the inhibitory synapses found on cortical spines are to be effective, then they should be mediated by K^+ through GABA_B receptors.

  6. Rational Decision-Making in Inhibitory Control

    Shenoy, Pradeep; Yu, Angela J.

    2011-01-01

    An important aspect of cognitive flexibility is inhibitory control, the ability to dynamically modify or cancel planned actions in response to changes in the sensory environment or task demands. We formulate a probabilistic, rational decision-making framework for inhibitory control in the stop signal paradigm. Our model posits that subjects maintain a Bayes-optimal, continually updated representation of sensory inputs, and repeatedly assess the relative value of stopping and going on a fine temporal scale, in order to make an optimal decision on when and whether to go on each trial. We further posit that they implement this continual evaluation with respect to a global objective function capturing the various reward and penalties associated with different behavioral outcomes, such as speed and accuracy, or the relative costs of stop errors and go errors. We demonstrate that our rational decision-making model naturally gives rise to basic behavioral characteristics consistently observed for this paradigm, as well as more subtle effects due to contextual factors such as reward contingencies or motivational factors. Furthermore, we show that the classical race model can be seen as a computationally simpler, perhaps neurally plausible, approximation to optimal decision-making. This conceptual link allows us to predict how the parameters of the race model, such as the stopping latency, should change with task parameters and individual experiences/ability. PMID:21647306

  7. Comparison of Heuristics for Inhibitory Rule Optimization

    Alsolami, Fawaz

    2014-09-13

    Knowledge representation and extraction are very important tasks in data mining. In this work, we proposed a variety of rule-based greedy algorithms that able to obtain knowledge contained in a given dataset as a series of inhibitory rules containing an expression “attribute ≠ value” on the right-hand side. The main goal of this paper is to determine based on rule characteristics, rule length and coverage, whether the proposed rule heuristics are statistically significantly different or not; if so, we aim to identify the best performing rule heuristics for minimization of rule length and maximization of rule coverage. Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.

  8. Mechanisms underlying electrical and mechanical responses of the bovine retractor penis to inhibitory nerve stimulation and to an inhibitory extract.

    Byrne, N. G.; Muir, T. C.

    1985-01-01

    The response of the bovine retractor penis (BRP) to stimulation of non-adrenergic, non-cholinergic (NANC) inhibitory nerves and to an inhibitory extract prepared from this muscle have been studied using intracellular microelectrode, sucrose gap and conventional mechanical recording techniques. Both inhibitory nerve stimulation and inhibitory extract hyperpolarized the membrane potential and relaxed spontaneous or guanethidine (3 X 10(-5) M)-induced tone. These effects were accompanied by an increase in membrane resistance. Following membrane potential displacement from an average value of -53 +/- 7 mV (n = 184; Byrne & Muir, 1984) inhibitory potentials to nerve stimulation were abolished at approximately -30 mV; there was no evidence of reversal. Displacement by inward hyperpolarizing current over the range -45 to -60 mV increased the inhibitory response to nerve stimulation and to inhibitory extract; at more negative potential values (above approximately -60 mV) the inhibitory potential decreased and was abolished (approximately -103 mV). There was no evidence of reversal. Removal of [K+]o reversibly reduced hyperpolarization to nerve stimulation and inhibitory extract. No enhancement was observed. Increasing the [K+]o to 20 mM reduced the inhibitory potential to nerve stimulation but this was restored by passive membrane hyperpolarization. Inhibitory potentials were obtained at membrane potential values exceeding that of the estimated EK (-49 mV). [Cl-]o-free or [Cl-]o-deficient solutions reduced and abolished (after some 20-25 min) the hyperpolarization produced by inhibitory nerve stimulation or inhibitory extract. The inhibitory potential amplitude following nerve stimulation was not restored by passive displacement of the membrane potential from -26 to -104 mV approximately. Ouabain (1-5 X 10(-5) M) reduced then (45-60 min later) abolished the inhibitory potential to nerve stimulation. The effects of this drug on the extract were not investigated. It is

  9. Macrophage migration inhibitory factor as an incriminating agent in vitiligo.

    Farag, Azza Gaber Antar; Hammam, Mostafa Ahmed; Habib, Mona SalahEldeen; Elnaidany, Nada Farag; Kamh, Mona Eaid

    2018-03-01

    Vitiligo is an autoimmune skin disorder in which the loss of melanocytes is mainly attributed to defective autoimmune mechanisms and, lately, there has been more emphasis on autoinflammatory mediators. Among these is the macrophage migration inhibitory factor, which is involved in many autoimmune skin diseases. However, little is known about the contribution of this factor to vitiligo vulgaris. To determine the hypothesized role of migration inhibitory factor in vitiligo via estimation of serum migration inhibitory factor levels and migration inhibitory factor mRNA concentrations in patients with vitiligo compared with healthy controls. We also aimed to assess whether there is a relationship between the values of serum migration inhibitory factor and/or migration inhibitory factor mRNA with disease duration, clinical type and severity in vitiligo patients. Evaluation of migration inhibitory factor serum level and migration inhibitory factor mRNA expression by ELISA and real-time PCR, respectively, were performed for 50 patients with different degrees of vitiligo severity and compared to 15 age- and gender-matched healthy volunteers as controls. There was a highly significant increase in serum migration inhibitory factor and migration inhibitory factor mRNA levels in vitiligo cases when compared to controls (pvitiligo patients, and each of them with duration and severity of vitiligo. In addition, patients with generalized vitiligo have significantly elevated serum migration inhibitory factor and mRNA levels than control subjects. Small number of investigated subjects. Migration inhibitory factor may have an active role in the development of vitiligo, and it may also be a useful index of disease severity. Consequently, migration inhibitory factor may be a new treatment target for vitiligo patients.

  10. Do Children with Better Inhibitory Control Donate More? Differentiating between Early and Middle Childhood and Cool and Hot Inhibitory Control

    Jian Hao

    2017-12-01

    Full Text Available Inhibitory control may play an important part in prosocial behavior, such as donating behavior. However, it is not clear at what developmental stage inhibitory control becomes associated with donating behavior and which aspects of inhibitory control are related to donating behavior during development in early to middle childhood. The present study aimed to clarify these issues with two experiments. In Experiment 1, 103 3- to 5-year-old preschoolers completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results indicated that there were no relationships between cool or hot inhibitory control and donating behavior in the whole group and each age group of the preschoolers. In Experiment 2, 140 elementary school children in Grades 2, 4, and 6 completed cool (Stroop-like and hot (delay of gratification inhibitory control tasks and a donating task. The results showed that inhibitory control was positively associated with donating behavior in the whole group. Cool and hot inhibitory control respectively predicted donating behavior in the second and sixth graders. Therefore, the present study reveals that donating behavior increasingly relies on specific inhibitory control, i.e., hot inhibitory control as children grow in middle childhood.

  11. Nootropic dipeptide noopept enhances inhibitory synaptic transmission in the hippocampus.

    Povarov, I S; Kondratenko, R V; Derevyagin, V I; Ostrovskaya, R U; Skrebitskii, V G

    2015-01-01

    Application of nootropic agent Noopept on hippocampal slices from Wistar rats enhanced the inhibitory component of total current induced by stimulation of Shaffer collaterals in CA1 pyramidal neurons, but did not affect the excitatory component. A direct correlation between the increase in the amplitude of inhibitory current and agent concentration was found. The substance did not affect the release of inhibitory transmitters from terminals in the pyramidal neurons, which indicated changes in GABAergic interneurons.

  12. Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts

    Celis Ramirez, A.M.

    2017-01-01

    Malassezia yeasts are lipid-dependent fungal species that are common members of the human and animal skin microbiota. The lipid-dependency is a crucial trait in the adaptation process to grow on the skin but also plays a role in their pathogenic life style. Malassezia species can cause several skin infections like dandruff or seborrheic dermatitis but also bloodstream infections. Understanding the lipid metabolism in Malassezia is essential to understand its life style as skin commensal and p...

  13. Timing control by redundant inhibitory neuronal circuits

    Tristan, I., E-mail: itristan@ucsd.edu; Rulkov, N. F.; Huerta, R.; Rabinovich, M. [BioCircuits Institute, University of California, San Diego, La Jolla, California 92093-0402 (United States)

    2014-03-15

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model.

  14. A recombinant wheat serpin with inhibitory activity

    Rasmussen, Søren K; Dahl, Søren Weis; Nørgård, Anette

    1996-01-01

    A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs to the sub......A full-length clone encoding the wheat (Triticum aestivum L.) serpin WSZ1 was isolated from a cDNA library based on mRNA from immature grain. The 398 amino acid sequence deduced from the cDNA was corroborated by sequencing CNBr peptides of WSZ1 purified from resting grain. WSZ1 belongs...... sequencing indicated that only few serpins are encoded by wheat, but at least three distinct genes are expressed in the grain. Cleavage experiments on a chymotrypsin column suggested a Gln-Gln reactive site bond not previously observed in inhibitory serpins....

  15. Comparison of Heuristics for Inhibitory Rule Optimization

    Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail

    2014-01-01

    Friedman test with Nemenyi post-hoc are used to compare the greedy algorithms statistically against each other for length and coverage. The experiments are carried out on real datasets from UCI Machine Learning Repository. For leading heuristics, the constructed rules are compared with optimal ones obtained based on dynamic programming approach. The results seem to be promising for the best heuristics: the average relative difference between length (coverage) of constructed and optimal rules is at most 2.27% (7%, respectively). Furthermore, the quality of classifiers based on sets of inhibitory rules constructed by the considered heuristics are compared against each other, and the results show that the three best heuristics from the point of view classification accuracy coincides with the three well-performed heuristics from the point of view of rule length minimization.

  16. Impaired inhibitory control in recreational cocaine users.

    Lorenza S Colzato

    Full Text Available Chronic use of cocaine is associated with impairment in response inhibition but it is an open question whether and to which degree findings from chronic users generalize to the upcoming type of recreational users. This study compared the ability to inhibit and execute behavioral responses in adult recreational users and in a cocaine-free-matched sample controlled for age, race, gender distribution, level of intelligence, and alcohol consumption. Response inhibition and response execution were measured by a stop-signal paradigm. Results show that users and non users are comparable in terms of response execution but users need significantly more time to inhibit responses to stop-signals than non users. Interestingly, the magnitude of the inhibitory deficit was positively correlated with the individuals lifetime cocaine exposure suggesting that the magnitude of the impairment is proportional to the degree of cocaine consumed.

  17. Serum trypsin inhibitory capacity in hemodialysis patients

    Hashemi, Mohammad; Mehrabifar, Hamid; Homayooni, Fatemeh; Naderi, Mohammad; Montazerifar, Farzaneh; Ghavami, Saeid

    2009-01-01

    It has been established that overproduction of reactive oxygen species (ROS) occurs during hemodialysis causing oxidation of proteins. Alpha-1-antitrypsin is the major circulating anti-protease which contains methionine in the active site. The aim of the present study was to measure the level of serum trypsin inhibitory capacity (sTIC) in hemodialysis patients. This case-control study was performed in 52 hemodialysis patients and 49 healthy controls. sTIC was measured by enzymatic assay. The sTIC was significantly (P< 0.001) lower in hemodialysis patients (1.87 + - 0.67 micron mol/min/mL) than healthy controls (2.83 + - 0.44 micron mol/min/L). Reduction of sTIC may be due to the oxidation of methionine residue in the reactive site of alpha-1 antitrypsin. (author)

  18. Timing control by redundant inhibitory neuronal circuits

    Tristan, I.; Rulkov, N. F.; Huerta, R.; Rabinovich, M.

    2014-01-01

    Rhythms and timing control of sequential activity in the brain is fundamental to cognition and behavior. Although experimental and theoretical studies support the understanding that neuronal circuits are intrinsically capable of generating different time intervals, the dynamical origin of the phenomenon of functionally dependent timing control is still unclear. Here, we consider a new mechanism that is related to the multi-neuronal cooperative dynamics in inhibitory brain motifs consisting of a few clusters. It is shown that redundancy and diversity of neurons within each cluster enhances the sensitivity of the timing control with the level of neuronal excitation of the whole network. The generality of the mechanism is shown to work on two different neuronal models: a conductance-based model and a map-based model

  19. The biochemical anatomy of cortical inhibitory synapses.

    Elizabeth A Heller

    Full Text Available Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from the cerebral cortex. We show that these synaptic complexes contain a variety of neurotransmitter receptors, neural cell-scaffolding and adhesion molecules, but that they are entirely lacking in cell signaling proteins. This fundamental distinction between the functions of type 1 and type 2 synapses in the nervous system has far reaching implications for models of synaptic plasticity, rapid adaptations in neural circuits, and homeostatic mechanisms controlling the balance of excitation and inhibition in the mature brain.

  20. Recruitment of activation receptors at inhibitory NK cell immune synapses.

    Nicolas Schleinitz

    2008-09-01

    Full Text Available Natural killer (NK cell activation receptors accumulate by an actin-dependent process at cytotoxic immune synapses where they provide synergistic signals that trigger NK cell effector functions. In contrast, NK cell inhibitory receptors, including members of the MHC class I-specific killer cell Ig-like receptor (KIR family, accumulate at inhibitory immune synapses, block actin dynamics, and prevent actin-dependent phosphorylation of activation receptors. Therefore, one would predict inhibition of actin-dependent accumulation of activation receptors when inhibitory receptors are engaged. By confocal imaging of primary human NK cells in contact with target cells expressing physiological ligands of NK cell receptors, we show here that this prediction is incorrect. Target cells included a human cell line and transfected Drosophila insect cells that expressed ligands of NK cell activation receptors in combination with an MHC class I ligand of inhibitory KIR. The two NK cell activation receptors CD2 and 2B4 accumulated and co-localized with KIR at inhibitory immune synapses. In fact, KIR promoted CD2 and 2B4 clustering, as CD2 and 2B4 accumulated more efficiently at inhibitory synapses. In contrast, accumulation of KIR and of activation receptors at inhibitory synapses correlated with reduced density of the integrin LFA-1. These results imply that inhibitory KIR does not prevent CD2 and 2B4 signaling by blocking their accumulation at NK cell immune synapses, but by blocking their ability to signal within inhibitory synapses.

  1. Microbial lipid production by oleaginous yeast Cryptococcus sp. in the batch cultures using corncob hydrolysate as carbon source

    Chang, Yi-Huang; Chang, Ku-Shang; Lee, Ching-Fu; Hsu, Chuan-Liang; Huang, Cheng-Wei; Jang, Hung-Der

    2015-01-01

    To realize the feasibility of biodiesel production from high-lipid cell culture, microbial lipid production by the oleaginous yeasts was studied using glucose and sucrose as carbon source. Among the tested strains, Cryptococcus sp. SM5S05 accumulated the highest levels of intracellular lipids. The crude lipid contents of Cryptococcus sp. cultured in yeast malt agar reached 30% on a dry weight basis. The accumulation of lipids strongly depended on carbon/nitrogen ratio and nitrogen concentration. The highest content of lipids, measured at a carbon/nitrogen ratio of 60–90 and at a nitrogen concentration of 0.2%, was 60–57% lipids in the dry biomass. Batch cultures using corncob hydrolysate demonstrated that there was minimal inhibitory effect with a reducing sugar concentration of 60 g l −1 or higher. Batch cultures of Cryptococcus sp. SM5S05 in the corncob hydrolysate medium with 60 g l −1 glucose resulted in a dry biomass, lipid yields, and content of 12.6 g l −1 , 7.6 g l −1 , and 60.2%, respectively. The lipids contained mainly long-chain saturated and unsaturated fatty acids with 16 and 18 carbon atoms. The fatty acid profile of Cryptococcus oils was quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with corncob hydrolysate being utilized as the raw material for the oleaginous yeast. The results showed that the microbial lipid from Cryptococcus sp. was a potential alternative resource for biodiesel production. - Highlights: • Microbial oil production from oleaginous yeast Cryptococcus sp. was studied. • Accumulation of lipid strongly depended on C/N ratio and nitrogen concentration. • Cultures in hydrolysate medium with 60 g/l glucose resulted in maximum lipid yields. • Maximal lipid content in the Cryptococcus sp. were 60.2% on dried weight basis

  2. Probing lipid membrane electrostatics

    Yang, Yi

    The electrostatic properties of lipid bilayer membranes play a significant role in many biological processes. Atomic force microscopy (AFM) is highly sensitive to membrane surface potential in electrolyte solutions. With fully characterized probe tips, AFM can perform quantitative electrostatic analysis of lipid membranes. Electrostatic interactions between Silicon nitride probes and supported zwitterionic dioleoylphosphatidylcholine (DOPC) bilayer with a variable fraction of anionic dioleoylphosphatidylserine (DOPS) were measured by AFM. Classical Gouy-Chapman theory was used to model the membrane electrostatics. The nonlinear Poisson-Boltzmann equation was numerically solved with finite element method to provide the potential distribution around the AFM tips. Theoretical tip-sample electrostatic interactions were calculated with the surface integral of both Maxwell and osmotic stress tensors on tip surface. The measured forces were interpreted with theoretical forces and the resulting surface charge densities of the membrane surfaces were in quantitative agreement with the Gouy-Chapman-Stern model of membrane charge regulation. It was demonstrated that the AFM can quantitatively detect membrane surface potential at a separation of several screening lengths, and that the AFM probe only perturbs the membrane surface potential by external field created by the internai membrane dipole moment. The analysis yields a dipole moment of 1.5 Debye per lipid with a dipole potential of +275 mV for supported DOPC membranes. This new ability to quantitatively measure the membrane dipole density in a noninvasive manner will be useful in identifying the biological effects of the dipole potential. Finally, heterogeneous model membranes were studied with fluid electric force microscopy (FEFM). Electrostatic mapping was demonstrated with 50 nm resolution. The capabilities of quantitative electrostatic measurement and lateral charge density mapping make AFM a unique and powerful

  3. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    Fatty acids, which are the major cardiac fuel, are derived from lipid droplets stored in cardiomyocytes, among other sources. The heart expresses hormone-sensitive lipase (HSL), which regulates triglycerides (TG) breakdown, and the enzyme is under hormonal control. Evidence obtained from adipose...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  4. Texture of lipid bilayer domains

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  5. Lipids and membrane lateral organization

    Sandro eSonnino

    2010-11-01

    Full Text Available Shortly after the elucidation of the very basic structure and properties of cellular membranes, it became evident that cellular membranes are highly organized structures with multiple and multi-dimensional levels of order. Very early observations suggested that the lipid components of biological membranes might be active players in the creations of these levels of order. In the late 80’s, several different and diverse experimental pieces of evidence coalesced together giving rise to the lipid raft hypothesis. Lipid rafts became enormously (and, in the opinion of these authors, sometimes acritically popular, surprisingly not just within the lipidologist community (who is supposed to be naturally sensitive to the fascination of lipid rafts. Today, a PubMed search using the key word lipid rafts returned a list of 3767 papers, including 690 reviews (as a term of comparison, searching over the same time span for a very hot lipid-related key word, ceramide returned 6187 hits with 799 reviews, and a tremendous number of different cellular functions have been described as lipid raft-dependent. However, a clear consensus definition of lipid raft has been proposed only in recent times, and the basic properties, the ruling forces, and even the existence of lipid rafts in living cells have been recently matter of intense debate. The scenario that is gradually emerging from the controversies elicited by the lipid raft hypothesis emphasize multiple roles for membrane lipids in determining membrane order, that encompasses their tendency to phase separation but are clearly not limited to this. In this review, we would like to re-focus the attention of the readers on the importance of lipids in organizing the fine structure of cellular membranes.

  6. Antitubercular activity and inhibitory effect on Epstein-Barr virus activation of sterols and polyisoprenepolyols from an edible mushroom, Hypsizigus marmoreus.

    Akihisa, Toshihiro; Franzblau, Scott Gary; Tokuda, Harukuni; Tagata, Masaaki; Ukiya, Motohiko; Matsuzawa, Tsunetomo; Metori, Koichi; Kimura, Yumiko; Suzuki, Takashi; Yasukawa, Ken

    2005-06-01

    Seven sterols (1-7) and eight polyisoprenepolyols (8-15), isolated from the non-saponifiable lipid fraction of the dichloromethane extract of an edible mushroom, Hypsizigus marmoreus (Buna-shimeji), were tested for their antitubercular activity against Mycobacterium tuberculosis strain H37Rv using the Microplate Alamar Blue Assay (MABA). Six sterols (2-7) and two polyisoprenepolyols (8, 12) showed a minimum inhibitory concentration (MIC) in the range of 1-51 microg/ml, while the others (1, 9-11, 13-15) were inactive (MIC>128 microg/ml). The seven sterols (1-7) and three polyisoprenepolyols (8, 10, 12) were further evaluated for their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells. Sterols 6 and 7 showed potent inhibitory effects while preserving the high viability of Raji cells.

  7. RGD-modified lipid disks as drug carriers for tumor targeted drug delivery

    Gao, Jie; Xie, Cao; Zhang, Mingfei; Wei, Xiaoli; Yan, Zhiqiang; Ren, Yachao; Ying, Man; Lu, Weiyue

    2016-03-01

    Melittin, the major component of the European bee venom, is a potential anticancer candidate due to its lytic properties. However, in vivo applications of melittin are limited due to its main side effect, hemolysis, especially when applied through intravenous administration. The polyethylene glycol-stabilized lipid disk is a novel type of nanocarrier, and the rim of lipid disks has a high affinity to amphiphilic peptides. In our study, a c(RGDyK) modified lipid disk was developed as a tumor targeted drug delivery system for melittin. Cryo-TEM was used to confirm the shape and size of lipid disks with or without c(RGDyK) modification. In vitro and in vivo hemolysis analyses revealed that the hemolysis effect significantly decreased after melittin associated with lipid disks. Importantly, the results of our in vivo biodistribution and tumor growth inhibitory experiments showed that c(RGDyK) modification increased the distribution of lipid disks in the tumor and the anticancer efficacy of melittin loaded lipid disks. Thus, we successfully achieved a targeted drug delivery system for melittin and other amphiphilic peptides with a good therapeutic effect and low side effects.

  8. Unraveling lipid metabolism in lipid-dependent pathogenic Malassezia yeasts

    Celis Ramirez, A.M.

    2017-01-01

    Malassezia yeasts are lipid-dependent fungal species that are common members of the human and animal skin microbiota. The lipid-dependency is a crucial trait in the adaptation process to grow on the skin but also plays a role in their pathogenic life style. Malassezia species can cause several skin

  9. Update of the LIPID MAPS comprehensive classification system for lipids

    Fahy, E.; Subramaniam, S.; Murphy, R.C.; Nishijima, M.; Raetz, C.R.H.; Shimizu, T.; Spener, F.; van Meer, G.|info:eu-repo/dai/nl/068570368; Wakelam, M.J.O.; Dennis, E.A.

    2009-01-01

    In 2005, the International Lipid Classification and Nomenclature Committee under the sponsorship of the LIPID MAPS Consortium developed and established a “Comprehensive Classification System for Lipids” based on well-defined chemical and biochemical principles and using an ontology that is

  10. Comparative phytochemical and growth inhibitory studies on the leaf ...

    Comparative phytochemical and growth inhibitory studies on the leaf and root bark extracts of securinega Virosa (roxb ex. Willd) baill ... The growth inhibitory tests were carried out between 1-30 mg/ in a period of 24-96 h while the phytochemical screening was carried out on the plant parts using standard methods. At 24 h ...

  11. Residential Mobility, Inhibitory Control, and Academic Achievement in Preschool

    Schmitt, Sara A.; Finders, Jennifer K.; McClelland, Megan M.

    2015-01-01

    Research Findings: The present study investigated the direct effects of residential mobility on children's inhibitory control and academic achievement during the preschool year. It also explored fall inhibitory control and academic skills as mediators linking residential mobility and spring achievement. Participants included 359 preschool children…

  12. Inhibitory Synaptic Plasticity - Spike timing dependence and putative network function.

    Tim P Vogels

    2013-07-01

    Full Text Available While the plasticity of excitatory synaptic connections in the brain has been widely studied, the plasticity of inhibitory connections is much less understood. Here, we present recent experimental and theoretical □ndings concerning the rules of spike timing-dependent inhibitory plasticity and their putative network function. This is a summary of a workshop at the COSYNE conference 2012.

  13. Optimization of inhibitory decision rules relative to length and coverage

    Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2012-01-01

    The paper is devoted to the study of algorithms for optimization of inhibitory rules relative to the length and coverage. In contrast with usual rules that have on the right-hand side a relation "attribute ≠ value", inhibitory rules have a relation

  14. Cell-based lipid flippase assay employing fluorescent lipid derivatives

    Jensen, Maria Stumph; Costa, Sara; Günther-Pomorski, Thomas

    2016-01-01

    P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases, s...... flippase activities in the plasma membrane of cells, using yeast as an example.......P-type ATPases in the P4 subfamily (P4-ATPases) are transmembrane proteins unique for eukaryotes that act as lipid flippases, i.e., to translocate phospholipids from the exofacial to the cytofacial monolayer of cellular membranes. While initially characterized as aminophospholipid translocases......, studies of individual P4-ATPase family members from fungi, plants, and animals show that P4-ATPases differ in their substrate specificities and mediate transport of a broader range of lipid substrates. Here, we describe an assay based on fluorescent lipid derivatives to monitor and characterize lipid...

  15. Glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

    Suyama, Shigetomo; Maekawa, Fumihiko; Maejima, Yuko; Kubota, Naoto; Kadowaki, Takashi; Yada, Toshihiko

    2016-08-09

    Adiponectin regulates glucose and lipid metabolism, acting against metabolic syndrome and atherosclerosis. Accumulating evidence suggest that adiponectin acts on the brain including hypothalamic arcuate nucleus (ARC), where proopiomelanocortin (POMC) neurons play key roles in feeding regulation. Several studies have examined intracerebroventricular (ICV) injection of adiponectin and reported opposite effects, increase or decrease of food intake. These reports used different nutritional states. The present study aimed to clarify whether adiponectin exerts distinct effects on food intake and ARC POMC neurons depending on the glucose concentration. Adiponectin was ICV injected with or without glucose for feeding experiments and administered to ARC slices with high or low glucose for patch clamp experiments. We found that adiponectin at high glucose inhibited POMC neurons and increased food intake while at low glucose it exerted opposite effects. The results demonstrate that glucose level determines excitatory or inhibitory effects of adiponectin on arcuate POMC neuron activity and feeding.

  16. Solid lipid nanoparticles for parenteral drug delivery

    Wissing, S.A.; Kayser, Oliver; Muller, R.H.

    2004-01-01

    This review describes the use of nanoparticles based on solid lipids for the parenteral application of drugs. Firstly, different types of nanoparticles based on solid lipids such as "solid lipid nanoparticles" (SLN), "nanostructured lipid carriers" (NLC) and "lipid drug conjugate" (LDC)

  17. Analysis of lipid profile in lipid storage myopathy.

    Aguennouz, M'hammed; Beccaria, Marco; Purcaro, Giorgia; Oteri, Marianna; Micalizzi, Giuseppe; Musumesci, Olimpia; Ciranni, Annmaria; Di Giorgio, Rosa Maria; Toscano, Antonio; Dugo, Paola; Mondello, Luigi

    2016-09-01

    Lipid dysmetabolism disease is a condition in which lipids are stored abnormally in organs and tissues throughout the body, causing muscle weakness (myopathy). Usually, the diagnosis of this disease and its characterization goes through dosage of Acyl CoA in plasma accompanied with evidence of droplets of intra-fibrils lipids in the patient muscle biopsy. However, to understand the pathophysiological mechanisms of lipid storage diseases, it is useful to identify the nature of lipids deposited in muscle fiber. In this work fatty acids and triglycerides profile of lipid accumulated in the muscle of people suffering from myopathies syndromes was characterized. In particular, the analyses were carried out on the muscle biopsy of people afflicted by lipid storage myopathy, such as multiple acyl-coenzyme A dehydrogenase deficiency, and neutral lipid storage disease with myopathy, and by the intramitochondrial lipid storage dysfunctions, such as deficiencies of carnitine palmitoyltransferase II enzyme. A single step extraction and derivatization procedure was applied to analyze fatty acids from muscle tissues by gas chromatography with a flame ionization detector and with an electronic impact mass spectrometer. Triglycerides, extracted by using n-hexane, were analyzed by high performance liquid chromatography coupled to mass spectrometer equipped with an atmospheric pressure chemical ionization interface. The most representative fatty acids in all samples were: C16:0 in the 13-24% range, C18:1n9 in the 20-52% range, and C18:2n6 in the 10-25% range. These fatty acids were part of the most representative triglycerides in all samples. The data obtained was statistically elaborated performing a principal component analysis. A satisfactory discrimination was obtained among the different diseases. Using component 1 vs component 3 a 43.3% of total variance was explained. Such results suggest the important role that lipid profile characterization can have in supporting a correct

  18. Structural studies on leukaemia inhibitory factor

    Norton, R.S.; Maurer, T.; Smith, D.K. [Biomolecular Research Institute, Parville (Australia); Nicola, N.A. [Institute of Medical Research, Melbourne (Australia)

    1994-12-01

    Leukaemia Inhibitory Factor (LIF) is a pleiotropic cytokine that acts on a wide range of target cells, including mega-karyocytes, osteoblasts, hepatocytes, adipocytes, neurons, embryonic stem cells, and primordial germ cells. Many of its activities are shared with other cytokines, particularly interleukin-6, oncostatin-M, ciliary neurotrophic factor, and granulocyte colony-stimulating factor (G-CSF). Although secreted in vivo as a glycoprotein, nonglycosylated recombinant protein expressed in E. coli is fully active and has been used in our nuclear magnetic resonance (NMR) studies of the three-dimensional structure and structure-function relationships of LIF. With 180 amino acids and a molecular mass of about 20 kDa, OF is too large for direct structure determination by two-dimensional and three-dimensional {sup 1}HNMR. It is necessary to label the protein with the stable isotopes {sup 15}N and {sup 13}C and employ heteronuclear three-dimensional NMR in order to resolve and interpret the spectral information required for three-dimensional structure determination. This work has been undertaken with both human LIF and a mouse-human chimaera that binds to the human LIF receptor with the same affinity as the human protein and yet expresses in E. coli at much higher levels. Sequence-specific resonance assignments and secondary structure elements for these proteins will be presented and progress towards determination of their three-dimensional structures described.

  19. Inhibitory effect of cyanide on wastewater nitrification ...

    The effect of CN- (CN-) on nitrification was examined with samples from nitrifying wastewater enrichments using two different approaches: by measuring substrate (ammonia) specific oxygen uptake rates (SOUR), and by using RT-qPCR to quantify the transcripts of functional genes involved in nitrification. The nitrifying bioreactor was operated as a continuous reactor with a 24 h hydraulic retention time. The samples were exposed in batch vessels to cyanide for a period of 12 h. The concentrations of CN- used in the batch assays were 0.03, 0.06, 0.1 and 1.0 mg/L. There was considerable decrease in SOUR with increasing dosages of CN-. A decrease of more than 50% in nitrification activity was observed at 0.1 mg/L CN-. Based on the RT-qPCR data, there was notable reduction in the transcript levels of amoA and hao for increasing CN- dosage, which corresponded well with the ammonia oxidation activity measured via SOUR. The inhibitory effect of cyanide may be attributed to the affinity of cyanide to bind ferric heme proteins, which disrupt protein structure and function. The correspondence between the relative expression of functional genes and SOUR shown in this study demonstrates the efficacy of RNA based function-specific assays for better understanding of the effect of toxic compounds on nitrification activity in wastewater. Nitrification is the first step of nitrogen removal is wastewater, and it is susceptible to inhibition by many industrial chemical. We looked at

  20. Angiogenesis is inhibitory for mammalian digit regeneration

    Yu, Ling; Yan, Mingquan; Simkin, Jennifer; Ketcham, Paulina D.; Leininger, Eric; Han, Manjong

    2014-01-01

    Abstract The regenerating mouse digit tip is a unique model for investigating blastema formation and epimorphic regeneration in mammals. The blastema is characteristically avascular and we previously reported that blastema expression of a known anti‐angiogenic factor gene, Pedf, correlated with a successful regenerative response (Yu, L., Han, M., Yan, M., Lee, E. C., Lee, J. & Muneoka, K. (2010). BMP signaling induces digit regeneration in neonatal mice. Development, 137, 551–559). Here we show that during regeneration Vegfa transcripts are not detected in the blastema but are expressed at the onset of differentiation. Treating the amputation wound with vascular endothelial growth factor enhances angiogenesis but inhibits regeneration. We next tested bone morphogenetic protein 9 (BMP9), another known mediator of angiogenesis, and found that BMP9 is also a potent inhibitor of digit tip regeneration. BMP9 induces Vegfa expression in the digit stump suggesting that regenerative failure is mediated by enhanced angiogenesis. Finally, we show that BMP9 inhibition of regeneration is completely rescued by treatment with pigment epithelium‐derived factor. These studies show that precocious angiogenesis is inhibitory for regeneration, and provide compelling evidence that the regulation of angiogenesis is a critical factor in designing therapies aimed at stimulating mammalian regeneration. PMID:27499862

  1. Lipid Peroxidation: Pathophysiology and Pharmacological Implications in the Eye

    Ya Fatou eNjie-Mbye

    2013-12-01

    Full Text Available Oxygen-derived free radicals such as hydroxyl and hydroperoxyl species have been shown to oxidize phospholipids and other membrane lipid components leading to lipid peroxidation. In the eye, lipid peroxidation has been reported to play an important role in degenerative ocular diseases (age-related macular degeneration, cataract, glaucoma, diabetic retinopathy. Indeed, ocular tissues are prone to damage from reactive oxygen species due to stress from constant exposure of the eye to sunlight, atmospheric oxygen and environmental chemicals. Furthermore, free radical catalyzed peroxidation of long chain polyunsaturated acids (LCPUFAs such as arachidonic acid and docosahexaenoic acid leads to generation of LCPUFA metabolites including isoprostanes and neuroprostanes that may further exert pharmacological/toxicological actions in ocular tissues. Evidence from literature supports the presence of endogenous defense mechanisms against reactive oxygen species in the eye, thereby presenting new avenues for the prevention and treatment of ocular degeneration. Hydrogen peroxide (H2O2 and synthetic peroxides can exert pharmacological and toxicological effects on tissues of the anterior uvea of several mammalian species. There is evidence suggesting that the retina, especially retinal ganglion cells can exhibit unique characteristics of antioxidant defense mechanisms. In the posterior segment of the eye, H2O2 and synthetic peroxides produce an inhibitory action on glutamate release (using [3H]-D-aspartate as a marker, in vitro and on the endogenous glutamate and glycine concentrations in vivo. In addition to peroxides, isoprostanes can elicit both excitatory and inhibitory effects on norepinephrine (NE release from sympathetic nerves in isolated mammalian iris ciliary bodies. Whereas isoprostanes attenuate dopamine release from mammalian neural retina, in vitro, these novel arachidonic acid metabolites exhibit a biphasic regulatory effect on glutamate release

  2. Dermal extracellular lipid in birds.

    Stromberg, M W; Hinsman, E J; Hullinger, R L

    1990-01-01

    A light and electron microscopic study of the skin of domestic chickens, seagulls, and antarctic penguins revealed abundant extracellular dermal lipid and intracellular epidermal lipid. Dermal lipid appeared ultrastructurally as extracellular droplets varying from less than 1 micron to more than 25 microns in diameter. The droplets were often irregularly contoured, sometimes round, and of relatively low electron density. Processes of fibrocytes were often seen in contact with extracellular lipid droplets. Sometimes a portion of such a droplet was missing, and this missing part appeared to have been "digested away" by the cell process. In places where cells or cell processes are in contact with fact droplets, there are sometimes extracellular membranous whorls or fragments which have been associated with the presence of fatty acids. Occasionally (in the comb) free fat particles were seen in intimate contact with extravasated erythrocytes. Fat droplets were seen in the lumen of small dermal blood and lymph vessels. We suggest that the dermal extracellular lipid originates in the adipocyte layer and following hydrolysis the free fatty acids diffuse into the epidermis. Here they become the raw material for forming the abundant neutral lipid contained in many of the epidermal cells of both birds and dolphins. The heretofore unreported presence and apparently normal utilization of abundant extracellular lipid in birds, as well as the presence of relatively large droplets of neutral lipid in dermal vessels, pose questions which require a thorough reappraisal of present concepts of the ways in which fat is distributed and utilized in the body.

  3. The Flexibility of Ectopic Lipids

    Hannah Loher

    2016-09-01

    Full Text Available In addition to the subcutaneous and the visceral fat tissue, lipids can also be stored in non-adipose tissue such as in hepatocytes (intrahepatocellular lipids; IHCL, skeletal (intramyocellular lipids; IMCL or cardiac muscle cells (intracardiomyocellular lipids; ICCL. Ectopic lipids are flexible fuel stores that can be depleted by physical exercise and repleted by diet. They are related to obesity and insulin resistance. Quantification of IMCL was initially performed invasively, using muscle biopsies with biochemical and/or histological analysis. 1H-magnetic resonance spectroscopy (1H-MRS is now a validated method that allows for not only quantifying IMCL non-invasively and repeatedly, but also assessing IHCL and ICCL. This review summarizes the current available knowledge on the flexibility of ectopic lipids. The available evidence suggests a complex interplay between quantitative and qualitative diet, fat availability (fat mass, insulin action, and physical exercise, all important factors that influence the flexibility of ectopic lipids. Furthermore, the time frame of the intervention on these parameters (short-term vs. long-term appears to be critical. Consequently, standardization of physical activity and diet are critical when assessing ectopic lipids in predefined clinical situations.

  4. Neuroimaging of Lipid Storage Disorders

    Rieger, Deborah; Auerbach, Sarah; Robinson, Paul; Gropman, Andrea

    2013-01-01

    Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly…

  5. Fasting and nonfasting lipid levels

    Langsted, Anne; Freiberg, Jacob J; Nordestgaard, Børge G

    2008-01-01

    Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events.......Lipid profiles are usually measured after fasting. We tested the hypotheses that these levels change only minimally in response to normal food intake and that nonfasting levels predict cardiovascular events....

  6. Lipid and bile acid analysis

    Argmann, Carmen A.; Houten, Sander M.; Champy, Marie-France; Auwerx, Johan

    2006-01-01

    Lipids are important body constituents that are vital for cellular, tissue, and whole-body homeostasis. Lipids serve as crucial membrane components, constitute the body's main energy reservoir, and are important signaling molecules. As a consequence of these pleiotropic functions, many common

  7. Lysosomal degradation of membrane lipids.

    Kolter, Thomas; Sandhoff, Konrad

    2010-05-03

    The constitutive degradation of membrane components takes place in the acidic compartments of a cell, the endosomes and lysosomes. Sites of lipid degradation are intralysosomal membranes that are formed in endosomes, where the lipid composition is adjusted for degradation. Cholesterol is sorted out of the inner membranes, their content in bis(monoacylglycero)phosphate increases, and, most likely, sphingomyelin is degraded to ceramide. Together with endosomal and lysosomal lipid-binding proteins, the Niemann-Pick disease, type C2-protein, the GM2-activator, and the saposins sap-A, -B, -C, and -D, a suitable membrane lipid composition is required for degradation of complex lipids by hydrolytic enzymes. Copyright 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Growth-inhibitory effects of the red alga Gelidium amansii on cultured cells.

    Chen, Yue-Hwa; Tu, Ching-Jung; Wu, Hsiao-Ting

    2004-02-01

    The objective of this study was to investigate the effects of Gelidium amansii, an edible red agar cultivated off the northeast coast of Taiwan, on the growth of two lines of cancer cells, murine hepatoma (Hepa-1) and human leukemia (HL-60) cells, as well as a normal cell line, murine embryo fibroblast cells (NIH-3T3). The potential role of G. amansii on the induction of apoptosis was also examined. The results indicated that all extracts from G. amansii, including phosphate-buffered saline (PBS) and methanol extracts from dried algae as well as the dimethyl sulfoxide (DMSO) extract from freeze-dried G. amansii agar, inhibited the growth of Hepa-1 and NIH-3T3 cells, but not the growth of HL-60 cells. Annexin V-positive cells were observed in methanol and DMSO extract-treated, but not PBS extract-treated Hepa-1 and NIH-3T3 cells, suggesting that the lipid-soluble extracts of G. amansii induced apoptosis. In summary, extracts of G. amansii from various preparations exhibited antiproliferative effects on Hepa-1 and NIH-3T3 cells, and apoptosis may play a role in the methanol and DMSO extract-induced inhibitory effects. However, the antiproliferative effects of PBS extracts was not through apoptosis. Moreover, the growth-inhibitory effects of G. amansii were not specific to cancer cells.

  9. Inhibitory mechanism of influence of thyroid hormones on cognitive function of the brain

    Rodynsky A.G.

    2017-06-01

    Full Text Available In experiments on young rats there were stu¬died changes in the fatty acid spectrum of fraction of free fatty acids (FFA of neocortex and hippocampus in con¬ditions of thyroid dysfunction. Elevated levels of thyroid hormones caused accumulation of polyunsaturated linoleic and linolenic acids in the neocortex by 2 times, in the hippocampus – by 52%. State of hypo¬thyroidism also contributed to the increase of C18: 2,3 in the neocortex by 74.4%. Growth of share of unsaturated fatty acid fraction in the content of fatty acid spectrum of neocortex also was accompanied by decrease in saturated C16:0 and C21:0 by 25% and 36% res¬pectively. Increase of the level of unsaturated fatty acids fraction of the cerebral cortex is possibly associated with the decrease in "unsaturation" structure of lipids, which in its turn may enhance serotonergic synaptic activity. Research of concentration of neuromediator amino acids in neocortex showed increase of serotonin content both in conditions of hyperthyroidism and hypothyroidism. In conditions of hyperthyroidism increased content of GABA was observed. Activity of serotonin- and GABA- ergic neurotransmitter systems of the brain in conditions of hyperthyroidism can be considered as increase of inhibitory processes in the effect of feedback. In conditions of experimental hypothyroidism activation of the inhibitory effects of CNS serotonergic system may be one of the ways to reduce the metabolism.

  10. Lipid profiling in sewage sludge.

    Zhu, Fenfen; Wu, Xuemin; Zhao, Luyao; Liu, Xiaohui; Qi, Juanjuan; Wang, Xueying; Wang, Jiawei

    2017-06-01

    High value-added reutilization of sewage sludge from wastewater treatment plants (WWTPs) is essential in sustainable development in WWTPs. However, despite the advantage of high value reutilization, this process must be based on a detailed study of organics in sludge. We used the methods employed in life sciences to determine the profile of lipids (cellular lipids, free fatty acids (FFAs), and wax/gum) in five sludge samples obtained from three typical WWTPs in Beijing; these samples include one sludge sample from a primary sedimentation tank, two activated sludge samples from two Anaerobic-Anoxic-Oxic (A2/O) tanks, and two activated sludge samples from two membrane bioreactor tanks. The percentage of total raw lipids varied from 2.90% to 12.3%. Sludge from the primary sedimentation tank showed the highest concentrations of lipid, FFA, and wax/gum and the second highest concentration of cellular lipids. All activated sludge contained an abundance of cellular lipids (>54%). Cells in sludge can from plants, animals, microbes and so on in wastewater. Approximately 14 species of cellular lipids were identified, including considerable high value-potential ceramide (9567-38774 mg/kg), coenzyme (937-3897 mg/kg), and some phosphatidylcholine (75-548 mg/kg). The presence of those lipid constituents would thus require a wider range of recovery methods for sludge. Both cellular lipids and FFAs contain an abundance of C16-C18 lipids at high saturation level, and they serve as good resources for biodiesel production. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Inhibitory effects of antimicrobial agents against Fusarium species.

    Kawakami, Hideaki; Inuzuka, Hiroko; Hori, Nobuhide; Takahashi, Nobumichi; Ishida, Kyoko; Mochizuki, Kiyofumi; Ohkusu, Kiyofumi; Muraosa, Yasunori; Watanabe, Akira; Kamei, Katsuhiko

    2015-08-01

    We investigated the inhibitory effects of antibacterial, biocidal, and antifungal agents against Fusarium spp. Seven Fusarium spp: four F. falciforme (Fusarium solani species complex), one Fusarium spp, one Fusarium spp. (Fusarium incarnatum-equiseti species complex), and one F. napiforme (Gibberella fujikuroi species complex), isolated from eyes with fungal keratitis were used in this study. Their susceptibility to antibacterial agents: flomoxef, imipenem, gatifloxacin, levofloxacin, moxifloxacin, gentamicin, tobramycin, and Tobracin® (contained 3,000 μg/ml of tobramycin and 25 μg/ml of benzalkonium chloride (BAK), a biocidal agent: BAK, and antifungal agents: amphotericin B, pimaricin (natamycin), fluconazole, itraconazole, miconazole, voriconazole, and micafungin, was determined by broth microdilution tests. The half-maximal inhibitory concentration (IC50), 100% inhibitory concentration (IC100), and minimum inhibitory concentration (MIC) against the Fusarium isolates were determined. BAK had the highest activity against the Fusarium spp. except for the antifungal agents. Three fluoroquinolones and two aminoglycosides had inhibitory effects against the Fusarium spp. at relatively high concentrations. Tobracin® had a higher inhibitory effect against Fusarium spp. than tobramycin alone. Amphotericin B had the highest inhibitory effect against the Fusarium spp, although it had different degrees of activity against each isolate. Our findings showed that fluoroquinolones, aminoglycosides, and BAK had some degree of inhibitory effect against the seven Fusarium isolates, although these agents had considerably lower effect than amphotericin B. However, the inhibitory effects of amphotericin B against the Fusarium spp. varied for the different isolates. Further studies for more effective medications against Fusarium, such as different combinations of antibacterial, biocidal, and antifungal agents are needed. © The Author 2015. Published by Oxford University Press on

  12. Coral lipids and environmental stress.

    Harriott, V J

    1993-04-01

    Environmental monitoring of coral reefs is presently limited by difficulties in recognising coral stress, other than by monitoring coral mortality over time. A recent report described an experiment demonstrating that a measured lipid index declined in shaded corals. The technique described might have application in monitoring coral health, with a decline in coral lipid index as an indicator of coral stress. The application of the technique as a practical monitoring tool was tested for two coral species from the Great Barrier Reef. Consistent with the previous results, lipid index for Pocillopora damicornis initially declined over a period of three weeks in corals maintained in filtered seawater in the dark, indicating possible utilization of lipid stored as energy reserves. However, lipid index subsequently rose to near normal levels. In contrast, lipid index of Acropora formosa increased after four weeks in the dark in filtered seawater. The results showed considerable variability in lipid content between samples from the same colony. Results were also found to be dependent on fixation times and sample weight, introducing potential error into the practical application of the technique. The method as described would be unsuitable for monitoring environmental stress in corals, but the search for a practical method to monitor coral health should continue, given its importance in coral reef management.

  13. Lipid composition of human meibum

    R. Schnetler

    2013-12-01

    Full Text Available The structure and function of meibomian gland lipids in the tear film are highly complex. Evidence shows that the precorneal tear film consists of discrete layers: the inner mucin layer, the middle aqueous layer and the outer lipid layer. In this review we focus on the outer, biphasic lipid layer of the tear film which consists of a ‘thick’ outer, non-polar layer  and a ‘thin’ inner, polar layer. We discuss the main composition of the polar and non-polar lipids within meibum (wax esters, cholesteryl esters, mono-, di- and tri-acylglycerols, ceramides, phospholipids  et cetera. We address the composition of meibomian lipids in subjects suffering from various ocular diseases in comparison with the composition in healthy individuals. Further analysis is needed to determine whether a correlation exists between the etiology of various ocular diseases and the fluctuation on the lipids as well as to establish whether or not tear lipid analysis can be used as a diagnostic tool.

