WorldWideScience

Sample records for color moon rotation

  1. MRS2016: Rigid Moon Rotation Series in the Relativistic Approximation

    Science.gov (United States)

    Pashkevich, V. V.

    2017-03-01

    The rigid Moon rotation problem is studied for the relativistic (kinematical) case, in which the geodetic perturbations in the Moon rotation are taken into account. As the result of this research the high-precision Moon Rotation Series MRS2016 in the relativistic approximation was constructed for the first time and the discrepancies between the high-precision numerical and the semi-analytical solutions of the rigid Moon rotation were investigated with respect to the fixed ecliptic of epoch J2000, by the numerical and analytical methods. The residuals between the numerical solution and MRS2016 in the perturbing terms of the physical librations do not exceed 80 mas and 10 arc seconds over 2000 and 6000 years, respectively.

  2. The Wibbly-Wobbly Moon: Rotational Dynamics of the Moon After Large Impacts

    Science.gov (United States)

    Keane, J. T.; Johnson, B. C.; Matsuyama, I.; Siegler, M.

    2017-12-01

    The spins of planets are not constant with time; they continuously evolve in response to both external and internal forces. One of the most dramatic ways a planet's spin can change is via impacts. Impacts change the planet's angular momentum, energy, and moments of inertia. These changes can have important consequences for the geology of the planet. For the well-studied case of the Moon, these repercussions include everything from changing the orientation of the magnetic field, controlling the geometry of fault networks, and altering the stability of volatiles (e.g. water ice) in permanently shadowed regions. While previous studies have investigated the dynamical effects of impacts on the Moon, most use simplistic models for the impact basin formation process—often only considering the impulsive change in the Moon's angular momentum, and occasionally the change in the Moon's moments of inertia from a simplified basin geometry (e.g. a cylindrical hole surrounded by a cylindrical ejecta blanket). These simplifications obscure some of the subtler and more complicated dynamics that occur in the aftermath of an impact. In this work, we present new model results for the rotational dynamics of the Moon after large, basin-forming impacts. We couple iSALE hydrocode simulations with the analytical and numerical formalisms of rotational dynamics. These simulations allow us to quantitatively track how different impact processes alter the Moon's moments of inertia, including basin formation, mantle uplift, impact heating, and ejecta-blanket emplacement. This unique combination of techniques enables us to more accurately track the spin of the Moon in the aftermath of these impacts, including periods of non-synchronous and non-principal-axis rotation, libration, and long-term reorientation (true polar wander). We find that the perturbation of the Moon's moments of inertia immediately after impact is several times larger than what is expected based on the present-day gravity

  3. A robust color image watermarking algorithm against rotation attacks

    Science.gov (United States)

    Han, Shao-cheng; Yang, Jin-feng; Wang, Rui; Jia, Gui-min

    2018-01-01

    A robust digital watermarking algorithm is proposed based on quaternion wavelet transform (QWT) and discrete cosine transform (DCT) for copyright protection of color images. The luminance component Y of a host color image in YIQ space is decomposed by QWT, and then the coefficients of four low-frequency subbands are transformed by DCT. An original binary watermark scrambled by Arnold map and iterated sine chaotic system is embedded into the mid-frequency DCT coefficients of the subbands. In order to improve the performance of the proposed algorithm against rotation attacks, a rotation detection scheme is implemented before watermark extracting. The experimental results demonstrate that the proposed watermarking scheme shows strong robustness not only against common image processing attacks but also against arbitrary rotation attacks.

  4. Moon over Mauna Loa - a review of hypotheses of formation of earth's moon

    International Nuclear Information System (INIS)

    Wood, J.A.

    1986-01-01

    The present paper examines five models of lunar formation after considering the following constraints: (1) the large mass of the moon and the substantial prograde angular momentum of the earth-moon system; (2) the moon's depletion in volatile elements and iron, (3) the correspondence of oxygen isotope signatures in earth and moon, and (4) the lunar magma ocean. The models considered are: (1) capture from an independent heliocentric orbit, (2) coaccretion from a swarm of planetesimals in geocentric orbit, (3) fission from a rapidly rotating earth, (4) collisional ejection, and (5) disintegrative capture. 99 references

  5. Lunar Rotation, Orientation and Science

    Science.gov (United States)

    Williams, J. G.; Ratcliff, J. T.; Boggs, D. H.

    2004-12-01

    The Moon is the most familiar example of the many satellites that exhibit synchronous rotation. For the Moon there is Lunar Laser Ranging measurements of tides and three-dimensional rotation variations plus supporting theoretical understanding of both effects. Compared to uniform rotation and precession the lunar rotational variations are up to 1 km, while tidal variations are about 0.1 m. Analysis of the lunar variations in pole direction and rotation about the pole gives moment of inertia differences, third-degree gravity harmonics, tidal Love number k2, tidal dissipation Q vs. frequency, dissipation at the fluid-core/solid-mantle boundary, and emerging evidence for an oblate boundary. The last two indicate a fluid core, but a solid inner core is not ruled out. Four retroreflectors provide very accurate positions on the Moon. The experience with the Moon is a starting point for exploring the tides, rotation and orientation of the other synchronous bodies of the solar system.

  6. Rotation invariants from Gaussian-Hermite moments of color images

    Czech Academy of Sciences Publication Activity Database

    Yang, B.; Suk, Tomáš; Flusser, Jan; Shi, Z.; Chen, X.

    2018-01-01

    Roč. 143, č. 1 (2018), s. 282-291 ISSN 0165-1684 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Color images * Object recognition * Rotation invariants * Gaussian–Hermite moments * Joint invariants Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.110, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/suk-0479748.pdf

  7. COMBINED EFFECTS OF BINARIES AND STELLAR ROTATION ON THE COLOR-MAGNITUDE DIAGRAMS OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Li Zhongmu; Mao Caiyan; Chen Li; Zhang Qian

    2012-01-01

    About 70% of intermediate-age star clusters in the Large Magellanic Clouds have been confirmed to have broad main sequence, multiple or extended turnoffs, and dual red giant clumps. The observed result seems to be at odds with the classical idea that such clusters are simple stellar populations. Although many models have been used to explain the results via factors such as prolonged star formation history, metallicity spread, differential reddening, selection effect, observational uncertainty, stellar rotation, and binary interaction, the reason for the special color-magnitude diagrams is still uncertain. We revisit this question via the combination of stellar rotation and binary effects. As a result, it shows 'golf club' color-magnitude diagrams with broad or multiple turnoffs, dual red clumps, blue stragglers, red stragglers, and extended main sequences. Because both binaries and massive rotators are common, our result suggests that most color-magnitude diagrams, including extended turnoff or multiple turnoffs, can be explained using simple stellar populations including both binary and stellar rotation effects, or composite populations with two components.

  8. Comments on 'The origin of the Earth-Moon system'

    International Nuclear Information System (INIS)

    Savic, P.; Teleki, G.

    1986-01-01

    The main points are presented of a new hypothesis of the origin of the Earth-Moon system, developed on the basis of Savic's (1961) theory of the origin of rotation of celestial bodies. The cooling off and contraction due to gravitational attraction on vast particle systems, with the pushing out of electrons from atom shells result in a continually increasing density. Depending on the amount of mass, this pushing out can lead to the expulsion of electrons and the creation of a magnetic field by which a rotational motion is brought about. These conditions are satisfied for the Earth's mass and all larger masses. If the Earth and the Moon formed a unique body, the protoplanet, then once rotational motion had begun, the primeval spherical body must have taken the shape of a large Jacobi ellipsoid. New condensation followed, however no longer solely around the centre of the protoplanet, but also along the edge of the ellipsoid, the process leading to the creation of the dual Earth-Moon system. (Auth.)

  9. Rotation Invariant Color Retrieval

    OpenAIRE

    Swapna Borde; Udhav Bhosle

    2013-01-01

    The new technique for image retrieval using the color features extracted from images based on LogHistogram is proposed. The proposed technique is compared with Global color histogram and histogram ofcorners .It has been observed that number of histogram bins used for retrieval comparison of proposedtechnique (Log Histogram)is less as compared to Global Color Histogram and Histogram of corners. Theexperimental results on a database of 792 images with 11 classes indicate that proposed method (L...

  10. Early Dynamics of the Moon's Core

    Science.gov (United States)

    Cuk, Matija; Hamilton, Douglas; Stewart, Sarah T.

    2018-04-01

    The Moon has a small molten iron core (Williams et al. 2006). Remanent magnetization in lunar rocks likely derives from a past lunar dynamo (Wieczorek 2018 and references therein), which may have been powered by differential precession between the mantle and the core. The rotations of the lunar mantle and core were largely decoupled for much of lunar history, with a large mutual offset during the Cassini State Transition (Meyer and Wisdom, 2011). It is likely that the past work underestimated lunar obliquities, and therefore core offsets, during early lunar history (Cuk et al. 2016). Here we investigate the dynamics of the lunar core and mantle using a Lie-Poisson numerical integrator (Touma and Wisdom 2001) which includes interactions between triaxial core and mantle, as well as all gravitational and tidal effects included in the model of Cuk et al. (2016). Since we assume a rigid triaxial mantle, this model is applicable to the Moon only once it has acquired its current shape, which probably happened before the Moon reached 25 Earth radii. While some details of the core dynamics depend on our assumptions about the shape of the lunar core-mantle boundary, we can report some robust preliminary findings. The presence of the core does not change significantly the evolutionary scenario of Cuk et al. (2016). The core and mantle are indeed decoupled, with the core having a much smaller obliquity to the ecliptic than the mantle for almost all of the lunar history. The core was largely in an equivalent of Cassini State 2, with the vernal equinoxes (wrt the ecliptic) of the core and the mantle being anti-aligned. The core-mantle spin axis offset has been very large during the Moon's first billion years (this is true both in canonical and high-inclination tidal evolution), causing the lunar core to be sub-synchronous. If the ancient lunar magnetic dipole was rotating around the core axis that was inclined to the Moon's spin axis, then the magnetic poles would move across

  11. Saturn's Irregular Moon Ymir

    Science.gov (United States)

    Denk, Tilmann; Mottola, S.

    2012-10-01

    Ymir (diameter 18 km), Saturn's second largest retrograde outer or irregular moon, has been observed six times by the Cassini narrow-angle camera (NAC) during the first 7 months in 2012. The observations span phase angles from 2° up to 102° and were taken at ranges between 15 and 18 million kilometers. From such a distance, Ymir is smaller than a pixel in the Cassini NAC. The data reveal a sidereal rotation period of 11.93 hrs, which is 1.6x longer than the previously reported value (Denk et al. 2011, EPSC/DPS #1452). Reason for this discrepancy is that the rotational light curve shows a rather uncommon 3-maxima and 3-minima shape at least in the phase angle range 50° to 100°, which was not recognizable in earlier data. The data cover several rotations from different viewing and illumination geometries and allow for a convex shape inversion with possibly a unique solution for the pole direction. The model reproduces the observed light curves to a very good accuracy without requiring albedo variegation, thereby suggesting that the lightcurve is dominated by the shape of Ymir. Among Saturn's irregular moons, the phenomenon of more than two maxima and minima at moderate to high phase angles is not unique to Ymir. At least Siarnaq and Paaliaq also show light curves with a strong deviation from a double-sine curve. Their rotation periods, however, remain unknown until more data can be taken. The light curve of Phoebe is fundamentally different to Ymir's because it is mainly shaped by local albedo differences and not by shape. Other reliable rotation periods of irregular satellites measured by Cassini include: Mundilfari 6.74 h; Kari 7.70 h; Albiorix 13.32 h; Kiviuq 21.82 h. More uncertain values are: Skathi 12 h; Bebhionn 16 h; Thrymr 27 h; Erriapus 28 h.

  12. Moon (Form-Origin)

    Science.gov (United States)

    Tsiapas, Elias; Soumelidou, Despina; Tsiapas, Christos

    2017-04-01

    When the Earth was formed, it was in a state of burning heat. As time went by, temperature on the planet's surface was falling due to radiation and heat transfer, and various components (crusts) began taking solid form at the Earth's poles. The formation of crusts took place at the Earth's poles, because the stirring of burning and fluid masses on the surface of the Earth was significantly slighter there than it was on the equator. Due to centrifugal force and Coriolis Effect, these solid masses headed towards the equator; those originating from the North Pole followed a south-western course, while those originating from the South Pole followed a north-western course and there they rotated from west to east at a lower speed than the underlying burning and liquid earth, because of their lower initial linear velocity, their solid state and inertia. Because inertia is proportional to mass, the initially larger solid body swept all new solid ones, incorporating them to its western side. The density of the new solid masses was higher, because the components on the surface would freeze and solidify first, before the underlying thicker components. As a result, the western side of the initial islet of solid rocks submerged, while the east side elevated. . As a result of the above, this initial islet began to spin in reverse, and after taking on the shape of a sphere, it formed the "heart" of the Moon. The Moon-sphere, rolling on the equator, would sink the solid rocks that continued to descend from the Earth's poles. The sinking rocks partially melted because of higher temperatures in the greater depths that the Moon descended to, while part of the rocks' mass bonded with the Moon and also served as a heat-insulating material, preventing the descended side of the sphere from melting. Combined with the Earth's liquid mass that covered its emerging eastern surface, new sphere-shaped shells were created, with increased density and very powerful structural cohesion. During the

  13. Five Fabulous Flybys of the Small Inner Moons of Saturn by the Cassini Spacecraft

    Science.gov (United States)

    Buratti, B. J.; Momary, T.; Clark, R. N.; Brown, R. H.; Filacchione, G.; Mosher, J. A.; Baines, K. H.; Nicholson, P. D.

    2017-12-01

    The Saturn system possesses a number of small unique moons, including the coorbitals Janus and Epimetheus; the ring moons Pan and Daphnis; and Prometheus, Pandora, and Atlas, which orbit near the edge of the main ring system. During the last phases of the Cassini mission, when the spacecraft executed close passes to the F-ring of Saturn, five "best-ever" flybys of these moons occurred. Pan, Daphnis, Atlas, Pandora, and Epimetheus were approached at distances ranging from 6000-40,000 km. The Visual Infrared Mapping Spectrometer (VIMS) captured data from the spectral range spanning 0.35-5.1 microns, as well as capturing solar phase angles not observed before. When combined with spectra from different regions of the moons obtained throughout the mission, the VIMS observations reveal substantial changes in the depth of water-ice absorption bands and color over the moons' surfaces. These measurements show the accretion of main-ring material onto the moons, with leading sides exhibiting stronger water-ice signatures in general. Atlas and Pandora have red visible spectra similar to the A-ring and unlike other icy moons, which are blue, further revealing accretion of main ring material onto the small inner moons. In general the visible spectra of the moons gets bluer with distance from Saturn until the surface of the moons is dominated by contamination from the E-ring, which is composed of fresh ice. There is a weak correlation between color and albedo, with lower-albedo moons being redder, suggesting the existence of a dark reddish contaminant from the main ring system. The solar phase curves of the moons are similar to those of larger icy moons (unfortunately no opposition surge data was gathered). 2017 California Institute of Technology. Government sponsorship acknowledged.

  14. Periods, poles, and shapes of Saturn's irregular moons

    Science.gov (United States)

    Denk, Tilmann; Mottola, Stefano

    2016-10-01

    We report rotational-lightcurve observations of irregular moons of Saturn based on disk-integrated observations with the Narrow-Angle Camera of the Cassini spacecraft. From 24 measured rotation periods, 20 are now known with an accuracy of ~2% or better. The numbers are as follows (in hours; an '*' marks the less reliable periods): Hati 5.42; Mundilfari 6.74; Loge 6.94*; Skoll 7.26; Kari 7.70; Suttungr 7.82*, Bergelmir 8.13; Phoebe 9.274; Siarnaq 10.188; Narvi 10.21; Tarvos 10.69; Skathi 11.30; Ymir 11.922; Hyrrokkin 12.76; Greip 12.79*; Ijiraq 13.03; Albiorix 13.32; Bestla 14.624; Bebhionn 16.40; Paaliaq 18.75; Kiviuq 21.96; Erriapus 28.15; Thrymr 35 or >45* Tarqeq 76.8.More recent data strengthen the notion that objects in orbits with an inclination supplemental angle i' > 27° have significantly slower spin rates than those at i' 27°, Siarnaq, stands opposed to at least eight objects with faster spins and i' 27° bin contains all nine known prograde moons and four retrograde objects.A total of 25 out of 38 known outer moons has been observed with Cassini, and there is no chance to observe the 13 missing objects until end-of-mission. However, all unobserved objects are part of the i' 27° are known, and none of them is a fast rotator, with no exception.Several objects were observed repeatedly to determine pole directions, sidereal periods, and convex shapes. A few lightcurves have been observed to show three maxima and three minima even at low phase angles, suggesting objects with a triangular equatorial cross-section. Some objects with 2 maxima/ 2 minima are probably quite elongated. One moon even shows lightcurves with 4 maxima/ 4 minima.

  15. Irregular Saturnian Moon Lightcurves from Cassini-ISS Observations: Update

    Science.gov (United States)

    Denk, Tilmann; Mottola, S.

    2013-10-01

    Cassini ISS-NAC observations of the irregular moons of Saturn revealed various physical information on these objects. 16 synodic rotational periods: Hati (S43): 5.45 h; Mundilfari (S25): 6.74 h; Suttungr (S23): ~7.4 h; Kari (S45): 7.70 h; Siarnaq (S29): 10.14 h; Tarvos (S21): 10.66 h; Ymir (S19, sidereal period): 11.92220 h ± 0.1 s; Skathi (S27): ~12 h; Hyrrokkin (S44): 12.76 h; Ijiraq (S22): 13.03 h; Albiorix (S26): 13.32 h; Bestla (S39): 14.64 h; Bebhionn (S37): ~15.8 h; Kiviuq (S24): 21.82 h; Thrymr (S30): ~27 h; Erriapus (S28): ~28 h. The average period for the prograde-orbiting moons is ~16 h, for the retrograde moons ~11½ h (includes Phoebe's 9.2735 h from Bauer et al., AJ, 2004). Phase-angle dependent behavior of lightcurves: The phase angles of the observations range from 2° to 105°. The lightcurves which were obtained at low phase (<40°) show the 2-maxima/ 2-minima pattern expected for this kind of objects. At higher phases, more complicated lightcurves emerge, giving rough indications on shapes. Ymir pole and shape: For satellite Ymir, a convex-hull shape model and the pole-axis orientation have been derived. Ymir's north pole points toward λ = 230°±180°, β = -85°±10°, or RA = 100°±20°, Dec = -70°±10°. This is anti-parallel to the rotation axes of the major planets, indicating that Ymir not just orbits, but also rotates in a retrograde sense. The shape of Ymir resembles a triangular prism with edge lengths of ~20, ~24, and ~25 km. The ratio between the longest 25 km) and shortest axis (pole axis, ~15 km) is ~1.7. Erriapus seasons: The pole direction of object Erriapus has probably a low ecliptic latitude. This gives this moon seasons similar to the Uranian regular moons with periods where the sun stands very high in the sky over many years, and with years-long periods of permanent night. Hati density: The rotational frequency of the fastest rotator (Hati) is close to the frequency where the object would lose material from the surface if

  16. Mercury is Moon's brother

    International Nuclear Information System (INIS)

    Ksanfomalifi, L.V.

    1976-01-01

    The latest information on Mercury planet is presented obtained by studying the planet with the aid of radar and space vehicles. Rotation of Mercury about its axis has been discovered; within 2/3 of its year it executes a complete revolution about its axis. In images obtained by the ''Mariner-10'' Mercurys surface differs little from that of the Moon. The ''Mariner-10'' has also discovered the Mercurys atmosphere, which consists of extremely rarefied helium. The helium is continuously supplied to the planet by the solar wind. The Mercury's magnetic field has been discovered, whose strength is 35 x 10 -4 at the Equator and 70 x 10 -4 E at the poles. The inclination of the dipole axis to the Mercury's rotation axis is 7 deg

  17. Oscillatory-rotational processes in the Earth motion about the center of mass: Interpolation and forecast

    Science.gov (United States)

    Akulenko, L. D.; Klimov, D. M.; Markov, Yu. G.; Perepelkin, V. V.

    2012-11-01

    The celestial-mechanics approach (the spatial version of the problem for the Earth-Moon system in the field of gravity of the Sun) is used to construct a mathematical model of the Earth's rotational-oscillatory motions. The fundamental aspects of the processes of tidal inhomogeneity in the Earth rotation and the Earth's pole oscillations are studied. It is shown that the presence of the perturbing component of gravitational-tidal forces, which is orthogonal to the Moon's orbit plane, also allows one to distinguish short-period perturbations in the Moon's motion. The obtained model of rotational-oscillatory motions of the nonrigid Earth takes into account both the basic perturbations of large amplitudes and the more complicated small-scale properties of the motion due to the Moon short-period perturbations with combination frequencies. The astrometric data of the International Earth Rotation and Reference Systems Service (IERS) are used to perform numerical simulation (interpolation and forecast) of the Earth rotation parameters (ERP) on various time intervals.

  18. Did Triton Destroy Neptune's First Moons?

    Science.gov (United States)

    Kohler, Susanna

    2017-11-01

    Neptunes moon system is not what we would expect for a gas giant in our solar system. Scientists have now explored the possibility that Neptune started its life with an ordinary system of moons that was later destroyed by the capture of its current giant moon, Triton.An Odd SystemOur current understanding of giant-planet formation predicts a period of gas accretion to build up the large size of these planets. According to models, the circumplanetary gas disks that surround the planets during this time then become the birthplaces of the giant planets satellite systems, producing systems of co-planar and prograde (i.e., orbiting in the same direction as the planets rotation) satellites similar to the many-moon systems of Jupiter or Saturn.Tritons orbit is tilted relative to the inner Neptunian satellite orbits. [NASA, ESA, and A. Feild (STScI)]Neptune, however, is quirky. This gas giant has surprisingly few satellites only 14 compared to, say, the nearly 70 moons of Jupiter and most of them are extremely small. One of Neptunes moons is an exception to this, however: Triton, which contains 99.7% of the mass of Neptunes entire satellite system!Tritons orbit has a number of unusual properties. The orbit is retrograde Triton orbits in the opposite direction as Neptunes rotation which is unique behavior among large moons in our solar system. Tritons orbit is also highly inclined, and yet the moons path is nearly circular and lies very close to Neptune.The distribution of impact velocities in the authors simulations for primordial satellite interactions with Triton, in three cases of different satellite mass ratios. In the low-mass case a third of the mass ratio of the Uranian satellite system 88% of simulations ended with Triton surviving on its high-inclination orbit. The survival rate was only 12% in the high-mass case. [Adapted from Rufu et al. 2017]How did this monster of a satellite get its strange properties, and why is Neptunes system so odd compared to what we

  19. OUTCOMES AND DURATION OF TIDAL EVOLUTION IN A STAR-PLANET-MOON SYSTEM

    International Nuclear Information System (INIS)

    Sasaki, Takashi; Barnes, Jason W.; O'Brien, David P.

    2012-01-01

    We formulated tidal decay lifetimes for hypothetical moons orbiting extrasolar planets with both lunar and stellar tides. Previous works neglected the effect of lunar tides on planet rotation, and are therefore applicable only to systems in which the moon's mass is much less than that of the planet. This work, in contrast, can be applied to the relatively large moons that might be detected around newly discovered Neptune-mass and super-Earth planets. We conclude that moons are more stable when the planet/moon systems are further from the parent star, the planets are heavier, or the parent stars are lighter. Inclusion of lunar tides allows for significantly longer lifetimes for a massive moon relative to prior formulations. We expect that the semimajor axis of the planet hosting the first detected exomoon around a G-type star is 0.4-0.6 AU and is 0.2-0.4 AU for an M-type star.

  20. Color Memory

    OpenAIRE

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-01-01

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test `quarks' initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For weak color flux the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  1. On Signal Modeling of Moon-Based Synthetic Aperture Radar (SAR Imaging of Earth

    Directory of Open Access Journals (Sweden)

    Zhen Xu

    2018-03-01

    Full Text Available The Moon-based Synthetic Aperture Radar (Moon-Based SAR, using the Moon as a platform, has a great potential to offer global-scale coverage of the earth’s surface with a high revisit cycle and is able to meet the scientific requirements for climate change study. However, operating in the lunar orbit, Moon-Based SAR imaging is confined within a complex geometry of the Moon-Based SAR, Moon, and Earth, where both rotation and revolution have effects. The extremely long exposure time of Moon-Based SAR presents a curved moving trajectory and the protracted time-delay in propagation makes the “stop-and-go” assumption no longer valid. Consequently, the conventional SAR imaging technique is no longer valid for Moon-Based SAR. This paper develops a Moon-Based SAR theory in which a signal model is derived. The Doppler parameters in the context of lunar revolution with the removal of ‘stop-and-go’ assumption are first estimated, and then characteristics of Moon-Based SAR imaging’s azimuthal resolution are analyzed. In addition, a signal model of Moon-Based SAR and its two-dimensional (2-D spectrum are further derived. Numerical simulation using point targets validates the signal model and enables Doppler parameter estimation for image focusing.

  2. Rotation of a Moonless Earth

    Science.gov (United States)

    Lissauer, Jack J.; Barnes, Jason W.; Chambers, John E.

    2013-01-01

    We numerically explore the obliquity (axial tilt) variations of a hypothetical moonless Earth. Previous work has shown that the Earth's Moon stabilizes Earth's obliquity such that it remains within a narrow range, between 22.1 deg and 24.5 deg. Without lunar influence, a frequency-map analysis by Laskar et al. showed that the obliquity could vary between 0 deg. and 85 deg. This has left an impression in the astrobiology community that a large moon is necessary to maintain a habitable climate on an Earth-like planet. Using a modified version of the orbital integrator mercury, we calculate the obliquity evolution for moonless Earths with various initial conditions for up to 4 Gyr. We find that while obliquity varies significantly more than that of the actual Earth over 100,000 year timescales, the obliquity remains within a constrained range, typically 20-25 deg. in extent, for timescales of hundreds of millions of years. None of our Solar System integrations in which planetary orbits behave in a typical manner show obliquity accessing more than 65% of the full range allowed by frequency-map analysis. The obliquities of moonless Earths that rotate in the retrograde direction are more stable than those of pro-grade rotators. The total obliquity range explored for moonless Earths with rotation periods shorter than 12 h is much less than that for slower-rotating moonless Earths. A large moon thus does not seem to be needed to stabilize the obliquity of an Earth-like planet on timescales relevant to the development of advanced life.

  3. Development of analytical theory of the physical libration for a two-layer Moon

    Science.gov (United States)

    Petrova, Natalia; Barkin, Yurii; Gusev, Alexander; Ivanova, Tamara

    2010-05-01

    -project. Prognosis recommendations are made for the future experiment. The model of free rotation of the two-layer Moon is constructed, the periods of the free modes and of the librational motion of a pole are received, effects of influence of a lunar core on behavior of LPhL-harmonics caused by the solid-state rotation of the Moon are deduced. Computer simulating has revealed the sensitivity of the free libration periods to core's ellipticity and to core-mantle boundary dissipation parameters. Geometrical interpretation of the pole motion owing to the free libration is given. For the first time the theoretical model of tidal potential of the Moon is developed, on the basis of the model the analytical formulae for variations of the Stockes coefficients of the 2-nd order and of the speed of the Lunar rotation is received in dependence on time. For a two-layer structure of the Moon and the Mercury Cassini's law were stated at the first time: 1. a two-layer Moon keeps its own stationary rotation; 2. there is a splitting of Cassini nodes and angular momentums of Lunar mantle and core; 3. the same phenomenon will be observed for any two-layer planet (Mercury); 4. the differential rotation of a core and mantle is inherent to a planet as result of a generalized Cassini's Laws. Theoretical and practical methods of construction of the theory of rotation of the Earth have been successfully applied in the development of the theory of rotation of the Moon, in

  4. MOON MOON DEVI

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. MOON MOON DEVI. Articles written in Pramana – Journal of Physics. Volume 88 Issue 5 May 2017 pp 79 Research Article. Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO) · A KUMAR A M VINOD KUMAR ABHIK JASH AJIT K MOHANTY ...

  5. Theoretical predictions of the changes in the irradiance and color of light beams traveling in sugared water caused by optical rotation phenomena, and their possible applications for educational purposes

    Science.gov (United States)

    Tokumitsu, S.; Hasegawa, M.

    2018-05-01

    The coloring phenomena caused by optical rotation of polarized light beams in sugared water can be an appropriate subject for use as an educational tool. In this paper, such coloring phenomena are studied in terms of theory, and the results are compared with experimental results. First, polarized laser beams in red, blue, or green were allowed to travel in sugared water of certain concentrations, and changes in the irradiance of the beams were measured while changing the distance between a pair of polarizing plates arranged in the sugared water. The angle of rotation was then determined for each color. An equation was established for predicting a theoretical value of the angle of rotation for laser beams of specific colors (wavelengths) traveling in sugared water of specific concentrations. The predicted results from the equation exhibited satisfactory agreement with the experimental values obtained from the measurements. In addition, changes in the irradiance of traveling laser beams, as well as the changes in colors observable for white light beams, were also predicted, resulting in good agreement with the observed results.

  6. Observations and theoretical evaluations of color changes of traveling light beams caused by optical rotation phenomena in sugared water and their applications for educational purposes

    Science.gov (United States)

    Tokumitsu, Seika; Hasegawa, Makoto

    2017-08-01

    Investigations were conducted for the purposes of understanding coloring phenomena to be caused by optical rotation of polarized light beams in sugared water and realizing their applications as educational tools. By allowing polarized laser beams in red, blue or green to travel in sugared water of certain concentrations, changes in their intensities were measured while changing a distance between a pair of polarizing plates in the sugared water. An equation was established for a theoretical value for the angle of rotation for light of any colors (wavelengths) travelling in sugared water of any concentrations. The predicted results exhibited satisfactory matching with the measured values. In addition, the intensities of transmitted laser beams, as well as colors to be observable when a white-color LED torch was employed as a light source, were also become predictable, and the predicted results were well-matched with the observation results.

  7. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds' Search Performance in Spatial Rotation Tasks.

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds' success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children ( N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  8. The effects of visual discriminability and rotation angle on 30-month-olds’ search performance in spatial rotation tasks

    Directory of Open Access Journals (Sweden)

    Mirjam Ebersbach

    2016-10-01

    Full Text Available Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29 performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children.

  9. The Effects of Visual Discriminability and Rotation Angle on 30-Month-Olds’ Search Performance in Spatial Rotation Tasks

    Science.gov (United States)

    Ebersbach, Mirjam; Nawroth, Christian

    2016-01-01

    Tracking objects that are hidden and then moved is a crucial ability related to object permanence, which develops across several stages in early childhood. In spatial rotation tasks, children observe a target object that is hidden in one of two or more containers before the containers are rotated around a fixed axis. Usually, 30-month-olds fail to find the hidden object after it was rotated by 180°. We examined whether visual discriminability of the containers improves 30-month-olds’ success in this task and whether children perform better after 90° than after 180° rotations. Two potential hiding containers with same or different colors were placed on a board that was rotated by 90° or 180° in a within-subjects design. Children (N = 29) performed above chance level in all four conditions. Their overall success in finding the object did not improve by differently colored containers. However, different colors prevented children from showing an inhibition bias in 90° rotations, that is, choosing the empty container more often when it was located close to them than when it was farther away: This bias emerged in the same colors condition but not in the different colors condition. Results are discussed in view of particular challenges that might facilitate or deteriorate spatial rotation tasks for young children. PMID:27812346

  10. Capture of terrestrial-sized moons by gas giant planets.

    Science.gov (United States)

    Williams, Darren M

    2013-04-01

    Terrestrial moons with masses >0.1 M (symbol in text) possibly exist around extrasolar giant planets, and here we consider the energetics of how they might form. Binary-exchange capture can occur if a binary-terrestrial object (BTO) is tidally disrupted during a close encounter with a giant planet and one of the binary members is ejected while the other remains as a moon. Tidal disruption occurs readily in the deep gravity wells of giant planets; however, the large encounter velocities in the wells make binary exchange more difficult than for planets of lesser mass. In addition, successful capture favors massive binaries with large rotational velocities and small component mass ratios. Also, since the interaction tends to leave the captured moons on highly elliptical orbits, permanent capture is only possible around planets with sizable Hill spheres that are well separated from their host stars.

  11. Moessbauer study of the firing technology of the moon-white Jun porcelain in Chinese Yuan Dynasty

    International Nuclear Information System (INIS)

    Chen Songhua

    1994-01-01

    The moon-white Jun porcelain glaze contains Fe 2 O 3 , Fe 3 O 4 and structural iron. The firing atmosphere of ancient Jun kilns was modestly reductive. The firing temperature was slightly above 1250 C. The glaze color appears moon-white, and is related to the low concentration of Fe 2+ . The coordination numbers of Fe 2+ and Fe 3+ are both 4. (orig.)

  12. WHY ARE RAPIDLY ROTATING M DWARFS IN THE PLEIADES SO (INFRA)RED? NEW PERIOD MEASUREMENTS CONFIRM ROTATION-DEPENDENT COLOR OFFSETS FROM THE CLUSTER SEQUENCE

    Energy Technology Data Exchange (ETDEWEB)

    Covey, Kevin R. [Department of Physics and Astronomy, Western Washington University, Bellingham WA 98225-9164 (United States); Agüeros, Marcel A.; Liu, Jiyu [Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027 (United States); Law, Nicholas M. [Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599-3255 (United States); Ahmadi, Aida [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany); Laher, Russ; Surace, Jason [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Levitan, David [Division of Physics, Mathematics, and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Sesar, Branimir, E-mail: kevin.covey@wwu.edu [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-05-10

    Stellar rotation periods ( P {sub rot}) measured in open clusters have proved to be extremely useful for studying stars’ angular momentum content and rotationally driven magnetic activity, which are both age- and mass-dependent processes. While P {sub rot} measurements have been obtained for hundreds of solar-mass members of the Pleiades, measurements exist for only a few low-mass (<0.5 M {sub ⊙}) members of this key laboratory for stellar evolution theory. To fill this gap, we report P {sub rot} for 132 low-mass Pleiades members (including nearly 100 with M ≤ 0.45 M {sub ⊙}), measured from photometric monitoring of the cluster conducted by the Palomar Transient Factory in late 2011 and early 2012. These periods extend the portrait of stellar rotation at 125 Myr to the lowest-mass stars and re-establish the Pleiades as a key benchmark for models of the transport and evolution of stellar angular momentum. Combining our new P {sub rot} with precise BVIJHK photometry reported by Stauffer et al. and Kamai et al., we investigate known anomalies in the photometric properties of K and M Pleiades members. We confirm the correlation detected by Kamai et al. between a star's P {sub rot} and position relative to the main sequence in the cluster's color–magnitude diagram. We find that rapid rotators have redder ( V − K ) colors than slower rotators at the same V , indicating that rapid and slow rotators have different binary frequencies and/or photospheric properties. We find no difference in the photometric amplitudes of rapid and slow rotators, indicating that asymmetries in the longitudinal distribution of starspots do not scale grossly with rotation rate.

  13. Mössbauer study of the firing technology of the moon-white Jun porcelain in Chinese Yuan Dynasty

    Science.gov (United States)

    Songhua, Chen; Zhengyao, Gao; Zhongtian, Sun; Xiande, Chen

    1994-12-01

    The moon-white Jun porcelain glaze contains Fe2O3, Fe3O4 and structural iron. The firing atmosphere of ancient Jun kilns was modestly reductive. The firing temperature was slightly above 1250 ‡C. The glaze color appears moon-white, and is related to the low concentration of Fe2+. The coordination numbers of Fe2+ and Fe3+ are both 4.

  14. MoonNEXT: A European Mission to the Moon

    Science.gov (United States)

    Carpenter, J. D.; Koschny, D.; Crawford, I.; Falcke, H.; Kempf, S.; Lognonne, P.; Ricci, C.; Houdou, B.; Pradier, A.

    2008-09-01

    MoonNEXT is a mission currently being studied, under the direction of the European Space Agency, whose launch is foreseen between 2015 and 2018. MoonNEXT is intended to prepare the way for future exploration activities on the Moon, while addressing key science questions. Exploration Objectives The primary goal for the MoonNEXT mission is to demonstrate autonomous soft precision landing with hazard avoidance; a key capability for future exploration missions. The nominal landing site is at the South Pole of the Moon, at the edge of the Aitken basin and in the region of Shackleton crater, which has been identified as an optimal location for a future human outpost by the NASA lunar architecture team [1]. This landing site selection ensures a valuable contribution by MoonNEXT to the Global Exploration Strategy [2]. MoonNEXT will also prepare for future lunar exploration activities by characterising the environment at the lunar surface. The potentially hazardous radiation environment will me monitored while a dedicated instrument package will investigate the levitation and mobility of lunar dust. Experience on Apollo demonstrated the potentially hazardous effects of dust for surface operations and human activities and so an understanding of these processes is important for the future. Life sciences investigations will be carried out into the effects of the lunar environment (including radiation, gravity and illumination conditions) on a man made ecosystem analogous to future life support systems. In doing so MoonNEXT will demonstrate the first extraterrestrial man made ecosystem and develop valuable expertise for future missions. Geological and geochemical investigations will explore the possibilities for In Situ Resource Utilisation (ISRU), which will be essential for long term human habitation on the Moon and is of particular importance at the proposed landing site, given its potential as a future habitat location. Science Objectives In addition to providing extensive

  15. Origin of the earth's moon: constraints from alkali volatile trace elements

    International Nuclear Information System (INIS)

    Kreutzberger, M.E.; Drake, M.J.; Jones, J.H.

    1986-01-01

    Although the Moon is depleted in volatile elements compared to the Earth, these depletions are not in accord with simple volatility. For example, the Cs/Rb ratios of the Earth and Moon inferred from basalts are approximately one seventh and one half of the CI ratio, respectively. Volatility considerations alone predict that the lunar Cs/Rb ratio should be equal to or lower than the terrestrial ratio if the Moon was derived entirely from Earth mantle material. Thus hypotheses such as rotational fission which invoke derivation of lunar material entirely from the Earth's mantle may be excluded. The collisional ejection hypothesis of lunar origin requires at least 18% of lunar material to be derived from a projectile with dehydrated CI composition to match the lunar Cs/Rb ratio, and 25% to 50% to match both the lunar Cs/Rb ratio and absolute concentrations of Cs and Rb. It remains to be demonstrated that this relatively large contribution of projectile material is consistent with other elemental abundances and element ratios in the Moon. (author)

  16. Active Color Control in a Metasurface by Polarization Rotation

    Directory of Open Access Journals (Sweden)

    Minkyung Kim

    2018-06-01

    Full Text Available Generating colors by employing metallic nanostructures has attracted intensive scientific attention recently, because one can easily realize higher spatial resolution and highly robust colors compared to conventional pigment. However, since the scattering spectra and thereby the resultant colors are determined by the nanostructure geometries, only one fixed color can be produced by one design and a whole new sample is required to generate a different color. In this paper, we demonstrate active metasurface, which shows a range of colors dependent on incident polarization by selectively exciting three different plasmonic nanorods. The metasurface, which does not include any tunable materials or external stimuli, will be beneficial in real-life applications especially in the display applications.

  17. Two Moons and the Pleiades from Mars

    Science.gov (United States)

    2005-01-01

    [figure removed for brevity, see original site] Inverted image of two moons and the Pleiades from Mars Taking advantage of extra solar energy collected during the day, NASA's Mars Exploration Rover Spirit recently settled in for an evening of stargazing, photographing the two moons of Mars as they crossed the night sky. In this view, the Pleiades, a star cluster also known as the 'Seven Sisters,' is visible in the lower left corner. The bright star Aldebaran and some of the stars in the constellation Taurus are visible on the right. Spirit acquired this image the evening of martian day, or sol, 590 (Aug. 30, 2005). The image on the right provides an enhanced-contrast view with annotation. Within the enhanced halo of light is an insert of an unsaturated view of Phobos taken a few images later in the same sequence. On Mars, Phobos would be easily visible to the naked eye at night, but would be only about one-third as large as the full Moon appears from Earth. Astronauts staring at Phobos from the surface of Mars would notice its oblong, potato-like shape and that it moves quickly against the background stars. Phobos takes only 7 hours, 39 minutes to complete one orbit of Mars. That is so fast, relative to the 24-hour-and-39-minute sol on Mars (the length of time it takes for Mars to complete one rotation), that Phobos rises in the west and sets in the east. Earth's moon, by comparison, rises in the east and sets in the west. The smaller martian moon, Deimos, takes 30 hours, 12 minutes to complete one orbit of Mars. That orbital period is longer than a martian sol, and so Deimos rises, like most solar system moons, in the east and sets in the west. Scientists will use images of the two moons to better map their orbital positions, learn more about their composition, and monitor the presence of nighttime clouds or haze. Spirit took the five images that make up this composite with the panoramic camera, using the camera's broadband filter, which was designed specifically

  18. A preliminary analysis of the Mariner 10 color ratio map of Mercury

    Science.gov (United States)

    Rava, Barry; Hapke, Bruce

    1987-01-01

    A preliminary geological analysis of the Mariner 10 orange/UV color ratio map of Mercury is given, assuming a basaltic crust. Certain errors in the map are pointed out. The relationship between color and terrain are distinctly non-lunar. Rays and ejecta are bluer than average on Mercury, whereas they are redder on the Moon. This fact, along with the lack of the ferrous band in Mercury's spectral reflectance and smaller albedo contrasts, implies that the crust is low in Fe and Ti. There is no correlation between color boundaries and the smooth plains on Mercury, in contrast with the strong correlation between color and maria-highlands contacts on the Moon. The smooth plains are not Mercurian analogs of lunar maria, and a lunar-type of second wave melting did not occur. Ambiguous correlations between color and topography indicate that older, redder materials underlie younger, bluer rocks in many places on the planet, implying that the last stages of volcanism involved low-Fe lavas covering higher-Fe rocks. There is some evidence of late Fe-rich pyroclastic activity.

  19. The south pole region of the moon as seen by Clementine

    Science.gov (United States)

    Shoemaker, E.M.; Robinson, M.S.; Eliason, E.M.

    1994-01-01

    The Clementine mission has provided the first comprehensive set of high-resolution images of the south pole region of the moon. Within 5?? of latitude of the pole, an area of an estimated 30,000 square kilometers remained in shadow during a full lunar rotation and is a promising target for future exploration for ice deposits. The Schrodinger Basin (320 kilometers in diameter), centered at 75??S, is one of the two youngest, least modified, great multiring impact basins on the moon. A large maar-type volcano localized along a graben within the Schrodinger Basin probably erupted between 1 and 2 billion years ago.

  20. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  1. EARTH, MOON, SUN, AND CV ACCRETION DISKS

    International Nuclear Information System (INIS)

    Montgomery, M. M.

    2009-01-01

    Net tidal torque by the secondary on a misaligned accretion disk, like the net tidal torque by the Moon and the Sun on the equatorial bulge of the spinning and tilted Earth, is suggested by others to be a source to retrograde precession in non-magnetic, accreting cataclysmic variable (CV) dwarf novae (DN) systems that show negative superhumps in their light curves. We investigate this idea in this work. We generate a generic theoretical expression for retrograde precession in spinning disks that are misaligned with the orbital plane. Our generic theoretical expression matches that which describes the retrograde precession of Earths' equinoxes. By making appropriate assumptions, we reduce our generic theoretical expression to those generated by others, or to those used by others, to describe retrograde precession in protostellar, protoplanetary, X-ray binary, non-magnetic CV DN, quasar, and black hole systems. We find that spinning, tilted CV DN systems cannot be described by a precessing ring or by a precessing rigid disk. We find that differential rotation and effects on the disk by the accretion stream must be addressed. Our analysis indicates that the best description of a retrogradely precessing spinning, tilted, CV DN accretion disk is a differentially rotating, tilted disk with an attached rotating, tilted ring located near the innermost disk annuli. In agreement with the observations and numerical simulations by others, we find that our numerically simulated CV DN accretion disks retrogradely precess as a unit. Our final, reduced expression for retrograde precession agrees well with our numerical simulation results and with selective observational systems that seem to have main-sequence secondaries. Our results suggest that a major source to retrograde precession is tidal torques like that by the Moon and the Sun on the Earth. In addition, these tidal torques should be common to a variety of systems where one member is spinning and tilted, regardless if

  2. Lienard-Wiechert potentials for a color particle

    International Nuclear Information System (INIS)

    Escalona, J.; Torres, M.; Antillon, A.

    1990-01-01

    The problem of color and energy radiation from a particle with internal degrees of freedom (color) is analyzed using the null coordinates formalism, that gives place to a Robinson-Trautman type metric. We found two solutions. The first one, valid for SU(n) groups, gives no restrictions over the internal space rotation, the isospin rotations produce no energy radiation. For the second solution, there is a relation between the internal degrees of freedom and the displacement of the charge that implies a transfer of energy due to the time evolution in the internal space. The problem of color radiation is discussed for the two solutions. (Author)

  3. Interior properties of the inner Saturnian moons from space astrometry data

    Science.gov (United States)

    Lainey, Valery; Noyelles, Benoît; Cooper, Nick; Murray, Carl; Park, Ryan; Rambaux, Nicolas

    2018-04-01

    During thirteen years in orbit around Saturn before its final plunge, the Cassini spacecraft provided more than ten thousand astrometric measurements. Such large amounts of accurate data enable the search for extremely faint signals in the orbital motion of the moons. Among those, the detection of the dynamical feedback of the rotation of the inner moons of Saturn on their respective orbits becomes possible. Using all the currently available astrometric data associated with Atlas, Prometheus, Pandora, Janus and Epimetheus, we provide a detailed analysis of the ISS data, with special emphasis on their statistical behavior and source of biases. Then, we try quantifying the physical librations of Prometheus, Pandora, Epimetheus and Janus from the monitoring of their orbits. Last, we show how introducing measurements directly derived from imaging can provide tighter constraints on these quantities.

  4. Unique Moon Formation Model: Two Impacts of Earth and After Moon's Birth

    Science.gov (United States)

    Miura, Y.

    2018-04-01

    The Moon rocks are mixed with two impact-processes of Earth's impact breccias and airless Moon's impact breccias; discussed voids-rich texture and crust-like composition. The present model might be explained as cave-rich interior on the airless-and waterless Moon.

  5. New BVI C photometry of low-mass pleiades stars: Exploring the effects of rotation on broadband colors

    International Nuclear Information System (INIS)

    Kamai, Brittany L.; Stassun, Keivan G.; Vrba, Frederick J.; Stauffer, John R.

    2014-01-01

    We present new BVI C photometry for 350 Pleiades proper motion members with 9 < V ≲ 17. Importantly, our new catalog includes a large number of K- and early M-type stars, roughly doubling the number of low-mass stars with well-calibrated Johnson/Cousins photometry in this benchmark cluster. We combine our new photometry with existing photometry from the literature to define a purely empirical isochrone at Pleiades age (≈100 Myr) extending from V = 9 to 17. We use the empirical isochrone to identify 48 new probable binaries and 14 likely nonmembers. The photometrically identified single stars are compared against their expected positions in the color-magnitude diagram (CMD). At 100 Myr, the mid K and early M stars are predicted to lie above the zero-age main sequence (ZAMS) having not yet reached the ZAMS. We find in the B – V versus V CMD that mid K and early M dwarfs are instead displaced below (or blueward of) the ZAMS. Using the stars' previously reported rotation periods, we find a highly statistically significant correlation between rotation period and CMD displacement, in the sense that the more rapidly rotating stars have the largest displacements in the B – V CMD.

  6. Classical color fields as a dark matter candidate

    OpenAIRE

    Dzhunushaliev, Vladimir

    2006-01-01

    The model of Dark Matter is proposed in which the Dark Matter is a classical color field. The color fields are invisible as they may interact with colored elementary particles like 't Hooft - Polyakov monopole only. The comparison with the Universal Rotation Curve is carried out.

  7. Structure of the moon's surface

    CERN Document Server

    Fielder, Gilbert

    1961-01-01

    Structure of the Moon's Surface aims to assemble and marshal relevant matter, and to produce a largely unprejudiced text which brings lunar studies up to date and stresses the importance of certain features of the Moon which have frequently been disregarded in the past, largely because of lack of knowledge about them. The book contains 14 chapters organized into two parts. Part I reviews and summarizes important physical problems. These include the liberations of the moon; height determinations of points of the moon's surface; the figure of the moon; and the moon's temperature and atmosphere.

  8. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  9. Physics and astronomy of the Moon

    CERN Document Server

    Kopal, Zdenek

    2013-01-01

    Physics and Astronomy of the Moon focuses on the application of principles of physics in the study of the moon, including perturbations, equations, light scattering, and photometry. The selection first offers information on the motion of the moon in space and libration of the moon. Topics include Hill's equations of motion, non-solar perturbations, improved lunar ephemeris, optical and physical libration of the moon, and adjustment of heliometric observations of the moon's libration. The text then elaborates on the dynamics of the earth-moon system, photometry of the moon, and polarization of

  10. Creating an isotopically similar Earth-Moon system with correct angular momentum from a giant impact

    Science.gov (United States)

    Wyatt, Bryant M.; Petz, Jonathan M.; Sumpter, William J.; Turner, Ty R.; Smith, Edward L.; Fain, Baylor G.; Hutyra, Taylor J.; Cook, Scott A.; Gresham, John H.; Hibbs, Michael F.; Goderya, Shaukat N.

    2018-04-01

    The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth-Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth-Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.

  11. Moons a very short introduction

    CERN Document Server

    Rothery, David A

    2015-01-01

    Moons: A Very Short Introduction introduces the reader to the varied and fascinating moons of our Solar System. Beginning with the early discoveries of Galileo and others, it describes their variety of mostly mythological names, and the early use of Jupiter’s moons to establish position at sea and to estimate the speed of light. It discusses the structure, formation, and profound influence of our Moon, those of the other planets, and ends with the recent discovery of moons orbiting asteroids, whilst looking forward to the possibility of discovering microbial life beyond Earth and of finding moons of exoplanets in planetary systems far beyond our own.

  12. Plutonian Moon confirmed

    Science.gov (United States)

    In late February, two separate observations confirmed the 1978 discovery by U.S. Naval Observatory scientist James W. Christy of a moon orbiting the planet Pluto. According to the U.S. Naval Observatory, these two observations were needed before the International Astronomical Society (IAS) would officially recognize the discovery.Two types of observations of the moon, which was named Charon after the ferryman in Greek mythology who carried the dead to Pluto's realm, were needed for confirmation: a transit, in which the moon passes in front of Pluto, and an occultation, in which the moon passes behind the planet. These two phenomena occur only during an 8-year period every 124 years that had been calculated to take place during 1984-1985. Both events were observed in late February.

  13. Tidal effects on Earth, Planets, Sun by far visiting moons

    Science.gov (United States)

    Fargion, Daniele

    2016-07-01

    The Earth has been formed by a huge mini-planet collision forming our Earth surface and our Moon today. Such a central collision hit was statistically rare. A much probable skimming or nearby encounter by other moons or planets had to occur. Indeed Recent observations suggest that many planetary-mass objects may be present in the outer solar system between the Kuiper belt and the Oort cloud. Gravitational perturbations may occasionally bring them into the inner solar system. Their passage near Earth could have generated gigantic tidal waves, large volcanic eruptions, sea regressions, large meteoritic impacts and drastic changes in global climate. They could have caused the major biological mass extinctions in the past in the geological records. For instance a ten times a terrestrial radius nearby impact scattering by a peripherical encounter by a small moon-like object will force huge tidal waves (hundred meter height), able to lead to huge tsunami and Earth-quake. Moreover the historical cumulative planet hits in larger and wider planets as Juppiter, Saturn, Uranus will leave a trace, as observed, in their tilted spin axis. Finally a large fraction of counter rotating moons in our solar system probe and test such a visiting mini-planet captur origination. In addition the Earth day duration variability in the early past did show a rare discountinuity, very probably indebt to such a visiting planet crossing event. These far planets in rare trajectory to our Sun may, in thousands event capture, also explain sudden historical and recent temperature changes.

  14. Moon-bevægelsen

    DEFF Research Database (Denmark)

    Pedersen, René Dybdal

    2014-01-01

    Moon-bevægelsen er det populære navn for religionen "Family Federation for World peace and Unification", som også tidligere kaldte sig "Unification Church". Moon-bevægelsen ser sig selv som den sande kristne kirke. Til forskel fra mange andre kristne kirker mener Moon-bevægelsen, at Gud ønskede...

  15. Stamp Detection in Color Document Images

    DEFF Research Database (Denmark)

    Micenkova, Barbora; van Beusekom, Joost

    2011-01-01

    , moreover, it can be imprinted with a variable quality and rotation. Previous methods were restricted to detection of stamps of particular shapes or colors. The method presented in the paper includes segmentation of the image by color clustering and subsequent classification of candidate solutions...... by geometrical and color-related features. The approach allows for differentiation of stamps from other color objects in the document such as logos or texts. For the purpose of evaluation, a data set of 400 document images has been collected, annotated and made public. With the proposed method, recall of 83...

  16. The moon as a symbol of death in "The Romance of the Moon, Moon"

    Directory of Open Access Journals (Sweden)

    William Leonardo Perdomo Vanegas

    2008-02-01

    Full Text Available The following article is an approach to semiotic analysis of the artistic text, specifically the poem. It takes up the thesis that consider poetic language as an integral element of semiotics, not linguistics. From a semiotic perspective, the text discusses the symbol of death in the Ballad of the Moon, Moon by Federico García Lorca, the analysis establishes a relationship between natural language and poetic language, reflecting part of Gypsy culture.

  17. Formation of the Lunar Fossil Bulges and Its Implication for the Early Earth and Moon

    Science.gov (United States)

    Qin, Chuan; Zhong, Shijie; Phillips, Roger

    2018-02-01

    First recognized by Laplace over two centuries ago, the Moon's present tidal-rotational bulges are significantly larger than hydrostatic predictions. They are likely relics of a former hydrostatic state when the Moon was closer to the Earth and had larger bulges, and they were established when stresses in a thickening lunar lithosphere could maintain the bulges against hydrostatic adjustment. We formulate the first dynamically self-consistent model of this process and show that bulge formation is controlled by the relative timing of lithosphere thickening and lunar orbit recession. Viable solutions indicate that lunar bulge formation was a geologically slow process lasting several hundred million years, that the process was complete about 4 Ga when the Moon-Earth distance was less than 32 Earth radii, and that the Earth in Hadean was significantly less dissipative to lunar tides than during the last 4 Gyr, possibly implying a frozen hydrosphere due to the fainter young Sun.

  18. Art on the Moon?

    DEFF Research Database (Denmark)

    Lee, Rosemary; Minch, Manuel

    2018-01-01

    Manuel Minch launched Internet Moon Gallery in 2016 with the intention of exploring new modes of creating and engaging with digital art. This article is the result of a collaborative conversation between Manuel Minch and Rosemary Lee, which has evolved from their work together on the exhibition...... “Memory Palace”, launched on Internet Moon Gallery on the full moon, May 2017....

  19. Tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.

    1981-01-01

    The periodic variations of the earths' rotation resulting from the tidal deformation of the earth by the sun and moon were rederived including terms with amplitudes of 0.002 millisec and greater. The series applies to the mantle, crust, and oceans which rotate together for characteristic tidal periods; the scaling parameter is the ratio of the fraction of the Love number producing tidal variations in the moment of inertia of the coupled mantle and oceans (k) to the dimensionless polar moment of inertia of the coupled moments (C). The lunar laser ranging data shows that k/C at monthly and fortnightly frequencies equals 0.99 + or - 0.15 and 0.99 + or - 0.20 as compared to the theoretical value of 0.94 + or - 0.04.

  20. Moon nature and culture

    CERN Document Server

    Williams, Edgar

    2014-01-01

    Long before a rocket hit the Man in the Moon in the eye in Georges Méliès's early film Le Voyage dans la Lune, the earth's lone satellite had entranced humans. We have worshipped it as a deity, believed it to cause madness, used it as a means of organizing time, and we now know that it manipulates the tides-our understanding of the moon continues to evolve. Following the moon from its origins to its rich cultural resonance in literature, art, religion, and politics, Moon provides a comprehensive account of the significance of our lunar companion. Edgar Williams explores the interdependence of

  1. Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN)

    Science.gov (United States)

    Murchie, S. L.; Chabot, N. L.; Buczkowski, D.; Arvidson, R. E.; Castillo, J. C.; Peplowski, P. N.; Ernst, C. M.; Rivkin, A.; Eng, D.; Chmielewski, A. B.; Maki, J.; trebi-Ollenu, A.; Ehlmann, B. L.; Spence, H. E.; Horanyi, M.; Klingelhoefer, G.; Christian, J. A.

    2015-12-01

    The Mars-Moons Exploration, Reconnaissance and Landed Investigation (MERLIN) is a NASA Discovery mission proposal to explore the moons of Mars. Previous Mars-focused spacecraft have raised fundamental questions about Mars' moons: What are their origins and compositions? Why do the moons resemble primitive outer solar system D-type objects? How do geologic processes modify their surfaces? MERLIN answers these questions through a combination of orbital and landed measurements, beginning with reconnaissance of Deimos and investigation of the hypothesized Martian dust belts. Orbital reconnaissance of Phobos occurs, followed by low flyovers to characterize a landing site. MERLIN lands on Phobos, conducting a 90-day investigation. Radiation measurements are acquired throughout all mission phases. Phobos' size and mass provide a low-risk landing environment: controlled descent is so slow that the landing is rehearsed, but gravity is high enough that surface operations do not require anchoring. Existing imaging of Phobos reveals low regional slope regions suitable for landing, and provides knowledge for planning orbital and landed investigations. The payload leverages past NASA investments. Orbital imaging is accomplished by a dual multispectral/high-resolution imager rebuilt from MESSENGER/MDIS. Mars' dust environment is measured by the refurbished engineering model of LADEE/LDEX, and the radiation environment by the flight spare of LRO/CRaTER. The landed workspace is characterized by a color stereo imager updated from MER/HazCam. MERLIN's arm deploys landed instrumentation using proven designs from MER, Phoenix, and MSL. Elemental measurements are acquired by a modified version of Rosetta/APXS, and an uncooled gamma-ray spectrometer. Mineralogical measurements are acquired by a microscopic imaging spectrometer developed under MatISSE. MERLIN delivers seminal science traceable to NASA's Strategic Goals and Objectives, Science Plan, and the Decadal Survey. MERLIN's science

  2. Peculiarities of the thermal regime of the Russian plain depending on tidal oscillation Earth rotation speed

    Science.gov (United States)

    Akimov, L. M.

    2018-01-01

    Typification of fields of anomaly of temperature in the central part of East European Plain depending on the main phases of the Moon taking into account these tidal fluctuations of speed of rotation of Earth is presented. The main regularities of spatial distribution of anomaly of temperature in December are revealed. The opposite dependence of distribution of anomaly of temperature on antiphases of the Moon is established.

  3. The Tethered Moon

    Science.gov (United States)

    Zahnle, Kevin; Lupu, Roxana Elena; Dubrovolskis, A. R.

