WorldWideScience

Sample records for colony clustering algorithm

  1. Improved Ant Colony Clustering Algorithm and Its Performance Study

    Science.gov (United States)

    Gao, Wei

    2016-01-01

    Clustering analysis is used in many disciplines and applications; it is an important tool that descriptively identifies homogeneous groups of objects based on attribute values. The ant colony clustering algorithm is a swarm-intelligent method used for clustering problems that is inspired by the behavior of ant colonies that cluster their corpses and sort their larvae. A new abstraction ant colony clustering algorithm using a data combination mechanism is proposed to improve the computational efficiency and accuracy of the ant colony clustering algorithm. The abstraction ant colony clustering algorithm is used to cluster benchmark problems, and its performance is compared with the ant colony clustering algorithm and other methods used in existing literature. Based on similar computational difficulties and complexities, the results show that the abstraction ant colony clustering algorithm produces results that are not only more accurate but also more efficiently determined than the ant colony clustering algorithm and the other methods. Thus, the abstraction ant colony clustering algorithm can be used for efficient multivariate data clustering. PMID:26839533

  2. A Clustering Approach Using Cooperative Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2010-01-01

    Full Text Available Artificial Bee Colony (ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. This paper presents an extended ABC algorithm, namely, the Cooperative Article Bee Colony (CABC, which significantly improves the original ABC in solving complex optimization problems. Clustering is a popular data analysis and data mining technique; therefore, the CABC could be used for solving clustering problems. In this work, first the CABC algorithm is used for optimizing six widely used benchmark functions and the comparative results produced by ABC, Particle Swarm Optimization (PSO, and its cooperative version (CPSO are studied. Second, the CABC algorithm is used for data clustering on several benchmark data sets. The performance of CABC algorithm is compared with PSO, CPSO, and ABC algorithms on clustering problems. The simulation results show that the proposed CABC outperforms the other three algorithms in terms of accuracy, robustness, and convergence speed.

  3. Core Business Selection Based on Ant Colony Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Yu Lan

    2014-01-01

    Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.

  4. ABCluster: the artificial bee colony algorithm for cluster global optimization.

    Science.gov (United States)

    Zhang, Jun; Dolg, Michael

    2015-10-07

    Global optimization of cluster geometries is of fundamental importance in chemistry and an interesting problem in applied mathematics. In this work, we introduce a relatively new swarm intelligence algorithm, i.e. the artificial bee colony (ABC) algorithm proposed in 2005, to this field. It is inspired by the foraging behavior of a bee colony, and only three parameters are needed to control it. We applied it to several potential functions of quite different nature, i.e., the Coulomb-Born-Mayer, Lennard-Jones, Morse, Z and Gupta potentials. The benchmarks reveal that for long-ranged potentials the ABC algorithm is very efficient in locating the global minimum, while for short-ranged ones it is sometimes trapped into a local minimum funnel on a potential energy surface of large clusters. We have released an efficient, user-friendly, and free program "ABCluster" to realize the ABC algorithm. It is a black-box program for non-experts as well as experts and might become a useful tool for chemists to study clusters.

  5. Ant colony algorithm for clustering in portfolio optimization

    Science.gov (United States)

    Subekti, R.; Sari, E. R.; Kusumawati, R.

    2018-03-01

    This research aims to describe portfolio optimization using clustering methods with ant colony approach. Two stock portfolios of LQ45 Indonesia is proposed based on the cluster results obtained from ant colony optimization (ACO). The first portfolio consists of assets with ant colony displacement opportunities beyond the defined probability limits of the researcher, where the weight of each asset is determined by mean-variance method. The second portfolio consists of two assets with the assumption that each asset is a cluster formed from ACO. The first portfolio has a better performance compared to the second portfolio seen from the Sharpe index.

  6. A novel artificial bee colony based clustering algorithm for categorical data.

    Science.gov (United States)

    Ji, Jinchao; Pang, Wei; Zheng, Yanlin; Wang, Zhe; Ma, Zhiqiang

    2015-01-01

    Data with categorical attributes are ubiquitous in the real world. However, existing partitional clustering algorithms for categorical data are prone to fall into local optima. To address this issue, in this paper we propose a novel clustering algorithm, ABC-K-Modes (Artificial Bee Colony clustering based on K-Modes), based on the traditional k-modes clustering algorithm and the artificial bee colony approach. In our approach, we first introduce a one-step k-modes procedure, and then integrate this procedure with the artificial bee colony approach to deal with categorical data. In the search process performed by scout bees, we adopt the multi-source search inspired by the idea of batch processing to accelerate the convergence of ABC-K-Modes. The performance of ABC-K-Modes is evaluated by a series of experiments in comparison with that of the other popular algorithms for categorical data.

  7. Ant Colony Clustering Algorithm and Improved Markov Random Fusion Algorithm in Image Segmentation of Brain Images

    Directory of Open Access Journals (Sweden)

    Guohua Zou

    2016-12-01

    Full Text Available New medical imaging technology, such as Computed Tomography and Magnetic Resonance Imaging (MRI, has been widely used in all aspects of medical diagnosis. The purpose of these imaging techniques is to obtain various qualitative and quantitative data of the patient comprehensively and accurately, and provide correct digital information for diagnosis, treatment planning and evaluation after surgery. MR has a good imaging diagnostic advantage for brain diseases. However, as the requirements of the brain image definition and quantitative analysis are always increasing, it is necessary to have better segmentation of MR brain images. The FCM (Fuzzy C-means algorithm is widely applied in image segmentation, but it has some shortcomings, such as long computation time and poor anti-noise capability. In this paper, firstly, the Ant Colony algorithm is used to determine the cluster centers and the number of FCM algorithm so as to improve its running speed. Then an improved Markov random field model is used to improve the algorithm, so that its antinoise ability can be improved. Experimental results show that the algorithm put forward in this paper has obvious advantages in image segmentation speed and segmentation effect.

  8. A new collaborative recommendation approach based on users clustering using artificial bee colony algorithm.

    Science.gov (United States)

    Ju, Chunhua; Xu, Chonghuan

    2013-01-01

    Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users' preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC) algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.

  9. A New Collaborative Recommendation Approach Based on Users Clustering Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Chunhua Ju

    2013-01-01

    Full Text Available Although there are many good collaborative recommendation methods, it is still a challenge to increase the accuracy and diversity of these methods to fulfill users’ preferences. In this paper, we propose a novel collaborative filtering recommendation approach based on K-means clustering algorithm. In the process of clustering, we use artificial bee colony (ABC algorithm to overcome the local optimal problem caused by K-means. After that we adopt the modified cosine similarity to compute the similarity between users in the same clusters. Finally, we generate recommendation results for the corresponding target users. Detailed numerical analysis on a benchmark dataset MovieLens and a real-world dataset indicates that our new collaborative filtering approach based on users clustering algorithm outperforms many other recommendation methods.

  10. Artificial Bee Colony Algorithm Based on K-Means Clustering for Multiobjective Optimal Power Flow Problem

    Directory of Open Access Journals (Sweden)

    Liling Sun

    2015-01-01

    Full Text Available An improved multiobjective ABC algorithm based on K-means clustering, called CMOABC, is proposed. To fasten the convergence rate of the canonical MOABC, the way of information communication in the employed bees’ phase is modified. For keeping the population diversity, the multiswarm technology based on K-means clustering is employed to decompose the population into many clusters. Due to each subcomponent evolving separately, after every specific iteration, the population will be reclustered to facilitate information exchange among different clusters. Application of the new CMOABC on several multiobjective benchmark functions shows a marked improvement in performance over the fast nondominated sorting genetic algorithm (NSGA-II, the multiobjective particle swarm optimizer (MOPSO, and the multiobjective ABC (MOABC. Finally, the CMOABC is applied to solve the real-world optimal power flow (OPF problem that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results demonstrate that, compared to NSGA-II, MOPSO, and MOABC, the proposed CMOABC is superior for solving OPF problem, in terms of optimization accuracy.

  11. Partitional clustering algorithms

    CERN Document Server

    2015-01-01

    This book summarizes the state-of-the-art in partitional clustering. Clustering, the unsupervised classification of patterns into groups, is one of the most important tasks in exploratory data analysis. Primary goals of clustering include gaining insight into, classifying, and compressing data. Clustering has a long and rich history that spans a variety of scientific disciplines including anthropology, biology, medicine, psychology, statistics, mathematics, engineering, and computer science. As a result, numerous clustering algorithms have been proposed since the early 1950s. Among these algorithms, partitional (nonhierarchical) ones have found many applications, especially in engineering and computer science. This book provides coverage of consensus clustering, constrained clustering, large scale and/or high dimensional clustering, cluster validity, cluster visualization, and applications of clustering. Examines clustering as it applies to large and/or high-dimensional data sets commonly encountered in reali...

  12. Fermion cluster algorithms

    International Nuclear Information System (INIS)

    Chandrasekharan, Shailesh

    2000-01-01

    Cluster algorithms have been recently used to eliminate sign problems that plague Monte-Carlo methods in a variety of systems. In particular such algorithms can also be used to solve sign problems associated with the permutation of fermion world lines. This solution leads to the possibility of designing fermion cluster algorithms in certain cases. Using the example of free non-relativistic fermions we discuss the ideas underlying the algorithm

  13. Optimal Grid Scheduling Using Improved Artificial Bee Colony Algorithm

    OpenAIRE

    T. Vigneswari; M. A. Maluk Mohamed

    2015-01-01

    Job Scheduling plays an important role for efficient utilization of grid resources available across different domains and geographical zones. Scheduling of jobs is challenging and NPcomplete. Evolutionary / Swarm Intelligence algorithms have been extensively used to address the NP problem in grid scheduling. Artificial Bee Colony (ABC) has been proposed for optimization problems based on foraging behaviour of bees. This work proposes a modified ABC algorithm, Cluster Hete...

  14. Hybrid Bee Ant Colony Algorithm for Effective Load Balancing And ...

    African Journals Online (AJOL)

    PROF. OLIVER OSUAGWA

    Ant Colony algorithm is used in this hybrid Bee Ant Colony algorithm to solve load balancing issues ... Genetic Algorithm (MO-GA) for dynamic job scheduling that .... Information Networking and Applications Workshops. [7]. M. Dorigo & T.

  15. A cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    2000-01-01

    textabstractA cluster algorithm for graphs called the emph{Markov Cluster algorithm (MCL~algorithm) is introduced. The algorithm provides basically an interface to an algebraic process defined on stochastic matrices, called the MCL~process. The graphs may be both weighted (with nonnegative weight)

  16. Fuzzy Rules for Ant Based Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Amira Hamdi

    2016-01-01

    Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.

  17. Scalable Clustering of High-Dimensional Data Technique Using SPCM with Ant Colony Optimization Intelligence

    Directory of Open Access Journals (Sweden)

    Thenmozhi Srinivasan

    2015-01-01

    Full Text Available Clusters of high-dimensional data techniques are emerging, according to data noisy and poor quality challenges. This paper has been developed to cluster data using high-dimensional similarity based PCM (SPCM, with ant colony optimization intelligence which is effective in clustering nonspatial data without getting knowledge about cluster number from the user. The PCM becomes similarity based by using mountain method with it. Though this is efficient clustering, it is checked for optimization using ant colony algorithm with swarm intelligence. Thus the scalable clustering technique is obtained and the evaluation results are checked with synthetic datasets.

  18. Loading pattern optimization using ant colony algorithm

    International Nuclear Information System (INIS)

    Hoareau, Fabrice

    2008-01-01

    Electricite de France (EDF) operates 58 nuclear power plants (NPP), of the Pressurized Water Reactor type. The loading pattern optimization of these NPP is currently done by EDF expert engineers. Within this framework, EDF R and D has developed automatic optimization tools that assist the experts. LOOP is an industrial tool, developed by EDF R and D and based on a simulated annealing algorithm. In order to improve the results of such automatic tools, new optimization methods have to be tested. Ant Colony Optimization (ACO) algorithms are recent methods that have given very good results on combinatorial optimization problems. In order to evaluate the performance of such methods on loading pattern optimization, direct comparisons between LOOP and a mock-up based on the Max-Min Ant System algorithm (a particular variant of ACO algorithms) were made on realistic test-cases. It is shown that the results obtained by the ACO mock-up are very similar to those of LOOP. Future research will consist in improving these encouraging results by using parallelization and by hybridizing the ACO algorithm with local search procedures. (author)

  19. Warehouse stocking optimization based on dynamic ant colony genetic algorithm

    Science.gov (United States)

    Xiao, Xiaoxu

    2018-04-01

    In view of the various orders of FAW (First Automotive Works) International Logistics Co., Ltd., the SLP method is used to optimize the layout of the warehousing units in the enterprise, thus the warehouse logistics is optimized and the external processing speed of the order is improved. In addition, the relevant intelligent algorithms for optimizing the stocking route problem are analyzed. The ant colony algorithm and genetic algorithm which have good applicability are emphatically studied. The parameters of ant colony algorithm are optimized by genetic algorithm, which improves the performance of ant colony algorithm. A typical path optimization problem model is taken as an example to prove the effectiveness of parameter optimization.

  20. How can bee colony algorithm serve medicine?

    Science.gov (United States)

    Salehahmadi, Zeinab; Manafi, Amir

    2014-07-01

    Healthcare professionals usually should make complex decisions with far reaching consequences and associated risks in health care fields. As it was demonstrated in other industries, the ability to drill down into pertinent data to explore knowledge behind the data can greatly facilitate superior, informed decisions to ensue the facts. Nature has always inspired researchers to develop models of solving the problems. Bee colony algorithm (BCA), based on the self-organized behavior of social insects is one of the most popular member of the family of population oriented, nature inspired meta-heuristic swarm intelligence method which has been proved its superiority over some other nature inspired algorithms. The objective of this model was to identify valid novel, potentially useful, and understandable correlations and patterns in existing data. This review employs a thematic analysis of online series of academic papers to outline BCA in medical hive, reducing the response and computational time and optimizing the problems. To illustrate the benefits of this model, the cases of disease diagnose system are presented.

  1. Data clustering algorithms and applications

    CERN Document Server

    Aggarwal, Charu C

    2013-01-01

    Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains.The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as fea

  2. Image steganalysis using Artificial Bee Colony algorithm

    Science.gov (United States)

    Sajedi, Hedieh

    2017-09-01

    Steganography is the science of secure communication where the presence of the communication cannot be detected while steganalysis is the art of discovering the existence of the secret communication. Processing a huge amount of information takes extensive execution time and computational sources most of the time. As a result, it is needed to employ a phase of preprocessing, which can moderate the execution time and computational sources. In this paper, we propose a new feature-based blind steganalysis method for detecting stego images from the cover (clean) images with JPEG format. In this regard, we present a feature selection technique based on an improved Artificial Bee Colony (ABC). ABC algorithm is inspired by honeybees' social behaviour in their search for perfect food sources. In the proposed method, classifier performance and the dimension of the selected feature vector depend on using wrapper-based methods. The experiments are performed using two large data-sets of JPEG images. Experimental results demonstrate the effectiveness of the proposed steganalysis technique compared to the other existing techniques.

  3. Applying Data Clustering Feature to Speed Up Ant Colony Optimization

    Directory of Open Access Journals (Sweden)

    Chao-Yang Pang

    2014-01-01

    Full Text Available Ant colony optimization (ACO is often used to solve optimization problems, such as traveling salesman problem (TSP. When it is applied to TSP, its runtime is proportional to the squared size of problem N so as to look less efficient. The following statistical feature is observed during the authors’ long-term gene data analysis using ACO: when the data size N becomes big, local clustering appears frequently. That is, some data cluster tightly in a small area and form a class, and the correlation between different classes is weak. And this feature makes the idea of divide and rule feasible for the estimate of solution of TSP. In this paper an improved ACO algorithm is presented, which firstly divided all data into local clusters and calculated small TSP routes and then assembled a big TSP route with them. Simulation shows that the presented method improves the running speed of ACO by 200 factors under the condition that data set holds feature of local clustering.

  4. Artificial bee colony algorithm with dynamic multi-population

    Science.gov (United States)

    Zhang, Ming; Ji, Zhicheng; Wang, Yan

    2017-07-01

    To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.

  5. K-means Clustering: Lloyd's algorithm

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. K-means Clustering: Lloyd's algorithm. Refines clusters iteratively. Cluster points using Voronoi partitioning of the centers; Centroids of the clusters determine the new centers. Bad example k = 3, n =4.

  6. Normalization based K means Clustering Algorithm

    OpenAIRE

    Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika

    2015-01-01

    K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...

  7. Parallel algorithms and cluster computing

    CERN Document Server

    Hoffmann, Karl Heinz

    2007-01-01

    This book presents major advances in high performance computing as well as major advances due to high performance computing. It contains a collection of papers in which results achieved in the collaboration of scientists from computer science, mathematics, physics, and mechanical engineering are presented. From the science problems to the mathematical algorithms and on to the effective implementation of these algorithms on massively parallel and cluster computers we present state-of-the-art methods and technology as well as exemplary results in these fields. This book shows that problems which seem superficially distinct become intimately connected on a computational level.

  8. Determination of atomic cluster structure with cluster fusion algorithm

    DEFF Research Database (Denmark)

    Obolensky, Oleg I.; Solov'yov, Ilia; Solov'yov, Andrey V.

    2005-01-01

    We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters.......We report an efficient scheme of global optimization, called cluster fusion algorithm, which has proved its reliability and high efficiency in determination of the structure of various atomic clusters....

  9. Modified artificial bee colony algorithm for reactive power optimization

    Science.gov (United States)

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-05-01

    Bio-inspired algorithms (BIAs) implemented to solve various optimization problems have shown promising results which are very important in this severely complex real-world. Artificial Bee Colony (ABC) algorithm, a kind of BIAs has demonstrated tremendous results as compared to other optimization algorithms. This paper presents a new modified ABC algorithm referred to as JA-ABC3 with the aim to enhance convergence speed and avoid premature convergence. The proposed algorithm has been simulated on ten commonly used benchmarks functions. Its performance has also been compared with other existing ABC variants. To justify its robust applicability, the proposed algorithm has been tested to solve Reactive Power Optimization problem. The results have shown that the proposed algorithm has superior performance to other existing ABC variants e.g. GABC, BABC1, BABC2, BsfABC dan IABC in terms of convergence speed. Furthermore, the proposed algorithm has also demonstrated excellence performance in solving Reactive Power Optimization problem.

  10. A Multistrategy Optimization Improved Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wen Liu

    2014-01-01

    Full Text Available Being prone to the shortcomings of premature and slow convergence rate of artificial bee colony algorithm, an improved algorithm was proposed. Chaotic reverse learning strategies were used to initialize swarm in order to improve the global search ability of the algorithm and keep the diversity of the algorithm; the similarity degree of individuals of the population was used to characterize the diversity of population; population diversity measure was set as an indicator to dynamically and adaptively adjust the nectar position; the premature and local convergence were avoided effectively; dual population search mechanism was introduced to the search stage of algorithm; the parallel search of dual population considerably improved the convergence rate. Through simulation experiments of 10 standard testing functions and compared with other algorithms, the results showed that the improved algorithm had faster convergence rate and the capacity of jumping out of local optimum faster.

  11. A new cluster algorithm for graphs

    NARCIS (Netherlands)

    S. van Dongen

    1998-01-01

    textabstractA new cluster algorithm for graphs called the emph{Markov Cluster algorithm ($MCL$ algorithm) is introduced. The graphs may be both weighted (with nonnegative weight) and directed. Let~$G$~be such a graph. The $MCL$ algorithm simulates flow in $G$ by first identifying $G$ in a

  12. A supplier selection using a hybrid grey based hierarchical clustering and artificial bee colony

    Directory of Open Access Journals (Sweden)

    Farshad Faezy Razi

    2014-06-01

    Full Text Available Selection of one or a combination of the most suitable potential providers and outsourcing problem is the most important strategies in logistics and supply chain management. In this paper, selection of an optimal combination of suppliers in inventory and supply chain management are studied and analyzed via multiple attribute decision making approach, data mining and evolutionary optimization algorithms. For supplier selection in supply chain, hierarchical clustering according to the studied indexes first clusters suppliers. Then, according to its cluster, each supplier is evaluated through Grey Relational Analysis. Then the combination of suppliers’ Pareto optimal rank and costs are obtained using Artificial Bee Colony meta-heuristic algorithm. A case study is conducted for a better description of a new algorithm to select a multiple source of suppliers.

  13. A Simple and Efficient Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunfeng Xu

    2013-01-01

    Full Text Available Artificial bee colony (ABC is a new population-based stochastic algorithm which has shown good search abilities on many optimization problems. However, the original ABC shows slow convergence speed during the search process. In order to enhance the performance of ABC, this paper proposes a new artificial bee colony (NABC algorithm, which modifies the search pattern of both employed and onlooker bees. A solution pool is constructed by storing some best solutions of the current swarm. New candidate solutions are generated by searching the neighborhood of solutions randomly chosen from the solution pool. Experiments are conducted on a set of twelve benchmark functions. Simulation results show that our approach is significantly better or at least comparable to the original ABC and seven other stochastic algorithms.

  14. Ant colony search algorithm for optimal reactive power optimization

    Directory of Open Access Journals (Sweden)

    Lenin K.

    2006-01-01

    Full Text Available The paper presents an (ACSA Ant colony search Algorithm for Optimal Reactive Power Optimization and voltage control of power systems. ACSA is a new co-operative agents’ approach, which is inspired by the observation of the behavior of real ant colonies on the topic of ant trial formation and foraging methods. Hence, in the ACSA a set of co-operative agents called "Ants" co-operates to find good solution for Reactive Power Optimization problem. The ACSA is applied for optimal reactive power optimization is evaluated on standard IEEE, 30, 57, 191 (practical test bus system. The proposed approach is tested and compared to genetic algorithm (GA, Adaptive Genetic Algorithm (AGA.

  15. Improved artificial bee colony algorithm based gravity matching navigation method.

    Science.gov (United States)

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  16. Application of colony complex algorithm to nuclear component optimization design

    International Nuclear Information System (INIS)

    Yan Changqi; Li Guijing; Wang Jianjun

    2014-01-01

    Complex algorithm (CA) has got popular application to the region of nuclear engineering. In connection with the specific features of the application of traditional complex algorithm (TCA) to the optimization design in engineering structures, an improved method, colony complex algorithm (CCA), was developed based on the optimal combination of many complexes, in which the disadvantages of TCA were overcame. The optimized results of benchmark function show that CCA has better optimizing performance than TCA. CCA was applied to the high-pressure heater optimization design, and the optimization effect is obvious. (authors)

  17. Text Clustering Algorithm Based on Random Cluster Core

    Directory of Open Access Journals (Sweden)

    Huang Long-Jun

    2016-01-01

    Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.

  18. A hybrid artificial bee colony algorithm for numerical function optimization

    Science.gov (United States)

    Alqattan, Zakaria N.; Abdullah, Rosni

    2015-02-01

    Artificial Bee Colony (ABC) algorithm is one of the swarm intelligence algorithms; it has been introduced by Karaboga in 2005. It is a meta-heuristic optimization search algorithm inspired from the intelligent foraging behavior of the honey bees in nature. Its unique search process made it as one of the most competitive algorithm with some other search algorithms in the area of optimization, such as Genetic algorithm (GA) and Particle Swarm Optimization (PSO). However, the ABC performance of the local search process and the bee movement or the solution improvement equation still has some weaknesses. The ABC is good in avoiding trapping at the local optimum but it spends its time searching around unpromising random selected solutions. Inspired by the PSO, we propose a Hybrid Particle-movement ABC algorithm called HPABC, which adapts the particle movement process to improve the exploration of the original ABC algorithm. Numerical benchmark functions were used in order to experimentally test the HPABC algorithm. The results illustrate that the HPABC algorithm can outperform the ABC algorithm in most of the experiments (75% better in accuracy and over 3 times faster).

  19. Frequent Pattern Mining Algorithms for Data Clustering

    DEFF Research Database (Denmark)

    Zimek, Arthur; Assent, Ira; Vreeken, Jilles

    2014-01-01

    that frequent pattern mining was at the cradle of subspace clustering—yet, it quickly developed into an independent research field. In this chapter, we discuss how frequent pattern mining algorithms have been extended and generalized towards the discovery of local clusters in high-dimensional data......Discovering clusters in subspaces, or subspace clustering and related clustering paradigms, is a research field where we find many frequent pattern mining related influences. In fact, as the first algorithms for subspace clustering were based on frequent pattern mining algorithms, it is fair to say....... In particular, we discuss several example algorithms for subspace clustering or projected clustering as well as point out recent research questions and open topics in this area relevant to researchers in either clustering or pattern mining...