  14. General and specific lipid-protein interactions in Na,K-ATPase.

    Cornelius, F; Habeck, M; Kanai, R; Toyoshima, C; Karlish, S J D

    2015-09-01

    The molecular activity of Na,K-ATPase and other P2 ATPases like Ca(2+)-ATPase is influenced by the lipid environment via both general (physical) and specific (chemical) interactions. Whereas the general effects of bilayer structure on membrane protein function are fairly well described and understood, the importance of the specific interactions has only been realized within the last decade due particularly to the growing field of membrane protein crystallization, which has shed new light on the molecular details of specific lipid-protein interactions. It is a remarkable observation that specific lipid-protein interactions seem to be evolutionarily conserved, and conformations of specifically bound lipids at the lipid-protein surface within the membrane are similar in crystal structures determined with different techniques and sources of the protein, despite the rather weak lipid-protein interaction energy. Studies of purified detergent-soluble recombinant αβ or αβFXYD Na,K-ATPase complexes reveal three separate functional effects of phospholipids and cholesterol with characteristic structural selectivity. The observations suggest that these three effects are exerted at separate binding sites for phophatidylserine/cholesterol (stabilizing), polyunsaturated phosphatidylethanolamine (stimulatory), and saturated PC or sphingomyelin/cholesterol (inhibitory), which may be located within three lipid-binding pockets identified in recent crystal structures of Na,K-ATPase. The findings point to a central role of direct and specific interactions of different phospholipids and cholesterol in determining both stability and molecular activity of Na,K-ATPase and possible implications for physiological regulation by membrane lipid composition. This article is part of a special issue titled "Lipid-Protein Interactions." Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Lipid metabolism in cancer cachexia.

    Mulligan, H. D.; Beck, S. A.; Tisdale, M. J.

    1992-01-01

    The effect of cancer cachexia on the oxidative metabolism of lipids has been studied in mice transplanted either with the MAC16 adenocarcinoma, which induces profound loss of body weight and depletion of lipid stores, or the MAC13 adenocarcinoma, which is the same histological type, but which grows without an effect on host body weight or lipid stores. While oxidation of D-[U-14C]glucose did not differ between animals bearing tumours of either type and non-tumour bearing controls, oxidation o...

  16. Muscle Lipid Metabolism: Role of Lipid Droplets and Perilipins

    Pablo Esteban Morales

    2017-01-01

    Full Text Available Skeletal muscle is one of the main regulators of carbohydrate and lipid metabolism in our organism, and therefore, it is highly susceptible to changes in glucose and fatty acid (FA availability. Skeletal muscle is an extremely complex tissue: its metabolic capacity depends on the type of fibers it is made up of and the level of stimulation it undergoes, such as acute or chronic contraction. Obesity is often associated with increased FA levels, which leads to the accumulation of toxic lipid intermediates, oxidative stress, and autophagy in skeletal fibers. This lipotoxicity is one of the most common causes of insulin resistance (IR. In this scenario, the “isolation” of certain lipids in specific cell compartments, through the action of the specific lipid droplet, perilipin (PLIN family of proteins, is conceived as a lifeguard compensatory strategy. In this review, we summarize the cellular mechanism underlying lipid mobilization and metabolism inside skeletal muscle, focusing on the function of lipid droplets, the PLIN family of proteins, and how these entities are modified in exercise, obesity, and IR conditions.

  17. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment.

    Sibi, G

    2015-01-01

    Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS) production, cytokine production using P. acnes (Microbial Type Culture Collection 1951). Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5'- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α) produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC) values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME) were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31%) and Chlorella protothecoides (58.9%). Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml). FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused by the

  18. Inhibition of lipase and inflammatory mediators by Chlorella lipid extracts for antiacne treatment

    G Sibi

    2015-01-01

    Full Text Available Acne vulgaris is a chronic inflammatory disease, and its treatment is challenging due to the multifactorial etiology and emergence of antibiotic-resistant Propionibacterium acnes strains. This study was focused to reduce antibiotics usage and find an alternate therapeutic source for treating acne. Lipid extracts of six Chlorella species were tested for inhibition of lipase, reactive oxygen species (ROS production, cytokine production using P. acnes (Microbial Type Culture Collection 1951. Lipase inhibitory assay was determined by dimercaprol Tributyrate - 5, 5′- dithiobis 2-nitrobenzoic acid method and ROS production assay was performed using nitro-blue tetrazolium test. The anti-inflammatory activity of algal lipid extracts was determined by in vitro screening method based on inhibition of pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-α produced by human peripheral blood mononuclear cells. Minimum inhibitory concentration (MIC values of lipid extracts were determined by microdilution method, and the fatty acid methyl esters (FAME were analyzed by gas chromatography-mass spectroscopy. Chlorella ellipsoidea has the highest lipase inhibitory activity with 61.73% inhibition, followed by Chlorella vulgaris (60.31% and Chlorella protothecoides (58.9%. Lipid extracts from C. protothecoides and C. ellipsoidea has significantly reduced the ROS production by 61.27% and 58.34% respectively. Inhibition of pro-inflammatory cytokines TNF-α showed the inhibition ranging from 58.39% to 78.67%. C. vulgaris has exhibited the MICvalue of 10 μg/ml followed by C. ellipsoidea, C. protothecoides and Chlorella pyrenoidosa (20 μg/ml. FAME analysis detected 19 fatty acids of which 5 were saturated fatty acids, and 14 were unsaturated fatty acids ranging from C14 to C24. The results suggest that lipid extracts of Chlorella species has significant inhibitory activity on P. acnes by inhibiting lipase activity. Further, anti-inflammatory reaction caused

  19. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions

    Kovacs, Erika; Harmat, Veronika; Tóth, Judit; Vértessy, Beáta G.; Módos, Károly; Kardos, József; Liliom, Károly

    2010-01-01

    Lipid-protein interactions are rarely characterized at a structural molecular level due to technical difficulties; however, the biological significance of understanding the mechanism of these interactions is outstanding. In this report, we provide mechanistic insight into the inhibitory complex formation of the lipid mediator sphingosylphosphorylcholine with calmodulin, the most central and ubiquitous regulator protein in calcium signaling. We applied crystallographic, thermodynamic, kinetic, and spectroscopic approaches using purified bovine calmodulin and bovine cerebral microsomal fraction to arrive at our conclusions. Here we present 1) a 1.6-Å resolution crystal structure of their complex, in which the sphingolipid occupies the conventional hydrophobic binding site on calmodulin; 2) a peculiar stoichiometry-dependent binding process: at low or high protein-to-lipid ratio calmodulin binds lipid micelles or a few lipid molecules in a compact globular conformation, respectively, and 3) evidence that the sphingolipid displaces calmodulin from its targets on cerebral microsomes. We have ascertained the specificity of the interaction using structurally related lipids as controls. Our observations reveal the structural basis of selective calmodulin inhibition by the sphingolipid. On the basis of the crystallographic and biophysical characterization of the calmodulin–sphingosylphosphorylcholine interaction, we propose a novel lipid-protein binding model, which might be applicable to other interactions as well.—Kovacs, E., Harmat, V., Tóth, J., Vértessy, B. G., Módos, K., Kardos, J., Liliom, K. Structure and mechanism of calmodulin binding to a signaling sphingolipid reveal new aspects of lipid-protein interactions. PMID:20522785

  20. Macrophage migration inhibitory factor and autism spectrum disorders

    Grigorenko, Elena L.; Han, Summer S.; Yrigollen, Carolyn M.; Leng, Lin; Mizue, Yuka; Anderson, George M.; Mulder, Erik J.; de Bildt, Annelies; Minderaa, Ruud B.; Volkmar, Fred R.; Chang, Joseph T.; Bucala, Richard

    OBJECTIVE. Autistic spectrum disorders are childhood neurodevelopmental disorders characterized by social and communicative impairment and repetitive and stereotypical behavior. Macrophage migration inhibitory factor (MIF) is an upstream regulator of innate immunity that promotes

  1. Macrophage migration inhibitory factor is elevated in obese adolescents

    Kamchybekov, Uran; Figulla, Hans R.; Gerdes, Norbert; Jung, Christian

    2012-01-01

    Objectives: The prevalence of obesity in childhood and adolescence is continuing rising. Macrophage migration inhibitory factor (MIF) participates in inflammatory and immune responses as a pro-inflammatory cytokine. The present study aimed to investigate MIF in overweight adolescents. Methods:

  2. Blood lipids and prostate cancer

    Bull, Caroline J; Bonilla, Carolina; Holly, Jeff M P

    2016-01-01

    Genetic risk scores were used as unconfounded instruments for specific lipid traits (Mendelian randomization) to assess whether circulating lipids causally influence prostate cancer risk. Data from 22,249 prostate cancer cases and 22,133 controls from 22 studies within the international PRACTICAL...... into logistic regression models to estimate the presence (and direction) of any causal effect of each lipid trait on prostate cancer risk. There was weak evidence for an association between the LDL genetic score and cancer grade: the odds ratio (OR) per genetically instrumented standard deviation (SD) in LDL.......95, 3.00; P = 0.08). The rs12916-T variant in 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR) was inversely associated with prostate cancer (OR: 0.97; 95% CI: 0.94, 1.00; P = 0.03). In conclusion, circulating lipids, instrumented by our genetic risk scores, did not appear to alter prostate cancer risk...

  3. Phlorotannin Extracts from Fucales Characterized by HPLC-DAD-ESI-MSn: Approaches to Hyaluronidase Inhibitory Capacity and Antioxidant Properties

    Ferreres, Federico; Lopes, Graciliana; Gil-Izquierdo, Angel; Andrade, Paula B.; Sousa, Carla; Mouga, Teresa; Valentão, Patrícia

    2012-01-01

    Purified phlorotannin extracts from four brown seaweeds (Cystoseira nodicaulis (Withering) M. Roberts, Cystoseira tamariscifolia (Hudson) Papenfuss, Cystoseira usneoides (Linnaeus) M. Roberts and Fucus spiralis Linnaeus), were characterized by HPLC-DAD-ESI-MSn. Fucophloroethol, fucodiphloroethol, fucotriphloroethol, 7-phloroeckol, phlorofucofuroeckol and bieckol/dieckol were identified. The antioxidant activity and the hyaluronidase (HAase) inhibitory capacity exhibited by the extracts were also assessed. A correlation between the extracts activity and their chemical composition was established. F. spiralis, the species presenting higher molecular weight phlorotannins, generally displayed the strongest lipid peroxidation inhibitory activity (IC50 = 2.32 mg/mL dry weight) and the strongest HAase inhibitory capacity (IC50 = 0.73 mg/mL dry weight). As for superoxide radical scavenging, C. nodicaulis was the most efficient species (IC50 = 0.93 mg/mL dry weight), followed by F. spiralis (IC50 = 1.30 mg/mL dry weight). These results show that purified phlorotannin extracts have potent capabilities for preventing and slowing down the skin aging process, which is mainly associated with free radical damage and with the reduction of hyaluronic acid concentration, characteristic of the process. PMID:23222802

  4. Do detour tasks provide accurate assays of inhibitory control?

    Whiteside, Mark A.; Laker, Philippa R.; Beardsworth, Christine E.

    2018-01-01

    Transparent Cylinder and Barrier tasks are used to purportedly assess inhibitory control in a variety of animals. However, we suspect that performances on these detour tasks are influenced by non-cognitive traits, which may result in inaccurate assays of inhibitory control. We therefore reared pheasants under standardized conditions and presented each bird with two sets of similar tasks commonly used to measure inhibitory control. We recorded the number of times subjects incorrectly attempted to access a reward through transparent barriers, and their latencies to solve each task. Such measures are commonly used to infer the differential expression of inhibitory control. We found little evidence that their performances were consistent across the two different Putative Inhibitory Control Tasks (PICTs). Improvements in performance across trials showed that pheasants learned the affordances of each specific task. Critically, prior experience of transparent tasks, either Barrier or Cylinder, also improved subsequent inhibitory control performance on a novel task, suggesting that they also learned the general properties of transparent obstacles. Individual measures of persistence, assayed in a third task, were positively related to their frequency of incorrect attempts to solve the transparent inhibitory control tasks. Neophobia, Sex and Body Condition had no influence on individual performance. Contrary to previous studies of primates, pheasants with poor performance on PICTs had a wider dietary breadth assayed using a free-choice task. Our results demonstrate that in systems or taxa where prior experience and differences in development cannot be accounted for, individual differences in performance on commonly used detour-dependent PICTS may reveal more about an individual's prior experience of transparent objects, or their motivation to acquire food, than providing a reliable measure of their inhibitory control. PMID:29593115

  5. Optimization of inhibitory decision rules relative to length and coverage

    Alsolami, Fawaz

    2012-01-01

    The paper is devoted to the study of algorithms for optimization of inhibitory rules relative to the length and coverage. In contrast with usual rules that have on the right-hand side a relation "attribute ≠ value", inhibitory rules have a relation "attribute = value" on the right-hand side. The considered algorithms are based on extensions of dynamic programming. © 2012 Springer-Verlag.

  6. Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders

    2016-12-01

    1 AWARD NUMBER: W81XWH-14-1-0433 TITLE: Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders PRINCIPAL INVESTIGATOR: Anis...SUBTITLE 5a. CONTRACT NUMBER Disruption of Trophic Inhibitory Signaling in Autism Sepctrum Disorders 5b. GRANT NUMBER W81XWH-14-1-0433 5c. PROGRAM...chloride co-transporters that control EGABA could be used as a corrective strategy for the synaptic and circuit disruptions demonstrated in the

  7. Bioactive Lipids in Dairy Fat

    Hellgren, Lars; Nordby, Pernille

    2017-01-01

    Milk fat is the most important energy source for the newborn infant beside its important role as energy source, milk fat also contain a range of bioactive lipids, that potentially can modulate the immune response and metabolic regulation in the child. In this chapter we review the literature on b...... on bioactive dairy fatty acids: conjugated linoleic acid, branched chained and odd chained fatty acids, as well as bioactive complex lipids such as sphingomyelin and gangliosides....

  8. Voluntary inhibitory motor control over involuntary tic movements.

    Ganos, Christos; Rothwell, John; Haggard, Patrick

    2018-03-06

    Inhibitory control is crucial for normal adaptive motor behavior. In hyperkinesias, such as tics, disinhibition within the cortico-striato-thalamo-cortical loops is thought to underlie the presence of involuntary movements. Paradoxically, tics are also subject to voluntary inhibitory control. This puzzling clinical observation questions the traditional definition of tics as purely involuntary motor behaviors. Importantly, it suggests novel insights into tic pathophysiology. In this review, we first define voluntary inhibitory tic control and compare it with other notions of tic control from the literature. We then examine the association between voluntary inhibitory tic control with premonitory urges and review evidence linking voluntary tic inhibition to other forms of executive control of action. We discuss the somatotopic selectivity and the neural correlates of voluntary inhibitory tic control. Finally, we provide a scientific framework with regard to the clinical relevance of the study of voluntary inhibitory tic control within the context of the neurodevelopmental disorder of Tourette syndrome. We identify current knowledge gaps that deserve attention in future research. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  9. Self-reported impulsivity and inhibitory control in problem gamblers.

    Lorains, Felicity K; Stout, Julie C; Bradshaw, John L; Dowling, Nicki A; Enticott, Peter G

    2014-01-01

    Impulsivity is considered a core feature of problem gambling; however, self-reported impulsivity and inhibitory control may reflect disparate constructs. We examined self-reported impulsivity and inhibitory control in 39 treatment-seeking problem gamblers and 41 matched controls using a range of self-report questionnaires and laboratory inhibitory control tasks. We also investigated differences between treatment-seeking problem gamblers who prefer strategic (e.g., sports betting) and nonstrategic (e.g., electronic gaming machines) gambling activities. Treatment-seeking problem gamblers demonstrated elevated self-reported impulsivity, more go errors on the Stop Signal Task, and a lower gap score on the Random Number Generation task than matched controls. However, overall we did not find strong evidence that treatment-seeking problem gamblers are more impulsive on laboratory inhibitory control measures. Furthermore, strategic and nonstrategic problem gamblers did not differ from their respective controls on either self-reported impulsivity questionnaires or laboratory inhibitory control measures. Contrary to expectations, our results suggest that inhibitory dyscontrol may not be a key component for some treatment-seeking problem gamblers.

  10. [Lipids of Aureobasidium (Pullularia) pullulans].

    Elinov, N P; Iurlova, N A; Efimova, T P

    1975-01-01

    Fractional composition of free and bound lipids was studied in Aureobasidium (Pullularia) pullulans 8 by preparative TLC on Silufol. Bound lipids contained a fraction (27.76 +/- 0.5%) of dark brown colour, similar to melanin. The composition of fatty acids was studied by GLC. The following fatty acids were identified and determined quantitatively: C12:0, C14:0, C15:0, C16:0, C18:0, C18:1+C15:2. The following fatty acids predominated in free and bound lipids: C16:0, C18:1+C18:2. The ratio between unsaturated and saturated fatty acids in all fractions of free and bound lipids was more than unity. The following parameters were determined for lipids; ester number (173.89 and 178.53); iodine number (44.1 and 33.10), and saponification number (181.17 and 206.03) (the values are given for free and bound lipids, respectively).

  11. Defining Lipid Transport Pathways in Animal Cells

    Pagano, Richard E.; Sleight, Richard G.

    1985-09-01

    A new technique for studying the metabolism and intracellular transport of lipid molecules in living cells based on the use of fluorescent lipid analogs is described. The cellular processing of various intermediates (phosphatidic acid and ceramide) and end products (phosphatidylcholine and phosphatidylethanolamine) in lipid biosynthesis is reviewed and a working model for compartmentalization during lipid biosynthesis is presented.

  12. In vitro evaluation of inhibitory effect of Phoenix dactylifera bark ...

    Conclusion: The findings of this study indicate significant anti-lipid peroxidation and anti-hemolytic effects of the bark extract. Therefore, the extract can potentially be used for the in vivo treatment of diseases associated with lipid peroxidation such as cancers and Alzheimer's disease, but further studies are required.

  13. Modeling growth, lipid accumulation and lipid turnover in submerged batch cultures of Umbelopsis isabellina

    Meeuwse, P.; Akbari, P.; Tramper, J.; Rinzema, A.

    2012-01-01

    The production of lipids by oleaginous yeast and fungi becomes more important because these lipids can be used for biodiesel production. To understand the process of lipid production better, we developed a model for growth, lipid production and lipid turnover in submerged batch fermentation. This

  14. Lipid nanoparticle interactions and assemblies

    Preiss, Matthew Ryan

    Novel liposome-nanoparticle assemblies (LNAs) provide a biologically inspired route for designing multifunctional bionanotheranostics. LNAs combine the benefits of lipids and liposomes to encapsulate, transport, and protect hydrophilic and hydrophobic therapeutics with functional nanoparticles. Functional nanoparticles endow LNAs with additional capabilities, including the ability to target diseases, triggered drug release, controlled therapeutic output, and diagnostic capabilities to produce a drug delivery system that can effectively and efficiently deliver therapeutics while reducing side effects. Not only could LNAs make existing drugs better, they could also provide an avenue to allow once promising non-approved drugs (rejected due to harmful side effects, inadequate pharmacokinetics, and poor efficacy) to be safely used through targeted and controlled delivery directly to the diseased site. LNAs have the potential to be stimuli responsive, delivering drugs on command by external (ultrasound, RF heating, etc.) or internal (pH, blood sugar, heart rate, etc.) stimuli. Individually, lipids and nanoparticles have been clinically approved for therapy, such as Doxil (a liposomal doxorubicin for cancer treatment), and diagnosis, such as Feridex (an iron oxide nanoparticle an MRI contrast enhancement agent for liver tumors). In order to engineer these multifunctional LNAs for theranostic applications, the interactions between nanoparticles and lipids must be better understood. This research sought to explore the formation, design, structures, characteristics, and functions of LNAs. To achieve this goal, different types of LNAs were formed, specifically magnetoliposomes, bilayer decorated LNAs (DLNAs), and lipid-coated magnetic nanoparticles (LMNPs). A fluorescent probe was embedded in the lipid bilayer of magnetoliposomes allowing the local temperature and membrane fluidity to be observed. When subjected to an electromagnetic field that heated the encapsulated iron

  15. Decorrelation of Neural-Network Activity by Inhibitory Feedback

    Einevoll, Gaute T.; Diesmann, Markus

    2012-01-01

    Correlations in spike-train ensembles can seriously impair the encoding of information by their spatio-temporal structure. An inevitable source of correlation in finite neural networks is common presynaptic input to pairs of neurons. Recent studies demonstrate that spike correlations in recurrent neural networks are considerably smaller than expected based on the amount of shared presynaptic input. Here, we explain this observation by means of a linear network model and simulations of networks of leaky integrate-and-fire neurons. We show that inhibitory feedback efficiently suppresses pairwise correlations and, hence, population-rate fluctuations, thereby assigning inhibitory neurons the new role of active decorrelation. We quantify this decorrelation by comparing the responses of the intact recurrent network (feedback system) and systems where the statistics of the feedback channel is perturbed (feedforward system). Manipulations of the feedback statistics can lead to a significant increase in the power and coherence of the population response. In particular, neglecting correlations within the ensemble of feedback channels or between the external stimulus and the feedback amplifies population-rate fluctuations by orders of magnitude. The fluctuation suppression in homogeneous inhibitory networks is explained by a negative feedback loop in the one-dimensional dynamics of the compound activity. Similarly, a change of coordinates exposes an effective negative feedback loop in the compound dynamics of stable excitatory-inhibitory networks. The suppression of input correlations in finite networks is explained by the population averaged correlations in the linear network model: In purely inhibitory networks, shared-input correlations are canceled by negative spike-train correlations. In excitatory-inhibitory networks, spike-train correlations are typically positive. Here, the suppression of input correlations is not a result of the mere existence of correlations between

  16. Lipids, lipid droplets and lipoproteins in their cellular context; an ultrastructural approach

    Mesman, R.J.

    2013-01-01

    Lipids are essential for cellular life, functioning either organized as bilayer membranes to compartmentalize cellular processes, as signaling molecules or as metabolic energy storage. Our current knowledge on lipid organization and cellular lipid homeostasis is mainly based on biochemical data.

  17. Somatostatin-expressing inhibitory interneurons in cortical circuits

    Iryna Yavorska

    2016-09-01

    Full Text Available Cortical inhibitory neurons exhibit remarkable diversity in their morphology, connectivity, and synaptic properties. Here, we review the function of somatostatin-expressing (SOM inhibitory interneurons, focusing largely on sensory cortex. SOM neurons also comprise a number of subpopulations that can be distinguished by their morphology, input and output connectivity, laminar location, firing properties, and expression of molecular markers. Several of these classes of SOM neurons show unique dynamics and characteristics, such as facilitating synapses, specific axonal projections, intralaminar input, and top-down modulation, which suggest possible computational roles. SOM cells can be differentially modulated by behavioral state depending on their class, sensory system, and behavioral paradigm. The functional effects of such modulation have been studied with optogenetic manipulation of SOM cells, which produces effects on learning and memory, task performance, and the integration of cortical activity. Different classes of SOM cells participate in distinct disinhibitory circuits with different inhibitory partners and in different cortical layers. Through these disinhibitory circuits, SOM cells help encode the behavioral relevance of sensory stimuli by regulating the activity of cortical neurons based on subcortical and intracortical modulatory input. Associative learning leads to long-term changes in the strength of connectivity of SOM cells with other neurons, often influencing the strength of inhibitory input they receive. Thus despite their heterogeneity and variability across cortical areas, current evidence shows that SOM neurons perform unique neural computations, forming not only distinct molecular but also functional subclasses of cortical inhibitory interneurons.

  18. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Shohei Sakuda

    2014-03-01

    Full Text Available Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control.

  19. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  20. Gene therapy for lipid disorders

    Rader Daniel J

    2000-10-01

    Full Text Available Abstract Lipid disorders are associated with atherosclerotic vascular disease, and therapy is associated with a substantial reduction in cardiovascular events. Current approaches to the treatment of lipid disorders are ineffective in a substantial number of patients. New therapies for refractory hypercholesterolemia, severe hypertriglyceridemia, and low levels of high-density lipoprotein cholesterol are needed: somatic gene therapy is one viable approach. The molecular etiology and pathophysiology of most of the candidate diseases are well understood. Animal models exist for the diseases and in many cases preclinical proof-of-principle studies have already been performed. There has been progress in the development of vectors that provide long-term gene expression. New clinical gene therapy trials for lipid disorders are likely to be initiated within the next few years.

  1. Analysis of Lipid Experiments (ALEX)

    Husen, Peter; Tarasov, Kirill; Katafiasz, Maciej

    2013-01-01

    Global lipidomics analysis across large sample sizes produces high-content datasets that require dedicated software tools supporting lipid identification and quantification, efficient data management and lipidome visualization. Here we present a novel software-based platform for streamlined data...... processing, management and visualization of shotgun lipidomics data acquired using high-resolution Orbitrap mass spectrometry. The platform features the ALEX framework designed for automated identification and export of lipid species intensity directly from proprietary mass spectral data files......, and an auxiliary workflow using database exploration tools for integration of sample information, computation of lipid abundance and lipidome visualization. A key feature of the platform is the organization of lipidomics data in "database table format" which provides the user with an unsurpassed flexibility...

  2. Lipid raft integrity affects GABAA receptor, but not NMDA receptor modulation by psychopharmacological compounds.

    Nothdurfter, Caroline; Tanasic, Sascha; Di Benedetto, Barbara; Uhr, Manfred; Wagner, Eva-Maria; Gilling, Kate E; Parsons, Chris G; Rein, Theo; Holsboer, Florian; Rupprecht, Rainer; Rammes, Gerhard

    2013-07-01

    Lipid rafts have been shown to play an important role for G-protein mediated signal transduction and the function of ligand-gated ion channels including their modulation by psychopharmacological compounds. In this study, we investigated the functional significance of the membrane distribution of NMDA and GABAA receptor subunits in relation to the accumulation of the tricyclic antidepressant desipramine (DMI) and the benzodiazepine diazepam (Diaz). In the presence of Triton X-100, which allowed proper separation of the lipid raft marker proteins caveolin-1 and flotillin-1 from the transferrin receptor, all receptor subunits were shifted to the non-raft fractions. In contrast, under detergent-free conditions, NMDA and GABAA receptor subunits were detected both in raft and non-raft fractions. Diaz was enriched in non-raft fractions without Triton X-100 in contrast to DMI, which preferentially accumulated in lipid rafts. Impairment of lipid raft integrity by methyl-β-cyclodextrine (MβCD)-induced cholesterol depletion did not change the inhibitory effect of DMI at the NMDA receptor, whereas it enhanced the potentiating effect of Diaz at the GABAA receptor at non-saturating concentrations of GABA. These results support the hypothesis that the interaction of benzodiazepines with the GABAA receptor likely occurs outside of lipid rafts while the antidepressant DMI acts on ionotropic receptors both within and outside these membrane microdomains.

  3. Inhibition of rat liver microsomal lipid peroxidation by N-acyldehydroalanines: An in vitro comparative study

    Buc-Calderon, P.; Roberfroid, M. (Universite Catholique de Louvain, Brussels (Belgium))

    1989-09-01

    Captodative substituted olefins are radical scavengers which react with free radicals to form stabilized radical adducts. One of those compounds, N-(paramethoxyphenylacetyl)dehydroalanine (AD-5), may react and scavenge both superoxide anion (O-2) and alk-oxyl radicals (RO.), and in this way prevent the appearance of their mediated biological effects. Nitrofurantoin and tert-butyl hydroperoxide were used as model compounds to stimulate free radical production and their mediated lipid peroxidation in rat liver microsomes. In addition, lipid peroxidation was also initiated by exposure of rat liver microsomal suspensions to ionizing radiation (gamma rays). The microsomal lipid peroxidation induced by these chemicals and physical agents was inhibited by the addition of AD-5. These effects were dose-dependent in a millimolar range of concentration. In addition, AD-5 has no effect on microsomal electron transport, showing that NADPH-cytochrome P450 reductase activity was not modified. These data, together with the comparisons of the effects of AD-5 and some antioxidant molecules such as superoxide dismutase, uric acid, and mannitol, support the conclusion that inhibition of lipid peroxidation by AD-5 is the result of its free radical scavenger activity. In addition, the inhibitory effect of AD-5 on microsomal lipid peroxidation was dependent of the nature of the free radical species involved in the initiation of the process, suggesting that O-2 is scavenged more efficiently than RO.

  4. Lipids in citrus sinensis seeds

    Hamid, S.; Liaquat, L.; Khalid, B.; Khan, J.I.

    2003-01-01

    The seed oil of citrus sinensis when subjected to different physicochemical tests showed moisture 13.2%, ash 7.5%, ester value 1.29%, free fatty acid 0.4%. iodine value 65.0% and protein value 6.0%. According to lipid analysis. the oil was classified into hydrocarbons. wax esters, sterol esters, triglycerides. free fatty acids, 1,3 and 1,2 diglycerides, alcohols, sterols, monoglycerides, phosphatidylethanolamines, phosphatidylcholines and lysophosphatidylethanolamines. The fatty acid (C/sub 12.0/ - C/sub 21.0/) composition of all lipid classes was determined with the help of thin layer and gas liquid chromatography. (author)

  5. Sensing voltage across lipid membranes

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  6. Bioaccessibility and inhibitory effects on digestive enzymes of carnosic acid in sage and rosemary.

    Ercan, Pınar; El, Sedef Nehir

    2018-04-28

    In this study, the aim was to determine the bioaccessibilities of carnosic acid in sage and rosemary and in vitro inhibitory effects of these samples on lipid and starch digestive enzymes by evaluating the lipase, α-amylase and α-glucosidase enzyme inhibition activities. The content of carnosic acid in rosemary (18.72 ± 0.33 mg/g) was found to be higher than that content of that in sage (3.76 ± 0.13 mg/g) (p sage and rosemary, respectively. The tested sage and rosemary showed inhibitory activity against α-glucosidase (Concentration of inhibitor required to produce a 50% inhibition of the initial rate of reaction - IC 50 88.49 ± 2.35, 76.80 ± 1.68 μg/mL, respectively), α-amylase (IC 50 107.65 ± 12.64, 95.65 ± 2.73 μg/mL, respectively) and lipase (IC 50 6.20 ± 0.63, 4.31 ± 0.62 μg/mL, respectively). Furthermore, to the best of our knowledge, this is the first work that carnosic acid standard equivalent inhibition capacities (CAEIC 50 ) for these food samples were determined and these values were in agreement with the IC 50 values. These results show that sage and rosemary are potent inhibitors of lipase, α-amylase and α-glucosidase digestive enzymes. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. NK cell activation: distinct stimulatory pathways counterbalancing inhibitory signals.

    Bakker, A B; Wu, J; Phillips, J H; Lanier, L L

    2000-01-01

    A delicate balance between positive and negative signals regulates NK cell effector function. Activation of NK cells may be initiated by the triggering of multiple adhesion or costimulatory molecules, and can be counterbalanced by inhibitory signals induced by receptors for MHC class I. A common pathway of inhibitory signaling is provided by immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in the cytoplasmic domains of these receptors which mediate the recruitment of SH2 domain-bearing tyrosine phosphate-1 (SHP-1). In contrast to the extensive progress that has been made regarding the negative regulation of NK cell function, our knowledge of the signals that activate NK cells is still poor. Recent studies of the activating receptor complexes have shed new light on the induction of NK cell effector function. Several NK receptors using novel adaptors with immunoreceptor tyrosine-based activation motifs (ITAMs) and with PI 3-kinase recruiting motifs have been implicated in NK cell stimulation.

  8. Modifying yeast tolerance to inhibitory conditions of ethanol production processes

    Luis eCaspeta

    2015-11-01

    Full Text Available Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated –omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.

  9. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S....... cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular...... functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose....

  10. Blood lipid metabolites and meat lipid peroxidation responses of ...

    Esnart Mukumbo

    2017-06-19

    Jun 19, 2017 ... Fat and protein contents of thigh muscle and abdominal fat weight were measured and reported. Chickens fed LPO had greater serum triacylglycerol and very low ... favour lipid peroxidation, inhibit synthesis of higher homologous of ... The ambient temperature was gradually decreased from 33 °C at first.

  11. Blood lipid metabolites and meat lipid peroxidation responses of ...

    Blood samples were collected from broilers to evaluate serum biochemical metabolites on day 41. Thigh meat samples were provided and analysed after 1, 5 and 10 days' storage to evaluate lipid peroxidation at the end of the experiment. Fat and protein contents of thigh muscle and abdominal fat weight were measured ...

  12. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-01-01

    Objective To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Methods Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. Results The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe2+ chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Conclusions Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress. PMID:23730557

  13. Antioxidant properties of aqueous extracts of unripe Musa paradisiaca on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro.

    Shodehinde, Sidiqat Adamson; Oboh, Ganiyu

    2013-06-01

    To evaluate and compare antioxidant activities of the aqueous extracts of unripe plantain (Musa paradisiaca), assess their inhibitory action on sodium nitroprusside induced lipid peroxidation in rat pancreas in vitro and to characterize the main phenolic constituents of the plantain products using gas chromatography analysis. Aqueous extracts of plantain products (raw, elastic pastry, roasted and boiled) flour of 0.1 g/mL (each) were used to determine their total phenol, total flavonoid, 1,1 diphenyl-2 picrylhydrazyl (DPPH) and hydroxyl (OH) radical scavenging ability. The inhibitory effect of the extracts on sodium nitroprusside induced lipid peroxidation was also determined. The results revealed that all the aqueous extracts showed antioxidant activity. The boiled flour had highest DPPH and OH radical scavenging ability while raw flour had the highest Fe(2+) chelating ability, sodium nitroprusside inhibitory effect and vitamin C content. The antioxidant results showed that elastic pastry had the highest total phenol and total flavonoid content. Characterization of the unripe plantain products for polyphenol contents using gas chromatography showed varied quantity of apigenin, myricetin, luteolin, capsaicin, isorhaemnetin, caffeic acid, kampferol, quercetin, p-hydroxybenzoic acid, shogaol, glycitein and gingerol per product on the spectra. Considering the antioxidant activities and ability to inhibit lipid peroxidation of unripe plantain, this could justify their traditional use in the management/prevention of diseases related to stress.

  14. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    Anantachaisilp, Suranan; Smith, Siwaporn Meejoo [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok 10400 (Thailand); Treetong, Alongkot; Ruktanonchai, Uracha Rungsardthong [National Nanotechnology Center, National Science and Technology Development Agency, 111 Thailand Science Park, Paholyothin Road, Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Pratontep, Sirapat [College of KMITL Nanotechnology, King Mongkut' s Institute of Technology Ladkrabang, Bangkok (Thailand); Puttipipatkhachorn, Satit, E-mail: uracha@nanotec.or.th [Department of Manufacturing Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok 10400 (Thailand)

    2010-03-26

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of {gamma}-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the {gamma}-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance ({sup 1}H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the {sup 1}H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of {gamma}-oryzanol inside the lipid nanoparticles, the {sup 1}H-NMR revealed that the chemical shifts of the liquid lipid in {gamma}-oryzanol loaded systems were found at rather higher field than those in {gamma}-oryzanol free systems, suggesting incorporation of {gamma}-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of {gamma}-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models

  15. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    Anantachaisilp, Suranan; Meejoo Smith, Siwaporn; Treetong, Alongkot; Pratontep, Sirapat; Puttipipatkhachorn, Satit; Rungsardthong Ruktanonchai, Uracha

    2010-03-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812® as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance (1H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  16. Chemical and structural investigation of lipid nanoparticles: drug-lipid interaction and molecular distribution

    Anantachaisilp, Suranan; Smith, Siwaporn Meejoo; Treetong, Alongkot; Ruktanonchai, Uracha Rungsardthong; Pratontep, Sirapat; Puttipipatkhachorn, Satit

    2010-01-01

    Lipid nanoparticles are a promising alternative to existing carriers in chemical or drug delivery systems. A key challenge is to determine how chemicals are incorporated and distributed inside nanoparticles, which assists in controlling chemical retention and release characteristics. This study reports the chemical and structural investigation of γ-oryzanol loading inside a model lipid nanoparticle drug delivery system composed of cetyl palmitate as solid lipid and Miglyol 812 as liquid lipid. The lipid nanoparticles were prepared by high pressure homogenization at varying liquid lipid content, in comparison with the γ-oryzanol free systems. The size of the lipid nanoparticles, as measured by the photon correlation spectroscopy, was found to decrease with increased liquid lipid content from 200 to 160 nm. High-resolution proton nuclear magnetic resonance ( 1 H-NMR) measurements of the medium chain triglyceride of the liquid lipid has confirmed successful incorporation of the liquid lipid in the lipid nanoparticles. Differential scanning calorimetric and powder x-ray diffraction measurements provide complementary results to the 1 H-NMR, whereby the crystallinity of the lipid nanoparticles diminishes with an increase in the liquid lipid content. For the distribution of γ-oryzanol inside the lipid nanoparticles, the 1 H-NMR revealed that the chemical shifts of the liquid lipid in γ-oryzanol loaded systems were found at rather higher field than those in γ-oryzanol free systems, suggesting incorporation of γ-oryzanol in the liquid lipid. In addition, the phase-separated structure was observed by atomic force microscopy for lipid nanoparticles with 0% liquid lipid, but not for lipid nanoparticles with 5 and 10% liquid lipid. Raman spectroscopic and mapping measurements further revealed preferential incorporation of γ-oryzanol in the liquid part rather than the solid part of in the lipid nanoparticles. Simple models representing the distribution of γ-oryzanol and

  17. Inhibitory Effect of Corn Silk on Skin Pigmentation

    Sang Yoon Choi; Yeonmi Lee; Sung Soo Kim; Hyun Min Ju; Ji Hwoon Baek; Chul-Soo Park; Dong-Hyuk Lee

    2014-01-01

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin prod...

  18. New polyacetylenes glycoside from Eclipta prostrate with DGAT inhibitory activity.

    Meng, Xiao; Li, Ban-Ban; Lin, Xin; Jiang, Yi-Yu; Zhang, Le; Li, Hao-Ze; Cui, Long

    2018-06-08

    One new polyacetylene glycoside eprostrata Ⅰ (1), together with seven known compounds (2-8), were isolated from Eclipta prostrata. Their structures were elucidated on the basis of spectroscopic and physico-chemical analyses. All the isolates were evaluated inhibitory activity on DGAT in an in vitro assay. Compounds 1-8 were found to exhibit inhibitory activity of DGAT1 with IC 50 values ranging from 74.4 ± 1.3 to 101.1 ± 1.1 μM.

  19. Optimization of Approximate Inhibitory Rules Relative to Number of Misclassifications

    Alsolami, Fawaz

    2013-10-04

    In this work, we consider so-called nonredundant inhibitory rules, containing an expression “attribute:F value” on the right- hand side, for which the number of misclassifications is at most a threshold γ. We study a dynamic programming approach for description of the considered set of rules. This approach allows also the optimization of nonredundant inhibitory rules relative to the length and coverage. The aim of this paper is to investigate an additional possibility of optimization relative to the number of misclassifications. The results of experiments with decision tables from the UCI Machine Learning Repository show this additional optimization achieves a fewer misclassifications. Thus, the proposed optimization procedure is promising.

  20. Myostatin inhibitory region of fish (Paralichthys olivaceus) myostatin-1 propeptide.

    Lee, Sang Beum; Kim, Jeong Hwan; Jin, Deuk-Hee; Jin, Hyung-Joo; Kim, Yong Soo

    2016-01-01

    Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth, and its activity is suppressed by MSTN propeptide (MSTNpro), the N-terminal part of MSTN precursor cleaved during post-translational MSTN processing. The current study examined which region of flatfish (Paralichthys olivaceus) MSTN-1 propeptide (MSTN1pro) is critical for MSTN inhibition. Six different truncated forms of MSTN1pro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in Escherichia coli, and partially purified by an affinity chromatography for MSTN-inhibitory activity examination. Peptides covering different regions of flatfish MSTN1pro were also synthesized for MSTN-inhibitory activity examination. A MBP-fused MSTN1pro region consisting of residues 45-100 had the same MSTN-inhibitory potency as the full sequence flatfish MSTN1pro (residues 23-265), indicating that the region of flatfish MSTN1pro consisting of residues 45-100 is sufficient to maintain the full MSTN-inhibitory capacity. A MBP-fused MSTN1pro region consisting of residues 45-80 (Pro45-80) also showed MSTN-inhibitory activity with a lower potency, and the Pro45-80 demonstrated its MSTN binding capacity in a pull-down assay, indicating that the MSTN-inhibitory capacity of Pro45-80 is due to its binding to MSTN. Flatfish MSTN1pro synthetic peptides covering residues 45-65, 45-70, and 45-80 demonstrated MSTN-inhibitory activities, but not the synthetic peptide covering residues 45-54, indicating that residues 45-65 of flatfish MSTN1pro are essential for MSTN inhibition. In conclusion, current study show that like the mammalian MSTNpro, the MSTN-inhibitory region of flatfish MSTN1pro resides near its N-terminus, and imply that smaller sizes of MSTNpro can be effectively used in various applications designed for MSTN inhibition. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Time Course of Brain Network Reconfiguration Supporting Inhibitory Control.

    Popov, Tzvetan; Westner, Britta U; Silton, Rebecca L; Sass, Sarah M; Spielberg, Jeffrey M; Rockstroh, Brigitte; Heller, Wendy; Miller, Gregory A

    2018-05-02

    Hemodynamic research has recently clarified key nodes and links in brain networks implementing inhibitory control. Although fMRI methods are optimized for identifying the structure of brain networks, the relatively slow temporal course of fMRI limits the ability to characterize network operation. The latter is crucial for developing a mechanistic understanding of how brain networks shift dynamically to support inhibitory control. To address this critical gap, we applied spectrally resolved Granger causality (GC) and random forest machine learning tools to human EEG data in two large samples of adults (test sample n = 96, replication sample n = 237, total N = 333, both sexes) who performed a color-word Stroop task. Time-frequency analysis confirmed that recruitment of inhibitory control accompanied by slower behavioral responses was related to changes in theta and alpha/beta power. GC analyses revealed directionally asymmetric exchanges within frontal and between frontal and parietal brain areas: top-down influence of superior frontal gyrus (SFG) over both dorsal ACC (dACC) and inferior frontal gyrus (IFG), dACC control over middle frontal gyrus (MFG), and frontal-parietal exchanges (IFG, precuneus, MFG). Predictive analytics confirmed a combination of behavioral and brain-derived variables as the best set of predictors of inhibitory control demands, with SFG theta bearing higher classification importance than dACC theta and posterior beta tracking the onset of behavioral response. The present results provide mechanistic insight into the biological implementation of a psychological phenomenon: inhibitory control is implemented by dynamic routing processes during which the target response is upregulated via theta-mediated effective connectivity within key PFC nodes and via beta-mediated motor preparation. SIGNIFICANCE STATEMENT Hemodynamic neuroimaging research has recently clarified regional structures in brain networks supporting inhibitory control. However, due to

  2. Macrophage migration inhibitory factor is associated with aneurysmal expansion

    Pan, Jie-Hong; Lindholt, Jes Sanddal; Sukhova, Galina K

    2003-01-01

    Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution o...... of MIF to these human diseases remain unknown, although a recent rabbit study showed expression of this cytokine in atherosclerotic lesions.......Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine released mainly from macrophages and activated lymphocytes. Both atherosclerosis and abdominal aortic aneurysm (AAA) are inflammatory diseases tightly linked to the function of these cells. The correlation and contribution...

  3. Characterization of a translation inhibitory protein from Luffa aegyptiaca.

    Ramakrishnan, S; Enghlid, J J; Bryant, H L; Xu, F J

    1989-04-28

    A protein with a molecular weight of about 30,000 was purified from the seeds of Luffa aegyptiaca. This protein inhibited cell free translation at pM concentrations. In spite of functional similarity to other ribosomal inhibitory proteins, the NH2-terminal analysis did not show any significant homology. Competitive inhibition studies indicate no immunological crossreactivity between the inhibitory protein from Luffa aegyptiaca, pokeweed antiviral protein (PAP) and recombinant ricin A chain. Chemical linkage of the protein to a monoclonal antibody reactive to transferrin receptor resulted in a highly cytotoxic conjugate.

  4. Cholesterylbutyrate Solid Lipid Nanoparticles as a Butyric Acid Prodrug

    Alessandro Mauro

    2008-02-01

    Full Text Available Cholesterylbutyrate (Chol-but was chosen as a prodrug of butyric acid.Butyrate is not often used in vivo because its half-life is very short and therefore too largeamounts of the drug would be necessary for its efficacy. In the last few years butyric acid'santi-inflammatory properties and its inhibitory activity towards histone deacetylases havebeen widely studied, mainly in vitro. Solid Lipid Nanoparticles (SLNs, whose lipid matrixis Chol-but, were prepared to evaluate the delivery system of Chol-but as a prodrug and totest its efficacy in vitro and in vivo. Chol-but SLNs were prepared using the microemulsionmethod; their average diameter is on the order of 100-150 nm and their shape is spherical.The antineoplastic effects of Chol-but SLNs were assessed in vitro on different cancer celllines and in vivo on a rat intracerebral glioma model. The anti-inflammatory activity wasevaluated on adhesion of polymorphonuclear cells to vascular endothelial cells. In thereview we will present data on Chol-but SLNs in vitro and in vivo experiments, discussingthe possible utilisation of nanoparticles for the delivery of prodrugs for neoplastic andchronic inflammatory diseases.

  5. Glucosidase inhibitory activity and antioxidant activity of flavonoid compound and triterpenoid compound from Agrimonia Pilosa Ledeb.

    Liu, Xi; Zhu, Liancai; Tan, Jun; Zhou, Xuemei; Xiao, Ling; Yang, Xian; Wang, Bochu

    2014-01-10

    In Chinese traditional medicine, Agrimonia pilosa Ledeb (APL) exhibits great effect on treatment of type 2 diabetes mellitus (T2DM), however its mechanism is still unknown. Considering that T2DM are correlated with postprandial hyperglycemia and oxidative stress, we investigated the α-glucosidase inhibitory activity and the antioxidant activity of flavonoid compound (FC) and triterpenoid compound (TC) from APL. Entire plants of APL were extracted using 95% ethanol and 50% ethanol successively. The resulting extracts were partitioned and isolated by applying liquid chromatography using silica gel column and Sephadex LH 20 column to give FC and TC. The content of total flavonoids in FC and the content of total triterpenoids in TC were determined by using UV spectrophotometry. HPLC analysis was used to identify and quantify the monomeric compound in FC and TC. The α-glucosidase inhibitory activities were determined using the chromogenic method with p-nitrophenyl-α-D-glucopyranoside as substrate. Antioxidant activities were assessed through three kinds of radical scavenging assays (DPPH radical, ABTS radical and hydroxyl radical) & β-carotene-linoleic acid assay. The results indicate FC is abundant of quercitrin, and hyperoside, and TC is abundant of 1β, 2β, 3β, 19α-tetrahydroxy-12-en-28-oic acid (265.2 mg/g) and corosolic acid (100.9 mg/g). The FC & the TC have strong α-glucosidase inhibitory activities with IC50 of 8.72 μg/mL and 3.67 μg/mL, respectively. We find that FC show competitive inhibition against α-glucosidase, while the TC exhibits noncompetitive inhibition. Furthermore, The FC exhibits significant radical scavenging activity with the EC50 values of 7.73 μg/mL, 3.64 μg/mL and 5.90 μg/mL on DPPH radical, hydroxyl radical and ABTS radical, respectively. The FC also shows moderate anti-lipid peroxidation activity with the IC50 values of 41.77 μg/mL on inhibiting β-carotene bleaching. These results imply that the FC and the TC could be

  6. Lipid profile in cerebrovascular accidents.

    Togha, Mansoureh; Gheini, Mohamad Reza; Ahmadi, Babak; Khashaiar, Patricia; Razeghi, Soodeh

    2011-01-01

    Changes in the lipid profile have been suggested as a risk factor for developing ischemic stroke. Their role in intra-cerebral hemorrhage, however, is not clear. The present study was designed to evaluate the lipid profile levels of patients who had experienced an acute stroke during the first 24-hour and to compare these levels in different patients suffering from the stroke, either hemorrhagic or ischemic, and healthy individuals. In this cross-sectional study, 258 consecutive patients with acute stroke admitted to the neurology department of our center during September 2006 and September 2007 were studied. As for the control group, 187 apparently healthy subjects living in the same community and matched for age and sex were selected. Lipid profile was measured and compared between the three groups. In the patients' group, 65 suffered from hemorrhagic stroke (group 1) and the other 193 had ischemic stroke (group 2). Except for TG values, there was no significant difference among the ischemic and hemorrhagic lipid profile. Age, cholesterol, and LDL influenced the risk of developing an ischemic stroke; TG was not reported as a risk factor or a protective one. While the comparison of data retrieved from patients suffering from hemorrhagic strokes with the controls, revealed LDL as the risk factor contributing to the development of ICH whereas TG was reported as a protective factor. It could be concluded that LDL level can be considered as a risk factor for both ischemic and hemorrhagic cerebral events.