    2014-01-01

    A reasonable initial condition on Earth after the Moonforming impact is that it begins as a hot global magma ocean1,2. We therefore begin our study with the mantle as a liquid ocean with a surface temperature on the order of 3000- 4000 K at a time some 100-1000 years after the impact, by which point we can hope that early transients have settled down. A 2nd initial condition is a substantial atmosphere, 100-1000 bars of H2O and CO2, supplemented by smaller amounts of CO, H2, N2, various sulfur-containing gases, and a suite of geochemical volatiles evaporated from the magma. Third, we start the Moon with its current mass at the relevant Roche limit. The 4th initial condition is the angular momentum of the Earth-Moon system. Canonical models hold this constant, whilst some recent models begin with considerably more angular momentum than is present today. Here we present a ruthlessly simplified model of Earth's cooling magmasphere based on a full-featured atmosphere and including tidal heating by the newborn Moon. Thermal blanketing by H2O-CO2 atmospheres slows cooling of a magma ocean. Geochemical volatiles - chiefly S, Na, and Cl - raise the opacity of the magma ocean's atmosphere and slow cooling still more. We assume a uniform mantle with a single internal (potential) temperature and a global viscosity. The important "freezing point" is the sharp rheological transition between a fluid carrying suspended crystals and a solid matrix through which fluids percolate. Most tidal heating takes place at this "freezing point" in a gel that is both pliable and viscous. Parameterized convection links the cooling rate to the temperature and heat generation inside the Earth. Tidal heating is a major effect. Tidal dissipation in the magma ocean is described by viscosity. The Moon is entwined with Earth by the negative feedback between thermal blanketing and tidal heating that comes from the temperature-dependent viscosity of the magma ocean. Because of this feedback, the rate

  4. Color Memory: A Yang-Mills Analog of Gravitational Wave Memory

    Science.gov (United States)

    Pate, Monica; Raclariu, Ana-Maria; Strominger, Andrew

    2017-12-01

    A transient color flux across null infinity in classical Yang-Mills theory is considered. It is shown that a pair of test "quarks" initially in a color singlet generically acquire net color as a result of the flux. A nonlinear formula is derived for the relative color rotation of the quarks. For a weak color flux, the formula linearizes to the Fourier transform of the soft gluon theorem. This color memory effect is the Yang-Mills analog of the gravitational memory effect.

  5. How to photograph the Moon and planets with your digital camera

    CERN Document Server

    Buick, Tony

    2007-01-01

    Since the advent of astronomical CCD imaging it has been possible for amateurs to produce images of a quality that was attainable only by universities and professional observatories just a decade ago. However, astronomical CCD cameras are still very expensive, and technology has now progressed so that digital cameras - the kind you use on holiday - are more than capable of photographing the brighter astronomical objects, notably the Moon and major planets. Tony Buick has worked for two years on the techniques involved, and has written this illustrated step-by-step manual for anyone who has a telescope (of any size) and a digital camera. The color images he has produced - there are over 300 of them in the book - are of breathtaking quality. His book is more than a manual of techniques (including details of how to make a low-cost DIY camera mount) and examples; it also provides a concise photographic atlas of the whole of the nearside of the Moon - with every image made using a standard digital camera - and des...

  6. How to Photograph the Moon and Planets with Your Digital Camera

    CERN Document Server

    Buick, Tony

    2011-01-01

    Although our Moon and the planets have not changed much in the five years since the first edition of this book was published, the technology allowing you to photograph them has changed dramatically. And the costs for equipment have come down significantly, opening all kinds of possibilities to the amateur and practical astronomer. With this practical guide to taking quality shots in your own backyard, with all the light pollution found in cities and towns today and using only very basic equipment, you will be amazed at what you can accomplish. Whether you want to dazzle friends or contribute to the scientific understanding of a particular body, whether you are a fan of solar photography or craters on the Moon, the rings of Saturn, or the bands of clouds that color Jupiter, in this book you will find help and support, and clear explanations of how best to proceed. This is a hobby you can stay with for a lifetime and keep on improving. You can get fancier equipment or just learn how to better post process your ...

  7. FOOLISH MOON

    OpenAIRE

    Wang, Jingjing

    2017-01-01

    Foolish Moon is a product design for Chinese young adults who come to big Chinese cities to fight for their dreams to help them to slow down, to think more, to be practical and patient under the influence of fast culture which makes people eager to quick success. It has two physical parts, a moon phase clock anda work journal book, and three functions: 1) a new time experience of slow, stable and circular; 2) to encourage people to write down their goals and plans; 3) to make time capsules to...

  8. Experience the Moon

    Science.gov (United States)

    Ortiz-Gil, A.; Benacchio, L.; Boccato, C.

    2011-10-01

    The Moon is, together with the Sun, the very first astronomical object that we experience in our life. As this is an exclusively visual experience, people with visual impairments need a different mode to experience it too. This statement is especially true when events, such as more and more frequent public observations of sky, take place. This is the reason why we are preparing a special package for visual impaired people containing three brand new items: 1. a tactile 3D Moon sphere in Braille with its paper key in Braille. To produce it we used imaging data obtained by NASA's mission Clementine, along with free image processing and 3D rendering software. In order to build the 3D small scale model funding by Europlanet and the Italian Ministry for Research have been used. 2. a multilingual web site for visually impaired users of all ages, on basic astronomy together with an indepth box about the Moon; 3. a book in Braille with the same content of the Web site mentioned above. All the items will be developed with the collaboration of visually impaired people that will check each step of the project and support their comments and criticism to improve it. We are going to test this package during the next International Observe the Moon Night event. After a first testing phase we'll collect all the feedback data in order to give an effective form to the package. Finally the Moon package could be delivered to all those who will demand it for outreach or educational goals.

  9. Hot moons and cool stars

    Directory of Open Access Journals (Sweden)

    Heller René

    2013-04-01

    Full Text Available The exquisite photometric precision of the Kepler space telescope now puts the detection of extrasolar moons at the horizon. Here, we firstly review observational and analytical techniques that have recently been proposed to find exomoons. Secondly, we discuss the prospects of characterizing potentially habitable extrasolar satellites. With moons being much more numerous than planets in the solar system and with most exoplanets found in the stellar habitable zone being gas giants, habitable moons could be as abundant as habitable planets. However, satellites orbiting planets in the habitable zones of cool stars will encounter strong tidal heating and likely appear as hot moons.

  10. Apollo 11 Moon Landing

    Science.gov (United States)

    1969-01-01

    The crowning achievement for the Saturn V rocket came when it launched Apollo 11 astronauts, Neil Armstrong, Edwin (Buzz) Aldrin, and Michael Collins, to the Moon in July 1969. In this photograph, astronaut Aldrin takes his first step onto the surface of the Moon.

  11. A child's view of the moon

    OpenAIRE

    Grilc, Tina

    2014-01-01

    This diploma paper is divided into two parts, the theoretical and the practical one. The first part describes the history of travelling and landing on the Moon, general information on the Moon (its evolution, composition, surface, visibility, and moon phases), and the astronomical instruments. The development of a child's way of thinking is also briefly presented. The second, more practical part, is introduced by a questionnaire consisting of 10 general questions about the Moon. The aim ...

  12. "A Nightmare Land, a Place of Death": An Exploration of the Moon as a Motif in Herge's "Destination Moon" (1953) and "Explorers on the Moon" (1954)

    Science.gov (United States)

    Beauvais, Clementine

    2010-01-01

    This article analyses the symbolic meaning of the Moon in two "bande dessinee" books from the Tintin series, Herge's "Destination Moon" ("Objectif Lune," 1953) and its sequel "Explorers on the Moon" ("On a Marche sur la Lune," 1954). It argues that these two volumes stand out in the series for their graphic, narrative and philosophical emphasis on…

  13. Chaotic Zones around Rotating Small Bodies

    Energy Technology Data Exchange (ETDEWEB)

    Lages, José; Shevchenko, Ivan I. [Institut UTINAM, Observatoire des Sciences de l’Univers THETA, CNRS, Université de Franche-Comté, Besançon F-25030 (France); Shepelyansky, Dima L., E-mail: jose.lages@utinam.cnrs.fr [Laboratoire de Physique Théorique du CNRS, IRSAMC, Université de Toulouse, UPS, Toulouse F-31062 (France)

    2017-06-01

    Small bodies of the solar system, like asteroids, trans-Neptunian objects, cometary nuclei, and planetary satellites, with diameters smaller than 1000 km usually have irregular shapes, often resembling dumb-bells or contact binaries. The spinning of such a gravitating dumb-bell creates around it a zone of chaotic orbits. We determine its extent analytically and numerically. We find that the chaotic zone swells significantly if the rotation rate is decreased; in particular, the zone swells more than twice if the rotation rate is decreased 10 times with respect to the “centrifugal breakup” threshold. We illustrate the properties of the chaotic orbital zones in examples of the global orbital dynamics about asteroid 243 Ida (which has a moon, Dactyl, orbiting near the edge of the chaotic zone) and asteroid 25143 Itokawa.

  14. The Moon

    Science.gov (United States)

    Warren, P. H.

    2003-12-01

    Oxygen isotopic data suggest that there is a genetic relationship between the constituent matter of the Moon and Earth (Wiechert et al., 2001). Yet lunar materials are obviously different from those of the Earth. The Moon has no hydrosphere, virtually no atmosphere, and compared to the Earth, lunar materials uniformly show strong depletions of even mildly volatile constituents such as potassium, in addition to N2, O2, and H2O (e.g., Wolf and Anders, 1980). Oxygen fugacity is uniformly very low ( BVSP, 1981) and even the earliest lunar magmas seem to have been virtually anhydrous. These features have direct and far-reaching implications for mineralogical and geochemical processes. Basically, they imply that mineralogical diversity and thus variety of geochemical processes are subdued; a factor that to some extent offsets the comparative dearth of available data for lunar geochemistry.The Moon's gross physical characteristics play an important role in the more limited range of selenochemical compared to terrestrial geochemical processes. Although exceptionally large (radius=1,738 km) in relation to its parent planet, the Moon is only 0.012 times as massive as Earth. By terrestrial standards, pressures inside the Moon are feeble: the upper mantle gradient is 0.005 GPa km -1 (versus 0.033 GPa km -1 in Earth) and the central pressure is slightly less than 5 GPa. However, lunar interior pressures are sufficient to profoundly influence igneous processes (e.g., Warren and Wasson, 1979b; Longhi, 1992, 2002), and in this sense the Moon more resembles a planet than an asteroid.Another direct consequence of the Moon's comparatively small size was early, rapid decay of its internal heat engine. But the Moon's thermal disadvantage has resulted in one great advantage for planetology. Lunar surface terrains, and many of the rock samples acquired from them, retain for the most part characteristics acquired during the first few hundred million years of solar system existence. The

  15. Moons Around Saturn

    Science.gov (United States)

    1996-01-01

    This series of 10 Hubble Space Telescope images captures several small moons orbiting Saturn. Hubble snapped the five pairs of images while the Earth was just above the ring plane and the Sun below it. The telescope captured a pair of images every 97 minutes as it circled the Earth. Moving out from Saturn, the visible rings are: the broad C Ring, the Cassini Division, and the narrow F Ring.The first pair of images shows the large, bright moon Dione, near the middle of the frames. Two smaller moons, Pandora (the brighter one closer to Saturn) and Prometheus, appear as if they're touching the F Ring. In the second frame, Mimas emerges from Saturn's shadow and appears to be chasing Prometheus.In the second image pair, Mimas has moved towards the tip of the F Ring. Rhea, another bright moon, has just emerged from behind Saturn. Prometheus, the closest moon to Saturn, has rounded the F Ring's tip and is approaching the planet. The slightly larger moon Epimetheus has appeared.The third image pair shows Epimetheus, as a tiny dot just beyond the tip of the F Ring. Prometheus is in the lower right corner. An elongated clump or arc of debris in the F ring is seen as a slight brightening on the far side of this thin ring.In the fourth image pair, Epimetheus, in the lower right corner, streaks towards Saturn. The long ring arc can be seen in both frames.The fifth image pair again captures Mimas, beyond the tip of the F Ring. The same ring arc is still visible.In addition to the satellites, a pair of stars can be seen passing behind the rings, appearing to move towards the lower left due to Saturn's motion across the sky.The images were taken Nov. 21, 1995 with Wide Field Planetary Camera-2.The Wide Field/Planetary Camera 2 was developed by the Jet Propulsion Laboratory and managed by the Goddard Spaced Flight Center for NASA's Office of Space Science.This image and other images and data received from the Hubble Space Telescope are posted on the World Wide Web on the Space

  16. Dream recall and the full moon.

    Science.gov (United States)

    Schredl, Michael; Fulda, Stephany; Reinhard, Iris

    2006-02-01

    There is ongoing debate on whether the full moon is associated with sleep and dreaming. The analysis of diaries kept by the participants (N = 196) over 28 to 111 nights showed no association of a full moon and dream recall. Psychological factors might explain why some persons associate a full moon with increased dream recall.

  17. Using color histogram normalization for recovering chromatic illumination-changed images.

    Science.gov (United States)

    Pei, S C; Tseng, C L; Wu, C C

    2001-11-01

    We propose a novel image-recovery method using the covariance matrix of the red-green-blue (R-G-B) color histogram and tensor theories. The image-recovery method is called the color histogram normalization algorithm. It is known that the color histograms of an image taken under varied illuminations are related by a general affine transformation of the R-G-B coordinates when the illumination is changed. We propose a simplified affine model for application with illumination variation. This simplified affine model considers the effects of only three basic forms of distortion: translation, scaling, and rotation. According to this principle, we can estimate the affine transformation matrix necessary to recover images whose color distributions are varied as a result of illumination changes. We compare the normalized color histogram of the standard image with that of the tested image. By performing some operations of simple linear algebra, we can estimate the matrix of the affine transformation between two images under different illuminations. To demonstrate the performance of the proposed algorithm, we divide the experiments into two parts: computer-simulated images and real images corresponding to illumination changes. Simulation results show that the proposed algorithm is effective for both types of images. We also explain the noise-sensitive skew-rotation estimation that exists in the general affine model and demonstrate that the proposed simplified affine model without the use of skew rotation is better than the general affine model for such applications.

  18. New Moon water, exploration, and future habitation

    CERN Document Server

    Crotts, Arlin

    2014-01-01

    Explore Earth's closest neighbor, the Moon, in this fascinating and timely book and discover what we should expect from this seemingly familiar but strange, new frontier. What startling discoveries are being uncovered on the Moon? What will these tell us about our place in the Universe? How can exploring the Moon benefit development on Earth? Discover the role of the Moon in Earth's past and present; read about the lunar environment and how it could be made more habitable for humans; consider whether continued exploration of the Moon is justified; and view rare Apollo-era photos and film still

  19. Non-rocket Earth-Moon transportation system

    Science.gov (United States)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  20. Long-term changes in the rotation of the Earth: 700 B.C. to A.D. 1980

    International Nuclear Information System (INIS)

    Stephenson, F.R.

    1984-01-01

    Occultations of stars by the Moon, and solar and lunar eclipses are analysed for variations in the Earth's rotation over the past 2700 years. Although tidal braking provides the dominant, long-term torque, it is found that the rate of rotation does not decrease uniformly as would be expected if tidal friction were the only mechanism affecting the Earth's rotation. There are also non-tidal changes present that vary on timescales ranging from decades to millennia. The magnitudinal and temporal behaviour of these non-tidal variations are evaluated in this paper. (author)

  1. Intercomparison of lunar laser and traditional determinations of earth rotation

    Science.gov (United States)

    Fliegel, H. F.; Dickey, J. O.; Williams, J. G.

    1982-01-01

    Since August, 1969, ranges to one or more retroreflector arrays on the lunar surface have been measured by means of a laser procedure. Analysis of these measurements improves determination, not only of the orbit and librations of the moon, but also of the rotational parameters of the earth, including the X and Y coordinates of the terrestrial pole, and the true rotational angle of the earth with respect to atomic or to broadcast time. The considered approach for deriving the Universal Time 1 (UT1) involves two steps. During the first step the parameters of the lunar orbit and librations are solved along with the coordinates of the retroreflectors on the moon and of the observatory. Improved values of the Universal Time 0 (UT0) and range corrections at the observatory are obtained in the second step. Attention is given to lunar laser ranging (LLR), raw data in UT1, an harmonic analysis of the LLR UT1 data, and data obtained in 1980. The results provide UT1 with an accuracy of a factor of 2 or more better than was previously available from conventional astrometric data.

  2. Rotation and chromospheric emission among F, G, and K dwarfs of the Pleiades

    Science.gov (United States)

    Soderblom, David R.; Stauffer, John R.; Hudon, J. D.; Jones, Burton F.

    1993-01-01

    High-resolution echelle spectra of more than 100 F, G, and K dwarfs in the Pleiades are reported. Chromospheric activity in these stars is measured via comparisons of the profiles of H-alpha and the Ca II IR triplet to chromospherically inactive field stars. Consistent dereddened colors are determined from the available photometry and temperatures are derived. Most G and K dwarfs in the Pleiades rotate slowly, but about 20 percent of the stars are ultrafast rotators (UFRs). That fraction of UFRs is independent of color, and the highest rotation rates are found among the K dwarfs. The Pleiades exhibit a broad range in the strength of chromospheric emission at any one color. Most G and K dwarfs in the Pleiades show H-alpha and the IR triple in absorption, with filling in of the line cores.

  3. The formation of the moon

    Science.gov (United States)

    O'Keefe, J. A., III

    1974-01-01

    Supporting evidence for the fission hypothesis for the origin of the moon is offered. The maximum allowable amount of free iron now present in the moon would not suffice to extract the siderophiles from the lunar silicates with the observed efficiency. Hence extraction must have been done with a larger amount of iron, as in the mantle of the earth, of which the moon was once a part, according to the fission hypothesis. The fission hypothesis gives a good resolution of the tektite paradox. Tektites are chemically much like products of the mantle of the earth; but no physically possible way has been found to explain their production from the earth itself. Perhaps they are a product of late, deep-seated lunar volcanism. If so, the moon must have inside it some material with a strong resemblance to the earth's mantle.

  4. Moon Effect on Paciic Basin Stock Markets

    Directory of Open Access Journals (Sweden)

    Rayenda Khresna Brahman

    2014-08-01

    Full Text Available This is an empirical study on the inluences of moon on seven stock markets, which are Indonesia, Malaysia, United Kingdom, United States, Philippines, Japan, and Thailand. The period is from January 1999 until December 2009 in daily basis. This study investigates the relationship  between  moon  phase  and  market  returns.  We  divided  moon  phases  into  new moon  and  full  moon.  While  literature  mention  the  relationship  between  moon  phase  and market returns, our research reject the null hypothesis in regression analysis. However, the descriptive  catches  the  indication  and  conirmed  previous  research.  It  also  proposes  that the market is still rational and not moon-mood inluenced. This result is not contending the EMH theorem. Further research is needed in term of investigating the relationship between psychology  factors  (heuristic  bias,  information  ignorance,  and  other  factors  and  investor behavior. The effect of moon on certain anomalies has to examine speciically. ";} // -->activate javascript

  5. Moon. Prospective energy and material resources

    Energy Technology Data Exchange (ETDEWEB)

    Badescu, Viorel (ed.) [Polytechnic Univ. of Bucharest (Romania). Candida Oancea Inst.

    2012-07-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration. In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon's prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative options and solutions. It is a useful source of condensed information for specialists involved in current and impending Moon-related activities and a good starting point for young researchers. (orig.)

  6. The origin of the moon and the early history of the earth - A chemical model. Part 1: The moon

    International Nuclear Information System (INIS)

    O'Neill, H. St.C.

    1991-01-01

    The chemical implications of a giant impact model for the origin of the moon are examined, both for the moon and for the earth. The Impactor is taken to be an approximately Mars-sized body. It is argued that the likeliest bulk chemical composition of the moon is quite similar to that of the earth's mantle, and that this composition may be explained in detail if about 80% of the moon came from the primitive earth's mantle after segregation of the earth's core. The other 20% of the moon is modelled as coming from (a) the Impactor, which is constrained to be an oxidized, probably undifferentiated body of roughly CI chondritic composition (on a volatile free basis) and (b) a late stage veneer, with a composition and oxidation state similar to that of the H-group ordinary chondrites. This latter component is the source of all the volatile elements in the moon, which failed to condense from the earth-and Impactor-derived materials; this component constitutes about 4% of the moon. It is argued that Mo may behave as a volatile element under the relatively oxidising conditions necessary for the condensation of the proto-moon. The model accounts satisfactorily for most of the siderophile elements, including Fe, Ni, Co, W, P, and Cu. The relatively well-constrained lunar abundances of V, Cr, and Mn are also accounted for; their depletion in the moon is inherited from the earth's mantle

  7. Inefficient volatile loss from the Moon-forming disk: Reconciling the giant impact hypothesis and a wet Moon

    Science.gov (United States)

    Nakajima, Miki; Stevenson, David J.

    2018-04-01

    The Earth's Moon is thought to have formed from a circumterrestrial disk generated by a giant impact between the proto-Earth and an impactor approximately 4.5 billion years ago. Since this impact was energetic, the disk would have been hot (4000-6000 K) and partially vaporized (20-100% by mass). This formation process is thought to be responsible for the geochemical observation that the Moon is depleted in volatiles (e.g., K and Na). To explain this volatile depletion, some studies suggest the Moon-forming disk was rich in hydrogen, which was dissociated from water, and it escaped from the disk as a hydrodynamic wind accompanying heavier volatiles (hydrodynamic escape). This model predicts that the Moon should be significantly depleted in water, but this appears to contradict some of the recently measured lunar water abundances and D/H ratios that suggest that the Moon is more water-rich than previously thought. Alternatively, the Moon could have retained its water if the upper parts (low pressure regions) of the disk were dominated by heavier species because hydrogen would have had to diffuse out from the heavy-element rich disk, and therefore the escape rate would have been limited by this slow diffusion process (diffusion-limited escape). To identify which escape the disk would have experienced and to quantify volatiles loss from the disk, we compute the thermal structure of the Moon-forming disk considering various bulk water abundances (100-1000 ppm) and mid-plane disk temperatures (2500-4000 K). Assuming that the disk consists of silicate (SiO2 or Mg2SiO4) and water and that the disk is in the chemical equilibrium, our calculations show that the upper parts of the Moon-forming disk are dominated by heavy atoms or molecules (SiO and O at Tmid > 2500- 2800 K and H2O at Tmid lost water and hydrogen would have been small compared to the initial abundance assumed. This result indicates that the giant impact hypothesis can be consistent with the water-rich Moon

  8. Student Moon Observations and Spatial-Scientific Reasoning

    Science.gov (United States)

    Cole, Merryn; Wilhelm, Jennifer; Yang, Hongwei

    2015-07-01

    Relationships between sixth grade students' moon journaling and students' spatial-scientific reasoning after implementation of an Earth/Space unit were examined. Teachers used the project-based Realistic Explorations in Astronomical Learning curriculum. We used a regression model to analyze the relationship between the students' Lunar Phases Concept Inventory (LPCI) post-test score variables and several predictors, including moon journal score, number of moon journal entries, student gender, teacher experience, and pre-test score. The model shows that students who performed better on moon journals, both in terms of overall score and number of entries, tended to score higher on the LPCI. For every 1 point increase in the overall moon journal score, participants scored 0.18 points (out of 20) or nearly 1% point higher on the LPCI post-test when holding constant the effects of the other two predictors. Similarly, students who increased their scores by 1 point in the overall moon journal score scored approximately 1% higher in the Periodic Patterns (PP) and Geometric Spatial Visualization (GSV) domains of the LPCI. Also, student gender and teacher experience were shown to be significant predictors of post-GSV scores on the LPCI in addition to the pre-test scores, overall moon journal score, and number of entries that were also significant predictors on the LPCI overall score and the PP domain. This study is unique in the purposeful link created between student moon observations and spatial skills. The use of moon journals distinguishes this study further by fostering scientific observation along with skills from across science, technology, engineering, and mathematics disciplines.

  9. Possible influences on color constancy by motion of color targets and by attention-controlled gaze.

    Science.gov (United States)

    Wan, Lifang; Shinomori, Keizo

    2018-04-01

    We investigated the influence of motion on color constancy using a chromatic stimulus presented in various conditions (static, motion, and rotation). Attention to the stimulus and background was also controlled in different gaze modes, constant fixation of the stimulus, and random viewing of the stimulus. Color constancy was examined in six young observers using a haploscopic view of a computer monitor. The target and background were illuminated in simulation by red, green, blue, and yellow, shifted from daylight (D65) by specific color differences along L - M or S - (L + M) axes on the equiluminance plane. The standard pattern (under D65) and test pattern (under the color illuminant) of a 5-deg square were presented side by side, consisting of 1.2-deg square targets with one of 12 colors at each center, surrounded by 230 background ellipses consisting of eight other colors. The central color targets in both patterns flipped between top and bottom locations at the rate of 3 deg/s in the motion condition. The results indicated an average reduction of color constancy over the 12 test colors by motion. The random viewing parameter indicated better color constancy by more attention to the background, although the difference was not significant. Color constancy of the four color illuminations was better to worse in green, red, yellow, and blue, respectively. The reduction of color constancy by motion could be explained by less contribution of the illumination estimation effect on color constancy. In the motion with constant fixation condition, the retina strongly adapted to the mean chromaticity of the background. However, motion resulted in less attention to the color of the background, causing a weaker effect of the illumination estimation. Conversely, in the static state with a random viewing condition, more attention to the background colors caused a stronger illumination estimation effect, and color constancy was improved overall.

  10. Yes, there was a moon race

    Science.gov (United States)

    Oberg, James E.

    1990-01-01

    Examination of newly disclosed evidence confirms that the Soviets were indeed striving to reach the moon before the U.S. in 1969. It is noted that a Soviet unmanned lunar probe crashed on the moon's surface only hours before the U.S. Apollo landing. Now confirmed openly are moon-exploration schedules that were competitive with Apollo plans, the names and histories of Soviet lunar boosters and landers, identities of the lunar cosmonauts; and even photos of manned lunar craft are available. Additional details on the troubled moon-probe program are presented: technical problems, continuous changes in goals, schedules, and planning, vehicle and personnel disasters, transfer of authority between ministries, and political power struggles in the scientific community.

  11. Moonshine: Diurnally varying hydration through natural distillation on the Moon, detected by the Lunar Exploration Neutron Detector (LEND).

    Science.gov (United States)

    Livengood, T A; Chin, G; Sagdeev, R Z; Mitrofanov, I G; Boynton, W V; Evans, L G; Litvak, M L; McClanahan, T P; Sanin, A B; Starr, R D; Su, J J

    2015-07-15

    The Lunar Exploration Neutron Detector (LEND), on the polar-orbiting Lunar Reconnaissance Orbiter (LRO) spacecraft, has detected suppression in the Moon's naturally-occurring epithermal neutron leakage flux that is consistent with the presence of diurnally varying quantities of hydrogen in the regolith near the equator. Peak hydrogen concentration (neutron flux suppression) is on the dayside of the dawn terminator and diminishes through the dawn-to-noon sector. The minimum concentration of hydrogen is in the late afternoon and dusk sector. The chemical form of hydrogen is not determinable from these measurements, but other remote sensing methods and anticipated elemental availability suggest water molecules or hydroxyl ions. Signal-to-noise ratio at maximum contrast is 5.6 σ in each of two detector systems. Volatiles are deduced to collect in or on the cold nightside surface and distill out of the regolith after dawn as rotation exposes the surface to sunlight. Liberated volatiles migrate away from the warm subsolar region toward the nearby cold nightside surface beyond the terminator, resulting in maximum concentration at the dawn terminator. The peak concentration within the upper ~1 m of regolith is estimated to be 0.0125 ± 0.0022 weight-percent water-equivalent hydrogen (wt% WEH) at dawn, yielding an accumulation of 190 ± 30 ml recoverable water per square meter of regolith at each dawn. Volatile transport over the lunar surface in opposition to the Moon's rotation exposes molecules to solar ultraviolet radiation. The short lifetime against photolysis and permanent loss of hydrogen from the Moon requires a resupply rate that greatly exceeds anticipated delivery of hydrogen by solar wind implantation or by meteoroid impacts, suggesting that the surface inventory must be continually resupplied by release from a deep volatile inventory in the Moon. The natural distillation of water from the regolith by sunlight and its capture on the cold night surface may

  12. Photographic Observations of Major Planets and Their Moons During 1961-1990 at the MAO NAS of Ukraine

    Science.gov (United States)

    Yizhakevych, O. M.; Andruk, V. M.; Pakuliak, L. K.

    We present the results of photographic observations' processing of Saturn's moons, Uranus, Neptune and their moons on the basis of MAO NAS of Ukraine photographic observational archive. The analysis of the results is given. Observations were obtained using 4 telescopes: Double Long-Focus Astrograph (DLFA, D/F = 400/5500), Zeiss Double Astrograph (DAZ, D/F= 400/3000), Reflector Zeiss-600 (D/F= 600/7500), Wideangle Astrograph, (DWA, D/F= 400/2000). Observations were carried out during 1961 - 1990 (http://gua.db.ukrvo. org). Digitizing of plates has been done by EPSON EXPRESSION 10000XL (EE) flatbed scanner in 16-bit gray color range with resolution 1200dpi.(Andruk et al.: 2005, 2012; Golovnja et al.: 2010;. Protsyuk et al. 2014a, 2014b). The reduction of plates was made using the software developed in MAO NASU in the enhanced LINUX-MIDAS software kit. (Andruk V. et al.: 2016a, 2016b). Tycho2 was used as a reference system. The internal accuracy of the reduction for the first three instruments is ±0.08 - ±0.13 arcsec for both coordinates. For the wide angle astrograph DWA, RMS errors appeared 2 - 2.5 times higher. The total amount of processed plates with images of Saturn's moons is 209 (511 frames), 33 plates contain the images of Uranus and U1,U2,U3,U4 moons, 29 plates have images of Neptune and N1 moon (Yizhakevych et al., 2015, 2016, 2017; Protsyuk et al., 2015). The online comparison of calculated positions of objects with IMCCE ephemeris data was made (http://lnfm1.sai.msu.ru/neb/nss/nssephmf.htm).

  13. Edge-Matching Problems with Rotations

    DEFF Research Database (Denmark)

    Ebbesen, Martin; Fischer, Paul; Witt, Carsten

    2011-01-01

    Edge-matching problems, also called puzzles, are abstractions of placement problems with neighborhood conditions. Pieces with colored edges have to be placed on a board such that adjacent edges have the same color. The problem has gained interest recently with the (now terminated) Eternity II...... puzzle, and new complexity results. In this paper we consider a number of settings which differ in size of the puzzles and the manipulations allowed on the pieces. We investigate the effect of allowing rotations of the pieces on the complexity of the problem, an aspect that is only marginally treated so...

  14. Effective Methods of Teaching Moon Phases

    Science.gov (United States)

    Jones, Heather; Hintz, E. G.; Lawler, M. J.; Jones, M.; Mangrubang, F. R.; Neeley, J. E.

    2010-01-01

    This research investigates the effectiveness of several commonly used methods for teaching the causes of moon phases to sixth grade students. Common teaching methods being investigated are the use of diagrams, animations, modeling/kinesthetics and direct observations of moon phases using a planetarium. Data for each method will be measured by a pre and post assessment of students understanding of moon phases taught using one of the methods. The data will then be used to evaluate the effectiveness of each teaching method individually and comparatively, as well as the method's ability to discourage common misconceptions about moon phases. Results from this research will provide foundational data for the development of educational planetarium shows for the deaf or other linguistically disadvantage children.

  15. The near-surface electron radiation environment of Saturn's moon Mimas

    Science.gov (United States)

    Nordheim, T. A.; Hand, K. P.; Paranicas, C.; Howett, C. J. A.; Hendrix, A. R.; Jones, G. H.; Coates, A. J.

    2017-04-01

    Saturn's inner mid-size moons are exposed to a number of external weathering processes, including charged particle bombardment and UV photolysis, as well as deposition of E-ring grains and interplanetary dust. While optical remote sensing observations by several instruments onboard the Cassini spacecraft have revealed a number of weathering patterns across the surfaces of these moons, it is not entirely clear which external process is responsible for which observed weathering pattern. Here we focus on Saturn's moon Mimas and model the effect of energetic electron bombardment across its surface. By using a combination of a guiding center, bounce-averaged charged particle tracing approach and a particle physics code, we investigate how the radiation dose due to energetic electrons is deposited with depth at different locations. We predict a lens-shaped electron energy deposition pattern that extends down to ∼cm depths at low latitudes centered around the apex of the leading hemisphere (90° W). These results are consistent with previous remote sensing observations of a lens-shaped color anomaly observed by the Imaging Science Subsystem (ISS) instrument as well as a thermal inertia anomaly observed by the Visual and Infrared Mapping Spectrometer (VIMS) and the Composite Infrared Spectrometer (CIRS). Our results confirm that these features are produced by MeV electrons that have a penetration depth into the surface comparable to the effective sampling depths of these instruments. On the trailing hemisphere we predict a similar lens-shaped electron energy deposition pattern, whose effects have to date not been observed by the Cassini remote sensing instruments. We suggest that no corresponding lens-shaped weathering pattern has been observed on the trailing hemisphere because of the comparatively short range of lower energy (<1 MeV) electrons into surface ice, as well as competing effects from cold plasma, neutral, and dust bombardment.

  16. The earth and the moon

    CERN Document Server

    Elkins-Tanton, Linda T

    2010-01-01

    The moon is the only body in the solar system outside of the Earth that has been visited by humans. More than 440 pounds of lunar material are brought by NASA and Soviet space missions to Earth for study. The information gleaned about the moon from this relatively small pile of rocks is mind-boggling and stands as the greatest proof that Martian planetary science would be greatly enhanced by returning samples to Earth. Compositional studies of lunar rocks show that the moon and the Earth are made of similar material, and because lunar material has not been reworked through erosion and plate te

  17. NIMPH - Nano Icy Moons Propellant Harvester

    Data.gov (United States)

    National Aeronautics and Space Administration — The latest Decadal Survey lists multiple sample return missions to the Moon, Mars and Jovian moons as high priority goals. In particular, a mission to Jupiter's...

  18. Short period tidal variations of earth rotation

    Science.gov (United States)

    Yoder, C. F.; Williams, J. G.; Parke, M. E.; Dickey, J. O.

    1981-01-01

    It is explained that the tidal deformation of the earth's polar moment of inertia by the moon and sun cause periodic variations in rotation. The short period oscillations give rise to a meter-sized, diurnal signature in the lunar laser ranging data obtained at McDonald Observatory. A solution is given for the scale parameter k/C at fortnightly and monthly tidal frequencies. The results are compared with those obtained by other investigators and with a theoretical estimate which includes the effect of oceans and a decoupled fluid core.

  19. Dynamics of the Sun-Earth-Moon System

    Indian Academy of Sciences (India)

    The dynamics of the Sun-Earth-Moon system is discussed with special attention to the effects of. Sun's perturbations on the Moon's orbit around the Earth. Important secular effects are the re- gression of the nodes, the advance of the perigee and the increase in the Moon's mean longitude. We discuss the relationship of the ...

  20. Towards A Moon Village: Vision and Opportunities

    Science.gov (United States)

    Foing, Bernard

    2016-04-01

    The new DG of ESA, Jan Wörner, has expressed from the very beginning of his duty a clear ambition towards a Moon Village, where Europe could have a lead role. The concept of Moon Village is basically to start with a robotic lunar village and then develop a permanent station on the Moon with different countries and partners that can participate and contribute with different elements, experiments, technologies, and overall support. ESA's DG has communicated about this programme and invited inputs from all the potential stakeholders, especially member states, engineers, industry, scientists, innovators and diverse representatives from the society. In order to fulfill this task, a series of Moon Village workshops have been organized first internally at ESA and then at international community events, and are also planned for the coming months, to gather stakeholders to present their ideas, their developments and their recommendations on how to put Moon Village into the minds of Europeans, international partners and prepare relevant actions for upcoming International Lunar Decade. Moon Village Workshop: The Moon Village Workshop in ESTEC on the 14th December was organized by ILEWG & ESTEC Staff Association in conjunction with the Moon 2020-2030 Symposium. It gathered people coming from all around the world, with many young professionals involved, as well as senior experts and representatives, with a very well gender balanced and multidisciplinary group. Engineers, business experts, managers, scientists, architects, artists, students presented their views and work done in the field of Lunar Exploration. Participants included colleagues from ESA, SGAC Space Generation Advisory Council, NASA, and industries such as OHB SE, TAS, Airbus DS, CGI, etc… and researchers or students from various Universities in Europe, America, and Asia. Working groups include: Moon Habitat Design, Science and Technology potentials on the Moon Village, and Engaging Stakeholders. The Moon

  1. Lunar Plants Prototype for Moon Express

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of our project is to bring the first full life cycle to the moon: to demonstrate germination of plants in lunar gravity and radiation.The Moon Express...

  2. Earth's variable rotation

    Science.gov (United States)

    Hide, Raymond; Dickey, Jean O.

    1991-01-01

    Recent improvements in geodetic data and practical meteorology have advanced research on fluctuations in the earth's rotation. The interpretation of these fluctuations is inextricably linked with studies of the dynamics of the earth-moon system and dynamical processes in the liquid metallic core of the earth (where the geomagnetic field originates), other parts of the earth's interior, and the hydrosphere and atmosphere. Fluctuations in the length of the day occurring on decadal time scales have implications for the topographay of the core-mantle boundary and the electrical, magnetic, ande other properties of the core and lower mantle. Investigations of more rapid fluctuations bear on meteorological studies of interannual, seasonal, and intraseasonal variations in the general circulation of the atmosphere and the response of the oceans to such variations.

  3. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    Science.gov (United States)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno, J.

    2011-01-01

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we selected a parent disk sample of 170,000 galaxies from SDSS DR7, with redshifts between 0.02 and 0.10 and r band absolute magnitudes between -18.0 and -22.5. Then, we constructed a child disk sample of 189 galaxies that span the parameter space-- in absolute magnitude, color, and disk size-- covered by the parent sample, and for which we have obtained kinematic data. Long-slit spectroscopy were obtained from the Dual Imaging Spectrograph (DIS) at the Apache Point Observatory 3.5 m for 99 galaxies, and from Pizagno et al. (2007) for 95 galaxies (five have repeat observations). We find the best photometric estimator of disk rotation velocity to be a synthetic magnitude with a color correction that is consistent with the Bell et al. (2003) color-based stellar mass ratio. The improved rotation velocity estimates have a wide range of scientific applications, and in particular, in combination with weak lensing measurements, they enable us to constrain the ratio of optical-to-virial velocity in disk galaxies.

  4. Two-color studies of autoionizing states of small molecules

    International Nuclear Information System (INIS)

    Pratt, S.T.; Dehmer, P.M.; Dehmer, J.L.; Tomkins, F.S.; O'Halloran, M.A.

    1989-01-01

    Two-color, resonantly enhanced multiphoton ionization is proving to be a valuable technique for the study of autoionizing states of small molecules. In this talk, results obtained by combining REMPI, photoelectron spectroscopy, and mass spectrometry will be discussed and will be illustrated by examples from our recent studies of rotational and vibrational autoionization in molecular hydrogen and rotational autoionization in nitric oxide. 2 refs., 1 fig

  5. Protecting the Moon for research: ILEWG report

    Science.gov (United States)

    Foing, Bernard H.

    We give a report on recommendations with emphasis on environment protection, and since last COSPAR from ILEWG International conferences Exploration and Utilisation of the Moon on held at Cape Canaveral in 2008 (ICEUM10), and in Beijing in May 2010 with IAF (GLUC -ICEUM11). We discuss the different rationale for Moon exploration, as debated at ILEWG. ILEWG Science task group has listed priorities for scientific investigations: clues on the formation and evolution of rocky planets, accretion and bombardment in the inner solar system, comparative planetology processes (tectonic, volcanic, impact cratering, volatile delivery), records astrobiology, survival of organics; past, present and future life; sciences from a biology lunar laboratory. We discuss how to preserve Moon research potential in these areas while operating with instruments, landers, rover during a cooperative robotic village, and during the transition form lunar human outpost to permanent sustainable human base. We discuss how Moon-Mars Exploration can inspire solutions to global Earth sustained development with the trade-off of In-Situ Utilisation of resources; Establishment of permanent robotic infrastructures, Environmental and planetary protection aspects and lessons for Mars; Life sciences laboratories, and support to human exploration. Co-authors: ILEWG Task Groups on Science, Technology and Human Lunar Bases ILEWG Reference documents: http://sci.esa.int/ilewg -10th ILEWG Conference on Exploration and Utilisation of the Moon, NASA Lunar Ex-ploration Analysis Group-PSace Resources Roundtable, Cape Canaveral October 2008, pro-gramme online at http://sci.esa.int/ilewg/ -9th ILEWG Conference on Exploration and Utilisation of the Moon, ICEUM9 Sorrento 2007, programme online at http://sci.esa.int/ilewg/ -8th ILEWG Conference on Exploration and Utilisation of the Moon, Beijing July 2006, programme online at http://sci.esa.int/ilewg/ -The Moon and Near Earth Objects (P. Ehrenfreund , B.H. Foing, A

  6. Color superconductivity in dense quark matter

    International Nuclear Information System (INIS)

    Alford, Mark G.; Schmitt, Andreas; Rajagopal, Krishna; Schaefer, Thomas

    2008-01-01

    Matter at high density and low temperature is expected to be a color superconductor, which is a degenerate Fermi gas of quarks with a condensate of Cooper pairs near the Fermi surface that induces color Meissner effects. At the highest densities, where the QCD coupling is weak, rigorous calculations are possible, and the ground state is a particularly symmetric state, the color-flavor locked (CFL) phase. The CFL phase is a superfluid, an electromagnetic insulator, and breaks chiral symmetry. The effective theory of the low-energy excitations in the CFL phase is known and can be used, even at more moderate densities, to describe its physical properties. At lower densities the CFL phase may be disfavored by stresses that seek to separate the Fermi surfaces of the different flavors, and comparison with the competing alternative phases, which may break translation and/or rotation invariance, is done using phenomenological models. We review the calculations that underlie these results and then discuss transport properties of several color-superconducting phases and their consequences for signatures of color superconductivity in neutron stars.

  7. More Saturnian Moons

    Science.gov (United States)

    2000-10-01

    Saturn takes the lead Following the discovery of at least four additional moons of that planet, Saturn has again taken the lead as the planet with the greatest number of known natural satellites. A corresponding announcement was made today by an international team of astronomers [1] at a meeting of the Division for Planetary Sciences (DPS) of the American Astronomical Society (AAS) in Pasadena (California, USA). The four new faint bodies were spotted during observations in August-September 2000 at several astronomical telescopes around the world. Subsequent orbital calculations have indicated that these objects are almost certainly new satellites of the giant planet. Two Saturnian moons found at La Silla ESO PR Photo 29a/00 ESO PR Photo 29a/00 [Preview - JPEG: 263 x 400 pix - 26k] [Normal - JPEG: 525 x 800 pix - 93k] ESO PR Photo 29b/00 ESO PR Photo 29b/00 [Preview - JPG: 289 x 400 pix - 43k] [Normal - JPG: 578 x 800 pix - 432k] ESO PR Photo 29c/00 ESO PR Photo 29c/00 [Animated GIF: 330 x 400 pix - 208k] Captions : The photos show the discovery images of two new Saturnian moons, as registered on August 7, 2000, with the Wide-Field Imager (WFI) camera at the MPG/ESO 2.2-m telescope at the La Silla Observatory. Photo PR 29a/00 displays the faint image of the newly discovered moon S/2000 S 1 in the lower right corner of the field. A spiral galaxy is seen in the upper left corner of this photo. The other objects are (background) stars in the Milky Way. Photo PR 29b/00 is a combination of three successive WFI exposures of the second moon, S/2000 S 2 . Because of its motion, there are three images (to the left). Photo PR 29c/00 is an animated GIF image of the same three exposures that demonstrates this motion. Technical details are found below. The observations of the first two objects are described on a Circular of the International Astronomical Union (IAU) that was issued today [2]. The images of these new moons were first registered on exposures made on August 7, 2000

  8. A method and results of color calibration for the Chang'e-3 terrain camera and panoramic camera

    Science.gov (United States)

    Ren, Xin; Li, Chun-Lai; Liu, Jian-Jun; Wang, Fen-Fei; Yang, Jian-Feng; Liu, En-Hai; Xue, Bin; Zhao, Ru-Jin

    2014-12-01

    The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission respectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image quality has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncorrected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively.

  9. The rotation of Titan and Ganymede

    Science.gov (United States)

    Van Hoolst, Tim; Coyette, Alexis; Baland, Rose-Marie; Trinh, Antony

    2016-10-01

    The rotation rates of Titan and Ganymede, the largest satellites of Saturn and Jupiter, are on average equal to their orbital mean motion. Here we discuss small deviations from the average rotation for both satellites and evaluate the polar motion of Titan induced by its surface fluid layers. We examine different causes at various time scales and assess possible consequences and the potential of using librations and polar motion as probes of the interior structure of the satellites.The rotation rate of Titan and Ganymede cannot be constant on the orbital time scale as a result of the gravitational torque of the central planet acting on the satellites. Titan is moreover expected to show significant polar motion and additional variations in the rotation rate due to angular momentum exchange with the atmosphere, mainly at seasonal periods. Observational evidence for deviations from the synchronous state has been reported several times for Titan but is unfortunately inconclusive. The measurements of the rotation variations are based on determinations of the shift in position of Cassini radar images taken during different flybys. The ESA JUICE (JUpiter ICy moons Explorer) mission will measure the rotation variations of Ganymede during its orbital phase around the satellite starting in 2032.We report on different theoretical aspects of the librations and polar motion. We consider the influence of the rheology of the ice shell and take into account Cassini measurements of the external gravitational field and of the topography of Titan and similar Galileo data about Ganymede. We also evaluate the librations and polar motion induced by Titan's hydrocarbon seas and use the most recent results of Titan's atmosphere dynamics. We finally evaluate the potential of rotation variations to constrain the satellite's interior structure, in particular its ice shell and ocean.

  10. Exploring The Moon through a 21st Century Learning Environment of Interactive Whiteboards

    Science.gov (United States)

    Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.

    2012-12-01

    the lessons. Module I: Students explore the properties of light and use an ALTA hand-held spectrometer to identify and map compositional variation on the moon's surface, discovering that the Moon is similar to, yet different from, the Earth and terrestrial planets. Module II: Students break up into teams of "Orbiters" and "Earth scientists" to gather reflectance data from "Moon rocks" and Earth rocks respectively. Students compare the reflectance spectra from those to identify the rock types on the Moon. Module III: Students create and compare color-coded mineralogy maps and topographical maps of the Moon. Using spectroscopic data and their understanding of cratering and volcanism from previous activities, students create questions and devise theories for the geologic history of the Moon. Current research is inconclusive as to whether or not the use of 21st century technologies are effective as learning tools. Although the technology may be available in modern classrooms, many teachers still teach with traditional instructional strategies. We have seen, that when students actively engage and are a part of using the technology, they develop a deeper understanding and a desire to learn more about the topics covered. The interactive whiteboard technology permits students to directly immerse themselves with the content.

  11. The Moon's largest craters and basins images and topographic maps from LRO, GRAIL, and Kaguya

    CERN Document Server

    Byrne, Charles J

    2016-01-01

    This most recent book from lunar expert Charles J. Byrne combines the latest comprehensive imagery, topography and gravity data from all three recent Moon missions, Kaguya, Lunar Reconnaissance Orbiter and GRAIL. These major polar-orbit surveys are presented here in compact form for the convenience of amateur and practical astronomers concerned with the Moon. Chosen from the Near and Far Side's large craters and basins over 200 km in diameter, each of the 71 highlighted features is depicted with a two-page presentation of the data that includes false color topographic maps next to the mission images. Additionally, the features are presented in the estimated chronological sequence of their creation, based on a consideration of stratigraphy (overlapping layers from neighboring features) and the relative degradation of surface features.  Using this sequence as a way to convey the relative ages of lunar features, the author presents various theories concerning the Moon’s impact and thermal history ...

  12. Observed tidal braking in the earth/moon/sun system

    Science.gov (United States)

    Christodoulidis, D. C.; Smith, D. E.; Williamson, R. G.; Klosko, S. M.

    1987-01-01

    The low degree and order terms in the spherical harmonic model of the tidal potential were observed through the perturbations which are induced on near-earth satellite orbital motions. Evaluations of tracking observations from 17 satellites and a GEM-T1 geopotential model were used in the tidal recovery which was made in the presence of over 600 long-wavelength coefficients from 32 major and minor tides. Wahr's earth tidal model was used as a basis for the recovery of the ocean tidal terms. Using this tidal model, the secular change in the moon's mean motion due to tidal dissipation was found to be -25.27 + or - 0.61 arcsec/century squared. The estimation of lunar acceleration agreed with that observed from lunar laser ranging techniques (-24.9 + or - 1.0 arcsec/century squared), with the corresponding tidal braking of earth's rotation being -5.98 + or - 0.22 x 10 to the minus 22 rad/second squared. If the nontidal braking of the earth due to the observed secular change in the earth's second zonal harmonic is considered, satellite techniques yield a total value of the secular change of the earth's rotation rate of -4.69 + or - 0.36 x 10 to the minus 22 rad/second squared.

  13. The Moon's near side megabasin and far side bulge

    CERN Document Server

    Byrne, Charles

    2013-01-01

    Since Luna and Lunar Orbiter photographed the far side of the Moon, the mysterious dichotomy between the face of the Moon as we see it from Earth and the side of the Moon that is hidden has puzzled lunar scientists. As we learned more from the Apollo sample return missions and later robotic satellites, the puzzle literally deepened, showing asymmetry of the crust and mantle, all the way to the core of the Moon. This book summarizes the author’s successful search for an ancient impact feature, the Near Side Megabasin of the Moon and the extensions to impact theory needed to find it. The implications of this ancient event are developed to answer many of the questions about the history of the Moon.

  14. A soft X-ray image of the Moon

    International Nuclear Information System (INIS)

    Schmitt, J.H.M.M.; Aschenbach, B.; Hasinger, G.; Pfeffermann, E.; Predehl, P.; Truemper, J.; Snowden, S.L.; Wisconsin Univ., Madison, WI

    1991-01-01

    A soft X-ray image of the Moon obtained by the Roentgen Observatory Satellite ROSAT clearly shows a sunlit crescent, demonstrating that the Moon's X-ray luminosity arises from backscattering of solar X-rays. The Moon's optically dark side is also X-ray dark, and casts a distinct shadow on the diffuse cosmic X-ray background. Unexpectedly, the dark side seems to emit X-rays at a level about one per cent that of the bright side; this emission very probably results from energetic solar-wind electrons striking the Moon's surface. (author)

  15. Tracking Apollo to the Moon

    CERN Document Server

    Lindsay, Hamish

    2001-01-01

    This is perhaps the most complete, detailed and readable story of manned space-flight ever published Beginning with the historical origins of the dream of walking on the Moon, Tracking Apollo to the Moon is the complete story of manned spaceflight, from the earliest Mercury and Gemini flights through to the end of the Apollo era In readable, fascinating detail, Hamish Lindsay - who was directly involved in all three programs - chronicles mankind's greatest adventure with a great narrative, interviews, quotes and masses of photographs, including some previously unpublished As well as bringing the history of these missions to life Tracking Apollo to the Moon serves as a detailed reference for space enthusiasts and students Having seen the manuscript, the Smithsonian requested two copies of the finished book, and Buzz Aldrin asked for five!

  16. Moon Prospective Energy and Material Resources

    CERN Document Server

    2012-01-01

    The Earth has limited material and energy resources. Further development of the humanity will require going beyond our planet for mining and use of extraterrestrial mineral resources and search of power sources. The exploitation of the natural resources of the Moon is a first natural step on this direction. Lunar materials may contribute to the betterment of conditions of people on Earth but they also may be used to establish permanent settlements on the Moon. This will allow developing new technologies, systems and flight operation techniques to continue space exploration.   In fact, a new branch of human civilization could be established permanently on Moon in the next century. But, meantime, an inventory and proper social assessment of Moon’s prospective energy and material resources is required. This book investigates the possibilities and limitations of various systems supplying manned bases on Moon with energy and other vital resources. The book collects together recent proposals and innovative optio...

  17. Survival of extrasolar giant planet moons in planet-planet scattering

    Science.gov (United States)

    CIAN HONG, YU; Lunine, Jonathan; Nicholson, Phillip; Raymond, Sean

    2015-12-01

    Planet-planet scattering is the best candidate mechanism for explaining the eccentricity distribution of exoplanets. Here we study the survival and dynamics of exomoons under strong perturbations during giant planet scattering. During close encounters, planets and moons exchange orbital angular momentum and energy. The most common outcomes are the destruction of moons by ejection from the system, collision with the planets and the star, and scattering of moons onto perturbed but still planet-bound orbits. A small percentage of interesting moons can remain bound to ejected (free-floating) planets or be captured by a different planet. Moons' survival rate is correlated with planet observables such as mass, semi-major axis, eccentricity and inclination, as well as the close encounter distance and the number of close encounters. In addition, moons' survival rate and dynamical outcomes are predetermined by the moons' initial semi-major axes. The survival rate drops quickly as moons' distances increase, but simulations predict a good chance of survival for the Galilean moons. Moons with different dynamical outcomes occupy different regions of orbital parameter space, which may enable the study of moons' past evolution. Potential effects of planet obliquity evolution caused by close encounters on the satellites’ stability and dynamics will be reported, as well as detailed and systematic studies of individual close encounter events.

  18. Radio astronomy on the moon

    International Nuclear Information System (INIS)

    Burns, J.O.; Asbell, J.

    1987-01-01

    The advantages and opportunities for radio astronomy on the moon during the early to mid 21st century are reviewed. In particular, it is argued that the lack of atmosphere, the extremely low seismic activity, the low RF background, and the natural cryogenic environment make the moon (particularly the far side and the poles) a nearly ideal locale for submillimeter/FIR to VLF (below 10 MHz) radio astronomy. 22 references

  19. A method and results of color calibration for the Chang'e-3 terrain camera and panoramic camera

    International Nuclear Information System (INIS)

    Ren Xin; Li Chun-Lai; Liu Jian-Jun; Wang Fen-Fei; Yang Jian-Feng; Xue Bin; Liu En-Hai; Zhao Ru-Jin

    2014-01-01

    The terrain camera (TCAM) and panoramic camera (PCAM) are two of the major scientific payloads installed on the lander and rover of the Chang'e 3 mission respectively. They both use a Bayer color filter array covering CMOS sensor to capture color images of the Moon's surface. RGB values of the original images are related to these two kinds of cameras. There is an obvious color difference compared with human visual perception. This paper follows standards published by the International Commission on Illumination to establish a color correction model, designs the ground calibration experiment and obtains the color correction coefficient. The image quality has been significantly improved and there is no obvious color difference in the corrected images. Ground experimental results show that: (1) Compared with uncorrected images, the average color difference of TCAM is 4.30, which has been reduced by 62.1%. (2) The average color differences of the left and right cameras in PCAM are 4.14 and 4.16, which have been reduced by 68.3% and 67.6% respectively

  20. A New Moon for the Twenty-First Century

    Science.gov (United States)

    Taylor, G. J.

    2000-08-01

    Thirty years of lunar sample studies supplemented by spotty remote sensing and geophysical data gave us the broad outline of the nature and geologic history of the Moon. Many cherished beliefs are now being questioned on the basis of global data returned by two bargain-basement missions sent to the Moon in the 1990s, Clementine and Lunar Prospector. These data are being integrated with new and old lunar sample data, to give us new, though still controversial, ideas about the nature of the Moon. Two articles in a special section of the Journal of Geophysical Research (Planets) illustrate the point. Brad Jolliff and his colleagues at Washington University in St. Louis, Jeff Gillis, Larry Haskin, Randy Korotev, and Mark Wieczorek (now at the Massachusetts Institute of Technology) divide the Moon's crust into distinct geochemical provinces quite different from the traditional highlands (or terra) and maria. In a separate paper, Randy Korotev presents a detailed analysis of a common rock type among the samples returned by the Apollo missions. This rock type, nicknamed enigmatically "LKFM," was thought by many of us to represent the composition of the lower crust everywhere on the Moon. Korotev argues that it is confined to only one of Jolliff's provinces. If correct, this changes our estimates of the composition of the lunar crust, hence of the entire Moon. Although other lunar scientists will scrutinize these new views of the Moon, it is clear that some long-held ideas about the Moon might be modified significantly, if not tossed out completely.

  1. sanghoon moon

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics. SANGHOON MOON. Articles written in Journal of Genetics. Volume 96 Issue 6 December 2017 pp 1041-1046 Research article. Genome-based exome sequencing analysis identifies GYG1, DIS3L and DDRGK1 are associated with myocardial infarction in Koreans · JI-YOUNG LEE ...

  2. The Moon: Resources, Future Development and Colonization

    Science.gov (United States)

    Schrunk, David; Sharpe, Burton; Cooper, Bonnie; Thangavelu, Madhu

    1999-07-01

    This unique, visionary and innovative book describes how the Moon could be colonised and developed as a platform for science, industrialization and exploration of our Solar System and beyond. Thirty years ago, the world waited with baited breath to watch history in the making, as man finally stepped onto the moon's surface. In the last few years, there has been growing interest in the idea of a return to the moon. This book describes the reasons why we should now start lunar development and settlement, and how this goal may be accomplished. The authors, all of whom are hugely experienced space scientists, consider the rationale and steps necessary for establishing permanent bases on the Moon. Their innovative and scientific-based analysis concludes that the Moon has sufficient resources for large-scale human development. Their case for development includes arguments for a solar-powered electric grid and railroad, creation of a utilities infrastructure, habitable facilities, scientific operations and the involvement of private enterprise with the public sector in the macroproject. By transferring and adapting existing technologies to the lunar environment, the authors argue that it will be possible to use lunar resources and solar power to build a global lunar infrastructure embracing power, communication, transportation, and manufacturing. This will support the migration of increasing numbers of people from Earth, and realization of the Moon's scientific potential. As an inhabited world, the Moon is an ideal site for scientific laboratories dedicated to geosciences, astronomy and life sciences, and most importantly, it would fulfil a role as a proving ground and launch pad for future Solar System exploration. The ten chapters in this book go beyond the theoretical and conceptual. With vision and foresight, the authors offer practical means for establishing permanent bases on the Moon. The book will make fascinating and stimulating reading for students in

  3. Lunar and Planetary Science XXXV: Moon and Mercury

    Science.gov (United States)

    2004-01-01

    The session" Moon and Mercury" included the following reports:Helium Production of Prompt Neutrinos on the Moon; Vapor Deposition and Solar Wind Implantation on Lunar Soil-Grain Surfaces as Comparable Processes; A New Lunar Geologic Mapping Program; Physical Backgrounds to Measure Instantaneous Spin Components of Terrestrial Planets from Earth with Arcsecond Accuracy; Preliminary Findings of a Study of the Lunar Global Megaregolith; Maps Characterizing the Lunar Regolith Maturity; Probable Model of Anomalies in the Polar Regions of Mercury; Parameters of the Maximum of Positive Polarization of the Moon; Database Structure Development for Space Surveying Results by Moon -Zond Program; CM2-type Micrometeoritic Lunar Winds During the Late Heavy Bombardment; A Comparison of Textural and Chemical Features of Spinel Within Lunar Mare Basalts; The Reiner Gamma Formation as Characterized by Earth-based Photometry at Large Phase Angles; The Significance of the Geometries of Linear Graben for the Widths of Shallow Dike Intrusions on the Moon; Lunar Prospector Data, Surface Roughness and IR Thermal Emission of the Moon; The Influence of a Magma Ocean on the Lunar Global Stress Field Due to Tidal Interaction Between the Earth and Moon; Variations of the Mercurian Photometric Relief; A Model of Positive Polarization of Regolith; Ground Truth and Lunar Global Thorium Map Calibration: Are We There Yet?;and Space Weathering of Apollo 16 Sample 62255: Lunar Rocks as Witness Plates for Deciphering Regolith Formation Processes.

  4. Solar activity, tidal friction and the earth rotation over the last 2000 years

    International Nuclear Information System (INIS)

    Kiselev, V.M.