  20. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    Science.gov (United States)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  1. A Developed Artificial Bee Colony Algorithm Based on Cloud Model

    Directory of Open Access Journals (Sweden)

    Ye Jin

    2018-04-01

    Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.

  2. Solving Multiobjective Optimization Problems Using Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Wenping Zou

    2011-01-01

    Full Text Available Multiobjective optimization has been a difficult problem and focus for research in fields of science and engineering. This paper presents a novel algorithm based on artificial bee colony (ABC to deal with multi-objective optimization problems. ABC is one of the most recently introduced algorithms based on the intelligent foraging behavior of a honey bee swarm. It uses less control parameters, and it can be efficiently used for solving multimodal and multidimensional optimization problems. Our algorithm uses the concept of Pareto dominance to determine the flight direction of a bee, and it maintains nondominated solution vectors which have been found in an external archive. The proposed algorithm is validated using the standard test problems, and simulation results show that the proposed approach is highly competitive and can be considered a viable alternative to solve multi-objective optimization problems.

  3. A Novel Spectrum Scheduling Scheme with Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Liping Liu

    2018-01-01

    Full Text Available Cognitive radio is a promising technology for improving spectrum utilization, which allows cognitive users access to the licensed spectrum while primary users are absent. In this paper, we design a resource allocation framework based on graph theory for spectrum assignment in cognitive radio networks. The framework takes into account the constraints that interference for primary users and possible collision among cognitive users. Based on the proposed model, we formulate a system utility function to maximize the system benefit. Based on the proposed model and objective problem, we design an improved ant colony optimization algorithm (IACO from two aspects: first, we introduce differential evolution (DE process to accelerate convergence speed by monitoring mechanism; then we design a variable neighborhood search (VNS process to avoid the algorithm falling into the local optimal. Simulation results demonstrate that the improved algorithm achieves better performance.

  4. Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Haidong Xu; Mingyan Jiang; Kun Xu

    2015-01-01

    The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.

  5. Algorithm for Spatial Clustering with Obstacles

    OpenAIRE

    El-Sharkawi, Mohamed E.; El-Zawawy, Mohamed A.

    2009-01-01

    In this paper, we propose an efficient clustering technique to solve the problem of clustering in the presence of obstacles. The proposed algorithm divides the spatial area into rectangular cells. Each cell is associated with statistical information that enables us to label the cell as dense or non-dense. We also label each cell as obstructed (i.e. intersects any obstacle) or non-obstructed. Then the algorithm finds the regions (clusters) of connected, dense, non-obstructed cells. Finally, th...

  6. Ant Colony Algorithm and Simulation for Robust Airport Gate Assignment

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2014-01-01

    Full Text Available Airport gate assignment is core task for airport ground operations. Due to the fact that the departure and arrival time of flights may be influenced by many random factors, the airport gate assignment scheme may encounter gate conflict and many other problems. This paper aims at finding a robust solution for airport gate assignment problem. A mixed integer model is proposed to formulate the problem, and colony algorithm is designed to solve this model. Simulation result shows that, in consideration of robustness, the ability of antidisturbance for airport gate assignment scheme has much improved.

  7. An artificial bee colony algorithm for uncertain portfolio selection.

    Science.gov (United States)

    Chen, Wei

    2014-01-01

    Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm.

  8. Data clustering theory, algorithms, and applications

    CERN Document Server

    Gan, Guojun; Wu, Jianhong

    2007-01-01

    Cluster analysis is an unsupervised process that divides a set of objects into homogeneous groups. This book starts with basic information on cluster analysis, including the classification of data and the corresponding similarity measures, followed by the presentation of over 50 clustering algorithms in groups according to some specific baseline methodologies such as hierarchical, center-based, and search-based methods. As a result, readers and users can easily identify an appropriate algorithm for their applications and compare novel ideas with existing results. The book also provides examples of clustering applications to illustrate the advantages and shortcomings of different clustering architectures and algorithms. Application areas include pattern recognition, artificial intelligence, information technology, image processing, biology, psychology, and marketing. Readers also learn how to perform cluster analysis with the C/C++ and MATLAB® programming languages.

  9. Efficient distribution of toy products using ant colony optimization algorithm

    Science.gov (United States)

    Hidayat, S.; Nurpraja, C. A.

    2017-12-01

    CV Atham Toys (CVAT) produces wooden toys and furniture, comprises 13 small and medium industries. CVAT always attempt to deliver customer orders on time but delivery costs are high. This is because of inadequate infrastructure such that delivery routes are long, car maintenance costs are high, while fuel subsidy by the government is still temporary. This study seeks to minimize the cost of product distribution based on the shortest route using one of five Ant Colony Optimization (ACO) algorithms to solve the Vehicle Routing Problem (VRP). This study concludes that the best of the five is the Ant Colony System (ACS) algorithm. The best route in 1st week gave a total distance of 124.11 km at a cost of Rp 66,703.75. The 2nd week route gave a total distance of 132.27 km at a cost of Rp 71,095.13. The 3rd week best route gave a total distance of 122.70 km with a cost of Rp 65,951.25. While the 4th week gave a total distance of 132.27 km at a cost of Rp 74,083.63. Prior to this study there was no effort to calculate these figures.

  10. Semantic based cluster content discovery in description first clustering algorithm

    International Nuclear Information System (INIS)

    Khan, M.W.; Asif, H.M.S.

    2017-01-01

    In the field of data analytics grouping of like documents in textual data is a serious problem. A lot of work has been done in this field and many algorithms have purposed. One of them is a category of algorithms which firstly group the documents on the basis of similarity and then assign the meaningful labels to those groups. Description first clustering algorithm belong to the category in which the meaningful description is deduced first and then relevant documents are assigned to that description. LINGO (Label Induction Grouping Algorithm) is the algorithm of description first clustering category which is used for the automatic grouping of documents obtained from search results. It uses LSI (Latent Semantic Indexing); an IR (Information Retrieval) technique for induction of meaningful labels for clusters and VSM (Vector Space Model) for cluster content discovery. In this paper we present the LINGO while it is using LSI during cluster label induction and cluster content discovery phase. Finally, we compare results obtained from the said algorithm while it uses VSM and Latent semantic analysis during cluster content discovery phase. (author)

  11. Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm

    Science.gov (United States)

    Anam, S.

    2017-10-01

    Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.

  12. Non-convex polygons clustering algorithm

    Directory of Open Access Journals (Sweden)

    Kruglikov Alexey

    2016-01-01

    Full Text Available A clustering algorithm is proposed, to be used as a preliminary step in motion planning. It is tightly coupled to the applied problem statement, i.e. uses parameters meaningful only with respect to it. Use of geometrical properties for polygons clustering allows for a better calculation time as opposed to general-purpose algorithms. A special form of map optimized for quick motion planning is constructed as a result.

  13. Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization

    Directory of Open Access Journals (Sweden)

    Lianbo Ma

    2014-01-01

    Full Text Available This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  14. Software Piracy Detection Model Using Ant Colony Optimization Algorithm

    Science.gov (United States)

    Astiqah Omar, Nor; Zakuan, Zeti Zuryani Mohd; Saian, Rizauddin

    2017-06-01

    Internet enables information to be accessible anytime and anywhere. This scenario creates an environment whereby information can be easily copied. Easy access to the internet is one of the factors which contribute towards piracy in Malaysia as well as the rest of the world. According to a survey conducted by Compliance Gap BSA Global Software Survey in 2013 on software piracy, found out that 43 percent of the software installed on PCs around the world was not properly licensed, the commercial value of the unlicensed installations worldwide was reported to be 62.7 billion. Piracy can happen anywhere including universities. Malaysia as well as other countries in the world is faced with issues of piracy committed by the students in universities. Piracy in universities concern about acts of stealing intellectual property. It can be in the form of software piracy, music piracy, movies piracy and piracy of intellectual materials such as books, articles and journals. This scenario affected the owner of intellectual property as their property is in jeopardy. This study has developed a classification model for detecting software piracy. The model was developed using a swarm intelligence algorithm called the Ant Colony Optimization algorithm. The data for training was collected by a study conducted in Universiti Teknologi MARA (Perlis). Experimental results show that the model detection accuracy rate is better as compared to J48 algorithm.

  15. Hierarchical artificial bee colony algorithm for RFID network planning optimization.

    Science.gov (United States)

    Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong

    2014-01-01

    This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.

  16. Road Network Vulnerability Analysis Based on Improved Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yunpeng Wang

    2014-01-01

    Full Text Available We present an improved ant colony algorithm-based approach to assess the vulnerability of a road network and identify the critical infrastructures. This approach improves computational efficiency and allows for its applications in large-scale road networks. This research involves defining the vulnerability conception, modeling the traffic utility index and the vulnerability of the road network, and identifying the critical infrastructures of the road network. We apply the approach to a simple test road network and a real road network to verify the methodology. The results show that vulnerability is directly related to traffic demand and increases significantly when the demand approaches capacity. The proposed approach reduces the computational burden and may be applied in large-scale road network analysis. It can be used as a decision-supporting tool for identifying critical infrastructures in transportation planning and management.

  17. Automatic fault extraction using a modified ant-colony algorithm

    International Nuclear Information System (INIS)

    Zhao, Junsheng; Sun, Sam Zandong

    2013-01-01

    The basis of automatic fault extraction is seismic attributes, such as the coherence cube which is always used to identify a fault by the minimum value. The biggest challenge in automatic fault extraction is noise, including that of seismic data. However, a fault has a better spatial continuity in certain direction, which makes it quite different from noise. Considering this characteristic, a modified ant-colony algorithm is introduced into automatic fault identification and tracking, where the gradient direction and direction consistency are used as constraints. Numerical model test results show that this method is feasible and effective in automatic fault extraction and noise suppression. The application of field data further illustrates its validity and superiority. (paper)

  18. Robust MST-Based Clustering Algorithm.

    Science.gov (United States)

    Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing

    2018-06-01

    Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.

  19. Artificial bee colony algorithm for single-trial electroencephalogram analysis.

    Science.gov (United States)

    Hsu, Wei-Yen; Hu, Ya-Ping

    2015-04-01

    In this study, we propose an analysis system combined with feature selection to further improve the classification accuracy of single-trial electroencephalogram (EEG) data. Acquiring event-related brain potential data from the sensorimotor cortices, the system comprises artifact and background noise removal, feature extraction, feature selection, and feature classification. First, the artifacts and background noise are removed automatically by means of independent component analysis and surface Laplacian filter, respectively. Several potential features, such as band power, autoregressive model, and coherence and phase-locking value, are then extracted for subsequent classification. Next, artificial bee colony (ABC) algorithm is used to select features from the aforementioned feature combination. Finally, selected subfeatures are classified by support vector machine. Comparing with and without artifact removal and feature selection, using a genetic algorithm on single-trial EEG data for 6 subjects, the results indicate that the proposed system is promising and suitable for brain-computer interface applications. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  20. Maximum-entropy clustering algorithm and its global convergence analysis

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Constructing a batch of differentiable entropy functions touniformly approximate an objective function by means of the maximum-entropy principle, a new clustering algorithm, called maximum-entropy clustering algorithm, is proposed based on optimization theory. This algorithm is a soft generalization of the hard C-means algorithm and possesses global convergence. Its relations with other clustering algorithms are discussed.

  1. Lévy flight artificial bee colony algorithm

    Science.gov (United States)

    Sharma, Harish; Bansal, Jagdish Chand; Arya, K. V.; Yang, Xin-She

    2016-08-01

    Artificial bee colony (ABC) optimisation algorithm is a relatively simple and recent population-based probabilistic approach for global optimisation. The solution search equation of ABC is significantly influenced by a random quantity which helps in exploration at the cost of exploitation of the search space. In the ABC, there is a high chance to skip the true solution due to its large step sizes. In order to balance between diversity and convergence in the ABC, a Lévy flight inspired search strategy is proposed and integrated with ABC. The proposed strategy is named as Lévy Flight ABC (LFABC) has both the local and global search capability simultaneously and can be achieved by tuning the Lévy flight parameters and thus automatically tuning the step sizes. In the LFABC, new solutions are generated around the best solution and it helps to enhance the exploitation capability of ABC. Furthermore, to improve the exploration capability, the numbers of scout bees are increased. The experiments on 20 test problems of different complexities and five real-world engineering optimisation problems show that the proposed strategy outperforms the basic ABC and recent variants of ABC, namely, Gbest-guided ABC, best-so-far ABC and modified ABC in most of the experiments.

  2. Application of ant colony Algorithm and particle swarm optimization in architectural design

    Science.gov (United States)

    Song, Ziyi; Wu, Yunfa; Song, Jianhua

    2018-02-01

    By studying the development of ant colony algorithm and particle swarm algorithm, this paper expounds the core idea of the algorithm, explores the combination of algorithm and architectural design, sums up the application rules of intelligent algorithm in architectural design, and combines the characteristics of the two algorithms, obtains the research route and realization way of intelligent algorithm in architecture design. To establish algorithm rules to assist architectural design. Taking intelligent algorithm as the beginning of architectural design research, the authors provide the theory foundation of ant colony Algorithm and particle swarm algorithm in architectural design, popularize the application range of intelligent algorithm in architectural design, and provide a new idea for the architects.

  3. Genetic algorithm optimization of atomic clusters

    International Nuclear Information System (INIS)

    Morris, J.R.; Deaven, D.M.; Ho, K.M.; Wang, C.Z.; Pan, B.C.; Wacker, J.G.; Turner, D.E.; Iowa State Univ., Ames, IA

    1996-01-01

    The authors have been using genetic algorithms to study the structures of atomic clusters and related problems. This is a problem where local minima are easy to locate, but barriers between the many minima are large, and the number of minima prohibit a systematic search. They use a novel mating algorithm that preserves some of the geometrical relationship between atoms, in order to ensure that the resultant structures are likely to inherit the best features of the parent clusters. Using this approach, they have been able to find lower energy structures than had been previously obtained. Most recently, they have been able to turn around the building block idea, using optimized structures from the GA to learn about systematic structural trends. They believe that an effective GA can help provide such heuristic information, and (conversely) that such information can be introduced back into the algorithm to assist in the search process

  4. Application of the artificial bee colony algorithm for solving the set covering problem.

    Science.gov (United States)

    Crawford, Broderick; Soto, Ricardo; Cuesta, Rodrigo; Paredes, Fernando

    2014-01-01

    The set covering problem is a formal model for many practical optimization problems. In the set covering problem the goal is to choose a subset of the columns of minimal cost that covers every row. Here, we present a novel application of the artificial bee colony algorithm to solve the non-unicost set covering problem. The artificial bee colony algorithm is a recent swarm metaheuristic technique based on the intelligent foraging behavior of honey bees. Experimental results show that our artificial bee colony algorithm is competitive in terms of solution quality with other recent metaheuristic approaches for the set covering problem.

  5. A new quantum inspired chaotic artificial bee colony algorithm for optimal power flow problem

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Wang, Pengtao; Yuan, Yanbin; Huang, Yuehua; Zhang, Xiaopan

    2015-01-01

    Highlights: • Quantum theory is introduced to artificial bee colony algorithm (ABC) to increase population diversity. • A chaotic local search operator is used to enhance local search ability of ABC. • Quantum inspired chaotic ABC method (QCABC) is proposed to solve optimal power flow. • The feasibility and effectiveness of the proposed QCABC is verified by examples. - Abstract: This paper proposes a new artificial bee colony algorithm with quantum theory and the chaotic local search strategy (QCABC), and uses it to solve the optimal power flow (OPF) problem. Under the quantum computing theory, the QCABC algorithm encodes each individual with quantum bits to form a corresponding quantum bit string. By determining each quantum bits value, we can get the value of the individual. After the scout bee stage of the artificial bee colony algorithm, we begin the chaotic local search in the vicinity of the best individual found so far. Finally, the quantum rotation gate is used to process each quantum bit so that all individuals can update toward the direction of the best individual. The QCABC algorithm is carried out to deal with the OPF problem in the IEEE 30-bus and IEEE 118-bus standard test systems. The results of the QCABC algorithm are compared with other algorithms (artificial bee colony algorithm, genetic algorithm, particle swarm optimization algorithm). The comparison shows that the QCABC algorithm can effectively solve the OPF problem and it can get the better optimal results than those of other algorithms

  6. Application for Suggesting Restaurants Using Clustering Algorithms

    Directory of Open Access Journals (Sweden)

    Iulia Alexandra IANCU

    2014-10-01

    Full Text Available The aim of this article is to present an application whose purpose is to make suggestions of restaurants to users. The application uses as input the descriptions of restaurants, reviews, user reviews available on the specialized Internet sites and blogs. In the application there are used processing techniques of natural language implemented using parsers, clustering algorithms and techniques for data collection from the Internet through web crawlers.

  7. An experimental analysis of design choices of multi-objective ant colony optimization algorithms

    OpenAIRE

    Lopez-Ibanez, Manuel; Stutzle, Thomas

    2012-01-01

    There have been several proposals on how to apply the ant colony optimization (ACO) metaheuristic to multi-objective combinatorial optimization problems (MOCOPs). This paper proposes a new formulation of these multi-objective ant colony optimization (MOACO) algorithms. This formulation is based on adding specific algorithm components for tackling multiple objectives to the basic ACO metaheuristic. Examples of these components are how to represent multiple objectives using pheromone and heuris...

  8. Multiple depots vehicle routing based on the ant colony with the genetic algorithm

    Directory of Open Access Journals (Sweden)

    ChunYing Liu

    2013-09-01

    Full Text Available Purpose: the distribution routing plans of multi-depots vehicle scheduling problem will increase exponentially along with the adding of customers. So, it becomes an important studying trend to solve the vehicle scheduling problem with heuristic algorithm. On the basis of building the model of multi-depots vehicle scheduling problem, in order to improve the efficiency of the multiple depots vehicle routing, the paper puts forward a fusion algorithm on multiple depots vehicle routing based on the ant colony algorithm with genetic algorithm. Design/methodology/approach: to achieve this objective, the genetic algorithm optimizes the parameters of the ant colony algorithm. The fusion algorithm on multiple depots vehicle based on the ant colony algorithm with genetic algorithm is proposed. Findings: simulation experiment indicates that the result of the fusion algorithm is more excellent than the other algorithm, and the improved algorithm has better convergence effective and global ability. Research limitations/implications: in this research, there are some assumption that might affect the accuracy of the model such as the pheromone volatile factor, heuristic factor in each period, and the selected multiple depots. These assumptions can be relaxed in future work. Originality/value: In this research, a new method for the multiple depots vehicle routing is proposed. The fusion algorithm eliminate the influence of the selected parameter by optimizing the heuristic factor, evaporation factor, initial pheromone distribute, and have the strong global searching ability. The Ant Colony algorithm imports cross operator and mutation operator for operating the first best solution and the second best solution in every iteration, and reserves the best solution. The cross and mutation operator extend the solution space and improve the convergence effective and the global ability. This research shows that considering both the ant colony and genetic algorithm

  9. Fidelity-Based Ant Colony Algorithm with Q-learning of Quantum System

    Science.gov (United States)

    Liao, Qin; Guo, Ying; Tu, Yifeng; Zhang, Hang

    2018-03-01

    Quantum ant colony algorithm (ACA) has potential applications in quantum information processing, such as solutions of traveling salesman problem, zero-one knapsack problem, robot route planning problem, and so on. To shorten the search time of the ACA, we suggest the fidelity-based ant colony algorithm (FACA) for the control of quantum system. Motivated by structure of the Q-learning algorithm, we demonstrate the combination of a FACA with the Q-learning algorithm and suggest the design of a fidelity-based ant colony algorithm with the Q-learning to improve the performance of the FACA in a spin-1/2 quantum system. The numeric simulation results show that the FACA with the Q-learning can efficiently avoid trapping into local optimal policies and increase the speed of convergence process of quantum system.

  10. Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Peng Li

    2016-01-01

    Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.

  11. A Multipath Routing Protocol Based on Clustering and Ant Colony Optimization for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Jing Yang

    2010-05-01

    Full Text Available For monitoring burst events in a kind of reactive wireless sensor networks (WSNs, a multipath routing protocol (MRP based on dynamic clustering and ant colony optimization (ACO is proposed.. Such an approach can maximize the network lifetime and reduce the energy consumption. An important attribute of WSNs is their limited power supply, and therefore some metrics (such as energy consumption of communication among nodes, residual energy, path length were considered as very important criteria while designing routing in the MRP. Firstly, a cluster head (CH is selected among nodes located in the event area according to some parameters, such as residual energy. Secondly, an improved ACO algorithm is applied in the search for multiple paths between the CH and sink node. Finally, the CH dynamically chooses a route to transmit data with a probability that depends on many path metrics, such as energy consumption. The simulation results show that MRP can prolong the network lifetime, as well as balance of energy consumption among nodes and reduce the average energy consumption effectively.

  12. Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification.

    Science.gov (United States)

    Alshamlan, Hala M; Badr, Ghada H; Alohali, Yousef A

    2015-06-01

    Naturally inspired evolutionary algorithms prove effectiveness when used for solving feature selection and classification problems. Artificial Bee Colony (ABC) is a relatively new swarm intelligence method. In this paper, we propose a new hybrid gene selection method, namely Genetic Bee Colony (GBC) algorithm. The proposed algorithm combines the used of a Genetic Algorithm (GA) along with Artificial Bee Colony (ABC) algorithm. The goal is to integrate the advantages of both algorithms. The proposed algorithm is applied to a microarray gene expression profile in order to select the most predictive and informative genes for cancer classification. In order to test the accuracy performance of the proposed algorithm, extensive experiments were conducted. Three binary microarray datasets are use, which include: colon, leukemia, and lung. In addition, another three multi-class microarray datasets are used, which are: SRBCT, lymphoma, and leukemia. Results of the GBC algorithm are compared with our recently proposed technique: mRMR when combined with the Artificial Bee Colony algorithm (mRMR-ABC). We also compared the combination of mRMR with GA (mRMR-GA) and Particle Swarm Optimization (mRMR-PSO) algorithms. In addition, we compared the GBC algorithm with other related algorithms that have been recently published in the literature, using all benchmark datasets. The GBC algorithm shows superior performance as it achieved the highest classification accuracy along with the lowest average number of selected genes. This proves that the GBC algorithm is a promising approach for solving the gene selection problem in both binary and multi-class cancer classification. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. A Hybrid Ant Colony Optimization Algorithm for the Extended Capacitated Arc Routing Problem.

    Science.gov (United States)

    Li-Ning Xing; Rohlfshagen, P; Ying-Wu Chen; Xin Yao

    2011-08-01

    The capacitated arc routing problem (CARP) is representative of numerous practical applications, and in order to widen its scope, we consider an extended version of this problem that entails both total service time and fixed investment costs. We subsequently propose a hybrid ant colony optimization (ACO) algorithm (HACOA) to solve instances of the extended CARP. This approach is characterized by the exploitation of heuristic information, adaptive parameters, and local optimization techniques: Two kinds of heuristic information, arc cluster information and arc priority information, are obtained continuously from the solutions sampled to guide the subsequent optimization process. The adaptive parameters ease the burden of choosing initial values and facilitate improved and more robust results. Finally, local optimization, based on the two-opt heuristic, is employed to improve the overall performance of the proposed algorithm. The resulting HACOA is tested on four sets of benchmark problems containing a total of 87 instances with up to 140 nodes and 380 arcs. In order to evaluate the effectiveness of the proposed method, some existing capacitated arc routing heuristics are extended to cope with the extended version of this problem; the experimental results indicate that the proposed ACO method outperforms these heuristics.

  14. A cluster algorithm for jet studies

    International Nuclear Information System (INIS)

    Daum, H.J.; Meyer, H.; Buerger, J.

    1980-10-01

    A procedure is described which determines the number of jets in hadronic final states by means of a cluster algorithm. In addition it yields a measurement of the energy and the direction of each jet. The properties of this method are studied using Monte Carlo simulations of different types of e + e - -annihilation final states. It is shown that in case of 3-jet events direct comparison with the underlying parton structure can be made. Possible further applications of this method are discussed. (orig.)

  15. Single Allocation Hub-and-spoke Networks Design Based on Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Pingle

    2014-10-01

    Full Text Available Capacitated single allocation hub-and-spoke networks can be abstracted as a mixed integer linear programming model equation with three variables. Introducing an improved ant colony algorithm, which has six local search operators. Meanwhile, introducing the "Solution Pair" concept to decompose and optimize the composition of the problem, the problem can become more specific and effectively meet the premise and advantages of using ant colony algorithm. Finally, location simulation experiment is made according to Australia Post data to demonstrate this algorithm has good efficiency and stability for solving this problem.