  7. Future directions in lipid therapies.

    Ansell, Benjamin

    2002-01-01

    Cholesterol management to reduce the burden of cardiovascular disease is a major public health concern. Despite widespread recognition of lipid abnormalities as cardiovascular risk factors, significant cardiovascular event reductions with cholesterol-lowering therapies, and dissemination of treatment guidelines, most high-risk patients are not at target lipid levels. In addition to lifestyle changes, four major drug classes are available to modify lipid levels: fibrates, niacin, resins, and statins. High efficacy and tolerability in clinical trials make statins the most widely prescribed of these agents. Newer, more potent members of this class and novel formulations of niacin and resins may provide more effective therapy for dyslipidemia with fewer side effects. Several agents in development (cholesterol-absorption inhibitors and ACAT inhibitors) exploit mechanisms of action complementary to those of current treatments and combined with statins may produce greater improvements in lipid profiles than are now possible. These innovations should enable a greater number of patients to achieve more aggressive cholesterol goals, thereby reducing the risk of cardiovascular events.

  8. Lipid flopping in the liver.

    Linton, Kenneth J

    2015-10-01

    Bile is synthesized in the liver and is essential for the emulsification of dietary lipids and lipid-soluble vitamins. It is a complex mixture of amphiphilic bile acids (BAs; which act as detergent molecules), the membrane phospholipid phosphatidylcholine (PC), cholesterol and a variety of endogenous metabolites and waste products. Over the last 20 years, the combined effort of clinicians, geneticists, physiologists and biochemists has shown that each of these bile components is transported across the canalicular membrane of the hepatocyte by its own specific ATP-binding cassette (ABC) transporter. The bile salt export pump (BSEP) ABCB11 transports the BAs and drives bile flow from the liver, but it is now clear that two lipid transporters, ABCB4 (which flops PC into the bile) and the P-type ATPase ATP8B1/CDC50 (which flips a different phospholipid in the opposite direction) play equally critical roles that protect the biliary tree from the detergent activity of the bile acids. Understanding the interdependency of these lipid floppases and flippases has allowed the development of an assay to measure ABCB4 function. ABCB4 harbours numerous mis-sense mutations which probably reflects the spectrum of liver disease rooted in ABCB4 aetiology. Characterization of the effect of these mutations at the protein level opens the possibility for the development of personalized prognosis and treatment. © 2015 Authors; published by Portland Press Limited.

  9. Computer Simulations of Lipid Nanoparticles

    Xavier F. Fernandez-Luengo

    2017-12-01

    Full Text Available Lipid nanoparticles (LNP are promising soft matter nanomaterials for drug delivery applications. In spite of their interest, little is known about the supramolecular organization of the components of these self-assembled nanoparticles. Here, we present a molecular dynamics simulation study, employing the Martini coarse-grain forcefield, of self-assembled LNPs made by tripalmitin lipid in water. We also study the adsorption of Tween 20 surfactant as a protective layer on top of the LNP. We show that, at 310 K (the temperature of interest in biological applications, the structure of the lipid nanoparticles is similar to that of a liquid droplet, in which the lipids show no nanostructuration and have high mobility. We show that, for large enough nanoparticles, the hydrophilic headgroups develop an interior surface in the NP core that stores liquid water. The surfactant is shown to organize in an inhomogeneous way at the LNP surface, with patches with high surfactant concentrations and surface patches not covered by surfactant.

  10. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes

    Shiqi Zhang

    2018-03-01

    Full Text Available Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1, an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c and its target genes, diacylglycerol acyltransferase (DGAT 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL and CGI-58 for adipose triglyceride lipase (ATGL, thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α, interleukin 1 beta (IL-1β, and interleukin 6 (IL-6 induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  11. Perilipin 1 Mediates Lipid Metabolism Homeostasis and Inhibits Inflammatory Cytokine Synthesis in Bovine Adipocytes.

    Zhang, Shiqi; Liu, Guowen; Xu, Chuang; Liu, Lei; Zhang, Qiang; Xu, Qiushi; Jia, Hongdou; Li, Xiaobing; Li, Xinwei

    2018-01-01

    Dairy cows with ketosis displayed lipid metabolic disorder and high inflammatory levels. Adipose tissue is an active lipid metabolism and endocrine tissue and is closely related to lipid metabolism homeostasis and inflammation. Perilipin 1 (PLIN1), an adipocyte-specific lipid-coated protein, may be involved in the above physiological function. The aim of this study is to investigate the role of PLIN1 in lipid metabolism regulation and inflammatory factor synthesis in cow adipocytes. The results showed that PLIN1 overexpression upregulated the expression of fatty acid and triglyceride (TAG) synthesis molecule sterol regulator element-binding protein-1c (SREBP-1c) and its target genes, diacylglycerol acyltransferase (DGAT) 1, and DGAT2, but inhibited the expression of lipolysis enzymes hormone-sensitive lipase (HSL) and CGI-58 for adipose triglyceride lipase (ATGL), thus augmenting the fatty acids and TAG synthesis and inhibiting lipolysis. Importantly, PLIN1 overexpression inhibited the activation of the NF-κB inflammatory pathway and decreased the expression and content of tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL-1β), and interleukin 6 (IL-6) induced by lipopolysaccharide. Conversely, PLIN1 silencing inhibited TAG synthesis, promoted lipolysis, and overinduced the activation of the NF-κB inflammatory pathway in cow adipocytes. In ketotic cows, the expression of PLIN1 was markedly decreased, whereas lipid mobilization, NF-κB pathway, and downstream inflammatory cytokines were overinduced in adipose tissue. Taken together, these results indicate that PLIN1 can maintain lipid metabolism homeostasis and inhibit the NF-κB inflammatory pathway in adipocytes. However, low levels of PLIN1 reduced the inhibitory effect on fat mobilization, NF-κB pathway, and inflammatory cytokine synthesis in ketotic cows.

  12. Lipids in the cell: organisation regulates function.

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  13. Lipids and essential oils as antimicrobial agents

    Thormar, Halldor

    2011-01-01

    ... of Antimicrobial Lipids on Cell Membranes 20 1.7 Conclusions 21 Acknowledgements 21 References 22 2 Antibacterial Effects of Lipids: Historical Review (1881 to 1960) Halldor Thormar 2.1 Introduction 2....

  14. Characterization of Carbamazepine-Loaded Solid Lipid ...

    loaded solid lipid nanoparticles by RESS as well as their characterization has been achieved in this study. Keywords: Rapid expansion of supercritical fluid, Stearic acid, Solid lipid nanoparticles, Carbamazepine, Co-precipitation ...

  15. Exogenous ether lipids predominantly target mitochondria.

    Lars Kuerschner

    Full Text Available Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high amounts of ether-phosphatidylcholine and ether-phosphatidylethanolamine. Both lipids were specifically labeled using the corresponding lyso-ether lipids, which we established as supreme precursors for lipid tagging. Polyfosine, a fluorescent analogue of the anti-neoplastic ether lipid edelfosine, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria in ether lipid metabolism and intracellular ether lipid trafficking.

  16. Formation of milk lipids: a molecular perspective

    McManaman, James L

    2009-01-01

    Lipids, primarily triglycerides, are major milk constituents of most mammals, providing a large percentage of calories, essential fatty acids and bioactive lipids required for neonatal growth and development. To meet the caloric and nutritional demands of newborns, the mammary glands of most species have evolved an enormous capacity to synthesize and secrete large quantities of lipids during lactation. Significant information exists regarding the physiological regulation of lipid metabolism i...

  17. Lipid Neuroprotectants and Traumatic Glaucomatous Neurodegeneration

    2016-05-01

    not in individuals suffering from glaucoma (endogenous lipids ). The proposed research is to develop several such lipids as potential glaucoma...The proposed research will further assess the efficacy of the new lipids to lower IOP using mouse and monkeys that can develop glaucoma naturally or...of seminars and posters. Two high school students during summer (as part of their HHMI research program) learned hands-on about lipid analyses. A

  18. Polymorphism of lipid self-assembly systems

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  19. Electrodiffusion of Lipids on Membrane Surfaces

    Zhou, Y. C.

    2011-01-01

    Random lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when this lateral random diffusion is mediated by the electrostatic interactions and membrane curvature. Though the lateral diffusion rates of lipids on membrane of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregati...

  20. Minimum inhibitory concentration values and problematic disk break ...

    Latife Ä°ÅŸeri

    2015-08-08

    Aug 8, 2015 ... to tigecycline, and to test the correlation between the minimal inhibitory concentration (MIC) and ... This study was performed using 108 strains of enterococci. The .... drugs (TetA-E, TetK) from inside the bacterial cell, and ribo-.

  1. Assessment of inhibitory substances in the seed coat of some ...

    Laboratory experiment was conducted at the Faculty of Agriculture and Veterinary Medicine, Imo State University, Nigeria to assess the inhibitory substances in the seed coat of 15 cowpea cultivars for resistance against Callosobruchus maculatus. Fifty (50) seeds of the cowpea cultivars were collected from the International ...

  2. Experimental study on the inhibitory effect of sodium cantharidinate ...

    Backgroud: Cantharidin, and its derivatives can not only inhibit the proliferation of tumor cells, but can also induce tumor cell apoptosis. It shows cantharidin exhibits a wide range of reactivity in anticancer. The objective of this paper was to study the inhibitory effect of sodium cantharidinate on human hepatoma HepG2 cells.

  3. Leukemia inhibitory factor increases glucose uptake in mouse skeletal muscle

    Brandt, Nina; O'Neill, Hayley M; Kleinert, Maximilian

    2015-01-01

    INTRODUCTION: Members of the interleukin-6 (IL-6) family, IL-6 and ciliary neurotrophic factor (CNTF) have been shown to increase glucose uptake and fatty acid oxidation in skeletal muscle. However, the metabolic effects of another family member, leukemia inhibitory factor (LIF), are not well...

  4. Immune inhibitory receptors in viral infection and cancer

    Karnam, G.

    2014-01-01

    We are protected from external and internal dangers by our immune system. Immune responses need to be balanced to prevent uncontrolled inflammation and/or autoimmunity. Cell growth inhibition, apoptosis, and down regulation of receptor signals are all part of the inhibitory tools used by the immune

  5. Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors

    Saito, Fumiji; Hirayasu, Kouyuki; Satoh, Takeshi

    2017-01-01

    , but the immune regulatory mechanisms used by P. falciparum remain largely unknown. Here we show that P. falciparum uses immune inhibitory receptors to achieve immune evasion. RIFIN proteins are products of a polymorphic multigene family comprising approximately 150-200 genes per parasite genome...

  6. Sleep: The hebbian reinforcement of the local inhibitory synapses.

    Touzet, Claude

    2015-09-01

    Sleep is ubiquitous among the animal realm, and represents about 30% of our lives. Despite numerous efforts, the reason behind our need for sleep is still unknown. The Theory of neuronal Cognition (TnC) proposes that sleep is the period of time during which the local inhibitory synapses (in particular the cortical ones) are replenished. Indeed, as long as the active brain stays awake, hebbian learning guarantees that efficient inhibitory synapses lose their efficiency – just because they are efficient at avoiding the activation of the targeted neurons. Since hebbian learning is the only known mechanism of synapse modification, it follows that to replenish the inhibitory synapses' efficiency, source and targeted neurons must be activated together. This is achieved by a local depolarization that may travel (wave). The period of time during which such slow waves are experienced has been named the "slow-wave sleep" (SWS). It is cut into several pieces by shorter periods of paradoxical sleep (REM) which activity resembles that of the awake state. Indeed, SWS – because it only allows local neural activation – decreases the excitatory long distance connections strength. To avoid losing the associations built during the awake state, these long distance activations are played again during the REM sleep. REM and SWS sleeps act together to guarantee that when the subject awakes again, his inhibitory synaptic efficiency is restored and his (excitatory) long distance associations are still there. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Conflict Inhibitory Control Facilitates Pretense Quality in Young Preschoolers

    Van Reet, Jennifer

    2015-01-01

    The present research explores the role of inhibitory control (IC) in young preschoolers' pretense ability using an ego depletion paradigm. In Experiment 1 (N = 56), children's pretense ability was assessed either before or after participating in conflict IC or control tasks, and in Experiment 2 (N = 36), pretense ability was measured after…

  8. Effect of Bacteriocin-like Inhibitory Substances Produced by Vaginal ...

    Reduction of vaginal Lactobacillus population leads to overgrowth of opportunistic organisms such as Streptococcus agalactiae (Group B Streptococcus, GBS), which causes life threatening neonatal infections. The activities of bacteriocin-like inhibitory substances (BLIS) produced by Lactobacillus species isolated from the ...

  9. α-Glucosidase inhibitory hydrolyzable tannins from Eugenia jambolana seeds.

    Omar, Raed; Li, Liya; Yuan, Tao; Seeram, Navindra P

    2012-08-24

    Three new hydrolyzable tannins including two gallotannins, jamutannins A (1) and B (2), and an ellagitannin, iso-oenothein C (3), along with eight known phenolic compounds were isolated from the seeds of Eugenia jambolana fruit. The structures were elucidated on the basis of spectroscopic data analysis. All compounds isolated were evaluated for α-glucosidase inhibitory effects compared to the clinical drug acarbose.

  10. Evaluation of Apoptotic and Growth Inhibitory Activity of Phloretin in ...

    Results: The results show that the inhibitory activity of phloretin in BGC823 gastric cancer cells was mediated by induction of apoptosis ... anti-proliferative effects of phloretin was dose-dependent and inhibited the growth of BGC823 gastric cancer cells by 73 % at 30 μM; .... weeks at 37 °C in 5 % CO2 in humidified incubator.

  11. COX-1 inhibitory effect of medicinal plants of Ghana

    Larsen, Birgitte HV; Soelberg, Jens; Jäger, Anna

    2015-01-01

    zanthoxyloides showed an inhibitory effect over 90% in the final concentration 0.1 μg/μL. The HPLC profiles indicated that the extracts of the four active species did not contain tannins. The observed in vitro activities support the use of some of the plant species in the traditional medicine system in Ghana....

  12. Aldose Reductase Inhibitory and Antiglycation Activities of Four ...

    Aldose Reductase Inhibitory and Antiglycation Activities of Four Medicinal Plant Standardized Extracts and Their Main Constituents for the Prevention of ... levels in galactosemic condition by using reverse phase high pressure liquid chromatography (RP-HPLC) and gas liquid chromatography (GLC) was determined.

  13. Population activity structure of excitatory and inhibitory neurons.

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  14. Sympatho-inhibitory properties of various AT1 receptor antagonists

    Balt, Jippe C.; Mathy, Marie-Jeanne; Pfaffendorf, Martin; van Zwieten, Peter A.

    2002-01-01

    It is well known that angiotensin II (Ang II) can facilitate the effects of sympathetic neurotransmission. In the present study, using various experimental models, we investigated the inhibitory effects of several Ang II subtype 1 receptor (AT1) antagonists on this Ang II-induced facilitation. We

  15. Brain ageing changes proteoglycan sulfation, rendering perineuronal nets more inhibitory.

    Foscarin, Simona; Raha-Chowdhury, Ruma; Fawcett, James W; Kwok, Jessica C F

    2017-06-28

    Chondroitin sulfate (CS) proteoglycans in perineuronal nets (PNNs) from the central nervous system (CNS) are involved in the control of plasticity and memory. Removing PNNs reactivates plasticity and restores memory in models of Alzheimer's disease and ageing. Their actions depend on the glycosaminoglycan (GAG) chains of CS proteoglycans, which are mainly sulfated in the 4 (C4S) or 6 (C6S) positions. While C4S is inhibitory, C6S is more permissive to axon growth, regeneration and plasticity. C6S decreases during critical period closure. We asked whether there is a late change in CS-GAG sulfation associated with memory loss in aged rats. Immunohistochemistry revealed a progressive increase in C4S and decrease in C6S from 3 to 18 months. GAGs extracted from brain PNNs showed a large reduction in C6S at 12 and 18 months, increasing the C4S/C6S ratio. There was no significant change in mRNA levels of the chondroitin sulfotransferases. PNN GAGs were more inhibitory to axon growth than those from the diffuse extracellular matrix. The 18-month PNN GAGs were more inhibitory than 3-month PNN GAGs. We suggest that the change in PNN GAG sulfation in aged brains renders the PNNs more inhibitory, which lead to a decrease in plasticity and adversely affect memory.

  16. Acetylcholinesterase Inhibitory and Antioxidant Properties of Euphorbiacharacias Latex

    Francesca Pintus

    2013-03-01

    Full Text Available The aim of the present study was to evaluate the acetylcholinesterase inhibitory capacity and the antioxidant properties of extracts of Euphorbia characias latex, a Mediterranean shrub. We performed a new extraction method involving the use of the trichloroacetic acid. The extract showed high antioxidant activity, was rich in total polyphenolic and flavonoid content and exhibited substantial inhibition of acetylcholinesterase activity.

  17. Alpha-Glucosidase Inhibitory and Antioxidant Activity of Solvent ...

    regression analysis. Phytochemical contents and correlation with bioactivities. Total phenolic (TP), total proanthocyanidin. (TPro), and total hydroxycinnamic acid ..... An advantage of competitive inhibitors is that their inhibitory action is reversible, thus allowing undesirable effects to be readily mitigated by decreasing the ...

  18. Inhibitory Control of Proactive Interference in Adults with ADHD

    White, Holly A.

    2007-01-01

    Objective: Attention deficit hyperactivity disorder (ADHD) is associated with poor inhibition of prepotent responses and deficits in distractor inhibition, but relatively few studies have addressed inhibitory control of proactive interference (PI) in individuals with ADHD. Thus, the goal of the present study was to evaluate resistance to spatial…

  19. Population activity structure of excitatory and inhibitory neurons.

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  20. Inhibitory Competition between Shape Properties in Figure-Ground Perception

    Peterson, Mary A.; Skow, Emily

    2008-01-01

    Theories of figure-ground perception entail inhibitory competition between either low-level units (edge or feature units) or high-level shape properties. Extant computational models instantiate the 1st type of theory. The authors investigated a prediction of the 2nd type of theory: that shape properties suggested on the ground side of an edge are…

  1. Optimization of Approximate Inhibitory Rules Relative to Number of Misclassifications

    Alsolami, Fawaz; Chikalov, Igor; Moshkov, Mikhail; Zielosko, Beata

    2013-01-01

    In this work, we consider so-called nonredundant inhibitory rules, containing an expression “attribute:F value” on the right- hand side, for which the number of misclassifications is at most a threshold γ. We study a dynamic programming approach

  2. The inhibitory effect of Curcuma longa extract on telomerase activity ...

    STORAGESEVER

    2010-02-08

    Feb 8, 2010 ... curcumin, could have important effect on treatment of lung cancer. Curcumin ... study inhibitory effect of C. longa total extract on telomerase in A549 lung cancer cell line as in vitro model of ..... If A > 2× (OD of negative control), then, telomerase activity ... radiation, chemotherapy, laser therapy, photodynamic.

  3. Inhibitory Effect of Polysaccharides from Scutellaria barbata D. Don ...

    Purpose: To investigate the inhibitory effect of polysaccharides from Scutellaria barbata (PSB) on invasion and metastasis of lung cancer, and study the possible mechanism. Methods: PSB was extracted with water and by alcohol precipitation, and purified by DEAE-52 column chromatography. A highly invasive and ...

  4. Sleep Supports Inhibitory Operant Conditioning Memory in "Aplysia"

    Vorster, Albrecht P. A.; Born, Jan

    2017-01-01

    Sleep supports memory consolidation as shown in mammals and invertebrates such as bees and "Drosophila." Here, we show that sleep's memory function is preserved in "Aplysia californica" with an even simpler nervous system. Animals performed on an inhibitory conditioning task ("learning that a food is inedible") three…

  5. Simulated inhibitory effects of typical byproducts of biomass ...

    Aghomotsegin

    2015-07-29

    Jul 29, 2015 ... comparative inhibitory effects of acetic acid and vanillin on the ... Different concentrations of inhibitors were spiked in the fermentation ... hardwood and municipal solid wastes. ... done at the cost of an extended lag phase and reduces ..... Formation of acetic acid and lactic acid during fermentation and in ...

  6. Inhibitory Control during Emotional Distraction across Adolescence and Early Adulthood

    Cohen-Gilbert, Julia E.; Thomas, Kathleen M.

    2013-01-01

    This study investigated the changing relation between emotion and inhibitory control during adolescence. One hundred participants between 11 and 25 years of age performed a go-nogo task in which task-relevant stimuli (letters) were presented at the center of large task-irrelevant images depicting negative, positive, or neutral scenes selected from…

  7. Dogs' reaction to inequity is affected by inhibitory control.

    Brucks, Désirée; Range, Friederike; Marshall-Pescini, Sarah

    2017-11-17

    Inequity aversion is thought to act as a mechanism to ensure cooperation and has been studied in many different species, consistently revealing inter-individual variation. Inhibitory control has been proposed to act as one factor responsible for this variation since individuals need to inhibit performing the required action and/or refuse rewards in order to exhibit inequity aversion. Here, we investigated if dogs' sensitivity to inequity is affected by their capacity for inhibitory control, assessed in a test battery and questionnaire. Overall, dogs showing high compulsivity scores (i.e. repetitive behaviours independent of feedback) were more motivated to participate in the inequity task independent of the rewarding scheme. Dogs were more sensitive to inequity and individual contrast if they exhibited a slower decision speed in the inhibition tasks. Furthermore, less persistent and more impulsive dogs were more sensitive to reward inequity, potentially due to having a lower tolerance level for frustration. Results indicate that aspects of inhibitory control can explain the variation in dogs' inequity response, highlighting one of the mechanisms underlying responses to inequity. Emphasising the importance to design paradigms, which allow us to disentangle capacities to recognise inequity from the inability to react to it due to poor inhibitory control abilities.

  8. Neuroscientific Insights: Attention, Working Memory, and Inhibitory Control

    Raver, C. Cybele; Blair, Clancy

    2016-01-01

    In this article, Cybele Raver and Clancy Blair explore a group of cognitive processes called executive function (EF)--including the flexible control of attention, the ability to hold information through working memory, and the ability to maintain inhibitory control. EF processes are crucial for young children's learning. On the one hand, they can…

  9. Inhibitory effect of chitosan oligosaccharide on human hepatoma ...

    Background: Chitosan oligosaccharide, the degradation products of chitin, was reported to have a wide range of physiological functions and biological activities. In this study, we explored the inhibitory effect of Chitosan oligosaccharide on human hepatoma cells. Materials and Methods: MTT assay was applied to detect cell ...

  10. Inhibitory potency of Withania somnifera extracts against DPP-4: an ...

    Materials and Methods: Young and matured fresh roots, leaves, and fruits of WS plant extract were considered and were systematically evaluated for DPP-4 inhibitory activity using in vitro method, enzyme kinetics, phytochemical analysis, RP-HPLC, LCMS and 1H and 13C NMR method and structure-activity relationship ...

  11. The cartilage protein melanoma inhibitory activity contributes to inflammatory arthritis

    Yeremenko, Nataliya; Härle, Peter; Cantaert, Tineke; van Tok, Melissa; van Duivenvoorde, Leonie M.; Bosserhoff, Anja; Baeten, Dominique

    2014-01-01

    Melanoma inhibitory activity (MIA) is a small chondrocyte-specific protein with unknown function. MIA knockout mice (MIA(-/-)) have a normal phenotype with minor microarchitectural alterations of cartilage. Our previous study demonstrated that immunodominant epitopes of MIA are actively presented in

  12. Population activity structure of excitatory and inhibitory neurons

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  13. Global robust stability for shunting inhibitory CNNs with delays.

    Wang, Lingna; Lin, Yiping

    2004-08-01

    In this paper, the problem of global robust stability for shunting inhibitory cellular neural networks (SICNNs) is studied. A sufficient condition guaranteeing the network's global robust stability is established. The result can easily be used to verify globally robust stable networks. An example is given to illustrate that the conditions of our results are feasible.

  14. Surfactant properties of human meibomian lipids.

    Mudgil, Poonam; Millar, Thomas J

    2011-03-25

    Human meibomian lipids are the major part of the lipid layer of the tear film. Their surfactant properties enable their spread across the aqueous layer and help maintain a stable tear film. The purpose of this study was to investigate surfactant properties of human meibomian lipids in vitro and to determine effects of different physical conditions such as temperature and increased osmolarity, such as occur in dry eye, on these properties. Human meibomian lipids were spread on an artificial tear solution in a Langmuir trough. The lipid films were compressed and expanded to record the surface pressure-area (Π-A) isocycles. The isocycles were recorded under different physical conditions such as high pressure, increasing concentration and size of divalent cations, increasing osmolarity, and varying temperature. Π-A isocycles of meibomian lipids showed that they form liquid films that are compressible and multilayered. The isocycles were unaffected by increasing concentration or size of divalent cations and increasing osmolarity in the subphase. Temperature had a marked effect on the lipids. Increase in temperature caused lipid films to become fluid, an expected feature, but decrease in temperature unexpectedly caused expansion of lipids and an increase in pressure suggesting enhanced surfactant properties. Human meibomian lipids form highly compressible, non-collapsible, multilayered liquid films. These lipids have surfactants that allow them to spread across an aqueous subphase. Their surfactant properties are unaffected by increasing divalent cations or hyperosmolarity but are sensitive to temperature. Cooling of meibomian lipids enhances their surfactant properties.

  15. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension

    Stephen A. Adefegha

    2016-07-01

    Conclusion: The inhibitory properties of phenolic rich extracts on α-amylase, α-glucosidase, ACE, and Fe2+- and sodium nitroprusside-induced lipid peroxidation in the pancreas could be attributed to the antioxidant properties of the extracts and their phenolic composition. The stronger action of the bound phenolic extract on α-glucosidase may provide the possible bioactivity at the brush border end of the intestinal wall. This study may thus suggest that leaves represent a functional food and nutraceutical in the management of non-insulin dependent diabetes mellitus and hypertension.

  16. Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins

    Neumann, S.

    2008-01-01

    Proteins mediating intra- and intercellular transport of lipids and lipid-modified proteins In this thesis, I studied the intra- and intercellular transport of lipidic molecules, in particular glycosphingolipids and lipid-modified proteins. The first part focuses on the intracellular transport of

  17. Inhibitory effect of burdock leaves on elastase and tyrosinase activity

    Horng, Chi-Ting; Wu, Hsing-Chen; Chiang, Ni-Na; Lee, Chiu-Fang; Huang, Yu-Syuan; Wang, Hui-Yun; Yang, Jai-Sing; Chen, Fu-An

    2017-01-01

    Burdock (Arctium lappa L.) leaves generate a considerable amount of waste following burdock root harvest in Taiwan. To increase the use of burdock leaves, the present study investigated the optimal methods for producing burdock leaf extract (BLE) with high antioxidant polyphenolic content, including drying methods and solvent extraction concentration. In addition, the elastase and tyrosinase inhibitory activity of BLE was examined. Burdock leaves were dried by four methods: Shadow drying, oven drying, sun drying and freeze-drying. The extract solution was then subjected to total polyphenol content analysis and the method that produced BLE with the highest amount of total antioxidant components was taken forward for further analysis. The 1,1-diphenyl-2-pycrylhydrazyl scavenging, antielastase and antityrosinase activity of the BLE were measured to enable the evaluation of the antioxidant and skin aging-associated enzyme inhibitory activities of BLE. The results indicated that the total polyphenolic content following extraction with ethanol (EtOH) was highest using the freeze-drying method, followed by the oven drying, shadow drying and sun drying methods. BLE yielded a higher polyphenol content and stronger antioxidant activity as the ratio of the aqueous content of the extraction solvent used increased. BLE possesses marked tyrosinase and elastase inhibitory activities, with its antielastase activity notably stronger compared with its antityrosinase activity. These results indicate that the concentration of the extraction solvent was associated with the antioxidant and skin aging-associated enzyme inhibitory activity of BLE. The reactive oxygen species scavenging theory of skin aging may explain the tyrosinase and elastase inhibitory activity of BLE. In conclusion, the optimal method for obtaining BLE with a high antioxidant polyphenolic content was freeze-drying followed by 30–50% EtOH extraction. In addition, the antielastase and antityrosinase activities of the

  18. Intrinsically-generated fluctuating activity in excitatory-inhibitory networks

    Mastrogiuseppe, Francesca; Ostojic, Srdjan

    2017-01-01

    Recurrent networks of non-linear units display a variety of dynamical regimes depending on the structure of their synaptic connectivity. A particularly remarkable phenomenon is the appearance of strongly fluctuating, chaotic activity in networks of deterministic, but randomly connected rate units. How this type of intrinsically generated fluctuations appears in more realistic networks of spiking neurons has been a long standing question. To ease the comparison between rate and spiking networks, recent works investigated the dynamical regimes of randomly-connected rate networks with segregated excitatory and inhibitory populations, and firing rates constrained to be positive. These works derived general dynamical mean field (DMF) equations describing the fluctuating dynamics, but solved these equations only in the case of purely inhibitory networks. Using a simplified excitatory-inhibitory architecture in which DMF equations are more easily tractable, here we show that the presence of excitation qualitatively modifies the fluctuating activity compared to purely inhibitory networks. In presence of excitation, intrinsically generated fluctuations induce a strong increase in mean firing rates, a phenomenon that is much weaker in purely inhibitory networks. Excitation moreover induces two different fluctuating regimes: for moderate overall coupling, recurrent inhibition is sufficient to stabilize fluctuations; for strong coupling, firing rates are stabilized solely by the upper bound imposed on activity, even if inhibition is stronger than excitation. These results extend to more general network architectures, and to rate networks receiving noisy inputs mimicking spiking activity. Finally, we show that signatures of the second dynamical regime appear in networks of integrate-and-fire neurons. PMID:28437436

  19. Inhibitory Effects of Pretreatment with Radon on Acute Alcohol-Induced Hepatopathy in Mice

    Teruaki Toyota

    2012-01-01

    Full Text Available We previously reported that radon inhalation activates antioxidative functions in the liver and inhibits carbon tetrachloride-induced hepatopathy in mice. In addition, it has been reported that reactive oxygen species contribute to alcohol-induced hepatopathy. In this study, we examined the inhibitory effects of radon inhalation on acute alcohol-induced hepatopathy in mice. C57BL/6J mice were subjected to intraperitoneal injection of 50% alcohol (5 g/kg bodyweight after inhaling approximately 4000 Bq/m3 radon for 24 h. Alcohol administration significantly increased the activities of glutamic oxaloacetic transaminase (GOT, glutamic pyruvic transaminase (GPT in serum, and the levels of triglyceride and lipid peroxide in the liver, suggesting acute alcohol-induced hepatopathy. Radon inhalation activated antioxidative functions in the liver. Furthermore, pretreatment with radon inhibited the depression of hepatic functions and antioxidative functions. These findings suggested that radon inhalation activated antioxidative functions in the liver and inhibited acute alcohol-induced hepatopathy in mice.

  20. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.; Santos, Nuno C.

    2010-01-01

    Research highlights: → Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. → Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. → This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended the study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.

  1. Inhibition of haemoglobin-mediated lipid oxidation in washed cod muscle and cod protein isolates by Fucus vesiculosus extract and fraction

    Wang, Tao; Jonsdottir, Rosa; Kristinsson, Hordur

    2010-01-01

    washed cod muscle and protein isolates, phlorotannin-enriched ethyl acetate (EtOAc) fraction showed higher inhibitory effect than crude 80% ethanol (EtOH) extract. The addition of oligomeric phlorotannin-rich subfraction (LH-2) separated by Sephadex LH-20 chromatography, completely inhibited...... similar level of TPC and chemical antioxidant activities as oligomeric subfraction LH-2, it was far less efficient in model systems. These results suggest that other factors rather than the intrinsic reactivity toward radicals could be responsible for the inhibitory effect of phlorotannins on lipid...

  2. Lipid processing in ionic liquids

    Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing

    2007-01-01

    Ionic liquids (ILs) have been touted as “green” alternatives to traditional molecular solvents and have many unique properties which make them extremely desirable substitutes. Among their most attractive properties are their lack of vapour pressure, broad liquid range, strong solvating power and ...... and the ability to tailor properties of individual ILs to meet specific requirements. This article highlights current research as well as the vast potential of ILs for use as media for reactions, separation and processing in the lipid area....

  3. Proton permeation of lipid bilayers.

    Deamer, D W

    1987-10-01

    Proton permeation of the lipid bilayer barrier has two unique features. First, permeability coefficients measured at neutral pH ranges are six to seven orders of magnitude greater than expected from knowledge of other monovalent cations. Second, proton conductance across planar lipid bilayers varies at most by a factor of 10 when pH is varied from near 1 to near 11. Two mechanisms have been proposed to account for this anomalous behavior: proton conductance related to contaminants of lipid bilayers, and proton translocation along transient hydrogen-bonded chains (tHBC) of associated water molecules in the membrane. The weight of evidence suggests that trace contaminants may contribute to proton conductance across planar lipid membranes at certain pH ranges, but cannot account for the anomalous proton flux in liposome systems. Two new results will be reported here which were designed to test the tHBC model. These include measurements of relative proton/potassium permeability in the gramicidin channel, and plots of proton flux against the magnitude of pH gradients. (1) The relative permeabilities of protons and potassium through the gramicidin channel, which contains a single strand of hydrogen-bonded water molecules, were found to differ by at least four orders of magnitude when measured at neutral pH ranges. This result demonstrates that a hydrogen-bonded chain of water molecules can provide substantial discrimination between protons and other cations. It was also possible to calculate that if approximately 7% of bilayer water was present in a transient configuration similar to that of the gramicidin channel, it could account for the measured proton flux. (2) The plot of proton conductance against pH gradient across liposome membranes was superlinear, a result that is consistent with one of three alternative tHBC models for proton conductance described by Nagle elsewhere in this volume.

  4. Reducible cationic lipids for gene transfer.

    Wetzer, B; Byk, G; Frederic, M; Airiau, M; Blanche, F; Pitard, B; Scherman, D

    2001-01-01

    One of the main challenges of gene therapy remains the increase of gene delivery into eukaryotic cells. We tested whether intracellular DNA release, an essential step for gene transfer, could be facilitated by using reducible cationic DNA-delivery vectors. For this purpose, plasmid DNA was complexed with cationic lipids bearing a disulphide bond. This reduction-sensitive linker is expected to be reduced and cleaved in the reducing milieu of the cytoplasm, thus potentially improving DNA release and consequently transfection. The DNA--disulphide-lipid complexation was monitored by ethidium bromide exclusion, and the size of complexes was determined by dynamic light scattering. It was found that the reduction kinetics of disulphide groups in DNA--lipid complexes depended on the position of the disulphide linker within the lipid molecule. Furthermore, the internal structure of DNA--lipid particles was examined by small-angle X-ray scattering before and after lipid reduction. DNA release from lipid complexes was observed after the reduction of disulphide bonds of several lipids. Cell-transfection experiments suggested that complexes formed with selected reducible lipids resulted in up to 1000-fold higher reporter-gene activity, when compared with their analogues without disulphide bonds. In conclusion, reduction-sensitive groups introduced into cationic lipid backbones potentially allow enhanced DNA release from DNA--lipid complexes after intracellular reduction and represent a tool for improved vectorization. PMID:11389682

  5. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium.

    Gamboa-Gómez, Claudia I; González-Laredo, Rubén F; Gallegos-Infante, José Alberto; Pérez, Mş Del Mar Larrosa; Moreno-Jiménez, Martha R; Flores-Rueda, Ana G; Rocha-Guzmán, Nuria E

    2016-09-01

    Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical ( i . e . lower IC 50 ). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens ); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC 50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  6. Inhibitory effect of three C-glycosylflavonoids from Cymbopogon citratus (Lemongrass) on human low density lipoprotein oxidation.

    Orrego, Roxana; Leiva, Elba; Cheel, José

    2009-09-30

    This study assessed the inhibitory effect of three C-glycosylflavonoids from Cymbopogon citratus leaves--isoorientin (1), swertiajaponin (2) and isoorientin 2"-Orhamnoside (3)--on human LDL oxidation. Isolated LDL was incubated with compounds 1-3 and the kinetics of lipid peroxidation were assessed by conjugated diene and malondialdehyde-thiobarbituric acid reactive substances (MDA-TBARS) formation after addition of copper ions. Significant differences (p < 0.05) between the lag time phase of the control and the lag time phase in the presence of the compounds 1 (0.25 microM) and 2 (0.50 microM) were observed. After five hours of incubation all three compounds showed a significant inhibitory effect on MDA-TBARS formation with respect to the control. After six hours of incubation only compound 1 kept a remarkable antioxidant effect. This study demonstrates that isoorientin (1) is an effective inhibitor of in vitro LDL oxidation. As oxidative damage to LDL is a key event in the formation of atherosclerotic lesions, the use of this natural antioxidant may be beneficial to prevent or attenuate atherosclerosis.

  7. Antioxidant and Angiotensin-Converting Enzyme Inhibitory Activity of Eucalyptus camaldulensis and Litsea glaucescens Infusions Fermented with Kombucha Consortium

    Claudia I. Gamboa-Gómez

    2016-01-01

    Full Text Available Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profi le measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50 % of DPPH radical (i.e. lower IC50. Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14 % of E. camaldulensis and 49 % of L. glaucescens; whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril. The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

  8. Mechanics of Lipid Bilayer Membranes

    Powers, Thomas R.

    All cells have membranes. The plasma membrane encapsulates the cell's interior, acting as a barrier against the outside world. In cells with nuclei (eukaryotic cells), membranes also form internal compartments (organelles) which carry out specialized tasks, such as protein modification and sorting in the case of the Golgi apparatus, and ATP production in the case of mitochondria. The main components of membranes are lipids and proteins. The proteins can be channels, carriers, receptors, catalysts, signaling molecules, or structural elements, and typically contribute a substantial fraction of the total membrane dry weight. The equilibrium properties of pure lipid membranes are relatively well-understood, and will be the main focus of this article. The framework of elasticity theory and statistical mechanics that we will develop will serve as the foundation for understanding biological phenomena such as the nonequilibrium behavior of membranes laden with ion pumps, the role of membrane elasticity in ion channel gating, and the dynamics of vesicle fission and fusion. Understanding the mechanics of lipid membranes is also important for drug encapsulation and delivery.

  9. Engineering Aspergillus oryzae A-4 through the Chromosomal Insertion of Foreign Cellulase Expression Cassette to Improve Conversion of Cellulosic Biomass into Lipids

    Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua

    2014-01-01

    A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (pcellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass. PMID:25251435

  10. Engineering Aspergillus oryzae A-4 through the chromosomal insertion of foreign cellulase expression cassette to improve conversion of cellulosic biomass into lipids.

    Lin, Hui; Wang, Qun; Shen, Qi; Ma, Junwei; Fu, Jianrong; Zhao, Yuhua

    2014-01-01

    A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (pcellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.

  11. Fat & fabulous: bifunctional lipids in the spotlight.

    Haberkant, Per; Holthuis, Joost C M

    2014-08-01

    Understanding biological processes at the mechanistic level requires a systematic charting of the physical and functional links between all cellular components. While protein-protein and protein-nucleic acid networks have been subject to many global surveys, other critical cellular components such as membrane lipids have rarely been studied in large-scale interaction screens. Here, we review the development of photoactivatable and clickable lipid analogues-so-called bifunctional lipids-as novel chemical tools that enable a global profiling of lipid-protein interactions in biological membranes. Recent studies indicate that bifunctional lipids hold great promise in systematic efforts to dissect the elaborate crosstalk between proteins and lipids in live cells and organisms. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Lipid Biosynthesis as an Antifungal Target

    Jiao Pan

    2018-04-01

    Full Text Available Lipids, commonly including phospholipids, sphingolipids, fatty acids, sterols, and triacylglycerols (TAGs, are important biomolecules for the viability of all cells. Phospholipids, sphingolipids, and sterols are important constituents of biological membranes. Many lipids play important roles in the regulation of cell metabolism by acting as signaling molecules. Neutral lipids, including TAGs and sterol esters (STEs, are important storage lipids in cells. In view of the importance of lipid molecules, this review briefly summarizes the metabolic pathways for sterols, phospholipids, sphingolipids, fatty acids, and neutral lipids in fungi and illustrates the differences between fungal and human (or other mammalian cells, especially in relation to lipid biosynthetic pathways. These differences might provide valuable clues for us to find target proteins for novel antifungal drugs. In addition, the development of lipidomics technology in recent years has supplied us with a shortcut for finding new antifungal drug targets; this ability is important for guiding our research on pathogenic fungi.

  13. Presentation of lipid antigens to T cells.

    Mori, Lucia; De Libero, Gennaro

    2008-04-15

    T cells specific for lipid antigens participate in regulation of the immune response during infections, tumor immunosurveillance, allergy and autoimmune diseases. T cells recognize lipid antigens as complexes formed with CD1 antigen-presenting molecules, thus resembling recognition of MHC-peptide complexes. The biophysical properties of lipids impose unique mechanisms for their delivery, internalization into antigen-presenting cells, membrane trafficking, processing, and loading of CD1 molecules. Each of these steps is controlled at molecular and celular levels and determines lipid immunogenicity. Lipid antigens may derive from microbes and from the cellular metabolism, thus allowing the immune system to survey a large repertoire of immunogenic molecules. Recognition of lipid antigens facilitates the detection of infectious agents and the initiation of responses involved in immunoregulation and autoimmunity. This review focuses on the presentation mechanisms and specific recognition of self and bacterial lipid antigens and discusses the important open issues.

  14. Stratum Corneum Barrier Lipids in Cholesteatoma

    Svane-Knudsen, V; Halkier-Sørensen, L; Rasmussen, G

    2000-01-01

    emerged. When the corneocyte reaches the transitional stage to the stratum corneum, the Odland bodies accumulate near the cell membrane and discharge their contents of lipid and enzymes. The lipids are reorganized into multiple long sheets of lamellar structures that embrace the keratinized corneocytes......, as seen in the formation and maintenance of the cutaneous permeability barrier. In this study we draw the attention to the facts that the cholesteatoma epithelium is capable of producing not only cholesterol, but also several lipids, and that the lipid molecules are organized in multilamellar structures......Specimens from primary cholesteatomas were examined under the electron microscope using a lipid-retaining method that is best suited for intracellular lipids and a method that is best for intercellular lipids. In the stratum granulosum of the squamous epithelium, a large number of Odland bodies...

  15. Introduction to fatty acids and lipids.

    Burdge, Graham C; Calder, Philip C

    2015-01-01

    The purpose of this article is to describe the structure, function and metabolism of fatty acids and lipids that are of particular importance in the context of parenteral nutrition. Lipids are a heterogeneous group of molecules that share the common property of hydrophobicity. Lipids range in structure from simple short hydrocarbon chains to more complex molecules, including triacylglycerols, phospholipids and sterols and their esters. Lipids within each class may differ structurally. Fatty acids are common components of complex lipids, and these differ according to chain length and the presence, number and position of double bonds in the hydrocarbon chain. Structural variation among complex lipids and among fatty acids gives rise to functional differences that result in different impacts upon metabolism and upon cell and tissue responses. Fatty acids and complex lipids exhibit a variety of structural variations that influence their metabolism and their functional effects. © 2015 S. Karger AG, Basel.

  16. The Role of Lipid Rafts in the Early Stage of Enterovirus 71 Infection

    Yong-Zhe Zhu

    2015-02-01

    Full Text Available Background/Aims: Although it has been widely accepted that Enterovirus 71 (EV71 enters permissive cells via receptor-mediated endocytosis, the details of entry mechanism for EV71 still need more exploration. This study aimed to investigate the role of lipid rafts in the early stage of EV71 Infection. Methods: The effect of cholesterol depletion or addition of exogenous cholesterol was detected by immunofluorescence assays and quantitative real-time PCR. Effects of cholesterol depletion on the association of EV71 with lipid rafts were determined by flow cytometry and co-immunoprecipitation assays. Localization and internalization of EV71 and its receptor were assayed by confocal microscpoy and sucrose gradient analysis. The impact of cholesterol on the activation of phosphoinositide 3'-kinase/Akt signaling pathway during initial virus infection was analyzed by Western-blotting. Results: Disruption of membrane cholesterol by a pharmacological agent resulted in a significant reduction in the infectivity of EV71. The inhibitory effect could be reversed by the addition of exogenous cholesterol. Cholesterol depletion post-infection did not affect EV71 infection. While virus bound equally to cholesterol-depleted cells, EV71 particles failed to be internalized by cholesterol-depleted cells. EV71 capsid protein co-localized with cholera toxin B, a lipid-raft-dependent internalization marker. Conclusion: Lipid rafts play a critical role in virus endocytosis and in the activation of PI3K/Akt signaling pathway in the early stage of EV71 infection.

  17. Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

    Pols, Thijs W.H.; Ottenhoff, Roelof; Vos, Mariska; Levels, Johannes H.M.; Quax, Paul H.A.; Meijers, Joost C.M.; Pannekoek, Hans; Groen, Albert K.; Vries, Carlie J.M. de

    2008-01-01

    NR4A nuclear receptors are induced in the liver upon fasting and regulate hepatic gluconeogenesis. Here, we studied the role of nuclear receptor Nur77 (NR4A1) in hepatic lipid metabolism. We generated mice expressing hepatic Nur77 using adenoviral vectors, and demonstrate that these mice exhibit a modulation of the plasma lipid profile and a reduction in hepatic triglyceride. Expression analysis of >25 key genes involved in lipid metabolism revealed that Nur77 inhibits SREBP1c expression. This results in decreased SREBP1c activity as is illustrated by reduced expression of its target genes stearoyl-coA desaturase-1, mitochondrial glycerol-3-phosphate acyltransferase, fatty acid synthase and the LDL receptor, and provides a mechanism for the physiological changes observed in response to Nur77. Expression of LXR target genes Abcg5 and Abcg8 is reduced by Nur77, and may suggest involvement of LXR in the inhibitory action of Nur77 on SREBP1c expression. Taken together, our study demonstrates that Nur77 modulates hepatic lipid metabolism through suppression of SREBP1c activity

  18. Spikes matter for phase-locked bursting in inhibitory neurons

    Jalil, Sajiya; Belykh, Igor; Shilnikov, Andrey

    2012-03-01

    We show that inhibitory networks composed of two endogenously bursting neurons can robustly display several coexistent phase-locked states in addition to stable antiphase and in-phase bursting. This work complements and enhances our recent result [Jalil, Belykh, and Shilnikov, Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.81.045201 81, 045201(R) (2010)] that fast reciprocal inhibition can synchronize bursting neurons due to spike interactions. We reveal the role of spikes in generating multiple phase-locked states and demonstrate that this multistability is generic by analyzing diverse models of bursting networks with various fast inhibitory synapses; the individual cell models include the reduced leech heart interneuron, the Sherman model for pancreatic beta cells, and the Purkinje neuron model.

  19. Probing inhibitory effects of nanocrystalline cellulose: inhibition versus surface charge

    Male, Keith B.; Leung, Alfred C. W.; Montes, Johnny; Kamen, Amine; Luong, John H. T.

    2012-02-01

    NCC derived from different biomass sources was probed for its plausible cytotoxicity by electric cell-substrate impedance sensing (ECIS). Two different cell lines, Spodoptera frugiperda Sf9 insect cells and Chinese hamster lung fibroblast V79, were exposed to NCC and their spreading and viability were monitored and quantified by ECIS. Based on the 50%-inhibition concentration (ECIS50), none of the NCC produced was judged to have any significant cytotoxicity on these two cell lines. However, NCC derived from flax exhibited the most pronounced inhibition on Sf9 compared to hemp and cellulose powder. NCCs from flax and hemp pre-treated with pectate lyase were also less inhibitory than NCCs prepared from untreated flax and hemp. Results also suggested a correlation between the inhibitory effect and the carboxylic acid contents on the NCC.

  20. Dynamic mobility of functional GABAA receptors at inhibitory synapses.

    Thomas, Philip; Mortensen, Martin; Hosie, Alastair M; Smart, Trevor G

    2005-07-01

    Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.