    1981-01-01

    The tidal retardations of the Earth rotation and orbital motion of the Moon on Dynamical Time are discussed. The secular deceleration of the lunar motion deduced from an analysis of the anciept and medieval eclipses is lapger thap that obtained from recent (telescopic) observations. This discrepancy is shown to vanish if the Earth acceleration due to secular change of solar activity is taken into consideration. Therefore, one may suggest that the mean tidal friction has remained essentially constant over the last two millennia. Nontidal variations of the Earth rotation velocity in the historical past as well as at present time are shown to be caused by solar activity changes [ru

  5. Inertial wave beams and inertial wave modes in a rotating cylinder with time-modulated rotation rate

    Science.gov (United States)

    Borcia, Ion D.; Ghasemi V., Abouzar; Harlander, Uwe

    2014-05-01

    Inertial gravity waves play an crucial role in atmospheres, oceans, and the fluid inside of planets and moons. In the atmosphere, the effect of rotation is neglected for small wavelength and the waves bear the character of internal gravity waves. For long waves, the hydrostatic assumption is made which in turn makes the atmosphere inelastic with respect to inertial motion. In contrast, in the Earth's interior, pure inertial waves are considered as an important fundamental part of the motion. Moreover, as the deep ocean is nearly homogeneous, there the inertial gravity waves bear the character of inertial waves. Excited at the oceans surface mainly due to weather systems the waves can propagate downward and influence the deep oceans motion. In the light of the aforesaid it is important to understand better fundamental inertial wave dynamics. We investigate inertial wave modes by experimental and numerical methods. Inertial modes are excited in a fluid filled rotating annulus by modulating the rotation rate of the outer cylinder and the upper and lower lids. This forcing leads to inertial wave beams emitted from the corner regions of the annulus due to periodic motions in the boundary layers (Klein et al., 2013). When the forcing frequency matches with the eigenfrequency of the rotating annulus the beam pattern amplitude is increasing, the beams broaden and mode structures can be observed (Borcia et al., 2013a). The eigenmodes are compared with analytical solutions of the corresponding inviscid problem (Borcia et al, 2013b). In particular for the pressure field a good agreement can be found. However, shear layers related to the excited wave beams are present for all frequencies. This becomes obvious in particular in the experimental visualizations that are done by using Kalliroscope particles, highlighting relative motion in the fluid. Comparing the eigenfrequencies we find that relative to the analytical frequencies, the experimental and numerical ones show a small

  6. A Fast, Background-Independent Retrieval Strategy for Color Image Databases

    National Research Council Canada - National Science Library

    Das, M; Draper, B. A; Lim, W. J; Manmatha, R; Riseman, E. M

    1996-01-01

    .... The method is fast and has low storage overhead. Good retrieval results are obtained with multi-colored query objects even when they occur in arbitrary sizes, rotations and locations in the database images...

  7. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Geologic mapping of Mercury and the Moon. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The geologic framework of the intercrater plains on Mercury and the Moon as determined through geologic mapping is presented. The strategies used in such mapping are discussed first. Then, because the degree of crater degradation is applied to both mapping and crater statistics, the correlation of degradation classification of lunar and Mercurian craters is thoroughly addressed. Different imaging systems can potentially affect this classification, and are therefore also discussed. The techniques used in mapping Mercury are discussed in Section 2, followed by presentation of the Geologic Map of Mercury in Section 3. Material units, structures, and relevant albedo and color data are discussed therein. Preliminary conclusions regarding plains' origins are given there. The last section presents the mapping analyses of the lunar intercrater plains, including tentative conclusions of their origin.

  8. ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS

    International Nuclear Information System (INIS)

    Ćuk, Matija; Ragozzine, Darin; Nesvorný, David

    2013-01-01

    The dwarf planet Haumea has two large satellites, Namaka and Hi'iaka, which orbit at relatively large separations. Both moons have significant eccentricities and inclinations in a pattern that is consistent with a past orbital resonance. Based on our analysis, we find that the present system is not consistent with satellite formation close to the primary and tidal evolution through mean-motion resonances. We propose that Namaka experienced only limited tidal evolution, leading to the mutual 8:3 mean-motion resonance which redistributed eccentricities and inclinations between the moons. This scenario requires that the original orbit of Hi'iaka was mildly eccentric; we propose that this eccentricity was either primordial or acquired through encounters with other trans-Neptunian objects. Both dynamical stability and our preferred tidal evolution model imply that the moons' masses are only about one-half of previously estimated values, suggesting high albedos and low densities. Because the present orbits of the moons strongly suggest formation from a flat disk close to their present locations, we conclude that Hi'iaka and Namaka may be second-generation moons, formed after the breakup of a larger past moon, previously proposed as the parent body of the Haumea family. We derive plausible parameters of that moon, consistent with the current models of Haumea's formation. An interesting implication of this hypothesis is that Hi'iaka and Namaka may orbit retrograde with respect to Haumea's spin. Retrograde orbits of Haumea's moons would be in full agreement with available observations and our dynamical analysis, and could provide a unique confirmation of the ''disrupted satellite'' scenario for the origin of the family

  9. MIGRATION OF SMALL MOONS IN SATURN's RINGS

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, Benjamin C. [Department of Physics and Astronomy, University of Utah, 115 S 1400 E, Rm 201, Salt Lake City, UT 84112 (United States); Kenyon, Scott J., E-mail: bromley@physics.utah.edu, E-mail: skenyon@cfa.harvard.edu [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States)

    2013-02-20

    The motions of small moons through Saturn's rings provide excellent tests of radial migration models. In theory, torque exchange between these moons and ring particles leads to radial drift. We predict that moons with Hill radii r {sub H} {approx} 2-24 km should migrate through the A ring in 1000 yr. In this size range, moons orbiting in an empty gap or in a full ring eventually migrate at the same rate. Smaller moons or moonlets-such as the propellers-are trapped by diffusion of disk material into corotating orbits, creating inertial drag. Larger moons-such as Pan or Atlas-do not migrate because of their own inertia. Fast migration of 2-24 km moons should eliminate intermediate-size bodies from the A ring and may be responsible for the observed large-radius cutoff of r {sub H} {approx} 1-2 km in the size distribution of the A ring's propeller moonlets. Although the presence of Daphnis (r {sub H} Almost-Equal-To 5 km) inside the Keeler gap challenges this scenario, numerical simulations demonstrate that orbital resonances and stirring by distant, larger moons (e.g., Mimas) may be important factors. For Daphnis, stirring by distant moons seems the most promising mechanism to halt fast migration. Alternatively, Daphnis may be a recent addition to the ring that is settling into a low inclination orbit in {approx}10{sup 3} yr prior to a phase of rapid migration. We provide predictions of observational constraints required to discriminate among possible scenarios for Daphnis.

  10. Distribution of rotational velocities for low-mass stars in the Pleiades

    International Nuclear Information System (INIS)

    Stauffer, J.R.; Hartmann, L.W.; Dominion Astrophysical Observatory, Victoria, Canada; Smithsonian Astrophysical Observatory, Cambridge, MA)

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula. 79 references

  11. A rotating bag model for hadrons. 2

    International Nuclear Information System (INIS)

    Iwasaki, Masaharu

    1994-01-01

    The MIT bag model is modified in order to describe rotational motion of hadrons. It has a kind of 'diatomic molecular' structure; The rotational excitation of the MIT bag is described by the polarized two colored sub-bags which are connected with each other by the gluon flux. One sub-bag contains a quark and the other has an antiquark for mesons. For baryons, the latter sub-bag contains the remaining two quarks instead of the antiquark. The Regge trajectories of hadrons are explained qualitatively by our new model with the usual MIT bag parameters. In particular the Regge slopes are reproduced fairly well. It is also pointed out that the gluon flux plays an important role in the rotational motion of hadrons. (author)

  12. GRAVITY ANOMALIES OF THE MOON

    Directory of Open Access Journals (Sweden)

    S. G. Pugacheva

    2015-01-01

    Full Text Available The source of gravity anomalies of the Moon are large mascons with a high mass concentration at a depth of volcanic plains and lunar Maria. New data on the gravitational field of the Moon were obtained from two Grail spacecrafts. The article presents the data of physical and mechanical properties of the surface soil layer of the lunar Maria and gives an assessment of the chemical composition of the soil. There have been calculated heterogeneity parameters of the surface macro-relief of the lunar Maria: albedo, soil density, average grain diameter of the particles forming the surface layer and the volume fraction occupied by particles. It can be assumed that mascons include rich KREEP rocks with a high content of thorium and iron oxide. Formation of mascons is connected with intensive development of basaltic volcanism on the Moon in the early periods of its existence.

  13. ROTATIONAL VARIABILITY OF EARTH'S POLAR REGIONS: IMPLICATIONS FOR DETECTING SNOWBALL PLANETS

    International Nuclear Information System (INIS)

    Cowan, Nicolas B.; Robinson, Tyler; Agol, Eric; Meadows, Victoria S.; Shields, Aomawa L.; Livengood, Timothy A.; Deming, Drake; A'Hearn, Michael F.; Wellnitz, Dennis D.; Charbonneau, David; Lisse, Carey M.; Seager, Sara

    2011-01-01

    We have obtained the first time-resolved, disk-integrated observations of Earth's poles with the Deep Impact spacecraft as part of the EPOXI mission of opportunity. These data mimic what we will see when we point next-generation space telescopes at nearby exoplanets. We use principal component analysis (PCA) and rotational light curve inversion to characterize color inhomogeneities and map their spatial distribution from these unusual vantage points, as a complement to the equatorial views presented by Cowan et al. in 2009. We also perform the same PCA on a suite of simulated rotational multi-band light curves from NASA's Virtual Planetary Laboratory three-dimensional spectral Earth model. This numerical experiment allows us to understand what sorts of surface features PCA can robustly identify. We find that the EPOXI polar observations have similar broadband colors as the equatorial Earth, but with 20%-30% greater apparent albedo. This is because the polar observations are most sensitive to mid-latitudes, which tend to be more cloudy than the equatorial latitudes emphasized by the original EPOXI Earth observations. The cloudiness of the mid-latitudes also manifests itself in the form of increased variability at short wavelengths in the polar observations and as a dominant gray eigencolor in the south polar observation. We construct a simple reflectance model for a snowball Earth. By construction, our model has a higher Bond albedo than the modern Earth; its surface albedo is so high that Rayleigh scattering does not noticeably affect its spectrum. The rotational color variations occur at short wavelengths due to the large contrast between glacier ice and bare land in those wavebands. Thus, we find that both the broadband colors and diurnal color variations of such a planet would be easily distinguishable from the modern-day Earth, regardless of viewing angle.

  14. The distribution of rotational velocities for low-mass stars in the Pleiades

    Science.gov (United States)

    Stauffer, John R.; Hartmann, Lee W.

    1987-01-01

    The available spectral type and color data for late-type Pleiades members have been reanalyzed, and new reddening estimates are obtained. New photometry for a small number of stars and a compilation of H-alpha equivalent widths for Pleiades dwarfs are presented. These data are used to examine the location of the rapid rotators in color-magnitude diagrams and the correlation between chromospheric activity and rotation. It is shown that the wide range of angular momenta exhibited by Pleiades K and M dwarfs is not necessarily produced by a combination of main-sequence spin-downs and a large age spread; it can also result from a plausible spread in initial angular momenta, coupled with initial main-sequence spin-down rates that are only weakly dependent on rotation. The new reddening estimates confirm Breger's (1985) finding of large extinctions confined to a small region in the southern portion of the Merope nebula.

  15. Space architecture for MoonVillage

    Science.gov (United States)

    Sherwood, Brent

    2017-10-01

    The concept of a multinational MoonVillage, as proposed by Jan Wörner of ESA, is analyzed with respect to diverse factors affecting its implementation feasibility: potential activities and scale as a function of location, technology, and purpose; potential participants and their roles; business models for growth and sustainability as compared to the ISS; and implications for the field of space architecture. Environmental and operations constraints that govern all types of MoonVillage are detailed. Findings include: 1) while technically feasible, a MoonVillage would be more distributed and complex a project than the ISS; 2) significant and distinctive opportunities exist for willing participants, at all evolutionary scales and degrees of commercialization; 3) the mixed-use space business park model is essential for growth and permanence; 4) growth depends on exporting lunar material products, and the rate and extent of growth depends on export customers including terrestrial industries; 5) industrial-scale operations are a precondition for lunar urbanism, which goal in turn dramatically drives technology requirements; but 6) industrial viability cannot be discerned until significant in situ operations occur; and therefore 7) government investment in lunar surface operations is a strictly enabling step. Because of the resources it could apply, the U.S. government holds the greatest leverage on growth, no matter who founds a MoonVillage. The interplanetary business to be built may because for engagement.

  16. The Moon's Moment in the Sun - Extending Public Engagement after the Total Solar Eclipse with International Observe the Moon Night

    Science.gov (United States)

    Bleacher, L.; Jones, A. P.; Wasser, M. L.; Petro, N. E.; Wright, E. T.; Ladd, D.; Keller, J. W.

    2017-12-01

    2017 presented an amazing opportunity to engage the public in learning about lunar and space science, the motions of the Earth-Moon-Sun system, and NASA's fleet of space missions, beginning with the 2017 total solar eclipse on 21 August and continuing with International Observe the Moon Night (InOMN) on 28 October. On 21 August 2017, everyone in the continental United States had the opportunity to witness a solar eclipse, weather permitting, in total or partial form. The path of totality, in which the Sun was completely obscured from view by the Moon, stretched from Oregon to South Carolina. The Education and Communication Team of NASA's Lunar Reconnaissance Orbiter (LRO) worked to highlight the Moon, the "central player" in the total solar eclipse, in a variety of ways for the public. Efforts included collaborating with Minor League Baseball teams to host eclipse-viewing events along the path of totality, communicating the Moon's role in the eclipse through public engagement products, communicating about InOMN as an experiential opportunity beyond the eclipse, and more. InOMN is an annual event, during which everyone on Earth is invited to observe and learn about the Moon and its connection to planetary science, and to share personal and community connections we all have to the Moon [2, 3, 4 and references therein]. For viewers across the United States, the total solar eclipse of 21 August provided an exciting opportunity to watch a New Moon cross in front of the Sun, casting the viewer in shadow and providing amazing views of the solar corona. The public observed the Moon in a different part of its orbit, when reflected sunlight revealed a fascinating lunar landscape - and extended their excitement for space science - by participating in InOMN on 28 October. With InOMN taking place barely two months after the total solar eclipse, it offered an opportunity to sustain and grow public interest in lunar and space science generated by the eclipse. We will report on

  17. Moon 101: Introducing Students to Lunar Science and Exploration

    Science.gov (United States)

    Shaner, A. J.; Shipp, S. S.; Allen, J. S.; Kring, D. A.

    2011-12-01

    Moon 101 is designed with the purpose of familiarizing students with lunar geology and exploration. Armed with guiding questions, students read articles covering various lunar science topics and browse images from past and current lunar missions to familiarize themselves with available lunar data sets. Moon 101 was originally created for high school students preparing to conduct open-inquiry, lunar research. Most high school students' knowledge of lunar science is limited to lunar phases and tides, and their knowledge of lunar exploration is close to non-existent. Moon 101 provides a summary of the state of knowledge of the Moon's formation and evolution, and the exploration that has helped inform the lunar science community. Though designed for high school students, Moon 101 is highly appropriate for the undergraduate classroom, especially at the introductory level where resources for teaching lunar science are scarce. Moon 101 is comprised of two sections covering lunar science (formation and geologic evolution of the Moon) and one section covering lunar exploration. Students read information on the formation and geologic evolution of the Moon from sources such as the Planetary Science Research Discoveries (PSRD) website and the USGS professional paper A Geologic History of the Moon by Wilhelms. While these resources are not peer-reviewed journals, the information is presented at a level more advanced than articles from newspapers and popular science magazines. This ensures that the language is accessible to students who do not have a strong lunar/planetary science background, or a strong science background in general. Formation readings include information on older and current formation hypotheses, including the Giant Impact Hypothesis, the Magma Ocean hypothesis, and the age of the lunar crust. Lunar evolution articles describe ideas such as the Late Heavy Bombardment and geologic processes such as volcanism and impact cratering. After reading the articles

  18. Road sign detection based on opponent color and rotational symmetry%基于颜色对抗和旋转对称的路标检测算法

    Institute of Scientific and Technical Information of China (English)

    黄跃凯; 徐丹; 曾昊; 吴达德

    2014-01-01

    本文针对禁止和警告标志提出了一种基于颜色对抗和旋转中心投影的检测方法。颜色对抗来源于人眼视觉机制中存在的相互对立的红/绿、黄/蓝色素对,以此突出红色和黄色区域。投影阶段则利用交通标志规则多边形的特征将点对的梯度向量向其旋转中心投影,得到多边形的中心位置和尺度信息。另外,采用多边形的几何特征进一步区分交通标志的类别。实验证明该方法能够满足实时需求,并对光照、旋转、尺度变化具有一定的不变性。%We present a real time road sign detection framework for warning and prohibition signs based on opponent colors and rotational center voting. The opponent colors exist in human primary visual cortex, like red/green, yellow/blue, by which red and yellow regions can be enhanced. During voting stage, pairwise gradient vectors vote for their rotational symmetry centers then regular polygons’ position and scales will be detected. Furthermore, polygons’ geometric features are used to classify the shape of the road signs. The experiments show that the proposed method satisfies real time application and is partly invariant to changes of illumination, scale and rotation.

  19. The Moon is a Planet Too: Lunar Science and Robotic Exploration

    Science.gov (United States)

    Cohen, Barbara A.

    2009-01-01

    This slide presentation reviews some of what is known about the moon, and draws parallels between the moon and any other terrestrial planet. The Moon is a cornerstone for all rocky planets The Moon is a terrestrial body, formed and evolved similarly to Earth, Mars, Mercury, Venus, and large asteroids The Moon is a differentiated body, with a layered internal structure (crust, mantle, and core) The Moon is a cratered body, preserving a record of bombardment history in the inner solar system The Moon is an active body, experiencing moonquakes, releasing primordial heat, conducting electricity, sustaining bombardment, and trapping volatile molecules Lunar robotic missions provide early science return to obtain important science and engineering objectives, rebuild a lunar science community, and keep our eyes on the Moon. These lunar missions, both past and future are reviewed.

  20. Grids of rotating stellar models with masses between 1.0 and 3.0 M⊙

    International Nuclear Information System (INIS)

    Yang Wu-Ming; Bi Shao-Lan; Meng Xiang-Cun

    2013-01-01

    We calculated a grid of evolutionary tracks of rotating models with masses between 1.0 and 3.0 M ⊙ and resolution δM ≤ 0.02 M ⊙ , which can be used to study the effects of rotation on stellar evolution and on the characteristics of star clusters. The value of ∼ 2.05 M ⊙ is a critical mass for the effects of rotation on stellar structure and evolution. For stars with M > 2.05 M ⊙ , rotation leads to an increase in the convective core and prolongs their lifetime on the main sequence (MS); rotating models evolve more slowly than non-rotating ones; the effects of rotation on the evolution of these stars are similar to those of convective core overshooting. However for stars with 1.1 < M/M ⊙ < 2.05, rotation results in a decrease in the convective core and shortens the duration of the MS stage; rotating models evolve faster than non-rotating ones. When the mass has values in the range ∼ 1.7–2.0 M ⊙ , the mixing caused by rotationally induced instabilities is not efficient; the hydrostatic effects dominate processes associated with the evolution of these stars. For models with masses between about 1.6 and 2.0 M ⊙ , rotating models always exhibit lower effective temperatures than non-rotating ones at the same age during the MS stage. For a given age, the lower the mass, the smaller the change in the effective temperature. Thus rotations could lead to a color spread near the MS turnoff in the color-magnitude diagram for intermediate-age star clusters

  1. Nystagmus in Laurence-Moon-Biedl Syndrome

    Directory of Open Access Journals (Sweden)

    A. Bruce Janati

    2015-01-01

    Full Text Available Introduction. Laurence-Moon-Biedl (LMB syndrome is a rare autosomal-recessive ciliopathy with manifold symptomatology. The cardinal clinical features include retinitis pigmentosa, obesity, intellectual delay, polydactyly/syndactyly, and hypogenitalism. In this paper, the authors report on three siblings with Laurence-Moon-Biedl syndrome associated with a probable pseudocycloid form of congenital nystagmus. Methods. This was a case study conducted at King Khaled Hospital. Results. The authors assert that the nystagmus in Laurence-Moon-Biedl syndrome is essentially similar to idiopathic motor-defect nystagmus and the nystagmus seen in optic nerve hypoplasia, ocular albinism, and bilateral opacities of the ocular media. Conclusion. The data support the previous hypothesis that there is a common brain stem motor abnormality in sensory-defect and motor-defect nystagmus.

  2. Periodicities common to the solar atmosphere rotation and the functioning of human organism

    International Nuclear Information System (INIS)

    Tyagun, N.F.

    1995-01-01

    The study is made of the occurrence rates of menstrual cycle periods for ∼ 2000 women. Peaks on the distribution histogram, corresponding to 21, 25, 28 and 30 days, coincide with a set of axial rotation periods of the solar atmosphere. It is proposed that the functioning of human organism is determined not only by the Moon bu by the rithmics of solar system. 10 refs., 1 fig

  3. Development and validation of a learning progression for change of seasons, solar and lunar eclipses, and moon phases

    Science.gov (United States)

    Testa, Italo; Galano, Silvia; Leccia, Silvio; Puddu, Emanuella

    2015-12-01

    In this paper, we report about the development and validation of a learning progression about the Celestial Motion big idea. Existing curricula, research studies on alternative conceptions about these phenomena, and students' answers to an open questionnaire were the starting point to develop initial learning progressions about change of seasons, solar and lunar eclipses, and Moon phases; then, a two-tier multiple choice questionnaire was designed to validate and improve them. The questionnaire was submitted to about 300 secondary students of different school levels (14 to 18 years old). Item response analysis and curve integral method were used to revise the hypothesized learning progressions. Findings support that spatial reasoning is a key cognitive factor for building an explanatory framework for the Celestial Motion big idea, but also suggest that causal reasoning based on physics mechanisms underlying the phenomena, as light flux laws or energy transfers, may significantly impact a students' understanding. As an implication of the study, we propose that the teaching of the three discussed astronomy phenomena should follow a single teaching-learning path along the following sequence: (i) emphasize from the beginning the geometrical aspects of the Sun-Moon-Earth system motion; (ii) clarify consequences of the motion of the Sun-Moon-Earth system, as the changing solar radiation flow on the surface of Earth during the revolution around the Sun; (iii) help students moving between different reference systems (Earth and space observer's perspective) to understand how Earth's rotation and revolution can change the appearance of the Sun and Moon. Instructional and methodological implications are also briefly discussed.

  4. Global effects of moon phase on nocturnal acoustic scattering layers

    KAUST Repository

    Prihartato, Perdana; Irigoien, Xabier; Genton, Marc G.; Kaartvedt, Stein

    2016-01-01

    © Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.

  5. Global effects of moon phase on nocturnal acoustic scattering layers

    KAUST Repository

    Prihartato, PK

    2016-01-18

    © Inter-Research 2016. The impact of moon phase on the global nocturnal vertical distribution of acoustic scattering layers (SLs) in the upper 200 m was studied during the Malaspina expedition that circumnavigated the world. We assessed the nocturnal weighted mean depths and the vertical extension of the SL (the range between the upper 25th percentile and lower 75th percentile of the backscatter) and used a generalized additive model to reveal the relationship between the nocturnal vertical distribution of the SL and moon phase, as well as other environmental factors. Moon phase significantly affected the SL distribution on a global scale, in contrast to other factors such as dissolved oxygen, temperature and fluorescence, which each correlated with nocturnal SL distribution during the large geographic coverage. Full moon caused a deepening effect on the nocturnal SL. Contrary to expectations, the shallowest distribution was not observed during the darkest nights (new moon) and there was no difference in vertical distribution between new moon and intermediate moon phases. We conclude that the trend of deepening SL during approximately full moon (bright nights) is a global phenomenon related to anti-predator behavior.

  6. The evolution of the Earth-Moon system

    International Nuclear Information System (INIS)

    Finch, D.G.

    1982-01-01

    The tidally-induced couple acting on the Moon, due to friction between the oceans and their beds, is calculated as a function of the Earth-Moon separation. The function is found to be proportional to 1 +d/R 3 , and not the previously used 1/R 6 . By use of this new function it is found that the present rate of lunar recession gives an acceptable history for the system if it is assumed the Moon was initially in a close geo-stationary orbit 4 billion years ago, when perturbed by the condensation of the Earth's core. (Auth.)

  7. Effects of irradiation on hygiene quality of moon cake

    International Nuclear Information System (INIS)

    Zhang Fengjiao; Chen Bin; Guo Yaping; Gao Meixu; Li Haipeng; Sun Baozhong

    2007-01-01

    To explore the influence of controllable conditions with different doses of irradiation and store time on the safe and the quality of Moon Cake, the indexes including peroxide value, acid value, mould, coli group coliform group, total numbers of colony and taste of Moon Cake were concerned about. The results show that the peroxide value were increased and acid value were decreased gradually with the increased value of 60 Co γ-irradiation. Meanwhile, the microorganism growth in the moon cake were controlled. It is concluded that the taste of Moon Cake was not changed and the shelf life of ones were prolonged by 3 months when doses of irradiation was 8 kGy, in addition, Tea-polyphenols could prevent the lipid in Moon Cake from lipid oxidation effectively. (authors)

  8. Rotationally resolved colors of the targets of NASA's Lucy mission

    Science.gov (United States)

    Emery, Joshua; Mottola, Stefano; Brown, Mike; Noll, Keith; Binzel, Richard

    2018-05-01

    We propose rotationally resolved photometry at 3.6 and 4.5 um of 5 Trojan asteroids and one Main Belt asteroid - the targets of NASA's Lucy mission. The proposed Spitzer observations are designed to meet a combination of science goals and mission support objectives. Science goals 1) Search for signatures of volatiles and/or organics on the surfaces. a. This goal includes resolving a discrepancy between previous WISE and Spitzer measurements of Trojans 2) Provide new constraints on the cause of rotational spectral heterogeneity detected on 3548 Eurybates at shorter wavelengths a. Determine whether the heterogeneity (Fig 1) extends to the 3-5 um region 3) Assess the possibility for spectral heterogeneity on the other targets a. This goal will help test the hypothesis of Wong and Brown (2015) that the near-surface interiors of Trojans differ from their surfaces 4) Thermal data at 4.5 um for the Main Belt target Donaldjohanson will refine estimates of size, albedo, and provide the first estimate of thermal inertia Mission support objectives 1) Assess scientifically optimal encounter times (viewing geometries) for the fly-bys a. Characterizing rotational spectral units now will enable the team to choose the most scientifically valuable part of the asteroid to view 2) Gather data to optimize observing parameters for Lucy instruments a. Measuring brightness in the 3 - 5 um region and resolving the discrepancy between WISE and Spitzer will enable better planning of the Lucy spectral observations in this wavelength range 3) The size, albedo, and thermal inertia of Donaldjohanson are fundamental data for planning the encounter with that Main Belt asteroid

  9. Simulating the Phases of the Moon Shortly after Its Formation

    Science.gov (United States)

    Noordeh, Emil; Hall, Patrick; Cuk, Matija

    2014-01-01

    The leading theory for the origin of the Moon is the giant impact hypothesis, in which the Moon was formed out of the debris left over from the collision of a Mars sized body with the Earth. Soon after its formation, the orbit of the Moon may have been very different than it is today. We have simulated the phases of the Moon in a model for its…

  10. V, Cr, and Mn in the Earth, Moon, EPB, and SPB and the origin of the Moon: Experimental studies

    International Nuclear Information System (INIS)

    Drake, M.J.; Capobianco, C.J.; Newsom, H.E.

    1989-01-01

    The abundances of V, Cr, and Mn inferred for the mantles of the Earth and Moon decrease in that order and are similar, but are distinct from those inferred for the mantles of the Eucrite Parent Body (EPB) and Shergottite Parent Body (SPB). This similarity between Earth and Moon has been used to suggest that the Moon is derived substantially or entirely from Earth mantle material following terrestrial core formation. To test this hypothesis, the authors have determined the partitioning of V, Cr, and Mn between solid iron metal, S-rich metallic liquid, and synthetic basaltic silicate liquid at 1,260 degree C and one bar pressure. The sequence of compatibility in the metallic phases is Cr > V > Mn at high oxygen fugacity and V > Cr > Mn at low oxygen fugacities. Solubilities in liquid metal always exceed solubilities in solid metal. These partition coefficients suggest that the abundances of V, Cr, and Mn do not reflect core formation in the Earth. Rather, they are consistent with the relative volatilities of these elements. The similarity in the depletion patterns of V, Cr, and Mn inferred for the mantles of the Earth and Moon is a necessary, but not sufficient, condition for the Moon to have been derived wholly or in part from the Earth's mantle

  11. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Science.gov (United States)

    Wamelink, G W Wieger; Frissel, Joep Y; Krijnen, Wilfred H J; Verwoert, M Rinie; Goedhart, Paul W

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant); the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  12. Can plants grow on Mars and the moon: a growth experiment on Mars and moon soil simulants.

    Directory of Open Access Journals (Sweden)

    G W Wieger Wamelink

    Full Text Available When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars and moon soil simulants. The results show that plants are able to germinate and grow on both Martian and moon soil simulant for a period of 50 days without any addition of nutrients. Growth and flowering on Mars regolith simulant was much better than on moon regolith simulant and even slightly better than on our control nutrient poor river soil. Reflexed stonecrop (a wild plant; the crops tomato, wheat, and cress; and the green manure species field mustard performed particularly well. The latter three flowered, and cress and field mustard also produced seeds. Our results show that in principle it is possible to grow crops and other plant species in Martian and Lunar soil simulants. However, many questions remain about the simulants' water carrying capacity and other physical characteristics and also whether the simulants are representative of the real soils.

  13. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Sumrall, John P.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission today, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return people to the Moon and go to Mars. Unlike the Apollo program of the 1960s, this phase of exploration will be a journey, not a race. In 1966, the NASA's budget was 4 percent of federal spending. Today, with 6/10 of 1 percent of the budget, NASA must incrementally develop the vehicles, infrastructure, technology, and organization to accomplish this goal. Fortunately, our knowledge and experience are greater than they were 40 years ago. NASA's goal is a return to the Moon by 2020. The Moon is the first step to America's exploration of Mars. Many questions about the Moon's history and how its history is linked to that of Earth remain even after the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment. The Moon also will serve as a training ground in several respects before embarking on the longer, more perilous trip to Mars. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. The architecture for the lunar missions will use one launch to ferry the crew into orbit on the Ares I and a second launch to orbit the lunar lander and the Earth Departure Stage to send the lander and crew vehicle to the Moon. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on proven hardware and decades of experience derived from

  14. Moon Phase as a Context for Teaching Scale Factor

    Science.gov (United States)

    Wallace, Ann; Dickerson, Daniel; Hopkins, Sara

    2007-01-01

    The Sun and the Moon are our most visible neighbors in space, yet their distance and size relative to the Earth are often misunderstood. Science textbooks fuel this misconception because they regularly depict linear images of Moon phases without respect to the actual sizes of the Sun, Earth, and Moon, nor their correlated distances from one…

  15. TRANSIT MODEL OF PLANETS WITH MOON AND RING SYSTEMS

    International Nuclear Information System (INIS)

    Tusnski, Luis Ricardo M.; Valio, Adriana

    2011-01-01

    Since the discovery of the first exoplanets, those most adequate for life to begin and evolve have been sought. Due to observational bias, however, most of the discovered planets so far are gas giants, precluding their habitability. However, if these hot Jupiters are located in the habitable zones of their host stars, and if rocky moons orbit them, then these moons may be habitable. In this work, we present a model for planetary transit simulation considering the presence of moons and planetary rings around a planet. The moon's orbit is considered to be circular and coplanar with the planetary orbit. The other physical and orbital parameters of the star, planet, moon, and rings can be adjusted in each simulation. It is possible to simulate as many successive transits as desired. Since the presence of spots on the surface of the star may produce a signal similar to that of the presence of a moon, our model also allows for the inclusion of starspots. The result of the simulation is a light curve with a planetary transit. White noise may also be added to the light curves to produce curves similar to those obtained by the CoRoT and Kepler space telescopes. The goal is to determine the criteria for detectability of moons and/or ring systems using photometry. The results show that it is possible to detect moons with radii as little as 1.3 R ⊕ with CoRoT and 0.3 R ⊕ with Kepler.

  16. Realization of diverse displays for multiple color patterns on metal surfaces

    International Nuclear Information System (INIS)

    Li, Guoqiang; Li, Jiawen; Hu, Yanlei; Zhang, Chenchu; Li, Xiaohong; Chu, Jiaru; Huang, Wenhao

    2014-01-01

    Highlights: • We have demonstrated that the combined influence of incident white light angle and the ripples orientation on the diversity of structural colors. • Our investigation revealed that multi-patterns constituted by ripples with different orientations could be precisely designed on metal surfaces. • The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. - Abstract: Enhanced colors can be formed when white light is irradiated on the surface ripples induced by femtosecond laser. In this paper, we have demonstrated the ability to display the diverse colors by simultaneously adjusting the incident white light angle and the ripples orientation. Furthermore, our investigation revealed that multi-patterns constituted by ripples with different orientations could be designed on metal surfaces. The diverse display for the desired ones can be realized by exquisitely varying the incident light angle and rotating sample angle. More interestingly, it is found that, although the same patterns could be displayed under different conditions, the colors might be different. These findings can provide a novel method to carry and identify high quantity of information, which may find potential applications in the fields of information storage, identifying codes and anti-counterfeiting patterns

  17. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  18. Three-flavor color superconductivity

    International Nuclear Information System (INIS)

    Malekzadeh, H.

    2007-12-01

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid 3 He), the A and A * phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A * phase is favored. It is shown that the 2SC phase is identical to the A * phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  19. The Moon and how to observe it an advanced handbook for students of the Moon in the 21st century

    CERN Document Server

    Grego, Peter

    2005-01-01

    This revolutionary new book is written for practical amateur astronomers who not only want to observe, but want to know the details of exactly what they are looking at. The Moon is the most commonly observed of all astronomical objects. This is the first book to deal equally with the Moon itself - its formation, geology, and history - as well as the practical aspects of observation. The concept of the book - and of the series - is to present an up-to-date detailed description of the Moon, including its origins, history, and geology (part one); and then (part two) to consider how best to observe and record it successfully using commercially-available equipment. The Moon and How to Observe It is a mine of information for all levels of amateur observers, from the beginner to the experienced.

  20. Effects of a static electric field on two-color photoassociation between different atoms

    International Nuclear Information System (INIS)

    Chakraborty, Debashree; Deb, Bimalendu

    2014-01-01

    We study non-perturbative effects of a static electric field on two-color photoassociation of different atoms. A static electric field induces anisotropy in scattering between two different atoms and hybridizes field-free rotational states of heteronuclear dimers or polar molecules. In a previous paper [D. Chakraborty et al., J. Phys. B 44, 095201 (2011)], the effects of a static electric field on one-color photoassociation between different atoms has been described through field-modified ground-state scattering states, neglecting electric field effects on heteronuclear diatomic bound states. To study the effects of a static electric field on heteronuclear bound states, and the resulting influence on Raman-type two-color photoassociation between different atoms in the presence of a static electric field, we develop a non-perturbative numerical method to calculate static electric field-dressed heteronuclear bound states. We show that the static electric field induced scattering anisotropy as well as hybridization of rotational states strongly influence two-color photoassociation spectra, leading to significant enhancement in PA rate and large shift. In particular, for static electric field strengths of a few hundred kV/cm, two-color PA rate involving high-lying bound states in electronic ground-state increases by several orders of magnitude even in the weak photoassociative coupling regime

  1. Rendezvous with Toutatis from the Moon: The Chang'e-2 mission

    Science.gov (United States)

    Huang, J.; Tang, X.; Meng, L.

    2014-07-01

    Chang'e-2 probe was the second lunar probe of China, with the main objectives to demonstrate some key features of the new lunar soft landing technology, and its applications to future exploration missions. After completing the planned mission successfully, Chang'e-2 flew away from the Moon and entered into the interplanetary space. Later, at a distance of 7 million km from the Earth, Chang'e-2 encountered asteroid (4179) Toutatis with a very close fly-by distance and obtained colorful images with a 3-m resolution. Given some surplus velocity increment as well as the promotion of autonomous flight ability and improvement of control, propulsion, and thermal systems in the initial design, Chang'e-2 had the capabilities necessary for escaping from the Moon. By taking advantage of the unique features of the Lagrangian point, the first close fly-by of asteroid Toutatis was realized despite the tight constraints of propellant allocation, spacecraft-Earth communication, and coordination of execution sequences. Chang'e-2 realized the Toutatis flyby with a km-level distance at closest approach. In the absence of direct measurement method, based on the principle of relative navigation and through the use of the sequence of target images, we calculated the rendezvous parameters such as relative distance and image resolution. With the help of these parameters, some fine and new scientific discoveries about the asteroid were obtained by techniques of optical measurements and image processing. Starting with an innovative design, followed by high-fidelity testing and demonstration, elaborative implementation, and optimal usage of residual propellant, Chang'e-2 has for the first time successfully explored the Moon, L2 point and an asteroid, while achieving the purpose of 'faster, better, cheaper'. What Chang'e-2 has accomplished was far beyond our expectations. *J. Huang is the chief designer (PI) of Chang'e-2 probe, planned Chang'e-2's multi-objective and multitasking exploration

  2. Astrobiology field research in Moon/Mars Analogue

    NARCIS (Netherlands)

    Foing, B.H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the

  3. Learning the moon's phases through CL

    Science.gov (United States)

    Barbera, Maria

    2013-04-01

    This work is a CLIL experience for a class of 14-year-old students, a first grade of a Secondary school, level B1/B2. It is presented an Astronomy lesson whose topic is about the Moon's phases, a quite difficult phenomenon to visualize. Students' attention is attracted by presenting them songs and a short documentary; comprehension is made easier using both Internet-based materials and a card game using Cooperative Learning strategies through Johnsons' ' Learning Together'. The lesson consists of three steps for a total length of three hours. The teacher assigns a time limit for each activity. During the pre-task step, students' interest for present-day music is used to catch their attention and make them aware of the importance of the Moon as an inspiring subject for artistic expression such as popular or rock music. Then the students are requested to brainstorm some simple ideas of ther own about the moon. In the task step, a clear short BBC video is shown in order to stimulate students' listening and comprehension skills and an animation is proposed to help them view the moon cycle. In the post-task step, students are engaged in a card game through Johnsons' 'Learning Together'.Learners are divided into pairs and they have to cooperate to rebuild the moon's cicle as fast as they can. Then the two pairs join together to form groups of four and check their answers. The Assessor shares the group's keys with the whole class. The teacher gives feedback. The groups celebrate their success by clapping their hands and saying what they appreciated regarding their way of working together as pairs and groups.

  4. Lunar paleotides and the origin of the earth-moon system

    International Nuclear Information System (INIS)

    Anderson, A.J.

    1978-01-01

    A new method for determining the early history of the Earth-Moon system is described. Called the study of lunar paleotides, it describes a method for explaining features of the remnant lunar gravity field, and the generation of the lunar mascons. A method for the determination of Earth-Moon distances compared with the radiometric ages of the maria is developed. It is shown that the Moon underwent strong anomalous gravitational tidal forces, for a duration t 6 yr, prior to the formation of the mascon surfaces. As these tidal forces had not been present at the time of the formation of the Moon, this shows that the Moon could not have been formed in orbit about the Earth. (Auth.)

  5. A Color Image Watermarking Scheme Resistant against Geometrical Attacks

    Directory of Open Access Journals (Sweden)

    Y. Xing

    2010-04-01

    Full Text Available The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling. The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks.

  6. A colorful approach to teaching optics

    Science.gov (United States)

    Magnani, Nancy J.; Donnelly, Judith

    2014-09-01

    In a traditional Connecticut elementary school setting, the classroom teacher will teach language arts, social studies and science curriculum. For 5th grade, the science curriculum includes learning about the senses and moon phases, in addition to the fundamentals of light. For art, music and physical education, students are sent to teachers who have certifications in teaching these subjects. In support of the science curriculum, we have traditionally provided workshops to enhance and supplement existing science curriculum. This method of instruction has become a routine. What if we invigorate the curriculum by using visual art to teach science? Will the students achieve a greater understanding of the principals of light? In this paper, we will explore the use of art to enhance the understanding of color and light phenomena.

  7. Sketching the moon an astronomical artist's guide

    CERN Document Server

    Handy, Richard; McCague, Thomas; Rix, Erika; Russell, Sally

    2012-01-01

    Soon after you begin studying the sky through your small telescope or binoculars, you will probably be encouraged by others to make sketches of what you see. Sketching is a time-honored tradition in amateur astronomy and dates back to the earliest times, when telescopes were invented. Even though we have lots of new imaging technologies nowadays, including astrophotography, most observers still use sketching to keep a record of what they see, make them better observers, and in hopes of perhaps contributing something to the body of scientific knowledge about the Moon. Some even sketch because it satisfies their artistic side. The Moon presents some unique challenges to the astronomer-artist, the Moon being so fond of tricks of the light. Sketching the Moon: An Astronomical Artist’s Guide, by five of the best lunar observer-artists working today, will guide you along your way and help you to achieve really high-quality sketches. All the major types of lunar features are covered, with a variety of sketching te...

  8. Tectonic evolution of mercury; comparison with the moon

    International Nuclear Information System (INIS)

    Thomas, P.G.; Masson, P.

    1983-01-01

    With regard to the Earth or to Mars, the Moon and Mercury look like tectonicless planetary bodies, and the prominent morphologies of these two planets are due to impact and volcanic processes. Despite these morphologies, several types of tectonic activities may be shown. Statistical studies of lineaments direction indicate that Mercury, as well as the Moon, have a planet wide lineament pattern, known as a ''grid''. Statistical studies of Mercury scarps and the Moon grabens indicate an interaction between planetary lithospheric evolution and large impact basins. Detailed studies of the largest basins indicate specific tectonic motions directly or indirectly related to impacts. These three tectonic types have been compared on each planet. The first tectonic type seems to be identical for Mercury and the Moon. But the two other types seem to be different, and are consistent with the planets' thermal evolution

  9. Transits of extrasolar moons around luminous giant planets

    Science.gov (United States)

    Heller, R.

    2016-04-01

    Beyond Earth-like planets, moons can be habitable, too. No exomoons have been securely detected, but they could be extremely abundant. Young Jovian planets can be as hot as late M stars, with effective temperatures of up to 2000 K. Transits of their moons might be detectable in their infrared photometric light curves if the planets are sufficiently separated (≳10 AU) from the stars to be directly imaged. The moons will be heated by radiation from their young planets and potentially by tidal friction. Although stellar illumination will be weak beyond 5 AU, these alternative energy sources could liquify surface water on exomoons for hundreds of Myr. A Mars-mass H2O-rich moon around β Pic b would have a transit depth of 1.5 × 10-3, in reach of near-future technology.

  10. Exploring the Moon

    CERN Document Server

    Harland, David M

    2008-01-01

    David Harland opens with a review of the robotic probes, namely the Rangers which returned television before crashing into the Moon, the Surveyors which ''soft landed'' in order to investigate the nature of the surface, and the Lunar Orbiters which mapped prospective Apollo landing sites. He then outlines the historic landing by Apollo 11 in terms of what was discovered, and how over the next several missions the program was progressively geared up to enable the final three missions each to spend three days on comprehensive geological investigations. He concludes with a review of the robotic spacecraft that made remote-sensing observations of the Moon. Although aimed at the enthusiast, and can be read as an adventure in exploration, the book develops the scientific theme of lunar geology, and therefore will be of use as background reading for undergraduate students of planetary sciences. In addition, with the prospect of a resumption of human missions, it will help journalists understand what Apollo achieved ...

  11. Proposal for revisions of the United Nations Moon Treaty

    Science.gov (United States)

    Fernandes, Vera; Abreu, Neyda; Fritz, J.; Knapmeyer, Martin; Smeenk, Lisa; Ten Kate, Inge; Trüninger, Monica

    During this new 2010-decade, it will be imperative to reconsider the effectiveness of the current United Nations (U.N.) Moon Treaty (c.1979). Amendments are necessary to underline the mandatory human stewardship of this fragile planetary body of our Solar System, indispensible to life on Earth. After the very successful Apollo and Luna missions to the Moon (ending in 1976), which brought a wide array of data (samples, surface and orbital experiments), the Moon lost its exploratory attraction in favor of other programs, such as the International Space Station and potential human exploration of Mars. However, since the mid-90's, the enthusiasm for the Moon has been revived, which resulted in several space agencies worldwide (NASA, ESA, ISRO, JAXA, and the Chinese Space Agency) having made great efforts to re-start ex-ploratory and scientific campaigns even though budgetary changes may delay the process. As a result, a wide array of peoples and their interests are put together in each mission planned to reach the Moon (e.g., orbiters and landers). Up to now, mission plans focus on technical requirements and the desires of scientists and engineers, but hardly any other aspects. Field specialists on issues regarding the social, economic, political, cultural, ethical and environmen-tal impacts of Moon exploration and colonization have had little to no involvement in current and past lunar missions. However, these fields would provide different and essential points of view regarding the planning of lunar missions. Moreover, recent documents written by the scientific community, such as "The Scientific Context for Exploration of the Moon: Final Re-port" Committee on the Scientific Context for Exploration of the Moon, National Research Council (2007), or the recent (summer 2009) White Papers for the National Research Council Planetary Science Decadal Survey 2011-2020, do not seem to leave space for a multidisciplinary approach regarding the future lunar exploration either

  12. A Non-blind Color Image Watermarking Scheme Resistent Against Geometric Attacks

    Directory of Open Access Journals (Sweden)

    A. Ghafoor

    2012-12-01

    Full Text Available A non-blind color image watermarking scheme using principle component analysis, discrete wavelet transform and singular value decomposition is proposed. The color components are uncorrelated using principle component analysis. The watermark is embedded into the singular values of discrete wavelet transformed sub-band associated with principle component containing most of the color information. The scheme was tested against various attacks (including histogram equalization, rotation, Gaussian noise, scaling, cropping, Y-shearing, X-shearing, median filtering, affine transformation, translation, salt & pepper, sharpening, to check robustness. The results of proposed scheme are compared with state-of-the-art existing color watermarking schemes using normalized correlation coefficient and peak signal to noise ratio. The simulation results show that proposed scheme is robust and imperceptible.

  13. Towards a Moon Village : Community Workshops Highlights

    Science.gov (United States)

    Foing, Bernard H.

    2016-07-01

    A series of Moon Village Workshops were organised at ESTEC and at ILEWG community events in 2015 and 2016. They gathered a multi-disciplinary group of professionals from all around the world to discuss their ideas about the concept of a Moon Village, the vision of ESA's Director General (DG) Jan Woerner of a permanent lunar base within the next decades [1]. Three working groups focused on 1) Moon Habitat Design; 2) science and technology potentials of the Moon Village, and 3) engaging stake-holders [2-3]. Their results and recommendations are presented in this abstract. The Moon Habitat Design group identified that the lunar base design is strongly driven by the lunar environment, which is characterized by high radiation, meteoroids, abrasive dust particles, low gravity and vacuum. The base location is recommended to be near the poles to provide optimized illumination conditions for power generation, permanent communication to Earth, moderate temperature gradients at the surface and interesting subjects to scientific investigations. The abundance of nearby available resources, especially ice at the dark bottoms of craters, can be exploited in terms of In-Situ Resources Utilization (ISRU). The identified infrastructural requirements include a navigation, data- & commlink network, storage facilities and sustainable use of resources. This involves a high degree of recycling, closed-loop life support and use of 3D-printing technology, which are all technologies with great potential for terrestrial spin-off applications. For the site planning of the Moon Village, proven ideas from urban planning on Earth should be taken into account. A couple of principles, which could improve the quality of a long-term living milieu on the Moon, are creating spacious environments, visibility between interior and exterior spaces, areas with flora, such as gardens and greenhouses, establishing a sustainable community and creating social places for astronauts to interact and relax. The

  14. Color encoding in biologically-inspired convolutional neural networks.

    Science.gov (United States)

    Rafegas, Ivet; Vanrell, Maria

    2018-05-11

    Convolutional Neural Networks have been proposed as suitable frameworks to model biological vision. Some of these artificial networks showed representational properties that rival primate performances in object recognition. In this paper we explore how color is encoded in a trained artificial network. It is performed by estimating a color selectivity index for each neuron, which allows us to describe the neuron activity to a color input stimuli. The index allows us to classify whether they are color selective or not and if they are of a single or double color. We have determined that all five convolutional layers of the network have a large number of color selective neurons. Color opponency clearly emerges in the first layer, presenting 4 main axes (Black-White, Red-Cyan, Blue-Yellow and Magenta-Green), but this is reduced and rotated as we go deeper into the network. In layer 2 we find a denser hue sampling of color neurons and opponency is reduced almost to one new main axis, the Bluish-Orangish coinciding with the dataset bias. In layers 3, 4 and 5 color neurons are similar amongst themselves, presenting different type of neurons that detect specific colored objects (e.g., orangish faces), specific surrounds (e.g., blue sky) or specific colored or contrasted object-surround configurations (e.g. blue blob in a green surround). Overall, our work concludes that color and shape representation are successively entangled through all the layers of the studied network, revealing certain parallelisms with the reported evidences in primate brains that can provide useful insight into intermediate hierarchical spatio-chromatic representations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The Enigmatic Face of the Moon

    Science.gov (United States)

    Galles, C. D.; Gallagher, C. J.

    2011-06-01

    Whilst Man's only way of observing the Moon was with the naked eye, attempts at explaining the spots on her surface remained highly speculative. The telescopic observation by Galileo of previously unknown spots, differing from the earlier ones by their variability in time, was to signify a radical change to the hereto medieval ideas on the material composition of the Moon. And curiously enough, this new scenario was a revindication of Plutarch's hypothesis construed more than a millennium before.

  16. Determination of Polymers Thermal Degradation by Color Change Analysis

    Directory of Open Access Journals (Sweden)

    Andrés Felipe Rojas González

    2016-01-01

    Full Text Available Context: It has been observed that thermal degradation of thermoplastic polymers, when they are reprocessed by injection, extrusion and extrusion / injection, undergo color changes in the product, although it not has been established as this change occurs. Method: It analyzed the effect on thermal degradation caused by polymer type, processing type, polymer grade, rotation speed of the extrusion screw and number of reprocessing, which is quantified by the color change using an empirical equation, with experimental data obtained by analysis through a microcolor colorimeter. Results: It was found that the color change analysis provides information about progress of the thermal degradation and stability of thermoplastic polymers, which are undergoing to multiple reprocessing events and processes. Conclusions: It was established that this technique can be implemented as a simple and efficient measure of thermoplastic products quality control, according to their color change.

  17. Launching to the Moon, Mars, and Beyond

    Science.gov (United States)

    Dumbacher, Daniel L.

    2006-01-01

    The U.S. Vision for Space Exploration, announced in 2004, calls on NASA to finish constructing the International Space Station, retire the Space Shuttle, and build the new spacecraft needed to return to the Moon and go on the Mars. By exploring space, America continues the tradition of great nations who mastered the Earth, air, and sea, and who then enjoyed the benefits of increased commerce and technological advances. The progress being made today is part of the next chapter in America's history of leadership in space. In order to reach the Moon and Mars within the planned timeline and also within the allowable budget, NASA is building upon the best of proven space transportation systems. Journeys to the Moon and Mars will require a variety of vehicles, including the Ares I Crew Launch Vehicle, the Ares V Cargo Launch Vehicle, the Orion Crew Exploration Vehicle, and the Lunar Surface Access Module. What America learns in reaching for the Moon will teach astronauts how to prepare for the first human footprints on Mars. While robotic science may reveal information about the nature of hydrogen on the Moon, it will most likely tale a human being with a rock hammer to find the real truth about the presence of water, a precious natural resource that opens many possibilities for explorers. In this way, the combination of astronauts using a variety of tools and machines provides a special synergy that will vastly improve our understanding of Earth's cosmic neighborhood.

  18. Non-Rocket Earth-Moon Transport System

    Science.gov (United States)

    Bolonkin, Alexander

    2002-01-01

    This paper proposes a new method and transportation system to travel to the Moon. This transportation system uses a mechanical energy transfer and requires only minimal energy so that it provides a 'Free Trip' into space. The method uses the rotary and kinetic energy of the Moon. This paper presents the theory and results of computations for the project provided Free Trips (without rockets and spend a big energy) to the Moon for six thousand people annually. The project uses artificial materials like nanotubes and whiskers that have a ratio of tensile strength to density equal 4 million meters. In the future, nanotubes will be produced that can reach a specific stress up 100 millions meter and will significantly improve the parameters of suggested project. The author is prepared to discuss the problems with serious organizations that want to research and develop these innovations.

  19. Galileo's Medicean Moons (IAU S269)

    Science.gov (United States)

    Barbieri, Cesare; Chakrabarti, Supriya; Coradini, Marcello; Lazzarin, Monica

    2010-11-01

    Preface; 1. Galileo's telescopic observations: the marvel and meaning of discovery George V. Coyne, S. J.; 2. Popular perceptions of Galileo Dava Sobel; 3. The slow growth of humility Tobias Owen and Scott Bolton; 4. A new physics to support the Copernican system. Gleanings from Galileo's works Giulio Peruzzi; 5. The telescope in the making, the Galileo first telescopic observations Alberto Righini; 6. The appearance of the Medicean Moons in 17th century charts and books. How long did it take? Michael Mendillo; 7. Navigation, world mapping and astrometry with Galileo's moons Kaare Aksnes; 8. Modern exploration of Galileo's new worlds Torrence V. Johnson; 9. Medicean Moons sailing through plasma seas: challenges in establishing magnetic properties Margaret G. Kivelson, Xianzhe Jia and Krishan K. Khurana; 10. Aurora on Jupiter: a magnetic connection with the Sun and the Medicean Moons Supriya Chakrabarti and Marina Galand; 11. Io's escaping atmosphere: continuing the legacy of surprise Nicholas M. Schneider; 12. The Jovian Rings Wing-Huen Ip; 13. The Juno mission Scott J. Bolton and the Juno Science Team; 14. Seeking Europa's ocean Robert T. Pappalardo; 15. Europa lander mission: a challenge to find traces of alien life Lev Zelenyi, Oleg Korablev, Elena Vorobyova, Maxim Martynov, Efraim L. Akim and Alexander Zakahrov; 16. Atmospheric moons Galileo would have loved Sushil K. Atreya; 17. The study of Mercury Louise M. Prockter and Peter D. Bedini; 18. Jupiter and the other giants: a comparative study Thérèse Encrenaz; 19. Spectroscopic and spectrometric differentiation between abiotic and biogenic material on icy worlds Kevin P. Hand, Chris McKay and Carl Pilcher; 20. Other worlds, other civilizations? Guy Consolmagno, S. J.; 21. Concluding remarks Roger M. Bonnet; Posters; Author index; Object index.

  20. Magnetism and the history of the moon

    Science.gov (United States)

    Strangway, D. W.; Gose, W. A.; Pearce, G. W.; Carnes, J. G.

    1973-01-01

    All lunar samples measured to date contain a weak but stable remanent magnetization of lunar origin. The magnetization is carried by metallic iron and is considered to be caused by cooling from above the Curie point in the presence of a magnetic field. Although at present the moon does not have a global field, the remanent magnetization of the rock samples and the presence of magnetic anomalies, both on the near and far side of the moon, imply that the moon experienced a magnetic field during some portion of its history. The field could have been generated in a liquid iron core sustaining a self-exciting dynamo, but there are some basic thermal and geochemical objections that need to be resolved.

  1. Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets

    Science.gov (United States)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.

    2010-01-01

    With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets

  2. Boundary conditions for the formation of the Moon

    NARCIS (Netherlands)

    Reuver, Maarten; de Meijer, R. J.; ten Kate, I. L.; van Westrenen, W.

    Recent measurements of the chemical and isotopic composition of lunar samples indicate that the Moon's bulk composition shows great similarities with the composition of the silicate Earth. Moon formation models that attempt to explain these similarities make a wide variety of assumptions about the

  3. The moon as a high temperature condensate.

    Science.gov (United States)

    Anderson, D. L.

    1973-01-01

    The accretion during condensation mechanism, if it occurs during the early over-luminous stage of the sun, can explain the differences in composition of the terrestrial planets and the moon. An important factor is the variation of pressure and temperature with distance from the sun, and in the case of the moon and captured satellites of other planets, with distance from the median plane. Current estimates of the temperature and pressure in the solar nebula suggest that condensation will not be complete in the vicinity of the terrestrial planets, and that depending on location, iron, magnesium silicates and the volatiles will be at least partially held in the gaseous phase and subject to separation from the dust by solar wind and magnetic effects associated with the transfer of angular momentum just before the sun joins the Main Sequence. Many of the properties of the moon, including the 'enrichment' in Ca, Al, Ti, U, Th, Ba, Sr and the REE and the 'depletion' in Fe, Rb, K, Na and other volatiles can be understood if the moon represents a high temperature condensate from the solar nebula.

  4. Unmasking Europa the search for life on Jupiter's ocean moon

    CERN Document Server

    Greenberg, Richard

    2008-01-01

    Jupiter's ice moon Europa is widely regarded as the most likely place to find extraterrestrial life. This book tells the engaging story of Europa, the oceanic moon. It features a large number of stunning images of the ocean moon's surface, clearly displaying the spectacular crack patterns, extensive rifts and ridges, and refrozen pools of exposed water filled with rafts of displaced ice. Coverage also features firsthand accounts of Galileo's mission to Jupiter and its moons. The book tells the rough and tumble inside story of a very human enterprise in science that lead to the discovery of a f

  5. India plans to land near moon's south pole

    Science.gov (United States)

    Bagla, Pallava

    2018-02-01

    Sometime this summer, an Indian spacecraft orbiting over the moon's far side will release a lander. The craft will ease to a soft landing just after lunar sunrise on an ancient, table-flat plain about 600 kilometers from the south pole. There, it will unleash a rover into territory never before explored at the surface. That's the ambitious vision for India's second voyage to the moon in a decade, due to launch in the coming weeks. If Chandrayaan-2 is successful, it will pave the way for even more ambitious Indian missions, such as landings on Mars and an asteroid, as well as a Venus probe. Lunar scientists have much at stake, too. Chandrayaan-2 will collect data on the moon's thin envelope of plasma, as well as isotopes such as helium-3, a potential fuel for future fusion energy reactors. And it will follow up on a stunning discovery by India's first lunar foray, which found water molecules on the moon in 2009.

  6. Moon bound choosing and preparing NASA's lunar astronauts

    CERN Document Server

    Burgess, Colin

    2013-01-01

    Often lost in the shadow of the first group of astronauts for the Mercury missions, the second and third groups included the leading figures for NASA's activities for the following two decades. “Moon Bound” complements the author’s recently published work, “Selecting the Mercury Seven” (2011), extending the story of the men who helped to launch human spaceflight and broaden the American space program. Although the initial 1959 group became known as the legendary pioneering Mercury astronauts, the astronauts of Groups 2 and 3 gave us many household names. Sixteen astronauts from both groups traveled to the Moon in Project Apollo, with several actually walking on the Moon, one of them being Neil Armstrong. This book draws on interviews to tell the astronauts' personal stories and recreate the drama of that time. It describes the process by which they were selected as astronauts and explains how the criteria had changed since the first group. “Moon Bound” is divided into two parts, recounting the b...

  7. Modeling human color categorization: Color discrimination and color memory

    OpenAIRE

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The experiments conducted prove the difference between color categorization by the cognitive processes color discrimination and color memory. In addition, they yield a Color Look-Up Table, which can improve c...

  8. Origin of the earth and moon

    International Nuclear Information System (INIS)

    Ringwood, A.E.