  16. An ant colony based resilience approach to cascading failures in cluster supply network

    Science.gov (United States)

    Wang, Yingcong; Xiao, Renbin

    2016-11-01

    Cluster supply chain network is a typical complex network and easily suffers cascading failures under disruption events, which is caused by the under-load of enterprises. Improving network resilience can increase the ability of recovery from cascading failures. Social resilience is found in ant colony and comes from ant's spatial fidelity zones (SFZ). Starting from the under-load failures, this paper proposes a resilience method to cascading failures in cluster supply chain network by leveraging on social resilience of ant colony. First, the mapping between ant colony SFZ and cluster supply chain network SFZ is presented. Second, a new cascading model for cluster supply chain network is constructed based on under-load failures. Then, the SFZ-based resilience method and index to cascading failures are developed according to ant colony's social resilience. Finally, a numerical simulation and a case study are used to verify the validity of the cascading model and the resilience method. Experimental results show that, the cluster supply chain network becomes resilient to cascading failures under the SFZ-based resilience method, and the cluster supply chain network resilience can be enhanced by improving the ability of enterprises to recover and adjust.

  17. Blind Source Separation Based on Covariance Ratio and Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2014-01-01

    Full Text Available The computation amount in blind source separation based on bioinspired intelligence optimization is high. In order to solve this problem, we propose an effective blind source separation algorithm based on the artificial bee colony algorithm. In the proposed algorithm, the covariance ratio of the signals is utilized as the objective function and the artificial bee colony algorithm is used to solve it. The source signal component which is separated out, is then wiped off from mixtures using the deflation method. All the source signals can be recovered successfully by repeating the separation process. Simulation experiments demonstrate that significant improvement of the computation amount and the quality of signal separation is achieved by the proposed algorithm when compared to previous algorithms.

  18. A modified scout bee for artificial bee colony algorithm and its performance on optimization problems

    Directory of Open Access Journals (Sweden)

    Syahid Anuar

    2016-10-01

    Full Text Available The artificial bee colony (ABC is one of the swarm intelligence algorithms used to solve optimization problems which is inspired by the foraging behaviour of the honey bees. In this paper, artificial bee colony with the rate of change technique which models the behaviour of scout bee to improve the performance of the standard ABC in terms of exploration is introduced. The technique is called artificial bee colony rate of change (ABC-ROC because the scout bee process depends on the rate of change on the performance graph, replace the parameter limit. The performance of ABC-ROC is analysed on a set of benchmark problems and also on the effect of the parameter colony size. Furthermore, the performance of ABC-ROC is compared with the state of the art algorithms.

  19. An Improved Ant Colony Algorithm for Solving the Path Planning Problem of the Omnidirectional Mobile Vehicle

    Directory of Open Access Journals (Sweden)

    Jiang Zhao

    2016-01-01

    Full Text Available This paper presents an improved ant colony algorithm for the path planning of the omnidirectional mobile vehicle. The purpose of the improved ant colony algorithm is to design an appropriate route to connect the starting point and ending point of the environment with obstacles. Ant colony algorithm, which is used to solve the path planning problem, is improved according to the characteristics of the omnidirectional mobile vehicle. And in the improved algorithm, the nonuniform distribution of the initial pheromone and the selection strategy with direction play a very positive role in the path search. The coverage and updating strategy of pheromone is introduced to avoid repeated search reducing the effect of the number of ants on the performance of the algorithm. In addition, the pheromone evaporation coefficient is segmented and adjusted, which can effectively balance the convergence speed and search ability. Finally, this paper provides a theoretical basis for the improved ant colony algorithm by strict mathematical derivation, and some numerical simulations are also given to illustrate the effectiveness of the theoretical results.

  20. A Generalized Ant Colony Algorithm for Job一shop Scheduling Problem

    Directory of Open Access Journals (Sweden)

    ZHANG Hong-Guo

    2017-02-01

    Full Text Available Aiming at the problem of ant colony algorithm for solving Job一shop scheduling problem. Considering the complexity of the algorithm that uses disjunctive graph to describe the relationship between workpiece processing. To solve the problem of optimal solution,a generalized ant colony algorithm is proposed. Under the premise of considering constrained relationship between equipment and process,the pheromone update mechanism is applied to solve Job-shop scheduling problem,so as to improve the quality of the solution. In order to improve the search efficiency,according to the state transition rules of ant colony algorithm,this paper makes a detailed study on the selection and improvement of the parameters in the algorithm,and designs the pheromone update strategy. Experimental results show that a generalized ant colony algorithm is more feasible and more effective. Compared with other algorithms in the literature,the results prove that the algorithm improves in computing the optimal solution and convergence speed.

  1. Energy Aware Clustering Algorithms for Wireless Sensor Networks

    Science.gov (United States)

    Rakhshan, Noushin; Rafsanjani, Marjan Kuchaki; Liu, Chenglian

    2011-09-01

    The sensor nodes deployed in wireless sensor networks (WSNs) are extremely power constrained, so maximizing the lifetime of the entire networks is mainly considered in the design. In wireless sensor networks, hierarchical network structures have the advantage of providing scalable and energy efficient solutions. In this paper, we investigate different clustering algorithms for WSNs and also compare these clustering algorithms based on metrics such as clustering distribution, cluster's load balancing, Cluster Head's (CH) selection strategy, CH's role rotation, node mobility, clusters overlapping, intra-cluster communications, reliability, security and location awareness.

  2. Hybrid Swarm Intelligence Energy Efficient Clustered Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Rajeev Kumar

    2016-01-01

    Full Text Available Currently, wireless sensor networks (WSNs are used in many applications, namely, environment monitoring, disaster management, industrial automation, and medical electronics. Sensor nodes carry many limitations like low battery life, small memory space, and limited computing capability. To create a wireless sensor network more energy efficient, swarm intelligence technique has been applied to resolve many optimization issues in WSNs. In many existing clustering techniques an artificial bee colony (ABC algorithm is utilized to collect information from the field periodically. Nevertheless, in the event based applications, an ant colony optimization (ACO is a good solution to enhance the network lifespan. In this paper, we combine both algorithms (i.e., ABC and ACO and propose a new hybrid ABCACO algorithm to solve a Nondeterministic Polynomial (NP hard and finite problem of WSNs. ABCACO algorithm is divided into three main parts: (i selection of optimal number of subregions and further subregion parts, (ii cluster head selection using ABC algorithm, and (iii efficient data transmission using ACO algorithm. We use a hierarchical clustering technique for data transmission; the data is transmitted from member nodes to the subcluster heads and then from subcluster heads to the elected cluster heads based on some threshold value. Cluster heads use an ACO algorithm to discover the best route for data transmission to the base station (BS. The proposed approach is very useful in designing the framework for forest fire detection and monitoring. The simulation results show that the ABCACO algorithm enhances the stability period by 60% and also improves the goodput by 31% against LEACH and WSNCABC, respectively.

  3. A Novel Clustering Algorithm Inspired by Membrane Computing

    Directory of Open Access Journals (Sweden)

    Hong Peng

    2015-01-01

    Full Text Available P systems are a class of distributed parallel computing models; this paper presents a novel clustering algorithm, which is inspired from mechanism of a tissue-like P system with a loop structure of cells, called membrane clustering algorithm. The objects of the cells express the candidate centers of clusters and are evolved by the evolution rules. Based on the loop membrane structure, the communication rules realize a local neighborhood topology, which helps the coevolution of the objects and improves the diversity of objects in the system. The tissue-like P system can effectively search for the optimal partitioning with the help of its parallel computing advantage. The proposed clustering algorithm is evaluated on four artificial data sets and six real-life data sets. Experimental results show that the proposed clustering algorithm is superior or competitive to k-means algorithm and several evolutionary clustering algorithms recently reported in the literature.

  4. Evaluation of Hierarchical Clustering Algorithms for Document Datasets

    National Research Council Canada - National Science Library

    Zhao, Ying; Karypis, George

    2002-01-01

    Fast and high-quality document clustering algorithms play an important role in providing intuitive navigation and browsing mechanisms by organizing large amounts of information into a small number of meaningful clusters...

  5. Algorithms of maximum likelihood data clustering with applications

    Science.gov (United States)

    Giada, Lorenzo; Marsili, Matteo

    2002-12-01

    We address the problem of data clustering by introducing an unsupervised, parameter-free approach based on maximum likelihood principle. Starting from the observation that data sets belonging to the same cluster share a common information, we construct an expression for the likelihood of any possible cluster structure. The likelihood in turn depends only on the Pearson's coefficient of the data. We discuss clustering algorithms that provide a fast and reliable approximation to maximum likelihood configurations. Compared to standard clustering methods, our approach has the advantages that (i) it is parameter free, (ii) the number of clusters need not be fixed in advance and (iii) the interpretation of the results is transparent. In order to test our approach and compare it with standard clustering algorithms, we analyze two very different data sets: time series of financial market returns and gene expression data. We find that different maximization algorithms produce similar cluster structures whereas the outcome of standard algorithms has a much wider variability.

  6. URL Mining Using Agglomerative Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Chinmay R. Deshmukh

    2015-02-01

    Full Text Available Abstract The tremendous growth of the web world incorporates application of data mining techniques to the web logs. Data Mining and World Wide Web encompasses an important and active area of research. Web log mining is analysis of web log files with web pages sequences. Web mining is broadly classified as web content mining web usage mining and web structure mining. Web usage mining is a technique to discover usage patterns from Web data in order to understand and better serve the needs of Web-based applications. URL mining refers to a subclass of Web mining that helps us to investigate the details of a Uniform Resource Locator. URL mining can be advantageous in the fields of security and protection. The paper introduces a technique for mining a collection of user transactions with an Internet search engine to discover clusters of similar queries and similar URLs. The information we exploit is a clickthrough data each record consist of a users query to a search engine along with the URL which the user selected from among the candidates offered by search engine. By viewing this dataset as a bipartite graph with the vertices on one side corresponding to queries and on the other side to URLs one can apply an agglomerative clustering algorithm to the graphs vertices to identify related queries and URLs.

  7. A Dynamic Fuzzy Cluster Algorithm for Time Series

    Directory of Open Access Journals (Sweden)

    Min Ji

    2013-01-01

    clustering time series by introducing the definition of key point and improving FCM algorithm. The proposed algorithm works by determining those time series whose class labels are vague and further partitions them into different clusters over time. The main advantage of this approach compared with other existing algorithms is that the property of some time series belonging to different clusters over time can be partially revealed. Results from simulation-based experiments on geographical data demonstrate the excellent performance and the desired results have been obtained. The proposed algorithm can be applied to solve other clustering problems in data mining.

  8. Robustness of Multiple Clustering Algorithms on Hyperspectral Images

    National Research Council Canada - National Science Library

    Williams, Jason P

    2007-01-01

    .... Various clustering algorithms were employed, including a hierarchical method, ISODATA, K-means, and X-means, and were used on a simple two dimensional dataset in order to discover potential problems with the algorithms...

  9. Performance Evaluation of Spectral Clustering Algorithm using Various Clustering Validity Indices

    OpenAIRE

    M. T. Somashekara; D. Manjunatha

    2014-01-01

    In spite of the popularity of spectral clustering algorithm, the evaluation procedures are still in developmental stage. In this article, we have taken benchmarking IRIS dataset for performing comparative study of twelve indices for evaluating spectral clustering algorithm. The results of the spectral clustering technique were also compared with k-mean algorithm. The validity of the indices was also verified with accuracy and (Normalized Mutual Information) NMI score. Spectral clustering algo...

  10. Optimization of Straight Cylindrical Turning Using Artificial Bee Colony (ABC) Algorithm

    Science.gov (United States)

    Prasanth, Rajanampalli Seshasai Srinivasa; Hans Raj, Kandikonda

    2017-04-01

    Artificial bee colony (ABC) algorithm, that mimics the intelligent foraging behavior of honey bees, is increasingly gaining acceptance in the field of process optimization, as it is capable of handling nonlinearity, complexity and uncertainty. Straight cylindrical turning is a complex and nonlinear machining process which involves the selection of appropriate cutting parameters that affect the quality of the workpiece. This paper presents the estimation of optimal cutting parameters of the straight cylindrical turning process using the ABC algorithm. The ABC algorithm is first tested on four benchmark problems of numerical optimization and its performance is compared with genetic algorithm (GA) and ant colony optimization (ACO) algorithm. Results indicate that, the rate of convergence of ABC algorithm is better than GA and ACO. Then, the ABC algorithm is used to predict optimal cutting parameters such as cutting speed, feed rate, depth of cut and tool nose radius to achieve good surface finish. Results indicate that, the ABC algorithm estimated a comparable surface finish when compared with real coded genetic algorithm and differential evolution algorithm.

  11. A Modified Artificial Bee Colony Algorithm for p-Center Problems

    Directory of Open Access Journals (Sweden)

    Alkın Yurtkuran

    2014-01-01

    Full Text Available The objective of the p-center problem is to locate p-centers on a network such that the maximum of the distances from each node to its nearest center is minimized. The artificial bee colony algorithm is a swarm-based meta-heuristic algorithm that mimics the foraging behavior of honey bee colonies. This study proposes a modified ABC algorithm that benefits from a variety of search strategies to balance exploration and exploitation. Moreover, random key-based coding schemes are used to solve the p-center problem effectively. The proposed algorithm is compared to state-of-the-art techniques using different benchmark problems, and computational results reveal that the proposed approach is very efficient.

  12. Dynamic population artificial bee colony algorithm for multi-objective optimal power flow

    Directory of Open Access Journals (Sweden)

    Man Ding

    2017-03-01

    Full Text Available This paper proposes a novel artificial bee colony algorithm with dynamic population (ABC-DP, which synergizes the idea of extended life-cycle evolving model to balance the exploration and exploitation tradeoff. The proposed ABC-DP is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. ABC-DP is then used for solving the optimal power flow (OPF problem in power systems that considers the cost, loss, and emission impacts as the objective functions. The 30-bus IEEE test system is presented to illustrate the application of the proposed algorithm. The simulation results, which are also compared to nondominated sorting genetic algorithm II (NSGAII and multi-objective ABC (MOABC, are presented to illustrate the effectiveness and robustness of the proposed method.

  13. Chaotic Artificial Bee Colony Algorithm for System Identification of a Small-Scale Unmanned Helicopter

    Directory of Open Access Journals (Sweden)

    Li Ding

    2015-01-01

    Full Text Available The purpose of this paper is devoted to developing a chaotic artificial bee colony algorithm (CABC for the system identification of a small-scale unmanned helicopter state-space model in hover condition. In order to avoid the premature of traditional artificial bee colony algorithm (ABC, which is stuck in local optimum and can not reach the global optimum, a novel chaotic operator with the characteristics of ergodicity and irregularity was introduced to enhance its performance. With input-output data collected from actual flight experiments, the identification results showed the superiority of CABC over the ABC and the genetic algorithm (GA. Simulations are presented to demonstrate the effectiveness of our proposed algorithm and the accuracy of the identified helicopter model.

  14. Local Community Detection Algorithm Based on Minimal Cluster

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2016-01-01

    Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.

  15. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2006-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  16. Cluster fusion algorithm: application to Lennard-Jones clusters

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Solov'yov, Andrey V.; Greiner, Walter

    2008-01-01

    paths up to the cluster size of 150 atoms. We demonstrate that in this way all known global minima structures of the Lennard-Jones clusters can be found. Our method provides an efficient tool for the calculation and analysis of atomic cluster structure. With its use we justify the magic number sequence......We present a new general theoretical framework for modelling the cluster structure and apply it to description of the Lennard-Jones clusters. Starting from the initial tetrahedral cluster configuration, adding new atoms to the system and absorbing its energy at each step, we find cluster growing...... for the clusters of noble gas atoms and compare it with experimental observations. We report the striking correspondence of the peaks in the dependence of the second derivative of the binding energy per atom on cluster size calculated for the chain of the Lennard-Jones clusters based on the icosahedral symmetry...

  17. A new improved artificial bee colony algorithm for ship hull form optimization

    Science.gov (United States)

    Huang, Fuxin; Wang, Lijue; Yang, Chi

    2016-04-01

    The artificial bee colony (ABC) algorithm is a relatively new swarm intelligence-based optimization algorithm. Its simplicity of implementation, relatively few parameter settings and promising optimization capability make it widely used in different fields. However, it has problems of slow convergence due to its solution search equation. Here, a new solution search equation based on a combination of the elite solution pool and the block perturbation scheme is proposed to improve the performance of the algorithm. In addition, two different solution search equations are used by employed bees and onlooker bees to balance the exploration and exploitation of the algorithm. The developed algorithm is validated by a set of well-known numerical benchmark functions. It is then applied to optimize two ship hull forms with minimum resistance. The tested results show that the proposed new improved ABC algorithm can outperform the ABC algorithm in most of the tested problems.

  18. Comparison Performance of Genetic Algorithm and Ant Colony Optimization in Course Scheduling Optimizing

    Directory of Open Access Journals (Sweden)

    Imam Ahmad Ashari

    2016-11-01

    Full Text Available Scheduling problems at the university is a complex type of scheduling problems. The scheduling process should be carried out at every turn of the semester's. The core of the problem of scheduling courses at the university is that the number of components that need to be considered in making the schedule, some of the components was made up of students, lecturers, time and a room with due regard to the limits and certain conditions so that no collision in the schedule such as mashed room, mashed lecturer and others. To resolve a scheduling problem most appropriate technique used is the technique of optimization. Optimization techniques can give the best results desired. Metaheuristic algorithm is an algorithm that has a lot of ways to solve the problems to the very limit the optimal solution. In this paper, we use a genetic algorithm and ant colony optimization algorithm is an algorithm metaheuristic to solve the problem of course scheduling. The two algorithm will be tested and compared to get performance is the best. The algorithm was tested using data schedule courses of the university in Semarang. From the experimental results we conclude that the genetic algorithm has better performance than the ant colony optimization  algorithm in solving the case of course scheduling.

  19. Ant Colony Optimization Approaches to Clustering of Lung Nodules from CT Images

    Directory of Open Access Journals (Sweden)

    Ravichandran C. Gopalakrishnan

    2014-01-01

    Full Text Available Lung cancer is becoming a threat to mankind. Applying machine learning algorithms for detection and segmentation of irregular shaped lung nodules remains a remarkable milestone in CT scan image analysis research. In this paper, we apply ACO algorithm for lung nodule detection. We have compared the performance against three other algorithms, namely, Otsu algorithm, watershed algorithm, and global region based segmentation. In addition, we suggest a novel approach which involves variations of ACO, namely, refined ACO, logical ACO, and variant ACO. Variant ACO shows better reduction in false positives. In addition we propose black circular neighborhood approach to detect nodule centers from the edge detected image. Genetic algorithm based clustering is performed to cluster the nodules based on intensity, shape, and size. The performance of the overall approach is compared with hierarchical clustering to establish the improvisation in the proposed approach.

  20. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  1. Mining the National Career Assessment Examination Result Using Clustering Algorithm

    Science.gov (United States)

    Pagudpud, M. V.; Palaoag, T. T.; Padirayon, L. M.

    2018-03-01

    Education is an essential process today which elicits authorities to discover and establish innovative strategies for educational improvement. This study applied data mining using clustering technique for knowledge extraction from the National Career Assessment Examination (NCAE) result in the Division of Quirino. The NCAE is an examination given to all grade 9 students in the Philippines to assess their aptitudes in the different domains. Clustering the students is helpful in identifying students’ learning considerations. With the use of the RapidMiner tool, clustering algorithms such as Density-Based Spatial Clustering of Applications with Noise (DBSCAN), k-means, k-medoid, expectation maximization clustering, and support vector clustering algorithms were analyzed. The silhouette indexes of the said clustering algorithms were compared, and the result showed that the k-means algorithm with k = 3 and silhouette index equal to 0.196 is the most appropriate clustering algorithm to group the students. Three groups were formed having 477 students in the determined group (cluster 0), 310 proficient students (cluster 1) and 396 developing students (cluster 2). The data mining technique used in this study is essential in extracting useful information from the NCAE result to better understand the abilities of students which in turn is a good basis for adopting teaching strategies.

  2. Android Malware Classification Using K-Means Clustering Algorithm

    Science.gov (United States)

    Hamid, Isredza Rahmi A.; Syafiqah Khalid, Nur; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Chai Wen, Chuah

    2017-08-01

    Malware was designed to gain access or damage a computer system without user notice. Besides, attacker exploits malware to commit crime or fraud. This paper proposed Android malware classification approach based on K-Means clustering algorithm. We evaluate the proposed model in terms of accuracy using machine learning algorithms. Two datasets were selected to demonstrate the practicing of K-Means clustering algorithms that are Virus Total and Malgenome dataset. We classify the Android malware into three clusters which are ransomware, scareware and goodware. Nine features were considered for each types of dataset such as Lock Detected, Text Detected, Text Score, Encryption Detected, Threat, Porn, Law, Copyright and Moneypak. We used IBM SPSS Statistic software for data classification and WEKA tools to evaluate the built cluster. The proposed K-Means clustering algorithm shows promising result with high accuracy when tested using Random Forest algorithm.

  3. Hybrid Artificial Bee Colony Algorithm and Particle Swarm Search for Global Optimization

    Directory of Open Access Journals (Sweden)

    Wang Chun-Feng

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm is one of the most recent swarm intelligence based algorithms, which has been shown to be competitive to other population-based algorithms. However, there is still an insufficiency in ABC regarding its solution search equation, which is good at exploration but poor at exploitation. To overcome this problem, we propose a novel artificial bee colony algorithm based on particle swarm search mechanism. In this algorithm, for improving the convergence speed, the initial population is generated by using good point set theory rather than random selection firstly. Secondly, in order to enhance the exploitation ability, the employed bee, onlookers, and scouts utilize the mechanism of PSO to search new candidate solutions. Finally, for further improving the searching ability, the chaotic search operator is adopted in the best solution of the current iteration. Our algorithm is tested on some well-known benchmark functions and compared with other algorithms. Results show that our algorithm has good performance.

  4. A Multiuser Detector Based on Artificial Bee Colony Algorithm for DS-UWB Systems

    Directory of Open Access Journals (Sweden)

    Zhendong Yin

    2013-01-01

    Full Text Available Artificial Bee Colony (ABC algorithm is an optimization algorithm based on the intelligent behavior of honey bee swarm. The ABC algorithm was developed to solve optimizing numerical problems and revealed premising results in processing time and solution quality. In ABC, a colony of artificial bees search for rich artificial food sources; the optimizing numerical problems are converted to the problem of finding the best parameter which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solutions and then iteratively improve them by employing the behavior: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions. In this paper, an efficient multiuser detector based on a suboptimal code mapping multiuser detector and artificial bee colony algorithm (SCM-ABC-MUD is proposed and implemented in direct-sequence ultra-wideband (DS-UWB systems under the additive white Gaussian noise (AWGN channel. The simulation results demonstrate that the BER and the near-far effect resistance performances of this proposed algorithm are quite close to those of the optimum multiuser detector (OMD while its computational complexity is much lower than that of OMD. Furthermore, the BER performance of SCM-ABC-MUD is not sensitive to the number of active users and can obtain a large system capacity.

  5. Optimization of type-2 fuzzy controllers using the bee colony algorithm

    CERN Document Server

    Amador, Leticia

    2017-01-01

    This book focuses on the fields of fuzzy logic, bio-inspired algorithm; especially bee colony optimization algorithm and also considering the fuzzy control area. The main idea is that this areas together can to solve various control problems and to find better results. In this book we test the proposed method using two benchmark problems; the problem for filling a water tank and the problem for controlling the trajectory in an autonomous mobile robot. When Interval Type-2 Fuzzy Logic System is implemented to model the behavior of systems, the results show a better stabilization, because the analysis of uncertainty is better. For this reason we consider in this book the proposed method using fuzzy systems, fuzzy controllers, and bee colony optimization algorithm improve the behavior of the complex control problems.