  1. Inhibitory Effects of 5,6,7-Trihydroxyflavones on Tyrosinase

    Jun Kawabata

    2007-01-01

    Full Text Available Baicalein (1, 6-hydroxyapigenin (6, 6-hydroxygalangin (13 and 6-hydroxy-kaempferol (14, which are naturally occurring flavonoids from a set of 14 hydroxy-flavones tested, exhibited high inhibitory effects on tyrosinase with respect to L-DOPA,while each of the 5,6,7-trihydroxyflavones 1, 6, 13 or 14 acted as a cofactor tomonophenolase. Moreover, 6-hydroxykaempferol (14 showed the highest activity andwas a competitive inhibitor of tyrosinase compared to L-DOPA. 5,6,7-Trihydroxyflavones 1, 6, 13 or 14 showed also high antioxidant activities. Hence, weconclude that the 5,6,7-trihydroxy-flavones are useful as good depigmentation agentswith inhibitory effects in addition to their antioxidant properties.

  2. Inhibitory effect of propolis on the development of AA amyloidosis.

    Harata, Daichi; Tsuchiya, Yuya; Miyoshi, Tomoyuki; Yanai, Tokuma; Suzuki, Kazuhiko; Murakami, Tomoaki

    2018-04-01

    In the several types of amyloidoses, participation of oxidative stresses in the pathogenesis and the effect of antioxidants on amyloidosis have been reported. Meanwhile, the relationship between oxidative stresses and pathogenesis of amyloid A (AA) amyloidosis is still unclear. In this study, we used an antioxidant, Brazilian propolis, to investigate the inhibitory effects on AA amyloidosis. The results showed that AA deposition was inhibited by administration of propolis. Increased expression of antioxidant markers was detected in molecular biological examinations of mice treated with propolis. Although serum amyloid A (SAA) levels were strongly correlated with the immunoreactive area of AA deposits in the control group, the correlation was weaker in the propolis-treated groups. In addition, there were no changes in SAA levels between the control group and the propolis-treated groups. The results indicate that propolis, an antioxidant, may induce inhibitory effects against AA amyloidosis.

  3. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  4. Tyrosinase inhibitory components from Aloe vera and their antiviral activity.

    Kim, Jang Hoon; Yoon, Ju-Yeon; Yang, Seo Young; Choi, Seung-Kook; Kwon, Sun Jung; Cho, In Sook; Jeong, Min Hee; Ho Kim, Young; Choi, Gug Seoun

    2017-12-01

    A new compound, 9-dihydroxyl-2'-O-(Z)-cinnamoyl-7-methoxy-aloesin (1), and eight known compounds (2-9) were isolated from Aloe vera. Their structures were elucidated using 1D/2D nuclear magnetic resonance and mass spectra. Compound 9 exhibited reversible competitive inhibitory activity against the enzyme tyrosinase, with an IC 50 value of 9.8 ± 0.9 µM. A molecular simulation revealed that compound 9 interacts via hydrogen bonding with residues His244, Thr261, and Val283 of tyrosinase. Additionally, compounds 3 and 7 were shown by half-leaf assays to exhibit inhibitory activity towards Pepper mild mottle virus.

  5. On minimal inhibitory rules for almost all k-valued information systems

    Moshkov, Mikhail; Skowron, Andrzej; Suraj, Zbigniew

    2009-01-01

    The minimal inhibitory rules for information systems can be used for construction of classifiers. We show that almost all information systems from a certain large class of information systems have relatively short minimal inhibitory rules. However

  6. Influence of in vitro supplementation with lipids from conventional and Alpine milk on fatty acid distribution and cell growth of HT-29 cells

    Dänicke Sven

    2011-08-01

    Full Text Available Abstract Background To date, the influence of milk and dairy products on carcinogenesis remains controversial. However, lipids of ruminant origin such as conjugated linoleic acids (CLA are known to exhibit beneficial effects in vitro and in vivo. The aim of the present study was to determine the influence of milk lipids of different origin and varying quality presenting as free fatty acid (FFA solutions on cellular fatty acid distribution, cellular viability, and growth of human colon adenocarcinoma cells (HT-29. Methods FAME of conventional and Alpine milk lipids (MLcon, MLalp and cells treated with FFA derivatives of milk lipids were analyzed by means of GC-FID and Ag+-HPLC. Cellular viability and growth of the cells were determined by means of CellTiter-Blue®-assay and DAPI-assay (4',6-diamidino-2-phenylindole dihydrochloride, respectively. Results Supplementation with milk lipids significantly decreased viability and growth of HT-29 cells in a dose- and time-dependent manner. MLalp showed a lower SFA/MUFA ratio, a 8 fold increased CLA content, and different CLA profile compared to MLcon but did not demonstrate additional growth-inhibitory effects. In addition, total concentration and fatty acid distribution of cellular lipids were altered. In particular, treatment of the cells yielded highest amounts of two types of milk specific major fatty acids (μg FA/mg cellular protein after 8 h of incubation compared to 24 h; 200 μM of MLcon (C16:0, 206 ± 43, 200 μM of MLalp (C18:1 c9, (223 ± 19. Vaccenic acid (C18:1 t11 contained in milk lipids was converted to c9,t11-CLA in HT-29 cells. Notably, the ratio of t11,c13-CLA/t7,c9-CLA, a criterion for pasture feeding of the cows, was significantly changed after incubation for 8 h with lipids from MLalp (3.6 - 4.8, compared to lipids from MLcon (0.3 - 0.6. Conclusions Natural lipids from conventional and Alpine milk showed similar growth inhibitory effects. However, different changes in cellular

  7. Inhibitory effect of artocarpanone from Artocarpus heterophyllus on melanin biosynthesis.

    Arung, Enos Tangke; Shimizu, Kuniyoshi; Kondo, Ryuichiro

    2006-09-01

    In our previous efforts to find new tyrosinase inhibitory materials, we investigated 44 Indonesian medicinal plants belonging to 24 families. Among those plants, the extract of Artocarpus heterophyllus was one of the strongest inhibitors of tyrosinase activity. By activity-guided fractionation of A. heterophyllus wood extract, we isolated artocarpanone, which inhibited both mushroom tyrosinase activity and melanin production in B16 melanoma cells. This compound is a strong candidate as a remedy for hyperpigmentation in human skin.

  8. Minimum inhibitory concentration of Brazilian Brachyspira hyodysenteriae strains

    Daniel, Amanda G.S.; Sato, José P.H.; Gabardo, Michelle P.; Resende, Talita P.; Barcellos, David E.S.N. de; Pereira, Carlos E.R.; Vannucci, Fábio A.; Guedes, Roberto M.C.

    2017-01-01

    ABSTRACT: The objectives of this study were to characterize Brachyspira hyodysenteriae isolates and to evaluate the antimicrobial susceptibility patterns of strains obtained from pigs in Brazil based on the minimal inhibitory concentration test (MIC). The MIC was performed for 22 B. hyodysenteriae isolates obtained from 2011 to 2013 using the following antimicrobial drugs: tylosin, tiamulin, valnemulin, doxycycline, lincomycin and tylvalosin. Outbreaks of swine dysentery were diagnosed based ...

  9. Hunger, inhibitory control and distress-induced emotional eating.

    van Strien, Tatjana; Ouwens, Machteld A; Engel, Carmen; de Weerth, Carolina

    2014-08-01

    Self-reported emotional eating has been found to significantly moderate distress-induced food intake, with low emotional eaters eating less after a stress task than after a control task and high emotional eaters eating more. The aim of the present study was to explore possible underlying mechanisms by assessing possible associations with (1) ability to experience the typical post-stress reduction of hunger and (2) inhibitory control. We studied these effects in 54 female students who were preselected on the basis of extremely high or low scores on an emotional eating questionnaire. Using a within subject design we measured the difference of actual food or snack intake after a control or a stress task (Trier Social Stress Test). As expected, the moderator effect of emotional eating on distress-induced food intake was found to be only present in females with a failure to report the typical reduction of hunger immediately after a stress task (an a-typical hunger stress response). Contrary to our expectations, this moderator effect of emotional eating was also found to be only present in females with high ability to stop motor impulses (high inhibitory control). These findings suggest that an a-typical hunger stress response but not poor inhibitory control may underlie the moderator effect of emotional eating on distress-induced food intake. However, inhibitory control may play a role whether or not there is a moderator effect of self-reported emotional eating on distress-induced food intake. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. [Inhibitory mechanism of ifenprodil tartrate on rabbit platelet aggregation].

    Irino, O; Saitoh, K; Hayashi, T; Ohkubo, K

    1985-05-01

    The effects of dl-erythro-4-benzyl-alpha-(4-hydroxyphenyl)-beta-methyl-l-piperidine-eth anol tartrate (ifenprodil tartrate) on rabbit platelet aggregation in vitro and ex vivo were studied. Ifenprodil tartrate inhibited platelet aggregation in vitro induced by ADP, collagen and epinephrine. It also inhibited 5-hydroxytryptamine (5-HT) uptake into platelets and 5-HT release from platelets. Since these inhibitory effects of ifenprodil tartrate on the functions of rabbit platelets were similar to the effects of imipramine, the effects of ifenprodil tartrate may be due to the stabilizing action of ifenprodil tartrate on the platelet membrane. The platelet aggregation by ADP was significantly inhibited in rabbits after oral administration of ifenprodil tartrate, the maximal plasma level of ifenprodil being reached at 20 ng/ml ex vivo, while the maximal level was only 1/40 of the minimal concentration of ifenprodil tartrate necessary to inhibit platelet aggregation in vitro. These results indicate that factors other than ifenprodil tartrate acting directly on the platelets (e.g., PGI2 which is an endogenous inhibitor of platelet aggregation) are involved in inducing the inhibitory effects of ifenprodil tartrate on platelet aggregation ex vivo. The effects of ifenprodil tartrate on both PGI2 release from the aorta and the inhibitory effects of PGI2 on platelet aggregation in vitro were investigated: PGI2 was found to intensify the inhibitory effects of ifenprodil tartrate on platelet aggregation in vitro, but there was little effect, if any, on PGI2 release. Therefore, it is considered that the ex vivo effects of ifenprodil tartrate might be due to its interaction with endogenous PGI2 in the blood.

  11. Almost periodic solution of shunting inhibitory CNNs with delays

    Chen, Anping; Cao, Jinde

    2002-06-01

    Using the Banach fixed point theorem, we obtain a sufficient condition for the existence of almost periodic solution of shunting inhibitory cellular neural networks {dx ij}/{dt}=-a ijx ij- limit∑C kl∈N r(i,j) C ijklf x kl(t-τ) x ij+L ij(t), the global attractivity of SICNNs is also obtained. An example is given to illustrate that the condition of our results are feasible.

  12. Inhibitory effect of corn silk on skin pigmentation.

    Choi, Sang Yoon; Lee, Yeonmi; Kim, Sung Soo; Ju, Hyun Min; Baek, Ji Hwoon; Park, Chul-Soo; Lee, Dong-Hyuk

    2014-03-03

    In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  13. Inhibitory Effect of Corn Silk on Skin Pigmentation

    Sang Yoon Choi

    2014-03-01

    Full Text Available In this study, the inhibitory effect of corn silk on melanin production was evaluated. This study was performed to investigate the inhibitory effect of corn silk on melanin production in Melan-A cells by measuring melanin production and protein expression. The corn silk extract applied on Melan-A cells at a concentration of 100 ppm decreased melanin production by 37.2% without cytotoxicity. This was a better result than arbutin, a positive whitening agent, which exhibited a 26.8% melanin production inhibitory effect at the same concentration. The corn silk extract did not suppress tyrosinase activity but greatly reduced the expression of tyrosinase in Melan-A cells. In addition, corn silk extract was applied to the human face with hyperpigmentation, and skin color was measured to examine the degree of skin pigment reduction. The application of corn silk extract on faces with hyperpigmentation significantly reduced skin pigmentation without abnormal reactions. Based on the results above, corn silk has good prospects for use as a material for suppressing skin pigmentation.

  14. Plants from Brazilian Cerrado with potent tyrosinase inhibitory activity.

    Paula Monteiro Souza

    Full Text Available The increased amount of melanin leads to skin disorders such as age spots, freckles, melasma and malignant melanoma. Tyrosinase is known to be the key enzyme in melanin production. Plants and their extracts are inexpensive and rich resources of active compounds that can be utilized to inhibit tyrosinase as well as can be used for the treatment of dermatological disorders associated with melanin hyperpigmentation. Using in vitro tyrosinase inhibitory activity assay, extracts from 13 plant species from Brazilian Cerrado were evaluated. The results showed that Pouteria torta and Eugenia dysenterica extracts presented potent in vitro tyrosinase inhibition compared to positive control kojic acid. Ethanol extract of Eugenia dysenterica leaves showed significant (p<0.05 tyrosinase inhibitory activity exhibiting the IC₅₀ value of 11.88 µg/mL, compared to kojic acid (IC₅₀ value of 13.14 µg/mL. Pouteria torta aqueous extract leaves also showed significant inhibitory activity with IC₅₀ value of 30.01 µg/mL. These results indicate that Pouteria torta and Eugenia dysenterica extracts and their isolated constituents are promising agents for skin-whitening or antimelanogenesis formulations.

  15. Fungal growth inhibitory properties of new phytosphingolipid analogues.

    Mormeneo, D; Manresa, A; Casas, J; Llebaria, A; Delgado, A

    2008-04-01

    To study the growth inhibitory properties of a series of phytosphingosine (PHS) and phytoceramide (PHC) analogues. A panel of two yeast (Candida albicans and Saccharomyces cerevisiae) and six moulds (Aspergillus repens, Aspergillus niger, Penicillium chrysogenum, Cladosporium cladosporioides, Arthroderma uncinatum and Penicillium funiculosum) has been used in this study. A series of new PHS and PHC analogues differing at the sphingoid backbone and the functional group at C1 position were synthesized. Among PHS analogues, 1-azido derivative 1c, bearing the natural D-ribo stereochemistry, showed a promising growth inhibitory profile. Among PHC analogues, compound 12, with a bulky N-pivaloyl group and a Z double bond at C3 position of the sphingoid chain, was the most active growth inhibitor. Minimal inhibitory concentration values were in the range of 23-48 micromol l(-1) for 1c and 44-87 micromol l(-1) for 12. Only scattered data on the antifungal activity of phytosphingolipids have been reported in the literature. This is the first time that a series of analogues of this kind are tested and compared to discern their structural requirements for antifungal activity.

  16. Inhibitory control is not lateralized in Parkinson's patients.

    Mirabella, G; Fragola, M; Giannini, G; Modugno, N; Lakens, Daniel

    2017-07-28

    Parkinson's disease (PD) is often characterized by asymmetrical symptoms, which are more prominent on the side of the body contralateral to the most extensively affected brain hemisphere. Therefore, lateralized PD presents an opportunity to examine the effects of asymmetric subcortical dopamine deficiencies on cognitive functioning. As it has been hypothesized that inhibitory control relies upon a right-lateralized pathway, we tested whether left-dominant PD (LPD) patients suffered from a more severe deficit in this key executive function than right-dominant PD patients (RPD). To this end, via a countermanding task, we assessed both proactive and reactive inhibition in 20 LPD and 20 RPD patients, and in 20 age-matched healthy subjects. As expected, we found that PD patients were significantly more impaired in both forms of inhibitory control than healthy subjects. However, there were no differences either in reactive or proactive inhibition between LPD and RPD patients. All in all, these data support the idea that brain regions affected by PD play a fundamental role in subserving inhibitory function, but do not sustain the hypothesis according to which this executive function is predominantly or solely computed by the brain regions of the right hemisphere. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Reward, interrupted: Inhibitory control and its relevance to addictions.

    Jentsch, James David; Pennington, Zachary T

    2014-01-01

    There are broad individual differences in the ability to voluntarily and effortfully suppress motivated, reward-seeking behaviors, and this review presents the hypothesis that these individual differences are relevant to addictive disorders. On one hand, cumulative experience with drug abuse appears to alter the molecular, cellular and circuit mechanisms that mediate inhibitory abilities, leading to increasingly uncontrolled patterns of drug-seeking and -taking. On the other, native inter-individual differences in inhibitory control are apparently a risk factor for aspects of drug-reinforced responding and substance use disorders. In both cases, the behavioral manifestation of poor inhibitory abilities is linked to relatively low striatal dopamine D2-like receptor availability, and evidence is accumulating for a more direct contribution of striatopallidal neurons to cognitive control processes. Mechanistic research is now identifying genes upstream of dopamine transmission that mediate these relationships, as well as the involvement of other neurotransmitter systems, acting alone and in concert with dopamine. The reviewed research stands poised to identify new mechanisms that can be targeted by pharmacotherapies and/or by behavioral interventions that are designed to prevent or treat addictive behaviors and associated behavioral pathology. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Histamine release inhibitory activity of Piper nigrum leaf.

    Hirata, Noriko; Naruto, Shunsuke; Inaba, Kazunori; Itoh, Kimihisa; Tokunaga, Masashi; Iinuma, Munekazu; Matsuda, Hideaki

    2008-10-01

    Oral administration of a methanolic extract of Piper nigrum leaf (PN-ext, 50, 200 and 500 mg/kg) showed a potent dose-dependent inhibition of dinitrofluorobenzene (DNFB)-induced cutaneous reaction at 1 h [immediate phase response (IPR)] after and 24 h [late phase response (LPR)] after DNFB challenge in mice which were passively sensitized with anti-dinitrophenyl (DNP) IgE antibody. Ear swelling inhibitory effect of PN-ext (50, 200 and 500 mg/kg, per os (p.o.)) on very late phase response (vLPR) in the model mice was significant but weaker than that on IPR. Oral administration of PN-ext (50, 200 and 500 mg/kg for 7 d) inhibited picryl chloride (PC)-induced ear swelling in PC sensitized mice. PN-ext exhibited in vitro inhibitory effect on compound 48/80-induced histamine release from rat peritoneal mast cells. Two lignans of PN-ext, (-)-cubebin (1) and (-)-3,4-dimethoxy-3,4-desmethylenedioxycubebin (2), were identified as major active principles having histamine release inhibitory activity.

  19. Role of inhibitory feedback for information processing in thalamocortical circuits

    Mayer, Joerg; Schuster, Heinz Georg; Claussen, Jens Christian

    2006-01-01

    The information transfer in the thalamus is blocked dynamically during sleep, in conjunction with the occurrence of spindle waves. In order to describe the dynamic mechanisms which control the sensory transfer of information, it is necessary to have a qualitative model for the response properties of thalamic neurons. As the theoretical understanding of the mechanism remains incomplete, we analyze two modeling approaches for a recent experiment by Le Masson et al. [Nature (London) 417, 854 (2002)] on the thalamocortical loop. We use a conductance based model in order to motivate an extension of the Hindmarsh-Rose model, which mimics experimental observations of Le Masson et al. Typically, thalamic neurons posses two different firing modes, depending on their membrane potential. At depolarized potentials, the cells fire in a single spike mode and relay synaptic inputs in a one-to-one manner to the cortex. If the cell gets hyperpolarized, T-type calcium currents generate burst-mode firing which leads to a decrease in the spike transfer. In thalamocortical circuits, the cell membrane gets hyperpolarized by recurrent inhibitory feedback loops. In the case of reciprocally coupled excitatory and inhibitory neurons, inhibitory feedback leads to metastable self-sustained oscillations, which mask the incoming input, and thereby reduce the information transfer significantly

  20. Growth inhibitory alkaloids from mesquite (Prosopis juliflora (Sw.) DC.) leaves.

    Nakano, Hiroshi; Nakajima, Eri; Hiradate, Syuntaro; Fujii, Yoshiharu; Yamada, Kosumi; Shigemori, Hideyuki; Hasegawa, Koji

    2004-03-01

    Plant growth inhibitory alkaloids were isolated from the extract of mesquite [Prosopis juliflora (Sw.) DC.] leaves. Their chemical structures were established by ESI-MS, 1H and 13C NMR spectra analysis. The I50 value (concentration required for 50% inhibition of control) for root growth of cress (Lepidium sativum L.) seedlings was 400 microM for 3''''-oxo-juliprosopine, 500 microM for secojuliprosopinal, and 100 microM for a (1:1) mixture of 3-oxo-juliprosine and 3'-oxo-juliprosine, respectively. On the other hand, the minimum concentration exhibiting inhibitory effect on shoot growth of cress seedlings was 10 microM for 3''''-oxo-juliprosopine, 100 microM for secojuliprosopinal, and 1 microM for a (1:1) mixture of 3-oxo-juliprosine and 3'-oxo-juliprosine, respectively. Among these compounds, a (1:1) mixture of 3-oxo-juliprosine and 3'-oxo-juliprosine exhibited the strongest inhibitory effect on the growth of cress seedlings.

  1. Characterisation of inhibitory substances produced by two Pseudoalteromonas species and the cyanobacterial strain Flo1

    Rau, Jan Erik

    2011-01-01

    In the present study the inhibitory substances of P. aurantia NCIMB 2052T and P. citrea NCIMB 1889T were investigated with respect to their substantial and functional nature, their inhibitory potential, their stability against various treatments as well as the growth phases and incubation conditions when the substances are produced. In addition, an inhibitory substance produced by strain Flo1 was examined regarding its structure, function, and inhibitory potential. Furthermore, its taxonomic ...

  2. Cytoplasmic lipid bodies of human neutrophilic leukocytes

    Weller, P.F.; Ackerman, S.J.; Nicholson-Weller, A.; Dvorak, A.M.

    1989-01-01

    The morphology and function of cytoplasmic lipid bodies in human neutrophils were evaluated. By transmission electron microscopy, neutrophil lipid bodies were cytoplasmic inclusions, usually several microns in diameter, that occasionally coalesced to attain a diameter up to 7 microM. Neutrophil lipid bodies were not enveloped by membrane but were often surrounded by a more electron-dense shell at their periphery. Normal peripheral blood neutrophils contained an average of approximately one lipid body per cell. Lipid bodies appeared in greater numbers in neutrophils from inflammatory lesions. Perturbation of neutrophils during conventional methods of cell isolation and purification modestly increased lipid body numbers in neutrophils, whereas incubation of neutrophils with 1 microM oleic acid rapidly induced lipid body formation over 30 to 60 minutes. After granulocytes were incubated for 2 hours with 3H-fatty acids, including arachidonic, oleic, and palmitic acids, electron microscopic autoradiography demonstrated that lipid bodies represented the predominant intracellular sites of localization of each of the three 3H-fatty acids. There was lesser labeling noted in the perinuclear cisterna, but not in cell membranes. Virtually all of each of the three 3H-fatty acids incorporated by the neutrophils were esterified into chromatographically resolved classes of neutral lipids or phospholipids. These findings indicate that cytoplasmic lipid bodies are more prominent in neutrophils in vivo engaged in inflammatory responses and that these organelles in human neutrophils function as sites of deposition of esterified, incorporated fatty acids

  3. Exogenous and endogenous lipids of human hair.

    Coderch, L; Oliver, M A; Martínez, V; Manich, A M; Rubio, L; Martí, M

    2017-11-01

    The aim of this study was to characterize the external and internal lipids of Caucasian hair and their influence in different hair properties such as moisture content, hydrophobic character, and mechanical properties. Lipid extraction and their analysis by thin layer chromatography with flame ionization detector were carried out. Lipid rearrangement and water sorption and desorption evaluation of these fibers with and without lipids will also be determined using different techniques such as differential scanning calorimetry, thermogravimetric analysis and dynamic vapor sorption, mainly to evaluate permeation changes of these hair fibers possibly related to the fluidity of the lipids extracted. Caucasian fibers were found to be well hydrated, and moisture diminution was observed mainly for the external lipid extracted fibers. Unexpectedly, the lipid extraction promoted an increase in the break tenacity of the Caucasian fibers. The hydrophobic character of the fiber surfaces indicates the marked hydrophobicity of all fibers. Delipidization promotes only a slight diminution of their hydrophobic properties. Water uptake and desorption studies indicate an important water regain for Caucasian fibers. The external extracted hair fibers presented a diminution of maximum water regain, which surprisingly increases with the following internal lipid extraction. This can be due to a higher water desorption found only for external extracted fibers. The relationship between fluidity of lipids extracted and hair fiber water diffusion were established. Extraction of internal lipids of Caucasian fibers, which have a higher unsaturated lipid content than external lipids of the same hair fiber, leads to a lower water permeability of the fiber. On the capillar formulations should be considered the importance of lipid fluidity to modify the permeability of the fiber. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations

  5. Assessment of the inhibitory effects of pyrethroids against human carboxylesterases

    Lei, Wei [The Second Affiliated Hospital of Dalian Medical University, Dalian 110623 (China); Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Wang, Dan-Dan; Dou, Tong-Yi [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Hou, Jie [Dalian Medical University, Dalian 116044 (China); Feng, Liang; Yin, Heng [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Luo, Qun [Beijing National Laboratory for Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080 (China); Sun, Jie [The Second Affiliated Hospital of Dalian Medical University, Dalian 110623 (China); Ge, Guang-Bo, E-mail: geguangbo@dicp.ac.cn [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China); Yang, Ling [Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 (China)

    2017-04-15

    Pyrethroids are broad-spectrum insecticides that widely used in many countries, while humans may be exposed to these toxins by drinking or eating pesticide-contaminated foods. This study aimed to investigate the inhibitory effects of six commonly used pyrethroids against two major human carboxylesterases (CES) including CES1 and CES2. Three optical probe substrates for CES1 (DME, BMBT and DMCB) and a fluorescent probe substrate for CES2 (DDAB) were used to characterize the inhibitory effects of these pyrethroids. The results demonstrated that most of the tested pyrethroids showed moderate to weak inhibitory effects against both CES1 and CES2, but deltamethrin displayed strong inhibition towards CES1. The IC{sub 50} values of deltamethrin against CES1-mediated BMBT, DME, and DMCB hydrolysis were determined as 1.58 μM, 2.39 μM, and 3.3 μM, respectively. Moreover, deltamethrin was cell membrane permeable and capable of inhibition endogenous CES1 in living cells. Further investigation revealed that deltamethrin inhibited CES1-mediated BMBT hydrolysis via competitive manner but noncompetitively inhibited DME or DMCB hydrolysis. The inhibition behaviors of deltamethrin against CES1 were also studied by molecular docking simulation. The results demonstrated that CES1 had at least two different ligand-binding sites, one was the DME site and another was the BMBT site which was identical to the binding site of deltamethrin. In summary, deltamethrin was a strong reversible inhibitor against CES1 and it could tightly bind on CES1 at the same ligand-binding site as BMBT. These findings are helpful for the deep understanding of the interactions between xenobiotics and CES1. - Highlights: • The inhibitory effects of six commonly used pyrethroids on human carboxylesterases were investigated. • Deltamethrin displayed strong inhibitory effects against human carboxylesterase 1 (CES1). • Deltamethrin was cell membrane permeable and could inhibit intracellular CES1 in living

  6. Assessment of the inhibitory effects of pyrethroids against human carboxylesterases

    Lei, Wei; Wang, Dan-Dan; Dou, Tong-Yi; Hou, Jie; Feng, Liang; Yin, Heng; Luo, Qun; Sun, Jie; Ge, Guang-Bo; Yang, Ling

    2017-01-01

    Pyrethroids are broad-spectrum insecticides that widely used in many countries, while humans may be exposed to these toxins by drinking or eating pesticide-contaminated foods. This study aimed to investigate the inhibitory effects of six commonly used pyrethroids against two major human carboxylesterases (CES) including CES1 and CES2. Three optical probe substrates for CES1 (DME, BMBT and DMCB) and a fluorescent probe substrate for CES2 (DDAB) were used to characterize the inhibitory effects of these pyrethroids. The results demonstrated that most of the tested pyrethroids showed moderate to weak inhibitory effects against both CES1 and CES2, but deltamethrin displayed strong inhibition towards CES1. The IC 50 values of deltamethrin against CES1-mediated BMBT, DME, and DMCB hydrolysis were determined as 1.58 μM, 2.39 μM, and 3.3 μM, respectively. Moreover, deltamethrin was cell membrane permeable and capable of inhibition endogenous CES1 in living cells. Further investigation revealed that deltamethrin inhibited CES1-mediated BMBT hydrolysis via competitive manner but noncompetitively inhibited DME or DMCB hydrolysis. The inhibition behaviors of deltamethrin against CES1 were also studied by molecular docking simulation. The results demonstrated that CES1 had at least two different ligand-binding sites, one was the DME site and another was the BMBT site which was identical to the binding site of deltamethrin. In summary, deltamethrin was a strong reversible inhibitor against CES1 and it could tightly bind on CES1 at the same ligand-binding site as BMBT. These findings are helpful for the deep understanding of the interactions between xenobiotics and CES1. - Highlights: • The inhibitory effects of six commonly used pyrethroids on human carboxylesterases were investigated. • Deltamethrin displayed strong inhibitory effects against human carboxylesterase 1 (CES1). • Deltamethrin was cell membrane permeable and could inhibit intracellular CES1 in living cells

  7. In vitro evaluation of inhibitory effect of Phoenix dactylifera bark ...

    chain [4]. P. dactylifera L. (date palm) belongs the family Arecaceae. Date fruit is the most .... Statistical analysis. All of the .... lipid peroxidation of rat brain with the IC50 value of 1.05 mg/mL ... Porter NA, Caldwell SE, and Mills KA. Mechanisms ...

  8. Lipid resuscitation in acute poisoning

    Hoegberg, Lotte C G; Gosselin, Sophie

    2017-01-01

    PURPOSE OF REVIEW: The decision to provide intravenous lipid emulsion (ILE) therapy as a treatment modality for the reversal of various drug toxicity was discovered in the last decade. Numerous publications, in both humans and animals attest to its clinical use, but current supporting evidence...... is inconsistent. RECENT FINDINGS: A recent systematic review reported evidence for benefit of ILE in bupivacaine toxicity. Human randomized trials, large observational studies as well as animal models of orogastric poisoning failed to report a clear benefit of ILE for nonlocal anesthetics poisoning. SUMMARY: ILE...

  9. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-01-01

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K C , the thickness D HH , and the orientational order parameter S xray of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K C when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains

  10. Lipid phase control of DNA delivery

    Koynova, Rumiana; Wang, Li; Tarahovsky, Yury; MacDonald, Robert C. (NWU)

    2010-01-18

    Cationic lipids form nanoscale complexes (lipoplexes) with polyanionic DNA and can be utilized to deliver DNA to cells for transfection. Here we report the correlation between delivery efficiency of these DNA carriers and the mesomorphic phases they form when interacting with anionic membrane lipids. Specifically, formulations that are particularly effective DNA carriers form phases of highest negative interfacial curvature when mixed with anionic lipids, whereas less effective formulations form phases of lower curvature. Structural evolution of the carrier lipid/DNA complexes upon interaction with cellular lipids is hence suggested as a controlling factor in lipid-mediated DNA delivery. A strategy for optimizing lipofection is deduced. The behavior of a highly effective lipoplex formulation, DOTAP/DOPE, is found to conform to this 'efficiency formula'.

  11. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    Guo, Li-Wu [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Wu, Qiangen [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Green, Bridgett; Nolen, Greg [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Shi, Leming [Division of Systems Biology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); LoSurdo, Jessica [Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 (United States); Deng, Helen [Arkansas Department of Health, Little Rock, AR 72205 (United States); Bauer, Steven [Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892 (United States); Fang, Jia-Long, E-mail: jia-long.fang@fda.hhs.gov [Division of Biochemical Toxicology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States); Ning, Baitang, E-mail: baitang.ning@fda.hhs.gov [Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR 72079 (United States)

    2012-07-15

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCS (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.

  12. Cytotoxicity and inhibitory effects of low-concentration triclosan on adipogenic differentiation of human mesenchymal stem cells

    Guo, Li-Wu; Wu, Qiangen; Green, Bridgett; Nolen, Greg; Shi, Leming; LoSurdo, Jessica; Deng, Helen; Bauer, Steven; Fang, Jia-Long; Ning, Baitang

    2012-01-01

    Humans at all ages are continually exposed to triclosan (TCS), a widely used antimicrobial agent that can be found in many daily hygiene products, such as toothpastes and shampoos; however, the toxicological and biological effects of TCS in the human body after long-term and low-concentration exposure are far from being well understood. In the current study, we investigated the effects of TCS on the differentiation of human mesenchymal stem cells (hMSCs) by measuring the cytotoxicity, morphological changes, lipid accumulation, and the expression of adipocyte differentiation biomarkers during 21-day adipogenesis. Significant cytotoxicity was observed in un-induced hMSCs treated with high-concentration TCS (≥ 5.0 μM TCS), but not with low-concentration treatments (≤ 2.5 μM TCS). TCS inhibited adipocyte differentiation of hMSCs in a concentration-dependent manner in the 0.156 to 2.5 μM range as indicated by morphological changes with Oil Red O staining, which is an index of lipid accumulation. The inhibitory effect was confirmed by a decrease in gene expression of specific adipocyte differentiation biomarkers including adipocyte protein 2, lipoprotein lipase, and adiponectin. Our study demonstrates that TCS inhibits adipocyte differentiation of hMSCs under concentrations that are not cytotoxic and in the range observed in human blood. -- Highlights: ► TCS is cytotoxic to un-induced hMSCs at concentrations ≥ 5.0 μM. ► TCS at concentrations ≤ 2.5 μM is not cytotoxic to induced hMSCs. ► TCS at non-cytotoxic concentrations inhibits lipid formation in induced hMSCs. ► TCS decreases the expression of specific biomarkers of adipocyte differentiation. ► TCS at concentrations observed in human blood inhibits adipogenesis of hMSCs.

  13. [Effects of furfural on the growth and lipid production of oleaginous yeast Rhodotorula glutinis].

    Yong, Zihan; Zhang, Xu; Tan, Tianwei

    2015-10-01

    In order to illustrate the effects of furfural, one of the most common inhibitory compounds in lignocellulosic hydrolysate, on oleaginous yeast Rhodotorula glutinis, we investigated the effects of different concentrations of furfural (0.1, 0.4, 0.6 and 1.5 g/L) on the biomass and lipid production of R. glutinis, as well as the effects of 1.0 g/L furfural on the utilization of glucose and xylose. Results showed that: when the furfural concentration reached 1.5 g/L, the lag phrase time was extended to 96 h, and the residual glucose was up to 17.7 g/L, with maximum biomass of only 6.6 g/L, which accounted for 47% of that in the basic medium (furfural-free), and the corresponding lipid content was reduced about 50%. Furfural showed lighter inhibitory degree on R. glutinis when xylose acted as the carbon source than glucose was the carbon source; more C18 fatty acids or unsaturated C18 fatty acids were generated in the presence of furfural.

  14. Targeting Lipid Metabolic Reprogramming as Anticancer Therapeutics

    Cha, Ji-Young; Lee, Ho-Jae

    2016-01-01

    Cancer cells rewire their metabolism to satisfy the demands of growth and survival, and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. Lipid metabolism is pivotal in cellular process that converts nutrients into energy, building blocks for membrane biogenesis and the generation of signaling molecules. Accumulating evidence suggests that cancer cells show alterations in different aspects of lipid metabolism. The changes in lipid metabolism of cancer cells c...

  15. Lipids as organizers of cell membranes.

    Kornmann, Benoît; Roux, Aurélien

    2012-08-01

    The 105th Boehringer Ingelheim Fonds International Titisee Conference 'Lipids as Organizers of Cell Membranes' took place in March 2012, in Germany. Kai Simons and Gisou Van der Goot gathered cell biologists and biophysicists to discuss the interplay between lipids and proteins in biological membranes, with an emphasis on how technological advances could help fill the gap in our understanding of the lipid part of the membrane.

  16. Changes of lipids in irradiated chickens

    Moersel, J.T.; Wende, I.; Schwarz, K.

    1991-01-01

    Chickens were irradiated in a 6 deg Co gamma irradiation source. The irradiation has been done to reduce or eliminate Salmonella. The experiments were done to test this decontamination method of chickens if changes of lipids take place. It was to be seen, that peroxidation of lipids was more rapidly as in control. The time of storage of irradiated chickens has to be shorter because of changes in lipids. After irradiation the chickens had trade quality. (orig.) [de

  17. Effects of atmospheric pollutants on lipids

    Howton, D.R.

    1976-01-01

    Studies on effects of atmospheric pollutants on lipids emphasized effects of nitrogen dioxide on olefinic centers of alveolar fluid surfactant lipids. The finding that NO 2 attacks α-tocopherol much more avidly than olefinic fatty esters indicates that the autoxidation enhancing effects of this atmospheric pollutant may be greatly magnified by destruction of native antioxidants that normally suppress the extensiveness of such lipid oxidation

  18. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    Xu, Zhidong; Harvey, Kevin A.; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P.; Siddiqui, Rafat A.

    2012-01-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction. PMID:23016123

  19. Polar lipid composition of mammalian hair.

    Wix, M A; Wertz, P W; Downing, D T

    1987-01-01

    The types and amounts of polar lipids from the hair of monkey (Macacca fascicularis), dog (Canis familiaris), pig (Sus scrofa) and porcupine (Erethizon dorsatum) have been determined by quantitative thin-layer chromatography. The polar lipid content of the hair samples ranged from 0.6 to 1.6 wt%. Lipid compositions included ceramides (57-63% of the polar lipid by weight), glycosphingolipids (7-9%) and cholesteryl sulfate (22-29%). Several minor components (4-7%) remain unidentified. The results suggest that cholesteryl sulfate may be an important determinant of the cohesiveness of hair.

  20. Lipid Metabolism, Apoptosis and Cancer Therapy

    Chunfa Huang

    2015-01-01

    Full Text Available Lipid metabolism is regulated by multiple signaling pathways, and generates a variety of bioactive lipid molecules. These bioactive lipid molecules known as signaling molecules, such as fatty acid, eicosanoids, diacylglycerol, phosphatidic acid, lysophophatidic acid, ceramide, sphingosine, sphingosine-1-phosphate, phosphatidylinositol-3 phosphate, and cholesterol, are involved in the activation or regulation of different signaling pathways. Lipid metabolism participates in the regulation of many cellular processes such as cell growth, proliferation, differentiation, survival, apoptosis, inflammation, motility, membrane homeostasis, chemotherapy response, and drug resistance. Bioactive lipid molecules promote apoptosis via the intrinsic pathway by modulating mitochondrial membrane permeability and activating different enzymes including caspases. In this review, we discuss recent data in the fields of lipid metabolism, lipid-mediated apoptosis, and cancer therapy. In conclusion, understanding the underlying molecular mechanism of lipid metabolism and the function of different lipid molecules could provide the basis for cancer cell death rationale, discover novel and potential targets, and develop new anticancer drugs for cancer therapy.

  1. Metabolism of lipids in Epidermophyton floccosum

    Chopra, A; Khuller, G K [Post-Graduate Inst. of Medical Education and Research, Chandigarh (India)

    1981-03-01

    Metabolism of major lipids in E. floccosum was studied with /sup 14/C-acetate as a precursor. Among the phosphatides, phosphatidylcholine exhibited the maximum rate of synthesis and degradation, followed by phosphatidylethanolamine and phosphatidylserine. These phospholipids appear to exist in two pools, one metabolically more active than the other. In neutral lipids, maximum uptake was observed in triglycerides, followed by free fatty acids, diglycerides and monoglycerides. However, on chase of the labelled lipids, a continuous synthesis of all neutral lipid fractions was observed suggesting a recycling of the labelled carbon.

  2. Steroidal compounds in commercial parenteral lipid emulsions.

    Xu, Zhidong; Harvey, Kevin A; Pavlina, Thomas; Dutot, Guy; Hise, Mary; Zaloga, Gary P; Siddiqui, Rafat A

    2012-08-01

    Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn(®) II, Liposyn(®) III, Lipofundin(®) MCT, Lipofundin(®) N, Structolipid(®), Intralipid(®), Ivelip(®) and ClinOleic(®). Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  3. Steroidal Compounds in Commercial Parenteral Lipid Emulsions

    Rafat A. Siddiqui

    2012-08-01

    Full Text Available Parenteral nutrition lipid emulsions made from various plant oils contain steroidal compounds, called phytosterols. During parenteral administration of lipid emulsions, phytosterols can reach levels in the blood that are many fold higher than during enteral administration. The elevated phytosterol levels have been associated with the development of liver dysfunction and the rare development of liver failure. There is limited information available in the literature related to phytosterol concentrations in lipid emulsions. The objective of the current study was to validate an assay for steroidal compounds found in lipid emulsions and to compare their concentrations in the most commonly used parenteral nutrition lipid emulsions: Liposyn® II, Liposyn® III, Lipofundin® MCT, Lipofundin® N, Structolipid®, Intralipid®, Ivelip® and ClinOleic®. Our data demonstrates that concentrations of the various steroidal compounds varied greatly between the eight lipid emulsions, with the olive oil-based lipid emulsion containing the lowest levels of phytosterols and cholesterol, and the highest concentration of squalene. The clinical impression of greater incidences of liver dysfunction with soybean versus MCT/LCT and olive/soy lipid emulsions may be reflective of the levels of phytosterols in these emulsions. This information may help guide future studies and clinical care of patients with lipid emulsion-associated liver dysfunction.

  4. Jabuticaba [Pliniajaboticaba (Vell.) Berg] skins decrease lipid ...

    SAM

    2014-03-12

    density lipoprotein cholesterol; MDA, malondialdehyde ... rats, and quantification and characterization of its .... Moisture and lipid content were determined using the methods ... acids and flavonoids were identified, presenting the.

  5. Electrodiffusion of lipids on membrane surfaces.

    Zhou, Y C

    2012-05-28

    Lateral translocation of lipids and proteins is a universal process on membrane surfaces. Local aggregation or organization of lipids and proteins can be induced when the random lateral motion is mediated by the electrostatic interactions and membrane curvature. Although the lateral diffusion rates of lipids on membranes of various compositions are measured and the electrostatic free energies of predetermined protein-membrane-lipid systems can be computed, the process of the aggregation and the evolution to the electrostatically favorable states remain largely undetermined. Here we propose an electrodiffusion model, based on the variational principle of the free energy functional, for the self-consistent lateral drift-diffusion of multiple species of charged lipids on membrane surfaces. Finite sizes of lipids are modeled to enforce the geometrical constraint of the lipid concentration on membrane surfaces. A surface finite element method is developed to appropriate the Laplace-Beltrami operators in the partial differential equations of the model. Our model properly describes the saturation of lipids on membrane surfaces, and correctly predicts that the MARCKS peptide can consistently sequester three multivalent phosphatidylinositol 4,5-bisphosphate lipids through its basic amino acid residues, regardless of a wide range of the percentage of monovalent phosphatidylserine in the membrane.

  6. Biologic activity of porphyromonas endodontalis complex lipids.

    Mirucki, Christopher S; Abedi, Mehran; Jiang, Jin; Zhu, Qiang; Wang, Yu-Hsiung; Safavi, Kamran E; Clark, Robert B; Nichols, Frank C

    2014-09-01

    Periapical infections secondary to pulpal necrosis are associated with bacterial contamination of the pulp. Porphyromonas endodontalis, a gram-negative organism, is considered to be a pulpal pathogen. P. gingivalis is phylogenetically related to P. endodontalis and synthesizes several classes of novel complex lipids that possess biological activity, including the capacity to promote osteoclastogenesis and osteoclast activation. The purpose of this study was to extract and characterize constituent lipids of P. endodontalis and evaluate their capacity to promote proinflammatory secretory responses in the macrophage cell line, RAW 264.7, as well as their capacity to promote osteoclastogenesis and inhibit osteoblast activity. Constituent lipids of both organisms were fractionated by high-performance liquid chromatography and were structurally characterized using electrospray mass spectrometry or electrospray-mass spectrometry/mass spectrometry. The virulence potential of P. endodontalis lipids was then compared with known biologically active lipids isolated from P. gingivalis. P. endodontalis total lipids were shown to promote tumor necrosis factor alpha secretion from RAW 264.7 cells, and the serine lipid fraction appeared to account for the majority of this effect. P. endodontalis lipid preparations also increased osteoclast formation from RAW 264.7 cells, but osteoblast differentiation in culture was inhibited and appeared to be dependent on Toll-like receptor 2 expression. These effects underscore the importance of P. endodontalis lipids in promoting inflammatory and bone cell activation processes that could lead to periapical pathology. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Lipid sac area as a proxy for individual lipid content of arctic calanoid copepods

    Vogedes, Daniel; Varpe, ?ystein; S?reide, Janne E.; Graeve, Martin; Berge, J?rgen; Falk-Petersen, Stig

    2010-01-01

    We present an accurate, fast, simple and non-destructive photographic method to estimate wax ester and lipid content in single individuals of the calanoid copepod genus Calanus and test this method against gas-chromatographic lipid measurements.

  8. Distribution of neutral lipids in the lipid droplet core

    Chaban, Vitaly V; Khandelia, Himanshu

    2014-01-01

    Cholesteryl esters (CEs) are a form of cholesterol (CHOL) storage in the living cells, as opposed to free CHOL. CEs are major constituents of low density lipoprotein particles. Therefore, CEs are implicated in provoking atherosclerosis. Arranged into cytoplasmic lipid droplets (LDs), CEs are stored...... intracellularly. They can also be transported extracellularly by means of lipoproteins. In this work, large-scale molecular dynamics (MD) simulations are used to characterize the molecular structure of LDs containing various fractions (10-50 mol %) of cholesteryl oleate (CO) with respect to triolein (TO) fraction...... the phospholipid interface, resulting from the structuring of hydrophilic groups. This structuring slowly decays in the direction toward the LD center of mass. No sorting of TO and CO is detected, irrespective of the molar fractions simulated. The distribution of CO within the LDs is significant in determining...

  9. Natural lipids in nanostructured lipid carriers and its cytotoxicity

    Lima, Paula A.; Rampazo, Caroline A. D.; Costa, Amanda F.; Rodrigues, Tiago; Watashi, Carolina M.; Durán, Nelson

    2017-06-01

    Nanostructured lipid carriers (NLCs) are active carrier systems which modulate the sustained release of actives and protect unstable compounds against degradation. NLCs can also protect skin from sun light, due to its particulates nature, which gives them intrinsic scattering properties. In this work, we present the preparation of NLCs using natural lipids and its cytotoxicity profile. It was used a vegetal butter with melting point (m.p.) ~32-40°C, an animal wax (m.p. 35-40°C) and a vegetal oil (boiling point ~120-150°C). NLCs were prepared by hot high pressure homogenization method and particles were characterized by average size (Zave), polydispersity index (PDI) and zeta potential (PZ) (Fig.1). The thermal behavior of the NLCs was studied using Differential Scanning Calorimetry (DSC). All the formulations were followed up for 60 days in order to evaluate their stability. NLCs exhibited a Zave around 150-200 nm, PDI less than 0.2 and PZ varying from -25 to -40 mV. The m.p. for the lyophilized NLCs was about 40-56°C. Cytotoxicity of the formulations were evaluated for human keratinocytes (HaCaT) and melanocytes (Melan-A) in the exponential growth phase. Cell viability was used as indicator of cytotoxicity and determined after 4 days of culture by MTT assay. It was found that the NLC formulations were not toxic against HaCaT and Melan-A cells. Results showed that the NLCs produced are potential carriers for nanocosmetics and sunscreen products.