    1981-01-01

    The composition of the Earth's interior and its bearing on the Earth's origin are discussed. It seems likely that the terrestrial planets formed by the accretion of solid planetisimals from the nebula of dust and gas left behind during the formation of the Sun. The scenario proposed is simpler than others. New evidence based upon a comparison of siderophile element abundances in the Earth's mantle and in the Moon imply that the Moon was derived from the Earth's mantle after the Earth's core had segregated

  9. When Moons Collide

    Science.gov (United States)

    Rufu, Raluca; Aharonson, Oded

    2017-10-01

    Impacts between two orbiting satellites is a natural consequence of Moon formation. Mergers between moonlets are especially important for the newly proposed multiple-impact hypothesis as these moonlets formed from different debris disks merge together to form the final Moon. However, this process is relevant also for the canonical giant impact, as previous work shows that multiple moonlets are formed from the same debris disk.The dynamics of impacts between two orbiting bodies is substantially different from previously heavily studied planetary-sized impacts. Firstly, the impact velocities are smaller and limited to, thus heating is limited. Secondly, both fragments have similar mass therefore, they would contribute similarly and substantially to the final satellite. Thirdly, this process can be more erosive than planetary impacts as the velocity of ejected material required to reach the mutual Hill sphere is smaller than the escape velocity, altering the merger efficiency. Previous simulations show that moonlets inherit different isotopic signatures from their primordial debris disk, depending on the parameters of the collision with the planet. We therefore, evaluate the degree of mixing in moonlet-moonlet collisions in the presence of a planetary gravitational field, using Smooth Particle Hydrodynamics (SPH). Preliminary results show that the initial thermal state of the colliding moonlets has only a minor influence on the amount of mixing, compared to the effects of velocity and impact angle over their likely ranges. For equal mass bodies in accretionary collisions, impact angular momentum enhances mixing. In the hit-and-run regime, only small amounts of material are transferred between the bodies therefore mixing is limited. Overall, these impacts can impart enough energy to melt ~15-30% of the mantle extending the magma ocean phase of the final Moon.

  10. Towards a Moon Village: Young Lunar Explorers Report

    Science.gov (United States)

    Kamps, Oscar; Foing, Bernard; Batenburg, Peter

    2016-04-01

    Introduction: The Moon Village Workshop at ESTEC on the 14th December 2015 was organized by ILEWG/ESTEC in conjunction with the Moon 2020-2030 Symposium. It gathered a multi-disciplinary group of professionals from all around the world to discuss their ideas about the concept of a Moon Village, the vision of ESA's Director General (DG) Jan Woerner of a permanent lunar base within the next decades [1]. The workshop participants split in three working groups focusing on Moon Habitat Design, science and technology potentials of the Moon Village, and engaging stakeholders [2-3]. Their results and recommendations are presented in this abstract. The Moon Habitat Design group identified that the lunar base design is strongly driven by the lunar environment, which is characterized by high radiation, meteoroids, abrasive dust particles, low gravity and vacu-um. The base location is recommended to be near the poles to provide optimized illumination conditions for power generation, permanent communication to Earth, moderate temperature gradients at the surface and interesting subjects to scientific investigations. The abundance of nearby available resources, especially ice at the dark bottoms of craters, can be exploited in terms of In-Situ Resources Utilization (ISRU). The identified infrastructural requirements include a navigation, data- & commlink network, storage facilities and sustainable use of resources. This involves a high degree of recycling, closed-loop life support and use of 3D-printing technology, which are all technologies with great potential for terrestrial spin-off applications. For the site planning of the Moon Village, proven ideas from urban planning on Earth should be taken into account. A couple of principles, which could improve the quality of a long-term living milieu on the Moon, are creating spacious environments, visibility between interior and exterior spaces, areas with flora, such as gardens and greenhouses, establishing a sustainable community

  11. Astronomy from the Moon and International Lunar Observatory Missions

    Science.gov (United States)

    Durst, S.; Takahashi, Y. D.

    2018-04-01

    Astronomy from the Moon provides a promising new frontier for 21st century astrophysics and related science activity. International Lunar Observatory Association is an enterprise advancing missions to the Moon for observation and communication.

  12. Exploration of the Moon to Enable Lunar and Planetary Science

    Science.gov (United States)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  13. From the Moon: Bringing Space Science to Diverse Audiences

    Science.gov (United States)

    Runyon, C. J.; Hall, C.; Joyner, E.; Meyer, H. M.; M3 Science; E/PO Team

    2011-12-01

    NASA's Apollo missions held a place in the mindset of many Americans - we dared to go someplace where humans had never set foot, a place unknown and beyond our imaginations. These early NASA missions and discoveries resulted in an enhanced public understanding of the Moon. Now, with the human element so far removed from space exploration, students must rely on textbooks, TV's, and computers to build their understanding of our Moon. However, NASA educational materials about the Moon are stale and out-of-date. In addition, they do not effectively address 21st Century Skills, an essential for today's classrooms. Here, we present a three-part model for developing opportunities in lunar science education professional development that is replicable and sustainable and integrates NASA mission-derived data (e.g., Moon Mineralogy Mapper (M3)/Chandrayaan-1). I) With the return of high resolution/high spatial data from M3/Chandrayaan-1, we can now better explore and understand the compositional variations on the lunar surface. Data and analysis techniques from the imaging spectrometer are incorporated into the M3 Educator's Guide: Seeing the Moon in a New Light. The guide includes an array of activities and lessons to help educators and students understand how NASA is currently exploring the Moon. The guide integrates NASA maps and data into the interactive lessons, bringing the excitement of scientific exploration and discovery into the classroom. II) Utilizing the M3 Educator's Guide as well as educational activities from more current NASA lunar missions, we offer two sustained professional development opportunities for educators to explore the Moon through interactive and creative strategies. 1) Geology of the Moon, an online course offered through Montana State University's National Teacher Enhancement Network, is a 3-credit graduate course. 2) Fly Me to the Moon, offered through the College of Charleston's Office of Professional Development in Education, is a two

  14. The Moon and the U-47 in Scapa Flow

    Science.gov (United States)

    Schaefer, B. E.

    2005-12-01

    The skies above affect historical events here on Earth more than is generally realized. Events during wars are often tied to the Moon through operational requirements for illumination (or dark), high tides (or low), and even links to events in lunar calendars. World War II has many famous battles, commando operations, and naval sorties dictated in date by the Moon. Famous examples are D-Day (needing low tides and Full Moon illumination), the amphibious landing on Tarawa (needing but not getting high tides), El Alamein (requiring Full Moon light for the mine-clearers), the Great Escape from Stalag Luft III (chosen for the stealth possible with a New Moon), Mussolini's invasion of Albania (on Good Friday), and even Rudolf Hess' flight to Scotland (timed by a six-planet conjunction and aided in navigation by the Full Moon). This paper will concentrate on one event for which the Moon provided the primary trick for a major Nazi naval victory, while an aurora saved the British from an even worse disaster. The story is set in Scapa Flow, the huge anchorage in the Orkney Islands that was used as a primary base for the British Navy in blockading the North Sea. During World War I, German submarines had twice tried to slip into Scapa Flow but were sunk both times, and the anchorage later became the last resting place of the scuttled German High Seas Fleet. At the outbreak of World War II, then Commodore Karl Doenitz suggested that his ace U-boat captain consider sneaking into Scapa Flow to loose salvos of torpedoes at all the anchored ships. Captain Gunther Prien of the U-47 took up the challenge after realizing that the British had not completely blocked a narrow inlet. His plan was to surface the submarine and go in over the sunken block ships at the highest of spring tides. Spring tides require a syzygy (New or Full Moon), during which the high tides occur near noon or midnight. To be unobserved by onshore guards, the Moon should not be in the sky illuminating the waters

  15. The Sodium Tail of the Moon

    Science.gov (United States)

    Matta, M.; Smith, S.; Baumgardner, J.; Wilson, J.; Martinis, C.; Mendillo, M.

    2009-01-01

    During the few days centered about new Moon, the lunar surface is optically hidden from Earth-based observers. However, the Moon still offers an observable: an extended sodium tail. The lunar sodium tail is the escaping "hot" component of a coma-like exosphere of sodium generated by photon-stimulated desorption, solar wind sputtering and meteoroid impact. Neutral sodium atoms escaping lunar gravity experience solar radiation pressure that drives them into the anti-solar direction forming a comet-like tail. During new Moon time, the geometry of the Sun, Moon and Earth is such that the anti-sunward sodium flux is perturbed by the terrestrial gravitational field resulting in its focusing into a dense core that extends beyond the Earth. An all-sky camera situated at the El Leoncito Observatory (CASLEO) in Argentina has been successfully imaging this tail through a sodium filter at each lunation since April 2006. This paper reports on the results of the brightness of the lunar sodium tail spanning 31 lunations between April 2006 and September 2008. Brightness variability trends are compared with both sporadic and shower meteor activity, solar wind proton energy flux and solar near ultra violet (NUV) patterns for possible correlations. Results suggest minimal variability in the brightness of the observed lunar sodium tail, generally uncorrelated with any single source, yet consistent with a multi-year period of minimal solar activity and non-intense meteoric fluxes.

  16. Multilingual Maps of the Terrestrial Planets and their Moons: the East and Central European Edition

    Science.gov (United States)

    Hargitai, H.; Berczi, Sz.

    added more details. We also look for a new color-code, since the natural terrestrial map colors scheme can not be used here: colors like blue or green can be misinterpreted easily. The colors on a terrestrial topographic map use a color system that reflects general vegetation cover (green) and the hydrologic system (blue). Part of this color system, however, can also be found in nature: in yellowing leaves (green-yellow-brown). On Mars or the Moon we try to find a color system that reflect the general colors of these planets but also allows discretion of the colors that reflect height or/and terrain type. The maps are available via internet for free pdf download at http://planetologia.elte.hu. References: Hargitai H. I., Rükl A., Gabzdyl P., Roša D., Kundera T., Marjanac T., Ozimkowsky W., Peneva E., Bandrova T., Oreshina L. S., Baeva L. Y, Krasnopevtseva B. V, Shingareva K. B. (2001-2006) Maps of Mars, Venus, Mercury, Moon, Phobos and Deimos, Central European Edition. Budapest 2 Shingareva K. B., J. Zimbelman, M. Buchroithner, H. I. Hargitai (2006): The Realization of ICA Commission Projects on Planetary Cartography Cartographica Volume 40, issue 4. 3

  17. The Moon Challenge

    Science.gov (United States)

    Fitzsimmons, Pat; Leddy, Diana; Johnson, Lindy; Biggam, Sue; Locke, Suzan

    2013-01-01

    This article describes a first-grade research project that incorporates trade books and challenges misconceptions. Educators see the power of their students' wonder at work in their classrooms on a daily basis. This wonder must be nourished by students' own experiences--observing the moon on a crystal clear night--as well as by having…

  18. Materials refining on the Moon

    Science.gov (United States)

    Landis, Geoffrey A.

    2007-05-01

    Oxygen, metals, silicon, and glass are raw materials that will be required for long-term habitation and production of structural materials and solar arrays on the Moon. A process sequence is proposed for refining these materials from lunar regolith, consisting of separating the required materials from lunar rock with fluorine. The fluorine is brought to the Moon in the form of potassium fluoride, and is liberated from the salt by electrolysis in a eutectic salt melt. Tetrafluorosilane produced by this process is reduced to silicon by a plasma reduction stage; the fluorine salts are reduced to metals by reaction with metallic potassium. Fluorine is recovered from residual MgF and CaF2 by reaction with K2O.

  19. Mental rotation and the motor system: embodiment head over heels.

    Science.gov (United States)

    Krüger, Markus; Amorim, Michel-Ange; Ebersbach, Mirjam

    2014-01-01

    We examined whether body parts attached to abstract stimuli automatically force embodiment in a mental rotation task. In Experiment 1, standard cube combinations reflecting a human pose were added with (1) body parts on anatomically possible locations, (2) body parts on anatomically impossible locations, (3) colored end cubes, and (4) simple end cubes. Participants (N=30) had to decide whether two simultaneously presented stimuli, rotated in the picture plane, were identical or not. They were fastest and made less errors in the possible-body condition, but were slowest and least accurate in the impossible-body condition. A second experiment (N=32) replicated the results and ruled out that the poor performance in the impossible-body condition was due to the specific stimulus material. The findings of both experiments suggest that body parts automatically trigger embodiment, even when it is counterproductive and dramatically impairs performance, as in the impossible-body condition. It can furthermore be concluded that body parts cannot be used flexibly for spatial orientation in mental rotation tasks, compared to colored end cubes. Thus, embodiment appears to be a strong and inflexible mechanism that may, under certain conditions, even impede performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. A Simple Encryption Algorithm for Quantum Color Image

    Science.gov (United States)

    Li, Panchi; Zhao, Ya

    2017-06-01

    In this paper, a simple encryption scheme for quantum color image is proposed. Firstly, a color image is transformed into a quantum superposition state by employing NEQR (novel enhanced quantum representation), where the R,G,B values of every pixel in a 24-bit RGB true color image are represented by 24 single-qubit basic states, and each value has 8 qubits. Then, these 24 qubits are respectively transformed from a basic state into a balanced superposition state by employed the controlled rotation gates. At this time, the gray-scale values of R, G, B of every pixel are in a balanced superposition of 224 multi-qubits basic states. After measuring, the whole image is an uniform white noise, which does not provide any information. Decryption is the reverse process of encryption. The experimental results on the classical computer show that the proposed encryption scheme has better security.

  1. Integration of Apollo Lunar Sample Data into Google Moon

    Science.gov (United States)

    Dawson, Melissa D.; Todd, Nancy S.; Lofgren, Gary

    2010-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is a continuation of the Apollo 15 Google Moon Add-On project, which provides a scientific and educational tool for the study of the Moon and its geologic features. The main goal of this project is to provide a user-friendly interface for an interactive and educational outreach and learning tool for the Apollo missions. Specifically, this project?s focus is the dissemination of information about the lunar samples collected during the Apollo missions by providing any additional information needed to enhance the Apollo mission data on Google Moon. Apollo missions 15 and 16 were chosen to be completed first due to the availability of digitized lunar sample photographs and the amount of media associated with these missions. The user will be able to learn about the lunar samples collected in these Apollo missions, as well as see videos, pictures, and 360 degree panoramas of the lunar surface depicting the lunar samples in their natural state, following collection and during processing at NASA. Once completed, these interactive data layers will be submitted for inclusion into the Apollo 15 and 16 missions on Google Moon.

  2. GCR-Induced Photon Luminescence of the Moon

    Science.gov (United States)

    Lee, K. T.; Wilson, T. L.

    2008-01-01

    It is shown that the Moon has a ubiquitous photon luminescence induced by Galactic cosmic-rays (GCRs), using the Monte Carlo particle-physics program FLUKA. Both the fluence and the flux of the radiation can be determined by this method, but only the fluence will be presented here. This is in addition to thermal radiation emitted due to the Moon s internal temperature and radioactivity. This study is a follow-up to an earlier discussion [1] that addressed several misconceptions regarding Moonshine in the Earth-Moon system (Figure 1) and predicted this effect. There also exists a related x-ray fluorescence induced by solar energetic particles (SEPs, <350 MeV) and solar photons at lower x-ray energies, although this latter fluorescence was studied on Apollo 15 and 16 [2- 5], Lunar Prospector [6], and even EGRET [7].

  3. Motivation of Citizen Scientists Participating in Moon Zoo

    Science.gov (United States)

    Brown, Shanique; Gay, P. L.; Daus, C. S.

    2011-01-01

    Moon Zoo is an online citizen science project with the aim of providing detailed crater counts for as much of the Moon's surface as possible. In addition to focusing on craters, volunteers are encouraged to remain vigilant for sightings of atypical features which may lead to new discoveries. Volunteers accomplish these tasks by exploring images captured by NASA's Lunar Reconnaissance Orbiter (LRO) which has a resolution of 50cm per pixel. To be successful, Moon Zoo needs to attract and retain a large population of citizen scientists. In this study, we examine the factors motivating Moon Zoo participants who invest many hours exploring these images. In this, the first of a two-phased study, we conducted a qualitative analysis using semi-structured interviews as a means of data collection. A stratified sample of participants was used in an attempt to uncover the driving forces behind decisions to participate from a wide-range of participants. Inquiring and probing questions were asked about factors which led volunteers to Moon Zoo as well as reasons which kept them committed to exploring the Moon's surface through this online portal. Responses were then categorized using a grounded theory approach, and frequency distributions are calculated where appropriate. Aggregate results from these interviews are presented here including the demographics of the sample and motivators as per the content analysis. The information gathered from this phase will be used to guide the development of an online survey to further explore volunteers’ motivation based on the presented classification schemes. The survey will then be used to guide future research and development in the area of citizen science in the field of astronomy. These findings will also be useful in charting new boundaries for future research.

  4. GLOBAL INSTABILITY OF THE EXO-MOON SYSTEM TRIGGERED BY PHOTO-EVAPORATION

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ming; Xie, Ji-Wei; Zhou, Ji-Lin; Liu, Hui-Gen; Zhang, Hui, E-mail: jwxie@nju.edu.cn, E-mail: zhoujl@nju.edu.cn [School of Astronomy and Space Science and Key Laboratory of Modern Astronomy and Astrophysics in Ministry of Education, Nanjing University, 210093 (China)

    2016-12-10

    Many exoplanets have been found in orbits close to their host stars and thus they are subject to the effects of photo-evaporation. Previous studies have shown that a large portion of exoplanets detected by the Kepler mission have been significantly eroded by photo-evaporation. In this paper, we numerically study the effects of photo-evaporation on the orbital evolution of a hypothesized moon system around a planet. We find that photo-evaporation is crucial to the stability of the moon system. Photo-evaporation can erode the atmosphere of the planet thus leading to significant mass loss. As the planet loses mass, its Hill radius shrinks and its moons increase their orbital semimajor axes and eccentricities. When some moons approach their critical semimajor axes, global instability of the moon system would be triggered, which usually ends up with two, one or even zero surviving moons. Some lost moons could escape from the moon system to become a new planet orbiting the star or run away further to become a free-floating object in the Galaxy. Given the destructive role of photo-evaporation, we speculate that exomoons are less common for close-in planets (<0.1 au), especially those around M-type stars, because they are more X-ray luminous and thus enhancing photo-evaporation. The lessons we learn in this study may be helpful for the target selection of on-going/future exomoon searching programs.

  5. Origin of the Moon new concept geochemistry and dynamics

    CERN Document Server

    Galimov, Erik M

    2012-01-01

    The origin of the Moon remains an unsolved problem of the planetary science. Researchers engaged in celestial dynamics, geophysics, and geochemistry are still discussing various models of creation of our closest cosmic neighbour. The most popular scenario, the impact hypothesis involving a collision early in the Earth's history, has been substantially challenged by the new data. The birth and development of a planet-moon system always play a role in the formation of an entire planetary system around our Sun or around another star. This way, the story of our Moon acquires broader ramifications

  6. MoonBEAM: Gamma-Ray Burst Detectors on SmallSAT

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between a spacecraft in Earth and cislunar orbit. MoonBEAM is designed with high TRL components to be flight ready. This instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  7. Astrobiology Field Research in Moon/Mars Analogue Environments: Preface

    Science.gov (United States)

    Foing, B. H.; Stoker, C.; Ehrenfreund, P.

    2011-01-01

    Extreme environments on Earth often provide similar terrain conditions to landing/operation sites on Moon and Mars. Several field campaigns (EuroGeoMars2009 and DOMMEX/ILEWG EuroMoonMars from November 2009 to March 2010) were conducted at the Mars Desert Research Station (MDRS) in Utah. Some of the key astrobiology results are presented in this special issue on Astrobiology field research in Moon/Mars analogue environments relevant to investigate the link between geology, minerals, organics and biota. Preliminary results from a multidisciplinary field campaign at Rio Tinto in Spain are presented.

  8. ON THE DYNAMICS AND ORIGIN OF HAUMEA'S MOONS

    Energy Technology Data Exchange (ETDEWEB)

    Ćuk, Matija [Carl Sagan Center, SETI Institute, 189 North Bernardo Avenue, Mountain View, CA 94043 (United States); Ragozzine, Darin [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Nesvorný, David, E-mail: mcuk@seti.org [Southwest Research Institute, Boulder, CO 80302 (United States)

    2013-10-01

    The dwarf planet Haumea has two large satellites, Namaka and Hi'iaka, which orbit at relatively large separations. Both moons have significant eccentricities and inclinations in a pattern that is consistent with a past orbital resonance. Based on our analysis, we find that the present system is not consistent with satellite formation close to the primary and tidal evolution through mean-motion resonances. We propose that Namaka experienced only limited tidal evolution, leading to the mutual 8:3 mean-motion resonance which redistributed eccentricities and inclinations between the moons. This scenario requires that the original orbit of Hi'iaka was mildly eccentric; we propose that this eccentricity was either primordial or acquired through encounters with other trans-Neptunian objects. Both dynamical stability and our preferred tidal evolution model imply that the moons' masses are only about one-half of previously estimated values, suggesting high albedos and low densities. Because the present orbits of the moons strongly suggest formation from a flat disk close to their present locations, we conclude that Hi'iaka and Namaka may be second-generation moons, formed after the breakup of a larger past moon, previously proposed as the parent body of the Haumea family. We derive plausible parameters of that moon, consistent with the current models of Haumea's formation. An interesting implication of this hypothesis is that Hi'iaka and Namaka may orbit retrograde with respect to Haumea's spin. Retrograde orbits of Haumea's moons would be in full agreement with available observations and our dynamical analysis, and could provide a unique confirmation of the ''disrupted satellite'' scenario for the origin of the family.

  9. The dark side of the moon: Impact of moon phases on long-term survival, mortality and morbidity of surgery for lung cancer

    Directory of Open Access Journals (Sweden)

    Kuehnl A

    2009-04-01

    Full Text Available Abstract Objective Superstition is common and causes discomfiture or fear, especially in patients who have to undergo surgery for cancer. One superstition is, that moon phases influence surgical outcome. This study was performed to analyse lunar impact on the outcome following lung cancer surgery. Methods 2411 patients underwent pulmonary resection for lung cancer in the past 30 years at our institution. Intra-and postoperative complications as well as long-term follow-up data were entered in our lung-cancer database. Factors influencing mortality, morbidity and survival were analyzed. Results Rate of intra-operative complications as well as rate of post-operative morbidity and mortality was not significantly affected by moon phases. Furthermore, there was no significant impact of the lunar cycle on long-term survial. Conclusion In this study there was no evidence that outcome of surgery for lung cancer is affected by the moon. These results may help the physician to quite the mind of patients who are somewhat afraid of wrong timing of surgery with respect to the moon phases. However, patients who strongly believe in the impact of moon phase should be taken seriously and correct timing of operations should be conceded to them as long as key-date scheduling doesn't constrict evidence based treatment regimens.

  10. MOM-E: Moon-Orbiting Mothership Explorer

    Science.gov (United States)

    Murphy, Gloria A.

    2010-01-01

    The National Aeronautics and Space Administration proposed that a new class of robotic space missions and spacecrafts be introduced to "ensure that future missions are safe, sustainable and affordable". Indeed, the United States space program aims for a return to manned space missions beyond Earth orbit, and robotic explorers are intended to pave the way. This vision requires that all future missions become less costly, provide a sustainable business plan, and increase in safety. Over the course of several fast feasibility studies that considered the 3 drivers above, the small-scale, consumer-driven Moon-Orbiting Mothership Explorer (MOM-E) mission was born. MOM-E's goals are to enable space exploration by offering a scaled down platform which carries multiple small space explorers to the Moon. Each payload will be dropped at their desired destination, offering a competitive price to customers. MOM-E's current scope of operations is limited to the Moon and will be used as a proof of concept mission. However, MOM-E is specifically designed with the idea that the platform is scalable.

  11. Rotational displacement skills in rhesus macaques (Macaca mulatta).

    Science.gov (United States)

    Hughes, Kelly D; Santos, Laurie R

    2012-11-01

    Rotational displacement tasks, in which participants must track an object at a hiding location within an array while the array rotates, exhibit a puzzling developmental pattern in humans. Human children take an unusually long time to master this task and tend to solve rotational problems through the use of nongeometric features or landmarks as opposed to other kinds of spatial cues. We investigated whether these developmental characteristics are unique to humans by testing rotational displacement skills in a monkey species, the rhesus macaque (Macaca mulatta), using a looking-time method. Monkeys first saw food hidden in two differently colored boxes within an array. The array was then rotated 180° and the boxes reopened to reveal the food in an expected or unexpected location. Our first two experiments explored the developmental time-course of performance on this rotational displacement task. We found that adult macaques looked longer at the unexpected event, but such performance was not mirrored in younger-aged macaques. In a third study, we systematically varied featural information and visible access to the array to investigate which strategies adult macaques used in solving rotational displacements. Our results show that adult macaques need both sets of information to solve the task. Taken together, these results suggest both similarities and differences in mechanisms by which human and nonhuman primates develop this spatial skill.

  12. Estimation of Gravitation Parameters of Saturnian Moons Using Cassini Attitude Control Flight Data

    Science.gov (United States)

    Krening, Samantha C.

    2013-01-01

    A major science objective of the Cassini mission is to study Saturnian satellites. The gravitational properties of each Saturnian moon is of interest not only to scientists but also to attitude control engineers. When the Cassini spacecraft flies close to a moon, a gravity gradient torque is exerted on the spacecraft due to the mass of the moon. The gravity gradient torque will alter the spin rates of the reaction wheels (RWA). The change of each reaction wheel's spin rate might lead to overspeed issues or operating the wheel bearings in an undesirable boundary lubrication condition. Hence, it is imperative to understand how the gravity gradient torque caused by a moon will affect the reaction wheels in order to protect the health of the hardware. The attitude control telemetry from low-altitude flybys of Saturn's moons can be used to estimate the gravitational parameter of the moon or the distance between the centers of mass of Cassini and the moon. Flight data from several low altitude flybys of three Saturnian moons, Dione, Rhea, and Enceladus, were used to estimate the gravitational parameters of these moons. Results are compared with values given in the literature.

  13. Sun, Moon and Earthquakes

    Science.gov (United States)

    Kolvankar, V. G.

    2013-12-01

    During a study conducted to find the effect of Earth tides on the occurrence of earthquakes, for small areas [typically 1000km X1000km] of high-seismicity regions, it was noticed that the Sun's position in terms of universal time [GMT] shows links to the sum of EMD [longitude of earthquake location - longitude of Moon's foot print on earth] and SEM [Sun-Earth-Moon angle]. This paper provides the details of this relationship after studying earthquake data for over forty high-seismicity regions of the world. It was found that over 98% of the earthquakes for these different regions, examined for the period 1973-2008, show a direct relationship between the Sun's position [GMT] and [EMD+SEM]. As the time changes from 00-24 hours, the factor [EMD+SEM] changes through 360 degree, and plotting these two variables for earthquakes from different small regions reveals a simple 45 degree straight-line relationship between them. This relationship was tested for all earthquakes and earthquake sequences for magnitude 2.0 and above. This study conclusively proves how Sun and the Moon govern all earthquakes. Fig. 12 [A+B]. The left-hand figure provides a 24-hour plot for forty consecutive days including the main event (00:58:23 on 26.12.2004, Lat.+3.30, Long+95.980, Mb 9.0, EQ count 376). The right-hand figure provides an earthquake plot for (EMD+SEM) vs GMT timings for the same data. All the 376 events including the main event faithfully follow the straight-line curve.

  14. The moon's origins

    International Nuclear Information System (INIS)

    Boss, P.; Benz, W.

    1987-01-01

    Planet formation theory is recalled. The different existing hypothesis on the moon's origins are reviewed also to see how much they are compatible with the planet formation theory. Up to now, the giant impact model seems to be the only model to satisfy all the constraints. Computerized simulation results have been presented in colloquiums and their scenarios are recalled [fr

  15. Dating the Moon: Teaching Lunar Stratigraphy and the Nature of Science

    Science.gov (United States)

    Murphy, Edward; Bell, Randy

    2013-01-01

    As our closest celestial neighbor, the Moon is a familiar and inspiring object to investigate using a small telescope, binoculars, or even photographs or one of the many high quality maps available online. The wondrously varied surface of the Moon--filled with craters, mountains, volcanic flows, scarps, and rilles--makes the Moon an excellent…

  16. Live from the Moon ExoLab: EuroMoonMars Simulation at ESTEC 2017

    Science.gov (United States)

    Neklesa, A.; Foing, B. H.; Lillo, A.; Evellin, P.; Kołodziejczyk, A.; Jonglez, C.; Heinicke, C.; Harasymczuk, M.; Authier, L.; Blanc, A.; Chahla, C.; Tomic, A.; Mirino, M.; Schlacht, I.; Hettrich, S.; Pacher, T.

    2017-10-01

    Space enthusiasts simulated the landing on the Moon having pre-landed Habitat ExoHab, ExoLab 2.0, supported by the control centre on Earth. We give here the first-hand experience from a reporter (A.N.) who joined the space crew.

  17. Non-rocket Earth-Moon transport system

    Science.gov (United States)

    Bolonkin, Alexander

    2003-06-01

    This paper proposes a new transportation system for travel between Earth and Moon. This transportation system uses mechanical energy transfer and requires only minimal energy, using an engine located on Earth. A cable directly connects a pole of the Earth through a drive station to the lunar surface_ The equation for an optimal equal stress cable for complex gravitational field of Earth-Moon has been derived that allows significantly lower cable masses. The required strength could be provided by cables constructed of carbon nanotubes or carbon whiskers. Some of the constraints on such a system are discussed.

  18. Nuclear technologies for Moon and Mars exploration

    International Nuclear Information System (INIS)

    Buden, D.

    1991-01-01

    Nuclear technologies are essential to successful Moon and Mars exploration and settlements. Applications can take the form of nuclear propulsion for transport of crews and cargo to Mars and the Moon; surface power for habitats and base power; power for human spacecraft to Mars; shielding and life science understanding for protection against natural solar and cosmic radiations; radioisotopes for sterilization, medicine, testing, and power; and resources for the benefits of Earth. 5 refs., 9 figs., 3 tabs

  19. Supporting a Deep Space Gateway with Free-Return Earth-Moon Periodic Orbits

    Science.gov (United States)

    Genova, A. L.; Dunham, D. W.; Hardgrove, C.

    2018-02-01

    Earth-Moon periodic orbits travel between the Earth and Moon via free-return circumlunar segments and can host a station that can provide architecture support to other nodes near the Moon and Mars while enabling science return from cislunar space.

  20. Modeling human color categorization: Color discrimination and color memory

    NARCIS (Netherlands)

    Heskes, T.; van den Broek, Egon; Lucas, P.; Hendriks, Maria A.; Vuurpijl, L.G.; Puts, M.J.H.; Wiegerinck, W.

    2003-01-01

    Color matching in Content-Based Image Retrieval is done using a color space and measuring distances between colors. Such an approach yields non-intuitive results for the user. We introduce color categories (or focal colors), determine that they are valid, and use them in two experiments. The

  1. Geographic envelope of the Moon and the identification of Moon landscapes with the use of the axiomatic method

    Directory of Open Access Journals (Sweden)

    Kyryliuk Serhii

    2017-09-01

    Full Text Available Three consequent concepts that build up the algorithm of the identification of modern landscapes on the Moon surface are suggested. They are anaglyphonosphere axiomatic and landscape concepts obtained with the use of the axiomatic method. The first concept depicts the geographic envelope of the Moon as an anaglyphonosphere layer (relief that is a continuum (total environment. The latter becomes the research subject for both a geomorphologist and a landscape researcher. Continuity, dynamics, range (amplitude, and erosion potential determine anaglyphonosphere. Axiomatic concept means constructing the sole scheme (mathematically determined of the search for the elementary surface units using the geometric interpretation of surface patterns of the Moon and its landscape interpretation. The landscape concept is based on the classical principles of the landscape theory and the axiomatic principles of the previous concept. The synthesis of concepts is implemented in the models of Moon landscapes of four scales: zero, linear, two- and three-dimensional. The paper offers the last two models of Davy Catena. Proposed concepts with appropriate correction can be used in parallel studies of the natural environment: geological, geomorphological, climatic, etc. The advantages of the axiomatic method consist in the objective approach to the division of the surface into specific units (the landscapes in our case. The proposed method of identifying and displaying the landscape complexes on the lunar surface can be a significant complement for the study and mapping of terrestrial planets, satellites of planet-giants, etc.

  2. Image color reduction method for color-defective observers using a color palette composed of 20 particular colors

    Science.gov (United States)

    Sakamoto, Takashi

    2015-01-01

    This study describes a color enhancement method that uses a color palette especially designed for protan and deutan defects, commonly known as red-green color blindness. The proposed color reduction method is based on a simple color mapping. Complicated computation and image processing are not required by using the proposed method, and the method can replace protan and deutan confusion (p/d-confusion) colors with protan and deutan safe (p/d-safe) colors. Color palettes for protan and deutan defects proposed by previous studies are composed of few p/d-safe colors. Thus, the colors contained in these palettes are insufficient for replacing colors in photographs. Recently, Ito et al. proposed a p/dsafe color palette composed of 20 particular colors. The author demonstrated that their p/d-safe color palette could be applied to image color reduction in photographs as a means to replace p/d-confusion colors. This study describes the results of the proposed color reduction in photographs that include typical p/d-confusion colors, which can be replaced. After the reduction process is completed, color-defective observers can distinguish these confusion colors.

  3. CosmoQuest MoonMappers: Citizen Lunar Exploration

    Science.gov (United States)

    Gay, P. L.; Antonenko, I.; Robbins, S. J.; Bracey, G.; Lehan, C.; Moore, J.; Huang, D.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  4. Moon Zoo - Examples of Interesting Lunar Morphology

    Science.gov (United States)

    Cook, A. C.; Wilkinson, J.

    2012-09-01

    The MoonMappers citizen science project is part of CosmoQuest, a virtual research facility designed for the public. CosmoQuest seeks to take the best aspects of a research center - research, seminars, journal clubs, and community discussions - and provide them to a community of citizen scientists through a virtual facility. MoonMappers was the first citizen science project within CosmoQuest, and is being used to define best practices in getting the public to effectively learn and do science.

  5. Introduction to EGU session "Lunar Science and Exploration Towards Moon Village"

    Science.gov (United States)

    Foing, Bernard

    2017-04-01

    The EGU PS2.2 session "Lunar Science and Exploration" Towards Moon Village" will address: - Recent lunar results: geochemistry, geophysics in the context of open planetary science and exploration - Synthesis of results from SMART-1, Kaguya, Chang'e 1, 2 and 3, Chandrayaan-1, LCROSS, LADEE, Lunar Reconnaissance Orbiter and, Artemis and GRAIL - Goals and Status of missions under preparation: orbiters, Luna-Glob, Google Lunar X Prize, Luna Resurs polar lander, SLIM, Chandrayaan2, Chang'E 4 & 5, Lunar Resource Prospector, Future landers, Lunar sample return missions - Precursor missions, instruments and investigations for landers, rovers, sample return, and human cis-lunar activities and human lunar surface sorties - Preparation for International Lunar Decade: databases, instruments, missions, terrestrial field campaigns, support studies - ILEWG and Global Exploration roadmaps towards a global robotic/human Moon village - Strategic Knowledge Gaps, and key science Goals relevant to Lunar Global Exploration Lunar science and exploration are developing further with new and exciting missions being developed by China, the US, Japan, India, Russia, Korea and Europe, and with new stakeholders. The Moon Village is an open concept proposed by ESA DG with the goal of a sustainable human and robotic presence on the lunar surface as an ensemble where multiple users can carry out multiple activities. Multiple goals of the Moon Village include planetary science, life sciences, astronomy, fundamental research, resources utilisation, human spaceflight, peaceful cooperation, economical development, inspiration, training and capacity building. ESA director general has revitalized and enhanced the original concept of MoonVillage discussed in the last decade. Space exploration builds on international collaboration. COSPAR and its ILEWG International Lunar Exploration Working Group (created in 1994) have fostered collaboration between lunar missions [4-8]. A flotilla of lunar orbiters has

  6. Santa and the Moon

    NARCIS (Netherlands)

    Barthel, P.

    This article reflects on the use of illustrations of the Moon in images of Santa Claus, on Christmas gift-wrapping paper and in children's books, in two countries which have been important in shaping the image of Santa Claus and his predecessor Sinterklaas: the USA and the Netherlands. The

  7. Moon manned missions radiation safety analysis

    Science.gov (United States)

    Tripathi, R. K.; Wilson, J. W.; de Anlelis, G.; Badavi, F. F.

    An analysis is performed on the radiation environment found on the surface of the Moon, and applied to different possible lunar base mission scenarios. An optimization technique has been used to obtain mission scenarios minimizing the astronaut radiation exposure and at the same time controlling the effect of shielding, in terms of mass addition and material choice, as a mission cost driver. The optimization process has been realized through minimization of mass along all phases of a mission scenario, in terms of time frame (dates, transfer time length and trajectory, radiation environment), equipment (vehicles, in terms of shape, volume, onboard material choice, size and structure), location (if in space, on the surface, inside or outside a certain habitats), crew characteristics (number, gender, age, tasks) and performance required (spacecraft and habitat volumes), radiation exposure annual and career limit constraint (from NCRP 132), and implementation of the ALARA principle (shelter from the occurrence of Solar Particle Events). On the lunar surface the most important contribution to radiation exposure is given by background Galactic Cosmic Rays (GCR) particles, mostly protons, alpha particles, and some heavy ions, and by locally induced particles, mostly neutrons, created by the interaction between GCR and surface material and emerging from below the surface due to backscattering processes. In this environment manned habitats are to host future crews involved in the construction and/or in the utilization of moon based infrastructure. Three different kinds of lunar missions are considered in the analysis, Moon Base Construction Phase, during which astronauts are on the surface just to build an outpost for future resident crews, Moon Base Outpost Phase, during which astronaut crews are resident but continuing exploration and installation activities, and Moon Base Routine Phase, with long-term shifting resident crews. In each scenario various kinds of habitats

  8. Rotation Period Determination for 5143 Heracles

    Science.gov (United States)

    Pilcher, Frederick; Briggs, John W.; Franco, Lorenzo; Inasaridze, Raguli Ya.; Krugly, Yurij N.; Molotiv, Igor E.; Klinglesmith, Daniel A., III; Pollock, Joe; Pravec, Petr

    2012-07-01

    The Earth crossing minor planet 5143 Heracles made in late 2011 its closest approach to Earth since discovery. A consortium of observers found a synodic rotation period near 2.706 hours and amplitude increasing from 0.08 ±0.02 magnitudes at phase angle 20 degrees to 0.18 ±0.03 magnitudes at phase angle 87 degrees, with 3 unequal maxima and minima per cycle. Magnitude parameters H = 14.10 ±0.04 and G = 0.08 ±0.02 are found, and the color index V-R = 0.42 ±0.07. For an asteroid of taxonomic class Q, a suggested albedo pv = 0.20 ±0.05 yields estimated diameter D = 4.5 ±0.7 km. Three possible binary events were recorded, but these are insufficient for binary detection to be secure. Retrograde rotation is suggested.

  9. Moons of the solar system from giant Ganymede to dainty Dactyl

    CERN Document Server

    Hall III, James A

    2016-01-01

    This book captures the complex world of planetary moons, which are more diverse than Earth's sole satellite might lead you to believe. New missions continue to find more of these planetary satellites, making an up to date guide more necessary than ever.  Why do Mercury and Venus have no moons at all? Earth's  Moon, of course, is covered in the book with highly detailed maps. Then we move outward to the moons of Mars, then on to many of the more notable asteroid moons, and finally to a list of less-notable ones. All the major moons of the gas giant planets are covered in great detail, while the lesser-known satellites of these worlds are also touched on.  Readers will learn of the remarkable trans-Neptunian Objects – Pluto, Eris, Sedna, Quaoar –including many of those that have been given scant attention in the literature. More than just objects to read about, the planets' satellites provide us with important information about the history of the solar system. Projects to help us learn more abo...

  10. Moon Zoo: Educating side-by-side with Doing Science (Invited)

    Science.gov (United States)

    Gay, P. L.; Moon Zoo Team

    2010-12-01

    The Moon Zoo citizen science project (http://www.moonzoo.org) engages individuals - primarily members of the public - in identifying geological (and sometimes technological) features on the lunar surface. Using a flash-based interface that runs in a web browser, users can mark craters, linear features, and even left-behind lunar landers on Lunar Reconnaissance Orbiter images. These science tools are embedded in an environment designed to encourage learning and collaboration. On the main Moon Zoo site users can explore educational content, including video tutorials, articles, glossary terms, and flash interactive activities. Additionally, there is a blog and a forum to encourage collaboration and social learning, and a twitter feed for general communications. Through this suite of software Moon Zoo users can contribute to science while learning about the Moon and geology. The Moon Zoo educational content is designed with one purpose in mind: To make sure that a curious user can find information quickly, easily, and on (or within 1-click of) the Moon Zoo site. The Internet is filled with many excellent lunar educational products, and many high-quality digital products exist in offline archives. Finding desired resources, however, can sometimes be a challenge even for professional educators. In order to make finding content easier, we developed a glossary list and a basic concept map for our website that addresses geology, lunar exploration, observing, and the moon in history and culture, and then we populated these terms and concepts with already available materials. We also do things in a way that encourages both doing science tasks and learning at the same time! Specifically, we use pop-out audio and video players that allow users to listen, learn, and classify the lunar surface all at once. To try and understand our users better we are conducting both learning and motivations studies while also monitoring site usage. Our learning assessments use an assessment tool

  11. Impact History of the Moon

    Science.gov (United States)

    Cohen, B. A.; Bottke, W. F.; Norman, M. V.; van der Bogert, C. H.; Fassett, C. I.; Hiesinger, H.; Joy, K. H.; Mazrouei, S. A.; Nemchin, A.; Neumann, G. A.; Zellner, N. E. B.

    2018-04-01

    Establishing an absolute planetary chronology has important ramifications for understanding the early structure of the solar system and the geologic history of the planets. The Moon is the cornerstone for understanding this impact history.

  12. Geochemical Constraints on the Size of the Moon-Forming Giant Impact

    Science.gov (United States)

    Piet, Hélène; Badro, James; Gillet, Philippe

    2017-12-01

    Recent models involving the Moon-forming giant impact hypothesis have managed to reproduce the striking isotopic similarity between the two bodies, albeit using two extreme models: one involves a high-energy small impactor that makes the Moon out of Earth's proto-mantle; the other supposes a gigantic collision between two half-Earths creating the Earth-Moon system from both bodies. Here we modeled the geochemical influence of the giant impact on Earth's mantle and found that impactors larger than 15% of Earth mass result in mantles always violating the present-day concentrations of four refractory moderately siderophile trace elements (Ni, Co, Cr, and V). In the aftermath of the impact, our models cannot further discriminate between a fully and a partially molten bulk silicate Earth. Then, the preservation of primordial geochemical reservoirs predating the Moon remains the sole argument against a fully molten mantle after the Moon-forming impact.

  13. The colors of paintings and viewers' preferences.

    Science.gov (United States)

    Nascimento, Sérgio M C; Linhares, João M M; Montagner, Cristina; João, Catarina A R; Amano, Kinjiro; Alfaro, Catarina; Bailão, Ana

    2017-01-01

    One hypothesis to explain the aesthetics of paintings is that it depends on the extent to which they mimic natural image statistics. In fact, paintings and natural scenes share several statistical image regularities but the colors of paintings seem generally more biased towards red than natural scenes. Is the particular option for colors in each painting, even if less naturalistic, critical for perceived beauty? Here we show that it is. In the experiments, 50 naïve observers, unfamiliar with the 10 paintings tested, could rotate the color gamut of the paintings and select the one producing the best subjective impression. The distributions of angles obtained are described by normal distributions with maxima deviating, on average, only 7 degrees from the original gamut orientation and full width at half maximum just above the threshold to perceive a chromatic change in the paintings. Crucially, for data pooled across observers and abstract paintings the maximum of the distribution was at zero degrees, i.e., the same as the original. This demonstrates that artists know what chromatic compositions match viewers' preferences and that the option for less naturalistic colors does not constrain the aesthetic value of paintings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Clementine Observes the Moon, Solar Corona, and Venus

    Science.gov (United States)

    1997-01-01

    In 1994, during its flight, the Clementine spacecraft returned images of the Moon. In addition to the geologic mapping cameras, the Clementine spacecraft also carried two Star Tracker cameras for navigation. These lightweight (0.3 kg) cameras kept the spacecraft on track by constantly observing the positions of stars, reminiscent of the age-old seafaring tradition of sextant/star navigation. These navigation cameras were also to take some spectacular wide angle images of the Moon.In this picture the Moon is seen illuminated solely by light reflected from the Earth--Earthshine! The bright glow on the lunar horizon is caused by light from the solar corona; the sun is just behind the lunar limb. Caught in this image is the planet Venus at the top of the frame.

  15. Influence of Surrounding Colors in the Illuminant-Color Mode on Color Constancy

    Directory of Open Access Journals (Sweden)

    Kazuho Fukuda

    2011-05-01

    Full Text Available On color constancy, we showed that brighter surrounding colors had greater influence than dim colors (Uchikawa, Kitazawa, MacLeod, Fukuda, 2010 APCV. Increasing luminance of a stimulus causes the change in appearance from the surface-color to the illuminant-color mode. However it is unknown whether the visual system considers such color appearance mode of surrounding colors to achieve color constancy. We investigated the influence of surrounding colors that appeared illuminant on color constancy. The stimulus was composed of a central test stimulus and surrounding six colors: bright and dim red, green and blue. The observers adjusted the chromaticity of the test stimulus to be appeared as an achromatic surface. The luminance balance of three bright surrounding colors was equalized with that of the optimal colors in three illuminant conditions, then, the luminance of one of the three bright colors was varied in the range beyond the critical luminance of color appearance mode transition. The results showed that increasing luminance of a bright surrounding color shifted the observers' achromatic setting toward its chromaticity, but this effect diminished for the surrounding color in the illuminant-color mode. These results suggest that the visual system considers color appearance mode of surrounding colors to accomplish color constancy.

  16. Calibrated Tully-fisher Relations For Improved Photometric Estimates Of Disk Rotation Velocities

    NARCIS (Netherlands)

    Reyes, Reinabelle; Mandelbaum, R.; Gunn, J. E.; Pizagno II, Jim

    We present calibrated scaling relations (also referred to as Tully-Fisher relations or TFRs) between rotation velocity and photometric quantities-- absolute magnitude, stellar mass, and synthetic magnitude (a linear combination of absolute magnitude and color)-- of disk galaxies at z 0.1. First, we

  17. International lunar observatory / power station: from Hawaii to the Moon

    Science.gov (United States)

    Durst, S.

    Astronomy's great advantages from the Moon are well known - stable surface, diffuse atmosphere, long cool nights (14 days), low gravity, far side radio frequency silence. A large variety of astronomical instruments and observations are possible - radio, optical and infrared telescopes and interferometers; interferometry for ultra- violet to sub -millimeter wavelengths and for very long baselines, including Earth- Moon VLBI; X-ray, gamma-ray, cosmic ray and neutrino detection; very low frequency radio observation; and more. Unparalleled advantages of lunar observatories for SETI, as well as for local surveillance, Earth observation, and detection of Earth approaching objects add significant utility to lunar astronomy's superlatives. At least nine major conferences in the USA since 1984 and many elsewhere, as well as ILEWG, IAF, IAA, LEDA and other organizations' astronomy-from-the-Moon research indicate a lunar observatory / power station, robotic at first, will be one of the first mission elements for a permanent lunar base. An international lunar observatory will be a transcending enterprise, highly principled, indispensable, soundly and broadly based, and far- seeing. Via Astra - From Hawaii to the Moon: The astronomy and scie nce communities, national space agencies and aerospace consortia, commercial travel and tourist enterprises and those aspiring to advance humanity's best qualities, such as Aloha, will recognize Hawaii in the 21st century as a new major support area and pan- Pacific port of embarkation to space, the Moon and beyond. Astronomical conditions and facilities on Hawaii's Mauna Kea provide experience for construction and operation of observatories on the Moon. Remote and centrally isolated, with diffuse atmosphere, sub-zero temperature and limited working mobility, the Mauna Kea complex atop the 4,206 meter summit of the largest mountain on the planet hosts the greatest collection of large astronomical telescopes on Earth. Lunar, extraterrestrial

  18. Natural radioactivity of the rocks from the Moon and planets

    Energy Technology Data Exchange (ETDEWEB)

    Surkov, Yu.A. (AN SSSR, Moscow. Inst. Geokhimii i Analiticheskoj Khimii)

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient continent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts.

  19. Natural radioactivity of the rocks from the Moon and planets

    International Nuclear Information System (INIS)

    Surkov, Yu.A.

    1982-01-01

    Tha data on natural radioactivity of rocks (U, Th and K contents) from the Moon, Venus and Mars obtained by means of cosmic means are analyzed. The Moon rock radioactivity has been measured in situ (from orbital vehicles) as well as in the samples of lunar material delivered to the Earth and as for Venus and Mars rocks - by landing vehicles. It has been found that the main specific feature of the Moon and the Earth group planets is the presence of two geomorphological types of the structure of their surface composed by two different types of the matter. The ancient contineent regions are made up by feldspar rock - gabbroanorthosite at the Moon (and possibly at the Mars) and granite-metamorphic at the Earth (and possibly at the Venus). The younger ''marine'' regions are composed by basalt rock. The presence at the Moon of two types of crust (marine and continental ones) having a different nature is clearly reflected on the Moon radioactivity map where marine regions (15% of the total surface) which have high radioactivity and continental regions with a relatively low radioactivity can be seen. The discovery of rocks on the Venus surface highly enriched by U, Th and K speaks of their melting from the primary matter in the depth of the Earth. The Marsian rock by the natural radioelement content is close to igneous rocks of the Earth crust of the basic composition and lunar marine basalts

  20. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years [1-3]. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR

  1. Electron holes observed in the Moon Plasma Wake

    Science.gov (United States)

    Hutchinson, I. H.; Malaspina, D.; Zhou, C.

    2017-10-01

    Electrostatic instabilities are predicted in the magnetized wake of plasma flowing past a non-magnetic absorbing object such as a probe or the moon. Analysis of the data from the Artemis satellites, now orbiting the moon at distances ten moon radii and less, shows very clear evidence of fast-moving isolated solitary potential structures causing bipolar electric field excursions as they pass the satellite's probes. These structures have all the hallmarks of electron holes: BGK solitons typically a few Debye-lengths in size, self-sustaining by a deficit of phase-space density on trapped orbits. Electron holes are now observed to be widespread in space plasmas. They have been observed in PIC simulations of the moon wake to be the non-linear consequence of the predicted electron instabilities. Simulations document hole prevalence, speed, length, and depth; and theory can explain many of these features from kinetic analysis. The solar wind wake is certainly the cause of the overwhelming majority of the holes observed by Artemis, because we observe almost all holes to be in or very near to the wake. We compare theory and simulation of the hole generation, lifetime, and transport mechanisms with observations. Work partially supported by NASA Grant NNX16AG82G.

  2. The Moon as a unifying sociological attraction

    Science.gov (United States)

    Barbieri, C.; Pachera, S.; Ciucci, A.

    We propose to develop an economic, fully automated telescope to equip a variety of public and private buildings, such as disco dancings, pubs, resting houses, hospitals, schools etc., optimized to image and project the Moon, both in daylight and nightime. We strongly believe that the wide spread conscience of being part of a common Universe, by imaging the real Moon ( not a series of computer files) and following its changing course, distributed in places where the soul is usually taken in a wave of loneliness, can have a profound effect. In fact, living such an experience of observation in places where people of all ages usually meet, can help them to mix up socially and have fun and acquire new interests and fulfillment. They could confront their doubts, opinions, curiosity. The Moon is the natural choice, being visible even in polluted cities, it comes to the Zenith of a large band on the Earth encompassing each emisphere, it has deeply rooted meanings in all civilizations, and it is therefore the perfect astronomical object towards which humanity should direct its view above the ground. The possibility of the instrument to zoom in and out and to move across the surface of the Moon or to observe in real time the slowly moving line of the terminator, is intended just for the sheer wonder of it. No didactic use is meant to begin with, although interest is sure to be stimulated and may be followed up in many ways. Our object is indeed to make young and older people throughout the world feel our satellite nearer and more familiar in the shapes and names of its features, truly a constant presence in our everyday natural surroundings. When the time will come for human coloniz ation, the Moon could no longer be considered such an extraneous, exotic and faraway new home. The telescope can be built in very large quantities by a variety of firms practically even in underdeveloped countries, easily automated and connected to the world wide web.

  3. Erosion and Ejecta Reaccretion on 243 Ida and Its Moon

    Science.gov (United States)

    Geissler, Paul; Petit, Jean-Marc; Durda, Daniel D.; Greenberg, Richard; Bottke, William; Nolan, Michael; Moore, Jeffrey

    1996-03-01

    Galileo images of Asteroid 243 Ida and its satellite Dactyl show surfaces which are dominantly shaped by impact cratering. A number of observations suggest that ejecta from hypervelocity impacts on Ida can be distributed far and wide across the Ida system, following trajectories substantially affected by the low gravity, nonspherical shape, and rapid rotation of the asteroid. We explore the processes of reaccretion and escape of ejecta on Ida and Dactyl using three-dimensional numerical simulations which allow us to compare the theoretical effects of orbital dynamics with observations of surface morphology. The effects of rotation, launch location, and initial launch speed are first examined for the case of an ideal triaxial ellipsoid with Ida's approximate shape and density. Ejecta launched at low speeds (V≪Vesc) reimpact near the source craters, forming well-defined ejecta blankets which are asymmetric in morphology between leading and trailing rotational surfaces. The net effect of cratering at low ejecta launch velocities is to produce a thick regolith which is evenly distributed across the surface of the asteroid. In contrast, no clearly defined ejecta blankets are formed when ejecta is launched at higher initial velocities (V∼Vesc). Most of the ejecta escapes, while that which is retained is preferentially derived from the rotational trailing surfaces. These particles spend a significant time in temporary orbit around the asteroid, in comparison to the asteroid's rotation period, and tend to be swept up onto rotational leading surfaces upon reimpact. The net effect of impact cratering with high ejecta launch velocities is to produce a thinner and less uniform soil cover, with concentrations on the asteroids' rotational leading surfaces. Using a realistic model for the shape of Ida (P. Thomas, J. Veverka, B. Carcich, M. J. S. Belton, R. Sullivan, and M. Davies 1996,Icarus120, 000-000), we find that an extensive color/albedo unit which dominates the

  4. Taking Europe To The Moon

    Science.gov (United States)

    1998-03-01

    The first step in this ESA initiated programme is a unique project called 'Euromoon 2000' which is currently being studied by ESA engineers/ scientists and key European Space Industries. The project is intended to celebrate Europe's entry into the New Millennium; and to promote public awareness and interest in science, technology and space exploration. Euromoon 2000 has an innovative and ambitious implementation plan. This includes a 'partnership with industry' and a financing scheme based on raising part of the mission's budget from sponsorship through a dynamic public relations strategy and marketing programme. The mission begins in earnest with the small (approx. 100 kg) LunarSat orbiter satellite, to be designed and built by 50 young scientists and engineers from across Europe. Scheduled for launch in 2000 as a secondary payload on a European Ariane 5 rocket, it will then orbit the Moon, mapping the planned landing area in greater detail in preparation of the EuroMoon Lander in 2001. The Lander's 40 kg payload allocation will accommodate amongst others scientific instrumentation for in-situ investigation of the unique site. Elements of specific support to the publicity and fund-raising campaign will also be considered. The Lander will aim for the 'Peak of Eternal Light' on the rim of the 20 km-diameter, 3 km-deep Shackleton South Pole crater - a site uniquely suited for establishing a future outpost. This location enjoys almost continuous sunlight thus missions can rely on solar power instead of bulky batteries or costly and potentially hazardous nuclear power generation. As a consequence of the undulating South Pole terrain there are also permanently shadowed areas - amongst the coldest in the Solar System resulting in conditions highly favourable for the formation of frozen volatiles (as suggested by the Clementine mission in 1994). Earlier this year (7th January 1998), NASA launched its Lunar Prospector satellite which is currently performing polar lunar

  5. Formation, habitability, and detection of extrasolar moons.

    Science.gov (United States)

    Heller, René; Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Emeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I

    2014-09-01

    The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1-0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology.

  6. Science on the Moon: The Wailing Wall of Space Exploration

    Science.gov (United States)

    Wilson, Thomas

    2008-01-01

    Science on and from the Moon has important implications for expanding human knowledge and understanding, a prospect for the 21st Century that has been under discussion for at least the past 25 years. That having been said, however, there remain many issues of international versus national priorities, strategy, economy, and politics that come into play. The result is a very complex form of human behavior where science and exploration take center stage, but many other important human options are sacrificed. To renew this dialogue about the Moon, it seems we are already rushing pell-mell into it as has been done in the past. The U.S., Japan, China, India, and Russia either have sent or plan to send satellites and robotic landers there at this time. What does a return to the Moon mean, why are we doing this now, who should pay for it, and how? The only semblance of such a human enterprise seems to be the LHC currently coming online at CERN. Can it be used as a model of international collaboration rather than a sports or military event focused on national competition? Who decides and what is the human sacrifice? There are compelling arguments for establishing science on the Moon as one of the primary goals for returning to the Moon and venturing beyond. A number of science endeavors will be summarized, beyond lunar and planetary science per se. These include fundamental physics experiments that are background-limited by the Earth's magnetic dipole moment and noise produced by its atmosphere and seismic interior. The Moon is an excellent platform for some forms of astronomy. Other candidate Moon-based experiments vary from neutrino and gravitational wave astronomy, particle astrophysics, and cosmic-ray calorimeters, to space physics and fundamental physics such as proton decay. The list goes on and includes placing humans in a hostile environment to study the long-term effects of space weather. The list is long, and even newer ideas will come from this COSPAR conference

  7. Processing of Color Words Activates Color Representations

    Science.gov (United States)

    Richter, Tobias; Zwaan, Rolf A.

    2009-01-01

    Two experiments were conducted to investigate whether color representations are routinely activated when color words are processed. Congruency effects of colors and color words were observed in both directions. Lexical decisions on color words were faster when preceding colors matched the color named by the word. Color-discrimination responses…

  8. Color categories and color appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2011-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue–green boundary, to test whether chromatic differences across the boundary were perceptually exaggerated. This task did not require overt judgments of the perceived colors, and the tendency to group showed only a weak and inconsistent categorical bias. In a second case, we analyzed results from two prior studies of hue scaling of chromatic stimuli (De Valois, De Valois, Switkes, & Mahon, 1997; Malkoc, Kay, & Webster, 2005), to test whether color appearance changed more rapidly around the blue–green boundary. In this task observers directly judge the perceived color of the stimuli and these judgments tended to show much stronger categorical effects. The differences between these tasks could arise either because different signals mediate color grouping and color appearance, or because linguistic categories might differentially intrude on the response to color and/or on the perception of color. Our results suggest that the interaction between language and color processing may be highly dependent on the specific task and cognitive demands and strategies of the observer, and also highlight pronounced individual differences in the tendency to exhibit categorical responses. PMID:22176751

  9. TIDALLY DRIVEN DYNAMOS IN A ROTATING SPHERE

    International Nuclear Information System (INIS)

    Cébron, D.; Hollerbach, R.

    2014-01-01

    Large-scale planetary or stellar magnetic fields generated by a dynamo effect are mostly attributed to flows forced by buoyancy forces in electrically conducting fluid layers. However, these large-scale fields may also be controlled by tides, as previously suggested for the star τ-boo, Mars, or the early Moon. By simulating a small local patch of a rotating fluid, Barker and Lithwick have recently shown that tides can drive small-scale dynamos by exciting a hydrodynamic instability, the so-called elliptical (or tidal) instability. By performing global magnetohydrodynamic simulations of a rotating spherical fluid body, we investigate if this instability can also drive the observed large-scale magnetic fields. We are thus interested in the dynamo threshold and the generated magnetic field in order to test if such a mechanism is relevant for planets and stars. Rather than solving the problem in a geometry deformed by tides, we consider a spherical fluid body and add a body force to mimic the tidal deformation in the bulk of the fluid. This allows us to use an efficient spectral code to solve the magnetohydrodynamic problem. We first compare the hydrodynamic results with theoretical asymptotic results and numerical results obtained in a truly deformed ellipsoid, which confirms the presence of elliptical instability. We then perform magnetohydrodynamic simulations and investigate the dynamo capability of the flow. Kinematic and self-consistent dynamos are finally simulated, showing that the elliptical instability is capable of generating a dipole-dominated large-scale magnetic field in global simulations of a fluid rotating sphere

  10. Subcycle interference upon tunnel ionization by counter-rotating two-color fields

    Science.gov (United States)

    Eckart, S.; Kunitski, M.; Ivanov, I.; Richter, M.; Fehre, K.; Hartung, A.; Rist, J.; Henrichs, K.; Trabert, D.; Schlott, N.; Schmidt, L. Ph. H.; Jahnke, T.; Schöffler, M. S.; Kheifets, A.; Dörner, R.