  6. Reliable Ant Colony Routing Algorithm for Dual-Channel Mobile Ad Hoc Networks

    Directory of Open Access Journals (Sweden)

    YongQiang Li

    2018-01-01

    Full Text Available For the problem of poor link reliability caused by high-speed dynamic changes and congestion owing to low network bandwidth in ad hoc networks, an ant colony routing algorithm, based on reliable path under dual-channel condition (DSAR, is proposed. First, dual-channel communication mode is used to improve network bandwidth, and a hierarchical network model is proposed to optimize the dual-layer network. Thus, we reduce network congestion and communication delay. Second, a comprehensive reliable path selection strategy is designed, and the reliable path is selected ahead of time to reduce the probability of routing restart. Finally, the ant colony algorithm is used to improve the adaptability of the routing algorithm to changes of network topology. Simulation results show that DSAR improves the reliability of routing, packet delivery, and throughput.

  7. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Thornton, Anthony Richard; Luding, Stefan

    2010-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  8. An event driven algorithm for fractal cluster formation

    NARCIS (Netherlands)

    González, S.; Gonzalez Briones, Sebastián; Thornton, Anthony Richard; Luding, Stefan

    2011-01-01

    A new cluster based event-driven algorithm is developed to simulate the formation of clusters in a two dimensional gas: particles move freely until they collide and "stick" together irreversibly. These clusters aggregate into bigger structures in an isotompic way, forming fractal structures whose

  9. Clustering algorithms for Stokes space modulation format recognition

    DEFF Research Database (Denmark)

    Boada, Ricard; Borkowski, Robert; Tafur Monroy, Idelfonso

    2015-01-01

    influences the performance of the detection process, particularly at low signal-to-noise ratios. This paper reports on an extensive study of six different clustering algorithms: k-means, expectation maximization, density-based DBSCAN and OPTICS, spectral clustering and maximum likelihood clustering, used...

  10. Performance Evaluation of Incremental K-means Clustering Algorithm

    OpenAIRE

    Chakraborty, Sanjay; Nagwani, N. K.

    2014-01-01

    The incremental K-means clustering algorithm has already been proposed and analysed in paper [Chakraborty and Nagwani, 2011]. It is a very innovative approach which is applicable in periodically incremental environment and dealing with a bulk of updates. In this paper the performance evaluation is done for this incremental K-means clustering algorithm using air pollution database. This paper also describes the comparison on the performance evaluations between existing K-means clustering and i...

  11. Co-clustering models, algorithms and applications

    CERN Document Server

    Govaert, Gérard

    2013-01-01

    Cluster or co-cluster analyses are important tools in a variety of scientific areas. The introduction of this book presents a state of the art of already well-established, as well as more recent methods of co-clustering. The authors mainly deal with the two-mode partitioning under different approaches, but pay particular attention to a probabilistic approach. Chapter 1 concerns clustering in general and the model-based clustering in particular. The authors briefly review the classical clustering methods and focus on the mixture model. They present and discuss the use of different mixture

  12. Double evolutsional artificial bee colony algorithm for multiple traveling salesman problem

    Directory of Open Access Journals (Sweden)

    Xue Ming Hao

    2016-01-01

    Full Text Available The double evolutional artificial bee colony algorithm (DEABC is proposed for solving the single depot multiple traveling salesman problem (MTSP. The proposed DEABC algorithm, which takes advantage of the strength of the upgraded operators, is characterized by its guidance in exploitation search and diversity in exploration search. The double evolutional process for exploitation search is composed of two phases of half stochastic optimal search, and the diversity generating operator for exploration search is used for solutions which cannot be improved after limited times. The computational results demonstrated the superiority of our algorithm over previous state-of-the-art methods.

  13. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    International Nuclear Information System (INIS)

    Sencan Sahin, Arzu; Kilic, Bayram; Kilic, Ulas

    2011-01-01

    Highlights: → Artificial Bee Colony for shell and tube heat exchanger optimization is used. → The total cost is minimized by varying design variables. → This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  14. Design and economic optimization of shell and tube heat exchangers using Artificial Bee Colony (ABC) algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Sencan Sahin, Arzu, E-mail: sencan@tef.sdu.edu.tr [Department of Mechanical Education, Technical Education Faculty, Sueleyman Demirel University, 32260 Isparta (Turkey); Kilic, Bayram, E-mail: bayramkilic@hotmail.com [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey); Kilic, Ulas, E-mail: ulaskilic@mehmetakif.edu.tr [Bucak Emin Guelmez Vocational School, Mehmet Akif Ersoy University, Bucak (Turkey)

    2011-10-15

    Highlights: {yields} Artificial Bee Colony for shell and tube heat exchanger optimization is used. {yields} The total cost is minimized by varying design variables. {yields} This new approach can be applied for optimization of heat exchangers. - Abstract: In this study, a new shell and tube heat exchanger optimization design approach is developed. Artificial Bee Colony (ABC) has been applied to minimize the total cost of the equipment including capital investment and the sum of discounted annual energy expenditures related to pumping of shell and tube heat exchanger by varying various design variables such as tube length, tube outer diameter, pitch size, baffle spacing, etc. Finally, the results are compared to those obtained by literature approaches. The obtained results indicate that Artificial Bee Colony (ABC) algorithm can be successfully applied for optimal design of shell and tube heat exchangers.

  15. A novel clustering algorithm based on quantum games

    International Nuclear Information System (INIS)

    Li Qiang; He Yan; Jiang Jingping

    2009-01-01

    Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.

  16. Cooperative path planning for multi-USV based on improved artificial bee colony algorithm

    Science.gov (United States)

    Cao, Lu; Chen, Qiwei

    2018-03-01

    Due to the complex constraints, more uncertain factors and critical real-time demand of path planning for multiple unmanned surface vehicle (multi-USV), an improved artificial bee colony (I-ABC) algorithm were proposed to solve the model of cooperative path planning for multi-USV. First the Voronoi diagram of battle field space is conceived to generate the optimal area of USVs paths. Then the chaotic searching algorithm is used to initialize the collection of paths, which is regard as foods of the ABC algorithm. With the limited data, the initial collection can search the optimal area of paths perfectly. Finally simulations of the multi-USV path planning under various threats have been carried out. Simulation results verify that the I-ABC algorithm can improve the diversity of nectar source and the convergence rate of algorithm. It can increase the adaptability of dynamic battlefield and unexpected threats for USV.

  17. Analysis of parameter estimation and optimization application of ant colony algorithm in vehicle routing problem

    Science.gov (United States)

    Xu, Quan-Li; Cao, Yu-Wei; Yang, Kun

    2018-03-01

    Ant Colony Optimization (ACO) is the most widely used artificial intelligence algorithm at present. This study introduced the principle and mathematical model of ACO algorithm in solving Vehicle Routing Problem (VRP), and designed a vehicle routing optimization model based on ACO, then the vehicle routing optimization simulation system was developed by using c ++ programming language, and the sensitivity analyses, estimations and improvements of the three key parameters of ACO were carried out. The results indicated that the ACO algorithm designed in this paper can efficiently solve rational planning and optimization of VRP, and the different values of the key parameters have significant influence on the performance and optimization effects of the algorithm, and the improved algorithm is not easy to locally converge prematurely and has good robustness.

  18. New Enhanced Artificial Bee Colony (JA-ABC5 Algorithm with Application for Reactive Power Optimization

    Directory of Open Access Journals (Sweden)

    Noorazliza Sulaiman

    2015-01-01

    Full Text Available The standard artificial bee colony (ABC algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.

  19. New enhanced artificial bee colony (JA-ABC5) algorithm with application for reactive power optimization.

    Science.gov (United States)

    Sulaiman, Noorazliza; Mohamad-Saleh, Junita; Abro, Abdul Ghani

    2015-01-01

    The standard artificial bee colony (ABC) algorithm involves exploration and exploitation processes which need to be balanced for enhanced performance. This paper proposes a new modified ABC algorithm named JA-ABC5 to enhance convergence speed and improve the ability to reach the global optimum by balancing exploration and exploitation processes. New stages have been proposed at the earlier stages of the algorithm to increase the exploitation process. Besides that, modified mutation equations have also been introduced in the employed and onlooker-bees phases to balance the two processes. The performance of JA-ABC5 has been analyzed on 27 commonly used benchmark functions and tested to optimize the reactive power optimization problem. The performance results have clearly shown that the newly proposed algorithm has outperformed other compared algorithms in terms of convergence speed and global optimum achievement.

  20. Modification of MSDR algorithm and ITS implementation on graph clustering

    Science.gov (United States)

    Prastiwi, D.; Sugeng, K. A.; Siswantining, T.

    2017-07-01

    Maximum Standard Deviation Reduction (MSDR) is a graph clustering algorithm to minimize the distance variation within a cluster. In this paper we propose a modified MSDR by replacing one technical step in MSDR which uses polynomial regression, with a new and simpler step. This leads to our new algorithm called Modified MSDR (MMSDR). We implement the new algorithm to separate a domestic flight network of an Indonesian airline into two large clusters. Further analysis allows us to discover a weak link in the network, which should be improved by adding more flights.

  1. APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags

    DEFF Research Database (Denmark)

    Zong, Yu; Xu, Guandong; Jin, Pin

    2011-01-01

    algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... as the initial tag clustering result and then assign the rest tags into the corresponding clusters based on the similarity. Experimental results on three real world datasets namely MedWorm, MovieLens and Dmoz demonstrate the effectiveness and the superiority of the proposed method against the traditional...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...

  2. Improved multi-objective clustering algorithm using particle swarm optimization.

    Directory of Open Access Journals (Sweden)

    Congcong Gong

    Full Text Available Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  3. Improved multi-objective clustering algorithm using particle swarm optimization.

    Science.gov (United States)

    Gong, Congcong; Chen, Haisong; He, Weixiong; Zhang, Zhanliang

    2017-01-01

    Multi-objective clustering has received widespread attention recently, as it can obtain more accurate and reasonable solution. In this paper, an improved multi-objective clustering framework using particle swarm optimization (IMCPSO) is proposed. Firstly, a novel particle representation for clustering problem is designed to help PSO search clustering solutions in continuous space. Secondly, the distribution of Pareto set is analyzed. The analysis results are applied to the leader selection strategy, and make algorithm avoid trapping in local optimum. Moreover, a clustering solution-improved method is proposed, which can increase the efficiency in searching clustering solution greatly. In the experiments, 28 datasets are used and nine state-of-the-art clustering algorithms are compared, the proposed method is superior to other approaches in the evaluation index ARI.

  4. Study on Cloud Computing Resource Scheduling Strategy Based on the Ant Colony Optimization Algorithm

    OpenAIRE

    Lingna He; Qingshui Li; Linan Zhu

    2012-01-01

    In order to replace the traditional Internet software usage patterns and enterprise management mode, this paper proposes a new business calculation mode- cloud computing, resources scheduling strategy is the key technology in cloud computing, Based on the study of cloud computing system structure and the mode of operation, The key research for cloud computing the process of the work scheduling and resource allocation problems based on ant colony algorithm , Detailed analysis and design of the...

  5. Application of Ant-Colony-Based Algorithms to Multi-Reservoir Water Resources Problems

    Directory of Open Access Journals (Sweden)

    Alireza Borhani Darian

    2011-01-01

    Full Text Available In this paper, the continuous Ant Colony Optimization Algorithm (ACOR is used to investigate the optimum operation of complex multi-reservoir systems. The results are compared with those of the well-known Genetic Algorithm (GA. For this purpose, GA and ACOR are used to solve the long-term operation of a three-reservoir system in Karkheh Basin, southwestern Iran. The solution must determine monthly releases from the three reservoirs and their optimum allocations among the four agricultural demand areas. Meanwhile, a minimum discharge must be maintained within the river reaches for environmental concerns. Review of past research shows that only a few applications of Ant Colony have been generally made in water resources system problems; however, up to the time of initiating this paper, we found no other application of the ACOR in this area. Therefore, unlike GA, application of Ant-Colony-based algorithms in water resources systems has not been thoroughly evaluated and deserves  serious study. In this paper, the ACOR is stuided as the most recent Ant-Colony-based algorithm and its application in a multi-reservoir system is evaluated. The results indicate that with when the number of decision variables increases, a longer computational time is required and the optimum solutions found are inferior. Therefore, the ACOR would be unable to solve complex water resources problems unless some modifications are considered. To overcome a part of these drawbacks, a number of techniques are introduced in this paper that considerably improve the quality of the method by decreasing the required computation time and by enhancing optimum solutions found.

  6. A High-Order CFS Algorithm for Clustering Big Data

    Directory of Open Access Journals (Sweden)

    Fanyu Bu

    2016-01-01

    Full Text Available With the development of Internet of Everything such as Internet of Things, Internet of People, and Industrial Internet, big data is being generated. Clustering is a widely used technique for big data analytics and mining. However, most of current algorithms are not effective to cluster heterogeneous data which is prevalent in big data. In this paper, we propose a high-order CFS algorithm (HOCFS to cluster heterogeneous data by combining the CFS clustering algorithm and the dropout deep learning model, whose functionality rests on three pillars: (i an adaptive dropout deep learning model to learn features from each type of data, (ii a feature tensor model to capture the correlations of heterogeneous data, and (iii a tensor distance-based high-order CFS algorithm to cluster heterogeneous data. Furthermore, we verify our proposed algorithm on different datasets, by comparison with other two clustering schemes, that is, HOPCM and CFS. Results confirm the effectiveness of the proposed algorithm in clustering heterogeneous data.

  7. Improving the Interpretability of Classification Rules Discovered by an Ant Colony Algorithm: Extended Results

    OpenAIRE

    Otero, Fernando E.B.; Freitas, Alex A.

    2016-01-01

    The vast majority of Ant Colony Optimization (ACO) algorithms for inducing classification rules use an ACO-based procedure to create a rule in an one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-MinerPB algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules)-i.e., the ACO search is guided by the quality of a list of rules, instead of an individual rule. In this paper we propose an extension of the cAnt-MinerPB algorith...

  8. Optimization of China Crude Oil Transportation Network with Genetic Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yao Wang

    2015-08-01

    Full Text Available Taking into consideration both shipping and pipeline transport, this paper first analysed the risk factors for different modes of crude oil import transportation. Then, based on the minimum of both transportation cost and overall risk, a multi-objective programming model was established to optimize the transportation network of crude oil import, and the genetic algorithm and ant colony algorithm were employed to solve the problem. The optimized result shows that VLCC (Very Large Crude Carrier is superior in long distance sea transportation, whereas pipeline transport is more secure than sea transport. Finally, this paper provides related safeguard suggestions on crude oil import transportation.

  9. A Modified Artificial Bee Colony Algorithm Application for Economic Environmental Dispatch

    Science.gov (United States)

    Tarafdar Hagh, M.; Baghban Orandi, Omid

    2018-03-01

    In conventional fossil-fuel power systems, the economic environmental dispatch (EED) problem is a major problem that optimally determines the output power of generating units in a way that cost of total production and emission level be minimized simultaneously, and at the same time all the constraints of units and system are satisfied properly. To solve EED problem which is a non-convex optimization problem, a modified artificial bee colony (MABC) algorithm is proposed in this paper. This algorithm by implementing weighted sum method is applied on two test systems, and eventually, obtained results are compared with other reported results. Comparison of results confirms superiority and efficiency of proposed method clearly.

  10. A new modified artificial bee colony algorithm for the economic dispatch problem

    International Nuclear Information System (INIS)

    Secui, Dinu Calin

    2015-01-01

    Highlights: • A new modified ABC algorithm (MABC) is proposed to solve the EcD/EmD problem. • Valve-point effects, ramp-rate limits, POZ, transmission losses were considered. • The algorithm is tested on four systems having 6, 13, 40 and 52 thermal units. • MABC algorithm outperforms several optimization techniques. - Abstract: In this paper a new modified artificial bee colony algorithm (MABC) is proposed to solve the economic dispatch problem by taking into account the valve-point effects, the emission pollutions and various operating constraints of the generating units. The MABC algorithm introduces a new relation to update the solutions within the search space, in order to increase the algorithm ability to avoid premature convergence and to find stable and high quality solutions. Moreover, to strengthen the MABC algorithm performance, it is endowed with a chaotic sequence generated by both a cat map and a logistic map. The MABC algorithm behavior is investigated for several combinations resulting from three generating modalities of the chaotic sequences and two selection schemes of the solutions. The performance of the MABC variants is tested on four systems having six units, thirteen units, forty units and fifty-two thermal generating units. The comparison of the results shows that the MABC variants have a better performance than the classical ABC algorithm and other optimization techniques

  11. Parallel clustering algorithm for large-scale biological data sets.

    Science.gov (United States)

    Wang, Minchao; Zhang, Wu; Ding, Wang; Dai, Dongbo; Zhang, Huiran; Xie, Hao; Chen, Luonan; Guo, Yike; Xie, Jiang

    2014-01-01

    Recent explosion of biological data brings a great challenge for the traditional clustering algorithms. With increasing scale of data sets, much larger memory and longer runtime are required for the cluster identification problems. The affinity propagation algorithm outperforms many other classical clustering algorithms and is widely applied into the biological researches. However, the time and space complexity become a great bottleneck when handling the large-scale data sets. Moreover, the similarity matrix, whose constructing procedure takes long runtime, is required before running the affinity propagation algorithm, since the algorithm clusters data sets based on the similarities between data pairs. Two types of parallel architectures are proposed in this paper to accelerate the similarity matrix constructing procedure and the affinity propagation algorithm. The memory-shared architecture is used to construct the similarity matrix, and the distributed system is taken for the affinity propagation algorithm, because of its large memory size and great computing capacity. An appropriate way of data partition and reduction is designed in our method, in order to minimize the global communication cost among processes. A speedup of 100 is gained with 128 cores. The runtime is reduced from serval hours to a few seconds, which indicates that parallel algorithm is capable of handling large-scale data sets effectively. The parallel affinity propagation also achieves a good performance when clustering large-scale gene data (microarray) and detecting families in large protein superfamilies.

  12. A new hybrid imperialist competitive algorithm on data clustering

    Indian Academy of Sciences (India)

    Modified imperialist competitive algorithm; simulated annealing; ... Clustering is one of the unsupervised learning branches where a set of patterns, usually vectors ..... machine classification is based on design, operation, and/or purpose.

  13. An AK-LDMeans algorithm based on image clustering

    Science.gov (United States)

    Chen, Huimin; Li, Xingwei; Zhang, Yongbin; Chen, Nan

    2018-03-01

    Clustering is an effective analytical technique for handling unmarked data for value mining. Its ultimate goal is to mark unclassified data quickly and correctly. We use the roadmap for the current image processing as the experimental background. In this paper, we propose an AK-LDMeans algorithm to automatically lock the K value by designing the Kcost fold line, and then use the long-distance high-density method to select the clustering centers to further replace the traditional initial clustering center selection method, which further improves the efficiency and accuracy of the traditional K-Means Algorithm. And the experimental results are compared with the current clustering algorithm and the results are obtained. The algorithm can provide effective reference value in the fields of image processing, machine vision and data mining.

  14. An Improved Multi-Objective Artificial Bee Colony Optimization Algorithm with Regulation Operators

    Directory of Open Access Journals (Sweden)

    Jiuyuan Huo

    2017-02-01

    Full Text Available To achieve effective and accurate optimization for multi-objective optimization problems, a multi-objective artificial bee colony algorithm with regulation operators (RMOABC inspired by the intelligent foraging behavior of honey bees was proposed in this paper. The proposed algorithm utilizes the Pareto dominance theory and takes advantage of adaptive grid and regulation operator mechanisms. The adaptive grid technique is used to adaptively assess the Pareto front maintained in an external archive and the regulation operator is used to balance the weights of the local search and the global search in the evolution of the algorithm. The performance of RMOABC was evaluated in comparison with other nature inspired algorithms includes NSGA-II and MOEA/D. The experiments results demonstrated that the RMOABC approach has better accuracy and minimal execution time.

  15. An Effective Hybrid Routing Algorithm in WSN: Ant Colony Optimization in combination with Hop Count Minimization

    Directory of Open Access Journals (Sweden)

    Ailian Jiang

    2018-03-01

    Full Text Available Low cost, high reliability and easy maintenance are key criteria in the design of routing protocols for wireless sensor networks (WSNs. This paper investigates the existing ant colony optimization (ACO-based WSN routing algorithms and the minimum hop count WSN routing algorithms by reviewing their strengths and weaknesses. We also consider the critical factors of WSNs, such as energy constraint of sensor nodes, network load balancing and dynamic network topology. Then we propose a hybrid routing algorithm that integrates ACO and a minimum hop count scheme. The proposed algorithm is able to find the optimal routing path with minimal total energy consumption and balanced energy consumption on each node. The algorithm has unique superiority in terms of searching for the optimal path, balancing the network load and the network topology maintenance. The WSN model and the proposed algorithm have been implemented using C++. Extensive simulation experimental results have shown that our algorithm outperforms several other WSN routing algorithms on such aspects that include the rate of convergence, the success rate in searching for global optimal solution, and the network lifetime.

  16. Flowbca : A flow-based cluster algorithm in Stata

    NARCIS (Netherlands)

    Meekes, J.; Hassink, W.H.J.

    In this article, we introduce the Stata implementation of a flow-based cluster algorithm written in Mata. The main purpose of the flowbca command is to identify clusters based on relational data of flows. We illustrate the command by providing multiple applications, from the research fields of

  17. Efficient Record Linkage Algorithms Using Complete Linkage Clustering.

    Science.gov (United States)

    Mamun, Abdullah-Al; Aseltine, Robert; Rajasekaran, Sanguthevar

    2016-01-01

    Data from different agencies share data of the same individuals. Linking these datasets to identify all the records belonging to the same individuals is a crucial and challenging problem, especially given the large volumes of data. A large number of available algorithms for record linkage are prone to either time inefficiency or low-accuracy in finding matches and non-matches among the records. In this paper we propose efficient as well as reliable sequential and parallel algorithms for the record linkage problem employing hierarchical clustering methods. We employ complete linkage hierarchical clustering algorithms to address this problem. In addition to hierarchical clustering, we also use two other techniques: elimination of duplicate records and blocking. Our algorithms use sorting as a sub-routine to identify identical copies of records. We have tested our algorithms on datasets with millions of synthetic records. Experimental results show that our algorithms achieve nearly 100% accuracy. Parallel implementations achieve almost linear speedups. Time complexities of these algorithms do not exceed those of previous best-known algorithms. Our proposed algorithms outperform previous best-known algorithms in terms of accuracy consuming reasonable run times.

  18. Collaborative filtering recommendation model based on fuzzy clustering algorithm

    Science.gov (United States)

    Yang, Ye; Zhang, Yunhua

    2018-05-01

    As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.

  19. Identifying nuclear power plant transients using the Discrete Binary Artificial Bee Colony (DBABC) algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Iona M.S. de; Schirru, Roberto, E-mail: ioliveira@con.ufrj.br, E-mail: schirru@lmp.ufrj.br [Coordenacoa dos Programas de Pos-Graduacao em Engenharia (UFRJ/PEN/COPPE), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear

    2011-07-01

    The identification of possible transients in a nuclear power plant is a highly relevant problem. This is mainly due to the fact that the operation of a nuclear power plant involves a large number of state variables whose behaviors are extremely dynamic. In risk situations, besides the huge cognitive overload that operators are submitted to, there is also the problem related with the considerable decrease in the effective time for correct decision making. To minimize these problems and help operators to make the corrective actions in due time, this paper presents a new contribution in this area and introduces an experimental transient identification system based exclusively on the abilities of the Discrete Binary Artificial Bee Colony (DBABC) algorithm to find the best centroid positions that correctly identifies a transient in a nuclear power plant. The DBABC is a reworking of the Artificial Bee Colony (ABC) algorithm which presents the advantage of operating in both continuous and discrete search spaces. Through the analysis of experimental results, the effective performance of the proposed DBABC algorithm is shown against some well known best performing algorithms from the literature. (author)

  20. An improved ant colony optimization algorithm with fault tolerance for job scheduling in grid computing systems.

    Directory of Open Access Journals (Sweden)

    Hajara Idris

    Full Text Available The Grid scheduler, schedules user jobs on the best available resource in terms of resource characteristics by optimizing job execution time. Resource failure in Grid is no longer an exception but a regular occurring event as resources are increasingly being used by the scientific community to solve computationally intensive problems which typically run for days or even months. It is therefore absolutely essential that these long-running applications are able to tolerate failures and avoid re-computations from scratch after resource failure has occurred, to satisfy the user's Quality of Service (QoS requirement. Job Scheduling with Fault Tolerance in Grid Computing using Ant Colony Optimization is proposed to ensure that jobs are executed successfully even when resource failure has occurred. The technique employed in this paper, is the use of resource failure rate, as well as checkpoint-based roll back recovery strategy. Check-pointing aims at reducing the amount of work that is lost upon failure of the system by immediately saving the state of the system. A comparison of the proposed approach with an existing Ant Colony Optimization (ACO algorithm is discussed. The experimental results of the implemented Fault Tolerance scheduling algorithm show that there is an improvement in the user's QoS requirement over the existing ACO algorithm, which has no fault tolerance integrated in it. The performance evaluation of the two algorithms was measured in terms of the three main scheduling performance metrics: makespan, throughput and average turnaround time.