  10. Inclusion of the helper lipid dioleoyl-phosphatidylethanolamine in solid lipid nanoparticles inhibits their transfection efficiency

    de Jesus, Marcelo B.; Radaic, Allan; Hinrichs, Wouter L J; Ferreira, Carmen V; de Paula, Eneida; Hoekstra, Dirk; Zuhorn, Inge S

    Solid lipid nanoparticles (SLNs) are a promising system for the delivery of lipophilic and hydrophilic drugs. They consist of a solid lipid core that is stabilized by a layer of surfactants. By the incorporation of cationic lipids in the formulation, positively charged SLNs can be generated, that

  11. Lipid polymorphism and the functional roles of lipids in biological membranes

    Cullis, P.R.; Kruijff, B. de

    1979-01-01

    The reasons for the great variety of lipids found in biological membranes, and the relations between lipid composition and membrane function pose major unsolved problems in membrane biology. Perhaps the only major functional role of lipids which may be regarded as firmly established involves the

  12. Fruit Wines Inhibitory Activity Against α-Glucosidase.

    Cakar, Uros; Grozdanic, Nada; Petrovic, Aleksandar; Pejin, Boris; Nastasijevic, Branislav; Markovic, Bojan; Dordevic, Brizita

    2017-01-01

    Fruit wines are well known for their profound health-promoting properties including both enzyme activations and inhibitions. They may act preventive in regard to diabetes melitus and other chronic diseases. Potential α-glucosidase inhibitory activity of fruit wines made from blueberry, black chokeberry, blackberry, raspberry and sour cherry was the subject of this study. In order to increase the alcohol content due to enriched extraction of total phenolics, sugar was added in the fruit pomace of the half of the examined fruit wine samples. Compared with acarbose used as a positive control (IC50 = 73.78 µg/mL), all fruit wine samples exhibited higher α-glucosidase inhibitory activity. Indeed, blueberry wine samples stood out, both prepared with IC50 = 24.14 µg/mL, lyophilised extract yield 3.23% and without IC50 = 46.39 µg/mL, lyophilised extract yield 2.89% and with addition of sugar before fermentation. Chlorogenic acid predominantly contributed to α-glucosidase inhibitory activity of the blueberry, black chokeberry and sour cherry wine samples. However, ellagic acid, a potent α-glucosidase inhibitor possessing a planar structure, only slightly affected the activity of the blueberry wine samples, due to the lower concentration. In addition to this, molecular docking study of chlorogenic acid pointed out the importance of binding energy (-8.5 kcal/mol) for the inhibition of the enzyme. In summary, fruit wines made from blueberry should be primarily taken into consideration as a medicinal food targeting diabetes mellitus type 2 in the early stage, if additional studies would confirm their therapeutic potential for the control of postprandial hyperglycemia. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Nitric oxide inhibitory substances from Curcuma mangga rhizomes

    Kanidta Kaewkroek

    2009-08-01

    Full Text Available Curcuma mangga Val. & Zijp. is a member of the Zingiberaceae family commonly grown in Thailand. It is locally known as mango tumeric because of its mango-like smell when the fresh rhizomes are cut. C. mangga is a popular vegetable, the tips of the young rhizomes and shoots are consumed raw with rice. Medicinally, the rhizomes are used as a stomachic and for chest pains, fever, and general debility. It is also used in postpartum care. In the present study, we investigated the anti-inflammatory effect of the extract and compounds from C. mangga rhizomes against lipopolysaccharide (LPS-induced nitric oxide (NO production in RAW 264.7 cell line. From bioassay-guided fractionation, the chloroform fraction exhibited the most potent inhibitory activity with an IC50 value of 2.1 g/ml, followed by the hexane fraction (IC50 = 3.8 g/ml and the ethyl acetate fraction (IC50 = 23.5 g/ml, respectively. Demethoxycurcumin (1 and 3-buten-2-one, 4-[(1R, 4aR, 8aR-decahydro-5, 5, 8a-trimethyl-2-methylene-1-naphthalenyl]-, (3E-rel- (2 were isolated from the chloroform- and hexane fractions, respectively. Bisdemethoxycurcumin (3 whose structure is similar to that of 1 was also tested for NO inhibitory activity. Of the tested compounds, compound 1 exhibited the highest activity with an IC50 value of 12.1 μM, followed by 3(IC50 = 16.9 M and 2 (IC50 = 30.3 M. These results suggest that C. mangga and its compounds exert NO inhibitory activity and have a potential to be developed as a pharmaceutical preparation for treatment of inflammatory-related diseases. Moreover, this is the first report of compound 2 that was isolated from C. mangga rhizomes.

  14. Olfactory interference during inhibitory backward pairing in honey bees.

    Matthieu Dacher

    Full Text Available Restrained worker honey bees are a valuable model for studying the behavioral and neural bases of olfactory plasticity. The proboscis extension response (PER; the proboscis is the mouthpart of honey bees is released in response to sucrose stimulation. If sucrose stimulation is preceded one or a few times by an odor (forward pairing, the bee will form a memory for this association, and subsequent presentations of the odor alone are sufficient to elicit the PER. However, backward pairing between the two stimuli (sucrose, then odor has not been studied to any great extent in bees, although the vertebrate literature indicates that it elicits a form of inhibitory plasticity.If hungry bees are fed with sucrose, they will release a long lasting PER; however, this PER can be interrupted if an odor is presented 15 seconds (but not 7 or 30 seconds after the sucrose (backward pairing. We refer to this previously unreported process as olfactory interference. Bees receiving this 15 second backward pairing show reduced performance after a subsequent single forward pairing (excitatory conditioning trial. Analysis of the results supported a relationship between olfactory interference and a form of backward pairing-induced inhibitory learning/memory. Injecting the drug cimetidine into the deutocerebrum impaired olfactory interference.Olfactory interference depends on the associative link between odor and PER, rather than between odor and sucrose. Furthermore, pairing an odor with sucrose can lead either to association of this odor to PER or to the inhibition of PER by this odor. Olfactory interference may provide insight into processes that gate how excitatory and inhibitory memories for odor-PER associations are formed.

  15. Sempervivum davisii: phytochemical composition, antioxidant and lipase-inhibitory activities.

    Uzun, Yusuf; Dalar, Abdullah; Konczak, Izabela

    2017-12-01

    Sempervivum davisii Muirhead (Crassulaceae) is a traditional medicinal herb from Eastern Anatolia. To date the composition of phytochemicals and physiological properties of this herb were not subjected to any research. This study identifies compounds in S. davisii hydrophilic extracts and evaluates their potential biological properties. Ethanol-based lyophilized extracts were obtained from aerial parts of plant (10 g of ground dry plant material in 200 mL of acidified aqueous ethanol, shaken for 2 h at 22 °C with supernatant collected and freeze-dried under vacuum). Phytochemical composition was investigated by liquid chromatography mass spectrometry (LC-MS/MS, phenolics) and gas chromatography mass spectrometry (GC-MS, volatiles). Phenolic compounds were quantified by high-performance liquid chromatography (HPLC) and the Folin-Ciocalteu assay. Subsequently, antioxidant capacity [ferric reducing antioxidant power (FRAP), oxygen radical absorbance capacity (ORAC) assays] and enzyme inhibitory properties (isolated porcine pancreatic lipase) of the extracts were determined. Polyphenolic compounds were the main constituents of lyophilized extracts, among which kaempferol glycosides and quercetin hexoside dominated. The extracts exhibited potent antioxidant (FRAP values of 1925.2-5973.3 μM Fe 2+ /g DW; ORAC values of 1858.5-4208.7 μM Trolox Eq./g DW) and moderate lipase inhibitory (IC 50 : 11.6-2.96 mg/mL) activities. Volatile compounds (nonanal, dehydroxylinalool oxide isomers, 2-decenal, 2-undecenal, 2,6-di-tetr-butylphenol) were also found. Phenolic compounds with the dominating kaempferol and quercetin derivatives are the sources of potent antioxidant properties of S. davisii hydrophilic extracts. The extracts exhibit moderate inhibitory properties towards isolated pancreatic lipase.

  16. Inhibitory Effect of Lactococcus lactis HY 449 on Cariogenic Biofilm.

    Kim, Young-Jae; Lee, Sung-Hoon

    2016-11-28

    Dental caries is caused by cariogenic biofilm, an oral biofilm including Streptococcus mutans . Recently, the prevention of dental caries using various probiotics has been attempted. Lactococcus lactis HY 449 is a probiotic bacterium. The aim of this study was to investigate the effect of L. lactis HY 449 on cariogenic biofilm and to analyze its inhibitory mechanisms. Cariogenic biofilm was formed in the presence or absence of L. lactis HY 449 and L. lactis ATCC 19435, and analyzed with a confocal laser microscope. The formation of cariogenic biofilm was reduced in cultures spiked with both L. lactis strains, and L. lactis HY 449 exhibited more inhibitory effects than L. lactis ATCC 19435. In order to analyze and to compare the inhibitory mechanisms, the antibacterial activity of the spent culture medium from both L. lactis strains against S. mutans was investigated, and the expression of glucosyltransferases ( gtfs ) of S. mutans was then analyzed by real-time RT-PCR. In addition, the sucrose fermentation ability of both L. lactis strains was examined. Both L. lactis strains showed antibacterial activity and inhibited the expression of gtfs , and the difference between both strains did not show. In the case of sucrose-fermenting ability, L. lactis HY 449 fermented sucrose but L. lactis ATCC 19435 did not. L. lactis HY 449 inhibited the uptake of sucrose and the gtfs expression of S. mutans , whereby the development of cariogenic biofilm may be inhibited. In conclusion, L. lactis HY 449 may be a useful probiotic for the prevention of dental caries.

  17. Heterologous Expression of Three Plant Serpins with Distinct Inhibitory Specificities

    Dahl, Søren Weis; Rasmussen, Søren Kjærsgård; Hejgaard, Jørn

    1996-01-01

    For the first time, inhibitory plant serpins, including WSZ1 from wheat, BSZ4, and the previously unknown protein BSZx from barley, have been expressed in Escherichia coli, and a procedure for fast purification of native plant serpins has been developed, BSZx, BSZ4, and WSZ1 were assayed...... favorable P-2 Leu. BSZ4 inhibited cathepsin G (k(a) = 2.7 x 10(4) M(-1) s(-1)) at P-1 Met but was hydrolyzed by trypsin and chymotrypsin. The three plant serpins formed stable SDS-resistant complexes with the proteinases in accordance with the kinetic data....

  18. Trypsin inhibitory activity of artemisinin and its biotransformed product

    Shahwar, D.; Raza, M.A.

    2013-01-01

    Summary: Artemisinin (1 ), a sesquiterpene lactone is an important constituent of anti-malarial drugs. In the present study, it was extracted from aerial parts of Artemisia roxburghiana Besser. Biotransformation of artemisinin ( 1 ) was carried out in the culture of Aspergillus niger GC-4 which yielded 5-hydroxy artemisinin (2 ) The structures of 1-2 were confirmed through spectral studies. Both compounds were screened against trypsin using colorimetric method. The biotransformed product 2 showed significant protease inhibitory activity with 53.5 +- 1.6% inhibition and IC/sub 50/ = 0.29 +- 0.02 mM as compared to artemisinin (20.4 +- 0.3% inhibition). (author)

  19. Self-DNA inhibitory effects: Underlying mechanisms and ecological implications.

    Cartenì, Fabrizio; Bonanomi, Giuliano; Giannino, Francesco; Incerti, Guido; Vincenot, Christian Ernest; Chiusano, Maria Luisa; Mazzoleni, Stefano

    2016-01-01

    DNA is usually known as the molecule that carries the instructions necessary for cell functioning and genetic inheritance. A recent discovery reported a new functional role for extracellular DNA. After fragmentation, either by natural or artificial decomposition, small DNA molecules (between ∼50 and ∼2000 bp) exert a species specific inhibitory effect on individuals of the same species. Evidence shows that such effect occurs for a wide range of organisms, suggesting a general biological process. In this paper we explore the possible molecular mechanisms behind those findings and discuss the ecological implications, specifically those related to plant species coexistence.

  20. Catalytic and inhibitory effects of thechnetium on reduction processes

    Grases, F.; Genestar, C.; March, J.G.; March, P.

    1986-01-01

    Interactions between technetium and some anthraquinones and tartrazin in the presence of tin(II) are described. It was found that whereas the reductive process between Sn(II) and 1-amino-4-hydroxyanthraquinone is catalyzed by technetium, the reduction of tartrazin is inhibited by this element. Study of such process seems to indicate that the catalytic effect of technetium on the reduction processes is due to Tc(V) action whereas the inhibitory effect is due to the Tc(IV) species. (author)

  1. The inhibitory effect of bovine rumen fluid on Salmonella typhimurium.

    Chambers, P G; Lysons, R J

    1979-05-01

    The possible fate of Salmonella typhimurium in the rumen was investigated by monitoring rumen volatile fatty acids (VFA), lactate concentrations and pH over periods which included regular feeding and 48 h starvation. Preparations were made containing 50 per cent rumen fluid from the cow or VFA solutions, and then inoculated with S typhimurium. Viable counts before and after incubation for 24 h at 37 degrees C were compared. Incubation in broths with high concentrations of VFA and low pH resulted in a marked decrease in salmonella numbers, while lower VFA concentrations had little or no inhibitory effect on growth.

  2. Fluorescent lipid probes : some properties and applications (a review)

    Maier, O; Oberle, [No Value; Hoekstra, D

    Odd as it may seem, experimental challenges in lipid research are often hampered by the simplicity of the lipid structure. Since, as in protein research. mutants or overexpression of lipids are not realistic, a considerable amount of lipid research relies on the use Of tagged lipid analogues.

  3. Engineering Aspergillus oryzae A-4 through the chromosomal insertion of foreign cellulase expression cassette to improve conversion of cellulosic biomass into lipids.

    Hui Lin

    Full Text Available A genetic modification scheme was designed for Aspergillus oryzae A-4, a natural cellulosic lipids producer, to enhance its lipid production from biomass by putting the spotlight on improving cellulase secretion. Four cellulase genes were separately expressed in A-4 under the control of hlyA promoter, with the help of the successful development of a chromosomal genetic manipulation system. Comparison of cellulase activities of PCR-positive transformants showed that these transformants integrated with celA gene and with celC gene had significantly (p<0.05 higher average FPAase activities than those strains integrated with celB gene and with celD gene. Through the assessment of cellulosic lipids accumulating abilities, celA transformant A2-2 and celC transformant D1-B1 were isolated as promising candidates, which could yield 101%-133% and 35.22%-59.57% higher amount of lipids than the reference strain A-4 (WT under submerged (SmF conditions and solid-state (SSF conditions, respectively. Variability in metabolism associated to the introduction of cellulase gene in A2-2 and D1-B1 was subsequently investigated. It was noted that cellulase expression repressed biomass formation but enhanced lipid accumulation; whereas the inhibitory effect on cell growth would be shielded during cellulosic lipids production owing to the essential role of cellulase in substrate utilization. Different metabolic profiles also existed between A2-2 and D1-B1, which could be attributed to not only different transgene but also biological impacts of different integration. Overall, both simultaneous saccharification and lipid accumulation were enhanced in A2-2 and D1-B1, resulting in efficient conversion of cellulose into lipids. A regulation of cellulase secretion in natural cellulosic lipids producers could be a possible strategy to enhance its lipid production from lignocellulosic biomass.

  4. Atomistic Monte Carlo simulation of lipid membranes

    Wüstner, Daniel; Sklenar, Heinz

    2014-01-01

    Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC) simulation of lipid membranes. We provide an introduction...... of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol....

  5. Computational Modeling of Lipid Metabolism in Yeast

    Vera Schützhold

    2016-09-01

    Full Text Available Lipid metabolism is essential for all major cell functions and has recently gained increasing attention in research and health studies. However, mathematical modeling by means of classical approaches such as stoichiometric networks and ordinary differential equation systems has not yet provided satisfactory insights, due to the complexity of lipid metabolism characterized by many different species with only slight differences and by promiscuous multifunctional enzymes.Here, we present a object-oriented stochastic model approach as a way to cope with the complex lipid metabolic network. While all lipid species are treated objects in the model, they can be modified by the respective converting reactions based on reaction rules, a hybrid method that integrates benefits of agent-based and classical stochastic simulation. This approach allows to follow the dynamics of all lipid species with different fatty acids, different degrees of saturation and different headgroups over time and to analyze the effect of parameter changes, potential mutations in the catalyzing enzymes or provision of different precursors. Applied to yeast metabolism during one cell cycle period, we could analyze the distribution of all lipids to the various membranes in time-dependent manner.The presented approach allows to efficiently treat the complexity of cellular lipid metabolism and to derive conclusions on the time- and location-dependent distributions of lipid species and their properties such as saturation. It is widely applicable, easily extendable and will provide further insights in healthy and diseased states of cell metabolism.

  6. A comprehensive classification system for lipids

    Fahy, E.; Subramaniam, S.; Brown, H.A.; Glass, C.K.; Merrill, A.H.; Murphy, R.C.; Raetz, C.R.H.; Russell, D.W.; Seyama, Y.; Shaw, W.; Shimizu, T.; Spener, F.; van Meer, G.|info:eu-repo/dai/nl/068570368; VanNieuwenhze, M.S.; White, S.H.|info:eu-repo/dai/nl/304843539; Witztum, J.; Dennis, E.A.

    2005-01-01

    Lipids are produced, transported, and recognized by the concerted actions of numerous enzymes, binding proteins, and receptors. A comprehensive analysis of lipid molecules, “lipidomics,” in the context of genomics and proteomics is crucial to understanding cellular physiology and pathology;

  7. GABA interaction with lipids in organic medium

    Beltramo, D.; Kivatinitz, S.; Lassaga, E.; Arce, A.

    1987-01-01

    The interaction of 3 H-GABA and 14 C-glutamate with lipids in an aqueous organic partition system was studied. With this partition system 3 H-GABA and 14 C-glutamate were able to interact with sphingomyelin, sulfatide, phosphatidylcholine, phosphatidylserine, phosphatidylethanolamine and phosphatidic acid but not with cholesterol or ceramide. In an homogeneous aqueous medium the authors could not demonstrate any interaction between 3 H-GABA-lipids. The apparent dissociation constants (K/sub d/) for 3 H-GABA-lipids or 14 C-glutamate-lipids interactions inorganic medium were in the millimolar range and maximal charge between 3 and 7 moles of GABA or glutamate by mole of lipid. Amino acids such as glutamic acid, β-alanine and glycine displaced 3 H-GABA with the same potency as GABA itself; thus these results show that the interaction lacks pharmacological specificity. To detect this interaction lipid concentrations higher than 2 μM were required and in the partition system 3 H-GABA and lipid phosphorus were both concentrated at the interface. Therefore, lipids tested with a biphasic partition system do not fulfill the classical criteria for a neurotransmitter receptor at least not for GABA and glutamate. 15 references, 1 figure, 3 tables

  8. Lipid transport and human brain development.

    Betsholtz, Christer

    2015-07-01

    How the human brain rapidly builds up its lipid content during brain growth and maintains its lipids in adulthood has remained elusive. Two new studies show that inactivating mutations in MFSD2A, known to be expressed specifically at the blood-brain barrier, lead to microcephaly, thereby offering a simple and surprising solution to an old enigma.

  9. Lateral pressure profiles in lipid monolayers

    Baoukina, Svetlana; Marrink, Siewert J.; Tieleman, D. Peter

    2010-01-01

    We have used molecular dynamics simulations with coarse-grained and atomistic models to study the lateral pressure profiles in lipid monolayers. We first consider simple oil/air and oil/water interfaces, and then proceed to lipid monolayers at air/water and oil/water interfaces. The results are

  10. Amylose folding under the influence of lipids

    Lopez, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2012-01-01

    The molecular dynamics simulation technique was used to study the folding and complexation process of a short amylose fragment in the presence of lipids. In aqueous solution, the amylose chain remains as an extended left-handed helix. After the addition of lipids in the system, however, we observe

  11. Preservation of Microbial Lipids in Geothermal Sinters

    Kaur, G.; Mountain, B.W.; Hopmans, E.C.; Pancost, R.D.

    2011-01-01

    Lipid biomarkers are widely used to study the earliest life on Earth and have been invoked as potential astrobiological markers, but few studies have assessed their survival and persistence in geothermal settings. Here, we investigate lipid preservation in active and inactive geothermal silica

  12. An investigation into the inhibitory function of serotonin in diffuse noxious inhibitory controls in the neuropathic rat.

    Bannister, K; Lockwood, S; Goncalves, L; Patel, R; Dickenson, A H

    2017-04-01

    Following neuropathy α2-adrenoceptor-mediated diffuse noxious inhibitory controls (DNIC), whereby a noxious conditioning stimulus inhibits the activity of spinal wide dynamic range (WDR) neurons, are abolished, and spinal 5-HT7 receptor densities are increased. Here, we manipulate spinal 5-HT content in spinal nerve ligated (SNL) animals and investigate which 5-HT receptor mediated actions predominate. Using in vivo electrophysiology we recorded WDR neuronal responses to von frey filaments applied to the hind paw before, and concurrent to, a noxious ear pinch (the conditioning stimulus) in isoflurane-anaesthetised rats. The expression of DNIC was quantified as a reduction in WDR neuronal firing in the presence of conditioning stimulus and was investigated in SNL rats following spinal application of (1) selective serotonin reuptake inhibitors (SSRIs) citalopram or fluoxetine, or dual application of (2) SSRI plus 5-HT7 receptor antagonist SB269970, or (3) SSRI plus α2 adrenoceptor antagonist atipamezole. DNIC were revealed in SNL animals following spinal application of SSRI, but this effect was abolished upon joint application of SSRI plus SB269970 or atipamezole. We propose that in SNL animals the inhibitory actions (quantified as the presence of DNIC) of excess spinal 5-HT (presumed present following application of SSRI) were mediated via 5-HT7 receptors. The anti-nociception depends upon an underlying tonic noradrenergic inhibitory tone via the α2-adrenoceptor. Following neuropathy enhanced spinal serotonin availability switches the predominant spinal 5-HT receptor-mediated actions but also alters noradrenergic signalling. We highlight the therapeutic complexity of SSRIs and monoamine modulators for the treatment of neuropathic pain. © 2016 European Pain Federation - EFIC®.

  13. Inhibitory potential of nine mentha species against pathogenic bacteria strains

    Hussain, A.; Ahmad, N.; Rashid, M.; Ikram, A. U.; Shinwari, Z. K.

    2015-01-01

    Plants produce secondary metabolites, which are used in their growth and defense against pathogenic agents. These plant based metabolites can be used as natural antibiotics against pathogenic bacteria. Synthetic antibiotics caused different side effects and become resistant to bacteria. Therefore the main objective of the present study was to investigate the inhibitory potential of nine Mentha species extracts against pathogenic bacteria. The methanolic leaves extracts of nine Mentha species (Mentha arvensis, Mentha longifolia, Mentha officinalis, Mentha piperita, Mentha citrata, Mentha pulegium, Mentha royleana, Mentha spicata and Mentha suareolens) were compared for antimicrobial activities. These Mentha species showed strong antibacterial activity against four microorganisms tested. Mentha arvensis showed 25 mm and 30 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover, Mentha longifolia showed 24 mm zone of inhibition against Staphylococcus aureus. Mentha officinalis showed 30 mm zone of inhibition against Staphylococcus aureus. 25 mm inhibitory zone was recorded against Staphylococcus aureus by Mentha piperita. Mentha royleana showed 25 mm zone of inhibition against Vibrio cholera, while Mentha spicata showed 21 mm, 22 mm and 23 mm zones of inhibition against Staphylococcus aureus, Vibrio cholera and Enterobacter aerogens. Moreover most of the Mentha species showed zone of inhibition in the range of 10-20 mm. (author)

  14. Inhibitory activity of tryptanthrin on prostaglandin and leukotriene synthesis.

    Danz, Henning; Stoyanova, Stefka; Thomet, Olivier A R; Simon, Hans-Uwe; Dannhardt, Gerd; Ulbrich, Holger; Hamburger, Matthias

    2002-10-01

    The indolo[2,1- b]quinazoline alkaloid tryptanthrin has previously been identified as the cyclooxygenase-2 (COX-2) inhibitory principle in the extract ZE550 prepared from the medicinal plant Isatis tinctoria (Brassicaceae). We here investigated the potential inhibitory activity of tryptanthrin and ZE550 on COX-2, COX-1 in cellular and cell-free systems. A certain degree of selectivity towards COX-2 was observed when COX-1-dependent formation of thromboxane B(2) (TxB(2)) in HEL cells and COX-2-dependent formation of 6-ketoprostaglandin F(1alpha) (6-keto-PGF(1alpha)) in Mono Mac 6 and RAW 264.7 cells were compared. Preferential inhibition of COX-2 by two orders of magnitude was found in phorbol myristate acetate (PMA) activated bovine aortic coronary endothelial cells (BAECs). Assays with purified COX isoenzymes from sheep confirmed the high selectivity towards COX-2. The leukotriene B(4) (LTB(4)) release from calcium ionophore-stimulated human granulocytes (neutrophils) was used as a model to determine 5-lipoxygenase (5-LOX) activity. Tryptanthrin and the extract ZE550 inhibited LTB(4) release in a dose dependent manner and with a potency comparable to that of the clinically used 5-LOX inhibitor zileuton.

  15. Syllable Frequency and Spoken Word Recognition: An Inhibitory Effect.

    González-Alvarez, Julio; Palomar-García, María-Angeles

    2016-08-01

    Research has shown that syllables play a relevant role in lexical access in Spanish, a shallow language with a transparent syllabic structure. Syllable frequency has been shown to have an inhibitory effect on visual word recognition in Spanish. However, no study has examined the syllable frequency effect on spoken word recognition. The present study tested the effect of the frequency of the first syllable on recognition of spoken Spanish words. A sample of 45 young adults (33 women, 12 men; M = 20.4, SD = 2.8; college students) performed an auditory lexical decision on 128 Spanish disyllabic words and 128 disyllabic nonwords. Words were selected so that lexical and first syllable frequency were manipulated in a within-subject 2 × 2 design, and six additional independent variables were controlled: token positional frequency of the second syllable, number of phonemes, position of lexical stress, number of phonological neighbors, number of phonological neighbors that have higher frequencies than the word, and acoustical durations measured in milliseconds. Decision latencies and error rates were submitted to linear mixed models analysis. Results showed a typical facilitatory effect of the lexical frequency and, importantly, an inhibitory effect of the first syllable frequency on reaction times and error rates. © The Author(s) 2016.

  16. Evidence for two concurrent inhibitory mechanisms during response preparation

    Duque, Julie; Lew, David; Mazzocchio, Riccardo; Olivier, Etienne; Ivry, Richard B.

    2010-01-01

    Inhibitory mechanisms are critically involved in goal-directed behaviors. To gain further insight into how such mechanisms shape motor representations during response preparation, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) and H-reflexes were recorded from left hand muscles during choice reaction time tasks. The imperative signal, which indicated the required response, was always preceded by a preparatory cue. During the post-cue delay period, left MEPs were suppressed when the left hand had been cued for the forthcoming response, suggestive of a form of inhibition specifically directed at selected response representations. H-reflexes were also suppressed on these trials, indicating that the effects of this inhibition extend to spinal circuits. In addition, left MEPs were suppressed when the right hand was cued, but only when left hand movements were a possible response option before the onset of the cue. Notably, left hand H-reflexes were not modulated on these trials, consistent with a cortical locus of inhibition that lowers the activation of task-relevant, but non-selected responses. These results suggest the concurrent operation of two inhibitory mechanisms during response preparation: one decreases the activation of selected responses at the spinal level, helping to control when selected movements should be initiated by preventing their premature release; a second, upstream mechanism helps to determine what response to make during a competitive selection process. PMID:20220014

  17. Antibacterial and glucosyltransferase enzyme inhibitory activity of helmyntostachyszelanica

    Kuspradini, H.; Putri, AS; Mitsunaga, T.

    2018-04-01

    Helminthostachyszeylanica is a terrestrial, herbaceous, fern-like plant of southeastern Asia and Australia, commonly known as tunjuk-langit. This kind of plant have a medicinal properties such as treatment of malaria, dysentery and can be eaten with betel in the treatment of whooping cough. To evaluate the scientific basis for the use of the plant, the antimicrobial activities of extracts of the stem and leaves were evaluated. The bacteria used in this study is Streptococcus sobrinus, a species of gram-positive, that may be associated with human dental caries. The dried powdered plant parts were extracted using methanol and 50% aqueous extract and screened for their antibacterial effects of Streptococcus sobrinus using the 96 well-plate microdilution broth method. The inhibitory activities of its related enzyme were also determined. The plant extracts showed variable antibacterial and Glucosyltransferase enzyme inhibitory activity while some extracts could not cause any inhibition. It was shown that 50% ethanolics of Helminthostachyzeylanica stem have a potency as anti dental caries agents.

  18. Antiviral Therapy by HIV-1 Broadly Neutralizing and Inhibitory Antibodies

    Zhiqing Zhang

    2016-11-01

    Full Text Available Human immunodeficiency virus type 1 (HIV-1 infection causes acquired immune deficiency syndrome (AIDS, a global epidemic for more than three decades. HIV-1 replication is primarily controlled through antiretroviral therapy (ART but this treatment does not cure HIV-1 infection. Furthermore, there is increasing viral resistance to ART, and side effects associated with long-term therapy. Consequently, there is a need of alternative candidates for HIV-1 prevention and therapy. Recent advances have discovered multiple broadly neutralizing antibodies against HIV-1. In this review, we describe the key epitopes on the HIV-1 Env protein and the reciprocal broadly neutralizing antibodies, and discuss the ongoing clinical trials of broadly neutralizing and inhibitory antibody therapy as well as antibody combinations, bispecific antibodies, and methods that improve therapeutic efficacy by combining broadly neutralizing antibodies (bNAbs with latency reversing agents. Compared with ART, HIV-1 therapeutics that incorporate these broadly neutralizing and inhibitory antibodies offer the advantage of decreasing virus load and clearing infected cells, which is a promising prospect in HIV-1 prevention and treatment.

  19. Soluble epoxide hydrolase inhibitory activity of anthraquinone components from Aloe.

    Sun, Ya Nan; Kim, Jang Hoon; Li, Wei; Jo, A Reum; Yan, Xi Tao; Yang, Seo Young; Kim, Young Ho

    2015-10-15

    Aloe is a short-stemmed succulent herb widely used in traditional medicine to treat various diseases and as raw material in cosmetics and heath foods. In this study, we isolated and identified two new anthraquinone derivatives, aloinoside C (6) and aloinoside D (7), together with six known compounds from an aqueous dissolved Aloe exudate. Their structures were identified by spectroscopic analysis. The inhibitory effects of the isolated compounds on soluble epoxide hydrolase (sEH) were evaluated. Compounds 1-8 inhibited sEH activity potently, with IC50 values ranging from 4.1±0.6 to 41.1±4.2 μM. A kinetic analysis of compounds 1-8 revealed that the inhibitory actions of compounds 1, 6 and 8 were non-competitive, whereas those of compounds 2-5 and 7 were the mixed-type. Molecular docking increases our understanding of receptor-ligand binding of all compounds. These results demonstrate that compounds 1-8 from Aloe are potential sEH inhibitors. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Inhibitory Control and Working Memory in Post-Institutionalized Children

    Merz, Emily C.; McCall, Robert B.; Wright, Amanda J.; Luna, Beatriz

    2013-01-01

    Inhibitory control and working memory were examined in post-institutionalized (PI) children adopted into United States families from Russian institutions. The PI sample originated from institutions that were less severely depriving than those represented in previous studies and approximated the level of psychosocial deprivation, which is characterized by adequate physical resources but a lack of consistent and responsive caregiving. PI children (N=75; 29 male) ranged in age from 8–17 years (M=12.97; SD=3.03) and were grouped according to whether they were adopted after 14 months or before 9 months. A non-adopted comparison group (N=133; 65 male) ranged in age from 8–17 years (M=12.26; SD=2.75). PI children adopted after 14 months of age displayed poorer performance on the stop-signal and spatial span tasks relative to PI children adopted before 9 months of age after controlling for age at assessment. The two PI groups did not differ in their performance on a spatial self-ordered search task. Older-adopted PI children also showed poorer spatial span task performance compared to non-adopted children, but younger-adopted PI children did not. Task performance was significantly associated with parent-rated hyperactive-impulsive behavior in everyday contexts. These findings suggest that exposure to prolonged early institutional deprivation may be linked with inhibitory control and working memory difficulties years after adoption. PMID:23519375

  1. Multifaceted role of lipids in Mycobacterium leprae.

    Kaur, Gurkamaljit; Kaur, Jagdeep

    2017-03-01

    Mycobacterium leprae must adopt a metabolic strategy and undergo various metabolic alterations upon infection to survive inside the human body for years in a dormant state. A change in lipid homeostasis upon infection is highly pronounced in Mycobacterium leprae. Lipids play an essential role in the survival and pathogenesis of mycobacteria. Lipids are present in several forms and serve multiple roles from being a source of nutrition, providing rigidity, evading the host immune response to serving as virulence factors, etc. The synthesis and degradation of lipids is a highly regulated process and is the key to future drug designing and diagnosis for mycobacteria. In the current review, an account of the distinct roles served by lipids, the mechanism of their synthesis and degradation has been elucidated.

  2. Genetic architecture of circulating lipid levels

    Demirkan, Ayşe; Amin, Najaf; Isaacs, Aaron

    2011-01-01

    Serum concentrations of low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), triglycerides (TGs) and total cholesterol (TC) are important heritable risk factors for cardiovascular disease. Although genome-wide association studies (GWASs) of circulating lipid...... the ENGAGE Consortium GWAS on serum lipids, were applied to predict lipid levels in an independent population-based study, the Rotterdam Study-II (RS-II). We additionally tested for evidence of a shared genetic basis for different lipid phenotypes. Finally, the polygenic score approach was used to identify...... an alternative genome-wide significance threshold before pathway analysis and those results were compared with those based on the classical genome-wide significance threshold. Our study provides evidence suggesting that many loci influencing circulating lipid levels remain undiscovered. Cross-prediction models...

  3. Computer Simulations of Lipid Bilayers and Proteins

    Sonne, Jacob

    2006-01-01

    The importance of computer simulations in lipid bilayer research has become more prominent for the last couple of decades and as computers get even faster, simulations will play an increasingly important part of understanding the processes that take place in and across cell membranes. This thesis...... entitled Computer simulations of lipid bilayers and proteins describes two molecular dynamics (MD) simulation studies of pure lipid bilayers as well as a study of a transmembrane protein embedded in a lipid bilayer matrix. Below follows a brief overview of the thesis. Chapter 1. This chapter is a short...... in the succeeding chapters is presented. Details on system setups, simulation parameters and other technicalities can be found in the relevant chapters. Chapter 3, DPPC lipid parameters: The quality of MD simulations is intimately dependent on the empirical potential energy function and its parameters, i...

  4. Role of lipids in bacterial radioresistance

    Abushady, M.R.; Fawkia, M.E.; Tawfik, Z.S.

    1992-01-01

    The radioresistance of three bacterial isolates was determined. S. aureus was the most sensitive one (D 1 0 value 0.14 KGy), B. coagulans was moderate resistant (D 1 0 value 3.3 KGy) and the most resistant one was B.megaterium (D 1 0 value 3.7 KGy). Total lipids and lipid patterns of these bacteria were determined and the role of lipids in radioresistance was investigated. Least amount of total lipids was detected in the most sensitive organism (S. aureus). The increase in the bacterial content of total lipids was concomitant with high degrees of radioresistance. The most resistant organism (B. megaterium was characterized by high content of methyl esters of fatty acids, phosphatidylcholine and phosphatidylethanolamine, followed by appreciable amounts in the moderate resistant (B. coagulans) and the least amounts were detected in the most sensitive organism (S.aureus).6 fig., 3 tab

  5. [Germ cell membrane lipids in spermatogenesis].

    Wang, Ting; Shi, Xiao; Quan, Song

    2016-05-01

    Spermatogenesis is a complex developmental process in which a diploid progenitor germ cell transforms into highly specialized spermatozoa. During spermatogenesis, membrane remodeling takes place, and cell membrane permeability and liquidity undergo phase-specific changes, which are all associated with the alteration of membrane lipids. Lipids are important components of the germ cell membrane, whose volume and ratio fluctuate in different phases of spermatogenesis. Abnormal lipid metabolism can cause spermatogenic dysfunction and consequently male infertility. Germ cell membrane lipids are mainly composed of cholesterol, phospholipids and glycolipids, which play critical roles in cell adhesion and signal transduction during spermatogenesis. An insight into the correlation of membrane lipids with spermatogenesis helps us to better understand the mechanisms of spermatogenesis and provide new approaches to the diagnosis and treatment of male infertility.

  6. Antiproliferative effects of γ-tocotrienol are associated with lipid raft disruption in HER2-positive human breast cancer cells.

    Alawin, Osama A; Ahmed, Rayan A; Ibrahim, Baher A; Briski, Karen P; Sylvester, Paul W

    2016-01-01

    A large percentage of human breast cancers are characterized by excessive or aberrant HER2 activity. Lipid rafts are specialized microdomains within the plasma membrane that are required for HER2 activation and signal transduction. Since the anticancer activity of γ-tocotrienol is associated with suppression in HER2 signaling, studies were conducted to examine the effects of γ-tocotrienol on HER2 activation within the lipid raft microdomain in HER2-positive SKBR3 and BT474 human breast cancer cells. Treatment with 0-5μM γ-tocotrienol induced a significant dose-dependent inhibition in cancer cell growth after a 5-day culture period, and these growth inhibitory effects were associated with a reduction in HER2 dimerization and phosphorylation (activation). Phosphorylated HER2 was found to be primarily located in the lipid raft microdomain of the plasma membrane in vehicle-treated control groups, whereas γ-tocotrienol treatment significantly inhibited this effect. Assay of plasma membrane subcellular fractions showed that γ-tocotrienol also accumulates exclusively within the lipid raft microdomain. Hydroxypropyl-β-cyclodextrin (HPβCD) is an agent that disrupts lipid raft integrity. Acute exposure to 3mM HPβCD alone had no effect, whereas an acute 24-h exposure to 20μM γ-tocotrienol alone significantly decreased SKBR3 and BT474 cell viability. However, combined treatment with these agents greatly reduced γ-tocotrienol accumulation in the lipid raft microdomain and cytotoxicity. In summary, these findings demonstrate that the anticancer effects of γ-tocotrienol are associated with its accumulation in the lipid raft microdomain and subsequent interference with HER2 dimerization and activation in SKBR3 and BT474 human breast cancer cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Lipid alterations in lipid rafts from Alzheimer's disease human brain cortex.

    Martín, Virginia; Fabelo, Noemí; Santpere, Gabriel; Puig, Berta; Marín, Raquel; Ferrer, Isidre; Díaz, Mario

    2010-01-01

    Lipid rafts are membrane microdomains intimately associated with cell signaling. These biochemical microstructures are characterized by their high contents of sphingolipids, cholesterol and saturated fatty acids and a reduced content of polyunsaturated fatty acids (PUFA). Here, we have purified lipid rafts of human frontal brain cortex from normal and Alzheimer's disease (AD) and characterized their biochemical lipid composition. The results revealed that lipid rafts from AD brains exhibit aberrant lipid profiles compared to healthy brains. In particular, lipid rafts from AD brains displayed abnormally low levels of n-3 long chain polyunsaturated fatty acids (LCPUFA, mainly 22:6n-3, docosahexaenoic acid) and monoenes (mainly 18:1n-9, oleic acid), as well as reduced unsaturation and peroxidability indexes. Also, multiple relationships between phospholipids and fatty acids were altered in AD lipid rafts. Importantly, no changes were observed in the mole percentage of lipid classes and fatty acids in rafts from normal brains throughout the lifespan (24-85 years). These indications point to the existence of homeostatic mechanisms preserving lipid raft status in normal frontal cortex. The disruption of such mechanisms in AD brains leads to a considerable increase in lipid raft order and viscosity, which may explain the alterations in lipid raft signaling observed in AD.

  8. Self-restraint spillover: Inhibitory control disrupts appetite regulation among ruminators.

    Schlinkert, Caroline; Koole, Sander L

    2017-10-23

    People can use inhibitory control to temporarily inhibit their personal preferences to achieve their long-term goals. According to the ego fixation model (Koole et al., 2014), ruminators have difficulties relaxing inhibitory control, leading them to continue inhibiting their personal needs, even when this is no longer required by the situation. Inhibitory control may thus disrupt healthy appetite regulation among ruminators. Among 324 Dutch undergraduate students (218 women; M age  = 21.5), different inhibitory control states were manipulated by varying whether or not participants exerted inhibitory control (Study 1) or priming high versus low inhibitory control (Study 2). All participants then performed a food-tasting task. Healthy appetite regulation was defined as a positive correlation between level of food deprivation and preference for high-calorie foods. For taste ratings, the interaction between inhibitory control and rumination was significant in each study: Inhibitory control disrupted healthy appetite regulation in taste preferences among ruminators, but not among non-ruminators. For eating behavior, the same interaction effect was significant when the two studies were combined. Inhibitory control disrupts healthy appetite regulation among ruminators. These findings suggest the need for caution in interventions that rely on inhibitory control, especially among samples with compulsive thought tendencies. © 2017 Wiley Periodicals, Inc.

  9. Using fluorescent lipids in live zebrafish larvae: From imaging whole animal physiology to subcellular lipid trafficking.

    Anderson, J L; Carten, J D; Farber, S A

    2016-01-01

    Lipids serve essential functions in cells as signaling molecules, membrane components, and sources of energy. Defects in lipid metabolism are implicated in a number of pandemic human diseases, including diabetes, obesity, and hypercholesterolemia. Many aspects of how fatty acids and cholesterol are absorbed and processed by intestinal cells remain unclear and present a hurdle to developing approaches for disease prevention and treatment. Numerous studies have shown that the zebrafish is an excellent model for vertebrate lipid metabolism. In this chapter, we review commercially available fluorescent lipids that can be deployed in live zebrafish to better understand lipid signaling and metabolism. In this chapter, we present criteria one should consider when selecting specific fluorescent lipids for the study of digestive physiology or lipid metabolism in larval zebrafish. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. 2011 Plant Lipids: Structure, Metabolism, & Function Gordon Research Conference

    Christopher Benning

    2011-02-04

    This is the second Gordon Research Conference on 'Plant Lipids: Structure, Metabolism & Function'. It covers current topics in lipid structure, metabolism and function in eukaryotic photosynthetic organisms including seed plants, algae, mosses and ferns. Work in photosynthetic bacteria is considered as well as it serves the understanding of specific aspects of lipid metabolism in plants. Breakthroughs are discussed in research on plant lipids as diverse as glycerolipids, sphingolipids, lipids of the cell surface, isoprenoids, fatty acids and their derivatives. The program covers nine concepts at the forefront of research under which afore mentioned plant lipid classes are discussed. The goal is to integrate areas such as lipid signaling, basic lipid metabolism, membrane function, lipid analysis, and lipid engineering to achieve a high level of stimulating interaction among diverse researchers with interests in plant lipids. One Emphasis is on the dynamics and regulation of lipid metabolism during plant cell development and in response to environmental factors.

  11. A lipid E-MAP identifies Ubx2 as a critical regulator of lipid saturation and lipid bilayer stress

    Surma, Michal A; Klose, Christian; Peng, Debby

    2013-01-01

    Biological membranes are complex, and the mechanisms underlying their homeostasis are incompletely understood. Here, we present a quantitative genetic interaction map (E-MAP) focused on various aspects of lipid biology, including lipid metabolism, sorting, and trafficking. This E-MAP contains ∼250......,000 negative and positive genetic interaction scores and identifies a molecular crosstalk of protein quality control pathways with lipid bilayer homeostasis. Ubx2p, a component of the endoplasmic-reticulum-associated degradation pathway, surfaces as a key upstream regulator of the essential fatty acid (FA...

  12. Triglyceride Blisters in Lipid Bilayers: Implications for Lipid Droplet Biogenesis and the Mobile Lipid Signal in Cancer Cell Membranes

    Khandelia, Himanshu; Duelund, Lars; Pakkanen, Kirsi Inkeri

    2010-01-01

    triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid...... aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model...

  13. Alterations in lipids & lipid peroxidation in rats fed with flavonoid rich fraction of banana (Musa paradisiaca) from high background radiation area.

    Krishnan, Kripa; Vijayalakshmi, N R

    2005-12-01

    A group of villages in Kollam district of Kerala, southern part of India are exposed to a higher dose of natural radiation than global average. Yet no adverse health effects have been found in humans, animals and plants in these areas. The present study was carried out to understand whether radiation affects the quantity and quality of flavonoids in plants grown in this area of high radiation, and to assess the effect of feeding flavonoid rich fraction (FRF) of the two varieties of banana to rats on their biochemical parameters like lipids, lipid peroxides and antioxidant enzyme levels. A total of 42 albino rats were equally divided into 7 groups. Rats fed laboratory diet alone were grouped under group I (normal control). Groups II and V received flavonoid rich fraction (FRF) from the fruits of two varieties of Musa paradisiaca, Palayamkodan and Rasakadali respectively from normal background radiation area (Veli) and treated as controls. Rats of groups III and IV received FRF of Palayamkodan from high background radiation areas (HBRAs) - Neendakara and Karunagappally respectively while groups VI and VII received FRF of Rasakadali from HBRAs. At the end of the experimental period of 45 days, lipids, lipid peroxides and antioxidant enzymes from liver, heart and kidney were analyzed. FRF of Palayamkodan and Rasakadali varieties showed significant hypolipidaemic and antioxidant activities. But these activities were found to be lowered in plants grown in HBRAs, particularly in Karunagappally area. Of the two, Palayamkodan variety was more effective in reducing lipids and lipid peroxides. MDA and hydroperoxides were significantly diminished in rats given FRF of banana from Veli (control area) only. FRF from plants grown in HBRAs exerted inhibition in the activities of antioxidant enzymes in the liver of rats and this inhibitory effect was maximum in rats fed FRF from Karunagappally. Banana grown in HBRAs is of lower quality with less efficient antioxidant system

  14. Inhibitory Gating of Basolateral Amygdala Inputs to the Prefrontal Cortex.

    McGarry, Laura M; Carter, Adam G

    2016-09-07

    Interactions between the prefrontal cortex (PFC) and basolateral amygdala (BLA) regulate emotional behaviors. However, a circuit-level understanding of functional connections between these brain regions remains incomplete. The BLA sends prominent glutamatergic projections to the PFC, but the overall influence of these inputs is predominantly inhibitory. Here we combine targeted recordings and optogenetics to examine the synaptic underpinnings of this inhibition in the mouse infralimbic PFC. We find that BLA inputs preferentially target layer 2 corticoamygdala over neighboring corticostriatal neurons. However, these inputs make even stronger connections onto neighboring parvalbumin and somatostatin expressing interneurons. Inhibitory connections from these two populations of interneurons are also much stronger onto corticoamygdala neurons. Consequently, BLA inputs are able to drive robust feedforward inhibition via two parallel interneuron pathways. Moreover, the contributions of these interneurons shift during repetitive activity, due to differences in short-term synaptic dynamics. Thus, parvalbumin interneurons are activated at the start of stimulus trains, whereas somatostatin interneuron activation builds during these trains. Together, these results reveal how the BLA impacts the PFC through a complex interplay of direct excitation and feedforward inhibition. They also highlight the roles of targeted connections onto multiple projection neurons and interneurons in this cortical circuit. Our findings provide a mechanistic understanding for how the BLA can influence the PFC circuit, with important implications for how this circuit participates in the regulation of emotion. The prefrontal cortex (PFC) and basolateral amygdala (BLA) interact to control emotional behaviors. Here we show that BLA inputs elicit direct excitation and feedforward inhibition of layer 2 projection neurons in infralimbic PFC. BLA inputs are much stronger at corticoamygdala neurons compared

  15. Performa Inhibitory Control dengan Induksi Sing-a-Song Stress Test pada Dewasa Awal

    Akhmad Kurniawan

    2018-04-01

    Full Text Available Inhibitory control is able to control attention by inhibiting internal tendencies and external influences. Inhibitory control is controlled by dorsolateral prefrontal cortex and anterior cingulate cortex, that can be affected by stress variable. Sing-a-Song Stress Test (SSST is a current method to induce stress that has never been practiced in study of inhibitory control. This study aimed to determine the effect of SSST against inhibitory control in early adult. Between subjects design was applied in this study. A number of 35 participants with age range from 17 to 21 years old were randomly assigned into experimental group (n = 17 and control group (n = 18. Inhibitory control was measured using Computerized Stroop Color-Word Test (CSCWT. Positive Affect and Negative Affect Schedule (PANAS was used to conduct a manipulation check. Independent-Samples T Test explained no significant effect of stress on inhibitory control (t = -0,117; p > 0,05.

  16. The multifaceted interplay between lipids and epigenetics.

    Dekkers, Koen F; Slagboom, P Eline; Jukema, J Wouter; Heijmans, Bastiaan T

    2016-06-01

    The interplay between lipids and epigenetic mechanisms has recently gained increased interest because of its relevance for common diseases and most notably atherosclerosis. This review discusses recent advances in unravelling this interplay with a particular focus on promising approaches and methods that will be able to establish causal relationships. Complementary approaches uncovered close links between circulating lipids and epigenetic mechanisms at multiple levels. A characterization of lipid-associated genetic variants suggests that these variants exert their influence on lipid levels through epigenetic changes in the liver. Moreover, exposure of monocytes to lipids persistently alters their epigenetic makeup resulting in more proinflammatory cells. Hence, epigenetic changes can both impact on and be induced by lipids. It is the combined application of technological advances to probe epigenetic modifications at a genome-wide scale and methodological advances aimed at causal inference (including Mendelian randomization and integrative genomics) that will elucidate the interplay between circulating lipids and epigenetics. Understanding its role in the development of atherosclerosis holds the promise of identifying a new category of therapeutic targets, since epigenetic changes are amenable to reversal.