    2018-04-01

    We report on three-dimensional (3D) electron momentum distributions from single ionization of helium by a laser pulse consisting of two counter-rotating circularly polarized fields (390 and 780 nm). A pronounced 3D low-energy structure and subcycle interferences are observed experimentally and reproduced numerically using a trajectory-based semiclassical simulation. The orientation of the low-energy structure in the polarization plane is verified by numerical simulations solving the time-dependent Schrödinger equation.

  11. Magmatism on the Moon

    Science.gov (United States)

    Michaut, Chloé; Thorey, Clément; Pinel, Virginie

    2016-04-01

    Volcanism on the Moon is dominated by large fissure eruptions of mare basalt and seems to lack large, central vent, shield volcanoes as observed on all the other terrestrial planets. Large shield volcanoes are constructed over millions to several hundreds of millions of years. On the Moon, magmas might not have been buoyant enough to allow for a prolonged activity at the same place over such lengths of time. The lunar crust was indeed formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a particularly light and relatively thick crust. This low-density crust acted as a barrier for the denser primary mantle melts. This is particularly evident in the fact that subsequent mare basalts erupted primarily within large impact basins where at least part of the crust was removed by the impact process. Thus, the ascent of lunar magmas might have been limited by their reduced buoyancy, leading to storage zone formation deep in the lunar crust. Further magma ascent to shallower depths might have required local or regional tensional stresses. Here, we first review evidences of shallow magmatic intrusions within the lunar crust of the Moon that consist in surface deformations presenting morphologies consistent with models of magma spreading at depth and deforming an overlying elastic layer. We then study the preferential zones of magma storage in the lunar crust as a function of the local and regional state of stress. Evidences of shallow intrusions are often contained within complex impact craters suggesting that the local depression caused by the impact exerted a strong control on magma ascent. The depression is felt over a depth equivalent to the crater radius. Because many of these craters have a radius less than 30km, the minimum crust thickness, this suggests that the magma was already stored in deeper intrusions before ascending at shallower depth. All the evidences for intrusions are also preferentially located in the internal

  12. Experimental analysis of flow structure in contra-rotating axial flow pump designed with different rotational speed concept

    Science.gov (United States)

    Cao, Linlin; Watanabe, Satoshi; Imanishi, Toshiki; Yoshimura, Hiroaki; Furukawa, Akinori

    2013-08-01

    As a high specific speed pump, the contra-rotating axial flow pump distinguishes itself in a rear rotor rotating in the opposite direction of the front rotor, which remarkably contributes to the energy conversion, the reduction of the pump size, better hydraulic and cavitation performances. However, with two rotors rotating reversely, the significant interaction between blade rows was observed in our prototype contra-rotating rotors, which highly affected the pump performance compared with the conventional axial flow pumps. Consequently, a new type of rear rotor was designed by the rotational speed optimization methodology with some additional considerations, aiming at better cavitation performance, the reduction of blade rows interaction and the secondary flow suppression. The new rear rotor showed a satisfactory performance at the design flow rate but an unfavorable positive slope of the head — flow rate curve in the partial flow rate range less than 40% of the design flow rate, which should be avoided for the reliability of pump-pipe systems. In the present research, to understand the internal flow field of new rear rotor and its relation to the performances at the partial flow rates, the velocity distributions at the inlets and outlets of the rotors are firstly investigated. Then, the boundary layer flows on rotor surfaces, which clearly reflect the secondary flow inside the rotors, are analyzed through the limiting streamline observations using the multi-color oil-film method. Finally, the unsteady numerical simulations are carried out to understand the complicated internal flow structures in the rotors.

  13. Modulation of terahertz generation in dual-color filaments by an external electric field and preformed plasma

    International Nuclear Information System (INIS)

    Li Min; Li An-Yuan; Yuan Shuai; Zeng He-Ping; He Bo-Qu

    2016-01-01

    Terahertz generation driven by dual-color filaments in air is demonstrated to be remarkably enhanced by applying an external electric field to the filaments. As terahertz generation is sensitive to the dual-color phase difference, a preformed plasma is verified efficiently in modulating terahertz radiation from linear to elliptical polarization. In the presence of preformed plasma, a dual-color filament generates terahertz pulses of elliptical polarization and the corresponding ellipse rotates regularly with the change of the preformed plasma density. The observed terahertz modulation with the external electric field and the preformed plasma provides a simple way to estimate the plasma density and evaluate the photocurrent dynamics of the dual-color filaments. It provides further experimental evidence of the photo-current model in governing the dual-color filament driven terahertz generation processes. (paper)

  14. Mars geodesy, rotation and gravity

    International Nuclear Information System (INIS)

    Rosenblatt, Pascal; Dehant, Veronique

    2010-01-01

    This review provides explanations of how geodesy, rotation and gravity can be addressed using radioscience data of an orbiter around a planet or of the lander on its surface. The planet Mars is the center of the discussion. The information one can get from orbitography and radioscience in general concerns the global static gravitational field, the time variation of the gravitational field induced by mass exchange between the atmosphere and the ice caps, the time variation of the gravitational field induced by the tides, the secular changes in the spacecraft's orbit induced by the little moons of Mars named Phobos and Deimos, the gravity induced by particular targets, the Martian ephemerides, and Mars' rotation and orientation. The paper addresses as well the determination of the geophysical parameters of Mars and, in particular, the state of Mars' core and its size, which is important for understanding the planet's evolution. Indeed, the state and dimension of the core determined from the moment of inertia and nutation depend in turn on the percentage of light elements in the core as well as on the core temperature, which is related to heat transport in the mantle. For example, the radius of the core has implications for possible mantle convection scenarios and, in particular, for the presence of a perovskite phase transition at the bottom of the mantle. This is also important for our understanding of the large volcanic province Tharsis on the surface of Mars. (invited reviews)

  15. Preferred skin color enhancement for photographic color reproduction

    Science.gov (United States)

    Zeng, Huanzhao; Luo, Ronnier

    2011-01-01

    Skin tones are the most important colors among the memory color category. Reproducing skin colors pleasingly is an important factor in photographic color reproduction. Moving skin colors toward their preferred skin color center improves the color preference of skin color reproduction. Several methods to morph skin colors to a smaller preferred skin color region has been reported in the past. In this paper, a new approach is proposed to further improve the result of skin color enhancement. An ellipsoid skin color model is applied to compute skin color probabilities for skin color detection and to determine a weight for skin color adjustment. Preferred skin color centers determined through psychophysical experiments were applied for color adjustment. Preferred skin color centers for dark, medium, and light skin colors are applied to adjust skin colors differently. Skin colors are morphed toward their preferred color centers. A special processing is applied to avoid contrast loss in highlight. A 3-D interpolation method is applied to fix a potential contouring problem and to improve color processing efficiency. An psychophysical experiment validates that the method of preferred skin color enhancement effectively identifies skin colors, improves the skin color preference, and does not objectionably affect preferred skin colors in original images.

  16. Formation and growth of embryos of the Earth-Moon system

    Science.gov (United States)

    Ipatov, Sergei I.

    2016-07-01

    Galimov and Krivtsov [1] made computer simulations of the formation of the embryos of the Earth and the Moon as a result of contraction of a rarefied condensation. The angular momentum needed for such contraction could not be acquired during formation of the condensation from a protoplanetary disk. Using the formulas presented in [2], we obtained that the angular momentum of the present Earth-Moon system could be acquired at a collision of two rarefied condensations with a total mass not smaller than 0.1M_{e}, where M_{e} is the Earth mass. In principle, the angular momentum of the condensation needed for formation of the Earth-Moon system could be acquired by accumulation only of small objects, but for such model, the parental condensations of Venus and Mars could also get the angular momentum that was enough for formation of large satellites. Probably, the condensations that contracted and formed the embryos of the terrestrial planets other than the Earth did not collide with massive condensations, and therefore they did not get a large enough angular momentum needed to form massive satellites. The embryos formed as a result of contraction of the condensation grew by accumulation of solid planetesimals. The mass of the rarefied condensation that was a parent for the embryos of the Earth and the Moon could be relatively small (0.02M_{e} or even less), if we take into account the growth of the angular momentum of the embryos at the time when they accumulated planetesimals. There could be also the second main collision of the parental rarefied condensation with another condensation, at which the radius of the Earth's embryo condensation was smaller than the semi-major axis of the orbit of the Moon's embryo. The second main collision (or a series of similar collisions) could change the tilt of the Earth to its present value. For large enough eccentricities of planetesimals, the effective radii of proto-Earth and proto-Moon were proportional to r (where r is the

  17. Rotary motion impairs attention to color change in 4-month-old infants.

    Science.gov (United States)

    Kavšek, Michael

    2013-06-01

    Continuous color changes of an array of elements appear to stop changing if the array undergoes a coherent motion. This silencing illusion was demonstrated for adults by Suchow and Alvarez (Current Biology, 2011, vol. 21, pp. 140-143). The current forced-choice preferential looking study examined 4-month-old infants' sensitivity to the silencing illusion. Two experimental conditions were conducted. In the dynamic condition, infants were tested with two rotating rings of circular different-colored dots. In one of these rings the dots continuously changed color, whereas in the other ring the dots did not change color. In the static condition, the global rotary motion was eliminated from the targets. Infants preferred looking at the color-changing target in the static condition but not in the dynamic condition; they attended to the color changes in the static condition but failed to detect them in the dynamic condition. This differential looking pattern is consistent with the hypothesis that the silencing illusion can be established during early infancy. A control group of adults also responded to the silencing phenomenon. This substantiates that the stimuli generate a robust illusory effect. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. How Apollo Flew to the Moon

    CERN Document Server

    Woods, W. David

    2008-01-01

    Out of the technological battlefield of World War II came a team of gifted German engineers and designers who developed the vengeance weapon, the V-2, which evolved into the peaceful, powerful Saturn V rocket to take men to the Moon. David Woods tells the exciting story, starting from America’s post war astronautical research facilities, that used the V-2 for the development of the robust, resilient and reliable Saturn V launcher. He describes the initial launches through manned orbital spaceflights, comprehensively detailing each step, including computer configuration, the role of ground control, trajectory planning, lunar orbiting, separation of the lander, walking and working on the Moon, retrieval of the lunar astronauts and returning to Earth in this massive technical accomplishment.

  19. Precursor life science experiments and closed life support systems on the Moon

    Science.gov (United States)

    Rodriguez, A.; Paille, C.; Rebeyre, P.; Lamaze, B.; Lobo, M.; Lasseur, C.

    Nowadays the Moon is not only a scientific exploration target but also potentially also a launch pad for deeper space exploration. Establishing an extended human presence on the Moon could reduce the cost of further space exploration, and gather the technical and scientific experience that would make possible the next steps of space exploration, namely manned-missions to Mars. To enable the establishment of such a Moon base, a reliable and regenerative life support system (LSS) is required: without any recycling of metabolic consumables (oxygen, water and food), a 6-person crew during the course of one year would require a supply of 12t from Earth (not including water for hygiene purposes), with a prohibitive associated cost! The recycling of consumables is therefore mandatory for a combination of economic, logistical and also safety reasons. Currently the main regenerative technologies used, namely water recycling in the ISS, are physical-chemical but they do not solve the issue of food production. In the European Space Agency, for the last 15 years, studies are being performed on several life support topics, namely in air revitalisation, food, water and waste management, contaminants, monitoring and control. Ground demonstration, namely the MELiSSA Pilot Plant and Concordia Station, and simulation studies demonstrated the studies feasibility and the recycling levels are promising. To be able to build LSS in a Moon base, the temperature amplitude, the dust and its 14-day night, which limits solar power supply, should be regarded. To reduce these technical difficulties, a landing site should be carefully chosen. Considering the requirements of a mission to the Moon and within the Aurora programme phase I, a preliminary configuration for a regenerative LSS can be proposed as an experiment for a precursor mission to the Moon. An overview of the necessary LSS to a Moon base will be presented, identifying Moon?s specific requirements and showing preliminary

  20. There are days ... and moons. Self-poisoning is not lunacy.

    Science.gov (United States)

    Buckley, N A; Whyte, I M; Dawson, A H

    To determine whether there are significant circadian, weekly or lunar variations in self-poisoning presentations and whether patients' names or dates of birth have an influence on the likelihood of self-poisoning by analysing biorhythms, numerology and star sign. Hunter Valley, Australia. Consecutive adult patients admitted with self-poisoning between January 1987 and June 1993. There were 2215 patients admitted. There was a marked circadian variation. Over 6% of all admissions occurred in each of the hours between 6 p.m. and 1 a.m. compared with less than 2% per hour between 5 a.m. and 9 a.m. This pattern was not different for patients with a diagnosis of depression. Numerology, biorhythms and star signs had no significant correlations with self-poisoning, nor was there a significant weekly or yearly variation in presentations. There was a small but statistically significant sex difference in presentations analysed by lunar phases. At the new moon 60% of self-poisonings were in women, compared with 45% when the moon was full. The odds ratios (OR) for women to be admitted at full moon and at new moon were 1.27 (95% confidence interval [CI], 0.92-1.66; P value not significant) and 0.73 (95% CI, 0.57-0.92; P = 0.009) respectively. The mean illumination of the moon at the time of overdose was 50.63% +/- 0.91% for men, compared with 47.45% +/- 0.85% for women (P = 0.014). The circadian cycle (but not weekly, yearly or mystical cycles) should be taken into account when determining staffing levels for poison information and casualty services. The full moon is protective for women.

  1. The Origin of the Moon Within a Terrestrial Synestia

    Science.gov (United States)

    Lock, Simon J.; Stewart, Sarah T.; Petaev, Michail I.; Leinhardt, Zoë; Mace, Mia T.; Jacobsen, Stein B.; Cuk, Matija

    2018-04-01

    The giant impact hypothesis remains the leading theory for lunar origin. However, current models struggle to explain the Moon's composition and isotopic similarity with Earth. Here we present a new lunar origin model. High-energy, high-angular-momentum giant impacts can create a post-impact structure that exceeds the corotation limit, which defines the hottest thermal state and angular momentum possible for a corotating body. In a typical super-corotation-limit body, traditional definitions of mantle, atmosphere, and disk are not appropriate, and the body forms a new type of planetary structure, named a synestia. Using simulations of cooling synestias combined with dynamic, thermodynamic, and geochemical calculations, we show that satellite formation from a synestia can produce the main features of our Moon. We find that cooling drives mixing of the structure, and condensation generates moonlets that orbit within the synestia, surrounded by tens of bars of bulk silicate Earth vapor. The moonlets and growing moon are heated by the vapor until the first major element (Si) begins to vaporize and buffer the temperature. Moonlets equilibrate with bulk silicate Earth vapor at the temperature of silicate vaporization and the pressure of the structure, establishing the lunar isotopic composition and pattern of moderately volatile elements. Eventually, the cooling synestia recedes within the lunar orbit, terminating the main stage of lunar accretion. Our model shifts the paradigm for lunar origin from specifying a certain impact scenario to achieving a Moon-forming synestia. Giant impacts that produce potential Moon-forming synestias were common at the end of terrestrial planet formation.

  2. ISS as testbed towards food production on the Moon

    Science.gov (United States)

    Kuebler, Ulrich; Thallemer, Axel; Kern, Peter; Schwarzwaelder, Achim

    Almost all major space faring nations are presently investigating concepts for the exploration of extra terrestrial planetary bodies, including Earth's Moon and Mars. One major objective to sustain any human exploration plans will be the provision of fresh food. Even if a delivery from Earth to Moon is still possible with regular preservation techniques as for the international space station, there will be a big psychological impact from the ability to grow fresh food on a Moon Basis. Various architectural and agricultural concepts have been proposed. A comprehensive summary of the related requirements and constraints shall be presented as a baseline for further studies. One presently unknown constraint is the question of the gravity threshold for the genetic stability of plants or more specifically the level of gravity which is needed for normal growth and reproduction of plants. This paper shall focus on a roadmap towards a food production facility a planetary surface using the International Space Station as a test bed. Presented will be 1.) The concept of a Food Research Rotor for the artificial gravity facility EMCS. This Rotor shall allow the investigation into the gravity dependence of growth and reproduction of nutritionally relevant plants like radishes, tomatoes, bell peppers or lettuce. An important answer from this research could be if the Moon Gravity of 1/6g is sufficient for a vegetative food production or if additional artificial gravity is needed for a Moon Greenhouse. 2.) An inflatable demonstrator for ATV as scaled down version of a proposed planetary greenhouse

  3. "The Moon Village and Journey to Mars enable each other"

    Science.gov (United States)

    Beldavs, Vidvuds

    2016-07-01

    NASA has proposed the Journey to Mars, a multi-decade collaborative international effort to establish permanent manned operations on the Martian surface as well as in orbit, most likely on the Martian moons. NASA's proposed the Journey to Mars has come under politically motivated attack as illusory, as beyond NASA's capabilities and anticipated NASA budgets in the foreseeable future. [1]. Other concerns come from various communities of researchers concerned about securing sustaining funding for their largely robotic research missions. ESA's Director General Dietrich Woerner's proposed Moon Village faces challenges ESA member states concerned about sustaining funding for projects already underway or in planning. Both the Journey to Mars and Moon Village raise the question - who will or who can pay for it? The 2013 US Research Council study suggested potential benefits to a mission to Mars from activities on the Moon [2]. The NASA funded Flexible Lunar Architecture study came to similar conclusions using a different methodology [3]. A logistics analysis by an MIT team suggested the possibility of cost savings through use of lunar water for propellant to reach Mars [4]. The highly promising private-public financing approach has been examined for potential application to funding the costs of reaching Mars [5]. Insofar as the feasibility of utilization of lunar water has not been determined these conclusions are speculative. This study will examine the following alternative scenarios for establishing sustainable, manned operations on Mars and permanent manned operations on the Moon: A. NASA-led Journey to Mars without an ESA-led Moon Village B. ESA-led Moon Village without NASA-led Journey to Mars C. NASA-led Journey to Mars with an ESA-led Moon Village D. Shared Infrastructure scenario - NASA-led Journey to Mars with ESA-led Moon Village and with a potential JAXA-led space-based-solar power initiative E. Space Industrialization scenario - Shared Infrastructure scenario

  4. Trace element evidence for a laterally inhomogeneous moon

    International Nuclear Information System (INIS)

    Jovanovic, S.; Reed, G.W. Jr.

    1978-01-01

    A number of trace element interrelations support the concept of a laterally inhomogeneous moon based orginally in Cl/sub r//P 2 O 5 ratios. The correspondence between Cl/sub r//P 2 O 5 and Rb/Sr ratios in basalts are of special interest since the isotopic evolution of the latter pair of elements relates to the earliest history of the moon. This implies the times when the Cl/sub r//P 2 O 5 relations were established. The early magma ocean is conjectured to have been made up of nonintermixing seas resulting either from large convection cells or large body accretion. These mutually exclusive regions could be lunar geological provinces. It is proposed that the diversity of basalts from the Apollo 17 site is related to the lateral inhomogeneity of the moon. Ca/Na ratios in basalts show a trend which parallels that of Ru/Os and in a corresponding fashion may serve as a depth indicator. 4 figures, 4 tables, 12 references

  5. Tidal Friction in the Earth-Moon System and Laplace Planes: Darwin Redux

    Science.gov (United States)

    Rubincam, David P.

    2015-01-01

    The dynamical evolution of the Earth-Moon system due to tidal friction is treated here. George H. Darwin used Laplace planes (also called proper planes) in his study of tidal evolution. The Laplace plane approach is adapted here to the formalisms of W.M. Kaula and P. Goldreich. Like Darwin, the approach assumes a three-body problem: Earth, Moon, and Sun, where the Moon and Sun are point-masses. The tidal potential is written in terms of the Laplace plane angles. The resulting secular equations of motion can be easily integrated numerically assuming the Moon is in a circular orbit about the Earth and the Earth is in a circular orbit about the Sun. For Earth-Moon distances greater than 10 Earth radii, the Earth's approximate tidal response can be characterized with a single parameter, which is a ratio: a Love number times the sine of a lag angle divided by another such product. For low parameter values it can be shown that Darwin's low-viscosity molten Earth, M. Ross's and G. Schubert's model of an Earth near melting, and Goldreich's equal tidal lag angles must all give similar histories. For higher parameter values, as perhaps has been the case at times with the ocean tides, the Earth's obliquity may have decreased slightly instead of increased once the Moon's orbit evolved further than 50 Earth radii from the Earth, with possible implications for climate. This is contrast to the other tidal friction models mentioned, which have the obliquity always increasing with time. As for the Moon, its orbit is presently tilted to its Laplace plane by 5.2deg. The equations do not allow the Moon to evolve out of its Laplace plane by tidal friction alone, so that if it was originally in its Laplace plane, the tilt arose with the addition of other mechanisms, such as resonance passages.

  6. Do focal colors look particularly "colorful"?

    Science.gov (United States)

    Witzel, Christoph; Franklin, Anna

    2014-04-01

    If the most typical red, yellow, green, and blue were particularly colorful (i.e., saturated), they would "jump out to the eye." This would explain why even fundamentally different languages have distinct color terms for these focal colors, and why unique hues play a prominent role in subjective color appearance. In this study, the subjective saturation of 10 colors around each of these focal colors was measured through a pairwise matching task. Results show that subjective saturation changes systematically across hues in a way that is strongly correlated to the visual gamut, and exponentially related to sensitivity but not to focal colors.

  7. The Electrostatic Environments of the Moon and Mars: Implications for Human Missions

    Science.gov (United States)

    Calle, Carlos I.; Mackey, Paul J.; Johansen, Michael R.; Hogue, Michael D.; Phillips, James; Cox, Rachel E.

    2016-01-01

    Lacking a substantial atmosphere, the moon is exposed to the full spectrum of solar radiation as well as to cosmic rays. Electrostatically, the moon is a charged body in a plasma. A Debye sheet meters high on the dayside of the moon and kilometers high on the night side envelops the moon. This sheet isolates the lunar surface from high energy particles coming from the sun. The electrostatic environment on Mars is controlled by its ever present atmospheric dust. Dust devils and dust storms tribocharge this dust. Theoretical studies predict that lightning and/or glow discharges should be present on Mars, but none have been directly observed. Experiments are planned to shed light on this issue.

  8. The Moon In The Classic Maya World

    Science.gov (United States)

    Romano, Giuliano

    During the Classic Period of the Maya civilization (250-900 A.D.) we have many documents in which it is possible to see the interest of this people on the principal lunar phenomena as the phases and the eclipses in particular. On a number of stelae, lintels and many other inscriptions (in Copan, Quirigua, Tikal, etc.), we can see that in correspondence of the dedication date of the monument, the Maya point out the phase of the Moon and its position in a period of six months corresponding to half year of eclipse. In some parts of the Dresda Codex (one of the four original codices of the Maya) we can see some pages in which were indicated the days of the Tzolkin calendar (the religious calendar of 260 days) in which it is possible to observe a lunar or solar eclipse. The periods of 177 or 148 days are allotted in a sequence that corresponds to the exact interval between the eclipses. The accuracy in the observations and in the calculations of the phases of the Moon, also in very old epochs, is an interesting evidence of the fundamental importance of the Moon in the Maya civilisation.

  9. Astronaut Aldrin is photographed by Astronaut Armstrong on the Moon

    Science.gov (United States)

    1969-01-01

    Apollo 11 Onboard Film -- The deployment of scientific experiments by Astronaut Edwin Aldrin Jr. is photographed by Astronaut Neil Armstrong. Man's first landing on the Moon occurred today at 4:17 p.m. as Lunar Module 'Eagle' touched down gently on the Sea of Tranquility on the east side of the Moon.

  10. Shooting the Moon

    Science.gov (United States)

    Andrews, Daniel R.

    2011-01-01

    This story is about an unlikely NASA mission to the Moon. It was unlikely because it was started with far too little time and too-little money to complete. It was unlikely because it was able to take chances to accept risk of failure. It was unlikely because it was searching for the unthinkable: water-ice on the moon... Figure 1-1: LCROSS Mission. The mission of the Lunar CRater Observation and Sensing Satellite (LCROSS) was to investigate the possibility of water ice in craters on the Moon s poles. This is certainly an interesting scientific topic in itself, but I intend to focus on the compelling experience of managing the LCROSS Project in the context of this storied Agency. Perhaps most interesting are the implications this story has for managing any development effort, lunar or not, and working a balance to achieve success. NASA is by design a risk-taking agency within the US Government. It could be argued that NASA s purpose in the aerospace community is to take on the really big challenges that either the corporate world can t afford, are not yet profitable endeavors, or are just too risky for private corporations to entertain. However, expectations of the Agency have evolved. A combination of grim human tragedies and some very public cost and schedule overruns have challenged the public s and Congress s tolerance for risk-taking within the Agency. NASA, which is supposed to be in the business of taking risks to do bold, difficult things, has become less and less able to do so within its cost framework. Yet effectively replacing prudent risk management with attempts to "risk-eliminate" is completely unaffordable. So where does risk-taking fit within the Agency, or within private/corporate organizations for that matter? Where astronauts play there is clearly concern about risk. When an organization puts humans in harm s way, it is understandably going to take extra effort to assure nobody gets hurt. Doing so, of course, costs money - a lot of money to pay for

  11. Using color management in color document processing

    Science.gov (United States)

    Nehab, Smadar

    1995-04-01

    Color Management Systems have been used for several years in Desktop Publishing (DTP) environments. While this development hasn't matured yet, we are already experiencing the next generation of the color imaging revolution-Device Independent Color for the small office/home office (SOHO) environment. Though there are still open technical issues with device independent color matching, they are not the focal point of this paper. This paper discusses two new and crucial aspects in using color management in color document processing: the management of color objects and their associated color rendering methods; a proposal for a precedence order and handshaking protocol among the various software components involved in color document processing. As color peripherals become affordable to the SOHO market, color management also becomes a prerequisite for common document authoring applications such as word processors. The first color management solutions were oriented towards DTP environments whose requirements were largely different. For example, DTP documents are image-centric, as opposed to SOHO documents that are text and charts centric. To achieve optimal reproduction on low-cost SOHO peripherals, it is critical that different color rendering methods are used for the different document object types. The first challenge in using color management of color document processing is the association of rendering methods with object types. As a result of an evolutionary process, color matching solutions are now available as application software, as driver embedded software and as operating system extensions. Consequently, document processing faces a new challenge, the correct selection of the color matching solution while avoiding duplicate color corrections.

  12. Europe rediscovers the Moon with SMART-1

    Science.gov (United States)

    2006-08-01

    The whole story began in September 2003, when an Ariane 5 launcher blasted off from Kourou, French Guiana, to deliver the European Space Agency’s lunar spacecraft SMART-1 into Earth orbit. SMART-1 is a small unmanned satellite weighing 366 kilograms and roughly fitting into a cube just 1 metre across, excluding its 14-metre solar panels (which were folded during launch). After launch and injection into an elliptical orbit around the Earth, the gentle but steady push provided by the spacecraft’s highly innovative electric propulsion engine forcefully expelling xenon gas ions caused SMART-1 to spiral around the Earth, increasing its distance from our planet until, after a long journey of about 14 months, it was “captured” by the Moon’s gravity. To cover the 385,000 km distance that separates the Earth from the Moon if one travelled in a straight line, this remarkably efficient engine brought the spacecraft on a 100 million km long spiralling journey on only 60 litres of fuel! The spacecraft was captured by the Moon in November 2004 and started its scientific mission in March 2005 in an elliptical orbit around its poles. ESA’s SMART-1 is currently the only spacecraft around the Moon, paving the way for the fleet of international lunar orbiters that will be launched from 2007 onwards. The story is now close to ending. On the night of Saturday 2 to Sunday 3 September, looking at the Moon with a powerful telescope, one may be able to see something special happening. Like most of its lunar predecessors, SMART-1 will end its journey and exploration of the Moon by landing in a relatively abrupt way. It will impact the lunar surface in an area called the “Lake of Excellence”, situated in the mid-southern region of the Moon’s visible disc at 07:41 CEST (05:41 UTC), or five hours before if it finds an unknown peak on the way. The story is close to ending After 16 months harvesting scientific results in an elliptical orbit around the Moon’s poles (at

  13. Human Space Exploration: The Moon, Mars, and Beyond

    Science.gov (United States)

    Sexton, Jeffrey D.

    2007-01-01

    America is returning to the Moon in preparation for the first human footprint on Mars, guided by the U.S. Vision for Space Exploration. This presentation will discuss NASA's mission, the reasons for returning to the Moon and going to Mars, and how NASA will accomplish that mission in ways that promote leadership in space and economic expansion on the new frontier. The primary goals of the Vision for Space Exploration are to finish the International Space Station, retire the Space Shuttle, and build the new spacecraft needed, to return people to the Moon and go to Mars. The Vision commits NASA and the nation to an agenda of exploration that also includes robotic exploration and technology development, while building on lessons learned over 50 years of hard-won experience. Why the Moon? Many questions about the Moon's potential resources and how its history is linked to that of Earth were spurred by the brief Apollo explorations of the 1960s and 1970s. This new venture will carry more explorers to more diverse landing sites with more capable tools and equipment for extended expeditions. The Moon also will serve as a training ground before embarking on the longer, more difficult trip to Mars. NASA plans to build a lunar outpost at one of the lunar poles, learn to live off the land, and reduce dePendence on Earth for longer missions. America needs to extend its ability to survive in hostile environments close to our home planet before astronauts will reach Mars, a planet very much like Earth. NASA has worked with scientists to define lunar exploration goals and is addressing the opportunities for a range of scientific study on Mars. In order to reach the Moon and Mars within a lifetime and within budget, NASA is building on common hardware, shared knowledge, and unique experience derived from the Apollo Saturn, Space Shuttle and contemporary commercial launch vehicle programs. The journeys to the Moon and Mars will require a variety of vehicles, including the Ares I

  14. Surface material of the moon

    Science.gov (United States)

    Warren, C.R.

    1963-01-01

    A skeletal fuzz that consists mostly of open space probably covers the moon to a depth of several millimeters or centimeters. The solid part of the fuzz probably consists of randomly oriented linear units, with or without enlarged nodes, which either anastomose in a mesh or are branching.

  15. Low energy trajectories for the Moon-to-Earth space flight

    Indian Academy of Sciences (India)

    The Moon-to-Earth low energy trajectories of 'detour' type are found and studied within the frame ... km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value .... The solid curve in fig- ... the Moon, respectively, as is the semimajor axis .... inclination i0 = 90 .... Then, according to.

  16. Automatic color preference correction for color reproduction

    Science.gov (United States)

    Tsukada, Masato; Funayama, Chisato; Tajima, Johji

    2000-12-01

    The reproduction of natural objects in color images has attracted a great deal of attention. Reproduction more pleasing colors of natural objects is one of the methods available to improve image quality. We developed an automatic color correction method to maintain preferred color reproduction for three significant categories: facial skin color, green grass and blue sky. In this method, a representative color in an object area to be corrected is automatically extracted from an input image, and a set of color correction parameters is selected depending on the representative color. The improvement in image quality for reproductions of natural image was more than 93 percent in subjective experiments. These results show the usefulness of our automatic color correction method for the reproduction of preferred colors.

  17. Image-based tracking system for vibration measurement of a rotating object using a laser scanning vibrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongkyu, E-mail: akein@gist.ac.kr; Khalil, Hossam; Jo, Youngjoon; Park, Kyihwan, E-mail: khpark@gist.ac.kr [School of Mechatronics, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, South Korea, 500-712 (Korea, Republic of)

    2016-06-28

    An image-based tracking system using laser scanning vibrometer is developed for vibration measurement of a rotating object. The proposed system unlike a conventional one can be used where the position or velocity sensor such as an encoder cannot be attached to an object. An image processing algorithm is introduced to detect a landmark and laser beam based on their colors. Then, through using feedback control system, the laser beam can track a rotating object.

  18. Origin of the Moon Unveiled by its Heavy Iron Isotope Composition

    Science.gov (United States)

    Poitrasson, F.; Halliday, A. N.; Lee, D.; Levasseur, S.; Teutsch, N.

    2002-12-01

    The origin of the Moon has long been of interest and although the Giant Impact theory is currently the preferred explanation, unequivocal supporting evidence has been lacking. We have measured the iron isotope compositions of Shergotty-Nakhla-Chassigny meteorites and eucrites thought to come from Mars and Vesta, as well as samples from the Moon and the mafic Earth using high precision plasma source mass spectrometry. The mean iron isotope composition of the lunar samples, expressed in the conventional delta notation (d57Fe/54Fe) with respect to the IRMM-14 isotopic standard, is heavier (0.221 per mil (0.041: one standard deviation, 10 samples)) than those of the Earth (0.119 per mil (0.044, 7 samples)), which themselves are heavier than Martian meteorites (0.009 per mil (0.024, 6 samples)) and the eucrites measured (0.033 per mil (0.038, 7 samples)). Student's t-test calculations show that the Moon and Earth means are different from each other and from those of the other planetary bodies at >99% level of significance. The iron isotope compositions show no simple relationship with planetary heliocentric position, mantle oxygen fugacity, volatile content, or planet size. Similarly, these results do not support an origin of the Moon through co-accretion with the Earth, or as a fragment ejected from the Earth's mantle, or as another planet captured by the early Earth. In contrast, these data can be explained if the Earth, and especially the Moon, went through partial vaporisation and condensation leading to kinetic iron isotopic fractionation. Our data are also consistent with the suggested levels of enrichment of refractory elements for the bulk Earth and Moon. These new iron isotope results thus provide strong support for the origin of the Moon through a giant impact between the proto-Earth and another planet. Raleigh kinetic fractionation calculations indicate that only 1% loss of the current Fe budget of the Moon is required to explain its heavier isotopic

  19. Report of the IAU Working Group on cartographic coordinates and rotational elements: 2009

    Science.gov (United States)

    Archinal, Brent A.; A’Hearn, Michael F.; Bowell, Edward; Conrad, Al; Consolmagno, Guy J.; Courtin, Regis; Fukushima, Toshio; Hestroffer, Daniel; Hilton, James L.; Krasinsky, Georgij A.; Neumann, Gregory; Oberst, Jurgen; Seidelmann, P. Kenneth; Stooke, Philip; Tholen, David J.; Thomas, Peter C.; Williams, Iwan P.

    2010-01-01

    Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Šteins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the

  20. Report of the IAU Working Group on cartographic coordinates and rotational elements: 2009

    Science.gov (United States)

    Archinal, B.A.; A'Hearn, M.F.; Bowell, E.; Conrad, A.; Consolmagno, G.J.; Courtin, R.; Fukushima, T.; Hestroffer, D.; Hilton, J.L.; Krasinsky, G.A.; Neumann, G.; Oberst, J.; Seidelmann, P.K.; Stooke, P.; Tholen, D.J.; Thomas, P.C.; Williams, I.P.

    2010-01-01

    Every three years the IAU Working Group on Cartographic Coordinates and Rotational Elements revises tables giving the directions of the poles of rotation and the prime meridians of the planets, satellites, minor planets, and comets. This report takes into account the IAU Working Group for Planetary System Nomenclature (WGPSN) and the IAU Committee on Small Body Nomenclature (CSBN) definition of dwarf planets, introduces improved values for the pole and rotation rate of Mercury, returns the rotation rate of Jupiter to a previous value, introduces improved values for the rotation of five satellites of Saturn, and adds the equatorial radius of the Sun for comparison. It also adds or updates size and shape information for the Earth, Mars’ satellites Deimos and Phobos, the four Galilean satellites of Jupiter, and 22 satellites of Saturn. Pole, rotation, and size information has been added for the asteroids (21) Lutetia, (511) Davida, and (2867) Šteins. Pole and rotation information has been added for (2) Pallas and (21) Lutetia. Pole and rotation and mean radius information has been added for (1) Ceres. Pole information has been updated for (4) Vesta. The high precision realization for the pole and rotation rate of the Moon is updated. Alternative orientation models for Mars, Jupiter, and Saturn are noted. The Working Group also reaffirms that once an observable feature at a defined longitude is chosen, a longitude definition origin should not change except under unusual circumstances. It is also noted that alternative coordinate systems may exist for various (e.g. dynamical) purposes, but specific cartographic coordinate system information continues to be recommended for each body. The Working Group elaborates on its purpose, and also announces its plans to occasionally provide limited updates to its recommendations via its website, in order to address community needs for some updates more often than every 3 years. Brief recommendations are also made to the general

  1. Tracking planets and moons: mechanisms of object tracking revealed with a new paradigm.

    Science.gov (United States)

    Tombu, Michael; Seiffert, Adriane E

    2011-04-01

    People can attend to and track multiple moving objects over time. Cognitive theories of this ability emphasize location information and differ on the importance of motion information. Results from several experiments have shown that increasing object speed impairs performance, although speed was confounded with other properties such as proximity of objects to one another. Here, we introduce a new paradigm to study multiple object tracking in which object speed and object proximity were manipulated independently. Like the motion of a planet and moon, each target-distractor pair rotated about both a common local point as well as the center of the screen. Tracking performance was strongly affected by object speed even when proximity was controlled. Additional results suggest that two different mechanisms are used in object tracking--one sensitive to speed and proximity and the other sensitive to the number of distractors. These observations support models of object tracking that include information about object motion and reject models that use location alone.

  2. Embedding Color Watermarks in Color Images

    Directory of Open Access Journals (Sweden)

    Wu Tung-Lin

    2003-01-01

    Full Text Available Robust watermarking with oblivious detection is essential to practical copyright protection of digital images. Effective exploitation of the characteristics of human visual perception to color stimuli helps to develop the watermarking scheme that fills the requirement. In this paper, an oblivious watermarking scheme that embeds color watermarks in color images is proposed. Through color gamut analysis and quantizer design, color watermarks are embedded by modifying quantization indices of color pixels without resulting in perceivable distortion. Only a small amount of information including the specification of color gamut, quantizer stepsize, and color tables is required to extract the watermark. Experimental results show that the proposed watermarking scheme is computationally simple and quite robust in face of various attacks such as cropping, low-pass filtering, white-noise addition, scaling, and JPEG compression with high compression ratios.

  3. Europa the ocean moon : search for an alien biosphere

    CERN Document Server

    Greenberg, Richard

    2004-01-01

    Europa - The Ocean Moon tells the story of the Galileo spacecraft probe to Jupiter's moon, Europa. It provides a detailed description of the physical processes, including the dominating tidal forces that operate on Europa, and includes a comprehensive tour of Europa using images taken by Galileo's camera. The book reviews and evaluates the interpretative work carried out to date, providing a philosophical discussion of the scientific process of analyzing results and the pitfalls that accompany it. It also examines the astrobiological constraints on this possible biosphere, and implications for future research, exploration and planetary biological protection. Europa - The Ocean Moon provides a unique understanding of the Galileo images of Europa, discusses the theory of tidal processes that govern its icy ridged and disrupted surface, and examines in detail the physical setting that might sustain extra-terrestrial life in Europa's ocean and icy crust.

  4. The extreme ultraviolet albedos of the planet Mercury and of the moon

    Science.gov (United States)

    Wu, H. H.; Broadfoot, A. L.

    1977-01-01

    The albedo of the moon in the far UV was measured by Mariner 10 at a solar phase angle of 74 deg, and the geometric albedo of Mercury was measured in same wavelength range (584-1657 A) at solar phase angles ranging from 50 to 120 deg. For both the moon and Mercury there is a general increase in albedo for wavelengths decreasing from 1657 to 584 A. The ratio of the albedos of Mercury and the moon increases from about 0.6 to 0.8 in the range 600-1600 A. This merely points to a difference in the surfaces of the moon and Mercury, there being insufficient data to make any conclusions regarding the nature of the difference.

  5. Moon Trek: An Interactive Web Portal for Current and Future Lunar Missions

    Science.gov (United States)

    Day, B.; Law, E.

    2017-09-01

    NASA's Moon Trek (https://moontrek.jpl.nasa.gov) is the successor to and replacement for NASA's Lunar Mapping and Modeling Portal (LMMP). Released in 2017, Moon Trek features a new interface with improved ways to access, visualize, and analyse data. Moon Trek provides a web-based Portal and a suite of interactive visualization and analysis tools to enable mission planners, lunar scientists, and engineers to access mapped lunar data products from past and current lunar missions.

  6. Definition of Physical Height Systems for Telluric Planets and Moons

    Science.gov (United States)

    Tenzer, Robert; Foroughi, Ismael; Sjöberg, Lars E.; Bagherbandi, Mohammad; Hirt, Christian; Pitoňák, Martin

    2018-01-01

    In planetary sciences, the geodetic (geometric) heights defined with respect to the reference surface (the sphere or the ellipsoid) or with respect to the center of the planet/moon are typically used for mapping topographic surface, compilation of global topographic models, detailed mapping of potential landing sites, and other space science and engineering purposes. Nevertheless, certain applications, such as studies of gravity-driven mass movements, require the physical heights to be defined with respect to the equipotential surface. Taking the analogy with terrestrial height systems, the realization of height systems for telluric planets and moons could be done by means of defining the orthometric and geoidal heights. In this case, however, the definition of the orthometric heights in principle differs. Whereas the terrestrial geoid is described as an equipotential surface that best approximates the mean sea level, such a definition for planets/moons is irrelevant in the absence of (liquid) global oceans. A more natural choice for planets and moons is to adopt the geoidal equipotential surface that closely approximates the geometric reference surface (the sphere or the ellipsoid). In this study, we address these aspects by proposing a more accurate approach for defining the orthometric heights for telluric planets and moons from available topographic and gravity models, while adopting the average crustal density in the absence of reliable crustal density models. In particular, we discuss a proper treatment of topographic masses in the context of gravimetric geoid determination. In numerical studies, we investigate differences between the geodetic and orthometric heights, represented by the geoidal heights, on Mercury, Venus, Mars, and Moon. Our results reveal that these differences are significant. The geoidal heights on Mercury vary from - 132 to 166 m. On Venus, the geoidal heights are between - 51 and 137 m with maxima on this planet at Atla Regio and Beta

  7. Solar sail trajectory design in the Earth-Moon circular restricted three body problem

    Science.gov (United States)

    Das, Ashwati

    The quest to explore the Moon has helped resolve scientific questions, has spurred leaps in technology development, and has revealed Earth's celestial companion to be a gateway to other destinations. With a renewed focus on returning to the Moon in this decade, alternatives to chemical propulsion systems are becoming attractive methods to efficiently use scarce resources and support extended mission durations. Thus, an investigation is conducted to develop a general framework, that facilitates propellant-free Earth-Moon transfers by exploiting sail dynamics in combination with advantageous transfer options offered in the Earth-Moon circular restricted multi-body dynamical model. Both periodic orbits in the vicinity of the Earth-Moon libration points, and lunar-centric long-term capture orbits are incorporated as target destinations to demonstrate the applicability of the general framework to varied design scanarios, each incorporating a variety of complexities and challenges. The transfers are comprised of three phases - a spiral Earth escape, a transit period, and, finally, the capture into a desirable orbit in the vicinity of the Moon. The Earth-escape phase consists of spiral trajectories constructed using three different sail steering strategies - locally optimal, on/off and velocity tangent. In the case of the Earth-libration point transfers, naturally occurring flow structures (e.g., invariant manifolds) arising from the mutual gravitational interaction of the Earth and Moon are exploited to link an Earth departure spiral with a destination orbit. In contrast, sail steering alone is employed to establish a link between the Earth-escape phase and capture orbits about the Moon due to a lack of applicable natural structures for the required connection. Metrics associated with the transfers including flight-time and the influence of operational constraints, such as occultation events, are investigated to determine the available capabilities for Earth-Moon

  8. Sediments Of The Moon And Earth As End-Members For Comparative Planetology

    Science.gov (United States)

    Basu, Abhijit; Molinaroli, Emanuela

    Processes of production, transport, deposition, lithification, and preservation of sediments of the Moon and Earth are extremely different. The differences arise primarily from the dissimilarity in the origins and sizes of the Moon and Earth. The consequence is that the Moon does not have an atmosphere, a hydrosphere (the Moon is totally dry), a biosphere (the Moon is totally life-less), a magnetosphere, and any tectonic force. Pristine rocks on the exposed surface of the Moon are principally anorthositic and basaltic, but those on the Earth are granitic (discounting suboceanic rocks). Sediments on these two bodies probably represent two end-members on rocky planetary bodies. Sediments on other rocky planetary bodies (atmosphere-free Mercury and asteroids, Venus with a thick atmosphere but possibly no water on its surface, and Mars with a currently dry surface sculptured by running water in the past) are intermediate in character. New evidence suggests that characteristics of Martian sediments may be in-between those of the Moon and Earth. For example, impacts generate most Martian sediments as on the Moon, and, Martian sediments are wind-blown to form dunes as on Earth. A comparative understanding of sediments of the Moon and Earth helps us anticipate and interpret the sedimentary record of other planetary bodies. Impact processes, large and small, have produced the sediments of the Moon. Unlike Earth, the surface of the Moon is continuously bombarded by micrometeorites and solar wind. Processes of chemical and mechanical weathering aided by biological activity produce sediments on Earth, fixing a significant amount of carbon in the solid state. Whereas solar wind produces minor chemical changes in lunar sediments, chemical weathering significantly alters and affects the character of Earth sediments. Primarily ballistic and electrostatic forces transport lunar sediments but Earth sediments are transported by air, water, and ice. Whereas Earth sediments accumulate

  9. Color evaluation of computer-generated color rainbow holography

    International Nuclear Information System (INIS)

    Shi, Yile; Wang, Hui; Wu, Qiong

    2013-01-01

    A color evaluation approach for computer-generated color rainbow holography (CGCRH) is presented. Firstly, the relationship between color quantities of a computer display and a color computer-generated holography (CCGH) colorimetric system is discussed based on color matching theory. An isochromatic transfer relationship of color quantity and amplitude of object light field is proposed. Secondly, the color reproduction mechanism and factors leading to the color difference between the color object and the holographic image that is reconstructed by CGCRH are analyzed in detail. A quantitative color calculation method for the holographic image reconstructed by CGCRH is given. Finally, general color samples are selected as numerical calculation test targets and the color differences between holographic images and test targets are calculated based on our proposed method. (paper)

  10. Sensory Drive, Color, and Color Vision.

    Science.gov (United States)

    Price, Trevor D

    2017-08-01

    Colors often appear to differ in arbitrary ways among related species. However, a fraction of color diversity may be explained because some signals are more easily perceived in one environment rather than another. Models show that not only signals but also the perception of signals should regularly evolve in response to different environments, whether these primarily involve detection of conspecifics or detection of predators and prey. Thus, a deeper understanding of how perception of color correlates with environmental attributes should help generate more predictive models of color divergence. Here, I briefly review our understanding of color vision in vertebrates. Then I focus on opsin spectral tuning and opsin expression, two traits involved in color perception that have become amenable to study. I ask how opsin tuning is correlated with ecological differences, notably the light environment, and how this potentially affects perception of conspecific colors. Although opsin tuning appears to evolve slowly, opsin expression levels are more evolutionarily labile but have been difficult to connect to color perception. The challenge going forward will be to identify how physiological differences involved in color vision, such as opsin expression levels, translate into perceptual differences, the selection pressures that have driven those differences, and ultimately how this may drive evolution of conspecific colors.

  11. Color planner for designers based on color emotions

    Science.gov (United States)

    Cheng, Ka-Man; Xin, John H.; Taylor, Gail

    2002-06-01

    During the color perception process, an associated feeling or emotion is induced in our brains, and this kind of emotion is termed as 'color emotion.' The researchers in the field of color emotions have put many efforts in quantifying color emotions with the standard color specifications and evaluating the influence of hue, lightness and chroma to the color emotions of human beings. In this study, a color planner was derived according to these findings so that the correlation of color emotions and standard color specifications was clearly indicated. Since people of different nationalities usually have different color emotions as different cultural and traditional backgrounds, the subjects in this study were all native Hong Kong Chinese and the color emotion words were all written in Chinese language in the visual assessments. Through the color planner, the designers from different areas, no matter fashion, graphic, interior or web site etc., can select suitable colors for inducing target color emotions to the customers or product-users since different colors convey different meanings to them. In addition, the designers can enhance the functionality and increase the attractiveness of their designed products by selecting suitable colors.

  12. Mars via the Moon the next giant leap

    CERN Document Server

    Seedhouse, Erik

    2016-01-01

    MOMENTUM IS BUILDING for a return to the Moon. NASA’s international partners on the International Space Station are in favor of returning to the lunar surface, as are India and China. The horizon goal may be Mars, but the political, funding and the technological and medical infeasibility of such an objective means the next logical step is a return to the Moon. While much has been learned about the Moon over the years, we don’t understand its resource wealth potential and the technologies to exploit those resources have yet to be developed, but there are a number of companies that are developing these capabilities. And, with the discovery of water in the lunar polar regions, plans are in the works to exploit these resources for fuel for transportation operations in cis-lunar space and in low Earth orbit (LEO). The time has come for commercial enterprise to lead the way back to the lunar surface. Embarking on such a venture requires little in the way of new technologies. We don’t need to develop super-fas...

  13. Low energy trajectories for the Moon-to-Earth space flight

    Indian Academy of Sciences (India)

    The Moon-to-Earth low energy trajectories of `detour'type are found and studied within the frame of the Moon –Earth –Sun-particle system. ... This results in the particle flight to a distance of about 1.5 million km from the Earth where the Sun gravitation decreases the particle orbit perigee distance to a small value that leads to ...

  14. Radio Astronomy on and Around the Moon

    Science.gov (United States)

    Falcke, Heino; Klein Wolt, Mark; Ping, Jinsong; Chen, Linjie

    2018-06-01

    The exploration of remote places on other planets has now become a major goal in current space flight scenarios. On the other hand, astronomers have always sought the most remote and isolated sites to place their observatories and to make their most precise and most breath taking discoveries. Especially for radio astronomy, lunar exploration offers a complete new window to the universe. The polar region and the far-side of the moon are acknowledged as unique locations for a low-frequency radio telescope providing scientific data at wavelengths that cannot be obtained from the Earth nor from single satellites. Scientific areas to be covered range from radio surveys, to solar-system studies, exo-planet detection, and astroparticle physics. The key science area, however, is the detection and measurement of cosmological 21 cm hydrogen emission from the still unexplored dark ages of the universe. Developing a lunar radio facility can happen in steps and may involve small satellites, rover-based radio antennas, of free- flying constellations around the moon. A first such step could be the Netherlands-Chinese Long Wavelength Explorer (NCLE), which is supposed to be launched in 2018 as part of the ChangE’4 mission to the moon-earth L2 point.

  15. Earthlike planets: Surfaces of Mercury, Venus, earth, moon, Mars

    Science.gov (United States)

    Murray, B.; Malin, M. C.; Greeley, R.

    1981-01-01

    The surfaces of the earth and the other terrestrial planets of the inner solar system are reviewed in light of the results of recent planetary explorations. Past and current views of the origin of the earth, moon, Mercury, Venus and Mars are discussed, and the surface features characteristic of the moon, Mercury, Mars and Venus are outlined. Mechanisms for the modification of planetary surfaces by external factors and from within the planet are examined, including surface cycles, meteoritic impact, gravity, wind, plate tectonics, volcanism and crustal deformation. The origin and evolution of the moon are discussed on the basis of the Apollo results, and current knowledge of Mercury and Mars is examined in detail. Finally, the middle periods in the history of the terrestrial planets are compared, and future prospects for the exploration of the inner planets as well as other rocky bodies in the solar system are discussed.

  16. Mental rotation of letters, pictures, and three-dimensional objects in German dyslexic children.

    Science.gov (United States)

    Rüsseler, Jascha; Scholz, Janka; Jordan, Kirsten; Quaiser-Pohl, Claudia

    2005-12-01

    This study examines mental rotation ability in children with developmental dyslexia. Prior investigations have yielded equivocal results that might be due to differences in stimulus material and testing formats employed. Whereas some investigators found dyslexic readers to be impaired in mental rotation, others did not report any performance differences or even superior spatial performance for dyslexia. Here, we report a comparison of mental rotation for letters, three-dimensional figures sensu Shepard and Metzler, and colored pictures of animals or humans in second-grade German dyslexic readers. Findings indicate that dyslexic readers are impaired in mental rotation for all three kinds of stimuli. Effects of general intelligence were controlled. Furthermore, dyslexic children were deficient in other spatial abilities like identifying letters or forms among distracters. These results are discussed with respect to the hypotheses of a developmental dysfunction of the parietal cortex or a subtle anomaly in cerebellar function in dyslexic readers.

  17. The metastable dynamo model of stellar rotational evolution

    International Nuclear Information System (INIS)

    Brown, Timothy M.

    2014-01-01

    This paper introduces a new empirical model for the rotational evolution of Sun-like stars—those with surface convection zones and non-convective interior regions. Previous models do not match the morphology of observed (rotation period)-color diagrams, notably the existence of a relatively long-lived 'C-sequence' of fast rotators first identified by Barnes. This failure motivates the Metastable Dynamo Model (MDM) described here. The MDM posits that stars are born with their magnetic dynamos operating in a mode that couples very weakly to the stellar wind, so their (initially very short) rotation periods at first change little with time. At some point, this mode spontaneously and randomly changes to a strongly coupled mode, the transition occurring with a mass-dependent lifetime that is of the order of 100 Myr. I show that with this assumption, one can obtain good fits to observations of young clusters, particularly for ages of 150-200 Myr. Previous models and the MDM both give qualitative agreement with the morphology of the slower-rotating 'I-sequence' stars, but none of them have been shown to accurately reproduce the stellar-mass-dependent evolution of the I-sequence stars, especially for clusters older than a few hundred million years. I discuss observational experiments that can test aspects of the MDM, and speculate that the physics underlying the MDM may be related to other situations described in the literature, in which stellar dynamos may have a multi-modal character.

  18. Cosmic acceleration of Earth and the Moon by dark matter

    Science.gov (United States)

    Nordtvedt, Kenneth L.

    1994-01-01

    In order to test the hypothesis that the gravitational interaction between our Galaxy's dark matter and the ordinary matter in Earth and the Moon might not fulfill the equivalence principle (universality of free fall), we consider the pertinent perturbation of the lunar orbit -- a sidereal month period range oscillation resulting from a spatially fixed polarization of the orbit. Lunar laser ranging (LLR) data can measure this sidereal perturbation to an accuracy equal to or better than its existing measurement of the synodic month period range oscillation amplitude (+/- 3 cm) which has been used for testing whether Earth and the Moon accelerate at equal rates toward the Sun. Because of the slow precession rate of the Moon's perigree (8.9 yr period), the lunar orbit is particularly sensitive to a cosmic acceleration; the LLR fit of the orbit places an upper limit of 10(exp -13) cm/sq. s for any cosmic differential acceleration between Earth (Fe) and the Moon (silicates). This is 10(exp -5) of the total galactic acceleration of the solar system, of which, it has been suggested, a large portion is produced by dark matter.

  19. The MOON-1 detector construction and the study of backgrounds from radioactive isotopes

    International Nuclear Information System (INIS)

    Ogama, T; Nakamura, H; Ejiri, H; Fushimi, K; Ichihara, K; Matsuoka, K; Nomachi, M; Hazama, R; Umehara, S; Yoshida, S; Sakiuchi, T; Hai, V H; Sugaya, Y

    2006-01-01

    MOON is a multilayer system of plastic scintillators and 100 Mo films for 100 Mo 0νββ decays. A prototype detector MOON-1 was built with 6 layers of plastic scintillators and 142g of 100Mo films for background (BG), energy and position resolution studies of the MOON detector. No serious BG from natural radioactive isotopes (RI) for 0νββ detection was found

  20. Analytic continuation of the rotating black hole state counting

    Energy Technology Data Exchange (ETDEWEB)

    Achour, Jibril Ben [Departement of Physics, Center for Field Theory and Particles Physics, Fudan University,20433 Shanghai (China); Noui, Karim [Fédération Denis Poisson, Laboratoire de Mathématiques et Physique Théorique (UMR 7350),Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Laboratoire APC - Astroparticule et Cosmologie, Université Paris Diderot Paris 7,75013 Paris (France); Perez, Alejandro [Centre de Physique Théorique (UMR 7332), Aix Marseille Université and Université de Toulon,13288 Marseille (France)

    2016-08-24

    In loop quantum gravity, a spherical black hole can be described in terms of a Chern-Simons theory on a punctured 2-sphere. The sphere represents the horizon. The punctures are the edges of spin-networks in the bulk which cross the horizon and carry quanta of area. One can generalize this construction and model a rotating black hole by adding an extra puncture colored with the angular momentum J in the 2-sphere. We compute the entropy of rotating black holes in this model and study its semi-classical limit. After performing an analytic continuation which sends the Barbero-Immirzi parameter to γ=±i, we show that the leading order term in the semi-classical expansion of the entropy reproduces the Bekenstein-Hawking law independently of the value of J.

  1. The full moon and motorcycle related mortality: population based double control study.

    Science.gov (United States)

    Redelmeier, Donald A; Shafir, Eldar

    2017-12-11

    To test whether a full moon contributes to motorcycle related deaths. Population based, individual level, double control, cross sectional analysis. Nighttime (4 pm to 8 am), United States. 13 029 motorcycle fatalities throughout the United States, 1975 to 2014 (40 years). Motorcycle fatalities during a full moon. 13 029 motorcyclists were in fatal crashes during 1482 relevant nights. The typical motorcyclist was a middle aged man (mean age 32 years) riding a street motorcycle with a large engine in a rural location who experienced a head-on frontal impact and was not wearing a helmet. 4494 fatal crashes occurred on the 494 nights with a full moon (9.10/night) and 8535 on the 988 control nights without a full moon (8.64/night). Comparisons yielded a relative risk of 1.05 associated with the full moon (95% confidence interval 1.02 to 1.09, P=0.005), a conditional odds ratio of 1.26 (95% confidence interval 1.17 to 1.37, Pmotorcycle crashes, although potential confounders cannot be excluded. An awareness of the risk might encourage motorcyclists to ride with extra care during a full moon and, more generally, to appreciate the power of seemingly minor distractions at all times. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  2. International Lunar Observatory Association Advancing 21st Century Astronomy from the Moon

    Science.gov (United States)

    Durst, Steve

    2015-08-01

    Long considered a prime location to conduct astronomical observations, the Moon is beginning to prove its value in 21st Century astronomy through the Lunar Ultraviolet Telescope aboard China’s Chang’e-3 Moon lander and through the developing missions of the International Lunar Observatory Association (ILOA). With 24 hours / Earth day of potential operability facilitating long-duration observations, the stable platform of the lunar surface and extremely thin exosphere guaranteeing superior observation conditions, zones of radio-quiet for radio astronomy, and the resources and thermal stability at the lunar South Pole, the Moon provides several pioneering advantages for astronomy. ILOA, through MOUs with NAOC and CNSA, has been collaborating with China to make historic Galaxy observations with the Chang’e-3 LUT, including imaging Galaxy M101 in December 2014. LUT has an aperture of 150mm, covers a wavelength range of 245 to 340 nanometers and is capable of detecting objects at a brightness down to 14 mag. The success of China’s mission has provided support and momentum for ILOA’s mission to place a 2-meter dish, multifunctional observatory at the South Pole of the Moon NET 2017. ILOA also has plans to send a precursor observatory instrument (ILO-X) on the inaugural mission of GLXP contestant Moon Express. Advancing astronomy and astrophysics from the Moon through public-private and International partnerships will provide many valuable research opportunities while also helping to secure humanity’s position as multi world species.