  1. Identifying nuclear power plant transients using the Discrete Binary Artificial Bee Colony (DBABC) algorithm

    International Nuclear Information System (INIS)

    Oliveira, Iona M.S. de; Schirru, Roberto

    2011-01-01

    The identification of possible transients in a nuclear power plant is a highly relevant problem. This is mainly due to the fact that the operation of a nuclear power plant involves a large number of state variables whose behaviors are extremely dynamic. In risk situations, besides the huge cognitive overload that operators are submitted to, there is also the problem related with the considerable decrease in the effective time for correct decision making. To minimize these problems and help operators to make the corrective actions in due time, this paper presents a new contribution in this area and introduces an experimental transient identification system based exclusively on the abilities of the Discrete Binary Artificial Bee Colony (DBABC) algorithm to find the best centroid positions that correctly identifies a transient in a nuclear power plant. The DBABC is a reworking of the Artificial Bee Colony (ABC) algorithm which presents the advantage of operating in both continuous and discrete search spaces. Through the analysis of experimental results, the effective performance of the proposed DBABC algorithm is shown against some well known best performing algorithms from the literature. (author)

  2. Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-01-01

    To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.

  3. An ant colony optimization algorithm for phylogenetic estimation under the minimum evolution principle

    Directory of Open Access Journals (Sweden)

    Milinkovitch Michel C

    2007-11-01

    Full Text Available Abstract Background Distance matrix methods constitute a major family of phylogenetic estimation methods, and the minimum evolution (ME principle (aiming at recovering the phylogeny with shortest length is one of the most commonly used optimality criteria for estimating phylogenetic trees. The major difficulty for its application is that the number of possible phylogenies grows exponentially with the number of taxa analyzed and the minimum evolution principle is known to belong to the NP MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacPC6xNi=xH8viVGI8Gi=hEeeu0xXdbba9frFj0xb9qqpG0dXdb9aspeI8k8fiI+fsY=rqGqVepae9pg0db9vqaiVgFr0xfr=xfr=xc9adbaqaaeGacaGaaiaabeqaaeqabiWaaaGcbaWenfgDOvwBHrxAJfwnHbqeg0uy0HwzTfgDPnwy1aaceaGae8xdX7Kaeeiuaafaaa@3888@-hard class of problems. Results In this paper, we introduce an Ant Colony Optimization (ACO algorithm to estimate phylogenies under the minimum evolution principle. ACO is an optimization technique inspired from the foraging behavior of real ant colonies. This behavior is exploited in artificial ant colonies for the search of approximate solutions to discrete optimization problems. Conclusion We show that the ACO algorithm is potentially competitive in comparison with state-of-the-art algorithms for the minimum evolution principle. This is the first application of an ACO algorithm to the phylogenetic estimation problem.

  4. Research on retailer data clustering algorithm based on Spark

    Science.gov (United States)

    Huang, Qiuman; Zhou, Feng

    2017-03-01

    Big data analysis is a hot topic in the IT field now. Spark is a high-reliability and high-performance distributed parallel computing framework for big data sets. K-means algorithm is one of the classical partition methods in clustering algorithm. In this paper, we study the k-means clustering algorithm on Spark. Firstly, the principle of the algorithm is analyzed, and then the clustering analysis is carried out on the supermarket customers through the experiment to find out the different shopping patterns. At the same time, this paper proposes the parallelization of k-means algorithm and the distributed computing framework of Spark, and gives the concrete design scheme and implementation scheme. This paper uses the two-year sales data of a supermarket to validate the proposed clustering algorithm and achieve the goal of subdividing customers, and then analyze the clustering results to help enterprises to take different marketing strategies for different customer groups to improve sales performance.

  5. Service Composition Instantiation Based on Cross-Modified Artificial Bee Colony Algorithm

    Institute of Scientific and Technical Information of China (English)

    Lei Huo; Zhiliang Wang

    2016-01-01

    Internet of things (IoT) imposes new challenges on service composition as it is difficult to manage a quick instantiation of a complex services from a growing number of dynamic candidate services.A cross-modified Artificial Bee Colony Algorithm (CMABC) is proposed to achieve the optimal solution services in an acceptable time and high accuracy.Firstly,web service instantiation model was established.What is more,to overcome the problem of discrete and chaotic solution space,the global optimal solution was used to accelerate convergence rate by imitating the cross operation of Genetic algorithm (GA).The simulation experiment result shows that CMABC exhibited faster convergence speed and better convergence accuracy than some other intelligent optimization algorithms.

  6. Parameter identification of piezoelectric hysteresis model based on improved artificial bee colony algorithm

    Science.gov (United States)

    Wang, Geng; Zhou, Kexin; Zhang, Yeming

    2018-04-01

    The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.

  7. Heuristic Artificial Bee Colony Algorithm for Uncovering Community in Complex Networks

    Directory of Open Access Journals (Sweden)

    Yuquan Guo

    2017-01-01

    Full Text Available Community structure is important for us to understand the functions and structure of the complex networks. In this paper, Heuristic Artificial Bee Colony (HABC algorithm based on swarm intelligence is proposed for uncovering community. The proposed HABC includes initialization, employed bee searching, onlooker searching, and scout bee searching. In initialization stage, the nectar sources with simple community structure are generated through network dynamic algorithm associated with complete subgraph. In employed bee searching and onlooker searching stages, the searching function is redefined to address the community problem. The efficiency of searching progress can be improved by a heuristic function which is an average agglomerate probability of two neighbor communities. Experiments are carried out on artificial and real world networks, and the results demonstrate that HABC will have better performance in terms of comparing with the state-of-the-art algorithms.

  8. Symmetric nonnegative matrix factorization: algorithms and applications to probabilistic clustering.

    Science.gov (United States)

    He, Zhaoshui; Xie, Shengli; Zdunek, Rafal; Zhou, Guoxu; Cichocki, Andrzej

    2011-12-01

    Nonnegative matrix factorization (NMF) is an unsupervised learning method useful in various applications including image processing and semantic analysis of documents. This paper focuses on symmetric NMF (SNMF), which is a special case of NMF decomposition. Three parallel multiplicative update algorithms using level 3 basic linear algebra subprograms directly are developed for this problem. First, by minimizing the Euclidean distance, a multiplicative update algorithm is proposed, and its convergence under mild conditions is proved. Based on it, we further propose another two fast parallel methods: α-SNMF and β -SNMF algorithms. All of them are easy to implement. These algorithms are applied to probabilistic clustering. We demonstrate their effectiveness for facial image clustering, document categorization, and pattern clustering in gene expression.

  9. AUTOMATA PROGRAMS CONSTRUCTION FROM SPECIFICATION WITH AN ANT COLONY OPTIMIZATION ALGORITHM BASED ON MUTATION GRAPH

    Directory of Open Access Journals (Sweden)

    Daniil S. Chivilikhin

    2014-11-01

    Full Text Available The procedure of testing traditionally used in software engineering cannot guarantee program correctness; therefore verification is used at the excess requirements to programs reliability. Verification makes it possible to check certain properties of programs in all possible computational states; however, this process is very complex. In the model checking method a model of the program is built (often, manually and requirements in terms of temporal logic are formulated. Such temporal properties of the model can be checked automatically. The main issue in this framework is the gap between the program and its model. Automata-based programming paradigm gives the possibility to overcome this limitation. In this paradigm, program logic is represented using finite-state machines. The advantage of finite-state machines is that their models can be constructed automatically. The paper deals with the application of mutation-based ant colony optimization algorithm to the problem of finite-state machine construction from their specification, defined by test scenarios and temporal properties. The presented approach has been tested on the elevator doors control problem as well as on randomly generated data. Obtained results show the ant colony algorithm is two-three times faster than the previously used genetic algorithm. The proposed approach can be recommended for inferring control programs for critical systems.

  10. Evaluation of Cutting Performance of Diamond Saw Machine Using Artificial Bee Colony (ABC Algorithm

    Directory of Open Access Journals (Sweden)

    Masoud Akhyani

    2017-12-01

    Full Text Available Artificial Intelligence (AI techniques are used for solving the intractable engineering problems. In this study, it is aimed to study the application of artificial bee colony algorithm for predicting the performance of circular diamond saw in sawing of hard rocks. For this purpose, varieties of fourteen types of hard rocks were cut in laboratory using a cutting rig at 5 mm depth of cut, 40 cm/min feed rate and 3000 rpm peripheral speed. Four major mechanical and physical properties of studied rocks such as uniaxial compressive strength (UCS, Schimazek abrasivity factor (SF-a, Mohs hardness (Mh, and Young’s modulus (Ym were determined in rock mechanic laboratory. Artificial bee colony (ABC was used to classify the performance of circular diamond saw based on mentioned mechanical properties of rocks. Ampere consumption and wear rate of diamond saw were selected as criteria to evaluate the result of ABC algorithm. Ampere consumption was determined during cutting process and the average wear rate of diamond saw was calculated from width, length and height loss. The results of comparison between ABC’s results and cutting performance (ampere consumption and wear rate of diamond saw indicated the ability of metaheuristic algorithm such as ABC to evaluate the cutting performance.

  11. Vibration reduction of composite plates by piezoelectric patches using a modified artificial bee colony algorithm

    Directory of Open Access Journals (Sweden)

    Hadi Ghashochi-Bargh

    Full Text Available In Current paper, power consumption and vertical displacement optimization of composite plates subject to a step load are carried out by piezoelectric patches using the modified multi-objective Elitist-Artificial Bee Colony (E-ABC algorithm. The motivation behind this concept is to well balance the exploration and exploitation capability for attaining better convergence to the optimum. In order to reduce the calculation time, the elitist strategy is also used in Artificial Bee Colony algorithm. The voltages of patches, plate length/width ratios, ply angles, plate thickness/length ratios, number of layers and edge conditions are chosen as design variables. The formulation is based on the classical laminated plate theory (CLPT and Hamilton's principle. The performance of the new ABC approach is compared with the PSO algorithm and shows the good efficiency of the new ABC approach. To check the validity, the transient responses of isotropic and orthotropic plates are compared with those available in the literature and show a good agreement.

  12. Electric load forecasting by seasonal recurrent SVR (support vector regression) with chaotic artificial bee colony algorithm

    International Nuclear Information System (INIS)

    Hong, Wei-Chiang

    2011-01-01

    Support vector regression (SVR), with hybrid chaotic sequence and evolutionary algorithms to determine suitable values of its three parameters, not only can effectively avoid converging prematurely (i.e., trapping into a local optimum), but also reveals its superior forecasting performance. Electric load sometimes demonstrates a seasonal (cyclic) tendency due to economic activities or climate cyclic nature. The applications of SVR models to deal with seasonal (cyclic) electric load forecasting have not been widely explored. In addition, the concept of recurrent neural networks (RNNs), focused on using past information to capture detailed information, is helpful to be combined into an SVR model. This investigation presents an electric load forecasting model which combines the seasonal recurrent support vector regression model with chaotic artificial bee colony algorithm (namely SRSVRCABC) to improve the forecasting performance. The proposed SRSVRCABC employs the chaotic behavior of honey bees which is with better performance in function optimization to overcome premature local optimum. A numerical example from an existed reference is used to elucidate the forecasting performance of the proposed SRSVRCABC model. The forecasting results indicate that the proposed model yields more accurate forecasting results than ARIMA and TF-ε-SVR-SA models. Therefore, the SRSVRCABC model is a promising alternative for electric load forecasting. -- Highlights: → Hybridizing the seasonal adjustment and the recurrent mechanism into an SVR model. → Employing chaotic sequence to improve the premature convergence of artificial bee colony algorithm. → Successfully providing significant accurate monthly load demand forecasting.

  13. A Rule-Based Model for Bankruptcy Prediction Based on an Improved Genetic Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Yudong Zhang

    2013-01-01

    Full Text Available In this paper, we proposed a hybrid system to predict corporate bankruptcy. The whole procedure consists of the following four stages: first, sequential forward selection was used to extract the most important features; second, a rule-based model was chosen to fit the given dataset since it can present physical meaning; third, a genetic ant colony algorithm (GACA was introduced; the fitness scaling strategy and the chaotic operator were incorporated with GACA, forming a new algorithm—fitness-scaling chaotic GACA (FSCGACA, which was used to seek the optimal parameters of the rule-based model; and finally, the stratified K-fold cross-validation technique was used to enhance the generalization of the model. Simulation experiments of 1000 corporations’ data collected from 2006 to 2009 demonstrated that the proposed model was effective. It selected the 5 most important factors as “net income to stock broker’s equality,” “quick ratio,” “retained earnings to total assets,” “stockholders’ equity to total assets,” and “financial expenses to sales.” The total misclassification error of the proposed FSCGACA was only 7.9%, exceeding the results of genetic algorithm (GA, ant colony algorithm (ACA, and GACA. The average computation time of the model is 2.02 s.

  14. Directed Bee Colony Optimization Algorithm to Solve the Nurse Rostering Problem.

    Science.gov (United States)

    Rajeswari, M; Amudhavel, J; Pothula, Sujatha; Dhavachelvan, P

    2017-01-01

    The Nurse Rostering Problem is an NP-hard combinatorial optimization, scheduling problem for assigning a set of nurses to shifts per day by considering both hard and soft constraints. A novel metaheuristic technique is required for solving Nurse Rostering Problem (NRP). This work proposes a metaheuristic technique called Directed Bee Colony Optimization Algorithm using the Modified Nelder-Mead Method for solving the NRP. To solve the NRP, the authors used a multiobjective mathematical programming model and proposed a methodology for the adaptation of a Multiobjective Directed Bee Colony Optimization (MODBCO). MODBCO is used successfully for solving the multiobjective problem of optimizing the scheduling problems. This MODBCO is an integration of deterministic local search, multiagent particle system environment, and honey bee decision-making process. The performance of the algorithm is assessed using the standard dataset INRC2010, and it reflects many real-world cases which vary in size and complexity. The experimental analysis uses statistical tools to show the uniqueness of the algorithm on assessment criteria.

  15. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch

    Directory of Open Access Journals (Sweden)

    Alkın Yurtkuran

    2016-01-01

    Full Text Available The artificial bee colony (ABC algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  16. An Enhanced Artificial Bee Colony Algorithm with Solution Acceptance Rule and Probabilistic Multisearch.

    Science.gov (United States)

    Yurtkuran, Alkın; Emel, Erdal

    2016-01-01

    The artificial bee colony (ABC) algorithm is a popular swarm based technique, which is inspired from the intelligent foraging behavior of honeybee swarms. This paper proposes a new variant of ABC algorithm, namely, enhanced ABC with solution acceptance rule and probabilistic multisearch (ABC-SA) to address global optimization problems. A new solution acceptance rule is proposed where, instead of greedy selection between old solution and new candidate solution, worse candidate solutions have a probability to be accepted. Additionally, the acceptance probability of worse candidates is nonlinearly decreased throughout the search process adaptively. Moreover, in order to improve the performance of the ABC and balance the intensification and diversification, a probabilistic multisearch strategy is presented. Three different search equations with distinctive characters are employed using predetermined search probabilities. By implementing a new solution acceptance rule and a probabilistic multisearch approach, the intensification and diversification performance of the ABC algorithm is improved. The proposed algorithm has been tested on well-known benchmark functions of varying dimensions by comparing against novel ABC variants, as well as several recent state-of-the-art algorithms. Computational results show that the proposed ABC-SA outperforms other ABC variants and is superior to state-of-the-art algorithms proposed in the literature.

  17. A Novel Artificial Bee Colony Algorithm Based on Internal-Feedback Strategy for Image Template Matching

    Directory of Open Access Journals (Sweden)

    Bai Li

    2014-01-01

    Full Text Available Image template matching refers to the technique of locating a given reference image over a source image such that they are the most similar. It is a fundamental mission in the field of visual target recognition. In general, there are two critical aspects of a template matching scheme. One is similarity measurement and the other is best-match location search. In this work, we choose the well-known normalized cross correlation model as a similarity criterion. The searching procedure for the best-match location is carried out through an internal-feedback artificial bee colony (IF-ABC algorithm. IF-ABC algorithm is highlighted by its effort to fight against premature convergence. This purpose is achieved through discarding the conventional roulette selection procedure in the ABC algorithm so as to provide each employed bee an equal chance to be followed by the onlooker bees in the local search phase. Besides that, we also suggest efficiently utilizing the internal convergence states as feedback guidance for searching intensity in the subsequent cycles of iteration. We have investigated four ideal template matching cases as well as four actual cases using different searching algorithms. Our simulation results show that the IF-ABC algorithm is more effective and robust for this template matching mission than the conventional ABC and two state-of-the-art modified ABC algorithms do.

  18. Improving the Power Quality in Tehran Metro Line-Two Using the Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    H. Ehteshami

    2017-12-01

    Full Text Available This research aims to survey the improvement of power quality in Tehran metro line 2 using the ant colony algorithm and to investigate all the factors affecting the achievement of this goal. In order to put Tehran on the road of sustainable development, finding a solution for dealing with air pollution is essential. The use of public transportation, especially metro, is one of the ways to achieve this goal. Since the highest share of pollutants in Tehran belongs to cars and mobile sources, relative statistical indicators are estimated through assuming the effect of metro lines development and subsequently reduction of traffic on power quality index.

  19. CACER:A Novel E-commerce Recommendation Model Based on Crazy Ant Colony Algorithms

    Institute of Scientific and Technical Information of China (English)

    王征; 刘庆强

    2013-01-01

    In order to deal with the problems of E-commerce online marketing, a novel E-commerce recommendation system model was given to lead consumers to efficient retrieval and consumption. And the system model was built with a crazy ant colony algorithm. Then its model, message structures and working flows were presented as following. At last, an application example and compared results were given to be analyzed. Simulation results show the model can perform better in real-time and customer satisfaction than the olds do.

  20. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. In the ATLAS track reconstruction algorithm, an artificial neural network is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The robustness of the neural network algorithm is presented, probing its sensitivity to uncertainties in the detector conditions. The robustness is studied by evaluating the stability of the algorithm's performance under a range of variations in the inputs to the neural networks. Within reasonable variation magnitudes, the neural networks prove to be robust to most variation types.

  1. Cluster algorithms with empahsis on quantum spin systems

    International Nuclear Information System (INIS)

    Gubernatis, J.E.; Kawashima, Naoki

    1995-01-01

    The purpose of this lecture is to discuss in detail the generalized approach of Kawashima and Gubernatis for the construction of cluster algorithms. We first present a brief refresher on the Monte Carlo method, describe the Swendsen-Wang algorithm, show how this algorithm follows from the Fortuin-Kastelyn transformation, and re=interpret this transformation in a form which is the basis of the generalized approach. We then derive the essential equations of the generalized approach. This derivation is remarkably simple if done from the viewpoint of probability theory, and the essential assumptions will be clearly stated. These assumptions are implicit in all useful cluster algorithms of which we are aware. They lead to a quite different perspective on cluster algorithms than found in the seminal works and in Ising model applications. Next, we illustrate how the generalized approach leads to a cluster algorithm for world-line quantum Monte Carlo simulations of Heisenberg models with S = 1/2. More succinctly, we also discuss the generalization of the Fortuin- Kasetelyn transformation to higher spin models and illustrate the essential steps for a S = 1 Heisenberg model. Finally, we summarize how to go beyond S = 1 to a general spin, XYZ model

  2. A Genetic Algorithm That Exchanges Neighboring Centers for Fuzzy c-Means Clustering

    Science.gov (United States)

    Chahine, Firas Safwan

    2012-01-01

    Clustering algorithms are widely used in pattern recognition and data mining applications. Due to their computational efficiency, partitional clustering algorithms are better suited for applications with large datasets than hierarchical clustering algorithms. K-means is among the most popular partitional clustering algorithm, but has a major…

  3. Hybrid ANFIS with ant colony optimization algorithm for prediction of shear wave velocity from a carbonate reservoir in Iran

    Directory of Open Access Journals (Sweden)

    Hadi Fattahi

    2016-12-01

    Full Text Available Shear wave velocity (Vs data are key information for petrophysical, geophysical and geomechanical studies. Although compressional wave velocity (Vp measurements exist in almost all wells, shear wave velocity is not recorded for most of elderly wells due to lack of technologic tools. Furthermore, measurement of shear wave velocity is to some extent costly. This study proposes a novel methodology to remove aforementioned problems by use of hybrid adaptive neuro fuzzy inference system (ANFIS with ant colony optimization algorithm (ACO based on fuzzy c–means clustering (FCM and subtractive clustering (SCM. The ACO is combined with two ANFIS models for determining the optimal value of its user–defined parameters. The optimization implementation by the ACO significantly improves the generalization ability of the ANFIS models. These models are used in this study to formulate conventional well log data into Vs in a quick, cheap, and accurate manner. A total of 3030 data points was used for model construction and 833 data points were employed for assessment of ANFIS models. Finally, a comparison among ANFIS models, and six well–known empirical correlations demonstrated ANFIS models outperformed other methods. This strategy was successfully applied in the Marun reservoir, Iran.

  4. Personalized PageRank Clustering: A graph clustering algorithm based on random walks

    Science.gov (United States)

    A. Tabrizi, Shayan; Shakery, Azadeh; Asadpour, Masoud; Abbasi, Maziar; Tavallaie, Mohammad Ali

    2013-11-01

    Graph clustering has been an essential part in many methods and thus its accuracy has a significant effect on many applications. In addition, exponential growth of real-world graphs such as social networks, biological networks and electrical circuits demands clustering algorithms with nearly-linear time and space complexity. In this paper we propose Personalized PageRank Clustering (PPC) that employs the inherent cluster exploratory property of random walks to reveal the clusters of a given graph. We combine random walks and modularity to precisely and efficiently reveal the clusters of a graph. PPC is a top-down algorithm so it can reveal inherent clusters of a graph more accurately than other nearly-linear approaches that are mainly bottom-up. It also gives a hierarchy of clusters that is useful in many applications. PPC has a linear time and space complexity and has been superior to most of the available clustering algorithms on many datasets. Furthermore, its top-down approach makes it a flexible solution for clustering problems with different requirements.

  5. AN IMPROVED FUZZY CLUSTERING ALGORITHM FOR MICROARRAY IMAGE SPOTS SEGMENTATION

    Directory of Open Access Journals (Sweden)

    V.G. Biju

    2015-11-01

    Full Text Available An automatic cDNA microarray image processing using an improved fuzzy clustering algorithm is presented in this paper. The spot segmentation algorithm proposed uses the gridding technique developed by the authors earlier, for finding the co-ordinates of each spot in an image. Automatic cropping of spots from microarray image is done using these co-ordinates. The present paper proposes an improved fuzzy clustering algorithm Possibility fuzzy local information c means (PFLICM to segment the spot foreground (FG from background (BG. The PFLICM improves fuzzy local information c means (FLICM algorithm by incorporating typicality of a pixel along with gray level information and local spatial information. The performance of the algorithm is validated using a set of simulated cDNA microarray images added with different levels of AWGN noise. The strength of the algorithm is tested by computing the parameters such as the Segmentation matching factor (SMF, Probability of error (pe, Discrepancy distance (D and Normal mean square error (NMSE. SMF value obtained for PFLICM algorithm shows an improvement of 0.9 % and 0.7 % for high noise and low noise microarray images respectively compared to FLICM algorithm. The PFLICM algorithm is also applied on real microarray images and gene expression values are computed.

  6. Spin chain simulations with a meron cluster algorithm

    International Nuclear Information System (INIS)

    Boyer, T.; Bietenholz, W.; Deutsches Elektronen-Synchrotron; Wuilloud, J.; Geneve Univ.

    2007-01-01

    We apply a meron cluster algorithm to the XY spin chain, which describes a quantum rotor. This is a multi-cluster simulation supplemented by an improved estimator, which deals with objects of half-integer topological charge. This method is powerful enough to provide precise results for the model with a θ-term - it is therefore one of the rare examples, where a system with a complex action can be solved numerically. In particular we measure the correlation length, as well as the topological and magnetic susceptibility. We discuss the algorithmic efficiency in view of the critical slowing down. Due to the excellent performance that we observe, it is strongly motivated to work on new applications of meron cluster algorithms in higher dimensions. (orig.)