  17. Temperature dependent heterogeneous rotational correlation in lipids.

    Dadashvand, Neda; Othon, Christina M

    2016-11-15

    Lipid structures exhibit complex and highly dynamic lateral structure; and changes in lipid density and fluidity are believed to play an essential role in membrane targeting and function. The dynamic structure of liquids on the molecular scale can exhibit complex transient density fluctuations. Here the lateral heterogeneity of lipid dynamics is explored in free standing lipid monolayers. As the temperature is lowered the probes exhibit increasingly broad and heterogeneous rotational correlation. This increase in heterogeneity appears to exhibit a critical onset, similar to those observed for glass forming fluids. We explore heterogeneous relaxation in in a single constituent lipid monolayer of 1, 2-dimyristoyl-sn-glycero-3-phosphocholine  by measuring the rotational diffusion of a fluorescent probe (1-palmitoyl-2-[1]-sn-glycero-3-phosphocholine), which is embedded in the lipid monolayer at low labeling density. Dynamic distributions are measured using wide-field time-resolved fluorescence anisotropy. The observed relaxation exhibits a narrow, liquid-like distribution at high temperatures (τ ∼ 2.4 ns), consistent with previous experimental measures (Dadashvand et al 2014 Struct. Dyn. 1 054701, Loura and Ramalho 2007 Biochim. Biophys. Acta 1768 467-478). However, as the temperature is quenched, the distribution broadens, and we observe the appearance of a long relaxation population (τ ∼ 16.5 ns). This supports the heterogeneity observed for lipids at high packing densities, and demonstrates that the nanoscale diffusion and reorganization in lipid structures can be significantly complex, even in the simplest amorphous architectures. Dynamical heterogeneity of this form can have a significant impact on the organization, permeability and energetics of lipid membrane structures.

  18. DNA release from lipoplexes by anionic lipids: correlation with lipid mesomorphism, interfacial curvature, and membrane fusion

    Tarahovsky, Yury S.; Koynova, Rumiana; MacDonald, Robert C. (Northwestern)

    2010-01-18

    DNA release from lipoplexes is an essential step during lipofection and is probably a result of charge neutralization by cellular anionic lipids. As a model system to test this possibility, fluorescence resonance energy transfer between DNA and lipid covalently labeled with Cy3 and BODIPY, respectively, was used to monitor the release of DNA from lipid surfaces induced by anionic liposomes. The separation of DNA from lipid measured this way was considerably slower and less complete than that estimated with noncovalently labeled DNA, and depends on the lipid composition of both lipoplexes and anionic liposomes. This result was confirmed by centrifugal separation of released DNA and lipid. X-ray diffraction revealed a clear correlation of the DNA release capacity of the anionic lipids with the interfacial curvature of the mesomorphic structures developed when the anionic and cationic liposomes were mixed. DNA release also correlated with the rate of fusion of anionic liposomes with lipoplexes. It is concluded that the tendency to fuse and the phase preference of the mixed lipid membranes are key factors for the rate and extent of DNA release. The approach presented emphasizes the importance of the lipid composition of both lipoplexes and target membranes and suggests optimal transfection may be obtained by tailoring lipoplex composition to the lipid composition of target cells.

  19. Urease inhibitory isoflavonoids from different parts of Calopogonium mucunoides (Fabaceae).

    Ndemangou, Brigitte; Sielinou, Valerie Tedjon; Vardamides, Juliette Catherine; Ali, Muhammad Shaiq; Lateef, Mehreen; Iqbal, Lubna; Afza, Nigaht; Nkengfack, Augustin Ephrem

    2013-12-01

    The dichloromethane-methanol (1:1) soluble part of Calopogonium mucunoides (Fabaceae) resulted in the isolation of 10 isoflavones (4'-O-methylalpinumisoflavone, 4'-O-methylderrone, alpinumisoflavone, daidzeine, Calopogonium isoflavone A, atalantoflavone, 2',4',5',7-tetramethoxyisoflavone, 7-O-methylcuneantin, cabreuvin and 7-O-methylpseudobaptigenin) and a rotenoid (6a,12a-dehydroxydegueline). Among these, daidzeine, 7-O-methylcuneantin, atalantoflavone and 6a, 12a-dehydroxydegueline have been isolated for the first time from C. mucunoides while remaining are already reported from this source. Structures of all the isolated constituents were elucidated with the aid of NMR spectroscopic and mass spectrometric techniques. Among all the isolated constituents, nine were evaluated for their urease inhibitory potential. However, six were found potent. These include 4'-O-methylderrone, daidzeine, atalantoflavone, 2',4',5',7-tetramethoxyisoflavone, 7-O-methylcuneantin and 6a, 12a-dehydroxydegueline.

  20. Inhibitory Effects of Resveratrol Analogs on Mushroom Tyrosinase Activity

    Nádia Rezende Barbosa Raposo

    2012-10-01

    Full Text Available Skin pigmentation disorders typically involve an overproduction or uneven distribution of melanin, which results in skin spots. Resveratrol can inhibit tyrosinase, the active enzyme in the synthesis of melanin, but it does not inhibit the synthesis of melanin to an extent that enables its use alone as a skin whitening agent in pharmaceutical formulations, so its use as a coadjuvant in treatment of hyperpigmentation is suggested. Six resveratrol analogs were tested for tyrosinase inhibitory activity in vitro. Among the analogs tested, compound D was the most powerful tyrosinase inhibitor (IC50 = 28.66 µg/mL, two times more active than resveratrol (IC50 = 57.05 µg/mL, followed by the analogs A, E, B, F and C, respectively. This demonstrated that the hydroxylation at C4' on the phenolic ring was the molecular modification with most importance for the observed activity.

  1. Leukaemia inhibitory factor--an exercise-induced myokine

    Broholm, Christa; Pedersen, Bente Klarlund

    2010-01-01

    During and following exercise skeletal muscle synthesises and releases a number of myokines that exert their effects either systemically or locally within the muscle. Several of these myokines influence metabolism, regeneration and/or hypertrophy and are therefore considered to be important...... to oscillations in intracellular Ca2+ concentrations. However, circulating levels of LIF are not increased with exercise suggesting that LIF exerts its effect locally. LIF stimulates muscle satellite cell proliferation and is involved in muscle hypertrophy and regeneration. Thus, LIF may be produced by skeletal...... contributing factors in muscle homeostasis and muscle adaptation to exercise training. Leukaemia inhibitory factor (LIF) is produced and released from muscle cells in vitro and from intact skeletal muscle in vivo. During exercise, skeletal muscle potently up-regulates LIF mRNA expression, likely due...

  2. A radioimmunoassay of gastric inhibitory polypeptide in human plasma

    Sarson, D.L.; Bryant, M.G.; Bloom, S.R.

    1980-01-01

    A sensitive radioimmunoassay for the measurement of human gastric inhibitory polypeptide (GIP), using pure porcine GIP, has been developed. Cross-reactivity of the antiserum with all available mammalian gut peptide preparations was negligible with the exception of glucagon when it was approximately 1%. Two major molecular forms of GIP were detectable in plasma and tissue extracts, one of large molecular size and the other corresponding to the elution coefficient of pure porcine standard. Concentrations of GIP in plasma from 50 normal subjects after overnight fasting were 9+-1.0(S.E.M.) pmol/1 rising to a peak of 34+-2.8 pmol/1 following the ingestion of a small mixed test meal. Ingestion of glucose or fat resulted in a similar rise of plasma GIP, whereas no change was observed after the ingestion of protein. (author)

  3. Modulation of Apoptosis Controls Inhibitory Interneuron Number in the Cortex

    Myrto Denaxa

    2018-02-01

    Full Text Available Cortical networks are composed of excitatory projection neurons and inhibitory interneurons. Finding the right balance between the two is important for controlling overall cortical excitation and network dynamics. However, it is unclear how the correct number of cortical interneurons (CIs is established in the mammalian forebrain. CIs are generated in excess from basal forebrain progenitors, and their final numbers are adjusted via an intrinsically determined program of apoptosis that takes place during an early postnatal window. Here, we provide evidence that the extent of CI apoptosis during this critical period is plastic and cell-type specific and can be reduced in a cell-autonomous manner by acute increases in neuronal activity. We propose that the physiological state of the emerging neural network controls the activity levels of local CIs to modulate their numbers in a homeostatic manner.

  4. Urease and serine protease inhibitory alkaloids from Isatis tinctoria.

    Ahmad, Ijaz; Fatima, Itrat; Afza, Nighat; Malik, Abdul; Lodhi, Muhammad Arif; Choudhary, Muhammad Iqbal

    2008-12-01

    Phytochemical investigations on the alkaloidal fraction of the whole plant of the Isatis tinctoria led to the isolation of the alkaloids 1-6., 3'-Hydroxyepiglucoisatisin (3), Epiglucoisatisin (2) were found to be potent urease inhibitors in a concentration-dependent manner with IC(50) values 25.63 +/- 0.74, 37.01 +/- 0.41 and 31.72 +/- 0.93, 47.33 +/- 0.31 microM against Bacillus pasteurii & Jack bean urease, respectively. Compounds 3 and 2 also showed potent inhibitory potential against alpha-chymotrypsin with IC(50) values of 23.40 +/- 0.21 and 27.45 +/- 0.23 microM, respectively.

  5. Antiinflammatory and lipoxygenase inhibitory compounds from Vitex agnus-castus.

    Choudhary, M Iqbal; Jalil, Saima; Nawaz, Sarfraz Ahmad; Khan, Khalid Mohammed; Tareen, Rasool Bakhsh

    2009-09-01

    Several secondary metabolites, artemetin (1), casticin (2), 3,3'-dihydroxy-5,6,7,4'-tetramethoxy flavon (3), penduletin (4), methyl 4-hydroxybenzoate (5), p-hydroxybenzoic acid (6), methyl 3,4-dihydroxybenzoate (7), 5-hydroxy-2-methoxybenzoic acid (8), vanillic acid (9) and 3,4-dihydroxybenzoic acid (10) were isolated from a folkloric medicinal plant, Vitex agnus-castus. The structures of compounds 1-10 were identified with the help of spectroscopic techniques. Compounds 3-10 were isolated for the first time from this plant. These compounds were screened for their antiinflammatory and lipoxygenase inhibitory activities. Compounds 6, 7 and 10 were found to have significant antiinflammatory activity in a cell-based contemporary assay, whereas compounds 1 and 2 exhibited a potent lipoxygenase inhibition.

  6. Spatial interactions reveal inhibitory cortical networks in human amblyopia.

    Wong, Erwin H; Levi, Dennis M; McGraw, Paul V

    2005-10-01

    Humans with amblyopia have a well-documented loss of sensitivity for first-order, or luminance defined, visual information. Recent studies show that they also display a specific loss of sensitivity for second-order, or contrast defined, visual information; a type of image structure encoded by neurons found predominantly in visual area A18/V2. In the present study, we investigate whether amblyopia disrupts the normal architecture of spatial interactions in V2 by determining the contrast detection threshold of a second-order target in the presence of second-order flanking stimuli. Adjacent flanks facilitated second-order detectability in normal observers. However, in marked contrast, they suppressed detection in each eye of the majority of amblyopic observers. Furthermore, strabismic observers with no loss of visual acuity show a similar pattern of detection suppression. We speculate that amblyopia results in predominantly inhibitory cortical interactions between second-order neurons.

  7. Gastric inhibitory polypeptide does not inhibit gastric emptying in humans

    Meier, Juris J; Goetze, Oliver; Anstipp, Jens

    2004-01-01

    ) = 0.15, P = 0.15 for intact GIP; r(2) = 0.21, P = 0.086 for total GIP). We conclude that gastric emptying does not appear to be influenced by GIP. The secretion of GIP after meal ingestion is not suppressed by its exogenous administration. The lack of effect of GIP on gastric emptying underlines......The insulinotropic gut hormone gastric inhibitory polypeptide (GIP) has been demonstrated to inhibit gastric acid secretion and was proposed to possess "enterogastrone" activity. GIP effects on gastric emptying have not yet been studied. Fifteen healthy male volunteers (23.9 +/- 3.3 yr, body mass....... Gastric emptying was calculated from the (13)CO(2) exhalation rates in breath samples collected over 360 min. Venous blood was drawn in 30-min intervals for the determination of glucose, insulin, C-peptide, and GIP (total and intact). Statistical calculations were made by use of repeated-measures ANOVA...

  8. Inhibitory effects on anaerobic digestion of swine manure

    Cheung, P.W.S.; Zhou, H. [Univ. of Guelph, School of Engineering, Guelph, Ontario (Canada)]. E-mail: hzhou@uoguelph.ca; Hacker, R. [Univ. of Guelph, Dept. of Animal and Poultry Science, Guelph, Ontario (Canada)

    2002-06-15

    This paper presents a laboratory study using anaerobic digestion for swine manure under both mesophilic and thermophilic conditions, with emphasis on the effects of inhibitory chemicals on biogas production. A series of batch tests were conducted to examine the effects of various process parameters by varying temperature, pH, ammonia and hydrogen sulfide concentrations. As well, continuous anaerobic digestion tests were conducted using a completely stirred reactor system with a sludge retention time of 15 days. The results showed that at the initial stage, biogas was generated rapidly in the thermophilic reactor, but was more and more inhibited during the later stage with the presence of ammonia and hydrogen sulfide. In contrast, the biogas production was initially delayed in the mesophilic reactor but afterwards had an even higher total gas production. In order to take advantages of both temperature effects in each reactor, the dual-stage system that consists of a thermophilic reactor followed by a mesophilic reactor was suggested. (author)

  9. Inhibitory effect of Lactobacillus reuteri on periodontopathic and cariogenic bacteria.

    Kang, Mi-Sun; Oh, Jong-Suk; Lee, Hyun-Chul; Lim, Hoi-Soon; Lee, Seok-Woo; Yang, Kyu-Ho; Choi, Nam-Ki; Kim, Seon-Mi

    2011-04-01

    The interaction between Lactobacillus reuteri, a probiotic bacterium, and oral pathogenic bacteria have not been studied adequately. This study examined the effects of L. reuteri on the proliferation of periodontopathic bacteria including Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, and Tannerella forsythia, and on the formation of Streptococcus mutans biofilms. Human-derived L. reuteri strains (KCTC 3594 and KCTC 3678) and rat-derived L. reuteri KCTC 3679 were used. All strains exhibited significant inhibitory effects on the growth of periodontopathic bacteria and the formation of S. mutans biofilms. These antibacterial activities of L. reuteri were attributed to the production of organic acids, hydrogen peroxide, and a bacteriocin-like compound. Reuterin, an antimicrobial factor, was produced only by L. reuteri KCTC 3594. In addition, L. reuteri inhibited the production of methyl mercaptan by F. nucleatum and P. gingivalis. Overall, these results suggest that L. reuteri may be useful as a probiotic agent for improving oral health.

  10. Sleep supports inhibitory operant conditioning memory in Aplysia.

    Vorster, Albrecht P A; Born, Jan

    2017-06-01

    Sleep supports memory consolidation as shown in mammals and invertebrates such as bees and Drosophila. Here, we show that sleep's memory function is preserved in Aplysia californica with an even simpler nervous system. Animals performed on an inhibitory conditioning task ("learning that a food is inedible") three times, at Training, Retrieval 1, and Retrieval 2, with 17-h intervals between tests. Compared with Wake animals, remaining awake between Training and Retrieval 1, Sleep animals with undisturbed post-training sleep, performed significantly better at Retrieval 1 and 2. Control experiments testing retrieval only after ∼34 h, confirmed the consolidating effect of sleep occurring within 17 h after training. © 2017 Vorster and Born; Published by Cold Spring Harbor Laboratory Press.

  11. Inhibitory effects on anaerobic digestion of swine manure

    Cheung, P.W.S.; Zhou, H.; Hacker, R.

    2002-01-01

    This paper presents a laboratory study using anaerobic digestion for swine manure under both mesophilic and thermophilic conditions, with emphasis on the effects of inhibitory chemicals on biogas production. A series of batch tests were conducted to examine the effects of various process parameters by varying temperature, pH, ammonia and hydrogen sulfide concentrations. As well, continuous anaerobic digestion tests were conducted using a completely stirred reactor system with a sludge retention time of 15 days. The results showed that at the initial stage, biogas was generated rapidly in the thermophilic reactor, but was more and more inhibited during the later stage with the presence of ammonia and hydrogen sulfide. In contrast, the biogas production was initially delayed in the mesophilic reactor but afterwards had an even higher total gas production. In order to take advantages of both temperature effects in each reactor, the dual-stage system that consists of a thermophilic reactor followed by a mesophilic reactor was suggested. (author)

  12. HIV-1 protease inhibitory substances from Cassia garrettiana

    Jindaporn Puripattanvong

    2007-01-01

    Full Text Available Cassia garrettiana Craib, a Thai medicinal plant locally known as Samae-sarn, was investigated for its active constituents against HIV-1 protease (HIV-1 PR. Bioassay-guided fractionation of the heart woodof this plant led to the isolation of a stilbene derivative (1, piceatannol and an anthraquinone derivative (2, chrysophanol. Piceatannol exhibited appreciable inhibitory effect against HIV-1 PR with an IC50 value of25.4 μg/ml, whereas that of chrysophanol was 73.5 μg/ml. In addition, other two stilbenoids together with three anthraquinone derivatives were also investigated for their anti-HIV-1 PR activities. The resultindicated that resveratrol possessed anti-HIV-1 PR activity with an IC50 value of 85.0 μg/ml, whereas other stilbenoid (oxyresveratrol and anthraquinone derivatives (emodin, aloe-emodin, rhein were inactive (IC50 > 100 μg/ml.

  13. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco

    2014-01-01

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary...... phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic...... and explain how cells switch neutral lipid metabolism from storage to consumption....

  14. Lipid Configurations from Molecular Dynamics Simulations

    Pezeshkian, Weria; Khandelia, Himanshu; Marsh, Derek

    2018-01-01

    of dihedral angles in palmitoyl-oleoyl phosphatidylcholine from molecular dynamics simulations of hydrated fluid bilayer membranes. We compare results from the widely used lipid force field of Berger et al. with those from the most recent C36 release of the CHARMM force field for lipids. Only the CHARMM force......The extent to which current force fields faithfully reproduce conformational properties of lipids in bilayer membranes, and whether these reflect the structural principles established for phospholipids in bilayer crystals, are central to biomembrane simulations. We determine the distribution...

  15. Brain and behavioral inhibitory control of kindergartners facing negative emotions.

    Farbiash, Tali; Berger, Andrea

    2016-09-01

    Inhibitory control (IC) - one of the most critical functions underlying a child's ability to self-regulate - develops significantly throughout the kindergarten years. Experiencing negative emotions imposes challenges on executive functioning and may specifically affect IC. In this study, we examined kindergartners' IC and its related brain activity during a negative emotional situation: 58 children (aged 5.5-6.5 years) performed an emotion-induction Go/NoGo task. During this task, we recorded children's performance and brain activity, focusing on the fronto-central N2 component in the event-related potential (ERP) and the power of its underlying theta frequency. Compared to Go trials, inhibition of NoGo trials was associated with larger N2 amplitudes and theta power. The negative emotional experience resulted in better IC performance and, at the brain level, in larger theta power. Source localization of this effect showed that the brain activity related to IC during the negative emotional experience was principally generated in the posterior frontal regions. Furthermore, the band power measure was found to be a more sensitive index for children's inhibitory processes than N2 amplitudes. This is the first study to focus on kindergartners' IC while manipulating their emotional experience to induce negative emotions. Our findings suggest that a kindergartner's experience of negative emotion can result in improved IC and increases in associated aspects of brain activity. Our results also suggest the utility of time-frequency analyses in the study of brain processes associated with response inhibition in young children. © 2015 John Wiley & Sons Ltd.

  16. Inhibitory effect of Lactobacillus salivarius on Streptococcus mutans biofilm formation.

    Wu, C-C; Lin, C-T; Wu, C-Y; Peng, W-S; Lee, M-J; Tsai, Y-C

    2015-02-01

    Dental caries arises from an imbalance of metabolic activities in dental biofilms developed primarily by Streptococcus mutans. This study was conducted to isolate potential oral probiotics with antagonistic activities against S. mutans biofilm formation from Lactobacillus salivarius, frequently found in human saliva. We analysed 64 L. salivarius strains and found that two, K35 and K43, significantly inhibited S. mutans biofilm formation with inhibitory activities more pronounced than those of Lactobacillus rhamnosus GG (LGG), a prototypical probiotic that shows anti-caries activity. Scanning electron microscopy showed that co-culture of S. mutans with K35 or K43 resulted in significantly reduced amounts of attached bacteria and network-like structures, typically comprising exopolysaccharides. Spot assay for S. mutans indicated that K35 and K43 strains possessed a stronger bactericidal activity against S. mutans than LGG. Moreover, quantitative real-time polymerase chain reaction showed that the expression of genes encoding glucosyltransferases, gtfB, gtfC, and gtfD was reduced when S. mutans were co-cultured with K35 or K43. However, LGG activated the expression of gtfB and gtfC, but did not influence the expression of gtfD in the co-culture. A transwell-based biofilm assay indicated that these lactobacilli inhibited S. mutans biofilm formation in a contact-independent manner. In conclusion, we identified two L. salivarius strains with inhibitory activities on the growth and expression of S. mutans virulence genes to reduce its biofilm formation. This is not a general characteristic of the species, so presents a potential strategy for in vivo alteration of plaque biofilm and caries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Coagulation factor VII variants resistant to inhibitory antibodies.

    Branchini, Alessio; Baroni, Marcello; Pfeiffer, Caroline; Batorova, Angelika; Giansily-Blaizot, Muriel; Schved, Jean F; Mariani, Guglielmo; Bernardi, Francesco; Pinotti, Mirko

    2014-11-01

    Replacement therapy is currently used to prevent and treat bleeding episodes in coagulation factor deficiencies. However, structural differences between the endogenous and therapeutic proteins might increase the risk for immune complications. This study was aimed at identifying factor (F)VII variants resistant to inhibitory antibodies developed after treatment with recombinant activated factor VII (rFVIIa) in a FVII-deficient patient homozygous for the p.A354V-p.P464Hfs mutation, which predicts trace levels of an elongated FVII variant in plasma. We performed fluorescent bead-based binding, ELISA-based competition as well as fluorogenic functional (activated FX and thrombin generation) assays in plasma and with recombinant proteins. We found that antibodies displayed higher affinity for the active than for the zymogen FVII (half-maximal binding at 0.54 ± 0.04 and 0.78 ± 0.07 BU/ml, respectively), and inhibited the coagulation initiation phase with a second-order kinetics. Isotypic analysis showed a polyclonal response with a large predominance of IgG1. We hypothesised that structural differences in the carboxyl-terminus between the inherited FVII and the therapeutic molecules contributed to the immune response. Intriguingly, a naturally-occurring, poorly secreted and 5-residue truncated FVII (FVII-462X) escaped inhibition. Among a series of truncated rFVII molecules, we identified a well-secreted and catalytically competent variant (rFVII-464X) with reduced binding to antibodies (half-maximal binding at 0.198 ± 0.003 BU/ml) as compared to the rFVII-wt (0.032 ± 0.002 BU/ml), which led to a 40-time reduced inhibition in activated FX generation assays. Taken together our results provide a paradigmatic example of mutation-related inhibitory antibodies, strongly support the FVII carboxyl-terminus as their main target and identify inhibitor-resistant FVII variants.

  18. Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization.

    Bou-Flores, C; Berger, A J

    2001-04-01

    Interneuronal electrical coupling via gap junctions and chemical synaptic inhibitory transmission are known to have roles in the generation and synchronization of activity in neuronal networks. Uncertainty exists regarding the roles of these two modes of interneuronal communication in the central respiratory rhythm-generating system. To assess their roles, we performed studies on both the neonatal mouse medullary slice and en bloc brain stem-spinal cord preparations where rhythmic inspiratory motor activity can readily be recorded from both hypoglossal and phrenic nerve roots. The rhythmic inspiratory activity observed had two temporal characteristics: the basic respiratory frequency occurring on a long time scale and the synchronous neuronal discharge within the inspiratory burst occurring on a short time scale. In both preparations, we observed that bath application of gap-junction blockers, including 18 alpha-glycyrrhetinic acid, 18 beta-glycyrrhetinic acid, and carbenoxolone, all caused a reduction in respiratory frequency. In contrast, peak integrated phrenic and hypoglossal inspiratory activity was not significantly changed by gap-junction blockade. On a short-time-scale, gap-junction blockade increased the degree of synchronization within an inspiratory burst observed in both nerves. In contrast, opposite results were observed with blockade of GABA(A) and glycine receptors. We found that respiratory frequency increased with receptor blockade, and simultaneous blockade of both receptors consistently resulted in a reduction in short-time-scale synchronized activity observed in phrenic and hypoglossal inspiratory bursts. These results support the concept that the central respiratory system has two components: a rhythm generator responsible for the production of respiratory cycle timing and an inspiratory pattern generator that is involved in short-time-scale synchronization. In the neonatal rodent, properties of both components can be regulated by interneuronal

  19. Muscarinic receptors modulate dendrodendritic inhibitory synapses to sculpt glomerular output.

    Liu, Shaolin; Shao, Zuoyi; Puche, Adam; Wachowiak, Matt; Rothermel, Markus; Shipley, Michael T

    2015-04-08

    Cholinergic [acetylcholine (ACh)] axons from the basal forebrain innervate olfactory bulb glomeruli, the initial site of synaptic integration in the olfactory system. Both nicotinic acetylcholine receptors (nAChRs) and muscarinic acetylcholine receptors (mAChRs) are expressed in glomeruli. The activation of nAChRs directly excites both mitral/tufted cells (MTCs) and external tufted cells (ETCs), the two major excitatory neurons that transmit glomerular output. The functional roles of mAChRs in glomerular circuits are unknown. We show that the restricted glomerular application of ACh causes rapid, brief nAChR-mediated excitation of both MTCs and ETCs in the mouse olfactory bulb. This excitation is followed by mAChR-mediated inhibition, which is blocked by GABAA receptor antagonists, indicating the engagement of periglomerular cells (PGCs) and/or short axon cells (SACs), the two major glomerular inhibitory neurons. Indeed, selective activation of glomerular mAChRs, with ionotropic GluRs and nAChRs blocked, increased IPSCs in MTCs and ETCs, indicating that mAChRs recruit glomerular inhibitory circuits. Selective activation of glomerular mAChRs in the presence of tetrodotoxin increased IPSCs in all glomerular neurons, indicating action potential-independent enhancement of GABA release from PGC and/or SAC dendrodendritic synapses. mAChR-mediated enhancement of GABA release also presynaptically suppressed the first synapse of the olfactory system via GABAB receptors on sensory terminals. Together, these results indicate that cholinergic modulation of glomerular circuits is biphasic, involving an initial excitation of MTC/ETCs mediated by nAChRs followed by inhibition mediated directly by mAChRs on PGCs/SACs. This may phasically enhance the sensitivity of glomerular outputs to odorants, an action that is consistent with recent in vivo findings. Copyright © 2015 the authors 0270-6474/15/355680-13$15.00/0.

  20. Rapid Identification of Aldose Reductase Inhibitory Compounds from Perilla frutescens

    Ji Hun Paek

    2013-01-01

    Full Text Available The ethyl acetate (EtOAc soluble fraction of methanol extracts of Perilla frutescens (P. frutescens inhibits aldose reductase (AR, the key enzyme in the polyol pathway. Our investigation of inhibitory compounds from the EtOAc soluble fraction of P. frutescens was followed by identification of the inhibitory compounds by a combination of HPLC microfractionation and a 96-well enzyme assay. This allowed the biological activities to be efficiently matched with selected HPLC peaks. Structural analyses of the active compounds were performed by LC-MSn. The main AR inhibiting compounds were tentatively identified as chlorogenic acid and rosmarinic acid by LC-MSn. A two-step high speed counter current chromatography (HSCCC isolation method was developed with a solvent system of n-hexane-ethyl acetate-methanol-water at 1.5 : 5 : 1 : 5, v/v and 3 : 7 : 5 : 5, v/v. The chemical structures of the isolated compounds were determined by 1H- and 13C-nuclear magnetic resonance spectrometry (NMR. The main compounds inhibiting AR in the EtOAc fraction of methanol extracts of P. frutescens were identified as chlorogenic acid (2 (IC50 = 3.16 μM, rosmarinic acid (4 (IC50 = 2.77 μM, luteolin (5 (IC50 = 6.34 μM, and methyl rosmarinic acid (6 (IC50 = 4.03 μM.

  1. Death and rebirth of neural activity in sparse inhibitory networks

    Angulo-Garcia, David; Luccioli, Stefano; Olmi, Simona; Torcini, Alessandro

    2017-05-01

    Inhibition is a key aspect of neural dynamics playing a fundamental role for the emergence of neural rhythms and the implementation of various information coding strategies. Inhibitory populations are present in several brain structures, and the comprehension of their dynamics is strategical for the understanding of neural processing. In this paper, we clarify the mechanisms underlying a general phenomenon present in pulse-coupled heterogeneous inhibitory networks: inhibition can induce not only suppression of neural activity, as expected, but can also promote neural re-activation. In particular, for globally coupled systems, the number of firing neurons monotonically reduces upon increasing the strength of inhibition (neuronal death). However, the random pruning of connections is able to reverse the action of inhibition, i.e. in a random sparse network a sufficiently strong synaptic strength can surprisingly promote, rather than depress, the activity of neurons (neuronal rebirth). Thus, the number of firing neurons reaches a minimum value at some intermediate synaptic strength. We show that this minimum signals a transition from a regime dominated by neurons with a higher firing activity to a phase where all neurons are effectively sub-threshold and their irregular firing is driven by current fluctuations. We explain the origin of the transition by deriving a mean field formulation of the problem able to provide the fraction of active neurons as well as the first two moments of their firing statistics. The introduction of a synaptic time scale does not modify the main aspects of the reported phenomenon. However, for sufficiently slow synapses the transition becomes dramatic, and the system passes from a perfectly regular evolution to irregular bursting dynamics. In this latter regime the model provides predictions consistent with experimental findings for a specific class of neurons, namely the medium spiny neurons in the striatum.

  2. Inhibitory effects of crude extracts from several plants on postharvest pathogens of citrus

    Gong, Mingfu; Guan, Qinlan; Xu, Shanshan

    2018-04-01

    China is one of the most important origin of citrus. Enormous economic losses was caused by fungal diseases in citrus harvest storage every year. The effective antimicrobial substances of garlic, ginger, celery and pepper were extracted by ethanol extraction and water extraction respectively. The inhibitory effects of the crude extract on Penicillium sp. caused fungal diseases in citrus harvest storage were also determined. The results showed that the extracts of garlic, ginger and celery had inhibitory effect on P. sp., but the extracts of pepper had no inhibitory effect on P. sp.. The garlic ethanol extracts had the best inhibitory effect on P. citrinum.

  3. A pilot investigation of acute inhibitory control training in cocaine users.

    Alcorn, Joseph L; Pike, Erika; Stoops, William S; Lile, Joshua A; Rush, Craig R

    2017-05-01

    Disrupted response inhibition and presence of drug-cue attentional bias in cocaine-using individuals have predicted poor treatment outcomes. Inhibitory control training could help improve treatment outcomes by strengthening cognitive control. This pilot study assessed the effects of acute inhibitory control training to drug- and non-drug-related cues on response inhibition performance and cocaine-cue attentional bias in cocaine-using individuals. Participants who met criteria for a cocaine-use disorder underwent five sessions of inhibitory control training to either non-drug-related cues (i.e., rectangles) or cocaine cues (n=10/condition) in a single day. Response inhibition and attentional bias were assessed prior to and following training using the stop-signal task and visual-probe task with eye tracking, respectively. Training condition groups did not differ on demographics, inhibitory control training performance, response inhibition, or cocaine-cue attentional bias. Response inhibition performance improved as a function of inhibitory control training in both conditions. Cocaine-cue attentional bias was observed, but did not change as a function of inhibitory control training in either condition. Response inhibition in cocaine-using individuals was augmented by acute inhibitory control training, which may improve treatment outcomes through better behavioral inhibition. Future studies should investigate longer-term implementation of inhibitory control training, as well as combining inhibitory control training with other treatment modalities. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Survey Study of Lipid Effect on Nisin Nanoliposome Formation and Application in Pasteurized Milk as a Food Model

    Say-yed Hesameddin Tafreshi

    2015-03-01

    Full Text Available The use of bacteriocins, mainly nisin, is one of the most significant preservation technologies in food industries. Nisin encapsulation can improve stability and homogenous distribution in food matrices. In this study, liposomes of four various lipids (lipoid S 100, lipoid S PC-3, lipoid S PC and lipoid PC (DPPC were prepared by dehydration-rehydration method, compared for entrapment efficiency and lipid with the highest entrapment efficiency (DPPC was characterized. Inhibitory effects of encapsulated (DPPC nanoliposomes and free nisin on spoilage of pasteurized milk were also studied. Entrapment efficiency ranged from 14% (lipoid S 100 to 49% (DPPC. DPPC nanoliposomes were large unilamellar vesicles (LUV and had an asymmetric oval shape (elliptical with a mean diameter of 136 nm. Our study revealed that pasteurized milk spoilage was delayed by both of free and encapsulated nisin, but free nisin (with 38 days was significantly more efficient in comparison with encapsulated nisin (14 days.

  5. Spastin binds to lipid droplets and affects lipid metabolism.

    Chrisovalantis Papadopoulos

    2015-04-01

    Full Text Available Mutations in SPAST, encoding spastin, are the most common cause of autosomal dominant hereditary spastic paraplegia (HSP. HSP is characterized by weakness and spasticity of the lower limbs, owing to progressive retrograde degeneration of the long corticospinal axons. Spastin is a conserved microtubule (MT-severing protein, involved in processes requiring rearrangement of the cytoskeleton in concert to membrane remodeling, such as neurite branching, axonal growth, midbody abscission, and endosome tubulation. Two isoforms of spastin are synthesized from alternative initiation codons (M1 and M87. We now show that spastin-M1 can sort from the endoplasmic reticulum (ER to pre- and mature lipid droplets (LDs. A hydrophobic motif comprised of amino acids 57 through 86 of spastin was sufficient to direct a reporter protein to LDs, while mutation of arginine 65 to glycine abolished LD targeting. Increased levels of spastin-M1 expression reduced the number but increased the size of LDs. Expression of a mutant unable to bind and sever MTs caused clustering of LDs. Consistent with these findings, ubiquitous overexpression of Dspastin in Drosophila led to bigger and less numerous LDs in the fat bodies and increased triacylglycerol levels. In contrast, Dspastin overexpression increased LD number when expressed specifically in skeletal muscles or nerves. Downregulation of Dspastin and expression of a dominant-negative variant decreased LD number in Drosophila nerves, skeletal muscle and fat bodies, and reduced triacylglycerol levels in the larvae. Moreover, we found reduced amount of fat stores in intestinal cells of worms in which the spas-1 homologue was either depleted by RNA interference or deleted. Taken together, our data uncovers an evolutionarily conserved role of spastin as a positive regulator of LD metabolism and open up the possibility that dysfunction of LDs in axons may contribute to the pathogenesis of HSP.

  6. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  7. Radiation-induced lipid peroxidation: influence of oxygen concentration and membrane lipid composition

    Wolters, H.; Tilburg, C.A.M. van; Konings, A.W.T.

    1987-01-01

    Radiation -induced lipid peroxidation phospholipid liposomes was investigated in terms of its dependence on lipid composition and oxygen concentration. Non-peroxidizable lipid incorporated in the liposomes reduced the rate of peroxidation of the peroxidizable phospholipid acyl chains, possibly by restricting the length of chain reactions. The latter effect is believed to be caused by interference of the non-peroxidizable lipids in the bilayer. At low oxygen concentration lipid peroxidation was reduced. The cause of this limited peroxidation may be a reduced number of radical initiation reactions possibly involving oxygen-derived superoxide radicals. Killing of proliferating mammalian cells, irradiated at oxygen concentrations ranging from 0 to 100%, appeared to be independent of the concentration of peroxidizable phospholipids in the cell membranes. This indicates that lipid peroxidation is not the determining process in radiation-induced reproductive cell death. (author)

  8. Lipid measures and cardiovascular disease prediction

    van Wijk, D.F.; Stroes, E.S.G.; Kastelein, J.J.P.

    2009-01-01

    Traditional lipid measures are the cornerstone of risk assessment and treatment goals in cardiovascular prevention. Whereas the association between total, LDL-, HDL-cholesterol and cardiovascular disease risk has been generally acknowledged, the rather poor capacity to distinguish between patients

  9. Novel approaches to lipid-lowering therapy

    lines, ezetimibe is recommended as an add-on therapy for patients on ... 2 Carbohydrate and Lipid Metabolism Research Unit and Division of Endocrinology and Metabolism ... acting at the level of protein translation via RNA interference in the.

  10. Artificial Lipid Membranes: Past, Present, and Future.

    Siontorou, Christina G; Nikoleli, Georgia-Paraskevi; Nikolelis, Dimitrios P; Karapetis, Stefanos K

    2017-07-26

    The multifaceted role of biological membranes prompted early the development of artificial lipid-based models with a primary view of reconstituting the natural functions in vitro so as to study and exploit chemoreception for sensor engineering. Over the years, a fair amount of knowledge on the artificial lipid membranes, as both, suspended or supported lipid films and liposomes, has been disseminated and has helped to diversify and expand initial scopes. Artificial lipid membranes can be constructed by several methods, stabilized by various means, functionalized in a variety of ways, experimented upon intensively, and broadly utilized in sensor development, drug testing, drug discovery or as molecular tools and research probes for elucidating the mechanics and the mechanisms of biological membranes. This paper reviews the state-of-the-art, discusses the diversity of applications, and presents future perspectives. The newly-introduced field of artificial cells further broadens the applicability of artificial membranes in studying the evolution of life.

  11. Homogenization of the lipid profile values.

    Pedro-Botet, Juan; Rodríguez-Padial, Luis; Brotons, Carlos; Esteban-Salán, Margarita; García-Lerín, Aurora; Pintó, Xavier; Lekuona, Iñaki; Ordóñez-Llanos, Jordi

    Analytical reports from the clinical laboratory are essential to guide clinicians about what lipid profile values should be considered altered and, therefore, require intervention. Unfortunately, there is a great heterogeneity in the lipid values reported as "normal, desirable, recommended or referenced" by clinical laboratories. This can difficult clinical decisions and be a barrier to achieve the therapeutic goals for cardiovascular prevention. A recent international recommendation has added a new heterogeneity factor for the interpretation of lipid profile, such as the possibility of measuring it without previous fasting. All this justifies the need to develop a document that adapts the existing knowledge to the clinical practice of our health system. In this regard, professionals from different scientific societies involved in the measurement and use of lipid profile data have developed this document to establish recommendations that facilitate their homogenization. Copyright © 2017. Publicado por Elsevier España, S.L.U.

  12. Lipid Bilayer Formation on Organic Electronic Materials

    Zhang, Yi; Wustoni, Shofarul; Savva, Achilleas; Giovannitti, Alexander; McCulloch, Iain; Inal, Sahika

    2018-01-01

    The lipid bilayer is the elemental structure of cell membrane, forming a stable barrier between the interior and exterior of the cell while hosting membrane proteins that enable selective transport of biologically important compounds and cellular

  13. Normal and abnormal lipid and lipoprotein metabolism

    2009-03-20

    Mar 20, 2009 ... This article focuses on lipid and lipoprotein metabolism and introduces a range of genetic ... spherical structures that are suspended in the plasma and whose ..... atherosclerosis. Table II suggests a simple classification of.

  14. A STUDY OF LIPID PROFILE IN PREDIABETES

    Manoj

    2016-06-01

    Full Text Available BACKGROUND Lipid abnormalities are common in diabetes mellitus and play an important role in acceleration of atherosclerosis leading to increased cardiovascular diseases. Due to increasing burden of diabetes, it is becoming important to identify dyslipidaemia in high-risk state for diabetes especially prediabetes so that early intervention can reduce cardiovascular risk. AIM To study lipid profile in prediabetes individuals. METHODS This study was a cross-sectional case control study which included 107 prediabetes and 101 healthy controls. Lipid profile of prediabetes and controls were measured and statistically analysed. RESULT Total cholesterol, LDL, triglycerides, VLDL, TG/HDL ratio, and LDL/HDL ratio were significantly high whereas HDL was significantly low in prediabetes subjects as compared to controls. CONCLUSION This study showed significant lipid abnormalities in prediabetes subjects. Because of these they are at high risk of developing atherosclerotic cardiovascular diseases. Therefore, proper screening and appropriate therapy of these conditions becomes important.

  15. Overview of Cholesterol and Lipid Disorders

    ... Professor of Medicine, Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine NOTE: This is the Consumer Version. DOCTORS: Click here for the Professional Version ... Cholesterol and triglycerides are important ...

  16. Thyroid hormones and lipid phosphorus in mice

    Thakare, U R; Ganatra, R D; Shah, D H [Bhabha Atomic Research Centre, Bombay (India). Radiation Medicine Centre

    1978-04-01

    In vivo studies in mice injected intravenously with /sup 125/I-triiodothyronine (T-3) showed a linear relationship between the uptake of the labelled hormone by the tissue and the lipid phosphorous content of the same tissue. However, studies with /sup 125/I-thyroxine failed to show a similar relationship between the lipid phosphorous content of the organ and the uptake of radioactive hormone by the same organ. In vitro studies using equilibrium dialysis technique with isolated lipid extracts of various organs and radioactive thyroid hormones (T-3 and T-4) did not show any relation between the lipid P and the uptake of labelled hormone. On the basis of the observed discrepancy between in vivo and in vitro studies, it is postulated that an organized lipoprotein structure at the cell membrane may be responsible for the entry of the thyroid hormones.

  17. Supramolecular protein immobilization on lipid bilayers

    Bosmans, R.P.G.; Hendriksen, W.E.; Verheijden, Mark Lloyd; Eelkema, R.; Jonkheijm, Pascal; van Esch, J.H.; Brunsveld, Luc

    2015-01-01

    Protein immobilization on surfaces, and on lipid bilayers specifically, has great potential in biomolecular and biotechnological research. Of current special interest is the immobilization of proteins using supramolecular noncovalent interactions. This allows for a reversible immobilization and

  18. Assessing the nature of lipid raft membranes

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins......-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide...... heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...

  19. Voltage-gated lipid ion channels

    Blicher, Andreas; Heimburg, Thomas Rainer

    2013-01-01

    Synthetic lipid membranes can display channel-like ion conduction events even in the absence of proteins. We show here that these events are voltage-gated with a quadratic voltage dependence as expected from electrostatic theory of capacitors. To this end, we recorded channel traces and current...... histograms in patch-experiments on lipid membranes. We derived a theoretical current-voltage relationship for pores in lipid membranes that describes the experimental data very well when assuming an asymmetric membrane. We determined the equilibrium constant between closed and open state and the open...... probability as a function of voltage. The voltage-dependence of the lipid pores is found comparable to that of protein channels. Lifetime distributions of open and closed events indicate that the channel open distribution does not follow exponential statistics but rather power law behavior for long open times...

  20. Improved characterization of EV preparations based on protein to lipid ratio and lipid properties.

    Xabier Osteikoetxea

    Full Text Available In recent years the study of extracellular vesicles has gathered much scientific and clinical interest. As the field is expanding, it is becoming clear that better methods for characterization and quantification of extracellular vesicles as well as better standards to compare studies are warranted. The goal of the present work was to find improved parameters to characterize extracellular vesicle preparations. Here we introduce a simple 96 well plate-based total lipid assay for determination of lipid content and protein to lipid ratios of extracellular vesicle preparations from various myeloid and lymphoid cell lines as well as blood plasma. These preparations included apoptotic bodies, microvesicles/microparticles, and exosomes isolated by size-based fractionation. We also investigated lipid bilayer order of extracellular vesicle subpopulations using Di-4-ANEPPDHQ lipid probe, and lipid composition using affinity reagents to clustered cholesterol (monoclonal anti-cholesterol antibody and ganglioside GM1 (cholera toxin subunit B. We have consistently found different protein to lipid ratios characteristic for the investigated extracellular vesicle subpopulations which were substantially altered in the case of vesicular damage or protein contamination. Spectral ratiometric imaging and flow cytometric analysis also revealed marked differences between the various vesicle populations in their lipid order and their clustered membrane cholesterol and GM1 content. Our study introduces for the first time a simple and readily available lipid assay to complement the widely used protein assays in order to better characterize extracellular vesicle preparations. Besides differentiating extracellular vesicle subpopulations, the novel parameters introduced in this work (protein to lipid ratio, lipid bilayer order, and lipid composition, may prove useful for quality control of extracellular vesicle related basic and clinical studies.

  1. GPS-Lipid: a robust tool for the prediction of multiple lipid modification sites

    Xie, Yubin; Zheng, Yueyuan; Li, Hongyu; Luo, Xiaotong; He, Zhihao; Cao, Shuo; Shi, Yi; Zhao, Qi; Xue, Yu; Zuo, Zhixiang; Ren, Jian

    2016-01-01

    As one of the most common post-translational modifications in eukaryotic cells, lipid modification is an important mechanism for the regulation of variety aspects of protein function. Over the last decades, three classes of lipid modifications have been increasingly studied. The co-regulation of these different lipid modifications is beginning to be noticed. However, due to the lack of integrated bioinformatics resources, the studies of co-regulatory mechanisms are still very limited. In this...

  2. Exogenous ether lipids predominantly target mitochondria

    Kuerschner, Lars; Richter, Doris; Hannibal-Bach, Hans Kristian

    2012-01-01

    Ether lipids are ubiquitous constituents of cellular membranes with no discrete cell biological function assigned yet. Using fluorescent polyene-ether lipids we analyzed their intracellular distribution in living cells by microscopy. Mitochondria and the endoplasmic reticulum accumulated high......, accumulated to mitochondria and induced morphological changes and cellular apoptosis. These data indicate that edelfosine could exert its pro-apoptotic power by targeting and damaging mitochondria and thereby inducing cellular apoptosis. In general, this study implies an important role of mitochondria...

  3. Biosynthesis of archaeal membrane ether lipids

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  4. Lipid Microarray Biosensor for Biotoxin Detection.

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  5. Lipoprotein lipase: genetics, lipid uptake, and regulation.

    Merkel, Martin; Eckel, Robert H; Goldberg, Ira J

    2002-12-01

    Lipoprotein lipase (LPL) regulates the plasma levels of triglyceride and HDL. Three aspects are reviewed. 1) Clinical implications of human LPL gene variations: common mutations and their effects on plasma lipids and coronary heart disease are discussed. 2) LPL actions in the nervous system, liver, and heart: the discussion focuses on LPL and tissue lipid uptake. 3) LPL gene regulation: the LPL promoter and its regulatory elements are described.

  6. Rapid modification of retroviruses using lipid conjugates

    Mukherjee, Nimisha G; Le Doux, Joseph M; Andrew Lyon, L

    2009-01-01

    Methods are needed to manipulate natural nanoparticles. Viruses are particularly interesting because they can act as therapeutic cellular delivery agents. Here we examine a new method for rapidly modifying retroviruses that uses lipid conjugates composed of a lipid anchor (1,2-distearoyl-sn-glycero-3-phosphoethanolamine), a polyethylene glycol chain, and biotin. The conjugates rapidly and stably modified retroviruses and enabled them to bind streptavidin. The implication of this work for modifying viruses for gene therapy and vaccination protocols is discussed.

  7. PENGEMBANGAN SISTEM NANOSTRUCTURED LIPID CARRIERS (NLC) MELOXICAM DENGAN LIPID MONOSTEARIN DAN MIGLYOL 808 MENGGUNAKAN METODE EMULSIFIKASI

    Rahmi Annisa; Esti Hendradi; Dewi Melani

    2016-01-01

    The aim this study was to determine the effect of Monostearin and Miglyol 808 lipid ratio in NLC system formulation resulting in physicochemical characteristics, release rate, and penetration rate. The NLC making was done by using emulsification method. In the formulation of NLC meloxicam, 3 different lipid ratios were used, including ratios of 6:4, 7:3, 8:2.  Meloxicam served as active ingredient, monostearin served as solid lipid, miglyol 808 served as a liquid lipid, and tween 80 was surfa...