  3. Colorization-Based RGB-White Color Interpolation using Color Filter Array with Randomly Sampled Pattern.

    Science.gov (United States)

    Oh, Paul; Lee, Sukho; Kang, Moon Gi

    2017-06-28

    Recently, several RGB-White (RGBW) color filter arrays (CFAs) have been proposed, which have extra white (W) pixels in the filter array that are highly sensitive. Due to the high sensitivity, the W pixels have better SNR (Signal to Noise Ratio) characteristics than other color pixels in the filter array, especially, in low light conditions. However, most of the RGBW CFAs are designed so that the acquired RGBW pattern image can be converted into the conventional Bayer pattern image, which is then again converted into the final color image by using conventional demosaicing methods, i.e., color interpolation techniques. In this paper, we propose a new RGBW color filter array based on a totally different color interpolation technique, the colorization algorithm. The colorization algorithm was initially proposed for colorizing a gray image into a color image using a small number of color seeds. Here, we adopt this algorithm as a color interpolation technique, so that the RGBW color filter array can be designed with a very large number of W pixels to make the most of the highly sensitive characteristics of the W channel. The resulting RGBW color filter array has a pattern with a large proportion of W pixels, while the small-numbered RGB pixels are randomly distributed over the array. The colorization algorithm makes it possible to reconstruct the colors from such a small number of RGB values. Due to the large proportion of W pixels, the reconstructed color image has a high SNR value, especially higher than those of conventional CFAs in low light condition. Experimental results show that many important information which are not perceived in color images reconstructed with conventional CFAs are perceived in the images reconstructed with the proposed method.

  4. Of colored numbers and numbered colors: interactive processes in grapheme-color synesthesia.

    Science.gov (United States)

    Gebuis, Titia; Nijboer, Tanja C W; van der Smagt, Maarten J

    2009-01-01

    Grapheme-color synesthetes experience a specific color when they see a grapheme but they do not report to perceive a grapheme when a color is presented. In this study, we investigate whether color can still evoke number-processes even when a vivid number experience is absent. We used color-number and number-color priming, both revealing faster responses in congruent compared to incongruent conditions. Interestingly, the congruency effect was of similar magnitude for both conditions, and a numerical distance effect was present only in the color-number priming task. In addition, a priming task in which synesthetes had to judge the parity of a colored number revealed faster responses in parity congruent than in parity incongruent trials. These combined results demonstrate that synesthesia is indeed bi-directional and of similar strength in both directions. Furthermore, they illustrate the precise nature of these interactions and show that the direction of these interactions is determined by task demands, not by the more vividly experienced aspect of the stimulus.

  5. Angular momentum in general relativity. II. Perturbations of a rotating black hole

    Energy Technology Data Exchange (ETDEWEB)

    Prior, C R [Cambridge Univ. (UK). Dept. of Applied Mathematics and Theoretical Physics

    1977-06-30

    The definition of angular momentum proposed in part I of this series (Prior. Proc. R. Soc. Lond.; A354:379 (1977)) is investigated when applied to rotating black holes. It is shown how to use the formula to evaluate the angular momentum of a stationary black hole. This acts as a description of a background space on which the effect of first matter and then gravitational perturbations is considered. The latter are of most interest and the rate of change of angular momentum, dJ/dt, is found as an expression in the shear induced in the event horizon by the perturbation and in its time integral. Teukolsky's solutions (Astrophys. J.; 185:635 (1973)) for the perturbed component of the Weyl tensor are then used to find this shear and hence to give an exact answer for dJ/dt. One of the implications of the result is a direct verification of Bekenstein's formula (Phys. Rev.; 7D:949 (1973)) relating in a simple way the rate of change of angular momentum to the rate of change of mass caused by a plane wave. A more general expression is also given for dM/dt. Considering only stationary perturbations, it is shown how to generalize the definition of angular momentum so as to include information about its direction as well. Three problems are particularly discussed - a single moon, two or more moons and a ring of matter causing the perturbation - since they provide illustrations of all the main features of the black hole's behaviour. In every case it is found that the black hole realigns its axis of rotation so that the final configuration is axisymmetric if possible; otherwise is slows down completely to reach a static state.

  6. Human factors for the Moon: the gap in anthropometric data.

    Science.gov (United States)

    Lia Schlacht, Irene; Foing, Bernard H.; Rittweger, Joern; Masali, Melchiorre; Stevenin, Hervé

    2016-07-01

    Since the space era began, we learned first to survive and then to live in space. In the state of the art, we know how important human factors research and development is to guarantee maximum safety and performance for human missions. With the extension of the duration of space missions, we also need to learn how habitability and comfort factors are closely related to safety and performance. Humanities disciplines such as design, architecture, anthropometry, and anthropology are now involved in mission design from the start. Actual plans for building a simulated Moon village in order to simulate and test Moon missions are now being carried out using a holistic approach, involving multidisciplinary experts cooperating concurrently with regard to the interactions among humans, technology, and the environment. However, in order to implement such plans, we need basic anthropometrical data, which is still missing. In other words: to optimize performance, we need to create doors and ceilings with dimensions that support a natural human movement in the reduced gravity environment of the Moon, but we are lacking detailed anthropometrical data on human movement on the Moon. In the Apollo missions more than 50 years ago, no anthropometrical studies were carried in hypogravity out as far as we know. The necessity to collect data is very consistent with state-of-the-art research. We still have little knowledge of how people will interact with the Moon environment. Specifically, it is not known exactly which posture, which kind of walking and running motions astronauts will use both inside and outside a Moon station. Considering recent plans for a Moon mission where humans will spend extensive time in reduced gravity conditions, the need for anthropometric, biomechanics and kinematics field data is a priority in order to be able to design the right architecture, infrastructure, and interfaces. Objective of this paper: Bring knowledge on the relevance of anthropometrical and

  7. To the Moon on a Shoestring

    Science.gov (United States)

    Mortensen, T. F.; Rasmussen, S.

    2013-09-01

    The Euroluna Team is one of the around 30 teams competing in the Google Lunar X PRIZE Competition. The goal of the competition is to be the first team to successfully land a vehicle on the Moon, drive 500 m, and send video of the drive back to Earth. The Euroluna Team was formed in 2007, and the first flight hardware was acquired in 2010. Euroluna is financed privately with small funds. We have not received any external financial support. Therefore we have made an effort to keep all investments low. This has resulted in a design that uses new technologies and old technologies in a new way. Components are largely based on the Cubesat family and an ion thruster is being used for propulsion. A special strategy for landing on the Moon is under development. Special software of own design is being used for simulation of trajectories and energy consumption.

  8. On the Moon the apollo journals

    CERN Document Server

    Heiken, Grant

    2007-01-01

    Public interest in the first lunar landing transcended political, economic and social borders – the world was briefly united by the courage of the crew, and the wonder of the accomplishment. Prompted by the rivalry of the Cold War, Apollo 11 and the five missions that subsequently landed on the Moon were arguably the finest feats of exploration in human history. But these were more than exercises in ‘flags and footprints’, because the missions involved the crews making geological field trips on a low gravity site while wearing pressure suits, carrying life-support systems on their backs and working against an unforgiving time line. The missions delivered not only samples of moonrock, but also hard-learned lessons for how to work on the surface of another planet, and this experience will be crucial to planning the resumption of the human exploration of the Moon and going on to Mars.

  9. Moon and sun shadowing effect measurements

    International Nuclear Information System (INIS)

    Medeiros, Michelle Mesquita de; Gomes, Ricardo Avelino

    2011-01-01

    Full text: The deficit due to the absorption of cosmic rays by the Moon and the Sun can be observed detecting the muon flux generated in extensive air showers. This phenomenon, known as cosmic ray shadow, can be used to study the behaviour of the geomagnetic, solar and interplanetary magnetic fields, to measure the antiproton-proton ratio and to determine the angular resolution and alignment of the detectors to confirm its accuracy and precision. Many experiments using surface or underground detectors have measured the Moon and Sun shadow: MINOS, CYGNUS, CASA, Tibet, MACRO, Soudan2, L3+C, Milagro, BUST, GRAPE and HEGRA. The MINOS experiment (Main Injector Neutrino Oscillation Search) uses two layered steel and plastic scintillator detectors (Near Detector and Far Detector) along with a muon neutrino beam (NuMI - Neutrinos at the Main Injector) to search for ν μ disappearance, and thus neutrino oscillations. However the magnetic field and the fiducial volume of the underground Far Detector at Soudan Underground Mine State Park (Minnesota, USA) allow a great opportunity to investigate cosmic rays at TeV surface energy. The deficit caused by the Moon and the Sun was detected by the MINOS Far Detector and this could also be done using the Near Detector. In this report we describe the motivation of measuring this effect. We present the recent results from MINOS along with its experimental apparatus and, in addition, the main results from the various experiments. We also make considerations about the possibility of doing such a measurement with the MINOS Near Detector. (author)

  10. Nikola Tesla: the Moon's rotation.

    Science.gov (United States)

    Tomić, A.; Jovanović, B. S.

    1993-09-01

    The review of three articles by N. Tesla, published in the year 1919 in the journal "Electrical experimenter" is given, with special reference to the astronomical contents and to circumstances in which they appeared.

  11. Precision of synesthetic color matching resembles that for recollected colors rather than physical colors.

    Science.gov (United States)

    Arnold, Derek H; Wegener, Signy V; Brown, Francesca; Mattingley, Jason B

    2012-10-01

    Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but hearing the name of a grapheme does not. This dissociation allowed us to compare the precision with which synesthetes are able to match their color experiences triggered by visible graphemes, with the precision of their matches for recalled colors based on the same graphemes spoken aloud. In six synesthetes, color matching for printed graphemes was equally variable relative to recalled experiences. In a control experiment, synesthetes and age-matched controls either matched the color of a circular patch while it was visible on a screen, or they judged its color from memory after it had disappeared. Both synesthetes and controls were more variable when matching from memory, and the variance of synesthetes' recalled color judgments matched that associated with their synesthetic judgments for visible graphemes in the first experiment. Results suggest that synesthetic experiences of color triggered by achromatic graphemes are analogous to recollections of color.

  12. Color Terms and Color Concepts

    Science.gov (United States)

    Davidoff, Jules

    2006-01-01

    In their lead articles, both Kowalski and Zimiles (2006) and O'Hanlon and Roberson (2006) declare a general relation between color term knowledge and the ability to conceptually represent color. Kowalski and Zimiles, in particular, argue for a priority for the conceptual representation in color term acquisition. The complexities of the interaction…

  13. Automated Spacecraft Conjunction Assessment at Mars and the Moon

    Science.gov (United States)

    Berry, David; Guinn, Joseph; Tarzi, Zahi; Demcak, Stuart

    2012-01-01

    Conjunction assessment and collision avoidance are areas of current high interest in space operations. Most current conjunction assessment activity focuses on the Earth orbital environment. Several of the world's space agencies have satellites in orbit at Mars and the Moon, and avoiding collisions there is important too. Smaller number of assets than Earth, and smaller number of organizations involved, but consequences similar to Earth scenarios.This presentation will examine conjunction assessment processes implemented at JPL for spacecraft in orbit at Mars and the Moon.

  14. Color Categories and Color Appearance

    Science.gov (United States)

    Webster, Michael A.; Kay, Paul

    2012-01-01

    We examined categorical effects in color appearance in two tasks, which in part differed in the extent to which color naming was explicitly required for the response. In one, we measured the effects of color differences on perceptual grouping for hues that spanned the blue-green boundary, to test whether chromatic differences across the boundary…

  15. Moon Zoo: Making the public part of a crater survey algorithm

    Science.gov (United States)

    Gay, P. L.; Brown, S.; Huang, D.; Daus, C.; Lehan, C.; Robbins, S.

    2011-10-01

    The Moon Zoo citizen science website launched in May 2010 and invited the public to annotate images from the Lunar Reconnaissance Orbiter's Narrow Angle Camera (NAC). Tasks included marking the edges of craters with an ellipse tool, indicating where linear features (e.g. scarps) and special types of craters (e.g. dark haloed) are located with a box, and rating the number of boulders in an image. The goal of this project is to create crater and feature catalogues for large areas of the moon. In addition to doing science, Moon Zoo also seeks to educate its audience through educational content, to engage them through social media, and to understand them through research into their motivations and behaviors.

  16. Asymmetric shock heating and the terrestrial magma ocean origin of the Moon.

    Science.gov (United States)

    Karato, Shun-ichiro

    2014-01-01

    One of the difficulties of the current giant impact model for the origin of the Moon is to explain the marked similarity in the isotopic compositions and the substantial differences in the major element chemistry. Physics of shock heating is analyzed to show that the degree of heating is asymmetric between the impactor and the target, if the target (the proto-Earth) had a magma-ocean but the impactor did not. The magma ocean is heated much more than the solid impactor and the vapor-rich jets come mainly from the magma-ocean from which the Moon might have been formed. In this scenario, the similarity and differences in the composition between the Moon and Earth would be explained as a natural consequence of a collision in the later stage of planetary formation. Including the asymmetry in shock heating is the first step toward explaining the chemical composition of the Moon.

  17. Color Memory of University Students: Influence of Color Experience and Color Characteristic

    Science.gov (United States)

    Bynum, Carlisle; Epps, Helen H.; Kaya, Naz

    2006-01-01

    The ability to select a previously viewed color specimen from an array of specimens that differ in hue, value, or chroma varies among individuals, and may be related to one's basic color discrimination ability or to prior experience with color. This study investigated short-term color memory of 40 college students, 20 of whom were interior design…

  18. Fear of darkness, the full moon and the nocturnal ecology of African lions.

    Science.gov (United States)

    Packer, Craig; Swanson, Alexandra; Ikanda, Dennis; Kushnir, Hadas

    2011-01-01

    Nocturnal carnivores are widely believed to have played an important role in human evolution, driving the need for night-time shelter, the control of fire and our innate fear of darkness. However, no empirical data are available on the effects of darkness on the risks of predation in humans. We performed an extensive analysis of predatory behavior across the lunar cycle on the largest dataset of lion attacks ever assembled and found that African lions are as sensitive to moonlight when hunting humans as when hunting herbivores and that lions are most dangerous to humans when the moon is faint or below the horizon. At night, people are most active between dusk and 10:00 pm, thus most lion attacks occur in the first weeks following the full moon (when the moon rises at least an hour after sunset). Consequently, the full moon is a reliable indicator of impending danger, perhaps helping to explain why the full moon has been the subject of so many myths and misconceptions.

  19. The moon as a radiometric reference source for on-orbit sensor stability calibration

    Science.gov (United States)

    Stone, T.C.

    2009-01-01

    The wealth of data generated by the world's Earth-observing satellites, now spanning decades, allows the construction of long-term climate records. A key consideration for detecting climate trends is precise quantification of temporal changes in sensor calibration on-orbit. For radiometer instruments in the solar reflectance wavelength range (near-UV to shortwave-IR), the Moon can be viewed as a solar diffuser with exceptional stability properties. A model for the lunar spectral irradiance that predicts the geometric variations in the Moon's brightness with ???1% precision has been developed at the U.S. Geological Survey in Flagstaff, AZ. Lunar model results corresponding to a series of Moon observations taken by an instrument can be used to stabilize sensor calibration with sub-percent per year precision, as demonstrated by the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). The inherent stability of the Moon and the operational model to utilize the lunar irradiance quantity provide the Moon as a reference source for monitoring radiometric calibration in orbit. This represents an important capability for detecting terrestrial climate change from space-based radiometric measurements.

  20. Fear of darkness, the full moon and the nocturnal ecology of African lions.

    Directory of Open Access Journals (Sweden)

    Craig Packer

    Full Text Available Nocturnal carnivores are widely believed to have played an important role in human evolution, driving the need for night-time shelter, the control of fire and our innate fear of darkness. However, no empirical data are available on the effects of darkness on the risks of predation in humans. We performed an extensive analysis of predatory behavior across the lunar cycle on the largest dataset of lion attacks ever assembled and found that African lions are as sensitive to moonlight when hunting humans as when hunting herbivores and that lions are most dangerous to humans when the moon is faint or below the horizon. At night, people are most active between dusk and 10:00 pm, thus most lion attacks occur in the first weeks following the full moon (when the moon rises at least an hour after sunset. Consequently, the full moon is a reliable indicator of impending danger, perhaps helping to explain why the full moon has been the subject of so many myths and misconceptions.

  1. A Planetary Park system for the Moon and beyond

    Science.gov (United States)

    Cockell, Charles; Horneck, Gerda

    Deutschland International space exploration programs foresee the establishment of human settlements on the Moon and on Mars within the next decades, following a series of robotic precursor missions. These increasing robotic visits and eventual human exploration and settlements may have an environmental impact on scientifically important sites and sites of natural beauty in the form of contamination with microorganisms and spacecraft parts, or even pollution as a consequence of in situ resource use. This concern has already been reflected in the Moon Treaty, "The Agreement Governing the Activities of States on the Moon and Other Celestial Bodies" of the United Nations, which follows the Outer Space Treaty of the UN. However, so far, the Moon Treaty has not been ratified by any nation which engages in human space programs or has plans to do so. Planetary protection guidelines as formulated by the Committee on Space Research (COSPAR) are based on the Outer Space Treaty and follow the objectives: (i) to prevent contamination by terrestrial microorganisms if this might jeopardize scientific investi-gations of possible extraterrestrial life forms, and (ii) to protect the Earth from the potential hazard posed by extraterrestrial material brought back to the Earth. As a consequence, they group exploratory missions according to the type of mission and target body in five different categories, requesting specific means of cleaning and sterilization. However, the protection of extraterrestrial environments might also encompass ethical and other non-instrumental reasons. In order to allow intense scientific research and exploitation, and on the other hand to preserve regions of the Moon for research and use by future generations, we proposed the introduction of a planetary (or lunar) park system, which would protect areas of scientific, historic and intrinsic value under a common scheme. A similar placePlaceNamePlanetary PlaceTypePark system could be established on Mars well

  2. Memory for color reactivates color processing region.

    Science.gov (United States)

    Slotnick, Scott D

    2009-11-25

    Memory is thought to be constructive in nature, where features processed in different cortical regions are synthesized during retrieval. In an effort to support this constructive memory framework, the present functional magnetic resonance imaging study assessed whether memory for color reactivated color processing regions. During encoding, participants were presented with colored and gray abstract shapes. During retrieval, old and new shapes were presented in gray and participants responded 'old-colored', 'old-gray', or 'new'. Within color perception regions, color memory related activity was observed in the left fusiform gyrus, adjacent to the collateral sulcus. A retinotopic mapping analysis indicated this activity occurred within color processing region V8. The present feature specific evidence provides compelling support for a constructive view of memory.

  3. The Moon in Close-up A Next Generation Astronomer's Guide

    CERN Document Server

    Wilkinson, John

    2010-01-01

    Information collected by recent space probes sent to explore the Moon by the USA, the European Space Agency, Japan, China and India has changed our knowledge and understanding of the Moon, particularly its geology, since the Apollo missions. This book presents those findings in a way that will be welcomed by amateur astronomers, students, educators and anyone interested in the Moon. Enhanced by many colour photos, it combines newly acquired scientific understanding with detailed descriptions and labelled photographic maps of the lunar surface. Guided by observation methods explained in the book and 17 Study Areas presented and carefully explained in the last chapter, amateur astronomers can observe these features from Earth using telescopes and binoculars. Readers who consult the photographic maps will gain a better understanding about the Moon’s topography and geology. The book is rounded out by a helpful glossary.

  4. Apollo Lunar Sample Integration into Google Moon: A New Approach to Digitization

    Science.gov (United States)

    Dawson, Melissa D.; Todd, nancy S.; Lofgren, Gary E.

    2011-01-01

    The Google Moon Apollo Lunar Sample Data Integration project is part of a larger, LASER-funded 4-year lunar rock photo restoration project by NASA s Acquisition and Curation Office [1]. The objective of this project is to enhance the Apollo mission data already available on Google Moon with information about the lunar samples collected during the Apollo missions. To this end, we have combined rock sample data from various sources, including Curation databases, mission documentation and lunar sample catalogs, with newly available digital photography of rock samples to create a user-friendly, interactive tool for learning about the Apollo Moon samples

  5. LOW-FREQUENCY OBSERVATIONS OF THE MOON WITH THE MURCHISON WIDEFIELD ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    McKinley, B.; Briggs, F. [Research School of Astronomy and Astrophysics, Australian National University, Canberra (Australia); Kaplan, D. L. [Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI (United States); Greenhill, L. J.; Bernardi, G.; De Oliveira-Costa, A. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Bowman, J. D. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ (United States); Tingay, S. J.; Gaensler, B. M. [ARC Centre of Excellence for All-Sky Astrophysics (CAASTRO), School of Physics, The University of Sydney, Sydney, NSW (Australia); Oberoi, D. [National Centre for Radio Astrophysics, Tata Institute for Fundamental Research, Pune (India); Johnston-Hollitt, M. [School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington (New Zealand); Arcus, W.; Emrich, D. [International Centre for Radio Astronomy Research, Curtin University, Perth (Australia); Barnes, D. [Center for Astrophysics and Supercomputing, Swinburne University of Technology, Melbourne (Australia); Bunton, J. D. [CSIRO Astronomy and Space Science, Canberra (Australia); Cappallo, R. J.; Corey, B. E. [MIT Haystack Observatory, Westford, MA (United States); Deshpande, A. [Raman Research Institute, Bangalore (India); DeSouza, L. [Sydney Institute for Astronomy, School of Physics, University of Sydney, Sydney (Australia); Goeke, R. [MIT Kavli Institute for Astrophysics and Space Research, Cambridge, MA (United States); and others

    2013-01-01

    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system.

  6. How Apollo Flew to the Moon

    CERN Document Server

    Woods, W David

    2011-01-01

    This new and expanded edition of the bestselling How Apollo Flew to the Moon tells the exciting story of how the Apollo missions were conducted and follows a virtual flight to the Moon and back. New material includes: - the exploration of the lunar surface; - more illustrations; - more technical explanations and anecdotes. From launch to splashdown, hitch a ride in the incredible Apollo spaceships, the most sophisticated machines of their time. Explore each step of the journey and glimpse the enormous range of disciplines, techniques, and procedures the Apollo crews had to master. Although the tremendous technological accomplishments are well documented, the human dimension is not forgotten, and the book calls on the testimony of the people who were there at the time. A wealth of fascinating and accessible material is provided, including: the role of the powerful Saturn V; the reasoning  behind trajectories; the day-to-day concerns of human and spacecraft health; the triumphs and difficulties of working in...

  7. Asymmetrical access to color and location in visual working memory.

    Science.gov (United States)

    Rajsic, Jason; Wilson, Daryl E

    2014-10-01

    Models of visual working memory (VWM) have benefitted greatly from the use of the delayed-matching paradigm. However, in this task, the ability to recall a probed feature is confounded with the ability to maintain the proper binding between the feature that is to be reported and the feature (typically location) that is used to cue a particular item for report. Given that location is typically used as a cue-feature, we used the delayed-estimation paradigm to compare memory for location to memory for color, rotating which feature was used as a cue and which was reported. Our results revealed several novel findings: 1) the likelihood of reporting a probed object's feature was superior when reporting location with a color cue than when reporting color with a location cue; 2) location report errors were composed entirely of swap errors, with little to no random location reports; and 3) both colour and location reports greatly benefitted from the presence of nonprobed items at test. This last finding suggests that it is uncertainty over the bindings between locations and colors at memory retrieval that drive swap errors, not at encoding. We interpret our findings as consistent with a representational architecture that nests remembered object features within remembered locations.

  8. Thermal history, thermal state, and related tectonism of a moon of fission origin

    International Nuclear Information System (INIS)

    Binder, A.B.; Lange, M.A.

    1980-01-01

    Thermal history of an initially totally molten moon of fission origin properly accounts for (1) the mare basalt epoch, in terms of its duration, the depth of the source region, and degrees of partial melting which produced the magmas; (2) the present-day heat flow of 17--18 ergs cm -2 s -1 ; and (3) the current high temperatures of the lower mantle as deduced from magnetic and seismic data. The model moon has a radius decrease of 5.4 km (3.1 x 10 -3 R) during lunar history. This value is within the rather poorly defined limits for the maximum change of the lunar radius of 10 -3 -10 -2 R. The majority of the thermoelastic stresses produced by the cooling of the moon have been dissipated via aseismic creep in the upper parts of the lunar mantle, not via faulting activity. A lower limit of 10 24 P for the viscosity of the mantle of the moon (at subsolidus temperatures) is suggested, based on the apparent absence of solid state convection in the moon at any time during its history. This is 10 3 times larger than that for the terrestrial mantle. The energy derived from the thermoelastic stresses in the type A moonquake zone is orders of magnitude smaller than the available tidal energy. Hence the thermoelastic stresses are not an important energy source for the tidal moon-quakes. The thermoelastic stresses can easily supply the energy for the high-frequency tele-seismic moonquakes. The relative rarity of HFT's is explained by the long times (10 8 -10 9 years) needed to accumulate the energy required to initiate faulting in the predicted source regions. These regions are in the uppermost mantle (depths between 80 and 200 km), where tensional quakes can occur, and at 10-km depths in the crust, where compressional quakes can occur. The consistency between our thermal history model results and the corresponding characteristics now known for the moon add further support for the fission model for the origin of the moon

  9. Deep electromagnetic sounding of the moon with Lunokhod 2 data

    Science.gov (United States)

    Vanyan, L. L.; Yegorov, I. V.; Faynberg, E. B.

    1977-01-01

    Results of electromagnetic sounding distinguished an outer high resistance shell about 200 km thick in the moon's structure. A preliminary petrological interpretation of the moon's layers indicated their origin as a consequence of differentiation of the initial peridotite material. Upon melting, 20% to 40% of the material melts and is removed to form a high resistance basaltic shell underlain by a layer of spinal peridotites enriched in divalent iron oxides and having a reduced resistance.

  10. Impact landing ends SMART-1 mission to the Moon

    Science.gov (United States)

    2006-09-01

    SMART-1 scientists, engineers and space operations experts witnessed the final moments of the spacecraft’s life in the night between Saturday 2 and Sunday 3 September at ESA’s European Space Operations Centre (ESOC), in Darmstadt, Germany. The confirmation of the impact reached ESOC at 07:42:22 CEST (05:42:22 UT) when ESA’s New Norcia ground station in Australia suddenly lost radio contact with the spacecraft. SMART-1 ended its journey in the Lake of Excellence, in the point situated at 34.4º South latitude and 46.2º West longitude. The SMART-1 impact took place on the near side of the Moon, in a dark area just near the terminator (the line separating the day side from the night side), at a “grazing” angle of about one degree and a speed of about 2 kilometres per second. The impact time and location was planned to favour observations of the impact event from telescopes on Earth, and was achieved by a series of orbit manoeuvres and corrections performed during the course of summer 2006, the last of which was on 1 September. Professional and amateur ground observers all around the world - from South Africa to the Canary Islands, South America, the continental United States, Hawaii, and many other locations - were watching before and during the small SMART-1 impact, hoping to spot the faint impact flash and to obtain information about the impact dynamics and about the lunar surface excavated by the spacecraft. The quality of the data and images gathered from the ground observatories - a tribute to the end of the SMART-1 mission and a possible additional contribution to lunar science - will be assessed in the days to come. For the last 16 months and until its final orbits, SMART-1 has been studying the Moon, gathering data about the morphology and mineralogical composition of the surface in visible, infrared and X-ray light. “The legacy left by the huge wealth of SMART-1 data, to be analysed in the months and years to come, is a precious contribution to

  11. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground-Background Color Combinations.

    Science.gov (United States)

    Woods, Andy T; Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined.

  12. World-Wide Outreach through International Observe the Moon Night

    Science.gov (United States)

    Buxner, S.; Jones, A. P.; Bleacher, L.; Shaner, A. J.; Day, B. H.; Wenger, M.; Joseph, E.; Canipe, M.

    2016-12-01

    International Observe the Moon Night (InOMN) is an annual worldwide public event that encourages observation, appreciation, and understanding of our Moon and its connection to NASA planetary science and exploration. Everyone on Earth is invited to join the celebration by hosting or attending an InOMN event - and uniting on one day each year to look at and learn about the Moon together. Events are hosted by a variety of institutions including astronomy clubs, observatories, schools, and universities, museums, planetaria, schools, universities, observatories, parks, private businesses and private homes. Events hosts are supported with event flyers, information sheets, Moon maps for observing, activities to use during events, presentations, certificates of participation, and evaluation materials to be used by hosts. 2016 is the seventh year of worldwide participation in InOMN which will be held on October 8th. In the last six years, over 3,000 events were registered worldwide from almost 100 different countries and almost all 50 states and the District of Columbia in the United States. Evaluation of InOMN is conducted by an external evaluation group and includes analysis of event registrations, facilitator surveys, and visitor surveys. Evaluation results demonstrate that InOMN events are successful in raising visitors' awareness of lunar science and exploration, providing audiences with information about lunar science and exploration, and inspiring visitors to want to learn more about the Moon. Additionally, preliminary analysis of social media has shown that there is a virtual network of individuals connecting about InOMN. A large fraction of events have been held by institutions for more than one year showing sustained interest in participation. During this presentation, we will present data for all seven years of InOMN including lessons learned through supporting and evaluating a worldwide event. InOMN is sponsored by NASA's Lunar Reconnaissance Orbiter, NASA

  13. NEXT GENERATION OF TELESCOPES OR DYNAMICS REQUIRED TO DETERMINE IF EXO-MOONS HAVE PROGRADE OR RETROGRADE ORBITS

    International Nuclear Information System (INIS)

    Lewis, Karen M.; Fujii, Yuka

    2014-01-01

    We survey the methods proposed in the literature for detecting moons of extrasolar planets in terms of their ability to distinguish between prograde and retrograde moon orbits, an important tracer of the moon formation channel. We find that most moon detection methods, in particular, sensitive methods for detecting moons of transiting planets, cannot observationally distinguishing prograde and retrograde moon orbits. The prograde and retrograde cases can only be distinguished where the dynamical evolution of the orbit due to, e.g., three body effects is detectable, where one of the two cases is dynamically unstable, or where new observational facilities, which can implement a technique capable of differentiating the two cases, come online. In particular, directly imaged planets are promising targets because repeated spectral and photometric measurements, which are required to determine moon orbit direction, could also be conducted with the primary interest of characterizing the planet itself

  14. General principles in motion vision: color blindness of object motion depends on pattern velocity in honeybee and goldfish.

    Science.gov (United States)

    Stojcev, Maja; Radtke, Nils; D'Amaro, Daniele; Dyer, Adrian G; Neumeyer, Christa

    2011-07-01

    Visual systems can undergo striking adaptations to specific visual environments during evolution, but they can also be very "conservative." This seems to be the case in motion vision, which is surprisingly similar in species as distant as honeybee and goldfish. In both visual systems, motion vision measured with the optomotor response is color blind and mediated by one photoreceptor type only. Here, we ask whether this is also the case if the moving stimulus is restricted to a small part of the visual field, and test what influence velocity may have on chromatic motion perception. Honeybees were trained to discriminate between clockwise- and counterclockwise-rotating sector disks. Six types of disk stimuli differing in green receptor contrast were tested using three different rotational velocities. When green receptor contrast was at a minimum, bees were able to discriminate rotation directions with all colored disks at slow velocities of 6 and 12 Hz contrast frequency but not with a relatively high velocity of 24 Hz. In the goldfish experiment, the animals were trained to detect a moving red or blue disk presented in a green surround. Discrimination ability between this stimulus and a homogenous green background was poor when the M-cone type was not or only slightly modulated considering high stimulus velocity (7 cm/s). However, discrimination was improved with slower stimulus velocities (4 and 2 cm/s). These behavioral results indicate that there is potentially an object motion system in both honeybee and goldfish, which is able to incorporate color information at relatively low velocities but is color blind with higher speed. We thus propose that both honeybees and goldfish have multiple subsystems of object motion, which include achromatic as well as chromatic processing.

  15. Spinning Up Interest: Classroom Demonstrations of Rotating Fluid Dynamics

    Science.gov (United States)

    Aurnou, J.

    2005-12-01

    The complex relationship between rotation and its effect on fluid motions presents some of the most difficult and vexing concepts for both undergraduate and graduate level students to learn. We have found that student comprehension is greatly increased by the presentation of in-class fluid mechanics experiments. A relatively inexpensive experimental set-up consists of the following components: a record player, a wireless camera placed in the rotating frame, a tank of fluid, and food coloring. At my poster, I will use this set-up to carry out demonstrations that illustrate the Taylor-Proudman theorem, flow within the Ekman layer, columnar convection, and flow around high and low pressure centers. By sending the output of the wireless camera through an LCD projection system, such demonstrations can be carried out even for classes in large lecture halls.

  16. Colorism/Neo-Colorism

    Science.gov (United States)

    Snell, Joel

    2017-01-01

    There are numerous aspects to being non-Caucasian that may not be known by Whites. Persons of color suggest folks who are African, South Americans, Native Americans, Biracial, Asians and others. The question is what do these individuals feel relative to their color and facial characteristics. Eugene Robinson suggest that the future favorable color…

  17. Habitability in the Solar System and on Extrasolar Planets and Moons

    Science.gov (United States)

    McKay, Christopher P.

    2015-01-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  18. Moon Teachings for the Masses at the U.Mass. Sunwheel and around the World

    Science.gov (United States)

    Young, J. S.

    2004-12-01

    With the culmination of the 18.6 year cycle of the Moon in 2006, the major lunar standstill, we are afforded the unique opportunity to teach the public about the monthly, annual, and 18.6-year wanderings of the Moon. The 18.6 year cycle is caused by the precession of the plane of the lunar orbit, while this orbit maintains a 5 degree tilt relative to the ecliptic. At the peak of this cycle, the Moon's declination swings from -28.8 to +28.8 degrees each month. And even though we are more than 1 year away from the peak of the 18.6-year cycle, already the Moon's declination ranges each month between -28 and +28 degrees. What this means is that each month for the years 2005-2007, the Moon can be seen to rise and set more northerly and also more southerly than the solar extremes, and will transit monthly with altitudes which are higher in the sky than the summer Sun and lower in the sky than the winter Sun. The U.Mass. Sunwheel is a stone circle calendar constructed in 1997 on the campus of U.Mass. Amherst, with 8'-10' tall stones marking the cardinal directions, the solstice sunrise and sunset directions, and the northernmost and southernmost moonrise and moonset directions. Over 13,000 people have visited the Sunwheel since its construction, and over 5,000 have attended the seasonal sunrise and sunset gatherings which I host. Already, late in 2004, I have begun showning the public the Moon at it's extremes, and there will be monthly opportunities over the next several years for all of us to notice the very high or very low transiting Moon. Finally, Moon teachings from calendar sites at Callanish, Chaco Canyon, and Stonehenge will be presented.

  19. Main Difference with Formed Process of the Moon and Earth Minerals and Fluids

    Science.gov (United States)

    Kato, T.; Miura, Y.

    2018-04-01

    Minerals show large and global distribution on Earth system, but small and local formation on the Moon. Fluid water is formed as same size and distribution on Earth and the Moon based on their body-systems.

  20. Luminance contours can gate afterimage colors and "real" colors.

    Science.gov (United States)

    Anstis, Stuart; Vergeer, Mark; Van Lier, Rob

    2012-09-06

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The color of the afterimage depends on two adapting colors, those both inside and outside the test. Here, we further explore this phenomenon and show that the color-contour interactions shown for afterimage colors also occur for "real" colors. We argue that similar mechanisms apply for both types of stimulation.

  1. Asymmetrical color filling-in from the nasal to the temporal side of the blind spot

    Science.gov (United States)

    Li, Hui; Luo, Junxiang; Lu, Yiliang; Kan, Janis; Spillmann, Lothar; Wang, Wei

    2014-01-01

    The physiological blind spot, corresponding to the optic disk in the retina, is a relatively large (6 × 8°) area in the visual field that receives no retinal input. However, we rarely notice the existence of it in daily life. This is because the blind spot fills in with the brightness, color, texture, and motion of the surround. The study of filling-in enables us to better understand the creative nature of the visual system, which generates perceptual information where there is none. Is there any retinotopic rule in the color filling-in of the blind spot? To find out, we used mono-colored and bi-colored annuli hugging the boundary of the blind spot. We found that mono-colored annuli filled in the blind spot uniformly. By contrast, bi-colored annuli, where one half had a given color, while the other half had a different one, filled in the blind spot asymmetrically. Specifically, the color surrounding the nasal half typically filled in about 75% of the blind spot area, whereas the color surrounding the temporal half filled in only about 25%. This asymmetry was dependent on the relative size of the half rings, but not the two colors used, and was absent when the bi-colored annulus was rotated by 90°. Here, the two colors on the upper and lower sides of the blind spot filled in the enclosed area equally. These results suggest that the strength of filling-in decreases with distance from the fovea consistent with the decrease of the cortical magnification factor. PMID:25100977

  2. Is the Moon Illusion a Celestial Ames Demonstration?

    Science.gov (United States)

    Brecher, Kenneth

    2010-01-01

    To most naked eye observers, the Moon appears larger when seen near the horizon than it does when seen near the zenith. This "Moon Illusion” has been reported from as early as the fourth century BC and has been the subject of hundreds of papers and two books. Its explanation does not lie in the realm of physics (atmospheric refraction) or astronomy (eccentric lunar orbit) but, rather, in the realm of visual perception. Theories for the cause of the effect abound but, at present, there is no universally accepted explanation. Because the effect can be easily observed in many locations and during the course of an academic year, the moon illusion can provide a nice astronomical example that involves both direct observations and theoretical analysis. As part of the NSF funded "Project LITE: Light Inquiry Through Experiments", we have been developing inexpensive experiments and demonstrations that can be done at home. One of these is a miniature version of the classic "Ames Room". The life size version was originally developed by Adelbert Ames, Jr. and can be seen in many science museums. Our "digital” Ames Room has been designed to be printed on heavy paper using an inexpensive inkjet printer from a PDF file that is posted on the Project LITE web site http://lite.bu.edu and then cut and folded to make the room. When viewed through one wall using a commonly available door viewer, it dramatically demonstrates how the eye and brain system assesses the relative size of objects by making comparisons with the surrounding environment in which the objects are placed. In this presentation we will discuss some insights that the Ames Room provides that may offer clues to the correct explanation for the Moon Illusion. Project LITE is supported by the NSF through DUE Grant # 0715975.

  3. Planetary Drilling and Resources at the Moon and Mars

    Science.gov (United States)

    George, Jeffrey A.

    2012-01-01

    Drilling on the Moon and Mars is an important capability for both scientific and resource exploration. The unique requirements of spaceflight and planetary environments drive drills to different design approaches than established terrestrial technologies. A partnership between NASA and Baker Hughes Inc. developed a novel approach for a dry rotary coring wireline drill capable of acquiring continuous core samples at multi-meter depths for low power and mass. The 8.5 kg Bottom Hole Assembly operated at 100 We and without need for traditional drilling mud or pipe. The technology was field tested in the Canadian Arctic in sandstone, ice and frozen gumbo. Planetary resources could play an important role in future space exploration. Lunar regolith contains oxygen and metals, and water ice has recently been confirmed in a shadowed crater at the Moon.s south pole. Mars possesses a CO2 atmosphere, frozen water ice at the poles, and indications of subsurface aquifers. Such resources could provide water, oxygen and propellants that could greatly simplify the cost and complexity of exploration and survival. NASA/JSC/EP/JAG

  4. The Kaguya Lunar Atlas The Moon in High Resolution

    CERN Document Server

    Shirao, Motomaro

    2011-01-01

    In late 2007 the Japan Aerospace Exploration Agency placed the Kaguya/Selene spacecraft in orbit around the Moon. Like previous lunar orbiters, Kaguya carried scientific instruments to probe the Moon’s surface and interior. But it also had the first high-definition television camera (HDTV) sent to the Moon. Sponsored by the Japanese NHK TV network, the HDTV has amazed both scientists and the public with its magnificent views of the lunar surface. What makes the images much more engaging than standard vertical-view lunar photographs is that they were taken looking obliquely along the flight path. Thus, they show the Moon as it would be seen by an astronaut looking through a porthole window while orbiting only 100 km above the lunar surface. This is the view we all would wish to have, but are never likely to, except vicariously through the awe-inspiring Kaguya HDTV images. The remarkable Kaguya/Selene HDTV images are used here to create a new type of lunar atlas. Because of the unique perspective of the imag...

  5. Using Single Colors and Color Pairs to Communicate Basic Tastes II: Foreground–Background Color Combinations

    Science.gov (United States)

    Marmolejo-Ramos, Fernando; Velasco, Carlos; Spence, Charles

    2016-01-01

    People associate basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., pink or red, green or yellow, black or purple, and white or blue). In the present study, we investigated whether a color bordered by another color (either the same or different) would give rise to stronger taste associations relative to a single patch of color. We replicate previous findings, highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. On occasion, color pairs were found to communicate taste expectations more consistently than were single color patches. Furthermore, and in contrast to a recent study in which the color pairs were shown side-by-side, participants took no longer to match the color pairs with tastes than the single colors (they had taken twice as long to respond to the color pairs in the previous study). Possible reasons for these results are discussed, and potential applications for the results, and for the testing methodology developed, are outlined. PMID:27708752

  6. Quasar Host Galaxies/Neptune Rotation/Galaxy Building Blocks/Hubble Deep Field/Saturn Storm

    Science.gov (United States)

    2001-01-01

    Computerized animations simulate a quasar erupting in the core of a normal spiral galaxy, the collision of two interacting galaxies, and the evolution of the universe. Hubble Space Telescope (HST) images show six quasars' host galaxies (including spirals, ellipticals, and colliding galaxies) and six clumps of galaxies approximately 11 billion light years away. A false color time lapse movie of Neptune displays the planet's 16-hour rotation, and the evolution of a storm on Saturn is seen though a video of the planet's rotation. A zoom sequence starts with a ground-based image of the constellation Ursa major and ends with the Hubble Deep Field through progressively narrower and deeper views.

  7. Mr.Seah Moon Ming Leadership & Management

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Life and Work Philosophy Seah Moon Ming considers life a continuous journey of learning,adaptation and attainment of goals.He believes that as long as there are changes,you will need to learn - to learn to adapt and to play a useful role in a dynamic and ever-changing world.

  8. Color adaptation induced from linguistic description of color.

    Directory of Open Access Journals (Sweden)

    Liling Zheng

    Full Text Available Recent theories propose that language comprehension can influence perception at the low level of perceptual system. Here, we used an adaptation paradigm to test whether processing language caused color adaptation in the visual system. After prolonged exposure to a color linguistic context, which depicted red, green, or non-specific color scenes, participants immediately performed a color detection task, indicating whether they saw a green color square in the middle of a white screen or not. We found that participants were more likely to perceive the green color square after listening to discourses denoting red compared to discourses denoting green or conveying non-specific color information, revealing that language comprehension caused an adaptation aftereffect at the perceptual level. Therefore, semantic representation of color may have a common neural substrate with color perception. These results are in line with the simulation view of embodied language comprehension theory, which predicts that processing language reactivates the sensorimotor systems that are engaged during real experience.

  9. Spinor Slow Light and Two-Color Qubits

    Science.gov (United States)

    Yu, Ite; Lee, Meng-Jung; Ruseckas, Julius; Lee, Chin-Yuan; Kudriasov, Viaceslav; Chang, Kao-Fang; Cho, Hung-Wen; Juzeliunas, Gediminas; Yu, Ite A.

    2015-05-01

    We report the first experimental demonstration of two-component or spinor slow light (SSL) using a double tripod (DT) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by six light fields. The oscillation due to the interaction between the two components was observed. SSL can be used to achieve high conversion efficiencies in the sum frequency generation and is a better method than the widely-used double- Λ scheme. On the basis of the stored light, our data showed that the DT scheme behaves like the two outcomes of an interferometer enabling precision measurements of frequency detuning. Furthermore, the single-photon SSL can be considered as the qubit with the superposition state of two frequency modes or, simply, as the two-color qubit. We experimentally demonstrated a possible application of the DT scheme as quantum memory/rotator for the two-color qubit. This work opens up a new direction in the EIT/slow light research. yu@phys.nthu.edu.tw

  10. Polymerization of Building Blocks of Life on Europa and Other Icy Moons.

    Science.gov (United States)

    Kimura, Jun; Kitadai, Norio

    2015-06-01

    The outer Solar System may provide a potential habitat for extraterrestrial life. Remote sensing data from the Galileo spacecraft suggest that the jovian icy moons--Europa, Ganymede, and possibly Callisto--may harbor liquid water oceans underneath their icy crusts. Although compositional information required for the discussion of habitability is limited because of significantly restricted observation data, organic molecules are ubiquitous in the Universe. Recently, in situ spacecraft measurements and experiments suggest that amino acids can be formed abiotically on interstellar ices and comets. These amino acids could be continuously delivered by meteorite or comet impacts to icy moons. Here, we show that polymerization of organic monomers, in particular amino acids and nucleotides, could proceed spontaneously in the cold environment of icy moons, in particular the jovian icy moon Europa as a typical example, based on thermodynamic calculations, though kinetics of formation are not addressed. Observed surface temperature on Europa is 120 and 80 K in the equatorial region and polar region, respectively. At such low temperatures, Gibbs energies of polymerization become negative, and the estimated thermal structure of the icy crust should contain a shallow region (i.e., at a depth of only a few kilometers) favorable for polymerization. Investigation of the possibility of organic monomer polymerization on icy moons could provide good constraints on the origin and early evolution of extraterrestrial life.

  11. Simulation of the cosmic ray Moon shadow in the geomagnetic field

    International Nuclear Information System (INIS)

    Di Sciascio, Giuseppe; Iuppa, Roberto

    2011-01-01

    An accurate Monte Carlo simulation of the deficit of primary cosmic rays in the direction of the Moon has been developed to interpret the observations reported in the TeV energy region until now. Primary particles are propagated through the geomagnetic field in the Earth-Moon system. The algorithm is described and the contributions of the detector resolution and of the geomagnetic field are disentangled.

  12. Shift Colors

    Science.gov (United States)

    Publications & News Shift Colors Pages default Sign In NPC Logo Banner : Shift Colors Search Navy Personnel Command > Reference Library > Publications & News > Shift Colors Top Link Bar Navy Personnel Library Expand Reference Library Quick Launch Shift Colors Shift Colors Archives Mailing Address How to

  13. Color- and motion-specific units in the tectum opticum of goldfish.

    Science.gov (United States)

    Gruber, Morna; Behrend, Konstantin; Neumeyer, Christa

    2016-01-05

    Extracellular recordings were performed from 69 units at different depths between 50 and [Formula: see text]m below the surface of tectum opticum in goldfish. Using large field stimuli (86[Formula: see text] visual angle) of 21 colored HKS-papers we were able to record from 54 color-sensitive units. The colored papers were presented for 5[Formula: see text]s each. They were arranged in the sequence of the color circle in humans separated by gray of medium brightness. We found 22 units with best responses between orange, red and pink. About 12 of these red-sensitive units were of the opponent "red-ON/blue-green-OFF" type as found in retinal bipolar- and ganglion cells as well. Most of them were also activated or inhibited by black and/or white. Some units responded specifically to red either with activation or inhibition. 18 units were sensitive to blue and/or green, 10 of them to both colors and most of them to black as well. They were inhibited by red, and belonged to the opponent "blue-green-ON/red-OFF" type. Other units responded more selectively either to blue, to green or to purple. Two units were selectively sensitive to yellow. A total of 15 units were sensitive to motion, stimulated by an excentrically rotating black and white random dot pattern. Activity of these units was also large when a red-green random dot pattern of high L-cone contrast was used. Activity dropped to zero when the red-green pattern did not modulate the L-cones. Neither of these motion selective units responded to any color. The results directly show color-blindness of motion vision, and confirm the hypothesis of separate and parallel processing of "color" and "motion".

  14. Flow visualization around a rotating body in a wind tunnel

    Science.gov (United States)

    Hiraki, K.; Zaitsu, D.; Yanaga, Y.; Kleine, H.

    2017-02-01

    The rotational behavior of capsule-shaped models is investigated in the transonic wind tunnel of JAXA. A special support is developed to allow the model to rotate around the pitch, yaw and roll axes. This 3-DOF free rotational mounting apparatus achieves the least frictional torque from the support and the instruments. Two types of capsule models are prepared, one is drag type (SPH model) and the other is lift type (HTV-R model). The developed mounting apparatus is used in the wind tunnel tests with these capsule models. In a flow of Mach 0.9, the SPH model exhibits oscillations in pitch and yaw, and it rolls half a turn during the test. Similarly, the HTV-R model exhibits pitch and yaw oscillations in a flow of Mach 0.5. Moreover, it rolls multiple times during the test. In order to investigate the flow field around the capsule, the combined technique of color schlieren and surface tufts is applied. This visualization clearly shows the flow reattachment on the back surface of a capsule, which is suspected to induce the rapid rolling motion.

  15. Natural Colorants: Food Colorants from Natural Sources.

    Science.gov (United States)

    Sigurdson, Gregory T; Tang, Peipei; Giusti, M Mónica

    2017-02-28

    The color of food is often associated with the flavor, safety, and nutritional value of the product. Synthetic food colorants have been used because of their high stability and low cost. However, consumer perception and demand have driven the replacement of synthetic colorants with naturally derived alternatives. Natural pigment applications can be limited by lower stability, weaker tinctorial strength, interactions with food ingredients, and inability to match desired hues. Therefore, no single naturally derived colorant can serve as a universal alternative for a specified synthetic colorant in all applications. This review summarizes major environmental and biological sources for natural colorants as well as nature-identical counterparts. Chemical characteristics of prevalent pigments, including anthocyanins, carotenoids, betalains, and chlorophylls, are described. The possible applications and hues (warm, cool, and achromatic) of currently used natural pigments, such as anthocyanins as red and blue colorants, and possible future alternatives, such as purple violacein and red pyranoanthocyanins, are also discussed.

  16. Analyzing vortex breakdown flow structures by assignment of colors to tensor invariants.

    Science.gov (United States)

    Rütten, Markus; Chong, Min S

    2006-01-01

    Topological methods are often used to describe flow structures in fluid dynamics and topological flow field analysis usually relies on the invariants of the associated tensor fields. A visual impression of the local properties of tensor fields is often complex and the search of a suitable technique for achieving this is an ongoing topic in visualization. This paper introduces and assesses a method of representing the topological properties of tensor fields and their respective flow patterns with the use of colors. First, a tensor norm is introduced, which preserves the properties of the tensor and assigns the tensor invariants to values of the RGB color space. Secondly, the RGB colors of the tensor invariants are transferred to corresponding hue values as an alternative color representation. The vectorial tensor invariants field is reduced to a scalar hue field and visualization of iso-surfaces of this hue value field allows us to identify locations with equivalent flow topology. Additionally highlighting by the maximum of the eigenvalue difference field reflects the magnitude of the structural change of the flow. The method is applied on a vortex breakdown flow structure inside a cylinder with a rotating lid.

  17. The Moon Zoo citizen science project: Preliminary results for the Apollo 17 landing site

    OpenAIRE

    Bugiolacchi, Roberto; Bamford, Steven; Tar, Paul; Thacker, Neil; Crawford, Ian A.; Joy, Katherine H.; Grindrod, Peter M.; Lintott, Chris

    2016-01-01

    Moon Zoo is a citizen science project that utilises internet crowd-sourcing techniques. Moon Zoo users are asked to review high spatial resolution images from the Lunar Reconnaissance Orbiter Camera (LROC), onboard NASA’s LRO spacecraft, and perform characterisation such as measuring impact crater sizes and identify morphological ‘features of interest’. The tasks are designed to address issues in lunar science and to aid future exploration of the Moon. We have tested various methodologies and...

  18. Resolved Hapke parameter maps of the Moon

    Science.gov (United States)

    Sato, H.; Robinson, M. S.; Hapke, B.; Denevi, B. W.; Boyd, A. K.

    2014-08-01

    We derived spatially resolved near-global Hapke photometric parameter maps of the Moon from 21 months of Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC) multispectral observations using a novel "tile-by-tile method" (1° latitude by 1° longitude bins). The derived six parameters (w,b,c,BS0,hS, andθ¯p) for each tile were used to normalize the observed reflectance (standard angles i = g = 60°, e = 0° instead of the traditional angles i = g = 30°, e = 0°) within each tile, resulting in accurate normalization optimized for the local photometric response. Each pixel in the seven-color near-global mosaic (70°S to 70°N and 0°E to 360°E) was computed by the median of normalized reflectance from large numbers of repeated observations (UV: ˜50 and visible: ˜126 on average). The derived mosaic exhibits no significant artifacts with latitude or along the tile boundaries, demonstrating the quality of the normalization procedure. The derived Hapke parameter maps reveal regional photometric response variations across the lunar surface. The b, c (Henyey-Greenstein double-lobed phase function parameters) maps demonstrate decreased backscattering in the maria relative to the highlands (except 321 nm band), probably due to the higher content of both SMFe (submicron iron) and ilmenite in the interiors of back scattering agglutinates in the maria. The hS (angular width of shadow hiding opposition effect) map exhibits relatively lower values in the maria than the highlands and slightly higher values for immature highland crater ejecta, possibly related to the variation in a grain size distribution of regolith.

  19. Colors, colored overlays, and reading skills

    Directory of Open Access Journals (Sweden)

    Arcangelo eUccula

    2014-07-01

    Full Text Available In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e. who experience eyestrain and/or visual distortions – e.g. color, shape or movement illusions – while reading. This condition would interest the 12-14% of the general population and up to the 46% of the dyslexic population. Thus, colored overlays have been largely employed as a remedy for some aspects of the difficulties in reading experienced by dyslexic individuals, as fluency and speed. Despite the wide use of colored overlays, how they exert their effects has not been made clear yet. Also, according to some researchers, the results supporting the efficacy of colored overlays as a tool for helping readers are at least controversial. Furthermore, the very nature of the Meares-Irlen syndrome has been questioned. Here we provide a concise, critical review of the literature.

  20. The Gravitation of the Moon Plays Pivotal Roles in the Occurrence of the Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Ryotaro Wake

    2008-01-01

    Full Text Available Acute myocardial infarction (AMI is a social burden. However, being able to predict AMI could lead to prevention. A previous study showed only the relation between the lunar phase and the occurrence of AMI, but the period it takes for the moon to orbit around the earth and the period of the lunar phase differ. This study investigated the effect of the gravitation of the moon on AMI. Data was comprised of 1369 consecutive patients with first AMI at 5 hospitals from October, 1984 to December, 1997. The universal gravitation of the moon was calculated and compared to the earth onset time of AMI. Universal gravitation of the moon was derived by G*m/d2 (G: universal gravitation constant, m: the mass of the moon, d: the distance between the center of the moon and the center of the earth. The relationship between m/d2 and the cases of AMI was determined. There was an increase in cases, when there is a distance of more than 399864 km from the center of the earth to the center of the moon. The gravitation of more than 399864 km was determined to be weaker gravitation. It is confirmed that the number of AMI patients significantly increases at weaker gravitation periods in this multicenter trial. In conclusion, these results suggest that the gravitation of the moon may have an influence on the occurrence of AMI.

  1. Multi-color lightcurve observation of the asteroid (163249) 2002 GT

    Science.gov (United States)

    Oshima, M.; Abe, S.

    2014-07-01

    NASA's Deep Impact/EPOXI spacecraft plans to encounter the asteroid (163249) 2002 GT, classified as a PHA (Potentially Hazardous Asteroid), on January 4, 2020. However, the taxonomic type and spin state of 2002 GT remain to be determined. We have carried out ground-based multi-color (B-V-R-I) lightcurve observations taking advantage of the 2002 GT Characterization Campaign by NASA. Multi-color lightcurve measurements allow us to estimate the rotation period and obtain strong constraints on the shape and pole orientation. Here we found that the rotation period of 2002 GT is estimated to be 3.7248 ± 0.1664 h. In mid-2013, 2002 GT passed at 0.015 au from the Earth, resulting an exceptional opportunity for ground-based characterization. Using the 0.81-m telescope of the Tenagra Observatory (110°52'44.8''W, +31°27'44.4''N, 1312 m) in Arizona, USA, and the Johnson-Cousins BVRI filters, we have found lightcurves of 2002 GT (Figure). The Tenagra II 0.81-m telescope is used for research of the Hayabusa2 target Asteroid (162173) 1999 JU_3. The lightcurves (relative magnitude) show that the rotation period of 2002 GT, the target of NASA's Deep Impact/EPOXI spacecraft, is estimated to be 3.7248 ± 0.1664 hr. On June 9, 2013, we had 7 hours of ground-based observations on 2002 GT from 4:00 to 11:00 UTC. The number of comparison stars for differential photometry was 34. Because of tracking the fast-moving asteroid, it was necessary to have the same comparison star among the fields of vision. We have also obtained absolute photometry of 2002 GT on June 13, 2013.

  2. Precision of Synesthetic Color Matching Resembles That for Recollected Colors Rather than Physical Colors

    Science.gov (United States)

    Arnold, Derek H.; Wegener, Signy V.; Brown, Francesca; Mattingley, Jason B.

    2012-01-01

    Grapheme-color synesthesia is an atypical condition in which individuals experience sensations of color when reading printed graphemes such as letters and digits. For some grapheme-color synesthetes, seeing a printed grapheme triggers a sensation of color, but "hearing" the name of a grapheme does not. This dissociation allowed us to…

  3. Can Plants Grow on Mars and the Moon: A Growth Experiment on Mars and Moon Soil Simulants

    NARCIS (Netherlands)

    Wamelink, G.W.W.; Frissel, J.Y.; Krijnen, W.H.J.; Verwoert, M.R.; Goedhart, P.W.

    2014-01-01

    When humans will settle on the moon or Mars they will have to eat there. Food may be flown in. An alternative could be to cultivate plants at the site itself, preferably in native soils. We report on the first large-scale controlled experiment to investigate the possibility of growing plants in Mars

  4. Effects of rotation on crystal settling in a terrestrial magma ocean: Spherical shell model

    Science.gov (United States)

    Maas, C.; Hansen, U.

    2015-12-01

    Like Moon or Mars, Earth experienced one or several deep magma ocean periods of globalextent in a later stage of its accretion. The crystallization of these magma oceans is of keyimportance for the chemical structure of Earth, the mantle evolution and the onset of platetectonics. Due to the fast rotation of early Earth and the small magma viscosity, rotationprobably had a profound effect on differentiation processes. For example, Matyska et al.[1994] propose that the distribution of heterogeneities like the two large low shear velocityprovinces (LLSVP) at the core mantle boundary is influenced by rotational dynamicsof early Earth. Further Garnero and McNamara [2008] suggest that the LLSVPs arevery long-living anomalies, probably reaching back to the time of differentiation andsolidification of Earth. However, nearly all previous studies neglect the effects of rotation.In our previous work using a Cartesian model, a strong influence of rotation as well asof latitude on the differentiation processes in an early magma ocean was revealed. Weshowed that crystal settling in an early stage of magma ocean crystallization cruciallydepends on latitude as well as on rotational strength and crystal density.In order to overcome the restrictions as to the geometry of the Cartesian model, we arecurrently developing a spherical model to simulate crystal settling in a rotating sphericalshell. This model will allow us not only to investigate crystal settling at the poles andthe equator, but also at latitudes in-between these regions, as well as the migration ofcrystals between poles and equator. ReferencesE. J. Garnero and A. K. McNamara. Structure and dynamics of earth's lower mantle.Science, 320(5876):626-628, 2008.C. Matyska, J. Moser, and D. A. Yuen. The potential influence of radiative heat transferon the formation of megaplumes in the lower mantle. Earth and Planetary ScienceLetters, 125(1):255-266, 1994.

  5. Integrated Oil spill detection and forecasting using MOON real time data

    OpenAIRE

    De Dominicis, M.; Pinardi, N.; Coppini, G.; Tonani, M.; Guarnieri, A.; Zodiatis, G.; Lardner, R.; Santoleri, R.

    2009-01-01

    MOON (Mediterranean Operational Oceanography Network) is an operational distributed system ready to provide quality controlled and timely marine observations (in situ and satellite) and environmental analyses and predictions for management of oil spill accidents. MOON operational systems are based upon the real time functioning of an integrated system composed of the Real Time Observing system, the regional, sub-regional and coastal forecasting systems and a products dissemination system. All...