  7. Improving the Interpretability of Classification Rules Discovered by an Ant Colony Algorithm: Extended Results.

    Science.gov (United States)

    Otero, Fernando E B; Freitas, Alex A

    2016-01-01

    Most ant colony optimization (ACO) algorithms for inducing classification rules use a ACO-based procedure to create a rule in a one-at-a-time fashion. An improved search strategy has been proposed in the cAnt-Miner[Formula: see text] algorithm, where an ACO-based procedure is used to create a complete list of rules (ordered rules), i.e., the ACO search is guided by the quality of a list of rules instead of an individual rule. In this paper we propose an extension of the cAnt-Miner[Formula: see text] algorithm to discover a set of rules (unordered rules). The main motivations for this work are to improve the interpretation of individual rules by discovering a set of rules and to evaluate the impact on the predictive accuracy of the algorithm. We also propose a new measure to evaluate the interpretability of the discovered rules to mitigate the fact that the commonly used model size measure ignores how the rules are used to make a class prediction. Comparisons with state-of-the-art rule induction algorithms, support vector machines, and the cAnt-Miner[Formula: see text] producing ordered rules are also presented.

  8. Mobile Ad Hoc Network Energy Cost Algorithm Based on Artificial Bee Colony

    Directory of Open Access Journals (Sweden)

    Mustafa Tareq

    2017-01-01

    Full Text Available A mobile ad hoc network (MANET is a collection of mobile nodes that dynamically form a temporary network without using any existing network infrastructure. MANET selects a path with minimal number of intermediate nodes to reach the destination node. As the distance between each node increases, the quantity of transmission power increases. The power level of nodes affects the simplicity with which a route is constituted between a couple of nodes. This study utilizes the swarm intelligence technique through the artificial bee colony (ABC algorithm to optimize the energy consumption in a dynamic source routing (DSR protocol in MANET. The proposed algorithm is called bee DSR (BEEDSR. The ABC algorithm is used to identify the optimal path from the source to the destination to overcome energy problems. The performance of the BEEDSR algorithm is compared with DSR and bee-inspired protocols (BeeIP. The comparison was conducted based on average energy consumption, average throughput, average end-to-end delay, routing overhead, and packet delivery ratio performance metrics, varying the node speed and packet size. The BEEDSR algorithm is superior in performance than other protocols in terms of energy conservation and delay degradation relating to node speed and packet size.

  9. An Improved Artificial Bee Colony Algorithm and Its Application to Multi-Objective Optimal Power Flow

    Directory of Open Access Journals (Sweden)

    Xuanhu He

    2015-03-01

    Full Text Available Optimal power flow (OPF objective functions involve minimization of the total fuel costs of generating units, minimization of atmospheric pollutant emissions, minimization of active power losses and minimization of voltage deviations. In this paper, a fuzzy multi-objective OPF model is established by the fuzzy membership functions and the fuzzy satisfaction-maximizing method. The improved artificial bee colony (IABC algorithm is applied to solve the model. In the IABC algorithm, the mutation and crossover operations of a differential evolution algorithm are utilized to generate new solutions to improve exploitation capacity; tent chaos mapping is utilized to generate initial swarms, reference mutation solutions and the reference dimensions of crossover operations to improve swarm diversity. The proposed method is applied to multi-objective OPF problems in IEEE 30-bus, IEEE 57-bus and IEEE 300-bus test systems. The results are compared with those obtained by other algorithms, which demonstrates the effectiveness and superiority of the IABC algorithm, and how the optimal scheme obtained by the proposed model can make systems more economical and stable.

  10. A Novel Divisive Hierarchical Clustering Algorithm for Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Shaoning Li

    2017-01-01

    Full Text Available In the fields of geographic information systems (GIS and remote sensing (RS, the clustering algorithm has been widely used for image segmentation, pattern recognition, and cartographic generalization. Although clustering analysis plays a key role in geospatial modelling, traditional clustering methods are limited due to computational complexity, noise resistant ability and robustness. Furthermore, traditional methods are more focused on the adjacent spatial context, which makes it hard for the clustering methods to be applied to multi-density discrete objects. In this paper, a new method, cell-dividing hierarchical clustering (CDHC, is proposed based on convex hull retraction. The main steps are as follows. First, a convex hull structure is constructed to describe the global spatial context of geospatial objects. Then, the retracting structure of each borderline is established in sequence by setting the initial parameter. The objects are split into two clusters (i.e., “sub-clusters” if the retracting structure intersects with the borderlines. Finally, clusters are repeatedly split and the initial parameter is updated until the terminate condition is satisfied. The experimental results show that CDHC separates the multi-density objects from noise sufficiently and also reduces complexity compared to the traditional agglomerative hierarchical clustering algorithm.

  11. Artificial bee colony algorithm for economic load dispatch with wind power energy

    Directory of Open Access Journals (Sweden)

    Safari Amin

    2016-01-01

    Full Text Available This paper presents an efficient Artificial Bee Colony (ABC algorithm for solving large scale economic load dispatch (ELD problems in power networks. To realize the ELD, the valve-point loading effect, system load demand, power losses, ramp rate limits and prohibited operation zones are considered here. Simulations were performed on four different power systems with 3, 6, 15 and 40 generating units and the results are compared with two forms of power systems, one power system is with a wind power generator and other power system is without a wind power generator. The results of this study reveal that the proposed approach is able to find appreciable ELD solutions than those of previous algorithms.

  12. Uncertain multiobjective redundancy allocation problem of repairable systems based on artificial bee colony algorithm

    Institute of Scientific and Technical Information of China (English)

    Guo Jiansheng; Wang Zutong; Zheng Mingfa; Wang Ying

    2014-01-01

    Based on the uncertainty theory, this paper is devoted to the redundancy allocation problem in repairable parallel-series systems with uncertain factors, where the failure rate, repair rate and other relative coefficients involved are considered as uncertain variables. The availability of the system and the corresponding designing cost are considered as two optimization objectives. A crisp multiobjective optimization formulation is presented on the basis of uncertainty theory to solve this resultant problem. For solving this problem efficiently, a new multiobjective artificial bee colony algorithm is proposed to search the Pareto efficient set, which introduces rank value and crowding distance in the greedy selection strategy, applies fast non-dominated sort procedure in the exploitation search and inserts tournament selection in the onlooker bee phase. It shows that the proposed algorithm outperforms NSGA-II greatly and can solve multiobjective redundancy allocation problem efficiently. Finally, a numerical example is provided to illustrate this approach.

  13. An innovative artificial bee colony algorithm and its application to a practical intercell scheduling problem

    Science.gov (United States)

    Li, Dongni; Guo, Rongtao; Zhan, Rongxin; Yin, Yong

    2018-06-01

    In this article, an innovative artificial bee colony (IABC) algorithm is proposed, which incorporates two mechanisms. On the one hand, to provide the evolutionary process with a higher starting level, genetic programming (GP) is used to generate heuristic rules by exploiting the elements that constitute the problem. On the other hand, to achieve a better balance between exploration and exploitation, a leading mechanism is proposed to attract individuals towards a promising region. To evaluate the performance of IABC in solving practical and complex problems, it is applied to the intercell scheduling problem with limited transportation capacity. It is observed that the GP-generated rules incorporate the elements of the most competing human-designed rules, and they are more effective than the human-designed ones. Regarding the leading mechanism, the strategies of the ageing leader and multiple challengers make the algorithm less likely to be trapped in local optima.

  14. Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm.

    Science.gov (United States)

    Beloufa, Fayssal; Chikh, M A

    2013-10-01

    In this study, diagnosis of diabetes disease, which is one of the most important diseases, is conducted with artificial intelligence techniques. We have proposed a novel Artificial Bee Colony (ABC) algorithm in which a mutation operator is added to an Artificial Bee Colony for improving its performance. When the current best solution cannot be updated, a blended crossover operator (BLX-α) of genetic algorithm is applied, in order to enhance the diversity of ABC, without compromising with the solution quality. This modified version of ABC is used as a new tool to create and optimize automatically the membership functions and rules base directly from data. We take the diabetes dataset used in our work from the UCI machine learning repository. The performances of the proposed method are evaluated through classification rate, sensitivity and specificity values using 10-fold cross-validation method. The obtained classification rate of our method is 84.21% and it is very promising when compared with the previous research in the literature for the same problem. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. A stereo remote sensing feature selection method based on artificial bee colony algorithm

    Science.gov (United States)

    Yan, Yiming; Liu, Pigang; Zhang, Ye; Su, Nan; Tian, Shu; Gao, Fengjiao; Shen, Yi

    2014-05-01

    To improve the efficiency of stereo information for remote sensing classification, a stereo remote sensing feature selection method is proposed in this paper presents, which is based on artificial bee colony algorithm. Remote sensing stereo information could be described by digital surface model (DSM) and optical image, which contain information of the three-dimensional structure and optical characteristics, respectively. Firstly, three-dimensional structure characteristic could be analyzed by 3D-Zernike descriptors (3DZD). However, different parameters of 3DZD could descript different complexity of three-dimensional structure, and it needs to be better optimized selected for various objects on the ground. Secondly, features for representing optical characteristic also need to be optimized. If not properly handled, when a stereo feature vector composed of 3DZD and image features, that would be a lot of redundant information, and the redundant information may not improve the classification accuracy, even cause adverse effects. To reduce information redundancy while maintaining or improving the classification accuracy, an optimized frame for this stereo feature selection problem is created, and artificial bee colony algorithm is introduced for solving this optimization problem. Experimental results show that the proposed method can effectively improve the computational efficiency, improve the classification accuracy.

  16. Stochastic time-dependent vehicle routing problem: Mathematical models and ant colony algorithm

    Directory of Open Access Journals (Sweden)

    Zhengyu Duan

    2015-11-01

    Full Text Available This article addresses the stochastic time-dependent vehicle routing problem. Two mathematical models named robust optimal schedule time model and minimum expected schedule time model are proposed for stochastic time-dependent vehicle routing problem, which can guarantee delivery within the time windows of customers. The robust optimal schedule time model only requires the variation range of link travel time, which can be conveniently derived from historical traffic data. In addition, the robust optimal schedule time model based on robust optimization method can be converted into a time-dependent vehicle routing problem. Moreover, an ant colony optimization algorithm is designed to solve stochastic time-dependent vehicle routing problem. As the improvements in initial solution and transition probability, ant colony optimization algorithm has a good performance in convergence. Through computational instances and Monte Carlo simulation tests, robust optimal schedule time model is proved to be better than minimum expected schedule time model in computational efficiency and coping with the travel time fluctuations. Therefore, robust optimal schedule time model is applicable in real road network.

  17. Identifying multiple influential spreaders by a heuristic clustering algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Zhong-Kui [School of Mathematical Science, Anhui University, Hefei 230601 (China); Liu, Jian-Guo [Data Science and Cloud Service Research Center, Shanghai University of Finance and Economics, Shanghai, 200133 (China); Zhang, Hai-Feng, E-mail: haifengzhang1978@gmail.com [School of Mathematical Science, Anhui University, Hefei 230601 (China); Department of Communication Engineering, North University of China, Taiyuan, Shan' xi 030051 (China)

    2017-03-18

    The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.

  18. Identifying multiple influential spreaders by a heuristic clustering algorithm

    International Nuclear Information System (INIS)

    Bao, Zhong-Kui; Liu, Jian-Guo; Zhang, Hai-Feng

    2017-01-01

    The problem of influence maximization in social networks has attracted much attention. However, traditional centrality indices are suitable for the case where a single spreader is chosen as the spreading source. Many times, spreading process is initiated by simultaneously choosing multiple nodes as the spreading sources. In this situation, choosing the top ranked nodes as multiple spreaders is not an optimal strategy, since the chosen nodes are not sufficiently scattered in networks. Therefore, one ideal situation for multiple spreaders case is that the spreaders themselves are not only influential but also they are dispersively distributed in networks, but it is difficult to meet the two conditions together. In this paper, we propose a heuristic clustering (HC) algorithm based on the similarity index to classify nodes into different clusters, and finally the center nodes in clusters are chosen as the multiple spreaders. HC algorithm not only ensures that the multiple spreaders are dispersively distributed in networks but also avoids the selected nodes to be very “negligible”. Compared with the traditional methods, our experimental results on synthetic and real networks indicate that the performance of HC method on influence maximization is more significant. - Highlights: • A heuristic clustering algorithm is proposed to identify the multiple influential spreaders in complex networks. • The algorithm can not only guarantee the selected spreaders are sufficiently scattered but also avoid to be “insignificant”. • The performance of our algorithm is generally better than other methods, regardless of real networks or synthetic networks.

  19. Hybrid artificial bee colony algorithm for parameter optimization of five-parameter bidirectional reflectance distribution function model.

    Science.gov (United States)

    Wang, Qianqian; Zhao, Jing; Gong, Yong; Hao, Qun; Peng, Zhong

    2017-11-20

    A hybrid artificial bee colony (ABC) algorithm inspired by the best-so-far solution and bacterial chemotaxis was introduced to optimize the parameters of the five-parameter bidirectional reflectance distribution function (BRDF) model. To verify the performance of the hybrid ABC algorithm, we measured BRDF of three kinds of samples and simulated the undetermined parameters of the five-parameter BRDF model using the hybrid ABC algorithm and the genetic algorithm, respectively. The experimental results demonstrate that the hybrid ABC algorithm outperforms the genetic algorithm in convergence speed, accuracy, and time efficiency under the same conditions.

  20. An improved self-adaptive ant colony algorithm based on genetic strategy for the traveling salesman problem

    Science.gov (United States)

    Wang, Pan; Zhang, Yi; Yan, Dong

    2018-05-01

    Ant Colony Algorithm (ACA) is a powerful and effective algorithm for solving the combination optimization problem. Moreover, it was successfully used in traveling salesman problem (TSP). But it is easy to prematurely converge to the non-global optimal solution and the calculation time is too long. To overcome those shortcomings, a new method is presented-An improved self-adaptive Ant Colony Algorithm based on genetic strategy. The proposed method adopts adaptive strategy to adjust the parameters dynamically. And new crossover operation and inversion operation in genetic strategy was used in this method. We also make an experiment using the well-known data in TSPLIB. The experiment results show that the performance of the proposed method is better than the basic Ant Colony Algorithm and some improved ACA in both the result and the convergence time. The numerical results obtained also show that the proposed optimization method can achieve results close to the theoretical best known solutions at present.

  1. A Comparative Study of Improved Artificial Bee Colony Algorithms Applied to Multilevel Image Thresholding

    Directory of Open Access Journals (Sweden)

    Kanjana Charansiriphaisan

    2013-01-01

    Full Text Available Multilevel thresholding is a highly useful tool for the application of image segmentation. Otsu’s method, a common exhaustive search for finding optimal thresholds, involves a high computational cost. There has been a lot of recent research into various meta-heuristic searches in the area of optimization research. This paper analyses and discusses using a family of artificial bee colony algorithms, namely, the standard ABC, ABC/best/1, ABC/best/2, IABC/best/1, IABC/rand/1, and CABC, and some particle swarm optimization-based algorithms for searching multilevel thresholding. The strategy for an onlooker bee to select an employee bee was modified to serve our purposes. The metric measures, which are used to compare the algorithms, are the maximum number of function calls, successful rate, and successful performance. The ranking was performed by Friedman ranks. The experimental results showed that IABC/best/1 outperformed the other techniques when all of them were applied to multilevel image thresholding. Furthermore, the experiments confirmed that IABC/best/1 is a simple, general, and high performance algorithm.

  2. Simulation optimization based ant colony algorithm for the uncertain quay crane scheduling problem

    Directory of Open Access Journals (Sweden)

    Naoufal Rouky

    2019-01-01

    Full Text Available This work is devoted to the study of the Uncertain Quay Crane Scheduling Problem (QCSP, where the loading /unloading times of containers and travel time of quay cranes are considered uncertain. The problem is solved with a Simulation Optimization approach which takes advantage of the great possibilities offered by the simulation to model the real details of the problem and the capacity of the optimization to find solutions with good quality. An Ant Colony Optimization (ACO meta-heuristic hybridized with a Variable Neighborhood Descent (VND local search is proposed to determine the assignments of tasks to quay cranes and the sequences of executions of tasks on each crane. Simulation is used inside the optimization algorithm to generate scenarios in agreement with the probabilities of the distributions of the uncertain parameters, thus, we carry out stochastic evaluations of the solutions found by each ant. The proposed optimization algorithm is tested first for the deterministic case on several well-known benchmark instances. Then, in the stochastic case, since no other work studied exactly the same problem with the same assumptions, the Simulation Optimization approach is compared with the deterministic version. The experimental results show that the optimization algorithm is competitive as compared to the existing methods and that the solutions found by the Simulation Optimization approach are more robust than those found by the optimization algorithm.

  3. A Novel Cluster Head Selection Algorithm Based on Fuzzy Clustering and Particle Swarm Optimization.

    Science.gov (United States)

    Ni, Qingjian; Pan, Qianqian; Du, Huimin; Cao, Cen; Zhai, Yuqing

    2017-01-01

    An important objective of wireless sensor network is to prolong the network life cycle, and topology control is of great significance for extending the network life cycle. Based on previous work, for cluster head selection in hierarchical topology control, we propose a solution based on fuzzy clustering preprocessing and particle swarm optimization. More specifically, first, fuzzy clustering algorithm is used to initial clustering for sensor nodes according to geographical locations, where a sensor node belongs to a cluster with a determined probability, and the number of initial clusters is analyzed and discussed. Furthermore, the fitness function is designed considering both the energy consumption and distance factors of wireless sensor network. Finally, the cluster head nodes in hierarchical topology are determined based on the improved particle swarm optimization. Experimental results show that, compared with traditional methods, the proposed method achieved the purpose of reducing the mortality rate of nodes and extending the network life cycle.

  4. A similarity based agglomerative clustering algorithm in networks

    Science.gov (United States)

    Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong

    2018-04-01

    The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.

  5. Fuzzy cluster means algorithm for the diagnosis of confusable disease

    African Journals Online (AJOL)

    ... end platform while Microsoft Access was used as the database application. The system gives a measure of each disease within a set of confusable disease. The proposed system had a classification accuracy of 60%. Keywords: Artificial Intelligence, expert system Fuzzy cluster – means Algorithm, physician, Diagnosis ...

  6. Modified genetic algorithms to model cluster structures in medium-size silicon clusters

    International Nuclear Information System (INIS)

    Bazterra, Victor E.; Ona, Ofelia; Caputo, Maria C.; Ferraro, Marta B.; Fuentealba, Patricio; Facelli, Julio C.

    2004-01-01

    This paper presents the results obtained using a genetic algorithm (GA) to search for stable structures of medium size silicon clusters. In this work the GA uses a semiempirical energy function to find the best cluster structures, which are further optimized using density-functional theory. For small clusters our results agree well with previously reported structures, but for larger ones different structures appear. This is the case of Si 36 where we report a different structure, with significant lower energy than those previously found using limited search approaches on common structural motifs. This demonstrates the need for global optimization schemes when searching for stable structures of medium-size silicon clusters

  7. The C4 clustering algorithm: Clusters of galaxies in the Sloan Digital Sky Survey

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Christopher J.; Nichol, Robert; Reichart, Dan; Wechsler, Risa H.; Evrard, August; Annis, James; McKay, Timothy; Bahcall, Neta; Bernardi, Mariangela; Boehringer,; Connolly, Andrew; Goto, Tomo; Kniazev, Alexie; Lamb, Donald; Postman, Marc; Schneider, Donald; Sheth, Ravi; Voges, Wolfgang; /Cerro-Tololo InterAmerican Obs. /Portsmouth U.,

    2005-03-01

    We present the ''C4 Cluster Catalog'', a new sample of 748 clusters of galaxies identified in the spectroscopic sample of the Second Data Release (DR2) of the Sloan Digital Sky Survey (SDSS). The C4 cluster-finding algorithm identifies clusters as overdensities in a seven-dimensional position and color space, thus minimizing projection effects that have plagued previous optical cluster selection. The present C4 catalog covers {approx}2600 square degrees of sky and ranges in redshift from z = 0.02 to z = 0.17. The mean cluster membership is 36 galaxies (with redshifts) brighter than r = 17.7, but the catalog includes a range of systems, from groups containing 10 members to massive clusters with over 200 cluster members with redshifts. The catalog provides a large number of measured cluster properties including sky location, mean redshift, galaxy membership, summed r-band optical luminosity (L{sub r}), velocity dispersion, as well as quantitative measures of substructure and the surrounding large-scale environment. We use new, multi-color mock SDSS galaxy catalogs, empirically constructed from the {Lambda}CDM Hubble Volume (HV) Sky Survey output, to investigate the sensitivity of the C4 catalog to the various algorithm parameters (detection threshold, choice of passbands and search aperture), as well as to quantify the purity and completeness of the C4 cluster catalog. These mock catalogs indicate that the C4 catalog is {approx_equal}90% complete and 95% pure above M{sub 200} = 1 x 10{sup 14} h{sup -1}M{sub {circle_dot}} and within 0.03 {le} z {le} 0.12. Using the SDSS DR2 data, we show that the C4 algorithm finds 98% of X-ray identified clusters and 90% of Abell clusters within 0.03 {le} z {le} 0.12. Using the mock galaxy catalogs and the full HV dark matter simulations, we show that the L{sub r} of a cluster is a more robust estimator of the halo mass (M{sub 200}) than the galaxy line-of-sight velocity dispersion or the richness of the cluster

  8. Analysis of Network Clustering Algorithms and Cluster Quality Metrics at Scale.

    Science.gov (United States)

    Emmons, Scott; Kobourov, Stephen; Gallant, Mike; Börner, Katy

    2016-01-01

    Notions of community quality underlie the clustering of networks. While studies surrounding network clustering are increasingly common, a precise understanding of the realtionship between different cluster quality metrics is unknown. In this paper, we examine the relationship between stand-alone cluster quality metrics and information recovery metrics through a rigorous analysis of four widely-used network clustering algorithms-Louvain, Infomap, label propagation, and smart local moving. We consider the stand-alone quality metrics of modularity, conductance, and coverage, and we consider the information recovery metrics of adjusted Rand score, normalized mutual information, and a variant of normalized mutual information used in previous work. Our study includes both synthetic graphs and empirical data sets of sizes varying from 1,000 to 1,000,000 nodes. We find significant differences among the results of the different cluster quality metrics. For example, clustering algorithms can return a value of 0.4 out of 1 on modularity but score 0 out of 1 on information recovery. We find conductance, though imperfect, to be the stand-alone quality metric that best indicates performance on the information recovery metrics. Additionally, our study shows that the variant of normalized mutual information used in previous work cannot be assumed to differ only slightly from traditional normalized mutual information. Smart local moving is the overall best performing algorithm in our study, but discrepancies between cluster evaluation metrics prevent us from declaring it an absolutely superior algorithm. Interestingly, Louvain performed better than Infomap in nearly all the tests in our study, contradicting the results of previous work in which Infomap was superior to Louvain. We find that although label propagation performs poorly when clusters are less clearly defined, it scales efficiently and accurately to large graphs with well-defined clusters.

  9. High-dimensional cluster analysis with the Masked EM Algorithm

    Science.gov (United States)

    Kadir, Shabnam N.; Goodman, Dan F. M.; Harris, Kenneth D.

    2014-01-01

    Cluster analysis faces two problems in high dimensions: first, the “curse of dimensionality” that can lead to overfitting and poor generalization performance; and second, the sheer time taken for conventional algorithms to process large amounts of high-dimensional data. We describe a solution to these problems, designed for the application of “spike sorting” for next-generation high channel-count neural probes. In this problem, only a small subset of features provide information about the cluster member-ship of any one data vector, but this informative feature subset is not the same for all data points, rendering classical feature selection ineffective. We introduce a “Masked EM” algorithm that allows accurate and time-efficient clustering of up to millions of points in thousands of dimensions. We demonstrate its applicability to synthetic data, and to real-world high-channel-count spike sorting data. PMID:25149694

  10. A HYBRID HEURISTIC ALGORITHM FOR THE CLUSTERED TRAVELING SALESMAN PROBLEM

    Directory of Open Access Journals (Sweden)

    Mário Mestria

    2016-04-01

    Full Text Available ABSTRACT This paper proposes a hybrid heuristic algorithm, based on the metaheuristics Greedy Randomized Adaptive Search Procedure, Iterated Local Search and Variable Neighborhood Descent, to solve the Clustered Traveling Salesman Problem (CTSP. Hybrid Heuristic algorithm uses several variable neighborhood structures combining the intensification (using local search operators and diversification (constructive heuristic and perturbation routine. In the CTSP, the vertices are partitioned into clusters and all vertices of each cluster have to be visited contiguously. The CTSP is -hard since it includes the well-known Traveling Salesman Problem (TSP as a special case. Our hybrid heuristic is compared with three heuristics from the literature and an exact method. Computational experiments are reported for different classes of instances. Experimental results show that the proposed hybrid heuristic obtains competitive results within reasonable computational time.