  8. Lipid stability in meat and meat products.

    Morrissey, P A; Sheehy, P J; Galvin, K; Kerry, J P; Buckley, D J

    1998-01-01

    Lipid oxidation is one of the main factors limiting the quality and acceptability of meats and meat products. Oxidative damage to lipids occurs in the living animal because of an imbalance between the production of reactive oxygen species and the animal's defence mechanisms. This may be brought about by a high intake of oxidized lipids or poly-unsaturated fatty acids, or a low intake of nutrients involved in the antioxidant defence system. Damage to lipids may be accentuated in the immediate post-slaughter period and, in particular, during handling, processing, storage and cooking. In recent years, pressure to reduce artificial additive use in foods has led to attempts to increase meat stability by dietary strategies. These include supplementation of animal diets with vitamin E, ascorbic acid, or carotenoids, or withdrawal of trace mineral supplements. Dietary vitamin E supplementation reduces lipid and myoglobin oxidation, and, in certain situations, drip losses in meats. However, vitamin C supplementation appears to have little, if any, beneficial effects on meat stability. The effect of feeding higher levels of carotenoids on meat stability requires further study. Some studies have demonstrated that reducing the iron and copper content of feeds improves meat stability. Post-slaughter carnosine addition may be an effective means of improving lipid stability in processed meats, perhaps in combination with dietary vitamin E supplementation.

  9. LIPID SYNTHESIS, INTRACELLULAR TRANSPORT, AND SECRETION

    Stein, Olga; Stein, Yechezkiel

    1967-01-01

    In the mammary glands of lactating albino mice injected intravenously with 9, 10-oleic acid-3H or 9, 10-palmitic acid-3H, it has been shown that the labeled fatty acids are incorporated into mammary gland glycerides. The labeled lipid in the mammary gland 1 min after injection was in esterified form (> 95%), and the radioautographic reaction was seen over the rough endoplasmic reticulum and over lipid droplets, both intracellular and intraluminal. At 10–60 min after injection, the silver grains were concentrated predominantly over lipid droplets. There was no concentration of radioactivity over the granules in the Golgi apparatus, at any time interval studied. These findings were interpreted to indicate that after esterification of the fatty acid into glycerides in the rough endoplasmic reticulum an in situ aggregation of lipid occurs, with acquisition of droplet form. The release of the lipid into the lumen proceeds directly and not through the Golgi apparatus, in contradistinction to the mode of secretion of casein in the mammary gland or of lipoprotein in the liver. The presence of strands of endoplasmic reticulum attached to intraluminal lipid droplets provides a structural counterpart to the milk microsomes described in ruminant milk. PMID:6033535

  10. Lipid Droplets and Mycobacterium leprae Infection

    Elamin, Ayssar A.; Stehr, Matthias; Singh, Mahavir

    2012-01-01

    Leprosy is a chronic infectious disease and is a major source of morbidity in developing countries. Leprosy is caused by the obligate intracellular bacterium Mycobacterium leprae, which infects as primary target Schwann cells. Lepromatous leprosy exhibits multiple lesions of the skin, eyes, nerves, and lymph nodes. The sites of infection are characterized by the presence of foamy macrophages, fully packed with lipid droplets (LDs), which are induced by M. leprae. In the last years, it has become evident that M. tuberculosis imports lipids from foamy macrophages and is dependent on fatty acids for growth in infected macrophages. M. leprae seems to have similar mechanisms for scavenging lipids from the host. But due to the inability to culture M. leprae on laboratory media, research progresses only slowly. However, in the last years, substantial progress has been made in the field of lipid metabolism in M. leprae. Herein, we will present and summarize the lipid droplets formation and the metabolism of lipids during M. leprae infection. PMID:23209912

  11. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  12. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  13. Rhodopsin-lipid interactions studied by NMR.

    Soubias, Olivier; Gawrisch, Klaus

    2013-01-01

    The biophysical properties of the lipid matrix are known to influence function of integral membrane proteins. We report on a sample preparation method for reconstitution of membrane proteins which uses porous anodic aluminum oxide (AAO) filters with 200-nm-wide pores of high density. The substrate permits formation of tubular, single membranes that line the inner surface of pores. One square centimeter of filter with a thickness of 60μm yields on the order of 500cm(2) of solid-supported single bilayer surface, sufficient for NMR studies. The tubular bilayers are free of detergent, fully hydrated, and accessible for ligands from one side of the membrane. The use of AAO filters greatly improves reproducibility of the reconstitution process such that the influence of protein on lipid order parameters can be studied with high resolution. As an example, results for the G protein-coupled receptor of class A, bovine rhodopsin, are shown. By (2)H NMR order parameter measurements, it is detected that rhodopsin insertion elastically deforms membranes near the protein. Furthermore, by (1)H saturation-transfer NMR under conditions of magic angle spinning, we demonstrate detection of preferences in interactions of rhodopsin with particular lipid species. It is assumed that function of integral membrane proteins depends on both protein-induced elastic deformations of the lipid matrix and preferences for interaction of the protein with particular lipid species in the first layer of lipids surrounding the protein. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Affinity of serum apolipoproteins for lipid monolayers

    Ibdah, J.A.

    1987-01-01

    The effects of lipid composition and packing as well as the structure of the protein on the affinities of apolipoproteins for lipid monolayers have been investigated. The adsorption of 14 C-reductively methylated human apolipoproteins A-I and A-II at saturating subphase concentrations to monolayers prepared with synthetic lipids or lipoprotein surface lipids spread at various initial surface pressures has been studied. The adsorption of apolipoproteins is monitored by following the surface radioactivity using a gas flow counter and Wilhelmy plate, respectively. The physical states of the lipid monolayers are evaluated by measurement of the surface pressure-molecular area isotherms using a Langmuir-Adam surface balance. The probable helical regions in various apolipoproteins have been predicted using a secondary structure analysis computer program. The mean residue hydrophobicity and mean residue hydrophobic moment for the predicted helical segments have been calculated. The surface properties of synthetic peptides which are amphipathic helix analogs have been investigated at the air-water and lipid-water interfaces

  15. Lipids of Parasitic and Saprophytic Leptospires

    Johnson, R. C.; Livermore, B. P.; Walby, Judith K.; Jenkin, H. M.

    1970-01-01

    The lipid composition of five parasitic and six saprophytic leptospires was compared. Lipids comprise 18 to 26% of the dry weight of the cells after chloroform-methanol extraction. No residual (bound) lipid was found after acid or alkaline hydrolysis of the extracted residue. The total lipid was composed of 60 to 70% phospholipid, and the remaining lipid was free fatty acids. The phospholipid fraction contained phosphatidylethanolamine as the major component, and phosphatidylglycerol and diphosphatidylglycerol were minor components with traces of lysophatidylethanolamine sometimes found. The major fatty acids of leptospires were hexadecanoic, hexadecenoic, and octadecenoic acids. Both the unusual cis-11-hexadecenoic acid and the more common cis-9-hexadecenoic acid were synthesized by the leptospires. Neither the parasitic nor the saprophytic leptospires can chain elongate fatty acids. However, they were capable of β-oxidation of fatty acids. Both groups of leptospires desaturate fatty acids by an aerobic pathway. When the parasite canicola was cultivated on octadecanoic acid, 87% of the hexadecenoic acid was the 11 isomer, whereas the saprophyte semeranga consisted of 10% of this isomer. In addition, the saprophytic leptospires contained more tetradecanoic acid than the parasites. No differences were observed in the lipid composition of virulent and avirulent strains of canicola. PMID:16557833

  16. Critical role of the lipid rafts in caprine herpesvirus type 1 infection in vitro.

    Pratelli, Annamaria; Colao, Valeriana

    2016-01-04

    The fusion machinery for herpesvirus entry in the host cells involves the interactions of viral glycoproteins with cellular receptors, although additional viral and cellular domains are required. Extensive areas of the plasma membrane surface consist of lipid rafts organized into cholesterol-rich microdomains involved in signal transduction, protein sorting, membrane transport and in many processes of viruses infection. Because of the extraction of cholesterol leads to disorganization of lipid microdomains and to dissociation of proteins bound to the lipid rafts, we investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) on caprine herpesvirus 1 (CpHV.1) in three important phases of virus infection such as binding, entry and post-entry. MβCD treatment did not prejudice virus binding to cells, while a dose-dependent reduction of the virus yield was observed at the virus entry stage, and 30 mM MβCD reduced infectivity evidently. Treatment of MDBK after virus entry revealed a moderate inhibitory effect suggesting that cholesterol is mainly required during virus entry rather than during the post-entry stage. Alteration of the envelope lipid composition affected virus entry and a noticeable reduction in virus infectivity was detected in the presence of 15 mM MβCD. Considering that the recognition of a host cell receptor is a crucial step in the start-up phase of infection, these data are essential for the study of CpHV.1 pathogenesis. To date virus receptors for CpHV.1 have not yet been identified and further investigations are required to state that MβCD treatment affects the expression of the viral receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Microalgal lipids biochemistry and biotechnological perspectives.

    Bellou, Stamatia; Baeshen, Mohammed N; Elazzazy, Ahmed M; Aggeli, Dimitra; Sayegh, Fotoon; Aggelis, George

    2014-12-01

    In the last few years, there has been an intense interest in using microalgal lipids in food, chemical and pharmaceutical industries and cosmetology, while a noteworthy research has been performed focusing on all aspects of microalgal lipid production. This includes basic research on the pathways of solar energy conversion and on lipid biosynthesis and catabolism, and applied research dealing with the various biological and technical bottlenecks of the lipid production process. In here, we review the current knowledge in microalgal lipids with respect to their metabolism and various biotechnological applications, and we discuss potential future perspectives. The committing step in fatty acid biosynthesis is the carboxylation of acetyl-CoA to form malonyl-CoA that is then introduced in the fatty acid synthesis cycle leading to the formation of palmitic and stearic acids. Oleic acid may also be synthesized after stearic acid desaturation while further conversions of the fatty acids (i.e. desaturations, elongations) occur after their esterification with structural lipids of both plastids and the endoplasmic reticulum. The aliphatic chains are also used as building blocks for structuring storage acylglycerols via the Kennedy pathway. Current research, aiming to enhance lipogenesis in the microalgal cell, is focusing on over-expressing key-enzymes involved in the earlier steps of the pathway of fatty acid synthesis. A complementary plan would be the repression of lipid catabolism by down-regulating acylglycerol hydrolysis and/or β-oxidation. The tendency of oleaginous microalgae to synthesize, apart from lipids, significant amounts of other energy-rich compounds such as sugars, in processes competitive to lipogenesis, deserves attention since the lipid yield may be considerably increased by blocking competitive metabolic pathways. The majority of microalgal production occurs in outdoor cultivation and for this reason biotechnological applications face some difficulties

  18. Ionizing radiation and lipid peroxidation in human body

    Giubileo, Gianfranco

    1997-07-01

    Lipids are organic compounds constituting the living cells. Lipid molecules can be disassembled through peroxidative pathways and hydrocarbons can be bred as end-product of lipid peroxidation in vivo. Lipid peroxidation can be started by an indirect effect of ionizing radiation. So a radioinduced cellular damage in human body can be detected by monitoring the production of specific hydrocarbons

  19. Protein-lipid interactions: from membrane domains to cellular networks

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  20. Archaeal lipids in oral delivery of therapeutic peptides

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert

    2017-01-01

    Archaea contain membrane lipids that differ from those found in the other domains of life (Eukarya and Bacteria). These lipids consist of isoprenoid chains attached via ether bonds to the glycerol carbons at the sn-2,3 positions. Two types of ether lipids are known, polar diether lipids and bipolar...

  1. Research progress on polar lipids of deinococcus radiodurans

    Feng Qiong; Tian Bing; Hua Yuejin

    2013-01-01

    Deinococcus radiodurans is extremely resistant to radiation, desiccation, oxidizing agents and other extreme conditions. One of the unique lipids in Deinococcus radiodurans is the polar lipid phosphoglycolipid with alkylamine as the main component. Alkylamine derived from fatty acids. The composition characteristic of lipids is one of the classification criterias of Deinococcus. This article provided an overview of the main features of the Deinococcus radiodurans and introduced special polar lipids that have been found as well as the taxonomy significances of such lipids. The research progress of the relationship between lipids and their resistance mechanisms and the prospects of special lipids in Deinococcus radidurans have also been discussed. (authors)

  2. An evolutionary scenario for gonadotrophin-inhibitory hormone in chordates.

    Osugi, T; Ubuka, T; Tsutsui, K

    2015-06-01

    In 2000, we discovered a novel hypothalamic neuropeptide that actively inhibits gonadotrophin release in quail and termed it gonadotrophin-inhibitory hormone (GnIH). GnIH peptides have subsequently been identified in most representative species of gnathostomes. They all share a C-terminal LPXRFamide (X = L or Q) motif. GnIH can inhibit gonadotrophin synthesis and release by decreasing the activity of GnRH neuroes, as well as by directly inhibiting pituitary gonadotrophin secretion in birds and mammals. To investigate the evolutionary origin of GnIH and its ancestral function, we identified a GnIH precursor gene encoding GnIHs from the brain of sea lamprey, the most ancient lineage of vertebrates. Lamprey GnIHs possess a C-terminal PQRFamide motif. In vivo administration of one of lamprey GnIHs stimulated the expression of lamprey GnRH in the hypothalamus and gonadotophin β mRNA in the pituitary. Thus, GnIH may have emerged in agnathans as a stimulatory neuropeptide that subsequently diverged to an inhibitory neuropeptide during the course of evolution from basal vertebrates to later-evolved vertebrates, such as birds and mammals. From a structural point of view, pain modulatory neuropeptides, such as neuropeptide FF (NPFF) and neuropeptide AF, share a C-terminal PQRFamide motif. Because agnathans possess both GnIH and NPFF genes, the origin of GnIH and NPFF genes may date back before the emergence of agnathans. More recently, we identified a novel gene encoding RFamide peptides in the amphioxus. Molecular phylogenetic analysis and synteny analysis indicated that this gene is closely related to the genes of GnIH and NPFF of vertebrates. The results suggest that the identified protochordate gene is similar to the common ancestor of GnIH and NPFF genes, indicating that the origin of GnIH and NPFF may date back to the time of the emergence of early chordates. The GnIH and NPFF genes may have diverged by whole-genome duplication during the course of vertebrate

  3. Water insoluble and soluble lipids for gene delivery.

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  4. The dynamic of lipid oxidation in human myotubes

    Gaster, Michael

    2009-01-01

    Both endogenous and exogenous lipid levels may be regulators of total lipid oxidation in skeletal muscles. We studied the dynamics of lipid oxidation in human myotubes established from healthy, lean subjects exposed to acutely and chronically increased palmitate concentrations. The intramyocellular...... triacylglycerol content increased with chronic palmitate exposure. Both, ectopically increased intracellular and extracellular lipid levels were simultaneously oxidized and could partly suppress each other's oxidation. Overall, the highest acute palmitate treatments stimulated fatty acid oxidation whilst...... the highest chronic treatments decreased total lipid oxidation. Intracellular lipids showed a more complete oxidation than exogenous lipids. Endogenous lipids reduced insulin-mediated glucose oxidation. Thus, both endogenous and exogenous lipid concentrations regulated each other's oxidation and total lipid...

  5. Sex Differences in How Erotic and Painful Stimuli Impair Inhibitory Control

    Yu, Jiaxin; Hung, Daisy L.; Tseng, Philip; Tzeng, Ovid J. L.; Muggleton, Neil G.; Juan, Chi-Hung

    2012-01-01

    Witnessing emotional events such as arousal or pain may impair ongoing cognitive processes such as inhibitory control. We found that this may be true only half of the time. Erotic images and painful video clips were shown to men and women shortly before a stop signal task, which measures cognitive inhibitory control. These stimuli impaired…

  6. The Role of Inhibitory Control in the Development of Human Figure Drawing in Young Children

    Riggs, Kevin J.; Jolley, Richard P.; Simpson, Andrew

    2013-01-01

    We investigated the role of inhibitory control in young children's human figure drawing. We used the Bear-Dragon task as a measure of inhibitory control and used the classification system devised by Cox and Parkin to measure the development of human figure drawing. We tested 50 children aged between 40 and 64 months. Regression analysis showed…

  7. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality

    Toria Herd; Mengjiao Li; Dominique Maciejewski; Jacob Lee; Kirby Deater-Deckard; Brooks King-Casas; Jungmeen Kim-Spoon

    2018-01-01

    Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems...

  8. DMPD: Macrophage migration inhibitory factor and host innate immune responses tomicrobes. [Dynamic Macrophage Pathway CSML Database

    Full Text Available 14620137 Macrophage migration inhibitory factor and host innate immune responses to...microbes. Calandra T. Scand J Infect Dis. 2003;35(9):573-6. (.png) (.svg) (.html) (.csml) Show Macrophage migration... inhibitory factor and host innate immune responses tomicrobes. PubmedID 14620137 Title Macrophage migration

  9. Lxr-driven enterocyte lipid droplet formation delays transport of ingested lipids.

    Cruz-Garcia, Lourdes; Schlegel, Amnon

    2014-09-01

    Liver X receptors (Lxrs) are master regulators of cholesterol catabolism, driving the elimination of cholesterol from the periphery to the lumen of the intestine. Development of pharmacological agents to activate Lxrs has been hindered by synthetic Lxr agonists' induction of hepatic lipogenesis and hypertriglyceridemia. Elucidating the function of Lxrs in regulating enterocyte lipid handling might identify novel aspects of lipid metabolism that are pharmacologically amenable. We took a genetic approach centered on the single Lxr gene nr1h3 in zebrafish to study the role of Lxr in enterocyte lipid metabolism. Loss of nr1h3 function causes anticipated gene regulatory changes and cholesterol intolerance, collectively reflecting high evolutionary conservation of zebrafish Lxra function. Intestinal nr1h3 activation delays transport of absorbed neutral lipids, with accumulation of neutral lipids in enterocyte cytoplasmic droplets. This delay in transport of ingested neutral lipids protects animals from hypercholesterolemia and hepatic steatosis induced by a high-fat diet. On a gene regulatory level, Lxra induces expression of acsl3a, which encodes acyl-CoA synthetase long-chain family member 3a, a lipid droplet-anchored protein that directs fatty acyl chains into lipids. Forced overexpression of acls3a in enterocytes delays, in part, the appearance of neutral lipids in the vasculature of zebrafish larvae. Activation of Lxr in the intestine cell-autonomously regulates the rate of delivery of absorbed lipids by inducting a temporary lipid intestinal droplet storage depot. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  10. Triglyceride blisters in lipid bilayers: implications for lipid droplet biogenesis and the mobile lipid signal in cancer cell membranes.

    Himanshu Khandelia

    Full Text Available Triglycerides have a limited solubility, around 3%, in phosphatidylcholine lipid bilayers. Using millisecond-scale course grained molecular dynamics simulations, we show that the model lipid bilayer can accommodate a higher concentration of triolein (TO than earlier anticipated, by sequestering triolein molecules to the bilayer center in the form of a disordered, isotropic, mobile neutral lipid aggregate, at least 17 nm in diameter, which forms spontaneously, and remains stable on at least the microsecond time scale. The results give credence to the hotly debated existence of mobile neutral lipid aggregates of unknown function present in malignant cells, and to the early biogenesis of lipid droplets accommodated between the two leaflets of the endoplasmic reticulum membrane. The TO aggregates give the bilayer a blister-like appearance, and will hinder the formation of multi-lamellar phases in model, and possibly living membranes. The blisters will result in anomalous membrane probe partitioning, which should be accounted for in the interpretation of probe-related measurements.

  11. Inhibitory control and moral emotions: relations to reparation in early and middle childhood.

    Colasante, Tyler; Zuffianò, Antonio; Bae, Na Young; Malti, Tina

    2014-01-01

    This study examined links between inhibitory control, moral emotions (sympathy and guilt), and reparative behavior in an ethnically diverse sample of 4- and 8-year-olds (N = 162). Caregivers reported their children's reparative behavior, inhibitory control, and moral emotions through a questionnaire, and children reported their guilt feelings in response to a series of vignettes depicting moral transgressions. A hypothesized meditation model was tested with inhibitory control relating to reparative behavior through sympathy and guilt. In support of this model, results revealed that high levels of inhibitory control were associated with high levels of reparative behavior through high levels of sympathy and guilt. However, the mediation of inhibitory control to reparation through guilt was significant for 4-year-olds only. Results are discussed in relation to the temperamental, regulatory, and affective-moral precursors of reparative behavior in early and middle childhood.

  12. Testosterone affects hormone-sensitive lipase (HSL) activity and lipid metabolism in the left ventricle

    Langfort, Jozef; Jagsz, Slawomir; Dobrzyn, Pawel

    2010-01-01

    tissue suggests that testosterone regulates HSL activity. To test whether this is also true in the heart, we measured HSL activity in the left ventricle of sedentary male rats that had been treated with testosterone supplementation or orchidectomy with or without testosterone substitution. Left ventricle...... HSL activity against TG was significantly elevated in intact rats supplemented with testosterone. HSL activity against both TG and diacylglyceride was reduced by orchidectomy, whereas testosterone replacement fully reversed this effect. Moreover, testosterone increased left ventricle free fatty acid...... levels, caused an inhibitory effect on carbohydrate metabolism in the heart, and elevated left ventricular phosphocreatine and ATP levels as compared to control rats. These data indicate that testosterone is involved in cardiac HSL activity regulation which, in turn, may affect cardiac lipid...

  13. Evaluation of Antioxidant, Cholinesterase Inhibitory and Antimicrobial Properties of Mentha longifolia subsp. noeana and Its Secondary Metabolites

    Abdulselam Ertaş

    2015-01-01

    Full Text Available The aim of the present study was to determine the chemical structures of the isolated compounds, the essential oil and fatty acid compositions of Mentha longifolia subsp. noeana with their biological activities. Ursolic acid (1, u vaol (2, stigmast-5-ene-3 b -yl formate (3, stigmast-5-en-3-one (4, b -sitosterol (5, bis(2-ethylhexyl benzene-1,2-dicarboxylate (6,hexacosyl (E-ferulate (7 and 5-hydroxy-6,7,3',4'-tetramethoxy flavone (8 were obtained from the aerial parts. The compounds (2-4, 6, 7 were isolated for the first time from a Mentha species. Palmitic acid (40.8% was the major component of the non-polar fraction obtained from the petroleum ether extract. Pulegone (32.3% was the main constituent of the essential oil which exhibited strong butyrylcholinesterase inhibitory activity (77.36 ± 0.29%, moderate antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. The methanol extract showed 80% inhibition of lipid peroxidation, and the acetone extract possessed moderate DPPH free radical scavenging activity (60% inhibition at 100 m g/mL.

  14. Inhibitory effects of viburnum dilatatum Thunb. (gamazumi) on oxidation and hyperglycemia in rats with streptozotocin-induced diabetes.

    Iwai, Kunihisa; Onodera, Akio; Matsue, Hajime

    2004-02-25

    The fruit of Viburnum dilatatum Thunb. (gamazumi) was found in a previous study to have strong radical scavenging activity. The present study investigated the antioxidative functions of gamazumi crude extract (GCE) in rats having diabetes induced by the administration of streptozotocin. In rats given water (H(2)O group), plasma levels of glucose, total cholesterol, and lipid peroxide (TBARS) and erythrocyte levels of TBARS increased with time over the experimental period of 10 weeks. These increases were inhibited in rats given GCE (GCE group). After 10 weeks, hepatic, renal, and pancreatic TBARS in the GCE group were significantly lower than those in the H(2)O group. GCE contains a high concentration of polyphenols, and it is expected that they are the active components. These results demonstrate that GCE has an inhibitory effect on the oxidative stress induced by diabetes and suggest that GCE may be useful for the prevention of diabetic complications. Furthermore, as the increase of plasma glucose and total cholesterol was inhibited in the GCE group, GCE may also have anti-hyperglycemic activity in diabetes.

  15. In vitro caries-inhibitory properties of a silver cermet.

    Swift, E J

    1989-06-01

    Recurrent caries is one of the primary causes of failure of dental restorations. One method for reducing the frequency and severity of this problem is the use of fluoride-releasing restorative materials. The glass-ionomer cements are a type of fluoride-releasing material. They have been used extensively in recent years for a variety of clinical applications. However, in comparison with other restorative materials such as amalgam and composite resins, glass ionomers have relatively poor physical properties. Sintering of silver particles to glass-ionomer powder is a means of improving these physical properties. The sintered material is called a silver-glass ionomer or silver cermet. This study examined the in vitro caries-inhibitory potential of a silver cement by means of two methods. First, long-term fluoride release was measured. Second, an artificial caries system was used for evaluation of caries inhibition by cerment restorations in extracted teeth. In comparison with a standard glass-ionomer restorative material, fluoride release from the cermet material was significantly less throughout a 12-month period. The results from the artificial caries system indicated that this decreased fluoride release corresponded with a lesser degree of caries inhibition. Lesions around cermet restorations in both enamel and root surfaces were significantly more severe than those around conventional glass-ionomer restorations. However, in comparison with amalgam and composite resin restorations, the cermet did have some cariostatic activity.

  16. Role of spinal inhibitory mechanisms in whiplash injuries.

    Lo, Yew-Long; Tan, Yam-Eng; Fook-Chong, Stephanie; Boolsambatra, Pensie; Yue, Wai-Mun; Chan, Ling-Ling; Tan, Seang-Beng

    2007-06-01

    Whiplash injury, commonly encountered in road traffic accidents, is a major cause of morbidity. Its pathophysiology is not well understood, and diagnosis remains clinical. Imaging and electrophysiological methods have not provided objective diagnostic evidence. Availability of a sensitive and specific diagnostic method would be of high clinical interest. We studied 20 consecutive patients with chronic whiplash injury. Despite persistent symptoms, most had minimal neurological findings. Cutaneous silent period (CSP), a nociceptive spinal inhibitory electromyographic reflex, showed 90% sensitivity and 90% specificity for its diagnosis. In contrast, only two patients (10%) had abnormal transcranial magnetic stimulation findings, and another two (10%) showed abnormal electromyography. Magnetic resonance imaging (MRI) showed cervical cord abnormalities in only two of 20 (10%) patients. None of the patients had abnormal somatosensory evoked potential studies. Our findings suggest that neurological dysfunction of whiplash may occur at several possible spinal cord localities in the CSP functional pathway. The use of this simple, quick, and sensitive method is advocated in the diagnostic work up of whiplash injury.

  17. Acetylcholinesterase inhibitory effects of some plants from Rosaceae

    S. Esmaeili

    2015-10-01

    Full Text Available Background and objectives: Alzheimer's disease (AD is an age dependent disorder. AD is associated with decrease of brain acetylcholine level. Nowadays, one of the methods for progression inhibition of AD is using acetylcholinesterase inhibitors. Rosaceae is a large plant family. Different biological effects of some species of this family have been reported. The aim of the present study was to assess the acetylcholinesterase inhibitory (AChEI activity of the selected plants belonging to Rosaceae family. Methods: AChEI activity of six species from Rosaceae including Cotoneaster nummularia, Cerasus microcarpa, Amygdalus scoparia, Agrimonia eupatoria, Rosa canina and Rosa damascena were evaluated based on Ellman’s method in concentration of 300 µg/mL using total extracts and methanol fractions which were obtained by maceration. Results: The results showed that the total extract and methanol fraction of the aerial parts of A. eupatoria demonstrated significant AChEI activity with 46.5% and 56.2% inhibition of the enzyme, respectively. Conclusion: According to the results of the AChEI activity of the methanol fraction of A. eupatoria, it seems that the polar components of the species such as flavonoids may be responsible for its effectiveness.

  18. Macrophage migration inhibitory factor induces vascular leakage via autophagy

    Hong-Ru Chen

    2015-01-01

    Full Text Available Vascular leakage is an important feature of acute inflammatory shock, which currently has no effective treatment. Macrophage migration inhibitory factor (MIF is a pro-inflammatory cytokine that can induce vascular leakage and plays an important role in the pathogenesis of shock. However, the mechanism of MIF-induced vascular leakage is still unclear. In this study, using recombinant MIF (rMIF, we demonstrated that MIF induced disorganization and degradation of junction proteins and increased the permeability of human endothelial cells in vitro. Western blotting analysis showed that rMIF treatment induced LC3 conversion and p62 degradation. Inhibition of autophagy with a PI3K inhibitor (3-MA, a ROS scavenger (NAC or autophagosomal-lysosomal fusion inhibitors (bafilomycin A1 and chloroquine rescued rMIF-induced vascular leakage, suggesting that autophagy mediates MIF-induced vascular leakage. The potential involvement of other signaling pathways was also studied using different inhibitors, and the results suggested that MIF-induced vascular leakage may occur through the ERK pathway. In conclusion, we showed that MIF triggered autophagic degradation of endothelial cells, resulting in vascular leakage. Inhibition of MIF-induced autophagy may provide therapeutic targets against vascular leakage in inflammatory shock.

  19. α-Glucosidase inhibitory activity of selected Malaysian plants

    Dzatil Awanis Mohd Bukhari

    2017-01-01

    Full Text Available Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  20. Inhibitory effect of farnesol on biofilm formation by Candida tropicalis

    E Zibafar

    2009-03-01

    Full Text Available ABSTRACT Background: Candidiasis associated with indwelling medical devices is especially problematic since they can act as substrates for biofilm growth which are highly resistant to antifungal drugs. Farnesol is a quorum-sensing molecule that inhibits filamentation and biofilm formation in Candida albicans. Since in recent years Candida tropicalis have been reported as an important and common non-albicans Candida species with high drug resistance pattern, the inhibitory effect of farnesol on biofilm formation by Candida tropicalis was evaluated. Methods: Five Candida tropicalis strains were treated with different concentration of farnesol (0, 30 and 300 µM after 0, 1 and 4 hrs of adherence and then they were maintained under biofilm formation condition in polystyrene, 96-well microtiter plates at 37°C for 48 hrs. Biofilm formation was measured by a semiquantitative colorimetric technique based on reduction assay of 2,3- bis  -2H-tetrazolium- 5- carboxanilide (XTT. Results: The results indicated that the initial adherence time had no effect on biofilm formation and low concentration of farnesol (30 µM could not inhibit biofilm formation. However the presence of non-adherent cells increased biofilm formation significantly and the high concentration of farnesol (300 µM could inhibit biofilm formation. Conclusion: Results of this study showed that the high concentration of farnesol could inhibit biofilm formation and may be used as an adjuvant in prevention and in therapeutic strategies with antifungal drugs.

  1. Minimum inhibitory concentration distribution in environmental Legionella spp. isolates.

    Sandalakis, Vassilios; Chochlakis, Dimosthenis; Goniotakis, Ioannis; Tselentis, Yannis; Psaroulaki, Anna

    2014-12-01

    In Greece standard tests are performed in the watering and cooling systems of hotels' units either as part of the surveillance scheme or following human infection. The purpose of this study was to establish the minimum inhibitory concentration (MIC) distributions of environmental Legionella isolates for six antimicrobials commonly used for the treatment of Legionella infections, by MIC-test methodology. Water samples were collected from 2004 to 2011 from 124 hotels from the four prefectures of Crete (Greece). Sixty-eight (68) Legionella isolates, comprising L. pneumophila serogroups 1, 2, 3, 5, 6, 8, 12, 13, 15, L. anisa, L. rubrilucens, L. maceachernii, L. quinlivanii, L. oakridgensis, and L. taurinensis, were included in the study. MIC-tests were performed on buffered charcoal yeast extract with α-ketoglutarate, L-cysteine, and ferric pyrophosphate. The MICs were read after 2 days of incubation at 36 ± 1 °C at 2.5% CO2. A large distribution in MICs was recorded for each species and each antibiotic tested. Rifampicin proved to be the most potent antibiotic regardless of the Legionella spp.; tetracycline appeared to have the least activity on our environmental isolates. The MIC-test approach is an easy, although not so cost-effective, way to determine MICs in Legionella spp. These data should be kept in mind especially since these Legionella species may cause human disease.

  2. Selected Enzyme Inhibitory Effects of Euphorbia characias Extracts

    Antonella Fais

    2018-01-01

    Full Text Available Extracts of aerial part of Euphorbia characias were examined to check potential inhibitors for three selected enzymes involved in several metabolic disorders. Water and ethanol extracts from leaves and flowers showed in vitro inhibitory activity toward α-amylase, α-glucosidase, and xanthine oxidase. IC50 values were calculated for all the extracts and the ethanolic extracts were found to exert the best effect. In particular, for the α-glucosidase activity, the extracts resulted to be 100-fold more active than the standard inhibitor. The inhibition mode was investigated by Lineweaver-Burk plot analysis. E. characias extracts display different inhibition behaviors toward the three enzymes acting as uncompetitive, noncompetitive, and mixed-type inhibitors. Moreover, ethanolic extracts of E. characias showed no cytotoxic activity and exhibited antioxidant capacity in a cellular model. The LC-DAD metabolic profile was also performed and it showed that leaves and flowers extracts contain high levels of quercetin derivatives. The results suggest that E. characias could be a promising source of natural inhibitors of the enzymes involved in carbohydrate uptake disorders and oxidative stress.

  3. Minimum inhibitory concentration of Brazilian Brachyspira hyodysenteriae strains

    Amanda G.S. Daniel

    Full Text Available ABSTRACT: The objectives of this study were to characterize Brachyspira hyodysenteriae isolates and to evaluate the antimicrobial susceptibility patterns of strains obtained from pigs in Brazil based on the minimal inhibitory concentration test (MIC. The MIC was performed for 22 B. hyodysenteriae isolates obtained from 2011 to 2013 using the following antimicrobial drugs: tylosin, tiamulin, valnemulin, doxycycline, lincomycin and tylvalosin. Outbreaks of swine dysentery were diagnosed based on clinical presentation, bacterial isolation, gross and microscopic lesions, duplex PCR for B. hyodysenteriae and B. pilosicoli and nox gene sequencing. All obtained MIC values were consistently higher or equal to the microbiological cut-off described in the literature. The MIC 90 values for the tested drugs were 8μg/ml for doxycycline, >4μg/ml for valnemulin, 8μg/ml for tiamulin, 32μg/ml for tylvalosin, >64μg/ml for lincomycin and >128μg/ml for tylosin. These results largely corroborate those reported in the literature. Tiamulin, doxycycline and tylvalosin showed the lowest MIC results. All of the samples subjected to phylogenetic analysis based on the nox gene sequence exhibited similar results, showing 100% identity to B. hyodysenteriae. This is the first study describing the MIC pattern of B. hyodysenteriae isolated in Brazil.

  4. Inhibitory Interneurons of The Human Neocortex after Clinical Death

    V. A. Akulinin

    2016-01-01

    Full Text Available Objective: to analyze the human neocortex interneurons (areas 4, 10, 17 and 21 by Brodmann after cardiac arrest (clinical death.Materials and methods. The main group included patients (n=7, men who survived 7—10 days and 70—90 days after cardiac arrest and later died due to heart failure. The control group (n=4, men included individuals after sudden fatal accidents. The morphometric and histological analysis of 420 neocortical fields (Nissl#staining,calbindin D28k, neuropeptide Y was performed using light and confocal microscopy.Results. We verified all main types of interneurons (Basket, Martinotti, and neurogliaform interneurons in neocortex based on the morphology of their bodies and dendritic processes in both groups. The number of calbindin- and NPY-positive neurons in the neocortex was similar in the control and in the postoperative period.However, calbindin- and NPY-immunopositive structure fields including neuronal cell bodies and their dendrites were significantly more represented in neocortex of patients from the main group. Maximum increase in common square in the relative areas of calbindin-immunopositive structures was observed 90 days after ischemia. The squares of NPY#immunopositive fields became larger seven days after resuscitation and remained increased on 90th day post-resuscitation.Conclusion. Our findings demonstrate an increase of calbindin and NPY expression in human neocortex after clinical death, which can be explained by a compensatory  eaction of undamaged inhibitory cortical interneurons directed to protectbrain from ischemia.

  5. Inhibitory effect of common microfluidic materials on PCR outcome

    Kodzius, Rimantas

    2013-10-10

    In this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.

  6. Separating math from anxiety: The role of inhibitory mechanisms.

    Mammarella, Irene C; Caviola, Sara; Giofrè, David; Borella, Erika

    2017-07-06

    Deficits in executive functions have been hypothesized and documented for children with severe mathematics anxiety (MA) or developmental dyscalculia, but the role of inhibition-related processes has not been specifically explored. The main aim of the present study was to shed further light on the specificity of these profiles in children in terms of working memory (WM) and the inhibitory functions involved. Four groups of children between 8 and 10 years old were selected: one group with developmental dyscalculia (DD) and no MA, one with severe MA and developmental dyscalculia (MA-DD), one with severe MA and no DD (MA), and one with typical development (TD). All children were presented with tasks measuring two inhibition-related functions, that is, proactive interference and prepotent response, and a WM task. The results showed that children with severe MA (but no DD) were specifically impaired in the proactive interference task, while children with DD (with or without MA) failed in the WM task. Our findings point to the importance of distinguishing the cognitive processes underlying these profiles.

  7. Inhibitory effect of common microfluidic materials on PCR outcome

    Kodzius, Rimantas; Xiao, Kang; Wu, Jinbo; Yi, Xin; Gong, Xiuqing; Foulds, Ian G.; Wen, Weijia

    2013-01-01

    In this study, we established a simple method for evaluating the PCR compatibility of various common materials employed when fabricating microfluidic chips, including silicon, several kinds of silicon oxide, glasses, plastics, wax, and adhesives. Two-temperature PCR was performed with these materials to determine their PCR-inhibitory effect. In most cases, adding bovine serum albumin effectively improved the reaction yield. We also studied the individual PCR components from the standpoint of adsorption. Most of the materials did not inhibit the DNA, although they noticeably interacted with the polymerase. We provide a simple method of performing PCR-compatibility testing of materials using inexpensive instrumentation that is common in molecular biology laboratories. Furthermore, our method is direct, being performed under actual PCR conditions with high temperature. Our results provide an overview of materials that are PCR-friendly for fabricating microfluidic devices. The PCR reaction, without any additives, performed best with pyrex glass, and it performed worst with PMMA or acrylic glue materials.

  8. Cyclooxygenase inhibitory compounds from Gymnosporia heterophylla aerial parts.

    Ochieng, Charles O; Opiyo, Sylvia A; Mureka, Edward W; Ishola, Ismail O

    2017-06-01

    Gymnosporia heterophylla (Celastraceae) is an African medicinal plants used to treat painful and inflammatory diseases with partial scientific validation. Solvent extractions followed by repeated chromatographic purification of the G. heterophylla aerial parts led to the isolation of one new β-dihydroagarofuran sesquiterpene alkaloid (1), and two triterpenes (2-3). In addition, eight known compounds including one β-dihydroagarofuran sesquiterpene alkaloid (4), and six triterpenes (5-10) were isolated. All structures were determined through extensive analysis of the NMR an MS data as well as by comparison with literature data. These compounds were evaluated for the anti-inflammatory activities against COX-1 and -2 inhibitory potentials. Most of the compound isolated showed non selective COX inhibitions except for 3-Acetoxy-1β-hydroxyLupe-20(29)-ene (5), Lup-20(29)-ene-1β,3β-diol (6) which showed COX-2 selective inhibition at 0.54 (1.85), and 0.45 (2.22) IC 50 , in mM (Selective Index), respectively. The results confirmed the presence of anti-inflammatory compounds in G. heterophylla which are important indicators for development of complementary medicine for inflammatory reactions; however, few could be useful as selective COX-2 inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Acetylcholine release and inhibitory interneuron activity in hippocampal CA1

    A. Rory McQuiston

    2014-09-01

    Full Text Available Acetylcholine release in the central nervous system (CNS has an important role in attention, recall and memory formation. One region influenced by acetylcholine is the hippocampus, which receives inputs from the medial septum and diagonal band of Broca complex (MS/DBB. Release of acetylcholine from the MS/DBB can directly affect several elements of the hippocampus including glutamatergic and GABAergic neurons, presynaptic terminals, postsynaptic receptors and astrocytes. A significant portion of acetylcholine’s effect likely results from the modulation of GABAergic inhibitory interneurons, which have crucial roles in controlling excitatory inputs, synaptic integration, rhythmic coordination of principal neurons and outputs in the hippocampus. Acetylcholine affects interneuron function in large part by altering their membrane potential via muscarinic and nicotinic receptor activation. This minireview describes recent data from mouse hippocampus that investigated changes in CA1 interneuron membrane potentials following acetylcholine release. The interneuron subtypes affected, the receptor subtypes activated, and the potential outcome on hippocampal CA1 network function is discussed.

  10. Music training and inhibitory control: a multidimensional model.

    Moreno, Sylvain; Farzan, Faranak

    2015-03-01

    Training programs aimed to improve cognitive skills have either yielded mixed results or remain to be validated. The limited benefits of such regimens are largely attributable to weak understanding of (1) how (and which) interventions provide the most cognitive improvements; and (2) how brain networks and neural mechanisms that underlie specific cognitive abilities can be modified selectively. Studies indicate that music training leads to robust and long-lasting benefits to behavior. Importantly, behavioral advantages conferred by music extend beyond perceptual abilities to even nonauditory functions, such as inhibitory control (IC) and its neural correlates. Alternative forms of arts engagement or brain training do not appear to yield such enhancements, which suggests that music uniquely taps into brain networks subserving a variety of auditory as well as domain-general mechanisms such as IC. To account for such widespread benefits of music training, we propose a framework of transfer effects characterized by three dimensions: level of processing, nature of the transfer, and involvement of executive functions. We suggest that transfer of skills is mediated through modulation of general cognitive processes, in particular IC. We believe that this model offers a viable framework to test the extent and limitations of music-related changes. © 2014 New York Academy of Sciences.

  11. α-Glucosidase Inhibitory Activity of Selected Malaysian Plants.

    Mohd Bukhari, Dzatil Awanis; Siddiqui, Mohammad Jamshed; Shamsudin, Siti Hadijah; Rahman, Md Mukhlesur; So'ad, Siti Zaiton Mat

    2017-01-01

    Diabetes is a common metabolic disease indicated by unusually high plasma glucose level that can lead to major complications such as diabetic neuropathy, retinopathy, and cardiovascular diseases. One of the effective therapeutic managements of the disease is to reduce postprandial hyperglycemia through inhibition of α-glucosidase, a carbohydrate-hydrolyzing enzyme to retard overall glucose absorption. In recent years, a plenty of research works have been conducted looking for novel and effective α-glucosidase inhibitors (AGIs) from natural sources as alternatives for the synthetic AGI due to their unpleasant side effects. Plants and herbs are rich with secondary metabolites that have massive pharmaceutical potential. Besides, studies showed that phytochemicals such as flavonoids, alkaloids, terpenoids, anthocyanins, glycosides, and phenolic compounds possess significant inhibitory activity against α-glucosidase enzyme. Malaysia is a tropical country that is rich with medicinal herbs. In this review, we focus on eight Malaysian plants with the potential as AGI to develop a potential functional food or lead compounds against diabetes.

  12. Solution structure and dynamics of melanoma inhibitory activity protein

    Lougheed, Julie C.; Domaille, Peter J.; Handel, Tracy M.

    2002-01-01

    Melanoma inhibitory activity (MIA) is a small secreted protein that is implicated in cartilage cell maintenance and melanoma metastasis. It is representative of a recently discovered family of proteins that contain a Src Homologous 3 (SH3) subdomain. While SH3 domains are normally found in intracellular proteins and mediate protein-protein interactions via recognition of polyproline helices, MIA is single-domain extracellular protein, and it probably binds to a different class of ligands.Here we report the assignments, solution structure, and dynamics of human MIA determined by heteronuclear NMR methods. The structures were calculated in a semi-automated manner without manual assignment of NOE crosspeaks, and have a backbone rmsd of 0.38 A over the ordered regions of the protein. The structure consists of an SH3-like subdomain with N- and C-terminal extensions of approximately 20 amino acids each that together form a novel fold. The rmsd between the solution structure and our recently reported crystal structure is 0.86 A over the ordered regions of the backbone, and the main differences are localized to the most dynamic regions of the protein. The similarity between the NMR and crystal structures supports the use of automated NOE assignments and ambiguous restraints to accelerate the calculation of NMR structures

  13. Allosteric Inhibition of Macrophage Migration Inhibitory Factor Revealed by Ibudilast

    Cho, Y.; Crichlow, G; Vermeire, J; Leng, L; Du, X; Hodsdon, M; Bucala, R; Cappello, M; Gross, M; et al.

    2010-01-01

    AV411 (ibudilast; 3-isobutyryl-2-isopropylpyrazolo-[1,5-a]pyridine) is an antiinflammatory drug that was initially developed for the treatment of bronchial asthma but which also has been used for cerebrovascular and ocular indications. It is a nonselective inhibitor of various phosphodiesterases (PDEs) and has varied antiinflammatory activity. More recently, AV411 has been studied as a possible therapeutic for the treatment of neuropathic pain and opioid withdrawal through its actions on glial cells. As described herein, the PDE inhibitor AV411 and its PDE-inhibition-compromised analog AV1013 inhibit the catalytic and chemotactic functions of the proinflammatory protein, macrophage migration inhibitory factor (MIF). Enzymatic analysis indicates that these compounds are noncompetitive inhibitors of the p-hydroxyphenylpyruvate (HPP) tautomerase activity of MIF and an allosteric binding site of AV411 and AV1013 is detected by NMR. The allosteric inhibition mechanism is further elucidated by X-ray crystallography based on the MIF/AV1013 binary and MIF/AV1013/HPP ternary complexes. In addition, our antibody experiments directed against MIF receptors indicate that CXCR2 is the major receptor for MIF-mediated chemotaxis of peripheral blood mononuclear cells.

  14. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    Shen Jie; Sun Minjie; Ping Qineng; Ying Zhi; Liu Wen

    2010-01-01

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  15. Incorporation of liquid lipid in lipid nanoparticles for ocular drug delivery enhancement

    Shen Jie; Sun Minjie; Ping Qineng; Ying Zhi; Liu Wen, E-mail: Pingqn2004@yahoo.com.cn [School of Pharmacy, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing (China)

    2010-01-15

    The present work investigates the effect of liquid lipid incorporation on the physicochemical properties and ocular drug delivery enhancement of nanostructured lipid carriers (NLCs) and attempts to elucidate in vitro and in vivo the potential of NLCs for ocular drug delivery. The CyA-loaded or fluorescein-marked nanocarriers composed of Precifac ATO 5 and Miglyol 840 (as liquid lipid) were prepared by melting-emulsion technology, and the physicochemical properties of nanocarriers were determined. The uptake of nanocarriers by human corneal epithelia cell lines (SDHCEC) and rabbit cornea was examined. Ex vivo fluorescence imaging was used to investigate the ocular distribution of nanocarriers. The in vitro cytotoxicity and in vivo acute tolerance were evaluated. The higher drug loading capacity and improved in vitro sustained drug release behavior of lipid nanoparticles was found with the incorporation of liquid lipid in lipid nanoparticles. The uptake of nanocarriers by the SDHCEC was increased with the increase in liquid lipid loading. The ex vivo fluorescence imaging of the ocular tissues indicated that the liquid lipid incorporation could improve the ocular retention and penetration of ocular therapeutics. No alternation was macroscopically observed in vivo after ocular surface exposure to nanocarriers. These results indicated that NLC was a biocompatible and potential nanocarrier for ocular drug delivery enhancement.

  16. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-01-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. PMID:26269359

  17. Membrane-spanning lipids for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer.

    Schwarzmann, Günter; Breiden, Bernadette; Sandhoff, Konrad

    2015-10-01

    A Förster resonance energy transfer-based fusion and transfer assay was developed to study, in model membranes, protein-mediated membrane fusion and intermembrane lipid transfer of fluorescent sphingolipid analogs. For this assay, it became necessary to apply labeled reporter molecules that are resistant to spontaneous as well as protein-mediated intermembrane transfer. The novelty of this assay is the use of nonextractable fluorescent membrane-spanning bipolar lipids. Starting from the tetraether lipid caldarchaeol, we synthesized fluorescent analogs with fluorophores at both polar ends. In addition, we synthesized radioactive glycosylated caldarchaeols. These labeled lipids were shown to stretch through bilayer membranes rather than to loop within a single lipid layer of liposomes. More important, the membrane-spanning lipids (MSLs) in contrast to phosphoglycerides proved to be nonextractable by proteins. We could show that the GM2 activator protein (GM2AP) is promiscuous with respect to glycero- and sphingolipid transfer. Saposin (Sap) B also transferred sphingolipids albeit with kinetics different from GM2AP. In addition, we could unambiguously show that the recombinant activator protein Sap C x His6 induced membrane fusion rather than intermembrane lipid transfer. These findings showed that these novel MSLs, in contrast with fluorescent phosphoglycerolipids, are well suited for an uncompromised monitoring of membrane fusion and intermembrane lipid transfer. Copyright © 2015 by the American Society for Biochemistry and Molecular Biology, Inc.