  6. Origin of the Earth–Moon system

    Indian Academy of Sciences (India)

    However, during the course of time some incon- sistencies of the impact hypothesis have surfaced. It is not the ... At the same time, there are some important differences between the composition of the Earth and that of ... primitive carbonaceous chondrites but to a much lesser degree. At first glance, depletion of the Moon in ...

  7. Asian-American deaths near the Harvest Moon Festival.

    Science.gov (United States)

    Smith, Gary

    2004-01-01

    Reexamine the claim that elderly Chinese-American women are able to prolong their lives until after the celebration of the Harvest Moon Festival. See if independent 1985 to 2000 data for Chinese-, Korean-, and Vietnamese-Americans replicate results that were reported using 1960 to 1984 data for Chinese-Americans. The original 1960 to 1984 data do not support the death-postponement theory unless deaths that occur on the festival day are classified as having occurred after the festival. The new data do not support the theory, no matter how deaths on the festival day are classified. These data do not support the hypothesis that elderly Chinese-, Korean-, or Vietnamese-American women are able to prolong their lives until after the celebration of the Harvest Moon Festival.

  8. Galilean Moons, Kepler's Third Law, and the Mass of Jupiter

    Science.gov (United States)

    Bates, Alan

    2013-01-01

    Simulations of physical systems are widely available online, with no cost, and are ready to be used in our classrooms. Such simulations offer an accessible tool that can be used for a range of interactive learning activities. The Jovian Moons Apple allows the user to track the position of Jupiter's four Galilean moons with a variety of…

  9. Color Analysis

    Science.gov (United States)

    Wrolstad, Ronald E.; Smith, Daniel E.

    Color, flavor, and texture are the three principal quality attributes that determine food acceptance, and color has a far greater influence on our judgment than most of us appreciate. We use color to determine if a banana is at our preferred ripeness level, and a discolored meat product can warn us that the product may be spoiled. The marketing departments of our food corporations know that, for their customers, the color must be "right." The University of California Davis scorecard for wine quality designates four points out of 20, or 20% of the total score, for color and appearance (1). Food scientists who establish quality control specifications for their product are very aware of the importance of color and appearance. While subjective visual assessment and use of visual color standards are still used in the food industry, instrumental color measurements are extensively employed. Objective measurement of color is desirable for both research and industrial applications, and the ruggedness, stability, and ease of use of today's color measurement instruments have resulted in their widespread adoption.

  10. A pilot study of three dimensional color CT images of brain diseases to improve informed consent

    International Nuclear Information System (INIS)

    Tanizaki, Yoshio; Akiyama, Takenori; Hiraga, Kenji; Akaji, Kazunori

    2005-01-01

    We have described brain diseases to patients and their family using monochrome CT images. It is thought that patients have difficulties in giving their consent to our conventional explanation because their understanding of brain diseases is based on three dimensional and color images, however, standard CT images are two dimensional and gray scale images. We have been trying to use three dimensional color CT images to improve the typical patient's comprehension of brain diseases. We also try to simulate surgery using these images. Multi-slice CT accumulates precise isotropic voxel data within a half minute. These two dimensional and monochrome data are converted to three dimensional color CT images by 3D workstation. Three dimensional color CT images of each brain structures (e.g. scalp, skull, brain, ventricles and lesions) are created separately. Then, selected structures are fused together for different purposes. These images are able to rotate around any axis. Because the methods to generate three-dimensional color images have not established, we neurosurgeons must create these images. In particular, when an operation is required, the surgeon should create the images. In this paper, we demonstrate how three-dimensional color CT images can improve informed consent. (author)

  11. Composite Resin Dosimeters: A New Concept and Design for a Fibrous Color Dosimeter.

    Science.gov (United States)

    Kinashi, Kenji; Iwata, Takato; Tsuchida, Hayato; Sakai, Wataru; Tsutsumi, Naoto

    2018-04-11

    Polystyrene (PS)-based composite microfibers combined with a photochromic spiropyran dye, 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (6-nitro BIPS), and a photostimulable phosphor, europium-doped barium fluorochloride (BaFCl:Eu 2+ ), were developed for the detection of X-ray exposure doses on the order of approximately 1 Gy. To produce the PS-based composite microfibers, we employed a forcespinning method that embeds a high concentration of phosphor in PS in a safe, inexpensive, and simple procedure. On the basis of the optimization of the forcespinning process, fibrous color dosimeters with a high radiation dose sensitivity of 1.2-4.4 Gy were fabricated. The color of the dosimeters was found to transition from white to blue in response to X-ray exposure. The optimized fibrous color dosimeter, made from a solution having a PS/6-nitro BIPS/BaFCl:Eu 2+ /C 2 Cl 4 ratio of 7.0/0.21/28.0/28.0 (wt %) and produced with a 290 mm distance between the needle and collectors, a 0.34 mm 23 G needle nozzle, and a spinneret rotational rate of 3000 rpm, exhibited sensitivity to a dose as low as 1.2 Gy. To realize practical applications, we manufactured the optimized fibrous color dosimeter into a clothlike color dosimeter. The clothlike color dosimeter was mounted on a stuffed bear, and its coloring behavior was demonstrated upon X-ray exposure. After exposure with X-ray, a blue colored and shaped in the form of the letter "[Formula: see text]" clearly appeared on the surface of the clothlike color dosimeter. The proposed fibrous color dosimeters having excellent workability will be an unprecedented dosimetry and contributed to all industries utilizing radiation dosimeters. This new fibrous "composite resin dosimeter" should be able to replace traditional, wearable, and individual radiation dose monitoring devices, such as film badges.

  12. Compositional evidence for an impact origin of the Moon's Procellarum basin

    Science.gov (United States)

    Nakamura, Ryosuke; Yamamoto, Satoru; Matsunaga, Tsuneo; Ishihara, Yoshiaki; Morota, Tomokatsu; Hiroi, Takahiro; Takeda, Hiroshi; Ogawa, Yoshiko; Yokota, Yasuhiro; Hirata, Naru; Ohtake, Makiko; Saiki, Kazuto

    2012-11-01

    The asymmetry between the nearside and farside of the Moon is evident in the distribution of mare basalt, crustal thickness and concentrations of radioactive elements, but its origin remains controversial. According to one attractive scenario, a gigantic impact early in the Moon's history produced the observed dichotomy; the putative 3,000-km-diameter Procellarum basin has been suggested to be a relic of this ancient impact. Low-calcium pyroxene can be formed during an impact by melting a mixture of crust and mantle materials or by excavating differentiated cumulates from the lunar magma ocean. Therefore, the association of low-calcium pyroxene with a lunar basin could indicate an impact origin. Here we use spectral mapping data from KAGUYA/SELENE (ref. ) to show that low-calcium pyroxene is concentrated around two established impact structures, the South Pole-Aitken and Imbrium basins. In addition, we detect a high concentration of low-calcium pyroxene at Procellarum, which supports an impact origin of the ancient basin. We propose that, in forming the largest known basin on the Moon, the impact excavated the nearside's primary feldspathic crust, which derived from the lunar magma ocean. A secondary feldspathic crust would have later recrystallized from the sea of impact melt, leading to two distinct sides of the Moon.

  13. Color Algebras

    Science.gov (United States)

    Mulligan, Jeffrey B.

    2017-01-01

    A color algebra refers to a system for computing sums and products of colors, analogous to additive and subtractive color mixtures. The difficulty addressed here is the fact that, because of metamerism, we cannot know with certainty the spectrum that produced a particular color solely on the basis of sensory data. Knowledge of the spectrum is not required to compute additive mixture of colors, but is critical for subtractive (multiplicative) mixture. Therefore, we cannot predict with certainty the multiplicative interactions between colors based solely on sensory data. There are two potential applications of a color algebra: first, to aid modeling phenomena of human visual perception, such as color constancy and transparency; and, second, to provide better models of the interactions of lights and surfaces for computer graphics rendering.

  14. Detection of a strongly negative surface potential at Saturn's moon Hyperion.

    Science.gov (United States)

    Nordheim, T A; Jones, G H; Roussos, E; Leisner, J S; Coates, A J; Kurth, W S; Khurana, K K; Krupp, N; Dougherty, M K; Waite, J H

    2014-10-28

    On 26 September 2005, Cassini conducted its only close targeted flyby of Saturn's small, irregularly shaped moon Hyperion. Approximately 6 min before the closest approach, the electron spectrometer (ELS), part of the Cassini Plasma Spectrometer (CAPS) detected a field-aligned electron population originating from the direction of the moon's surface. Plasma wave activity detected by the Radio and Plasma Wave instrument suggests electron beam activity. A dropout in energetic electrons was observed by both CAPS-ELS and the Magnetospheric Imaging Instrument Low-Energy Magnetospheric Measurement System, indicating that the moon and the spacecraft were magnetically connected when the field-aligned electron population was observed. We show that this constitutes a remote detection of a strongly negative (∼ -200 V) surface potential on Hyperion, consistent with the predicted surface potential in regions near the solar terminator.

  15. First Results at the Moon from the SMART-1 / AMIE Experiment

    Science.gov (United States)

    Josset, J. L.; Beauvivre, S.; AMIE Team

    2005-08-01

    The Advanced Moon micro-Imager Experiment (AMIE), on board ESA SMART-1, the first European mission to the Moon (launched on 27th September 2003), is an imaging system with scientific, technical and public outreach oriented objectives. The science objectives are to image the Lunar South Pole, permanent shadow areas (ice deposit), eternal light (crater rims), ancient Lunar Non-mare volcanism, local spectro-photometry and physical state of the lunar surface, and to map high latitudes regions (south) mainly at far side (South Pole Aitken basin). The technical objectives are to perform a laserlink experiment (detection of laser beam emitted by ESA/Tenerife ground station), flight demonstration of new technologies and on-board autonomy navigation. The public outreach and educational objectives are to promote planetary exploration. We present here the first results obtained during the cruise phase and at the Moon.

  16. Precession of the Earth-Moon System

    Science.gov (United States)

    Urbassek, Herbert M.

    2009-01-01

    The precession rate of the Earth-Moon system by the gravitational influence of the Sun is derived. Attention is focussed on a physically transparent but complete presentation accessible to first- or second-year physics students. Both a shortcut and a full analysis are given, which allows the inclusion of this material as an example of the physics…

  17. Modern mysteries of the Moon what we still don’t know about our lunar companion

    CERN Document Server

    Foster, Vincent S

    2016-01-01

    There are still many questions that remain about the Moon. From concentric craters to lunar swirls, water vapor and lunar reverberations on impact, Foster collects it all for a fascinating tour that will illuminate the backyard observer's understanding of this easily viewed, yet also imperfectly understood, celestial object. Data from Apollo and a flotilla of unmanned Moon orbiters, crashers, and landers have all contributed to our understanding of the Moon, but these mysteries linger despite decades of research. When Project Apollo brought back lunar rocks and soil samples, it opened a new chapter of understanding Earth's lone natural satellite, a process that continues to this day, as old results are revisited and new techniques are used on existing samples. Topics such as the origin, evolution, structure and composition of the Moon, however, are still under debate. Lunar research is still an active field of study. New technologies make it possible to continue to learn. But even so, the Moon continues to h...

  18. Post-Formation Sodium Loss on the Moon: A Bulk Estimate

    Science.gov (United States)

    Saxena, P.; Killen, R. M.; Airapetian, V.; Petro, N. E.; Mandell, A. M.

    2018-01-01

    The Moon and Earth are generally similar in terms of composition, but there exist variations in the abundance of certain elements among the two bodies. These differences are a likely consequence of differing physical evolution of the two bodies over the solar system's history. While previous works have assumed this may be due to conditions during the Moonâ€"TM"s formation, we explore the likelihood that the observed depletion in Sodium in lunar samples may be partially due to post-formation mechanisms. Solar effects, loss from a primordial atmosphere and impacts are some of the dominant post-formation mechanisms that we examine. We describe how our past and current modeling efforts indicate that a significant fraction of the observed depletion of sodium in lunar samples relative to a bulk silicate earth composition may have been due to solar activity, atmospheric loss and impacts. Using profiles of sodium abundances from lunar crustal samples may thus serve as a powerful tool towards exploring conditions on the Moon's surface throughout solar system history. Conditions on the Moon immediately after formation may still be recorded in the lunar crust and may provide a window towards interpreting observations from some of the first rocky exoplanets that will be most amenable to characterization. Potential spatial variation of sodium in the lunar crust may be a relevant consideration for future sample return efforts. Sodium Depletion in the Lunar Crust: Lunar

  19. International Observe the Moon Night: Providing Opportunities for the Public to Engage in Lunar Observation

    Science.gov (United States)

    Hsu, B. C.; Bleacher, L.; Day, B. H.; Daou, D.; Jones, A. P.; Mitchell, B.; Shaner, A. J.; Shipp, S. S.

    2010-12-01

    International Observe the Moon Night (InOMN) is designed to engage lunar science and education communities, our partner networks, amateur astronomers, space enthusiasts, and the general public in annual lunar observation campaigns that share the excitement of lunar science and exploration. InOMN enables the public to maintain its curiosity about the Moon and gain a better understanding of the Moon's formation, its evolution, and its place in the sky. For 2010, members of the public were encouraged to host their own InOMN events. InOMN hosts such as astronomy clubs, museums, schools, or other groups could find helpful resources and share information about InOMN events they organized on the InOMN website (http://observethemoonnight.org). Images, feedback, and lessons learned from the 2010 InOMN event will be shared in order to encourage increased planning and hosting of InOMN events in 2011. From various interpretations of the lunar “face,” early pictograms of the Moon’s phases, or to the use of the lunar cycle for festivals or harvests, the Moon has an undeniable influence on human civilization. We have chosen the 2011 InOMN theme to provide an opportunity for individuals to share their personal or cultural connections to the Moon. For 2011, the InOMN website will include a ‘lunar bulletin board’ where InOMN participants can post pictures and share stories of what the Moon means to them. The 2011 InOMN contest will encourage people to submit their works of art, poems, short stories, or music about the Moon all centered around the theme “What does the Moon mean to you?” As with the winners of previous contests, winning entries will be incorporated into the following year’s InOMN advertisements and events.

  20. MERI: an ultra-long-baseline Moon-Earth radio interferometer.

    Science.gov (United States)

    Burns, J. O.

    Radiofrequency aperture synthesis, pioneered by Ryle and his colleagues at Cambridge in the 1960's, has evolved to ever longer baselines and larger arrays in recent years. The limiting resolution at a given frequency for modern ground-based very-long-baseline interferometry is simply determined by the physical diameter of the Earth. A second-generation, totally space-based VLB network was proposed recently by a group at the Naval Research Laboratory. The next logical extension of space-based VLBI would be a station or stations on the Moon. The Moon could serve as an outpost or even the primary correlator station for an extended array of space-based antennas.

  1. Color-Blind Racism, Color-Blind Theology, and Church Practices

    Science.gov (United States)

    Hearn, Mark

    2009-01-01

    Color-blind racism develops when persons ignore color in people and see them simply as individuals. As persons of color in racialized societies such as the United States are unequally treated on account of their color, the issue becomes a matter of faith and religious experience as religious leaders and educators, who disregard color, overlook…

  2. The Electrostatic Environments of Mars and the Moon

    Science.gov (United States)

    Calle, Carlos I.

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  3. The electrostatic environments of Mars and the Moon

    International Nuclear Information System (INIS)

    Calle, C I

    2011-01-01

    The electrical activity present in the environment near the surfaces of Mars and the moon has very different origins and presents a challenge to manned and robotic planetary exploration missions. Mars is covered with a layer of dust that has been redistributed throughout the entire planet by global dust storms. Dust, levitated by these storms as well as by the frequent dust devils, is expected to be electrostatically charged due to the multiple grain collisions in the dust-laden atmosphere. Dust covering the surface of the moon is expected to be electrostatically charged due to the solar wind, cosmic rays, and the solar radiation itself through the photoelectric effect. Electrostatically charged dust has a large tendency to adhere to surfaces. NASA's Mars exploration rovers have shown that atmospheric dust falling on solar panels can decrease their efficiency to the point of rendering the rover unusable. And as the Apollo missions to the moon showed, lunar dust adhesion can hinder manned and unmanned lunar exploration activities. Taking advantage of the electrical activity on both planetary system bodies, dust removal technologies are now being developed that use electrostatic and dielectrophoretic forces to produce controlled dust motion. This paper presents a short review of the theoretical and semiempirical models that have been developed for the lunar and Martian electrical environments.

  4. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Yuchou Chang

    2008-02-01

    Full Text Available Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  5. Unsupervised Video Shot Detection Using Clustering Ensemble with a Color Global Scale-Invariant Feature Transform Descriptor

    Directory of Open Access Journals (Sweden)

    Hong Yi

    2008-01-01

    Full Text Available Abstract Scale-invariant feature transform (SIFT transforms a grayscale image into scale-invariant coordinates of local features that are invariant to image scale, rotation, and changing viewpoints. Because of its scale-invariant properties, SIFT has been successfully used for object recognition and content-based image retrieval. The biggest drawback of SIFT is that it uses only grayscale information and misses important visual information regarding color. In this paper, we present the development of a novel color feature extraction algorithm that addresses this problem, and we also propose a new clustering strategy using clustering ensembles for video shot detection. Based on Fibonacci lattice-quantization, we develop a novel color global scale-invariant feature transform (CGSIFT for better description of color contents in video frames for video shot detection. CGSIFT first quantizes a color image, representing it with a small number of color indices, and then uses SIFT to extract features from the quantized color index image. We also develop a new space description method using small image regions to represent global color features as the second step of CGSIFT. Clustering ensembles focusing on knowledge reuse are then applied to obtain better clustering results than using single clustering methods for video shot detection. Evaluation of the proposed feature extraction algorithm and the new clustering strategy using clustering ensembles reveals very promising results for video shot detection.

  6. Are children like werewolves? Full moon and its association with sleep and activity behaviors in an international sample of children

    Directory of Open Access Journals (Sweden)

    Jean-Philippe eChaput

    2016-03-01

    Full Text Available In order to verify if the full moon is associated with sleep and activity behaviors, we used a 12-country study providing 33710 24-hour accelerometer recordings of sleep and activity. The present observational, cross-sectional study included 5812 children ages 9-11 years from study sites that represented all inhabited continents and wide ranges of human development (Australia, Brazil, Canada, China, Colombia, Finland, India, Kenya, Portugal, South Africa, United Kingdom and United States. Three moon phases were used in this analysis: full moon (±4 days; reference, half moon (±5-9 days and new moon (±10-14 days from nearest full moon. Nocturnal sleep duration, moderate-to-vigorous physical activity (MVPA, light-intensity physical activity (LPA and total sedentary time (SED were monitored over 7 consecutive days using a waist-worn accelerometer worn 24 hours a day. Only sleep duration was found to significantly differ between moon phases (~5 min per night shorter during full moon compared to new moon. Differences in MVPA, LPA and SED between moon phases were negligible and non-significant (<2 min per day difference. There was no difference in the associations between study sites. In conclusion, sleep duration was 1% shorter at full moon compared to new moon while activity behaviors were not significantly associated with the lunar cycle in this global sample of children. Whether this seemingly minimal difference is clinically meaningful is questionable.

  7. An International Parallax Campaign to Measure Distance to the Moon and Mars

    Science.gov (United States)

    Cenadelli, D.; Zeni, M.; Bernagozzi, A.; Calcidese, P.; Ferreira, L.; Hoang, C.; Rijsdijk, C.

    2009-01-01

    Trigonometric parallax is a powerful method to work out the distance of celestial bodies, and it was used in the past to measure the distance of the Moon, Venus, Mars and nearby stars. We set up an observation campaign for high school and undergraduate students with the purpose to measure both the Moon's and Mars' parallax. To have a large enough…

  8. Farside explorer : Unique science from a mission to the farside of the moon

    NARCIS (Netherlands)

    Mimoun, D.; Wieczorek, M.A.; Gurvits, L.

    2012-01-01

    Farside Explorer is a proposed Cosmic Vision medium-size mission to the farside of theMoon consisting of two landers and an instrumented relay satellite. The farside of the Moon is a unique scientific platform in that it is shielded from terrestrial radio-frequency interference, it recorded the

  9. Experimental Study on Color Durability of Color Asphalt Pavement

    Science.gov (United States)

    Ning, Shi; Huan, Su

    2017-06-01

    Aiming at the poor Color durability and the lack of research on Color asphalt pavement, spraying an anti-tire trace seal resin emulsion on the surface, a Color durable asphalt pavement was proposed. After long-term rolling and long-term aging test, the Color durability was evaluated by RGB function in Photoshop and trace residue rate formula. Test results proved that the Evaluation method was simple and effective. After long-term rolling, the Color of the road surface tends to a constant value. Spraying the emulsion on the road surface can resist tire traces. After long-term aging test, the resistance to tire traces was increased by 26.6% compared with the conventional type, while the former was 44.1% higher than the latter without long-term aging. The Color durable asphalt pavement can effectively improve the ability of Color asphalt pavement to resist tire traces, and significantly improve the Color durability of Color asphalt pavement.

  10. DEM modeling of failure mechanisms induced by excavations on the Moon

    Science.gov (United States)

    jiang, mingjing; shen, zhifu; Utili, Stefano

    2013-04-01

    2D Discrete Element Method (DEM) analyses were performed for excavations supported by retaining walls in lunar environment. The lunar terrain is made of a layer of sand (regolith) which differs from terrestrial sands for two main features: the presence of adhesive attractive forces due to van der Waals interactions and grains being very irregular in shape leading to high interlocking. A simplified contact model based on linear elasticity and perfect plasticity was employed. The contact model includes a moment - relative rotation law to account for high interlocking among grains and a normal adhesion law to account for the van der Waals interactions. Analyses of the excavations were run under both lunar and terrestrial environments. Under lunar environment, gravity is approximately one sixth than the value on Earth and adhesion forces between grains of lunar regolith due to van der Waals interactions are not negligible. From the DEM simulations it emerged that van der Waals interactions may significantly increase the bending moment and deflection of the retaining wall, and the ground displacements. Hence this study indicates that an unsafe estimate of the wall response to an excavation on the Moon would be obtained from physical experiments performed in a terrestrial environment, i.e., considering the effect of gravity but neglecting the van der Waals interactions.

  11. Short-term capture of the Earth-Moon system

    Science.gov (United States)

    Qi, Yi; de Ruiter, Anton

    2018-06-01

    In this paper, the short-term capture (STC) of an asteroid in the Earth-Moon system is proposed and investigated. First, the space condition of STC is analysed and five subsets of the feasible region are defined and discussed. Then, the time condition of STC is studied by parameter scanning in the Sun-Earth-Moon-asteroid restricted four-body problem. Numerical results indicate that there is a clear association between the distributions of the time probability of STC and the five subsets. Next, the influence of the Jacobi constant on STC is examined using the space and time probabilities of STC. Combining the space and time probabilities of STC, we propose a STC index to evaluate the probability of STC comprehensively. Finally, three potential STC asteroids are found and analysed.

  12. Rotational Spectral Unmixing of Exoplanets: Degeneracies between Surface Colors and Geography

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yuka [NASA Goddard Institute for Space Studies, New York, NY 10025 (United States); Lustig-Yaeger, Jacob [Astronomy Department, University of Washington, Box 951580, Seattle, WA 98195 (United States); Cowan, Nicolas B., E-mail: yuka.fujii.ebihara@gmail.com [Department of Earth and Planetary Sciences, McGill University, Montreal, Quebec, H3A 0E8 (Canada)

    2017-11-01

    Unmixing the disk-integrated spectra of exoplanets provides hints about heterogeneous surfaces that we cannot directly resolve in the foreseeable future. It is particularly important for terrestrial planets with diverse surface compositions like Earth. Although previous work on unmixing the spectra of Earth from disk-integrated multi-band light curves appeared successful, we point out a mathematical degeneracy between the surface colors and their spatial distributions. Nevertheless, useful constraints on the spectral shape of individual surface types may be obtained from the premise that albedo is everywhere between 0 and 1. We demonstrate the degeneracy and the possible constraints using both mock data based on a toy model of Earth, as well as real observations of Earth. Despite the severe degeneracy, we are still able to recover an approximate albedo spectrum for an ocean. In general, we find that surfaces are easier to identify when they cover a large fraction of the planet and when their spectra approach zero or unity in certain bands.

  13. Rotational Spectral Unmixing of Exoplanets: Degeneracies Between Surface Colors and Geography

    Science.gov (United States)

    Fujii, Yuka; Lustig-Yaeger, Jacob; Cowan, Nicolas B.

    2017-01-01

    Unmixing the disk-integrated spectra of exoplanets provides hints about heterogeneous surfaces that we cannot directly resolve in the foreseeable future. It is particularly important for terrestrial planets with diverse surface compositions like Earth. Although previous work on unmixing the spectra of Earth from disk-integrated multi-band light curves appeared successful, we point out a mathematical degeneracy between the surface colors and their spatial distributions. Nevertheless, useful constraints on the spectral shape of individual surface types may be obtained from the premise that albedo is everywhere between 0 and 1. We demonstrate the degeneracy and the possible constraints using both mock data based on a toy model of Earth, as well as real observations of Earth. Despite the severe degeneracy, we are still able to recover an approximate albedo spectrum for an ocean. In general, we find that surfaces are easier to identify when they cover a large fraction of the planet and when their spectra approach zero or unity in certain bands.

  14. The design of the MOONS-VLT spectrometer

    NARCIS (Netherlands)

    Oliva, E.; Diolaiti, E.; Garilli, B.; Gratton, R.; Lorenzetti, D.; Schipani, P.; Scuderi, S.; Vanzella, E.; Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Kaper, L.; Vanzi, L.; Baffa, C.; Bianco, A.; Bonoli, C.; Bortoletto, F.; Bruno, P.; Carbonaro, L.; Centrone, M.; Cresci, G.; De Caprio, V.; Del Vecchio, C.; Di Marcantonio, P.; Di Paola, A.; D'Alessio, F.; D'Alessandro, M.; D'Orsi, S.; Falcini, G.; Ferruzzi, D.; Fontana, A.; Foppiani, I.; Fumana, M.; Giani, E.; Leone, F.; Li Causi, G.; Lombini, M.; Maiolino, R.; Mannucci, F.; Marty, L.; Miglietta, L.; Munari, M.; Navarro, R.; Origlia, L.; Paioro, L.; Pedichini, F.; Pragt, J.; Randich, S.; Scodeggio, M.; Spano, P.; Speziali, R.; Stuik, R.; Tozzi, A.; Vitali, F.

    2012-01-01

    MOONS is a new conceptual design for a multi-object spectrograph for the ESO Very Large Telescope (VLT) which will provide the ESO astronomical community with a powerful, unique instrument able to serve a wide range of Galactic, Extragalactic and Cosmological studies. The instrument foresees 1000

  15. Tree Colors: Color Schemes for Tree-Structured Data.

    Science.gov (United States)

    Tennekes, Martijn; de Jonge, Edwin

    2014-12-01

    We present a method to map tree structures to colors from the Hue-Chroma-Luminance color model, which is known for its well balanced perceptual properties. The Tree Colors method can be tuned with several parameters, whose effect on the resulting color schemes is discussed in detail. We provide a free and open source implementation with sensible parameter defaults. Categorical data are very common in statistical graphics, and often these categories form a classification tree. We evaluate applying Tree Colors to tree structured data with a survey on a large group of users from a national statistical institute. Our user study suggests that Tree Colors are useful, not only for improving node-link diagrams, but also for unveiling tree structure in non-hierarchical visualizations.

  16. CRISM Views Phobos and Deimos

    Science.gov (United States)

    2007-01-01

    These two images taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) show Mars' two small moons, Phobos and Deimos, as seen from the Mars Reconnaissance Orbiter's low orbit around Mars. Both images were taken while the spacecraft was over Mars' night side, with the spacecraft turned off its normal nadir-viewing geometry to glimpse the moons. The image of Phobos, shown at the top, was taken at 0119 UTC on October 23 (9:19 p.m. EDT on Oct. 22), and shows features as small as 400 meters (1,320 feet) across. The image of Deimos, shown at the bottom, was taken at 2016 UTC (12:16 p.m. EDT) on June 7, 2007, and shows features as small as 1.3 kilometers (0.8 miles) across. Both CRISM images were taken in 544 colors covering 0.36-3.92 micrometers, and are displayed at twice the size in the original data for viewing purposes. Phobos and Deimos are about 21 and 12 kilometers (13.0 and 7.5 miles) in diameter and orbit Mars with periods of 7 hours, 39.2 minutes and 1 day, 6 hours, 17.9 minutes respectively. Because Phobos orbits Mars in a shorter time than Mars' 24 hour, 37.4-minute rotational period, to an observer on Mars' surface it would appear to rise in the west and set in the east. From Mars' surface, Phobos appears about one-third the diameter of the Moon from Earth, whereas Deimos appears as a bright star. The moons were discovered in 1877 by the astronomer Asaph Hall, and as satellites of a planet named for the Roman god of war, they were named for Greek mythological figures that personify fear and terror. The first spacecraft measurements of Phobos and Deimos, from the Mariner 9 and Viking Orbiter spacecraft, showed that both moons have dark surfaces reflecting only 5 to 7% of the sunlight that falls on them. The first reconstruction of the moons' spectrum of reflected sunlight was a difficult compilation from three different instruments, and appeared to show a flat, grayish spectrum resembling carbonaceous chondrite meteorites. Carbonaceous

  17. Illuminant color estimation based on pigmentation separation from human skin color

    Science.gov (United States)

    Tanaka, Satomi; Kakinuma, Akihiro; Kamijo, Naohiro; Takahashi, Hiroshi; Tsumura, Norimichi

    2015-03-01

    Human has the visual system called "color constancy" that maintains the perceptive colors of same object across various light sources. The effective method of color constancy algorithm was proposed to use the human facial color in a digital color image, however, this method has wrong estimation results by the difference of individual facial colors. In this paper, we present the novel color constancy algorithm based on skin color analysis. The skin color analysis is the method to separate the skin color into the components of melanin, hemoglobin and shading. We use the stationary property of Japanese facial color, and this property is calculated from the components of melanin and hemoglobin. As a result, we achieve to propose the method to use subject's facial color in image and not depend on the individual difference among Japanese facial color.

  18. Stennis engineer part of LCROSS moon mission

    Science.gov (United States)

    2009-01-01

    Karma Snyder, a project manager at NASA's John C. Stennis Space Center, was a senior design engineer on the RL10 liquid rocket engine that powered the Centaur, the upper stage of the rocket used in NASA's Lunar CRater Observation and Sensing Satellite (LCROSS) mission in October 2009. Part of the LCROSS mission was to search for water on the moon by striking the lunar surface with a rocket stage, creating a plume of debris that could be analyzed for water ice and vapor. Snyder's work on the RL10 took place from 1995 to 2001 when she was a senior design engineer with Pratt & Whitney Rocketdyne. Years later, she sees the project as one of her biggest accomplishments in light of the LCROSS mission. 'It's wonderful to see it come into full service,' she said. 'As one of my co-workers said, the original dream was to get that engine to the moon, and we're finally realizing that dream.'

  19. Exploration of the Moon:Chandrayaan1 and Chandrayaan-2

    Science.gov (United States)

    Goswami, J. N.

    The Indian mission to Moon, Chandrayaan-1, has discovered signatures of water (H2O) molecule and hydroxyl (OH) on surface layers of exposed lunar surface (rocks and soils) that is more prominent near the cooler lunar polar regions. Several new and some unexpected results obtained in this mission are:(i)Possible presence of water and carbon-di-oxide molecules in the tenuous lunar atmosphere, an unexpected result, (ii)Sub-surface ice in permanently shadowed crater in the polar region confirming previous indication from the Clementine mission,(iii)Detection of reflected solar wind component as well as presence of solar wind on night side, unexpected new results, (iv)localized mini-magnetosphere, confirmation of earlier result using a new improved approach,(v)Presence of “refractory” rock-types not identified earlier (also reported by “Kaguya” mission), (vi)Elemental (Mg, Al, Si, Ca and Fe) composition of several areas of lunar surface by X-ray fluorescence technique, a new result,(vii)Three dimensional high resolution map of the lunar surface revealing new features,(viii)Radiation environment in the earth-moon and lunar space, and (ix) High energy X-ray continuum background on moon due to cosmic ray interactions with lunar surface. These results coupled with those obtained by Kaguya (Japan) and LRO and LCROSS (USA) missions have revealed a new face of the moon. The Chandrayaan-2 mission, that will have a Orbiter-Lander-Rover configuration, will carry close to a dozen payloads. The instruments on the Orbiter will extend studies conducted by Chandrayyan-1 mission with higher sensitivity. This will be supplemented by in-depth investigations of lunar surface properties in the polar region using several instruments in the lander and the rover. The present status of the mission and expected scientific results will be presented.

  20. Stochastic Rotation Dynamics simulations of wetting multi-phase flows

    Science.gov (United States)

    Hiller, Thomas; Sanchez de La Lama, Marta; Brinkmann, Martin

    2016-06-01

    Multi-color Stochastic Rotation Dynamics (SRDmc) has been introduced by Inoue et al. [1,2] as a particle based simulation method to study the flow of emulsion droplets in non-wetting microchannels. In this work, we extend the multi-color method to also account for different wetting conditions. This is achieved by assigning the color information not only to fluid particles but also to virtual wall particles that are required to enforce proper no-slip boundary conditions. To extend the scope of the original SRDmc algorithm to e.g. immiscible two-phase flow with viscosity contrast we implement an angular momentum conserving scheme (SRD+mc). We perform extensive benchmark simulations to show that a mono-phase SRDmc fluid exhibits bulk properties identical to a standard SRD fluid and that SRDmc fluids are applicable to a wide range of immiscible two-phase flows. To quantify the adhesion of a SRD+mc fluid in contact to the walls we measure the apparent contact angle from sessile droplets in mechanical equilibrium. For a further verification of our wettability implementation we compare the dewetting of a liquid film from a wetting stripe to experimental and numerical studies of interfacial morphologies on chemically structured surfaces.

  1. INFRARED COLOR-COLOR DIAGRAMS FOR AGB STARS

    Directory of Open Access Journals (Sweden)

    Kyung-Won Suh

    2007-09-01

    Full Text Available We present infrared color-color diagrams of AGB stars from the observations at near and mid infrared bands. We compile the observations for hundreds of OH/IR stars and carbon stars using the data from the Midcourse Space Experiment (MSX, the two micron sky survey (2MASS, and the IRAS point source catalog (PSC. We compare the observations with the theoretical evolutionary tracks of AGB stars. From the new observational data base and the theoretical evolution tracks, we discuss the meaning of the infrared color-color diagrams at different wavelengths.

  2. Astronomy from the Moon: A New Frontier for 21st Century Astrophysics

    Science.gov (United States)

    Durst, Steve

    2018-06-01

    The International Lunar Observatory Association of Hawai'i USA continues into its second decade with research and development of South Pole instruments for astronomy, observation and communication from the Moon. Since the pioneering first astronomy observations from the Moon by Apollo 16 Commander John Young (an ILOA founding-emeritus director until his recent passing), with China Lunar Ultraviolet Telescope LUT operations and current American and European considerations for far-side radio telescopes, today's climate is most promising for a diversity of lunar-based astronomy locations, instruments and technologies. ILOA is aiming to advance this frontier through its Galaxy First Light Imaging program, being developed through contracts with Moon Express and Canadensys Aerospace Corp.A wide variety of extreme and unique lunar conditions enable many astronomy activities and installations, on the Moon's near-side, far-side, north pole, and south pole: The extremely thin lunar exosphere favors observations in millimeter / submillimeter to optical, UV, X-ray, and gamma-ray wavelengths; the highly stable platform that is the Moon provides for long-duration observations; ultra cold, shaded areas for cryogenic infrared instruments; far-side radio-quiet environment for radio telescopes and VLF astronomy; 1/6-Earth gravity for production and utilization of new, very lightweight materials and instruments, including large refractors, 100-m class liquid mirror telescopes, and possibly 1,000-m class radio telescopes and interferometer antenna arrays vastly larger than Atacama LMA; North and especially South Pole sites, with high peaks and long solar power windows, offer perhaps the widest variety of lunar conditions and opportunities for astronomical innovation on the Moon: a veritable "condominium of observatories".21st century astrophysics seems likely to find Luna a very busy and productive new frontier, as American Astronomical Society and IAU members will validate, with

  3. The Brick Moon

    Science.gov (United States)

    2004-01-01

    Science fiction writers, like Jules Verne in France and Edward Everett Hale in America, had discovered one of the most vital elements in the formula for space travel-a fertile imagination. The first known proposal for a marned-satellite appears in a story by Hale entitled 'The Brick Moon' published in 1899. The story involved a group of young Bostonians who planned to put an artificial satellite into polar orbit for sailors to use to determine longitude accurately and easily. They planned to send a brick satellite into orbit because the satellite would have to withstand fire very well. The Satellite's 37 inhabitants signaled the Earth in morse code by jumping up and down on the outside of the satellite.

  4. Color digital halftoning taking colorimetric color reproduction into account

    Science.gov (United States)

    Haneishi, Hideaki; Suzuki, Toshiaki; Shimoyama, Nobukatsu; Miyake, Yoichi

    1996-01-01

    Taking colorimetric color reproduction into account, the conventional error diffusion method is modified for color digital half-toning. Assuming that the input to a bilevel color printer is given in CIE-XYZ tristimulus values or CIE-LAB values instead of the more conventional RGB or YMC values, two modified versions based on vector operation in (1) the XYZ color space and (2) the LAB color space were tested. Experimental results show that the modified methods, especially the method using the LAB color space, resulted in better color reproduction performance than the conventional methods. Spatial artifacts that appear in the modified methods are presented and analyzed. It is also shown that the modified method (2) with a thresholding technique achieves a good spatial image quality.

  5. M DWARF ACTIVITY IN THE PAN-STARRS1 MEDIUM-DEEP SURVEY: FIRST CATALOG AND ROTATION PERIODS

    Energy Technology Data Exchange (ETDEWEB)

    Kado-Fong, E. [Department of Physics and Astronomy, Tufts University, Medford, MA 02155 (United States); Williams, P. K. G.; Berger, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Mann, A. W. [The University of Texas at Austin, Department of Astronomy, 2515 Speedway C1400, Austin, TX 78712 (United States); Burgett, W. S.; Chambers, K. C.; Huber, M. E.; Kaiser, N.; Kudritzki, R.-P.; Magnier, E. A.; Wainscoat, R. J.; Waters, C. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Rest, A., E-mail: erin.fong@tufts.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2016-12-20

    We report on an ongoing project to investigate activity in the M dwarf stellar population observed by the Pan-STARRS1 Medium-Deep Survey (PS1-MDS). Using a custom-built pipeline, we refine an initial sample of ∼4 million sources in PS1-MDS to a sample of 184,148 candidate cool stars using color cuts. Motivated by the well-known relationship between rotation and stellar activity, we use a multiband periodogram analysis and visual vetting to identify 270 sources that are likely rotating M dwarfs. We derive a new set of polynomials relating M dwarf PS1 colors to fundamental stellar parameters and use them to estimate the masses, distances, effective temperatures, and bolometric luminosities of our sample. We present a catalog containing these values, our measured rotation periods, and cross-matches to other surveys. Our final sample spans periods of ≲1–130 days in stars with estimated effective temperatures of ∼2700–4000 K. Twenty-two of our sources have X-ray cross-matches, and they are found to be relatively X-ray bright as would be expected from selection effects. Our data set provides evidence that Kepler -based searches have not been sensitive to very slowly rotating stars ( P {sub rot} ≳ 70 day), implying that the observed emergence of very slow rotators in studies of low-mass stars may be a systematic effect. We also see a lack of low-amplitude (<2%) variability in objects with intermediate (10–40 day) rotation periods, which, considered in conjunction with other observational results, may be a signpost of a loss of magnetic complexity associated with a phase of rapid spin-down in intermediate-age M dwarfs. This work represents just a first step in exploring stellar variability in data from the PS1-MDS and, in the farther future, Large Synoptic Survey Telescope.

  6. Color preferences change after experience with liked/disliked colored objects.

    Science.gov (United States)

    Strauss, Eli D; Schloss, Karen B; Palmer, Stephen E

    2013-10-01

    How are color preferences formed, and can they be changed by affective experiences with correspondingly colored objects? We examined these questions by testing whether affectively polarized experiences with images of colored objects would cause changes in color preferences. Such changes are implied by the ecological valence theory (EVT), which posits that color preferences are determined by people's average affective responses to correspondingly colored objects (Palmer & Schloss, Proceedings of the National Academy of Sciences, 107, 8877-8882, 2010). Seeing images of strongly liked (and disliked) red and green objects, therefore, should lead to increased (and decreased) preferences for correspondingly colored red and green color patches. Experiment 1 showed that this crossover interaction did occur, but only if participants were required to evaluate their preferences for the colored objects when they saw them. Experiment 2 showed that these overall changes decreased substantially over a 24-h delay, but the degree to which the effect lasted for individuals covaried with the magnitude of the effects immediately after object exposure. Experiment 3 demonstrated a similar, but weaker, effect of affectively biased changes in color preferences when participants did not see, but only imagined, the colored objects. The overall pattern of results indicated that color preferences are not fixed, but rather are shaped by affective experiences with colored objects. Possible explanations for the observed changes in color preferences were considered in terms of associative learning through evaluative conditioning and/or priming of prior knowledge in memory.

  7. Influence of color word availability on the Stroop color-naming effect.

    Science.gov (United States)

    Kim, Hyosun; Cho, Yang Seok; Yamaguchi, Motonori; Proctor, Robert W

    2008-11-01

    Three experiments tested whether the Stroop color-naming effect is a consequence of word recognition's being automatic or of the color word's capturing visual attention. In Experiment 1, a color bar was presented at fixation as the color carrier, with color and neutral words presented in locations above or below the color bar; Experiment 2 was similar, except that the color carrier could occur in one of the peripheral locations and the color word at fixation. The Stroop effect increased as display duration increased, and the Stroop dilution effect (a reduced Stroop effect when a neutral word is also present) was an approximately constant proportion of the Stroop effect at all display durations, regardless of whether the color bar or color word was at fixation. In Experiment 3, the interval between the onsets of the to-be-named color and the color word was manipulated. The Stroop effect decreased with increasing delay of the color word onset, but the absolute amount of Stroop dilution produced by the neutral word increased. This study's results imply that an attention shift from the color carrier to the color word is an important factor modulating the size of the Stroop effect.

  8. Thermal, Thermophysical, and Compositional Properties of the Moon Revealed by the Diviner Lunar Radiometer

    Science.gov (United States)

    Greenhagen, B. T.; Paige, D. A.

    2012-01-01

    The Diviner Lunar Radiometer is the first multispectral thermal instrument to globally map the surface of the Moon. After over three years in operation, this unprecedented dataset has revealed the extreme nature of the Moon's thermal environment, thermophysical properties, and surface composition.

  9. Representing Color Ensembles.

    Science.gov (United States)

    Chetverikov, Andrey; Campana, Gianluca; Kristjánsson, Árni

    2017-10-01

    Colors are rarely uniform, yet little is known about how people represent color distributions. We introduce a new method for studying color ensembles based on intertrial learning in visual search. Participants looked for an oddly colored diamond among diamonds with colors taken from either uniform or Gaussian color distributions. On test trials, the targets had various distances in feature space from the mean of the preceding distractor color distribution. Targets on test trials therefore served as probes into probabilistic representations of distractor colors. Test-trial response times revealed a striking similarity between the physical distribution of colors and their internal representations. The results demonstrate that the visual system represents color ensembles in a more detailed way than previously thought, coding not only mean and variance but, most surprisingly, the actual shape (uniform or Gaussian) of the distribution of colors in the environment.

  10. Luminance contours can gate afterimage colors and 'real' colors

    NARCIS (Netherlands)

    Anstis, S.; Vergeer, M.L.T.; Lier, R.J. van

    2012-01-01

    It has long been known that colored images may elicit afterimages in complementary colors. We have already shown (Van Lier, Vergeer, & Anstis, 2009) that one and the same adapting image may result in different afterimage colors, depending on the test contours presented after the colored image. The

  11. Digital color imaging

    CERN Document Server

    Fernandez-Maloigne, Christine; Macaire, Ludovic

    2013-01-01

    This collective work identifies the latest developments in the field of the automatic processing and analysis of digital color images.For researchers and students, it represents a critical state of the art on the scientific issues raised by the various steps constituting the chain of color image processing.It covers a wide range of topics related to computational color imaging, including color filtering and segmentation, color texture characterization, color invariant for object recognition, color and motion analysis, as well as color image and video indexing and retrieval. <

  12. Spectroscopic observations of the Moon at the lunar surface

    Science.gov (United States)

    Wu, Yunzhao; Hapke, Bruce

    2018-02-01

    The Moon's reflectance spectrum records many of its important properties. However, prior to Chang'E-3 (CE-3), no spectra had previously been measured on the lunar surface. Here we show the in situ reflectance spectra of the Moon acquired on the lunar surface by the Visible-Near Infrared Spectrometer (VNIS) onboard the CE-3 rover. The VNIS detected thermal radiation from the lunar regolith, though with much shorter wavelength range than typical thermal radiometer. The measured temperatures are higher than expected from theoretical model, indicating low thermal inertia of the lunar soil and the effects of grain facet on soil temperature in submillimeter scale. The in situ spectra also reveal that 1) brightness changes visible from orbit are related to the reduction in maturity due to the removal of the fine and weathered particles by the lander's rocket exhaust, not the smoothing of the surface and 2) the spectra of the uppermost soil detected by remote sensing exhibit substantial differences with that immediately beneath, which has important implications for the remote compositional analysis. The reflectance spectra measured by VNIS not only reveal the thermal, compositional, and space-weathering properties of the Moon but also provide a means for the calibration of optical instruments that view the surface remotely.

  13. South Pole Region of the Moon as Seen by Clementine

    Science.gov (United States)

    1994-01-01

    Lunar mosaic of 1500 Clementine images of the south polar region of the moon. The projection is orthographic, centered on the south pole. The Schrodinger Basin (320 km in diameter) is located in the lower right of the mosaic. Amundsen-Ganswindt is the more subdued circular basin between Schrodinger and the pole. The polar regions of the moon are of special interest because of the postulated occurrence of ice in permanently shadowed areas. The south pole is of greater interest because the area that remains in shadow is much larger than that at the north pole.

  14. Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets

    Science.gov (United States)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis

    2011-01-01

    The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

  15. Color-quality control using color-difference formulas: progress and problems

    Science.gov (United States)

    Melgosa, M.; Gómez-Robledo, L.; García, P. A.; Morillas, S.; Fernández-Maloigne, C.; Richard, N.; Huang, M.; Li, C.; Cui, G.

    2017-08-01

    We report on some recent advances in industrial color-difference evaluation focused in three main fields: Development of reliable experimental visual datasets; proposal of new color spaces and color-difference formulas; tools to evaluate the merits of color-difference formulas. The use of fuzzy techniques to assign consistency degrees to color pairs in combined visual datasets is described. The CIE/ISO joint proposal of the CIEDE2000 color-difference formula as a standard will facilitate the communication among companies and users. The CIE recommendation of the STRESS index to assess observers' variability and relative merits of different color-difference formulas is reported. Power functions are an efficient method to improve the performance of modern color-difference formulas. We need of advanced color-difference formulas accounting for new materials with different kind of textures and gonioapparent effects.

  16. Rotator cuff tendon connections with the rotator cable.

    Science.gov (United States)

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  17. Characterization of Angle Dependent Color Travel of Printed Multi-Color Effect Pigment on Different Color Substrates

    Directory of Open Access Journals (Sweden)

    Mirica Karlovits

    2015-03-01

    Full Text Available Color-travel pigments, which exhibit much more extensive color change as well provide angle-dependent optical effect can be used in many industrial products. In present paper the multi-color effect pigment printed on three different foils with different background color (black, silver and transparent was investigated. The pigment was based on synthetically produced transparent silicon dioxide platelets coated with titanium dioxide. CIEL*a*b* values and reflection of prints were measured by multi-angle spectrophotometer at constant illumination at an angle of 45º and different viewing angles (-15º, 15°, 25º, 45º, 75º and 110º were used. The measurements of printed multi-color pigment showed that CIEL*a*b* color coordinates varied to great extents, depending on detection angles as well on color of the printing substrate. The study revealed that pigmnet printed on black background obtained significant change in color. The study has also shown that when viewing angle increases, the reflection curves decreases.

  18. Distribution of moon jellyfish Aurelia aurita in relation to summer hypoxia in Hiroshima Bay, Seto Inland Sea

    Science.gov (United States)

    Shoji, Jun; Kudoh, Takaya; Takatsuji, Hideyuki; Kawaguchi, Osamu; Kasai, Akihide

    2010-02-01

    Biological and physical surveys were conducted in order to investigate the relationship between environmental conditions and the distribution of moon jellyfish Aurelia aurita in Hiroshima Bay, western Seto Inland Sea, Japan. Moon jellyfish and ichthyoplankton were collected at 13 stations in Hiroshima Bay during monthly surveys from July to September in 2006 and 2007. Surface temperature in 2006 was significantly lower during the August and September cruises and surface salinity was lower during all cruises than in 2007. Moon jellyfish was the most dominant gelatinous plankton collected, accounting for 89.7% in wet weight. Mean moon jellyfish abundance in 2006 was higher than that in 2007 from July through September, with significant inter-year differences for July and September. Variability in precipitation and nutritional input from the Ohta River, northernmost part of Hiroshima Bay, were suggested as possible factors affecting the inter-annual variability in moon jellyfish abundance in the coastal areas of northern Hiroshima Bay. Moon jellyfish were more abundant in the coastal areas of northern Hiroshima Bay, where the dissolved oxygen (DO) concentration was lower, while low in the central part of the bay. Japanese anchovy Engraulis japonicus eggs were most dominant (58.1% in number) among the ichthyoplankton and were abundant in the central area of Hiroshima Bay. Explanatory analysis was conducted to detect possible effects of environmental conditions on the abundance of moon jellyfish and Japanese anchovy eggs during the summer months in Hiroshima Bay. Of the environmental conditions tested (temperature, salinity and DO of surface and bottom layers at each sampling station), bottom DO had the most significant effect on the moon jellyfish abundance: there was a negative correlation between the bottom DO and the moon jellyfish abundance in Hiroshima Bay during summer.

  19. The Earth, the Moon and Conservation of Momentum

    Science.gov (United States)

    Brunt, Marjorie; Brunt, Geoff

    2013-01-01

    We consider the application of both conservation of momentum and Newton's laws to the Moon in an assumed circular orbit about the Earth. The inadequacy of some texts in applying Newton's laws is considered.

  20. Research of image retrieval technology based on color feature

    Science.gov (United States)

    Fu, Yanjun; Jiang, Guangyu; Chen, Fengying

    2009-10-01

    make rotating and translation does not change. The HSV color space is used to show color characteristic of image, which is suitable to the visual characteristic of human. Taking advance of human's feeling to color, it quantifies color sector with unequal interval, and get characteristic vector. Finally, it matches the similarity of image with the algorithm of the histogram intersection and the partition-overall histogram. Users can choose a demonstration image to show inquired vision require, and also can adjust several right value through the relevance-feedback method to obtain the best result of search.An image retrieval system based on these approaches is presented. The result of the experiments shows that the image retrieval based on partition-overall histogram can keep the space distribution information while abstracting color feature efficiently, and it is superior to the normal color histograms in precision rate while researching. The query precision rate is more than 95%. In addition, the efficient block expression will lower the complicate degree of the images to be searched, and thus the searching efficiency will be increased. The image retrieval algorithms based on the partition-overall histogram proposed in the paper is efficient and effective.

  1. Moon Phase as the Cause of Monday Irrationality: Case of Asean Day of the Week Anomaly

    Directory of Open Access Journals (Sweden)

    Rayenda Khresna Brahmana

    2014-07-01

    Full Text Available Many Day-of-the week anomaly papers have suggested investor behaviour as the explanation of highly differentiated returns on Mondays; yet, rarely found a paper has empirically investigated it. Therefore, this paper proposes Moon-Induced mood as the determinant of that irrational behaviour. This proposition is based on our preliminary findings that the full moon phase occurred more often on Mondays compared to other days; an indication of a causal relationship. By taking Indonesia, Malaysia, Thailand, and the Philippines as samples during the period of 1999-2010, this paper found: (1 There is evidence of a Monday effect across all the ASEAN stock markets, (2 The moon phase and its interaction with Mondays has significantly influenced the Monday effect, and (3 A full moon on Monday has significant negative influenced on Monday returns. In conclusion, the stimulation by moon phase forms affection bias, and the resulting outcome is the irrational stock market behavior.

  2. COLOR IMAGES

    Directory of Open Access Journals (Sweden)

    Dominique Lafon

    2011-05-01

    Full Text Available The goal of this article is to present specific capabilities and limitations of the use of color digital images in a characterization process. The whole process is investigated, from the acquisition of digital color images to the analysis of the information relevant to various applications in the field of material characterization. A digital color image can be considered as a matrix of pixels with values expressed in a vector-space (commonly 3 dimensional space whose specificity, compared to grey-scale images, is to ensure a coding and a representation of the output image (visualisation printing that fits the human visual reality. In a characterization process, it is interesting to regard color image attnbutes as a set of visual aspect measurements on a material surface. Color measurement systems (spectrocolorimeters, colorimeters and radiometers and cameras use the same type of light detectors: most of them use Charge Coupled Devices sensors. The difference between the two types of color data acquisition systems is that color measurement systems provide a global information of the observed surface (average aspect of the surface: the color texture is not taken into account. Thus, it seems interesting to use imaging systems as measuring instruments for the quantitative characterization of the color texture.

  3. Examination of Color-Lighting Control System Using Colored Paper User Interface

    Directory of Open Access Journals (Sweden)

    Aida Hiroto

    2016-01-01

    Full Text Available In recent year, Full-Color LED Lighting that can be changed to various color such as red, green, blue has been appeared with development of LED Lighting. By Color-Lighting control, users affected such as concentrating and relaxing. Therefore, Color-lighting control will spread to various place such as home, offices, stations. However color-lighting control affected some disturbance such as daylight, display when Full-Color LED controlled indoors. Also, information devices control get difficult with information technology develop. I propose Color-Lighting Control System using Colored Paper User Interface(CLC/CPUI. The purpose of CLC/CPUI is that anyone can intuitively control Full-Color LED Lighting. CLC/CPUI uses colored paper as user interface by sensing the paper. CLC/CPUI realizes lighting color that user demanded to do feedback control. I conduct accuracy verification experiment of CLC/CPUI.

  4. Effect of field view size and lighting on unique-hue selection using Natural Color System object colors.

    Science.gov (United States)

    Shamey, Renzo; Zubair, Muhammad; Cheema, Hammad

    2015-08-01

    The aim of this study was twofold, first to determine the effect of field view size and second of illumination conditions on the selection of unique hue samples (UHs: R, Y, G and B) from two rotatable trays, each containing forty highly chromatic Natural Color System (NCS) samples, on one tray corresponding to 1.4° and on the other to 5.7° field of view size. UH selections were made by 25 color-normal observers who repeated assessments three times with a gap of at least 24h between trials. Observers separately assessed UHs under four illumination conditions simulating illuminants D65, A, F2 and F11. An apparent hue shift (statistically significant for UR) was noted for UH selections at 5.7° field of view compared to those at 1.4°. Observers' overall variability was found to be higher for UH stimuli selections at the larger field of view. Intra-observer variability was found to be approximately 18.7% of inter-observer variability in selection of samples for both sample sizes. The highest intra-observer variability was under simulated illuminant D65, followed by A, F11, and F2. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Colored Chaos

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 7 May 2004 This daytime visible color image was collected on May 30, 2002 during the Southern Fall season in Atlantis Chaos. The THEMIS VIS camera is capable of capturing color images of the martian surface using its five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from the use of multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation. Image information: VIS instrument. Latitude -34.5, Longitude 183.6 East (176.4 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D

  6. Color vision test

    Science.gov (United States)

    ... present from birth) color vision problems: Achromatopsia -- complete color blindness , seeing only shades of gray Deuteranopia -- difficulty telling ... Vision test - color; Ishihara color vision test Images Color blindness tests References Bowling B. Hereditary fundus dystrophies. In: ...

  7. China (CNSA) views of the Moon

    Science.gov (United States)

    He, S.

    China's lunar objectives have widely attracted the world's attention since China National Space Administration (CNSA) chief Luan Enjie in October 2000 officially affirmed the nation plans to carry out lunar exploration. The success of the Shenzhou-3 mission last April, which indicates that China is on the eve to become the third nation to attain an independent ability to launch humans into space, coupled with Chinese president Jiang Zemin's announcement issued immediately after the launch of SZ-3 that China will develop its own space station, further prompted the mass media in the West to ponder whether "the next footsteps on the Moon will be Chinese." Although China's lunar intention is well publicized, no detail about the project has yet been unveiled in the Western space media because China's space program has been notoriously cloaked in state-imposed secrecy, while the available information is basically unreported by Western observers mainly due to the cultural and language barriers. Based on original research of both the unpublished documents as well as reports in China's space media and professional journals, this paper attempts to piece together the available material gathered from China, providing some insight into China's Moon project, and analyzing the Chinese activities in pursuit of their lunar dream in perspective of space policy. Motivations China's presence on the Moon, in the Chinese leadership's view, could help aggrandize China's international prestige and consolidate the cohesion of the Chinese nation. Lunar exploration, the science community consents, not only helps acquire knowledge about the Moon, but also deepen the understanding of the Earth. A lunar project is believed to be able to accelerate the development of launching and navigating technologies, preparing for future deep space exploration. The emergence of the return to the Moon movement in the world, and the presumption that NASA has plans to return to the Moon, as evidenced by

  8. Colors, colored overlays, and reading skills

    OpenAIRE

    Uccula, Arcangelo; Enna, Mauro; Mulatti, Claudio

    2014-01-01

    In this article, we are concerned with the role of colors in reading written texts. It has been argued that colored overlays applied above written texts positively influence both reading fluency and reading speed. These effects would be particularly evident for those individuals affected by the so called Meares-Irlen syndrome, i.e., who experience eyestrain and/or visual distortions – e.g., color, shape, or movement illusions – while reading. This condition would interest the 12–14% of the ge...

  9. Designating Earth's Moon as a United Nations World Heritage Site - Permanently Protected from Commercial or Military Uses

    Science.gov (United States)

    Steiner, R. G.

    2002-01-01

    This paper proposes that Earth's Moon, in its entirety, be designated a United Nations World Heritage Site (WHS), permanently protected from any and all commercial or military utilization and reserved exclusively for scientific and aesthetic purposes. The paper discusses: 1) the extraordinary importance of the Moon for science, culture, and religion - past, present and future; 2) the history of proposals to exploit the Moon for commercial and military purposes and the shortcomings of this colonial, exploitation paradigm; and 3) the necessity, policy mechanisms, and political dynamics of designating the Moon as a World Heritage Site, permanently protected from commercial and/or military uses. The first part of the paper discusses the extraordinary importance of the Moon as it exists today - as a scientific laboratory, a source of beauty and inspiration throughout human evolution, a source for artistic expression, and as an object that is considered sacred by many cultures. Next, the paper traces the history of specific proposals for the exploitation of the Moon for commercial and/or military purposes - including plans by the U.S. Air Force in 1959 to detonate a nuclear explosion on the Moon, proposals to strip-mine the lunar regolith for helium-3 and rocket-fuel hydrogen; construction of solar power plants to transmit energy to Earth, and proposals to use the lunar surface as a billboard upon which to project commercial advertisements visible from Earth. The profound ethical, legal, and scientific shortcomings of this exploitation paradigm are described as an emerging Extraterrestrial Manifest Destiny that we have a collective obligation to challenge and constrain. The paper proposes that space exploration be infused with an ethical commitment to compassion, reverence, conservation, and non-interference to abiotic and biotic systems alike; as opposed to the expansion and extraterrestrial imposition of the colonization, exploitation, domination, and despoliation

  10. Color Appearance of the Neon Color Spreading Effect

    Directory of Open Access Journals (Sweden)

    Damir Vusić

    2017-04-01

    Full Text Available As a part of this paper, the influence of various parameters within the target process of graphic reproduction on the color appearance of the neon color spreading effect was investigated. The shift in a color appearance qualitatively is determined through the calculation of changes in perceptual attributes of color, i.e. differences in lightness, chroma and hue. The influence of different media (printed images, and LCD display in the “cross-media” system was examined, as well as the role of the inserted segment color choice and background of the primary stimulus as an element of design solutions. These parameters were evaluated in a variety of ambient conditions and under the observation of three CIE standard light sources and illuminants. It was found that it was mostly the changes of the chroma and lightness. The change in the color hue is the lowest.