  11. Clustering Using Boosted Constrained k-Means Algorithm

    Directory of Open Access Journals (Sweden)

    Masayuki Okabe

    2018-03-01

    Full Text Available This article proposes a constrained clustering algorithm with competitive performance and less computation time to the state-of-the-art methods, which consists of a constrained k-means algorithm enhanced by the boosting principle. Constrained k-means clustering using constraints as background knowledge, although easy to implement and quick, has insufficient performance compared with metric learning-based methods. Since it simply adds a function into the data assignment process of the k-means algorithm to check for constraint violations, it often exploits only a small number of constraints. Metric learning-based methods, which exploit constraints to create a new metric for data similarity, have shown promising results although the methods proposed so far are often slow depending on the amount of data or number of feature dimensions. We present a method that exploits the advantages of the constrained k-means and metric learning approaches. It incorporates a mechanism for accepting constraint priorities and a metric learning framework based on the boosting principle into a constrained k-means algorithm. In the framework, a metric is learned in the form of a kernel matrix that integrates weak cluster hypotheses produced by the constrained k-means algorithm, which works as a weak learner under the boosting principle. Experimental results for 12 data sets from 3 data sources demonstrated that our method has performance competitive to those of state-of-the-art constrained clustering methods for most data sets and that it takes much less computation time. Experimental evaluation demonstrated the effectiveness of controlling the constraint priorities by using the boosting principle and that our constrained k-means algorithm functions correctly as a weak learner of boosting.

  12. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  13. The chaotic global best artificial bee colony algorithm for the multi-area economic/emission dispatch

    International Nuclear Information System (INIS)

    Secui, Dinu Calin

    2015-01-01

    This paper suggests a chaotic optimizing method, based on the GBABC (global best artificial bee colony algorithm), where the random sequences used in updating the solutions of this algorithm are replaced with chaotic sequences generated by chaotic maps. The new algorithm, called chaotic CGBABC (global best artificial bee colony algorithm), is used to solving the multi-area economic/emission dispatch problem taking into consideration the valve-point effects, the transmission line losses, multi-fuel sources, prohibited operating zones, tie line capacity and power transfer cost between different areas of the system. The behaviour of the CGBABC algorithm is studied considering ten chaotic maps both one-dimensional and bi-dimensional, with various probability density functions. The CGBABC algorithm's performance including a variety of chaotic maps is tested on five systems (6-unit, 10-unit, 16-unit, 40-unit and 120-unit) with different characteristics, constraints and sizes. The results comparison highlights a hierarchy in the chaotic maps included in the CGBABC algorithm and shows that it performs better than the classical ABC algorithm, the GBABC algorithm and other optimization techniques. - Highlights: • A chaotic global best ABC algorithm (CGBABC) is presented. • CGBABC is applied for solving the multi-area economic/emission dispatch problem. • Valve-point effects, multi-fuel sources, POZ, transmission losses were considered. • The algorithm is tested on five systems having 6, 10, 16, 40 and 120 thermal units. • CGBABC algorithm outperforms several optimization techniques.

  14. A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources

    International Nuclear Information System (INIS)

    Kefayat, M.; Lashkar Ara, A.; Nabavi Niaki, S.A.

    2015-01-01

    Highlights: • A probabilistic optimization framework incorporated with uncertainty is proposed. • A hybrid optimization approach combining ACO and ABC algorithms is proposed. • The problem is to deal with technical, environmental and economical aspects. • A fuzzy interactive approach is incorporated to solve the multi-objective problem. • Several strategies are implemented to compare with literature methods. - Abstract: In this paper, a hybrid configuration of ant colony optimization (ACO) with artificial bee colony (ABC) algorithm called hybrid ACO–ABC algorithm is presented for optimal location and sizing of distributed energy resources (DERs) (i.e., gas turbine, fuel cell, and wind energy) on distribution systems. The proposed algorithm is a combined strategy based on the discrete (location optimization) and continuous (size optimization) structures to achieve advantages of the global and local search ability of ABC and ACO algorithms, respectively. Also, in the proposed algorithm, a multi-objective ABC is used to produce a set of non-dominated solutions which store in the external archive. The objectives consist of minimizing power losses, total emissions produced by substation and resources, total electrical energy cost, and improving the voltage stability. In order to investigate the impact of the uncertainty in the output of the wind energy and load demands, a probabilistic load flow is necessary. In this study, an efficient point estimate method (PEM) is employed to solve the optimization problem in a stochastic environment. The proposed algorithm is tested on the IEEE 33- and 69-bus distribution systems. The results demonstrate the potential and effectiveness of the proposed algorithm in comparison with those of other evolutionary optimization methods

  15. Artificial Bee Colony Algorithm for Transient Performance Augmentation of Grid Connected Distributed Generation

    Science.gov (United States)

    Chatterjee, A.; Ghoshal, S. P.; Mukherjee, V.

    In this paper, a conventional thermal power system equipped with automatic voltage regulator, IEEE type dual input power system stabilizer (PSS) PSS3B and integral controlled automatic generation control loop is considered. A distributed generation (DG) system consisting of aqua electrolyzer, photovoltaic cells, diesel engine generator, and some other energy storage devices like flywheel energy storage system and battery energy storage system is modeled. This hybrid distributed system is connected to the grid. While integrating this DG with the onventional thermal power system, improved transient performance is noticed. Further improvement in the transient performance of this grid connected DG is observed with the usage of superconducting magnetic energy storage device. The different tunable parameters of the proposed hybrid power system model are optimized by artificial bee colony (ABC) algorithm. The optimal solutions offered by the ABC algorithm are compared with those offered by genetic algorithm (GA). It is also revealed that the optimizing performance of the ABC is better than the GA for this specific application.

  16. Use of artificial bee colonies algorithm as numerical approximation of differential equations solution

    Science.gov (United States)

    Fikri, Fariz Fahmi; Nuraini, Nuning

    2018-03-01

    The differential equation is one of the branches in mathematics which is closely related to human life problems. Some problems that occur in our life can be modeled into differential equations as well as systems of differential equations such as the Lotka-Volterra model and SIR model. Therefore, solving a problem of differential equations is very important. Some differential equations are difficult to solve, so numerical methods are needed to solve that problems. Some numerical methods for solving differential equations that have been widely used are Euler Method, Heun Method, Runge-Kutta and others. However, some of these methods still have some restrictions that cause the method cannot be used to solve more complex problems such as an evaluation interval that we cannot change freely. New methods are needed to improve that problems. One of the method that can be used is the artificial bees colony algorithm. This algorithm is one of metaheuristic algorithm method, which can come out from local search space and do exploration in solution search space so that will get better solution than other method.

  17. Enhancing Artificial Bee Colony Algorithm with Self-Adaptive Searching Strategy and Artificial Immune Network Operators for Global Optimization

    Directory of Open Access Journals (Sweden)

    Tinggui Chen

    2014-01-01

    Full Text Available Artificial bee colony (ABC algorithm, inspired by the intelligent foraging behavior of honey bees, was proposed by Karaboga. It has been shown to be superior to some conventional intelligent algorithms such as genetic algorithm (GA, artificial colony optimization (ACO, and particle swarm optimization (PSO. However, the ABC still has some limitations. For example, ABC can easily get trapped in the local optimum when handing in functions that have a narrow curving valley, a high eccentric ellipse, or complex multimodal functions. As a result, we proposed an enhanced ABC algorithm called EABC by introducing self-adaptive searching strategy and artificial immune network operators to improve the exploitation and exploration. The simulation results tested on a suite of unimodal or multimodal benchmark functions illustrate that the EABC algorithm outperforms ACO, PSO, and the basic ABC in most of the experiments.

  18. Evaluation of clustering algorithms for protein-protein interaction networks

    Directory of Open Access Journals (Sweden)

    van Helden Jacques

    2006-11-01

    Full Text Available Abstract Background Protein interactions are crucial components of all cellular processes. Recently, high-throughput methods have been developed to obtain a global description of the interactome (the whole network of protein interactions for a given organism. In 2002, the yeast interactome was estimated to contain up to 80,000 potential interactions. This estimate is based on the integration of data sets obtained by various methods (mass spectrometry, two-hybrid methods, genetic studies. High-throughput methods are known, however, to yield a non-negligible rate of false positives, and to miss a fraction of existing interactions. The interactome can be represented as a graph where nodes correspond with proteins and edges with pairwise interactions. In recent years clustering methods have been developed and applied in order to extract relevant modules from such graphs. These algorithms require the specification of parameters that may drastically affect the results. In this paper we present a comparative assessment of four algorithms: Markov Clustering (MCL, Restricted Neighborhood Search Clustering (RNSC, Super Paramagnetic Clustering (SPC, and Molecular Complex Detection (MCODE. Results A test graph was built on the basis of 220 complexes annotated in the MIPS database. To evaluate the robustness to false positives and false negatives, we derived 41 altered graphs by randomly removing edges from or adding edges to the test graph in various proportions. Each clustering algorithm was applied to these graphs with various parameter settings, and the clusters were compared with the annotated complexes. We analyzed the sensitivity of the algorithms to the parameters and determined their optimal parameter values. We also evaluated their robustness to alterations of the test graph. We then applied the four algorithms to six graphs obtained from high-throughput experiments and compared the resulting clusters with the annotated complexes. Conclusion This

  19. A heuristic approach to possibilistic clustering algorithms and applications

    CERN Document Server

    Viattchenin, Dmitri A

    2013-01-01

    The present book outlines a new approach to possibilistic clustering in which the sought clustering structure of the set of objects is based directly on the formal definition of fuzzy cluster and the possibilistic memberships are determined directly from the values of the pairwise similarity of objects.   The proposed approach can be used for solving different classification problems. Here, some techniques that might be useful at this purpose are outlined, including a methodology for constructing a set of labeled objects for a semi-supervised clustering algorithm, a methodology for reducing analyzed attribute space dimensionality and a methods for asymmetric data processing. Moreover,  a technique for constructing a subset of the most appropriate alternatives for a set of weak fuzzy preference relations, which are defined on a universe of alternatives, is described in detail, and a method for rapidly prototyping the Mamdani’s fuzzy inference systems is introduced. This book addresses engineers, scientist...

  20. DESIGNING DAILY PATROL ROUTES FOR POLICING BASED ON ANT COLONY ALGORITHM

    Directory of Open Access Journals (Sweden)

    H. Chen

    2015-07-01

    Full Text Available In this paper, we address the problem of planning police patrol routes to regularly cover street segments of high crime density (hotspots with limited police forces. A good patrolling strategy is required to minimise the average time lag between two consecutive visits to hotspots, as well as coordinating multiple patrollers and imparting unpredictability in patrol routes. Previous studies have designed different police patrol strategies for routing police patrol, but these strategies have difficulty in generalising to real patrolling and meeting various requirements. In this research we develop a new police patrolling strategy based on Bayesian method and ant colony algorithm. In this strategy, virtual marker (pheromone is laid to mark the visiting history of each crime hotspot, and patrollers continuously decide which hotspot to patrol next based on pheromone level and other variables. Simulation results using real data testifies the effective, scalable, unpredictable and extensible nature of this strategy.

  1. Application of the ant colony search algorithm to reactive power pricing in an open electricity market

    International Nuclear Information System (INIS)

    Ketabi, Abbas; Alibabaee, Ahmad; Feuillet, R.

    2010-01-01

    Reactive power management is essential to transfer real energy and support power system security. Developing an accurate and feasible method for reactive power pricing is important in the electricity market. In conventional optimal power flow models the production cost of reactive power was ignored. In this paper, the production cost of reactive power and investment cost of capacitor banks were included into the objective function of the OPF problem. Then, using ant colony search algorithm, the optimal problem was solved. Marginal price theory was used for calculation of the cost of active and reactive power at each bus in competitive electric markets. Application of the proposed method on IEEE 14-bus system confirms its validity and effectiveness. Results from several case studies show clearly the effects of various factors on reactive power price. (author)

  2. An Artificial Bee Colony Algorithm for the Job Shop Scheduling Problem with Random Processing Times

    Directory of Open Access Journals (Sweden)

    Rui Zhang

    2011-09-01

    Full Text Available Due to the influence of unpredictable random events, the processing time of each operation should be treated as random variables if we aim at a robust production schedule. However, compared with the extensive research on the deterministic model, the stochastic job shop scheduling problem (SJSSP has not received sufficient attention. In this paper, we propose an artificial bee colony (ABC algorithm for SJSSP with the objective of minimizing the maximum lateness (which is an index of service quality. First, we propose a performance estimate for preliminary screening of the candidate solutions. Then, the K-armed bandit model is utilized for reducing the computational burden in the exact evaluation (through Monte Carlo simulation process. Finally, the computational results on different-scale test problems validate the effectiveness and efficiency of the proposed approach.

  3. Optimum Layout for Water Quality Monitoring Stations through Ant Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Amin Afshar

    2006-09-01

    Full Text Available Due to the high cost of monitoring systems, budget limitations, and high priority given to water quality control in municipal networks, especially for unexpected events, optimum location of monitoring stations has received considerable attention during the last decade. An optimization model needs to be developed for the desirable location of monitoring stations. This research attempts to develop such a model using Ant Colony Optimization (ACO algorithm and tires to verify it through a bench-mark classical example used in previous researches. Selection of ACO as optimizer was fully justified due to discrete decision space and extensive number of binary variables in modeling system. Diversity of the policies derived from ACO may facilitate the process of decision making considering the social, physical, and economical conditions.

  4. Improved Gravitation Field Algorithm and Its Application in Hierarchical Clustering

    Science.gov (United States)

    Zheng, Ming; Sun, Ying; Liu, Gui-xia; Zhou, You; Zhou, Chun-guang

    2012-01-01

    Background Gravitation field algorithm (GFA) is a new optimization algorithm which is based on an imitation of natural phenomena. GFA can do well both for searching global minimum and multi-minima in computational biology. But GFA needs to be improved for increasing efficiency, and modified for applying to some discrete data problems in system biology. Method An improved GFA called IGFA was proposed in this paper. Two parts were improved in IGFA. The first one is the rule of random division, which is a reasonable strategy and makes running time shorter. The other one is rotation factor, which can improve the accuracy of IGFA. And to apply IGFA to the hierarchical clustering, the initial part and the movement operator were modified. Results Two kinds of experiments were used to test IGFA. And IGFA was applied to hierarchical clustering. The global minimum experiment was used with IGFA, GFA, GA (genetic algorithm) and SA (simulated annealing). Multi-minima experiment was used with IGFA and GFA. The two experiments results were compared with each other and proved the efficiency of IGFA. IGFA is better than GFA both in accuracy and running time. For the hierarchical clustering, IGFA is used to optimize the smallest distance of genes pairs, and the results were compared with GA and SA, singular-linkage clustering, UPGMA. The efficiency of IGFA is proved. PMID:23173043

  5. Robustness of the ATLAS pixel clustering neural network algorithm

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00407780; The ATLAS collaboration

    2016-01-01

    Proton-proton collisions at the energy frontier puts strong constraints on track reconstruction algorithms. The algorithms depend heavily on accurate estimation of the position of particles as they traverse the inner detector elements. An artificial neural network algorithm is utilised to identify and split clusters of neighbouring read-out elements in the ATLAS pixel detector created by multiple charged particles. The method recovers otherwise lost tracks in dense environments where particles are separated by distances comparable to the size of the detector read-out elements. Such environments are highly relevant for LHC run 2, e.g. in searches for heavy resonances. Within the scope of run 2 track reconstruction performance and upgrades, the robustness of the neural network algorithm will be presented. The robustness has been studied by evaluating the stability of the algorithm’s performance under a range of variations in the pixel detector conditions.

  6. Stochastic cluster algorithms for discrete Gaussian (SOS) models

    International Nuclear Information System (INIS)

    Evertz, H.G.; Hamburg Univ.; Hasenbusch, M.; Marcu, M.; Tel Aviv Univ.; Pinn, K.; Muenster Univ.; Solomon, S.

    1990-10-01

    We present new Monte Carlo cluster algorithms which eliminate critical slowing down in the simulation of solid-on-solid models. In this letter we focus on the two-dimensional discrete Gaussian model. The algorithms are based on reflecting the integer valued spin variables with respect to appropriately chosen reflection planes. The proper choice of the reflection plane turns out to be crucial in order to obtain a small dynamical exponent z. Actually, the successful versions of our algorithm are a mixture of two different procedures for choosing the reflection plane, one of them ergodic but slow, the other one non-ergodic and also slow when combined with a Metropolis algorithm. (orig.)

  7. clusterMaker: a multi-algorithm clustering plugin for Cytoscape

    Directory of Open Access Journals (Sweden)

    Morris John H

    2011-11-01

    Full Text Available Abstract Background In the post-genomic era, the rapid increase in high-throughput data calls for computational tools capable of integrating data of diverse types and facilitating recognition of biologically meaningful patterns within them. For example, protein-protein interaction data sets have been clustered to identify stable complexes, but scientists lack easily accessible tools to facilitate combined analyses of multiple data sets from different types of experiments. Here we present clusterMaker, a Cytoscape plugin that implements several clustering algorithms and provides network, dendrogram, and heat map views of the results. The Cytoscape network is linked to all of the other views, so that a selection in one is immediately reflected in the others. clusterMaker is the first Cytoscape plugin to implement such a wide variety of clustering algorithms and visualizations, including the only implementations of hierarchical clustering, dendrogram plus heat map visualization (tree view, k-means, k-medoid, SCPS, AutoSOME, and native (Java MCL. Results Results are presented in the form of three scenarios of use: analysis of protein expression data using a recently published mouse interactome and a mouse microarray data set of nearly one hundred diverse cell/tissue types; the identification of protein complexes in the yeast Saccharomyces cerevisiae; and the cluster analysis of the vicinal oxygen chelate (VOC enzyme superfamily. For scenario one, we explore functionally enriched mouse interactomes specific to particular cellular phenotypes and apply fuzzy clustering. For scenario two, we explore the prefoldin complex in detail using both physical and genetic interaction clusters. For scenario three, we explore the possible annotation of a protein as a methylmalonyl-CoA epimerase within the VOC superfamily. Cytoscape session files for all three scenarios are provided in the Additional Files section. Conclusions The Cytoscape plugin cluster

  8. Exploring New Clustering Algorithms for the CMS Tracker FED

    CERN Document Server

    Gamboa Alvarado, Jose Leandro

    2013-01-01

    In the current Front End (FE) firmware clusters of hits within the APV frames are found using a simple threshold comparison (which is made between the data and a 3 or 5 sigma strip noise cut) on reordered pedestal and Common Mode (CM) noise subtracted data. In addition the CM noise subtraction requires the baseline of each APV frame to be approximately uniform. Therefore, the current algorithm will fail if the APV baseline exhibits large-scale non-uniform behavior. Under very high luminosity conditions the assumption of a uniform APV baseline breaks down and the FED is unable to maintain a high efficiency of cluster finding. \

  9. FCM Clustering Algorithms for Segmentation of Brain MR Images

    Directory of Open Access Journals (Sweden)

    Yogita K. Dubey

    2016-01-01

    Full Text Available The study of brain disorders requires accurate tissue segmentation of magnetic resonance (MR brain images which is very important for detecting tumors, edema, and necrotic tissues. Segmentation of brain images, especially into three main tissue types: Cerebrospinal Fluid (CSF, Gray Matter (GM, and White Matter (WM, has important role in computer aided neurosurgery and diagnosis. Brain images mostly contain noise, intensity inhomogeneity, and weak boundaries. Therefore, accurate segmentation of brain images is still a challenging area of research. This paper presents a review of fuzzy c-means (FCM clustering algorithms for the segmentation of brain MR images. The review covers the detailed analysis of FCM based algorithms with intensity inhomogeneity correction and noise robustness. Different methods for the modification of standard fuzzy objective function with updating of membership and cluster centroid are also discussed.

  10. Solving optimum operation of single pump unit problem with ant colony optimization (ACO) algorithm

    International Nuclear Information System (INIS)

    Yuan, Y; Liu, C

    2012-01-01

    For pumping stations, the effective scheduling of daily pump operations from solutions to the optimum design operation problem is one of the greatest potential areas for energy cost-savings, there are some difficulties in solving this problem with traditional optimization methods due to the multimodality of the solution region. In this case, an ACO model for optimum operation of pumping unit is proposed and the solution method by ants searching is presented by rationally setting the object function and constrained conditions. A weighted directed graph was constructed and feasible solutions may be found by iteratively searching of artificial ants, and then the optimal solution can be obtained by applying the rule of state transition and the pheromone updating. An example calculation was conducted and the minimum cost was found as 4.9979. The result of ant colony algorithm was compared with the result from dynamic programming or evolutionary solving method in commercial software under the same discrete condition. The result of ACO is better and the computing time is shorter which indicates that ACO algorithm can provide a high application value to the field of optimal operation of pumping stations and related fields.

  11. Ant Colony Optimization Algorithm for Centralized Dynamic Channel Allocation in Multi-Cell OFDMA Systems

    Science.gov (United States)

    Kim, Hyo-Su; Kim, Dong-Hoi

    The dynamic channel allocation (DCA) scheme in multi-cell systems causes serious inter-cell interference (ICI) problem to some existing calls when channels for new calls are allocated. Such a problem can be addressed by advanced centralized DCA design that is able to minimize ICI. Thus, in this paper, a centralized DCA is developed for the downlink of multi-cell orthogonal frequency division multiple access (OFDMA) systems with full spectral reuse. However, in practice, as the search space of channel assignment for centralized DCA scheme in multi-cell systems grows exponentially with the increase of the number of required calls, channels, and cells, it becomes an NP-hard problem and is currently too complicated to find an optimum channel allocation. In this paper, we propose an ant colony optimization (ACO) based DCA scheme using a low-complexity ACO algorithm which is a kind of heuristic algorithm in order to solve the aforementioned problem. Simulation results demonstrate significant performance improvements compared to the existing schemes in terms of the grade of service (GoS) performance and the forced termination probability of existing calls without degrading the system performance of the average throughput.

  12. Automatic boiling water reactor loading pattern design using ant colony optimization algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.-D. [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China); Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan (China)], E-mail: jdwang@iner.gov.tw; Lin Chaung [Department of Engineering and System Science, National Tsing Hua University, 101, Section 2 Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2009-08-15

    An automatic boiling water reactor (BWR) loading pattern (LP) design methodology was developed using the rank-based ant system (RAS), which is a variant of the ant colony optimization (ACO) algorithm. To reduce design complexity, only the fuel assemblies (FAs) of one eight-core positions were determined using the RAS algorithm, and then the corresponding FAs were loaded into the other parts of the core. Heuristic information was adopted to exclude the selection of the inappropriate FAs which will reduce search space, and thus, the computation time. When the LP was determined, Haling cycle length, beginning of cycle (BOC) shutdown margin (SDM), and Haling end of cycle (EOC) maximum fraction of limit for critical power ratio (MFLCPR) were calculated using SIMULATE-3 code, which were used to evaluate the LP for updating pheromone of RAS. The developed design methodology was demonstrated using FAs of a reference cycle of the BWR6 nuclear power plant. The results show that, the designed LP can be obtained within reasonable computation time, and has a longer cycle length than that of the original design.

  13. Proposed algorithm to improve job shop production scheduling using ant colony optimization method

    Science.gov (United States)

    Pakpahan, Eka KA; Kristina, Sonna; Setiawan, Ari

    2017-12-01

    This paper deals with the determination of job shop production schedule on an automatic environment. On this particular environment, machines and material handling system are integrated and controlled by a computer center where schedule were created and then used to dictate the movement of parts and the operations at each machine. This setting is usually designed to have an unmanned production process for a specified interval time. We consider here parts with various operations requirement. Each operation requires specific cutting tools. These parts are to be scheduled on machines each having identical capability, meaning that each machine is equipped with a similar set of cutting tools therefore is capable of processing any operation. The availability of a particular machine to process a particular operation is determined by the remaining life time of its cutting tools. We proposed an algorithm based on the ant colony optimization method and embedded them on matlab software to generate production schedule which minimize the total processing time of the parts (makespan). We test the algorithm on data provided by real industry and the process shows a very short computation time. This contributes a lot to the flexibility and timelines targeted on an automatic environment.