  18. Lipid clustering correlates with membrane curvature as revealed by molecular simulations of complex lipid bilayers.

    Heidi Koldsø

    2014-10-01

    Full Text Available Cell membranes are complex multicomponent systems, which are highly heterogeneous in the lipid distribution and composition. To date, most molecular simulations have focussed on relatively simple lipid compositions, helping to inform our understanding of in vitro experimental studies. Here we describe on simulations of complex asymmetric plasma membrane model, which contains seven different lipids species including the glycolipid GM3 in the outer leaflet and the anionic lipid, phosphatidylinositol 4,5-bisphophate (PIP2, in the inner leaflet. Plasma membrane models consisting of 1500 lipids and resembling the in vivo composition were constructed and simulations were run for 5 µs. In these simulations the most striking feature was the formation of nano-clusters of GM3 within the outer leaflet. In simulations of protein interactions within a plasma membrane model, GM3, PIP2, and cholesterol all formed favorable interactions with the model α-helical protein. A larger scale simulation of a model plasma membrane containing 6000 lipid molecules revealed correlations between curvature of the bilayer surface and clustering of lipid molecules. In particular, the concave (when viewed from the extracellular side regions of the bilayer surface were locally enriched in GM3. In summary, these simulations explore the nanoscale dynamics of model bilayers which mimic the in vivo lipid composition of mammalian plasma membranes, revealing emergent nanoscale membrane organization which may be coupled both to fluctuations in local membrane geometry and to interactions with proteins.

  19. Effect of soy protein on serum lipid profile and some lipid ...

    The effect of soy protein on serum lipid profile and some lipid metabolizing enzymes in rats fed with cholesterol diets was examined in this study. Rats were subjected to feeding trial over a period of six weeks on formulated diets containing: 20% soy protein with 0% cholesterol (group A), 20% soy protein with 5% cholesterol ...

  20. Effect of cadmium on lipid metabolism of brain. In vivo incorporation of labelled acetate into lipids

    Gulati, S; Gill, K D; Nath, R

    1987-01-01

    The effect of early postnatal cadmium exposure on the in vivo incorporation of (1-/sup 14/C) sodium acetate into various lipid classes of the weanling rat brain was studied. A stimulated incorporation of the label was observed in total lipids, phospholipids, cholesterol, cerebrosides and sulphatides of the brain of Cd-exposed animals compared to controls.

  1. Effect of lipid composition and packing on the adsorption of apolipoproteins to lipid monolayers

    Ibdah, J.A.; Lund-Katz, S.; Phillips, M.C.

    1987-01-01

    The monolayer system has been used to study the effects of lipoprotein surface lipid composition and packing on the affinities of apolipoproteins for the surfaces of lipoprotein particles. The adsorption of apolipoproteins injected beneath lipid monolayers prepared with pure lipids or lipoprotein surface lipids is evaluated by monitoring the surface pressure of the film and the surface concentration (Gamma) of 14 C-labelled apolipoprotein. At a given initial film pressure (π/sub i/) there is a higher adsorption of human apo A-I to unsaturated phosphatidylcholine (PC) monolayers compared to saturated PC monolayers (e.g., at π/sub i/ = 10 mN/m, Gamma = 0.35 and 0.06 mg/m 2 for egg PC and distearoyl PC, respectively, with 3 x 10 -4 mg/ml apo A-I in the subphase). In addition, adsorption of apo A-I is less to an egg sphingomyelin monolayer than to an egg PC monolayer. The adsorption of apo A-I to PC monolayers is decreased by addition of cholesterol. Generally, apo A-I adsorption diminishes as the lipid molecular area decreases. Apo A-I adsorbs more to monolayers prepared with HDL 3 surface lipids than with LDL surface lipids. These studies suggest that lipoprotein surface lipid composition and packing are crucial factors influencing the transfer and exchange of apolipoproteins among various lipoprotein classes during metabolism of lipoprotein particles

  2. Angiotensin I-Converting Enzyme (ACE Inhibitory Activity and ACE Inhibitory Peptides of Salmon (Salmo salar Protein Hydrolysates Obtained by Human and Porcine Gastrointestinal Enzymes

    Małgorzata Darewicz

    2014-08-01

    Full Text Available The objectives of the present study were two-fold: first, to detect whether salmon protein fractions possess angiotensin I-converting enzyme (ACE inhibitory properties and whether salmon proteins can release ACE inhibitory peptides during a sequential in vitro hydrolysis (with commercial porcine enzymes and ex vivo digestion (with human gastrointestinal enzymes. Secondly, to evaluate the ACE inhibitory activity of generated hydrolysates. A two-step ex vivo and in vitro model digestion was performed to simulate the human digestion process. Salmon proteins were degraded more efficiently by porcine enzymes than by human gastrointestinal juices and sarcoplasmic proteins were digested/hydrolyzed more easily than myofibrillar proteins. The ex vivo digested myofibrillar and sarcoplasmic duodenal samples showed IC50 values (concentration required to decrease the ACE activity by 50% of 1.06 and 2.16 mg/mL, respectively. The in vitro hydrolyzed myofibrillar and sarcoplasmic samples showed IC50 values of 0.91 and 1.04 mg/mL, respectively. Based on the results of in silico studies, it was possible to identify 9 peptides of the ex vivo hydrolysates and 7 peptides of the in vitro hydrolysates of salmon proteins of 11 selected peptides. In both types of salmon hydrolysates, ACE-inhibitory peptides IW, IY, TVY and VW were identified. In the in vitro salmon protein hydrolysates an ACE-inhibitory peptides VPW and VY were also detected, while ACE-inhibitory peptides ALPHA, IVY and IWHHT were identified in the hydrolysates generated with ex vivo digestion. In our studies, we documented ACE inhibitory in vitro effects of salmon protein hydrolysates obtained by human and as well as porcine gastrointestinal enzymes.

  3. Drying Methods Alter Angiotensin-I Converting Enzyme Inhibitory Activity, Antioxidant Properties, and Phenolic Constituents of African Mistletoe (Loranthus bengwensis L) Leaves.

    Oboh, Ganiyu; Omojokun, Olasunkanmi Seun; Ademiluyi, Adedayo Oluwaseun

    2016-10-01

    This study investigated the most appropriate drying method (sun drying, oven drying, or air drying) for mistletoe leaves obtained from almond tree. The phenolic constituents were characterized using high-performance liquid chromatography-diode array detector, while the inhibitory effect of the aqueous extracts of the leaves on angiotensin-I converting enzyme (ACE) was determined in vitro as also the antioxidant properties. Oven-dried extract (kidney [276.09 μg/mL] and lungs [303.41 μg/mL]) had the highest inhibitory effect on ACE, while air-dried mistletoe extract (kidney [304.47 μg/mL] and lungs [438.72 μg/mL]) had the least. Furthermore, the extracts dose-dependently inhibited Fe(2+) and sodium nitroprusside-induced lipid peroxidation in rat's heart and kidney. Also, all extracts exhibited antioxidative properties as typified by their radical scavenging and Fe-chelating ability. Findings from this study revealed that oven drying is the best of the 3 drying methods used for mistletoe obtained from almond host tree, thus confirming that diversity in drying methods leads to variation in phenolic constituents and biological activity of plants. © The Author(s) 2015.

  4. Enzymes inhibitory and radical scavenging potentials of two selected tropical vegetable (Moringa oleifera and Telfairia occidentalis leaves relevant to type 2 diabetes mellitus

    Tajudeen O. Jimoh

    Full Text Available ABSTRACT Moringa oleifera Lam., Moringaceae, and Telfairia occidentalis Hook. f., Curcubitaceae, leaves are two tropical vegetables of medicinal properties. In this study, the inhibitory activities and the radical scavenging potentials of these vegetables on relevant enzymes of type 2-diabetes (α-amylase and α-glucosidase were evaluated in vitro. HPLC-DAD was used to characterize the phenolic constituents and Fe2+-induced lipid peroxidation in rat's pancreas was investigated. Various radical scavenging properties coupled with metal chelating abilities were also determined. However, phenolic extracts from the vegetables inhibited α-amylase, α-glucosidase and chelated the tested metals (Cu2+ and Fe2+ in a concentration-dependent manner. More so, the inhibitory properties of phenolic rich extracts from these vegetables could be linked to their radical scavenging abilities. Therefore, this study may offer a promising prospect for M. oleifera and T. occidentalis leaves as a potential functional food sources in the management of type 2-diabetes mellitus.

  5. Comparison of pinniped and cetacean prey tissue lipids with lipids of their elasmobranch predator.

    Davidson, Bruce; Cliff, Geremy

    2014-01-01

    The great white shark is known to include pinnipeds and cetaceans in its diet. Both groups of marine mammals deposit thick blubber layers around their bodies. Elasmobranchs do not produce adipose tissue, but rather store lipid in their livers, thus a great white predating on a marine mammal will deposit the lipids in its liver until required. Samples from great white liver and muscle, Cape fur seal, Indian Ocean bottlenose dolphin and common dolphin liver, muscle and blubber were analyzed for their lipid and fatty acid profiles. The great white liver and marine mammal blubber samples showed a considerable degree of homogeneity, but there were significant differences when comparing between the muscle samples. Blubber from all three marine mammal species was calculated to provide greater than 95% of lipid intake for the great white shark from the tissues analyzed. Sampling of prey blubber may give a good indication of the lipids provided to the shark predator.

  6. The impact of lipid composition on the stability of the tear fluid lipid layer

    Kulovesi, P.; Telenius, J.; Koivuniemi, A.

    2012-01-01

    The tear fluid protects the corneal epithelium from drying and pathogens and it also provides nutrients to these cells. Tear fluid is composed of an aqueous layer as well as a lipid layer that resides at the air-tear interface. The function of the lipid layer is to lower the surface tension of th......-neutral lipid ratio. The results provide a plausible rationale for the development of dry eye syndrome in blepharitis patients.......The tear fluid protects the corneal epithelium from drying and pathogens and it also provides nutrients to these cells. Tear fluid is composed of an aqueous layer as well as a lipid layer that resides at the air-tear interface. The function of the lipid layer is to lower the surface tension...

  7. Effect of tetrahydrocurcumin on lipid peroxidation and lipids in streptozotocin-nicotinamide-induced diabetic rats.

    Murugan, Pidaran; Pari, Leelavinothan

    2006-08-01

    Hyperlipidaemia is an associated complication of diabetes mellitus. We recently reported that tetrahydrocurcumin lowered the blood glucose in diabetic rats. In the present study, we have investigated the effect of tetrahydrocurcumin, one of the active metabolites of curcumin on lipid profile and lipid peroxidation in streptozotocin-nicotinamide-induced diabetic rats. Tetrahydrocurcumin 80 mg/kg body weight was administered orally to diabetic rats for 45 days, resulted a significant reduction in blood glucose and significant increase in plasma insulin in diabetic rats, which proved its antidiabetic effect. Tetrahydrocurcumin also caused a significant reduction in lipid peroxidation (thiobarbituric acid reactive substances and hydroperoxides) and lipids (cholesterol, triglycerides, free fatty acids and phospholipids) in serum and tissues, suggesting its role in protection against lipid peroxidation and its antihyperlipidemic effect. Tetrahydrocurcumin showed a better effect when compared with curcumin. Results of the present study indicate that tetrahydrocurcumin showed antihyperlipidaemic effect in addition to its antidiabetic effect in type 2 diabetic rats.

  8. Interaction of antimicrobial peptides with lipid membranes

    Hanulova, Maria

    2008-12-15

    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  9. Interaction of antimicrobial peptides with lipid membranes

    Hanulova, Maria

    2008-12-01

    This study aims to investigate the difference in the interaction of antimicrobial peptides with two classes of zwitterionic peptides, phosphatidylethanolamines (PE) and phosphatidylcholines (PC). Further experiments were performed on model membranes prepared from specific bacterial lipids, lipopolysaccharides (LPS) isolated from Salmonella minnesota. The structure of the lipid-peptide aqueous dispersions was studied by small-and wide-angle X-ray diffraction during heating and cooling from 5 to 85 C. The lipids and peptides were mixed at lipid-to-peptide ratios 10-10000 (POPE and POPC) or 2-50 (LPS). All experiments were performed at synchrotron soft condensed matter beamline A2 in Hasylab at Desy in Hamburg, Germany. The phases were identified and the lattice parameters were calculated. Alamethicin and melittin interact in similar ways with the lipids. Pure POPC forms only lamellar phases. POPE forms lamellar phases at low temperatures that upon heating transform into a highly curved inverse hexagonal phase. Insertion of the peptide induced inverse bicontinuous cubic phases which are an ideal compromise between the curvature stress and the packing frustration. Melittin usually induced a mixture of two cubic phases, Im3m and Pn3m, with a ratio of lattice parameters close to 1.279, related to the underlying minimal surfaces. They formed during the lamellar to hexagonal phase transition and persisted during cooling till the onset of the gel phase. The phases formed at different lipid-to-peptide ratios had very similar lattice parameters. Epitaxial relationships existed between coexisting cubic phases and hexagonal or lamellar phases due to confinement of all phases to an onion vesicle, a vesicle with several layers consisting of different lipid phases. Alamethicin induced the same cubic phases, although their formation and lattice parameters were dependent on the peptide concentration. The cubic phases formed during heating from the lamellar phase and their onset

  10. Radioprotective properties of detoxified lipid A

    Snyder, S.L.; Walden, T.L. Jr.; Patchen, M.L.

    1985-01-01

    Endotoxic lipopolysaccharide (LPS) has long been known to possess radioprotective properties. Nevertheless, the toxicity of LPS, or its principal bioactive component, Lipid A, has detracted from its potential use as a radioprotectant. Recently, a relatively non-toxic monophosphoryl Lipid A that retains many of the immunobiological properties of native LPS has been prepared from a polyaccharide-deficient and heptoseless Re mutant strain of S. minnesota. The authors conducted experiments that evaluated and compared the radioprotective efficiency of native endotoxin, as well as the mono (detoxified) and diphosphoryl (toxic) forms of Lipid A, in both responder (CD2F1 and C3H/HeN) and non-responder (C3H/HeJ) mice. It has been found that the optimal dose for the mono- and diphosphoryl Lipid A are approximately the same (800 μg/kg in CD2F1 mice), and that both compounds provide maximum protection when administered 24 h before exposure to an LD100 dose of cobalt - 60 gamma radiation. Possible mechanisms for the radioprotective action of detoxified Lipid A are suggested

  11. Atomistic Monte Carlo Simulation of Lipid Membranes

    Daniel Wüstner

    2014-01-01

    Full Text Available Biological membranes are complex assemblies of many different molecules of which analysis demands a variety of experimental and computational approaches. In this article, we explain challenges and advantages of atomistic Monte Carlo (MC simulation of lipid membranes. We provide an introduction into the various move sets that are implemented in current MC methods for efficient conformational sampling of lipids and other molecules. In the second part, we demonstrate for a concrete example, how an atomistic local-move set can be implemented for MC simulations of phospholipid monomers and bilayer patches. We use our recently devised chain breakage/closure (CBC local move set in the bond-/torsion angle space with the constant-bond-length approximation (CBLA for the phospholipid dipalmitoylphosphatidylcholine (DPPC. We demonstrate rapid conformational equilibration for a single DPPC molecule, as assessed by calculation of molecular energies and entropies. We also show transition from a crystalline-like to a fluid DPPC bilayer by the CBC local-move MC method, as indicated by the electron density profile, head group orientation, area per lipid, and whole-lipid displacements. We discuss the potential of local-move MC methods in combination with molecular dynamics simulations, for example, for studying multi-component lipid membranes containing cholesterol.

  12. Infrared spectroscopy of fluid lipid bilayers.

    Hull, Marshall C; Cambrea, Lee R; Hovis, Jennifer S

    2005-09-15

    Infrared spectroscopy is a powerful technique for examining lipid bilayers; however, it says little about the fluidity of the bilayer-a key physical aspect. It is shown here that it is possible to both acquire spectroscopic data of supported lipid bilayer samples and make measurements of the membrane fluidity. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FT-IR) is used to obtain the spectroscopic information and fluorescence recovery after photobleaching (FRAP) is used to determine the fluidity of the samples. In the infrared spectra of lipid bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, the following major peaks were observed; nu(as)(CH3) 2954 cm(-1), nu(s)(CH3) 2870 cm(-1), nu(as)(CH2) 2924 cm(-1), nu(s)(CH2) 2852 cm(-1), nu(C=O) 1734 cm(-1), delta(CH2) 1463-1473 cm(-1), nu(as)(PO2-) 1226 cm(-1), nu(s)(PO2-) 1084 cm(-1), and nu(as)(N+(CH3)3) 973 cm(-1). The diffusion coefficient of the same lipid bilayer was measured to be 3.5 +/- 0.5 micom(2)/s with visual recovery also noted through use of epifluorescence microscopy. FRAP and visual data confirm the formation of a uniform, mobile supported lipid bilayer. The combination of ATR-FT-IR and FRAP provides complementary data giving a more complete picture of fully hydrated model membrane systems.

  13. Do lipids shape the eukaryotic cell cycle?

    Furse, Samuel; Shearman, Gemma C

    2018-01-01

    Successful passage through the cell cycle presents a number of structural challenges to the cell. Inceptive studies carried out in the last five years have produced clear evidence of modulations in the lipid profile (sometimes referred to as the lipidome) of eukaryotes as a function of the cell cycle. This mounting body of evidence indicates that lipids play key roles in the structural transformations seen across the cycle. The accumulation of this evidence coincides with a revolution in our understanding of how lipid composition regulates a plethora of biological processes ranging from protein activity through to cellular signalling and membrane compartmentalisation. In this review, we discuss evidence from biological, chemical and physical studies of the lipid fraction across the cell cycle that demonstrate that lipids are well-developed cellular components at the heart of the biological machinery responsible for managing progress through the cell cycle. Furthermore, we discuss the mechanisms by which this careful control is exercised. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  14. Intravenous Lipids for Preterm Infants: A Review

    Ghassan S. A. Salama

    2015-01-01

    Full Text Available Extremely low birth weight infants (ELBW are born at a time when the fetus is undergoing rapid intrauterine brain and body growth. Continuation of this growth in the first several weeks postnatally during the time these infants are on ventilator support and receiving critical care is often a challenge. These infants are usually highly stressed and at risk for catabolism. Parenteral nutrition is needed in these infants because most cannot meet the majority of their nutritional needs using the enteral route. Despite adoption of a more aggressive approach with amino acid infusions, there still appears to be a reluctance to use early intravenous lipids. This is based on several dogmas that suggest that lipid infusions may be associated with the development or exacerbation of lung disease, displace bilirubin from albumin, exacerbate sepsis, and cause CNS injury and thrombocytopena. Several recent reviews have focused on intravenous nutrition for premature neonate, but very little exists that provides a comprehensive review of intravenous lipid for very low birth and other critically ill neonates. Here, we would like to provide a brief basic overview, of lipid biochemistry and metabolism of lipids, especially as they pertain to the preterm infant, discuss the origin of some of the current clinical practices, and provide a review of the literature, that can be used as a basis for revising clinical care, and provide some clarity in this controversial area, where clinical care is often based more on tradition and dogma than science.

  15. A model of lipid rearrangements during pore formation in the DPPC lipid bilayer.

    Wrona, Artur; Kubica, Krystian

    2017-07-10

    The molecular bases of pore formation in the lipid bilayer remain unclear, as do the exact characteristics of their sizes and distributions. To understand this process, numerous studies have been performed on model lipid membranes including cell-sized giant unilamellar vesicles (GUV). The effect of an electric field on DPPC GUV depends on the lipid membrane state: in the liquid crystalline phase the created pores have a cylinder-like shape, whereas in the gel phase a crack has been observed. The aim of the study was to investigate the geometry of pores created in a lipid bilayer in gel and liquid crystalline phases in reference to literature experimental data. A mathematical model of the pore in a DPPC lipid bilayer developed based on the law of conservation of mass and the assumption of constant volume of lipid molecules, independent of their conformation, allows for analysis of pore shape and accompanying molecular rearrangements. The membrane area occupied by the pore of a cylinder-like shape is greater than the membrane area occupied by lipid molecules creating the pore structure (before pore appearance). Creation of such pores requires more space, which can be achieved by conformational changes of lipid chains toward a more compact state. This process is impossible for a membrane in the most compact, gel phase. We show that the geometry of the pores formed in the lipid bilayer in the gel phase must be different from the cylinder shape formed in the lipid bilayer in a liquid crystalline state, confirming experimental studies. Furthermore, we characterize the occurrence of the 'buffer' zone surrounding pores in the liquid crystalline phase as a mechanism of separation of neighbouring pores.

  16. On the interaction between fluoxetine and lipid membranes: Effect of the lipid composition

    Pham, Vy T.; Nguyen, Trinh Q.; Dao, Uyen P. N.; Nguyen, Trang T.

    2018-02-01

    Molecular interaction between the antidepressant fluoxetine and lipid bilayers was investigated in order to provide insights into the drug's incorporation to lipid membranes. In particular, the effects of lipid's unsaturation degree and cholesterol content on the partitioning of fluoxetine into large unilamellar vesicles (LUVs) comprised of unsaturated 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and saturated 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were evaluated using second derivative spectrophotometry and Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR). It was found that fluoxetine partitioned to a greater extent into the liquid-crystalline DOPC LUVs than into the solid-gel DPPC LUVs. The lipid physical state dependence of drug partitioning was verified by increasing the temperature in which the partition coefficient of fluoxetine significantly increased upon the change of the lipid phase from solid-gel to liquid-crystalline. The incorporation of 28 mol% cholesterol into the LUVs exerted a significant influence on the drug partitioning into both DOPC and DPPC LUVs. The ATR-FTIR study revealed that fluoxetine perturbed the conformation of DOPC more strongly than that of DPPC due to the cis-double bonds in the lipid acyl chains. Fluoxetine possibly bound to the carbonyl moiety of the lipids through the hydrogen bonding formation while displaced some water molecules surrounding the PO2- regions of the lipid head groups. Cholesterol, however, could lessen the interaction between fluoxetine and the carbonyl groups of both DOPC and DPPC LUVs. These findings provided a better understanding of the role of lipid structure and cholesterol on the interaction between fluoxetine and lipid membranes, shedding more light into the drug's therapeutic action.

  17. Lipid binding defects and perturbed synaptogenic activity of a Collybistin R290H mutant that causes epilepsy and intellectual disability.

    Papadopoulos, Theofilos; Schemm, Rudolf; Grubmüller, Helmut; Brose, Nils

    2015-03-27

    Signaling at nerve cell synapses is a key determinant of proper brain function, and synaptic defects--or synaptopathies--are at the basis of many neurological and psychiatric disorders. In key areas of the mammalian brain, such as the hippocampus or the basolateral amygdala, the clustering of the scaffolding protein Gephyrin and of γ-aminobutyric acid type A receptors at inhibitory neuronal synapses is critically dependent upon the brain-specific guanine nucleotide exchange factor Collybistin (Cb). Accordingly, it was discovered recently that an R290H missense mutation in the diffuse B-cell lymphoma homology domain of Cb, which carries the guanine nucleotide exchange factor activity, leads to epilepsy and intellectual disability in human patients. In the present study, we determined the mechanism by which the Cb(R290H) mutation perturbs inhibitory synapse formation and causes brain dysfunction. Based on a combination of biochemical, cell biological, and molecular dynamics simulation approaches, we demonstrate that the R290H mutation alters the strength of intramolecular interactions between the diffuse B-cell lymphoma homology domain and the pleckstrin homology domain of Cb. This defect reduces the phosphatidylinositol 3-phosphate binding affinity of Cb, which limits its normal synaptogenic activity. Our data indicate that impairment of the membrane lipid binding activity of Cb and a consequent defect in inhibitory synapse maturation represent a likely molecular pathomechanism of epilepsy and mental retardation in humans. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Arabidopsis lipid droplet-associated protein (LDAP)–interacting protein (LDIP) influences lipid droplet size and neutral lipid homeostasis in both leaves and seeds

    Cytoplasmic lipid droplets (LDs) are found in all types of plant cells where they are derived from the endoplasmic reticulum and function as a repository for neutral lipids, as well as serving in lipid remodelling and signalling. However, the mechanisms underlying the formation and functioning of pl...

  19. Parenteral lipid administration to very-low-birth-weight infants-early introduction of lipids and use of new lipid emulsions: a systematic review and meta-analysis

    Vlaardingerbroek, Hester; Veldhorst, Margriet A. B.; Spronk, Sandra; van den Akker, Chris H. P.; van Goudoever, Johannes B.

    2012-01-01

    Background: The use of intravenous lipid emulsions in preterm infants has been limited by concerns regarding impaired lipid tolerance. As a result, the time of initiation of parenteral lipid infusion to very-low-birth-weight (VLBW) infants varies widely among different neonatal intensive care units.

  20. Lipid Bilayer Composition Affects Transmembrane Protein Orientation and Function

    Katie D. Hickey

    2011-01-01

    Full Text Available Sperm membranes change in structure and composition upon ejaculation to undergo capacitation, a molecular transformation which enables spermatozoa to undergo the acrosome reaction and be capable of fertilization. Changes to the membrane environment including lipid composition, specifically lipid microdomains, may be responsible for enabling capacitation. To study the effect of lipid environment on proteins, liposomes were created using lipids extracted from bull sperm membranes, with or without a protein (Na+ K+-ATPase or -amylase. Protein incorporation, function, and orientation were determined. Fluorescence resonance energy transfer (FRET confirmed protein inclusion in the lipid bilayer, and protein function was confirmed using a colourometric assay of phosphate production from ATP cleavage. In the native lipid liposomes, ATPase was oriented with the subunit facing the outer leaflet, while changing the lipid composition to 50% native lipids and 50% exogenous lipids significantly altered this orientation of Na+ K+-ATPase within the membranes.

  1. Apolipoprotein gene involved in lipid metabolism

    Rubin, Edward; Pennacchio, Len A.

    2007-07-03

    Methods and materials for studying the effects of a newly identified human gene, APOAV, and the corresponding mouse gene apoAV. The sequences of the genes are given, and transgenic animals which either contain the gene or have the endogenous gene knocked out are described. In addition, single nucleotide polymorphisms (SNPs) in the gene are described and characterized. It is demonstrated that certain SNPs are associated with diseases involving lipids and triglycerides and other metabolic diseases. These SNPs may be used alone or with SNPs from other genes to study individual risk factors. Methods for intervention in lipid diseases, including the screening of drugs to treat lipid-related or diabetic diseases are also disclosed.

  2. ER Stress and Lipid Metabolism in Adipocytes

    Beth S. Zha

    2012-01-01

    Full Text Available The role of endoplasmic reticulum (ER stress is a rapidly emerging field of interest in the pathogenesis of metabolic diseases. Recent studies have shown that chronic activation of ER stress is closely linked to dysregulation of lipid metabolism in several metabolically important cells including hepatocytes, macrophages, β-cells, and adipocytes. Adipocytes are one of the major cell types involved in the pathogenesis of the metabolic syndrome. Recent advances in dissecting the cellular and molecular mechanisms involved in the regulation of adipogenesis and lipid metabolism indicate that activation of ER stress plays a central role in regulating adipocyte function. In this paper, we discuss the current understanding of the potential role of ER stress in lipid metabolism in adipocytes. In addition, we touch upon the interaction of ER stress and autophagy as well as inflammation. Inhibition of ER stress has the potential of decreasing the pathology in adipose tissue that is seen with energy overbalance.

  3. Autophagy, lipophagy and lysosomal lipid storage disorders.

    Ward, Carl; Martinez-Lopez, Nuria; Otten, Elsje G; Carroll, Bernadette; Maetzel, Dorothea; Singh, Rajat; Sarkar, Sovan; Korolchuk, Viktor I

    2016-04-01

    Autophagy is a catabolic process with an essential function in the maintenance of cellular and tissue homeostasis. It is primarily recognised for its role in the degradation of dysfunctional proteins and unwanted organelles, however in recent years the range of autophagy substrates has also been extended to lipids. Degradation of lipids via autophagy is termed lipophagy. The ability of autophagy to contribute to the maintenance of lipo-homeostasis becomes particularly relevant in the context of genetic lysosomal storage disorders where perturbations of autophagic flux have been suggested to contribute to the disease aetiology. Here we review recent discoveries of the molecular mechanisms mediating lipid turnover by the autophagy pathways. We further focus on the relevance of autophagy, and specifically lipophagy, to the disease mechanisms. Moreover, autophagy is also discussed as a potential therapeutic target in several key lysosomal storage disorders. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Lipids and fatty acids in roasted chickens.

    Souza, S A; Visentainer, J V; Matsushita, M; Souza, N E

    1999-09-01

    Total lipids from meat portions of breast, thigh, wing, side and back with and without skin from 10 roasted chickens were extracted with chloroform and methanol and gravimetrically determined, and their fatty acids were analysed as methyl esters by gaseous chromatography, using a flame ionization detector and capillary column. The main fatty acids found were: C16:0, C18:1 omega 9, and C18:2 omega 6. The average ratio observed between PUFA/SFA was of 0.98, mainly due to the great concentration of the C18:2 omega 6 fatty acid, with an average of 26.75%. Regarding to the lipids content, the skinless breast showed the lowest content, 0.78 g/100 g, while the back with skin was the one with the highest content, 12.13 g/100 g except for the pure skin, with 26.54 grams of lipids by 100 grams.

  5. Biosynthesis and function of plant lipids

    Thomson, W.W.; Mudd, J.B.; Gibbs, M.

    1983-01-01

    The Sixth Annual Symposium in Botany and Plant Physiology was held January 13-15, 1983, at the University of California, Riverside. This volume comprises the papers that were presented. Subjects discussed at the symposium covered a wide range in the field of plant lipids. Biosynthesis of lipids occupied an important fraction of the presentations at the symposium. Subjects included detailed studies of the enzymes of fatty acid synthesis, several discussions of the incorporation of fatty acids into glycerolipids and the further modification of the fatty acids, and the synthesis of glycerolipids and desaturation of fatty acids in both maturing oilseeds and chloroplasts. The physicochemical studies of glycerolipids and sterols in artificial membranes have led to distinct conclusions about their behaviour which must be relevant in the biological membrane. Results on the functional consequences of modifying the galactolipid composition in the chloroplast were an encouraging sign of progress in the attempts to relate membrane lipid composition to physiological function

  6. Bioactive lipids in kidney physiology and pathophysiology

    Daria Sałata

    2014-01-01

    Full Text Available Lipids not only have structural functions, but also play an important role as signaling and regulatory molecules and participate in many cellular processes such as proliferation, differentiation, migration, and apoptosis. Bioactive lipids act both as extracellular mediators, which are associated with receptors on the surface of cells, and intracellular mediators triggering different signal pathways. They are present and active in physiological conditions, and are also involved in the pathogenesis of inflammation, asthma, cancer, diabetes, and hypertension. Bioactive lipids such as derivatives of arachidonic acid and sphingolipids have an important role in renal development, physiology and in many renal diseases. Some of them are potential indicators of kidney damage degree and/or function of the transplanted kidneys.

  7. Serum lipids in hypothyroidism: Our experience.

    Prakash, Archana; Lal, Ashok Kumar

    2006-09-01

    In order to determine whether the screening of lipid profile is justified in patients with hypothyroidism we estimated serum lipids in cases having different levels of serum TSH. 60 patients of hypothyroidism in the age group of 20 to 60 yrs were studied for thyroid profile over a period of one year. On the basis of serum TSH level the cases were divided into three groups: In the first group TSH concentration was 8.8±2.99 μlU/ml, 95% confidence interval (Cl) 8.8±1.07, whereas serum total cholesterol and LDL-chol levels were 196±37.22 and 126±29.17 mg/dl respectively. The statistical analysis of these two groups showed a significant correlation between raised TSH levels and serum total cholesterol and LDL-chol (Phypothyrodism is associated with changes in lipid profile.

  8. Shape transitions in anisotropic multicomponent lipid tubules

    Tim eAtherton

    2016-05-01

    Full Text Available Abstract Ternary mixtures of saturated and unsaturated lipids together with cholesterol can be induced to phase separate by photo-peroxidation into lipid-ordered Lo and lipid-disordered Ld domains. Because these have different mechanical properties, the phase separation is accompanied by dramatic changes in morphology. This work considers a tubule composed of Ld phase with Lo phase inclusions that possess greater rigidity; this system has been shown experimentally by Yuan and coworkers to spontaneously adopt either banded or disc configurations following phase separation. The static behaviour of inter-domain interactions is analyzed in each of these geometries by solving the linearized shape equations. These calculations suggest a possible mechanism by which the two structures form.

  9. Inhibitory effect of common microfluidic materials on PCR outcome

    Kodzius, Rimantas

    2012-02-20

    Microfluidic chips have a variety of applications in the biological sciences and medicine. In contrast with traditional experimental approaches, microfluidics entails lower sample and reagent consumption, allows faster reactions and enables efficient separation. Additionally microfluidics offers other advantages accruing from the fluids’ various distinct behaviors, such as energy dissipation, fluidic resistance, laminar flow, and surface tension. Biological molecules suspended in fluid and transported through microfluidics channels interact with the channel-wall material. This interaction is even stronger in high surface-area-to-volume ratio (SAVR) microfluidic channels. Adsorption and inhibition of biomolecules occur when these materials come in contact with biomolecular reaction components. Polymerase chain reaction (PCR) is a thermal cycling procedure for amplifying target DNA. The PCR compatibility of silicon, silicon dioxide (SiO2) and other surfaces have been studied; however the results are inconclusive. Usually for protein-surface interaction measurements, bulky and expensive equipment is used, such as Atomic Force Microscopy (AFM), Scanning or Transmission Electron Microscopy (SEM, TEM), spectrophotometric protein concentration measurement, Fourier transform infrared spectroscopy (FTIR) or X-Ray photoelectron spectroscopy (XPS). \\tThe PCR reaction components include the DNA template, primers, DNA polymerase (the main component), dNTPs, a buffer, divalent ions (MgCl2), and KCl. \\tWe designed a simple, relatively quick measurement that only requires a PCR cycler; thus it mimics actual conditions in PCR cycling. In our study, we evaluated the inhibitory affect of different materials on PCR, which is one of the most frequently used enzymatic reactions in microfluidics. PCR reaction optimization through choice of surface materials is of the upmost importance, as it enables and improves enzymatic reaction in microfluidics. Our assessment of the PCR

  10. The role of dopamine in inhibitory control in smokers and non-smokers: a pharmacological fMRI study

    Luijten, Maartje; Veltman, Dick J.; Hester, Robert; Smits, Marion; Nijs, Ilse M. T.; Pepplinkhuizen, Lolke; Franken, Ingmar H. A.

    2013-01-01

    Contemporary theoretical models of substance dependence posit that deficits in inhibitory control play an important role in substance dependence. The neural network underlying inhibitory control and its association with substance dependence have been widely investigated. However, the pharmacology of

  11. The role of dopamine in inhibitory control in smokers and non-smokers: A pharmacological fMRI study

    Luijten, M.; Veltman, D.J.; Hester, R.; Smits, M.; Nijs, I.M.T.; Pepplinkhuizen, L.; Franken, I.H.A.

    2013-01-01

    Contemporary theoretical models of substance dependence posit that deficits in inhibitory control play an important role in substance dependence. The neural network underlying inhibitory control and its association with substance dependence have been widely investigated. However, the pharmacology of

  12. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality.

    Herd, Toria; Li, Mengjiao; Maciejewski, Dominique; Lee, Jacob; Deater-Deckard, Kirby; King-Casas, Brooks; Kim-Spoon, Jungmeen

    2018-01-01

    Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males) who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents' inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent's secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers.

  13. Selective synaptic targeting of the excitatory and inhibitory presynaptic organizers FGF22 and FGF7.

    Terauchi, Akiko; Timmons, Kendall M; Kikuma, Koto; Pechmann, Yvonne; Kneussel, Matthias; Umemori, Hisashi

    2015-01-15

    Specific formation of excitatory and inhibitory synapses is crucial for proper functioning of the brain. Fibroblast growth factor 22 (FGF22) and FGF7 are postsynaptic-cell-derived presynaptic organizers necessary for excitatory and inhibitory presynaptic differentiation, respectively, in the hippocampus. For the establishment of specific synaptic networks, these FGFs must localize to appropriate synaptic locations - FGF22 to excitatory and FGF7 to inhibitory postsynaptic sites. Here, we show that distinct motor and adaptor proteins contribute to intracellular microtubule transport of FGF22 and FGF7. Excitatory synaptic targeting of FGF22 requires the motor proteins KIF3A and KIF17 and the adaptor protein SAP102 (also known as DLG3). By contrast, inhibitory synaptic targeting of FGF7 requires the motor KIF5 and the adaptor gephyrin. Time-lapse imaging shows that FGF22 moves with SAP102, whereas FGF7 moves with gephyrin. These results reveal the basis of selective targeting of the excitatory and inhibitory presynaptic organizers that supports their different synaptogenic functions. Finally, we found that knockdown of SAP102 or PSD95 (also known as DLG4), which impairs the differentiation of excitatory synapses, alters FGF7 localization, suggesting that signals from excitatory synapses might regulate inhibitory synapse formation by controlling the distribution of the inhibitory presynaptic organizer. © 2015. Published by The Company of Biologists Ltd.

  14. Inhibitory Control Mediates the Association between Perceived Stress and Secure Relationship Quality

    Toria Herd

    2018-02-01

    Full Text Available Past research has demonstrated negative associations between exposure to stressors and quality of interpersonal relationships among children and adolescents. Nevertheless, underlying mechanisms of this association remain unclear. Chronic stress has been shown to disrupt prefrontal functioning in the brain, including inhibitory control abilities, and evidence is accumulating that inhibitory control may play an important role in secure interpersonal relationship quality, including peer problems and social competence. In this prospective longitudinal study, we examine whether changes in inhibitory control, measured at both behavioral and neural levels, mediate the association between stress and changes in secure relationship quality with parents and peers. The sample included 167 adolescents (53% males who were first recruited at age 13 or 14 years and assessed annually three times. Adolescents’ inhibitory control was measured by their behavioral performance and brain activities, and adolescents self-reported perceived stress levels and relationship quality with mothers, fathers, and peers. Results suggest that behavioral inhibitory control mediates the association between perceived stress and adolescent’s secure relationship quality with their mothers and fathers, but not their peers. In contrast, given that stress was not significantly correlated with neural inhibitory control, we did not further test the mediation path. Our results highlight the role of inhibitory control as a process through which stressful life experiences are related to impaired secure relationship quality between adolescents and their mothers and fathers.

  15. Identification of dipeptidyl peptidase-IV inhibitory peptides from mare whey protein hydrolysates.

    Song, J J; Wang, Q; Du, M; Ji, X M; Mao, X Y

    2017-09-01

    Inhibition of dipeptidyl peptidase-IV (DPP-IV) activity is a promising strategy for treatment of type 2 diabetes. In the current study, DPP-IV inhibitory peptides were identified from mare whey protein hydrolysates obtained by papain. The results showed that all the mare whey protein hydrolysates obtained at various hydrolysis durations possessed more potent DPP-IV inhibitory activity compared with intact whey protein. The 4-h hydrolysates showed the greatest DPP-IV inhibitory activity with half-maximal inhibitory concentration of 0.18 mg/mL. The 2 novel peptides from 4-h hydrolysate fractions separated by successive chromatographic steps were characterized by liquid chromatography-electrospray ionization tandem mass spectrometry. The novel peptides Asn-Leu-Glu-Ile-Ile-Leu-Arg and Thr-Gln-Met-Val-Asp-Glu-Glu-Ile-Met-Glu-Lys-Phe-Arg, which corresponded to β-lactoglobulin 1 f(71-77) and β-lactoglobulin 1 f(143-155), demonstrated DPP-IV inhibitory activity with half-maximal inhibitory concentrations of 86.34 and 69.84 μM, respectively. The DPP-IV inhibitory activity of the 2 peptides was retained or even improved after simulated gastrointestinal digestion in vitro. Our findings indicate that mare whey protein-derived peptides may possess potential as functional food ingredients in the management of type 2 diabetes. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Distinguishing between impairments of working memory and inhibitory control in cases of early dementia.

    Crawford, Trevor J; Higham, Steve

    2016-01-29

    Dementia (most notably, Alzheimer's Disease) is often associated with impairments of both working memory and inhibitory control. However, it is unclear whether these are functionally distinct impairments. We addressed the issue of whether working memory and inhibitory control can be dissociated, using data from a sample of patients who were recruited in a longitudinal study (Crawford et al., 2013, 2015). The first case revealed a preserved working memory capacity together with poor inhibitory control in the anti-saccade task. A longitudinal follow-up revealed that the defective inhibitory control emerged 12-months before the dementia was evident on the mini-mental state examination assessment. A second case revealed a poor working memory together with a well-preserved level of inhibitory control. The dissociation of working memory and inhibitory control was confirmed statistically in 7 additional cases. These findings yield converging evidence that working memory and inhibitory control are distinct cognitive operations and challenges the Kimberg and Farah (2000) cognitive model of working memory. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Inhibitory mechanism of the matching heuristic in syllogistic reasoning.

    Tse, Ping Ping; Moreno Ríos, Sergio; García-Madruga, Juan Antonio; Bajo Molina, María Teresa

    2014-11-01

    A number of heuristic-based hypotheses have been proposed to explain how people solve syllogisms with automatic processes. In particular, the matching heuristic employs the congruency of the quantifiers in a syllogism—by matching the quantifier of the conclusion with those of the two premises. When the heuristic leads to an invalid conclusion, successful solving of these conflict problems requires the inhibition of automatic heuristic processing. Accordingly, if the automatic processing were based on processing the set of quantifiers, no semantic contents would be inhibited. The mental model theory, however, suggests that people reason using mental models, which always involves semantic processing. Therefore, whatever inhibition occurs in the processing implies the inhibition of the semantic contents. We manipulated the validity of the syllogism and the congruency of the quantifier of its conclusion with those of the two premises according to the matching heuristic. A subsequent lexical decision task (LDT) with related words in the conclusion was used to test any inhibition of the semantic contents after each syllogistic evaluation trial. In the LDT, the facilitation effect of semantic priming diminished after correctly solved conflict syllogisms (match-invalid or mismatch-valid), but was intact after no-conflict syllogisms. The results suggest the involvement of an inhibitory mechanism of semantic contents in syllogistic reasoning when there is a conflict between the output of the syntactic heuristic and actual validity. Our results do not support a uniquely syntactic process of syllogistic reasoning but fit with the predictions based on mental model theory. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Training on Working Memory and Inhibitory Control in Young Adults

    Maria Jesus Maraver

    2016-11-01

    Full Text Available Different types of interventions have focused on trying to improve Executive Functions (EF due to their essential role in human cognition and behavior regulation. Although EF are thought to be diverse, most training studies have targeted cognitive processes related to working memory (WM, and fewer have focused on training other control mechanisms, such as inhibitory control (IC. In the present study, we aimed to investigate the differential impact of training WM and IC as compared with control conditions performing non-executive control activities. Young adults were divided into two training (WM/IC and two (active/passive control conditions. Over six sessions, the training groups engaged in three different computer-based adaptive activities (WM or IC, whereas the active control group completed a program with low control-demanding activities that mainly involved processing speed. In addition, motivation and engagement were monitored through the training. The WM-training activities required maintenance, updating and memory search processes, while those from the IC group engaged response inhibition, and interference control. All participants were pre- and post-tested in criterion tasks (n-back and Stroop, near transfer measures of WM (Operation Span and IC (Stop-Signal. Non-trained far transfer outcome measures included an abstract reasoning test (Raven’s Advanced Progressive Matrices and a well-validated experimental task (AX-CPT that provides indices of cognitive flexibility considering proactive/reactive control. Training results revealed that strongly motivated participants reached higher levels of training improvements. Regarding transfer effects, results showed specific patterns of near transfer effects depending on the type of training. Interestingly, it was only the IC training group that showed far transfer to reasoning. Finally, all trained participants showed a shift towards a more proactive mode of cognitive control, highlighting a

  19. Macrophage Migration Inhibitory Factor Mediates Proliferative GN via CD74

    Djudjaj, Sonja; Lue, Hongqi; Rong, Song; Papasotiriou, Marios; Klinkhammer, Barbara M.; Zok, Stephanie; Klaener, Ole; Braun, Gerald S.; Lindenmeyer, Maja T.; Cohen, Clemens D.; Bucala, Richard; Tittel, Andre P.; Kurts, Christian; Moeller, Marcus J.; Floege, Juergen; Ostendorf, Tammo

    2016-01-01

    Pathologic proliferation of mesangial and parietal epithelial cells (PECs) is a hallmark of various glomerulonephritides. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that mediates inflammation by engagement of a receptor complex involving the components CD74, CD44, CXCR2, and CXCR4. The proliferative effects of MIF may involve CD74 together with the coreceptor and PEC activation marker CD44. Herein, we analyzed the effects of local glomerular MIF/CD74/CD44 signaling in proliferative glomerulonephritides. MIF, CD74, and CD44 were upregulated in the glomeruli of patients and mice with proliferative glomerulonephritides. During disease, CD74 and CD44 were expressed de novo in PECs and colocalized in both PECs and mesangial cells. Stress stimuli induced MIF secretion from glomerular cells in vitro and in vivo, in particular from podocytes, and MIF stimulation induced proliferation of PECs and mesangial cells via CD74. In murine crescentic GN, Mif-deficient mice were almost completely protected from glomerular injury, the development of cellular crescents, and the activation and proliferation of PECs and mesangial cells, whereas wild-type mice were not. Bone marrow reconstitution studies showed that deficiency of both nonmyeloid and bone marrow–derived Mif reduced glomerular cell proliferation and injury. In contrast to wild-type mice, Cd74-deficient mice also were protected from glomerular injury and ensuing activation and proliferation of PECs and mesangial cells. Our data suggest a novel molecular mechanism and glomerular cell crosstalk by which local upregulation of MIF and its receptor complex CD74/CD44 mediate glomerular injury and pathologic proliferation in GN. PMID:26453615

  20. Structure of the Ebola VP35 interferon inhibitory domain.

    Leung, Daisy W; Ginder, Nathaniel D; Fulton, D Bruce; Nix, Jay; Basler, Christopher F; Honzatko, Richard B; Amarasinghe, Gaya K

    2009-01-13

    Ebola viruses (EBOVs) cause rare but highly fatal outbreaks of viral hemorrhagic fever in humans, and approved treatments for these infections are currently lacking. The Ebola VP35 protein is multifunctional, acting as a component of the viral RNA polymerase complex, a viral assembly factor, and an inhibitor of host interferon (IFN) production. Mutation of select basic residues within the C-terminal half of VP35 abrogates its dsRNA-binding activity, impairs VP35-mediated IFN antagonism, and attenuates EBOV growth in vitro and in vivo. Because VP35 contributes to viral escape from host innate immunity and is required for EBOV virulence, understanding the structural basis for VP35 dsRNA binding, which correlates with suppression of IFN activity, is of high importance. Here, we report the structure of the C-terminal VP35 IFN inhibitory domain (IID) solved to a resolution of 1.4 A and show that VP35 IID forms a unique fold. In the structure, we identify 2 basic residue clusters, one of which is important for dsRNA binding. The dsRNA binding cluster is centered on Arg-312, a highly conserved residue required for IFN inhibition. Mutation of residues within this cluster significantly changes the surface electrostatic potential and diminishes dsRNA binding activity. The high-resolution structure and the identification of the conserved dsRNA binding residue cluster provide opportunities for antiviral therapeutic design. Our results suggest a structure-based model for dsRNA-mediated innate immune antagonism by Ebola VP35 and other similarly constructed viral antagonists.