  11. International Observe the Moon Night: Using Public Outreach Events to Tell Your Story to the Public

    Science.gov (United States)

    Hsu, B. C.; International Observe the Moon Night Coordinating Committee

    2011-12-01

    From various interpretations of the lunar "face," early pictograms of the Moon's phases, or to the use of the lunar cycle for festivals or harvests, the Moon has an undeniable influence on human civilization. International Observe the Moon Night (InOMN) capitalizes on the human connection to the Moon by engaging the public in annual lunar observation campaigns that share the excitement of lunar science and exploration. In 2010 (InOMN's inaugural year), over 500,000 people attended events in 53 countries around the world. About 68% of InOMN hosts - astronomy clubs, museums, schools, or other groups - used the resources on the InOMN website (http://observethemoonnight.org). The InOMN website provided supporting materials for InOMN event hosts in the form of downloadable advertising materials, Moon maps, suggestions for hands-on educational activities, and links to lunar science content. InOMN event participants shared their experiences with the world using the Web and social media, event hosts shared their experiences with evaluation data, and amateur astronomers and photographers shared their images of the Moon through the lunar photography contest. The overwhelming response from InOMN in 2010 represents an untapped potential for infusing cutting edge lunar science and exploration into a large-scale public outreach event.

  12. Using Single Colors and Color Pairs to Communicate Basic Tastes

    Directory of Open Access Journals (Sweden)

    Andy T. Woods

    2016-07-01

    Full Text Available Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty with specific colors (e.g., red, green, black, and white. In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  13. Using Single Colors and Color Pairs to Communicate Basic Tastes.

    Science.gov (United States)

    Woods, Andy T; Spence, Charles

    2016-01-01

    Recently, it has been demonstrated that people associate each of the basic tastes (e.g., sweet, sour, bitter, and salty) with specific colors (e.g., red, green, black, and white). In the present study, we investigated whether pairs of colors (both associated with a particular taste or taste word) would give rise to stronger associations relative to pairs of colors that were associated with different tastes. We replicate the findings of previous studies highlighting the existence of a robust crossmodal correspondence between individual colors and basic tastes. However, while there was evidence that pairs of colors could indeed communicate taste information more consistently than single colors, our participants took more than twice as long to match the color pairs with tastes than the single colors. Possible reasons for these results are discussed.

  14. Telerobotic exploration and development of the Moon

    Indian Academy of Sciences (India)

    There has been a debate for the last thirty years about the relative merits of human versus robotic systems and we argue here that both are essential components for successful lunar exploration and development.We examine the role of robots in the next phases of exploration and human development of the Moon.

  15. The interaction between surface color and color knowledge: behavioral and electrophysiological evidence.

    Science.gov (United States)

    Bramão, Inês; Faísca, Luís; Forkstam, Christian; Inácio, Filomena; Araújo, Susana; Petersson, Karl Magnus; Reis, Alexandra

    2012-02-01

    In this study, we used event-related potentials (ERPs) to evaluate the contribution of surface color and color knowledge information in object identification. We constructed two color-object verification tasks - a surface and a knowledge verification task - using high color diagnostic objects; both typical and atypical color versions of the same object were presented. Continuous electroencephalogram was recorded from 26 subjects. A cluster randomization procedure was used to explore the differences between typical and atypical color objects in each task. In the color knowledge task, we found two significant clusters that were consistent with the N350 and late positive complex (LPC) effects. Atypical color objects elicited more negative ERPs compared to typical color objects. The color effect found in the N350 time window suggests that surface color is an important cue that facilitates the selection of a stored object representation from long-term memory. Moreover, the observed LPC effect suggests that surface color activates associated semantic knowledge about the object, including color knowledge representations. We did not find any significant differences between typical and atypical color objects in the surface color verification task, which indicates that there is little contribution of color knowledge to resolve the surface color verification. Our main results suggest that surface color is an important visual cue that triggers color knowledge, thereby facilitating object identification. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Color-Blindness Study: Color Discrimination on the TICCIT System.

    Science.gov (United States)

    Asay, Calvin S.; Schneider, Edward W.

    The question studied whether the specific seven TICCIT system colors used within color coding schemes can be a source of confusion, or not seen at all, by the color-blind segment of target populations. Subjects were 11 color-blind and three normally sighted students at Brigham Young University. After a preliminary training exercise to acquaint the…

  17. Human preferences for colorful birds: Vivid colors or pattern?

    Science.gov (United States)

    Lišková, Silvie; Landová, Eva; Frynta, Daniel

    2015-04-29

    In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern), and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  18. Human Preferences for Colorful Birds: Vivid Colors or Pattern?

    Directory of Open Access Journals (Sweden)

    Silvie Lišková

    2015-04-01

    Full Text Available In a previous study, we found that the shape of a bird, rather than its color, plays a major role in the determination of human preferences. Thus, in the present study, we asked whether the preferences of human respondents towards uniformly shaped, colorful birds are determined by pattern rather than color. The experimental stimuli were pictures of small passerine birds of the family Pittidae possessing uniform shape but vivid coloration. We asked 200 participants to rank 43 colored and 43 identical, but grayscaled, pictures of birds. To find the traits determining human preferences, we performed GLM analysis in which we tried to explain the mean preference ranks and PC axes by the following explanatory variables: the overall lightness and saturation, edges (pattern, and the portion of each of the basic color hues. The results showed that the mean preference ranks of the grayscale set is explained mostly by the birds' pattern, whereas the colored set ranking is mostly determined by the overall lightness. The effect of colors was weaker, but still significant, and revealed that people liked blue and green birds. We found no significant role of the color red, the perception of which was acquired relatively recently in evolution.

  19. Industrial Color Physics

    CERN Document Server

    Klein, Georg A

    2010-01-01

    This unique book starts with a short historical overview of the development of the theories of color vision and applications of industrial color physics. The three dominant factors producing color - light source, color sample, and observer - are described in detail. The standardized color spaces are shown and related color values are applied to characteristic color qualities of absorption as well as of effect colorants. The fundamentals of spectrometric and colorimetric measuring techniques together with specific applications are described. Theoretical models for radiative transfer in transparent, translucent, and opaque layers are detailed; the two, three, and multi-flux approximations are presented for the first time in a coherent formalism. These methods constitute the fundamentals not only for the important classical methods, but also modern methods of recipe prediction applicable to all known colorants. The text is supplied with 52 tables, more than 200 partially colored illustrations, an appendix, and a...

  20. The Absolute Reflectance and New Calibration Site of the Moon

    Science.gov (United States)

    Wu, Yunzhao; Wang, Zhenchao; Cai, Wei; Lu, Yu

    2018-05-01

    How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China’s Chang’E-3 (CE-3) “Yutu” rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M3) on board the Chandrayaan-1, and the Chang’E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M3 and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.

  1. Color naming

    OpenAIRE

    Şahin, Ebru

    1998-01-01

    Ankara : Bilkent University, Department of Interior Architecture and Environmental Design and Institute of Fine Arts, 1998. Thesis (Ph.D) -- Bilkent University, 1998 Includes bibliographical refences. In this study, visual aspects of color and neurophysiological processes involved in the phenomenon, language of color and color models were explained in addition to the discussion of different ideas, orientations and previous works behind the subject of matter. Available color ...

  2. Color response and color transport in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Using color kinetic theory, we discuss color conduction and color response in a quark-gluon plasma. Collective color oscillations and their damping rates are investigated. An instability of the thermal equilibrium state in high T QCD is discovered

  3. In-Situ Resource Utilization for further exploration of the Moon

    Science.gov (United States)

    Thakore, B.; Pohajsky, S.

    In-Situ Resource Utilization ISRU is the concept of living off the land Initially proposed in the mid 20th Century many experts have suggested that ISRU is an important enabler for the expansion of humanity beyond the confines of limited resources on Earth However even today ISRU remains a relatively underdeveloped and under--demonstrated in current exploration roadmaps This paper summarizes the proposals of an interdisciplinary study carried out by 27 students from 17 different countries at the International Space University The study reviewed the past and present ISRU techniques and related robotic technologies in the context of complementing the Moon and Mars exploration scenarios of the major space faring countries The economic viability and benefits of ISRU are examined together with the regulatory ethical and cultural aspects of space resource utilisation The renewed opportunities for moon exploration have rekindled interest in ISRU as an enabling technology It is important to assess both the tangible and intangible benefits of this technology in order to evaluate the technical and economic feasibility of adopting it in support of human exploration of the Moon Mars and beyond

  4. Isotopic evolution of the protoplanetary disk and the building blocks of Earth and the Moon

    DEFF Research Database (Denmark)

    Schiller, Martin; Bizzarro, Martin; Fernandes, Vera Assis

    2018-01-01

    Nucleosynthetic isotope variability among Solar System objects is often used to probe the genetic relationship between meteorite groups and the rocky planets (Mercury, Venus, Earth and Mars), which, in turn, may provide insights into the building blocks of the Earth-Moon system. Using this approach......, it has been inferred that no primitive meteorite matches the terrestrial composition and the protoplanetary disk material from which Earth and the Moon accreted is therefore largely unconstrained. This conclusion, however, is based on the assumption that the observed nucleosynthetic variability of inner...... into the thermally processed inner protoplanetary disk associated with the accretion of mass to the proto-Sun. The identical calcium isotope composition of Earth and the Moon reported here is a prediction of our model if the Moon-forming impact involved protoplanets or precursors that completed their accretion near...

  5. Cognitive aspects of color

    Science.gov (United States)

    Derefeldt, Gunilla A. M.; Menu, Jean-Pierre; Swartling, Tiina

    1995-04-01

    This report surveys cognitive aspects of color in terms of behavioral, neuropsychological, and neurophysiological data. Color is usually defined as psychophysical color or as perceived color. Behavioral data on categorical color perception, absolute judgement of colors, color coding, visual search, and visual awareness refer to the more cognitive aspects of color. These are of major importance in visual synthesis and spatial organization, as already shown by the Gestalt psychologists. Neuropsychological and neurophysiological findings provide evidence for an interrelation between cognitive color and spatial organization. Color also enhances planning strategies, as has been shown by studies on color and eye movements. Memory colors and the color- language connections in the brain also belong among the cognitive aspects of color.

  6. Topography of the Moon from the Clementine Lidar

    Science.gov (United States)

    Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Lemoine, Frank G.

    1997-01-01

    Range measurements from the lidar instrument carried aboard the Clementine spacecraft have been used to produce an accurate global topographic model of the Moon. This paper discusses the function of the lidar; the acquisition, processing, and filtering of observations to produce a global topographic model; and the determination of parameters that define the fundamental shape of the Moon. Our topographic model: a 72nd degree and order spherical harmonic expansion of lunar radii, is designated Goddard Lunar Topography Model 2 (GLTM 2). This topographic field has an absolute vertical accuracy of approximately 100 m and a spatial resolution of 2.5 deg. The field shows that the Moon can be described as a sphere with maximum positive and negative deviations of approx. 8 km, both occurring on the farside, in the areas of the Korolev and South Pole-Aitken (S.P.-Aitken) basins. The amplitude spectrum of the topography shows more power at longer wavelengths as compared to previous models, owing to more complete sampling of the surface, particularly the farside. A comparison of elevations derived from the Clementine lidar to control point elevations from the Apollo laser altimeters indicates that measured relative topographic heights generally agree to within approx. 200 in over the maria. While the major axis of the lunar gravity field is aligned in the Earth-Moon direction, the major axis of topography is displaced from this line by approximately 10 deg to the cast and intersects the farside 24 deg north of the equator. The magnitude of impact basin topography is greater than the lunar flattening (approx. 2 km) and equatorial ellipticity (approx. 800 m), which imposes a significant challenge to interpreting the lunar figure. The floors of mare basins are shown to lie close to an equipotential surface, while the floors of unflooded large basins, except for S.P.-Aitken, lie above this equipotential. The radii of basin floors are thus consistent with a hydrostatic mechanism

  7. Color response and color transport in a quark-gluon plasma

    International Nuclear Information System (INIS)

    Heinz, U.

    1986-01-01

    Using color kinetic theory, the authors discuss color conduction and color response in a quark-gluon plasma. Collective color oscillations and their damping rates are investigated. An instability of the thermal equilibrium state in high T QCD is discovered

  8. A Study of Color Transformation on Website Images for the Color Blind

    OpenAIRE

    Siew-Li Ching; Maziani Sabudin

    2010-01-01

    In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB colo...

  9. Color reproduction system based on color appearance model and gamut mapping

    Science.gov (United States)

    Cheng, Fang-Hsuan; Yang, Chih-Yuan

    2000-06-01

    By the progress of computer, computer peripherals such as color monitor and printer are often used to generate color image. However, cross media color reproduction by human perception is usually different. Basically, the influence factors are device calibration and characterization, viewing condition, device gamut and human psychology. In this thesis, a color reproduction system based on color appearance model and gamut mapping is proposed. It consists of four parts; device characterization, color management technique, color appearance model and gamut mapping.

  10. Color inference in visual communication: the meaning of colors in recycling.

    Science.gov (United States)

    Schloss, Karen B; Lessard, Laurent; Walmsley, Charlotte S; Foley, Kathleen

    2018-01-01

    People interpret abstract meanings from colors, which makes color a useful perceptual feature for visual communication. This process is complicated, however, because there is seldom a one-to-one correspondence between colors and meanings. One color can be associated with many different concepts (one-to-many mapping) and many colors can be associated with the same concept (many-to-one mapping). We propose that to interpret color-coding systems, people perform assignment inference to determine how colors map onto concepts. We studied assignment inference in the domain of recycling. Participants saw images of colored but unlabeled bins and were asked to indicate which bins they would use to discard different kinds of recyclables and trash. In Experiment 1, we tested two hypotheses for how people perform assignment inference. The local assignment hypothesis predicts that people simply match objects with their most strongly associated color. The global assignment hypothesis predicts that people also account for the association strengths between all other objects and colors within the scope of the color-coding system. Participants discarded objects in bins that optimized the color-object associations of the entire set, which is consistent with the global assignment hypothesis. This sometimes resulted in discarding objects in bins whose colors were weakly associated with the object, even when there was a stronger associated option available. In Experiment 2, we tested different methods for encoding color-coding systems and found that people were better at assignment inference when color sets simultaneously maximized the association strength between assigned color-object parings while minimizing associations between unassigned pairings. Our study provides an approach for designing intuitive color-coding systems that facilitate communication through visual media such as graphs, maps, signs, and artifacts.

  11. A subjective evaluation of high-chroma color with wide color-gamut display

    Science.gov (United States)

    Kishimoto, Junko; Yamaguchi, Masahiro; Ohyama, Nagaaki

    2009-01-01

    Displays tends to expand its color gamut, such as multi-primary color display, Adobe RGB and so on. Therefore displays got possible to display high chroma colors. However sometimes, we feel unnatural some for the image which only expanded chroma. Appropriate gamut mapping method to expand color gamut is not proposed very much. We are attempting preferred expanded color reproduction on wide color gamut display utilizing high chroma colors effectively. As a first step, we have conducted an experiment to investigate the psychological effect of color schemes including highly saturated colors. We used the six-primary-color projector that we have developed for the presentation of test colors. The six-primary-color projector's gamut volume in CIELAB space is about 1.8 times larger than the normal RGB projector. We conducted a subjective evaluation experiment using the SD (Semantic Differential) technique to find the quantitative psychological effect of high chroma colors.

  12. MoonBEAM: A Beyond Earth-Orbit Gamma-Ray Burst Detector for Gravitational-Wave Astronomy

    Science.gov (United States)

    Hui, C. M.; Briggs, M. S.; Goldstein, A. M.; Jenke, P. A.; Kocevski, D.; Wilson-Hodge, C. A.

    2018-01-01

    Moon Burst Energetics All-sky Monitor (MoonBEAM) is a CubeSat concept of deploying gamma-ray detectors in cislunar space to improve localization precision for gamma-ray bursts by utilizing the light travel time difference between different orbits. We present here a gamma-ray SmallSat concept in Earth-Moon L3 halo orbit that is capable of rapid response and provide a timing baseline for localization improvement when partnered with an Earth-orbit instrument. Such an instrument would probe the extreme processes in cosmic collision of compact objects and facilitate multi-messenger time-domain astronomy to explore the end of stellar life cycles and black hole formations.

  13. An Alternative view of Earth's Tectonics : The Moon's explosive origin out of SE Asia.

    Science.gov (United States)

    Coleman, P. F.

    2017-12-01

    A lunar birth scar is typically considered untenable, under the standard paradigm (GTS-4.6-0 Ga, Giant Impact/Plate Tectonics), since it would have been erased by a combination of Wilson recycling, and erosion. This paradigm, while supported by robust, absolute dating, is still provisional, and, like all scientifc paradigms, is nonetheless open to refutation. It cannot, a priori, rule out such a scar. If empirical evidence were to be discovered, in favor of a lunar birthmark, it would have profound implications for the standard view. Coleman (2015) proposed an alternative paradigm based on an internal explosion of Proto-Earth (PE) that ejected the Moon into orbit and left coeval global signatures, such as; ocean-continent antipodality, the global geoid, origin of water, continents, trenches, fault lines, LIPs, hotspots, seamount chains, from the high TP shock/seismic waves. The abrupt deceleration also led to inertial effects of PE's crustal layers, possibly explaining subduction/obduction and fold and thrust fold belts. One major, first order, line of evidence is the actual fission signature ( 4000+ km long) where the Moon was explosively thrust tangentially (to the core) through ductile mantle (see Fig B) to escape into orbit. The proposed path, (locus Moon's center) is from (0°, 78.5°E) (Fig A), near present day India, to (+14.4°, 119°E) out of SE Asia (See Fig C). Possible evidence in favor of this path (but not limited to) include: the Indian Geoid Anomaly Low ( Moon's exhumation?), the Himalayas and Tibetan Plateau (generated by the Moon's NE collisional movement and temporary hole and mantle rebound), SE Asia with many minor plates and back arc basins ( the Moon's exit zone), the East African Rifts (EARs) form a NE-directed pull apart region (explained as a set explosive crustal fragments or "plates") moving towards this relic unconsolidated Asian sink hole (See Fig D). The existence of a fossilised lunar birth points to a recent Earth-Moon, since

  14. Role of color memory in successive color constancy.

    Science.gov (United States)

    Ling, Yazhu; Hurlbert, Anya

    2008-06-01

    We investigate color constancy for real 2D paper samples using a successive matching paradigm in which the observer memorizes a reference surface color under neutral illumination and after a temporal interval selects a matching test surface under the same or different illumination. We find significant effects of the illumination, reference surface, and their interaction on the matching error. We characterize the matching error in the absence of illumination change as the "pure color memory shift" and introduce a new index for successive color constancy that compares this shift against the matching error under changing illumination. The index also incorporates the vector direction of the matching errors in chromaticity space, unlike the traditional constancy index. With this index, we find that color constancy is nearly perfect.

  15. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  16. Wave-driven Rotation in Supersonically Rotating Mirrors

    International Nuclear Information System (INIS)

    Fetterman, A.; Fisch, N.J.

    2010-01-01

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  17. Water reuse potential in truck wash using a Rotating Biological Contactor

    OpenAIRE

    Eduardo Lucas Subtil; José Carlos Mierzwa; Ivanildo Hespanhol; Raphael Rodrigues

    2016-01-01

    This study evaluated the water reuse potential for truck washing using the effluent treated by a Rotating Biological Contactor (RBC) operated in full scale. In order to evaluate the reuse potential, a mass balance was performed for the reuse system taking into account the concentration of Total Dissolved Solids as the critical contaminant. The treatment system produced an effluent with average concentration of color, turbidity, TDS and BOD5 of 45 ± 14 uC, 15 ± 6.0 NTU, 244 ± 99 mg TDS / L and...

  18. Periodic orbit-attitude solutions along planar orbits in a perturbed circular restricted three-body problem for the Earth-Moon system

    Science.gov (United States)

    Bucci, Lorenzo; Lavagna, Michèle; Guzzetti, Davide; Howell, Kathleen C.

    2018-06-01

    Interest on Large Space Structures (LSS), orbiting in strategic and possibly long-term stable locations, is nowadays increasing in the space community. LSS can serve as strategic outpost to support a variety of manned and unmanned mission, or may carry scientific payloads for astronomical observations. The paper focuses on analysing LSS in the Earth-Moon system, exploring dynamical structures that are available within a multi-body gravitational environment. Coupling between attitude and orbital dynamics is investigated, with particular interest on the gravity gradient torque exerted by the two massive attractors. First, natural periodic orbit-attitude solutions are obtained; a LSS that exploits such solutions would benefit of a naturally periodic body rotation synchronous with the orbital motion, easing the effort of the attitude control system to satisfy pointing requirements. Then, the solar radiation pressure is introduced into the fully coupled dynamical model and its effects investigated, discovering novel periodic attitude solutions. Benefits of periodic behaviours that incorporate solar radiation pressure are discussed, and analysed via the variation of some parameters (e.g reflection/absorption coefficients, position of the centre of pressure). As a final step to refine the current perturbed orbit-attitude model, a structure flexibility is also superimposed to a reference orbit-attitude rigid body motion via a simple, yet effective model. The coupling of structural vibrations and attitude motion is preliminarily explored, and allows identification of possible challenges, that may be faced to position a LSS in a periodic orbit within the Earth-Moon system.

  19. World cup soccer players tend to be born with sun and moon in adjacent zodiacal signs

    Science.gov (United States)

    Verhulst, J

    2000-01-01

    The ecliptic elongation of the moon with respect to the sun does not show uniform distribution on the birth dates of the 704 soccer players selected for the 1998 World Cup. However, a uniform distribution is expected on astronomical grounds. The World Cup players show a very pronounced tendency (p = 0.00001) to be born on days when the sun and moon are in adjacent zodiacal signs. Key Words: soccer; World Cup; astrology; moon PMID:11131239

  20. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon

    International Nuclear Information System (INIS)

    2010-01-01

    The shadowing of cosmic ray primaries by the the moon and sun was observed by the MINOS far detector at a depth of 2070 mwe using 83.54 million cosmic ray muons accumulated over 1857.91 live-days. The shadow of the moon was detected at the 5.6 σ level and the shadow of the sun at the 3.8 σ level using a log-likelihood search in celestial coordinates. The moon shadow was used to quantify the absolute astrophysical pointing of the detector to be 0.17 ± 0.12 o . Hints of Interplanetary Magnetic Field effects were observed in both the sun and moon shadow.

  1. AVGS, AR and D for Satellites, ISS, the Moon, Mars and Beyond

    Science.gov (United States)

    Hintze, Geoffrey C.; Cornett, Keith G.; Rahmatipour, Michael H.; Heaton, Andrew F.; Newman, Larry E.; Fleischmann, Kevin D.; Hamby, Byron J.

    2007-01-01

    With the continuous need to rotate crew and re-supply the International Space Station (ISS) and the desire to return humans to the Moon and for the first time, place humans on Mars, NASA must develop a more robust and highly reliable capability to perform Autonomous Rendezvous and Capture (AR&C) because, unlike the Apollo missions, NASA plans to send the entire crew to the Lunar or Martian surface and must be able to dock with the Orion spacecraft upon return. In 1997, NASA developed the Video Guidance Sensor (VGS) which was flown and tested on STS-87 and STS-95. In 2001, NASA designed and built a more enhanced version of the VGS, called the Advanced Video Guidance Sensor (AVGS). The AVGS offered significant technology improvements to the precursor VGS design. This paper will describe the AVGS as it was in the DART mission of 2005 and the Orbital Express mission of 2007. The paper will describe the capabilities and design concepts of the AVGS as it was flown on the DART 2005 Mission and the DARPA Orbital Express Mission slated to fly in 2007. The paper will cover the Flight Software, problems encountered, testing for Orbital Express and where NASA is going in the future.

  2. ColorPhylo: A Color Code to Accurately Display Taxonomic Classifications.

    Science.gov (United States)

    Lespinats, Sylvain; Fertil, Bernard

    2011-01-01

    Color may be very useful to visualise complex data. As far as taxonomy is concerned, color may help observing various species' characteristics in correlation with classification. However, choosing the number of subclasses to display is often a complex task: on the one hand, assigning a limited number of colors to taxa of interest hides the structure imbedded in the subtrees of the taxonomy; on the other hand, differentiating a high number of taxa by giving them specific colors, without considering the underlying taxonomy, may lead to unreadable results since relationships between displayed taxa would not be supported by the color code. In the present paper, an automatic color coding scheme is proposed to visualise the levels of taxonomic relationships displayed as overlay on any kind of data plot. To achieve this goal, a dimensionality reduction method allows displaying taxonomic "distances" onto a Euclidean two-dimensional space. The resulting map is projected onto a 2D color space (the Hue, Saturation, Brightness colorimetric space with brightness set to 1). Proximity in the taxonomic classification corresponds to proximity on the map and is therefore materialised by color proximity. As a result, each species is related to a color code showing its position in the taxonomic tree. The so called ColorPhylo displays taxonomic relationships intuitively and can be combined with any biological result. A Matlab version of ColorPhylo is available at http://sy.lespi.free.fr/ColorPhylo-homepage.html. Meanwhile, an ad-hoc distance in case of taxonomy with unknown edge lengths is proposed.

  3. V color centers in electrolytically colored hydroxyl-doped sodium chloride crystals

    International Nuclear Information System (INIS)

    Gu Hongen; Song Cuiying; Han Li

    2006-01-01

    Hydroxyl-doped sodium chloride crystals were successfully colored electrolytically by using pointed anode and flat cathode at various temperatures and under various electric field strengths. V 2 and V 3 color centers were produced in the colored crystals. Current-time curves for the electrolytic colorations were given, and activation energy for the V 2 and V 3 color center migration was determined. Production of the V 2 and V 3 color centers and formation of current zones for the electrolytic colorations of the hydroxyl-doped sodium chloride crystals are explained

  4. Europe over the moon with new satellite

    CERN Document Server

    2002-01-01

    ESA has taken delivery of a 3kg device that it plans to use to complete the first high-resolution map of the moon. The D-CIXS (Demonstration of a Compact Imaging X-Ray Spectrometer) will be aboard the SMART-1 satellite to be launched from French Guyana in South America next February (1/2 page).

  5. Color Space and Its Divisions: Color Order from Antiquity to the Present

    Science.gov (United States)

    Kuehni, Rolf G.

    2003-03-01

    It has been postulated that humans can differentiate between millions of gradations in color. Not surprisingly, no completely adequate, detailed catalog of colors has yet been devised, however the quest to understand, record, and depict color is as old as the quest to understand the fundamentals of the physical world and the nature of human consciousness. Rolf Kuehni's Color Space and Its Divisions: Color Order from Antiquity to the Present represents an ambitious and unprecedented history of man's inquiry into color order, focusing on the practical applications of the most contemporary developments in the field. Kuehni devotes much of his study to geometric, three-dimensional arrangements of color experiences, a type of system developed only in the mid-nineteenth century. Color spaces are of particular interest for color quality-control purposes in the manufacturing and graphics industries. The author analyzes three major color order systems in detail: Munsell, OSA-UCS, and NCS. He presents historical and current information on color space developments in color vision, psychology, psychophysics, and color technology. Chapter topics include: A historical account of color order systems Fundamentals of psychophysics and the relationship between stimuli and experience Results of perceptual scaling of colors according to attributes History of the development of mathematical color space and difference formulas Analysis of the agreements and discrepancies in psychophysical data describing color differences An experimental plan for the reliable, replicated perceptual data necessary to make progress in the field Experts in academia and industry, neuroscientists, designers, art historians, and anyone interested in the nature of color will find Color Space and Its Divisions to be the authoritative reference in its field.

  6. Four Years on Orbit at the Moon with LOLA

    Science.gov (United States)

    Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Mazarico, E.; Torrence, M. H.; Lemoine, F. G.

    2013-12-01

    After four years of near-continuous operation at the Moon, the Lunar Orbiter Laser Altimeter (LOLA) continues to collect altimetry, surface roughness, slope and normal reflectance data. Although the instrument is beginning to show the effects of tens of thousands of thermal cycles and the natural process of the aging of the laser transmitters, LOLA continues to acquire data on the sunlit portion of every orbit on all 5 laser beams when below 100-km altitude. LOLA has acquired over 6x10^9 altimeter measurements, all geodetically controlled to the center-of-mass of the Moon with a radial precision of around 10 cm and an accuracy of about 1 meter. The position of the measurements on the lunar surface is primarily limited by the knowledge of the position of the spacecraft in orbit; in the last year the LRO orbit accuracy has improved significantly as a result of the availability of an accurate gravity model of the Moon from the GRAIL Discovery mission. Our present estimate of positional accuracy is less than 10 m rms but is only achievable with a GRAIL gravity model to at least degree and order 600 because of the perturbing gravitational effect of the Moon's surface features. Significant improvements in the global shape and topography have assisted the Lunar Reconnaissance Orbiter Camera (LROC) stereo mapping program, and the identification of potential lunar landing sites for ESA and Russia, particularly in the high-latitude polar regions where 5- and 10-meter average horizontal resolution has been obtained. LOLA's detailed mapping of the polar regions has improved the delineation of permanently-shadowed areas and assisted in the understanding of the LEND neutron data and its relationship to surface slopes. Recently, a global, calibrated LOLA normal albedo dataset at 1064 nm has been developed and is being combined with analysis and modeling by the Diviner team for the identification of the coldest locations in the polar regions.

  7. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.

    2015-03-30

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  8. Temperature measurement of plasma-assisted flames: comparison between optical emission spectroscopy and 2-color laser induced fluorescence techniques

    KAUST Repository

    Lacoste, Deanna A.; Heitz, Sylvain A.; Moeck, Jonas P.

    2015-01-01

    Accurate thermometry of highly reactive environments, such as plasma-assisted combustion, is challenging. With the help of conical laminar premixed methane-air flames, this study compares two thermometry techniques for the temperature determination in a combustion front enhanced by nanosecond repetitively pulsed (NRP) plasma discharges. Based on emission spectroscopic analysis, the results show that the rotational temperature of CH(A) gives a reasonable estimate for the adiabatic flame temperature, only for lean and stoichiometric conditions. The rotational temperature of N2(C) is found to significantly underestimate the flame temperature. The 2-color OH-PLIF technique gives correct values of the flame temperature.

  9. COLORS AND COLOR GRADIENTS IN BULGES OF GALAXIES

    NARCIS (Netherlands)

    BALCELLS, M; PELETIER, RF

    We have obtained surface photometry in U, B, R, and I for a complete optically selected sample of 45 early-type spiral galaxies, to investigate the colors and color gradients of spiral bulges. Color profiles in U-R, B-R, U-B, and R-I have been determined in wedges opening on the semiminor axes.

  10. Automatic data-processing equipment of moon mark of nail for verifying some experiential theory of Traditional Chinese Medicine.

    Science.gov (United States)

    Niu, Renjie; Fu, Chenyu; Xu, Zhiyong; Huang, Jianyuan

    2016-04-29

    Doctors who practice Traditional Chinese Medicine (TCM) diagnose using four methods - inspection, auscultation and olfaction, interrogation, and pulse feeling/palpation. The shape and shape changes of the moon marks on the nails are an important indication when judging the patient's health. There are a series of classical and experimental theories about moon marks in TCM, which does not have support from statistical data. To verify some experiential theories on moon mark in TCM by automatic data-processing equipment. This paper proposes the equipment that utilizes image processing technology to collect moon mark data of different target groups conveniently and quickly, building a database that combines this information with that gathered from the health and mental status questionnaire in each test. This equipment has a simple design, a low cost, and an optimized algorithm. The practice has been proven to quickly complete automatic acquisition and preservation of key data about moon marks. In the future, some conclusions will likely be obtained from these data; some changes of moon marks related to a special pathological change will be established with statistical methods.

  11. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  12. Rotational seismology

    Science.gov (United States)

    Lee, William H K.

    2016-01-01

    Rotational seismology is an emerging study of all aspects of rotational motions induced by earthquakes, explosions, and ambient vibrations. It is of interest to several disciplines, including seismology, earthquake engineering, geodesy, and earth-based detection of Einstein’s gravitation waves.Rotational effects of seismic waves, together with rotations caused by soil–structure interaction, have been observed for centuries (e.g., rotated chimneys, monuments, and tombstones). Figure 1a shows the rotated monument to George Inglis observed after the 1897 Great Shillong earthquake. This monument had the form of an obelisk rising over 19 metres high from a 4 metre base. During the earthquake, the top part broke off and the remnant of some 6 metres rotated about 15° relative to the base. The study of rotational seismology began only recently when sensitive rotational sensors became available due to advances in aeronautical and astronomical instrumentations.

  13. Exploring the martian moons a human mission to Deimos and Phobos

    CERN Document Server

    von Ehrenfried, Manfred “Dutch”

    2017-01-01

    This book explores the once popular idea of 'Flexible Path' in terms of Mars, a strategy that would focus on a manned orbital mission to Mars's moons rather than the more risky, expensive and time-consuming trip to land humans on the Martian surface. While currently still not the most popular idea, this mission would take advantage of the operational, scientific and engineering lessons to be learned from going to Mars's moons first. Unlike a trip to the planet's surface, an orbital mission avoids the dangers of the deep gravity well of Mars and a very long stay on the surface. This is analogous to Apollo 8 and 10, which preceded the landing on the Moon of Apollo 11. Furthermore, a Mars orbital mission could be achieved at least five years, possibly 10 before a landing mission. Nor would an orbital mission require all of the extra vehicles, equipment and supplies needed for a landing and a stay on the planet for over a year. The cost difference between the two types of missions is in the order of tens of billi...

  14. Examination of Color-Lighting Control System Using Colored Paper User Interface

    OpenAIRE

    Aida Hiroto; Matsui Kento; Keisuke Soma; Murakami Hiroki; Miki Mistunori

    2016-01-01

    In recent year, Full-Color LED Lighting that can be changed to various color such as red, green, blue has been appeared with development of LED Lighting. By Color-Lighting control, users affected such as concentrating and relaxing. Therefore, Color-lighting control will spread to various place such as home, offices, stations. However color-lighting control affected some disturbance such as daylight, display when Full-Color LED controlled indoors. Also, information devices control get difficul...

  15. Combining fine texture and coarse color features for color texture classification

    Science.gov (United States)

    Wang, Junmin; Fan, Yangyu; Li, Ning

    2017-11-01

    Color texture classification plays an important role in computer vision applications because texture and color are two fundamental visual features. To classify the color texture via extracting discriminative color texture features in real time, we present an approach of combining the fine texture and coarse color features for color texture classification. First, the input image is transformed from RGB to HSV color space to separate texture and color information. Second, the scale-selective completed local binary count (CLBC) algorithm is introduced to extract the fine texture feature from the V component in HSV color space. Third, both H and S components are quantized at an optimal coarse level. Furthermore, the joint histogram of H and S components is calculated, which is considered as the coarse color feature. Finally, the fine texture and coarse color features are combined as the final descriptor and the nearest subspace classifier is used for classification. Experimental results on CUReT, KTH-TIPS, and New-BarkTex databases demonstrate that the proposed method achieves state-of-the-art classification performance. Moreover, the proposed method is fast enough for real-time applications.

  16. A relativistic colored spinning particle in an external color field

    International Nuclear Information System (INIS)

    Heinz, U.

    1984-01-01

    I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)

  17. A Color-Opponency Based Biological Model for Color Constancy

    Directory of Open Access Journals (Sweden)

    Yongjie Li

    2011-05-01

    Full Text Available Color constancy is the ability of the human visual system to adaptively correct color-biased scenes under different illuminants. Most of the existing color constancy models are nonphysiologically plausible. Among the limited biological models, the great majority is Retinex and its variations, and only two or three models directly simulate the feature of color-opponency, but only of the very earliest stages of visual pathway, i.e., the single-opponent mechanisms involved at the levels of retinal ganglion cells and lateral geniculate nucleus (LGN neurons. Considering the extensive physiological evidences supporting that both the single-opponent cells in retina and LGN and the double-opponent neurons in primary visual cortex (V1 are the building blocks for color constancy, in this study we construct a color-opponency based color constancy model by simulating the opponent fashions of both the single-opponent and double-opponent cells in a forward manner. As for the spatial structure of the receptive fields (RF, both the classical RF (CRF center and the nonclassical RF (nCRF surround are taken into account for all the cells. The proposed model was tested on several typical image databases commonly used for performance evaluation of color constancy methods, and exciting results were achieved.

  18. Colored operads

    CERN Document Server

    Yau, Donald

    2016-01-01

    The subject of this book is the theory of operads and colored operads, sometimes called symmetric multicategories. A (colored) operad is an abstract object which encodes operations with multiple inputs and one output and relations between such operations. The theory originated in the early 1970s in homotopy theory and quickly became very important in algebraic topology, algebra, algebraic geometry, and even theoretical physics (string theory). Topics covered include basic graph theory, basic category theory, colored operads, and algebras over colored operads. Free colored operads are discussed in complete detail and in full generality. The intended audience of this book includes students and researchers in mathematics and other sciences where operads and colored operads are used. The prerequisite for this book is minimal. Every major concept is thoroughly motivated. There are many graphical illustrations and about 150 exercises. This book can be used in a graduate course and for independent study.

  19. Color management of porcelain veneers: influence of dentin and resin cement colors.

    Science.gov (United States)

    Dozic, Alma; Tsagkari, Maria; Khashayar, Ghazal; Aboushelib, Moustafa

    2010-01-01

    Porcelain veneers have become an interesting treatment option to correct the shape and color of anterior teeth. Because of their limited thickness and high translucency, achieving a good color match is influenced by several variables. The aim of this work was to investigate the influence of natural dentin and resin cement colors on final color match of porcelain veneers. A preselected shade tab (A1) was chosen as the target color for a maxillary central incisor, and its color parameters (L*a*b*) were measured using a digital spectrophotometer (SpectroShade, MHT). Nine natural dentin colors (Natural Die Material, Ivoclar Vivadent) representing a wide range of tooth colors were used to prepare resin replicas of the maxillary central incisor with a standard preparation for porcelain veneers. The prepared porcelain veneers (IPS Empress Esthetic, A1, 0.6 mm thick, Ivoclar Vivadent) were cemented on the resin dies (nine groups of natural dentin colors) using seven shades of resin cement (Variolink Veneers, Ivoclar Vivadent). The L*a*b* values of the cemented veneers were measured, and DE values were calculated against the preselected target color (A1). DE greater than 3.3 was considered as a significant color mismatch detectable by the human eye. The seven shades of resin cement had no significant influence on the final color of the veneers, as the measured DE values were almost identical for every test group. On the other hand, the color of natural dentin was a significant factor that influenced final color match. None of the 63 tested combinations (nine natural dentin colors and seven resin cement colors) produced an acceptable color match. Thin porcelain veneers cannot mask underlying tooth color even when different shades of resin cement are used. Incorporation of opaque porcelain (high chroma) may improve final color match.

  20. Apollo Anniversary: Moon Landing "Inspired World"

    Institute of Scientific and Technical Information of China (English)

    John Roach; 李然

    2004-01-01

    @@ On July 20, 1969, at 10:56 p.m. ET, Apollo 11 astronaut Neil Armstrong stepped onto the surface of the moon and said, "That' s one small step for man,one giant leap for mankind." Thirty-five years later, Steven Dick, NASA's chief historian at the space agency's headquarters in Washington, D.C. , said that a thousand years from now, that step may be considered the crowning① achievement of the 20th century.

  1. Changes in the composition of ichthyoplankton assemblage and plastic debris in mangrove creeks relative to moon phases.

    Science.gov (United States)

    Lima, A R A; Barletta, M; Costa, M F; Ramos, J A A; Dantas, D V; Melo, P A M C; Justino, A K S; Ferreira, G V B

    2016-07-01

    Lunar influence on the distribution of fish larvae, zooplankton and plastic debris in mangrove creeks of the Goiana Estuary, Brazil, was studied over a lunar cycle. Cetengraulis edentulus, Anchovia clupeoides and Rhinosardinia bahiensis were the most abundant fish larvae (56·6%), independent of the moon phase. The full moon had a positive influence on the abundance of Gobionellus oceanicus, Cynoscion acoupa and Atherinella brasiliensis, and the new moon on Ulaema lefroyi. The full and new moons also influenced the number of zoeae and megalopae of Ucides cordatus, protozoeae and larvae of caridean shrimps, and the number of hard and soft plastic debris, both 5 mm. Micro and macroplastics were present in samples from all 12 creeks studied, at densities similar to the third most abundant taxon, R. bahiensis. Cetengraulis edentulus and R. bahiensis showed a strong positive correlation with the last quarter moon, when there was less zooplankton available in the creeks and higher abundance of microplastic threads. Anchovia clupeoides, Diapterus rhombeus, U. lefroyi and hard microplastics were positively associated with different moon phases, when calanoid copepods, Caridean larvae and zoeae of U. cordatus were highly available in the creeks. Cynoscion acoupa, G. oceanicus and A. brasiliensis were strongly associated with the full moon, when protozoeae of caridean shrimps and megalopae of U. cordatus were also highly available, as were hard and soft macroplastics, paint chips (mangrove creeks as nursery habitats. The moon phases influenced the distribution of fish larvae species, zooplankton and plastic debris by changing their compositions and abundances in the mangrove creeks of the Goiana Estuary when under the influence of different tidal current regimes. © 2015 The Fisheries Society of the British Isles.

  2. P1-15: Categorical Color Perception of LED Illuminant Color for Deuteranomals

    Directory of Open Access Journals (Sweden)

    Saeko Oishi

    2012-10-01

    Full Text Available Color information has great value in our everyday lives, but it is not mindful of people with color vision deficiency (CVD. We can choose several color names to categorize a lot of colors around us. Eleven color names (white, black, red, green, yellow, blue, brown, orange, pink, and gray are known as basic color categories, but people with CVD cannot necessarily describe colors as people who are color vision normal (CVN do. Previous studies showed that it was hard for people with CVD to discriminate illuminant color from object color, and their color perception changed largely depending on experimental conditions. In this study we investigated categorical color perception of illuminant color for deuteranomals, using a mixture of light which consists of a red, a green, and a blue LED as a test stimulus. We tested those stimuli with three luminance levels (180 cd/m2, 18 cd/m2, 1.8 cd/m2 and two visual angles (10 deg, 0.5 deg. Subjects were three deuteranomals and three people who are CVN. Our result showed that the categorical color of mild deuteranomals was similar to that of those who were CVN, but that of severe deuteranomals was not. Severe deuteranomals judged more low chromatic colors as achromatic colors than those who were CVN. The smaller visual angle or lower luminance level the test stimulus had, the more deuteranomals confused color. The results suggest that the effect of the Bezold-Brucke phenomenon is greater to deuteranomals than to those who are CVN. Furthermore, deuteranomals use not only chromatic information but also luminance information when they describe color.

  3. Colored tracks of heavy ion particles recorded on photographic color film

    International Nuclear Information System (INIS)

    Kuge, K.; Yasuda, N.; Kumagai, H.; Aoki, N.; Hasegawa, A.

    2002-01-01

    A new method to obtain the three-dimensional information on nuclear tracks was developed using color photography. Commercial color films were irradiated with ion beam and color-developed. The ion tracks were represented with color images in which different depths were indicated by different colors, and the three-dimensional information was obtained from color changes. Details of this method are reported, and advantages and limitations are discussed in comparison with a conventional method using a nuclear emulsion

  4. More Sophisticated Fits of the Oribts of Haumea's Interacting Moons

    Science.gov (United States)

    Oldroyd, William Jared; Ragozzine, Darin; Porter, Simon

    2018-04-01

    Since the discovery of Haumea's moons, it has been a challenge to model the orbits of its moons, Hi’iaka and Namaka. With many precision HST observations, Ragozzine & Brown 2009 succeeded in calculating a three-point mass model which was essential because Keplerian orbits were not a statistically acceptable fit. New data obtained in 2010 could be fit by adding a J2 and spin pole to Haumea, but new data from 2015 was far from the predicted locations, even after an extensive exploration using Bayesian Markov Chain Monte Carlo methods (using emcee). Here we report on continued investigations as to why our model cannot fit the full 10-year baseline of data. We note that by ignoring Haumea and instead examining the relative motion of the two moons in the Hi’iaka centered frame leads to adequate fits for the data. This suggests there are additional parameters connected to Haumea that will be required in a full model. These parameters are potentially related to photocenter-barycenter shifts which could be significant enough to affect the fitting process; these are unlikely to be caused by the newly discovered ring (Ortiz et al. 2017) or by unknown satellites (Burkhart et al. 2016). Additionally, we have developed a new SPIN+N-bodY integrator called SPINNY that self-consistently calculates the interactions between n-quadrupoles and is designed to test the importance of other possible effects (Haumea C22, satellite torques on the spin-pole, Sun, etc.) on our astrometric fits. By correctly determining the orbit of Haumea’s satellites we develop a better understanding of the physical properties of each of the objects with implications for the formation of Haumea, its moons, and its collisional family.

  5. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    Science.gov (United States)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  6. ColorTracker

    NARCIS (Netherlands)

    Holzheu, Stefanie; Lee, S.; Herneoja, Aulikki; Österlund, Toni; Markkanen, Piia

    2016-01-01

    With the work-in-progress research project ColorTracker we explore color as a formal design tool. This project-based paper describes a novel software application that processes color composition of a place and transcribes the data into three-dimensional geometries for architectural design. The

  7. From the Icy Satellites to Small Moons and Rings: Spectral Indicators by Cassini-VIMS Unveil Compositional Trends in the Saturnian System

    Science.gov (United States)

    Filacchione, G.; Capaccioni, F.; Ciarniello, M.; Nicholson, P. D.; Clark, R. N.; Cuzzi, J. N.; Buratti, B. B.; Cruikshank, D. P.; Brown, R. H.

    2017-01-01

    Despite water ice being the most abundant species on Saturn satellites' surfaces and ring particles, remarkable spectral differences in the 0.35-5.0 μm range are observed among these objects. Here we report about the results of a comprehensive analysis of more than 3000 disk-integrated observations of regular satellites and small moons acquired by VIMS aboard Cassini mission between 2004 and 2016. These observations, taken from very different illumination and viewing geometries, allow us to classify satellites' and rings' compositions by means of spectral indicators, e.g. 350-550 nm - 550-950 nm spectral slopes and water ice band parameters [1,2,3]. Spectral classification is further supported by indirect retrieval of temperature by means of the 3.6 μm I/F peak wavelength [4,5]. The comparison with syntethic spectra modeled by means of Hapke's theory point to different compositional classes where water ice, amorphous carbon, tholins and CO2 ice in different quantities and mixing modalities are the principal endmembers [3, 6]. When compared to satellites, rings appear much more red at visible wavelengths and show more intense 1.5-2.0 μm band depths [7]. Our analysis shows that spectral classes are detected among the principal satellites with Enceladus and Tethys the ones with stronger water ice band depths and more neutral spectral slopes while Rhea evidences less intense band depths and more red visible spectra. Even more intense reddening in the 0.55-0.95 μm range is observed on Iapetus leading hemisphere [8] and on Hyperion [9]. With an intermediate reddening, the minor moons seems to be the spectral link between the principal satellites and main rings [10]: Prometheus and Pandora appear similar to Cassini Division ring particles. Epimetheus shows more intense water ice bands than Janus. Epimetheus' visible colors are similar to water ice rich moons while Janus is more similar to C ring particles. Finally, Dione and Tethys lagrangian satellites show a very

  8. Colors in mind: a novel paradigm to investigate pure color imagery.

    Science.gov (United States)

    Wantz, Andrea L; Borst, Grégoire; Mast, Fred W; Lobmaier, Janek S

    2015-07-01

    Mental color imagery abilities are commonly measured using paradigms that involve naming, judging, or comparing the colors of visual mental images of well-known objects (e.g., "Is a sunflower darker yellow than a lemon"?). Although this approach is widely used in patient studies, differences in the ability to perform such color comparisons might simply reflect participants' general knowledge of object colors rather than their ability to generate accurate visual mental images of the colors of the objects. The aim of the present study was to design a new color imagery paradigm. Participants were asked to visualize a color for 3 s and then to determine a visually presented color by pressing 1 of 6 keys. We reasoned that participants would react faster when the imagined and perceived colors were congruent than when they were incongruent. In Experiment 1, participants were slower in incongruent than congruent trials but only when they were instructed to visualize the colors. The results in Experiment 2 demonstrate that the congruency effect reported in Experiment 1 cannot be attributed to verbalization of the color that had to be visualized. Finally, in Experiment 3, the congruency effect evoked by mental imagery correlated with performance in a perceptual version of the task. We discuss these findings with respect to the mechanisms that underlie mental imagery and patients suffering from color imagery deficits. (c) 2015 APA, all rights reserved.

  9. FIRST LIGHT: MeV ASTROPHYSICS FROM THE MOON

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Richard S. [University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, AL 35899 (United States); Lawrence, David J., E-mail: richard.s.miller@uah.edu [Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States)

    2016-06-01

    We report evidence of the first astrophysical source detected from the Moon at MeV energies. Our detection of Cygnus X-1 is a validation of a new investigative paradigm in which the lunar environment is intrinsic to the detection approach: the Lunar Occultation Technique (LOT). NASA’s Lunar Prospector mission served as a proxy for a dedicated LOT-based mission. The characteristic signature of temporal modulation, generated by repeated lunar occultations and encoded within acquired gamma-ray data (0.5–9 MeV), is consistent with an unambiguous detection of Cygnus X-1 at 5.4 σ significance. Source localization and long-term monitoring capabilities of the LOT are also demonstrated. This “first light” detection verifies the basic tenets of the LOT methodology, reinforces its feasibility as an alternative astronomical detection paradigm for nuclear astrophysics investigations, and is an illustration of the fundamental benefits of the Moon as a platform for science.

  10. License plate localization in complex scenes based on oriented FAST and rotated BRIEF feature

    Science.gov (United States)

    Wang, Ran; Xia, Yuanchun; Wang, Guoyou; Tian, Jiangmin

    2015-09-01

    Within intelligent transportation systems, fast and robust license plate localization (LPL) in complex scenes is still a challenging task. Real-world scenes introduce complexities such as variation in license plate size and orientation, uneven illumination, background clutter, and nonplate objects. These complexities lead to poor performance using traditional LPL features, such as color, edge, and texture. Recently, state-of-the-art performance in LPL has been achieved by applying the scale invariant feature transform (SIFT) descriptor to LPL for visual matching. However, for applications that require fast processing, such as mobile phones, SIFT does not meet the efficiency requirement due to its relatively slow computational speed. To address this problem, a new approach for LPL, which uses the oriented FAST and rotated BRIEF (ORB) feature detector, is proposed. The feature extraction in ORB is much more efficient than in SIFT and is invariant to scale and grayscale as well as rotation changes, and hence is able to provide superior performance for LPL. The potential regions of a license plate are detected by considering spatial and color information simultaneously, which is different from previous approaches. The experimental results on a challenging dataset demonstrate the effectiveness and efficiency of the proposed method.

  11. Coloring mixed hypergraphs

    CERN Document Server

    Voloshin, Vitaly I

    2002-01-01

    The theory of graph coloring has existed for more than 150 years. Historically, graph coloring involved finding the minimum number of colors to be assigned to the vertices so that adjacent vertices would have different colors. From this modest beginning, the theory has become central in discrete mathematics with many contemporary generalizations and applications. Generalization of graph coloring-type problems to mixed hypergraphs brings many new dimensions to the theory of colorings. A main feature of this book is that in the case of hypergraphs, there exist problems on both the minimum and th

  12. Io After Galileo A New View of Jupiter’s Volcanic Moon

    CERN Document Server

    Lopes, Rosaly M. C

    2007-01-01

    Jupiter’s moon Io is the Solar System’s most exotic satellite. Active volcanism on Io was discovered from observations by the Voyager 1 spacecraft in 1979, confirming a possibility suggested from theoretical studies of Io’s orbit. Our knowledge of Io’s volcanism, composition, and space environment were significantly increased as a result of observations by the Galileo spacecraft from 1996 through 2001. The end of the Galileo mission in 2003 makes this an ideal time to summarize the new results in a book as no book has ever been written about Jupiter’s volcanic moon, Io.

  13. Perception of color emotions for single colors in red-green defective observers.

    Science.gov (United States)

    Sato, Keiko; Inoue, Takaaki

    2016-01-01

    It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions). The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1) reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2) examine differences in color emotions related to the three cardinal channels in human color vision; and (3) explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP). Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance) as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth ratings in

  14. Perception of color emotions for single colors in red-green defective observers

    Directory of Open Access Journals (Sweden)

    Keiko Sato

    2016-12-01

    Full Text Available It is estimated that inherited red-green color deficiency, which involves both the protan and deutan deficiency types, is common in men. For red-green defective observers, some reddish colors appear desaturated and brownish, unlike those seen by normal observers. Despite its prevalence, few studies have investigated the effects that red-green color deficiency has on the psychological properties of colors (color emotions. The current study investigated the influence of red-green color deficiency on the following six color emotions: cleanliness, freshness, hardness, preference, warmth, and weight. Specifically, this study aimed to: (1 reveal differences between normal and red-green defective observers in rating patterns of six color emotions; (2 examine differences in color emotions related to the three cardinal channels in human color vision; and (3 explore relationships between color emotions and color naming behavior. Thirteen men and 10 women with normal vision and 13 men who were red-green defective performed both a color naming task and an emotion rating task with 32 colors from the Berkeley Color Project (BCP. Results revealed noticeable differences in the cleanliness and hardness ratings between the normal vision observers, particularly in women, and red-green defective observers, which appeared mainly for colors in the orange to cyan range, and in the preference and warmth ratings for colors with cyan and purple hues. Similarly, naming errors also mainly occurred in the cyan colors. A regression analysis that included the three cone-contrasts (i.e., red-green, blue-yellow, and luminance as predictors significantly accounted for variability in color emotion ratings for the red-green defective observers as much as the normal individuals. Expressly, for warmth ratings, the weight of the red-green opponent channel was significantly lower in color defective observers than in normal participants. In addition, the analyses for individual warmth

  15. Color Degree Sum Conditions for Rainbow Triangles in Edge-Colored Graphs

    NARCIS (Netherlands)

    Li, Ruonan; Ning, Bo; Zhang, Shenggui

    Let G be an edge-colored graph and v a vertex of G. The color degree of v is the number of colors appearing on the edges incident to v. A rainbow triangle in G is one in which all edges have distinct colors. In this paper, we first prove that an edge-colored graph on n vertices contains a rainbow

  16. What is Color Blindness?

    Science.gov (United States)

    ... Color Blindness? Who Is at Risk for Color Blindness? Color Blindness Causes Color Blindness Diagnosis and Treatment How Color Blindness Is Tested What Is Color Blindness? Leer en Español: ¿Qué es el daltonismo? Written ...

  17. Young Children's Knowledge About the Moon: A Complex Dynamic System

    Science.gov (United States)

    Venville, Grady J.; Louisell, Robert D.; Wilhelm, Jennifer A.

    2012-08-01

    The purpose of this research was to use a multidimensional theoretical framework to examine young children's knowledge about the Moon. The research was conducted in the interpretive paradigm and the design was a multiple case study of ten children between the ages of three and eight from the USA and Australia. A detailed, semi-structured interview was conducted with each child. In addition, each child's parents were interviewed to determine possible social and cultural influences on the child's knowledge. We sought evidence about how the social and cultural experiences of the children might have influenced the development of their ideas. From a cognitive perspective we were interested in whether the children's ideas were constructed in a theory like form or whether the knowledge was the result of gradual accumulation of fragments of isolated cultural information. Findings reflected the strong and complex relationship between individual children, their social and cultural milieu, and the way they construct ideas about the Moon and astronomy. Findings are presented around four themes including ontology, creatures and artefacts, animism, and permanence. The findings support a complex dynamic system view of students' knowledge that integrates the framework theory perspective and the knowledge in fragments perspective. An initial model of a complex dynamic system of young children's knowledge about the Moon is presented.

  18. Color Calibration for Colorized Vision System with Digital Sensor and LED Array Illuminator

    Directory of Open Access Journals (Sweden)

    Zhenmin Zhu

    2016-01-01

    Full Text Available Color measurement by the colorized vision system is a superior method to achieve the evaluation of color objectively and continuously. However, the accuracy of color measurement is influenced by the spectral responses of digital sensor and the spectral mismatch of illumination. In this paper, two-color vision system illuminated by digital sensor and LED array, respectively, is presented. The Polynomial-Based Regression method is applied to solve the problem of color calibration in the sRGB and CIE  L⁎a⁎b⁎ color spaces. By mapping the tristimulus values from RGB to sRGB color space, color difference between the estimated values and the reference values is less than 3ΔE. Additionally, the mapping matrix ΦRGB→sRGB has proved a better performance in reducing the color difference, and it is introduced subsequently into the colorized vision system proposed for a better color measurement. Necessarily, the printed matter of clothes and the colored ceramic tile are chosen as the application experiment samples of our colorized vision system. As shown in the experimental data, the average color difference of images is less than 6ΔE. It indicates that a better performance of color measurement is obtained via the colorized vision system proposed.

  19. MyMoon: Engaging the “Missing Link” in Lunar Science Exploration through New Media

    Science.gov (United States)

    Shaner, A.; Shupla, C.; Shipp, S. S.; Eriksson, A.

    2009-12-01

    NASA’s new scientific exploration of the Moon, coupled with the public’s interest in the Moon and innovative social networking approaches, is being leveraged to engage a fresh adult audience in lunar science and exploration. In July 2009 the Lunar and Planetary Institute (LPI) launched a lunar education new media portal, MyMoon. LPI is collaborating with lunar scientists, educators, artists - and the public - to populate the site with science content, diverse media exhibits, events, and opportunities for involvement. Through MyMoon, the general public interacts with lunar content that informs them about lunar science research and missions, and engages them in future plans for lunar exploration and eventual habitation. MyMoon’s objectives are to: 1) develop a dynamic, new media learning portal that will enable the general public, with a focus on adults ages 18-35; 2) host a growing, active audience that becomes further involved in NASA’s lunar exploration by sharing their ideas about lunar topics, creating their own materials, and participating in events and experiences; 3) build a community of enthusiasts through social networking media; 4) create a model for online engagement of audiences 18 to 35, and provide detailed evaluation data on best practices and strategies for success. Immersive new media technologies are changing the way that people interact, work, learn, and teach. These provide potentially high-impact opportunities for reaching an audience of young adults, age 18 to 35, that largely is not accessed by, or accessing, NASA (Dittmar, 2004). MyMoon strives to engage - and involve - this audience to build a community of enthusiasts for lunar scientific exploration through social networks and current and emerging new media platforms, including posting videos on YouTube, photo contests on Flickr, and sharing events and challenges on Facebook and Twitter. MyMoon features interactive exhibits that are audience driven and added on a quarterly basis

  20. Fruits of exploration of moon and neighbouring planets of the solar system

    International Nuclear Information System (INIS)

    Lal, D.

    1976-01-01

    It has been demonstrated that a lot of quantitative information about the palaeontology of the Solar system can be derived from the results of the recent explorations of the Moon and other planets. Based on the study of the lunar samples, the geological, chemical and age aspects of the Moon are discussed. Comparisons are made with the geology of the Earth. The importance of the study of meteorites in understanding the evolution of the planets and the solar system is also pointed out. (A.K.)