  14. An Improved Artificial Colony Algorithm Model for Forecasting Chinese Electricity Consumption and Analyzing Effect Mechanism

    Directory of Open Access Journals (Sweden)

    Jingmin Wang

    2016-01-01

    Full Text Available Electricity consumption forecast is perceived to be a growing hot topic in such a situation that China’s economy has entered a period of new normal and the demand of electric power has slowed down. Therefore, exploring Chinese electricity consumption influence mechanism and forecasting electricity consumption are crucial to formulate electrical energy plan scientifically and guarantee the sustainable economic and social development. Research has identified medium and long term electricity consumption forecast as a difficult study influenced by various factors. This paper proposed an improved Artificial Bee Colony (ABC algorithm which combined with multivariate linear regression (MLR for exploring the influencing mechanism of various factors on Chinese electricity consumption and forecasting electricity consumption in the future. The results indicated that the improved ABC algorithm in view of the various factors is superior to traditional models just considering unilateralism in accuracy and persuasion. The overall findings cast light on this model which provides a new scientific and effective way to forecast the medium and long term electricity consumption.

  15. Synchronous Firefly Algorithm for Cluster Head Selection in WSN

    Directory of Open Access Journals (Sweden)

    Madhusudhanan Baskaran

    2015-01-01

    Full Text Available Wireless Sensor Network (WSN consists of small low-cost, low-power multifunctional nodes interconnected to efficiently aggregate and transmit data to sink. Cluster-based approaches use some nodes as Cluster Heads (CHs and organize WSNs efficiently for aggregation of data and energy saving. A CH conveys information gathered by cluster nodes and aggregates/compresses data before transmitting it to a sink. However, this additional responsibility of the node results in a higher energy drain leading to uneven network degradation. Low Energy Adaptive Clustering Hierarchy (LEACH offsets this by probabilistically rotating cluster heads role among nodes with energy above a set threshold. CH selection in WSN is NP-Hard as optimal data aggregation with efficient energy savings cannot be solved in polynomial time. In this work, a modified firefly heuristic, synchronous firefly algorithm, is proposed to improve the network performance. Extensive simulation shows the proposed technique to perform well compared to LEACH and energy-efficient hierarchical clustering. Simulations show the effectiveness of the proposed method in decreasing the packet loss ratio by an average of 9.63% and improving the energy efficiency of the network when compared to LEACH and EEHC.

  16. Nonuniform Sparse Data Clustering Cascade Algorithm Based on Dynamic Cumulative Entropy

    Directory of Open Access Journals (Sweden)

    Ning Li

    2016-01-01

    Full Text Available A small amount of prior knowledge and randomly chosen initial cluster centers have a direct impact on the accuracy of the performance of iterative clustering algorithm. In this paper we propose a new algorithm to compute initial cluster centers for k-means clustering and the best number of the clusters with little prior knowledge and optimize clustering result. It constructs the Euclidean distance control factor based on aggregation density sparse degree to select the initial cluster center of nonuniform sparse data and obtains initial data clusters by multidimensional diffusion density distribution. Multiobjective clustering approach based on dynamic cumulative entropy is adopted to optimize the initial data clusters and the best number of the clusters. The experimental results show that the newly proposed algorithm has good performance to obtain the initial cluster centers for the k-means algorithm and it effectively improves the clustering accuracy of nonuniform sparse data by about 5%.

  17. Advanced defect detection algorithm using clustering in ultrasonic NDE

    Science.gov (United States)

    Gongzhang, Rui; Gachagan, Anthony

    2016-02-01

    A range of materials used in industry exhibit scattering properties which limits ultrasonic NDE. Many algorithms have been proposed to enhance defect detection ability, such as the well-known Split Spectrum Processing (SSP) technique. Scattering noise usually cannot be fully removed and the remaining noise can be easily confused with real feature signals, hence becoming artefacts during the image interpretation stage. This paper presents an advanced algorithm to further reduce the influence of artefacts remaining in A-scan data after processing using a conventional defect detection algorithm. The raw A-scan data can be acquired from either traditional single transducer or phased array configurations. The proposed algorithm uses the concept of unsupervised machine learning to cluster segmental defect signals from pre-processed A-scans into different classes. The distinction and similarity between each class and the ensemble of randomly selected noise segments can be observed by applying a classification algorithm. Each class will then be labelled as `legitimate reflector' or `artefacts' based on this observation and the expected probability of defection (PoD) and probability of false alarm (PFA) determined. To facilitate data collection and validate the proposed algorithm, a 5MHz linear array transducer is used to collect A-scans from both austenitic steel and Inconel samples. Each pulse-echo A-scan is pre-processed using SSP and the subsequent application of the proposed clustering algorithm has provided an additional reduction to PFA while maintaining PoD for both samples compared with SSP results alone.

  18. Аdaptive clustering algorithm for recommender systems

    OpenAIRE

    Stekh, Yu.; Artsibasov, V.

    2012-01-01

    In this article adaptive clustering algorithm for recommender systems is developed. Розроблено адаптивний алгоритм кластеризації для рекомендаційних систем.

  19. Estimates of hydroelectric generation using neural networks with the artificial bee colony algorithm for Turkey

    International Nuclear Information System (INIS)

    Uzlu, Ergun; Akpınar, Adem; Özturk, Hasan Tahsin; Nacar, Sinan; Kankal, Murat

    2014-01-01

    The primary objective of this study was to apply the ANN (artificial neural network) model with the ABC (artificial bee colony) algorithm to estimate annual hydraulic energy production of Turkey. GEED (gross electricity energy demand), population, AYT (average yearly temperature), and energy consumption were selected as independent variables in the model. The first part of the study compared ANN-ABC model performance with results of classical ANN models trained with the BP (back propagation) algorithm. Mean square and relative error were applied to evaluate model accuracy. The test set errors emphasized positive differences between the ANN-ABC and classical ANN models. After determining optimal configurations, three different scenarios were developed to predict future hydropower generation values for Turkey. Results showed the ANN-ABC method predicted hydroelectric generation better than the classical ANN trained with the BP algorithm. Furthermore, results indicated future hydroelectric generation in Turkey will range from 69.1 to 76.5 TWh in 2021, and the total annual electricity demand represented by hydropower supply rates will range from 14.8% to 18.0%. However, according to Vision 2023 agenda goals, the country plans to produce 30% of its electricity demand from renewable energy sources by 2023, and use 20% less energy than in 2010. This percentage renewable energy provision cannot be accomplished unless changes in energy policy and investments are not addressed and implemented. In order to achieve this goal, the Turkish government must reconsider and raise its own investments in hydropower, wind, solar, and geothermal energy, particularly hydropower. - Highlights: • This study is associated with predicting hydropower generation in Turkey. • Sensitivity analysis was performed to determine predictor variables. • GEED, population, energy consumption and AYT were used as predictor variables. • ANN-ABC predicted the hydropower generation more accurately

  20. A cluster analysis on road traffic accidents using genetic algorithms

    Science.gov (United States)

    Saharan, Sabariah; Baragona, Roberto

    2017-04-01

    The analysis of traffic road accidents is increasingly important because of the accidents cost and public road safety. The availability or large data sets makes the study of factors that affect the frequency and severity accidents are viable. However, the data are often highly unbalanced and overlapped. We deal with the data set of the road traffic accidents recorded in Christchurch, New Zealand, from 2000-2009 with a total of 26440 accidents. The data is in a binary set and there are 50 factors road traffic accidents with four level of severity. We used genetic algorithm for the analysis because we are in the presence of a large unbalanced data set and standard clustering like k-means algorithm may not be suitable for the task. The genetic algorithm based on clustering for unknown K, (GCUK) has been used to identify the factors associated with accidents of different levels of severity. The results provided us with an interesting insight into the relationship between factors and accidents severity level and suggest that the two main factors that contributes to fatal accidents are "Speed greater than 60 km h" and "Did not see other people until it was too late". A comparison with the k-means algorithm and the independent component analysis is performed to validate the results.

  1. Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion

    Directory of Open Access Journals (Sweden)

    Jin Qi

    2015-01-01

    Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.

  2. An improved clustering algorithm based on reverse learning in intelligent transportation

    Science.gov (United States)

    Qiu, Guoqing; Kou, Qianqian; Niu, Ting

    2017-05-01

    With the development of artificial intelligence and data mining technology, big data has gradually entered people's field of vision. In the process of dealing with large data, clustering is an important processing method. By introducing the reverse learning method in the clustering process of PAM clustering algorithm, to further improve the limitations of one-time clustering in unsupervised clustering learning, and increase the diversity of clustering clusters, so as to improve the quality of clustering. The algorithm analysis and experimental results show that the algorithm is feasible.

  3. Finding reproducible cluster partitions for the k-means algorithm.

    Science.gov (United States)

    Lisboa, Paulo J G; Etchells, Terence A; Jarman, Ian H; Chambers, Simon J

    2013-01-01

    K-means clustering is widely used for exploratory data analysis. While its dependence on initialisation is well-known, it is common practice to assume that the partition with lowest sum-of-squares (SSQ) total i.e. within cluster variance, is both reproducible under repeated initialisations and also the closest that k-means can provide to true structure, when applied to synthetic data. We show that this is generally the case for small numbers of clusters, but for values of k that are still of theoretical and practical interest, similar values of SSQ can correspond to markedly different cluster partitions. This paper extends stability measures previously presented in the context of finding optimal values of cluster number, into a component of a 2-d map of the local minima found by the k-means algorithm, from which not only can values of k be identified for further analysis but, more importantly, it is made clear whether the best SSQ is a suitable solution or whether obtaining a consistently good partition requires further application of the stability index. The proposed method is illustrated by application to five synthetic datasets replicating a real world breast cancer dataset with varying data density, and a large bioinformatics dataset.

  4. Depth data research of GIS based on clustering analysis algorithm

    Science.gov (United States)

    Xiong, Yan; Xu, Wenli

    2018-03-01

    The data of GIS have spatial distribution. Geographic data has both spatial characteristics and attribute characteristics, and also changes with time. Therefore, the amount of data is very large. Nowadays, many industries and departments in the society are using GIS. However, without proper data analysis and mining scheme, GIS will not exert its maximum effectiveness and will waste a lot of data. In this paper, we use the geographic information demand of a national security department as the experimental object, combining the characteristics of GIS data, taking into account the characteristics of time, space, attributes and so on, and using cluster analysis algorithm. We further study the mining scheme for depth data, and get the algorithm model. This algorithm can automatically classify sample data, and then carry out exploratory analysis. The research shows that the algorithm model and the information mining scheme can quickly find hidden depth information from the surface data of GIS, thus improving the efficiency of the security department. This algorithm can also be extended to other fields.

  5. Optimum Layout for Sensors in Water Distribution Networks through Ant Colony Algorithm: A Dual Use Vision

    Directory of Open Access Journals (Sweden)

    Seyed Mehdi Miri

    2014-07-01

    Full Text Available The accidental or intentional entry of contaminants or self-deterioration of the water quality within the network itself can severely harm public health. Efficient water quality monitoring is one of the most important tools to guarantee a reliable potable water supply to consumers of drinking water distribution systems. Considering the high purchase, installation and maintenance cost of sensors in water distribution networks deploying two independent sensor networks within one distribution system is not only bounded by physical constraints but also is not a cost-effective approach. Therefore, need for combining different objectives and designing sensor network to simultaneity satisfying these objectives is felt. Sensors should comply with dual use benefits. Sensor locations and types should be integrated not only for achieving water security goals but also for accomplishing other water utility objectives, such as satisfying regulatory monitoring requirements or collecting information to solve water quality problems. In this study, a dual use vision for the sensor layout problem in the municipal water networks, is formulated and solved with the ant colony algorithm.

  6. Meta-Heuristics in Short Scale Construction: Ant Colony Optimization and Genetic Algorithm.

    Science.gov (United States)

    Schroeders, Ulrich; Wilhelm, Oliver; Olaru, Gabriel

    2016-01-01

    The advent of large-scale assessment, but also the more frequent use of longitudinal and multivariate approaches to measurement in psychological, educational, and sociological research, caused an increased demand for psychometrically sound short scales. Shortening scales economizes on valuable administration time, but might result in inadequate measures because reducing an item set could: a) change the internal structure of the measure, b) result in poorer reliability and measurement precision, c) deliver measures that cannot effectively discriminate between persons on the intended ability spectrum, and d) reduce test-criterion relations. Different approaches to abbreviate measures fare differently with respect to the above-mentioned problems. Therefore, we compare the quality and efficiency of three item selection strategies to derive short scales from an existing long version: a Stepwise COnfirmatory Factor Analytical approach (SCOFA) that maximizes factor loadings and two metaheuristics, specifically an Ant Colony Optimization (ACO) with a tailored user-defined optimization function and a Genetic Algorithm (GA) with an unspecific cost-reduction function. SCOFA compiled short versions were highly reliable, but had poor validity. In contrast, both metaheuristics outperformed SCOFA and produced efficient and psychometrically sound short versions (unidimensional, reliable, sensitive, and valid). We discuss under which circumstances ACO and GA produce equivalent results and provide recommendations for conditions in which it is advisable to use a metaheuristic with an unspecific out-of-the-box optimization function.

  7. Simulated Annealing-Based Ant Colony Algorithm for Tugboat Scheduling Optimization

    Directory of Open Access Journals (Sweden)

    Qi Xu

    2012-01-01

    Full Text Available As the “first service station” for ships in the whole port logistics system, the tugboat operation system is one of the most important systems in port logistics. This paper formulated the tugboat scheduling problem as a multiprocessor task scheduling problem (MTSP after analyzing the characteristics of tugboat operation. The model considers factors of multianchorage bases, different operation modes, and three stages of operations (berthing/shifting-berth/unberthing. The objective is to minimize the total operation times for all tugboats in a port. A hybrid simulated annealing-based ant colony algorithm is proposed to solve the addressed problem. By the numerical experiments without the shifting-berth operation, the effectiveness was verified, and the fact that more effective sailing may be possible if tugboats return to the anchorage base timely was pointed out; by the experiments with the shifting-berth operation, one can see that the objective is most sensitive to the proportion of the shifting-berth operation, influenced slightly by the tugboat deployment scheme, and not sensitive to the handling operation times.

  8. Artificial Bee Colony Algorithm Combined with Grenade Explosion Method and Cauchy Operator for Global Optimization

    Directory of Open Access Journals (Sweden)

    Jian-Guo Zheng

    2015-01-01

    Full Text Available Artificial bee colony (ABC algorithm is a popular swarm intelligence technique inspired by the intelligent foraging behavior of honey bees. However, ABC is good at exploration but poor at exploitation and its convergence speed is also an issue in some cases. To improve the performance of ABC, a novel ABC combined with grenade explosion method (GEM and Cauchy operator, namely, ABCGC, is proposed. GEM is embedded in the onlooker bees’ phase to enhance the exploitation ability and accelerate convergence of ABCGC; meanwhile, Cauchy operator is introduced into the scout bees’ phase to help ABCGC escape from local optimum and further enhance its exploration ability. Two sets of well-known benchmark functions are used to validate the better performance of ABCGC. The experiments confirm that ABCGC is significantly superior to ABC and other competitors; particularly it converges to the global optimum faster in most cases. These results suggest that ABCGC usually achieves a good balance between exploitation and exploration and can effectively serve as an alternative for global optimization.

  9. Optimum Assembly Sequence Planning System Using Discrete Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Özkan Özmen

    2018-01-01

    Full Text Available Assembly refers both to the process of combining parts to create a structure and to the product resulting therefrom. The complexity of this process increases with the number of pieces in the assembly. This paper presents the assembly planning system design (APSD program, a computer program developed based on a matrix-based approach and the discrete artificial bee colony (DABC algorithm, which determines the optimum assembly sequence among numerous feasible assembly sequences (FAS. Specifically, the assembly sequences of three-dimensional (3D parts prepared in the computer-aided design (CAD software AutoCAD are first coded using the matrix-based methodology and the resulting FAS are assessed and the optimum assembly sequence is selected according to the assembly time optimisation criterion using DABC. The results of comparison of the performance of the proposed method with other methods proposed in the literature verify its superiority in finding the sequence with the lowest overall time. Further, examination of the results of application of APSD to assemblies consisting of parts in different numbers and shapes shows that it can select the optimum sequence from among hundreds of FAS.

  10. Monte Carlo simulation using the PENELOPE code with an ant colony algorithm to study MOSFET detectors

    Energy Technology Data Exchange (ETDEWEB)

    Carvajal, M A; Palma, A J [Departamento de Electronica y Tecnologia de Computadores, Universidad de Granada, E-18071 Granada (Spain); Garcia-Pareja, S [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' Carlos Haya' , Avda Carlos Haya, s/n, E-29010 Malaga (Spain); Guirado, D [Servicio de RadiofIsica, Hospital Universitario ' San Cecilio' , Avda Dr Oloriz, 16, E-18012 Granada (Spain); Vilches, M [Servicio de Fisica y Proteccion Radiologica, Hospital Regional Universitario ' Virgen de las Nieves' , Avda Fuerzas Armadas, 2, E-18014 Granada (Spain); Anguiano, M; Lallena, A M [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)], E-mail: carvajal@ugr.es, E-mail: garciapareja@gmail.com, E-mail: dguirado@ugr.es, E-mail: mvilches@ugr.es, E-mail: mangui@ugr.es, E-mail: ajpalma@ugr.es, E-mail: lallena@ugr.es

    2009-10-21

    In this work we have developed a simulation tool, based on the PENELOPE code, to study the response of MOSFET devices to irradiation with high-energy photons. The energy deposited in the extremely thin silicon dioxide layer has been calculated. To reduce the statistical uncertainties, an ant colony algorithm has been implemented to drive the application of splitting and Russian roulette as variance reduction techniques. In this way, the uncertainty has been reduced by a factor of {approx}5, while the efficiency is increased by a factor of above 20. As an application, we have studied the dependence of the response of the pMOS transistor 3N163, used as a dosimeter, with the incidence angle of the radiation for three common photons sources used in radiotherapy: a {sup 60}Co Theratron-780 and the 6 and 18 MV beams produced by a Mevatron KDS LINAC. Experimental and simulated results have been obtained for gantry angles of 0 deg., 15 deg., 30 deg., 45 deg., 60 deg. and 75 deg. The agreement obtained has permitted validation of the simulation tool. We have studied how to reduce the angular dependence of the MOSFET response by using an additional encapsulation made of brass in the case of the two LINAC qualities considered.

  11. Gravitation field algorithm and its application in gene cluster

    Directory of Open Access Journals (Sweden)

    Zheng Ming

    2010-09-01

    Full Text Available Abstract Background Searching optima is one of the most challenging tasks in clustering genes from available experimental data or given functions. SA, GA, PSO and other similar efficient global optimization methods are used by biotechnologists. All these algorithms are based on the imitation of natural phenomena. Results This paper proposes a novel searching optimization algorithm called Gravitation Field Algorithm (GFA which is derived from the famous astronomy theory Solar Nebular Disk Model (SNDM of planetary formation. GFA simulates the Gravitation field and outperforms GA and SA in some multimodal functions optimization problem. And GFA also can be used in the forms of unimodal functions. GFA clusters the dataset well from the Gene Expression Omnibus. Conclusions The mathematical proof demonstrates that GFA could be convergent in the global optimum by probability 1 in three conditions for one independent variable mass functions. In addition to these results, the fundamental optimization concept in this paper is used to analyze how SA and GA affect the global search and the inherent defects in SA and GA. Some results and source code (in Matlab are publicly available at http://ccst.jlu.edu.cn/CSBG/GFA.

  12. Development of Automatic Cluster Algorithm for Microcalcification in Digital Mammography

    International Nuclear Information System (INIS)

    Choi, Seok Yoon; Kim, Chang Soo

    2009-01-01

    Digital Mammography is an efficient imaging technique for the detection and diagnosis of breast pathological disorders. Six mammographic criteria such as number of cluster, number, size, extent and morphologic shape of microcalcification, and presence of mass, were reviewed and correlation with pathologic diagnosis were evaluated. It is very important to find breast cancer early when treatment can reduce deaths from breast cancer and breast incision. In screening breast cancer, mammography is typically used to view the internal organization. Clusterig microcalcifications on mammography represent an important feature of breast mass, especially that of intraductal carcinoma. Because microcalcification has high correlation with breast cancer, a cluster of a microcalcification can be very helpful for the clinical doctor to predict breast cancer. For this study, three steps of quantitative evaluation are proposed : DoG filter, adaptive thresholding, Expectation maximization. Through the proposed algorithm, each cluster in the distribution of microcalcification was able to measure the number calcification and length of cluster also can be used to automatically diagnose breast cancer as indicators of the primary diagnosis.

  13. An enhanced artificial bee colony algorithm (EABC) for solving dispatching of hydro-thermal system (DHTS) problem.

    Science.gov (United States)

    Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong

    2018-01-01

    The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  14. An enhanced artificial bee colony algorithm (EABC for solving dispatching of hydro-thermal system (DHTS problem.

    Directory of Open Access Journals (Sweden)

    Yi Yu

    Full Text Available The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.

  15. An artificial bee colony algorithm for the capacitated vehicle routing problem

    DEFF Research Database (Denmark)

    Szeto, W.Y.; Wu, Yongzhong; Ho, Sin C.

    2011-01-01

    This paper introduces an artificial bee colony heuristic for solving the capacitated vehicle routing problem. The artificial bee colony heuristic is a swarm-based heuristic, which mimics the foraging behavior of a honey bee swarm. An enhanced version of the artificial bee colony heuristic is also...... proposed to improve the solution quality of the original version. The performance of the enhanced heuristic is evaluated on two sets of standard benchmark instances, and compared with the original artificial bee colony heuristic. The computational results show that the enhanced heuristic outperforms...

  16. An improved artificial bee colony algorithm based on balance-evolution strategy for unmanned combat aerial vehicle path planning.

    Science.gov (United States)

    Li, Bai; Gong, Li-gang; Yang, Wen-lun

    2014-01-01

    Unmanned combat aerial vehicles (UCAVs) have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC) algorithm improved by a balance-evolution strategy (BES) is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  17. An Improved Artificial Bee Colony Algorithm Based on Balance-Evolution Strategy for Unmanned Combat Aerial Vehicle Path Planning

    Directory of Open Access Journals (Sweden)

    Bai Li

    2014-01-01

    Full Text Available Unmanned combat aerial vehicles (UCAVs have been of great interest to military organizations throughout the world due to their outstanding capabilities to operate in dangerous or hazardous environments. UCAV path planning aims to obtain an optimal flight route with the threats and constraints in the combat field well considered. In this work, a novel artificial bee colony (ABC algorithm improved by a balance-evolution strategy (BES is applied in this optimization scheme. In this new algorithm, convergence information during the iteration is fully utilized to manipulate the exploration/exploitation accuracy and to pursue a balance between local exploitation and global exploration capabilities. Simulation results confirm that BE-ABC algorithm is more competent for the UCAV path planning scheme than the conventional ABC algorithm and two other state-of-the-art modified ABC algorithms.

  18. Study on distributed re-clustering algorithm for moblie wireless sensor networks

    Directory of Open Access Journals (Sweden)

    XU Chaojie

    2016-04-01

    Full Text Available In mobile wireless sensor networks,node mobility influences the topology of the hierarchically clustered network,thus affects packet delivery ratio and energy consumption of communications in clusters.To reduce the influence of node mobility,a distributed re-clustering algorithm is proposed in this paper.In this algorithm,basing on the clustered network,nodes estimate their current locations with particle algorithm and predict the most possible locations of next time basing on the mobility model.Each boundary node of a cluster periodically estimates the need for re-clustering and re-cluster itself to the optimal cluster through communicating with the cluster headers when needed.The simulation results indicate that,with small re-clustering periods,the proposed algorithm can be effective to keep appropriate communication distance and outperforms existing schemes on packet delivery ratio and energy consumption.

  19. A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters

    Directory of Open Access Journals (Sweden)

    Weiwei Lin

    2016-01-01

    Full Text Available Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual machine power efficiency-aware greedy scheduling algorithm (VPEGS. As a heuristic algorithm, VPEGS estimates task energy by considering factors including task resource demands, VM power efficiency, and server workload before scheduling tasks in a greedy manner. We simulated a heterogeneous VM cluster and conducted experiment to evaluate the effectiveness of VPEGS. Simulation results show that VPEGS effectively reduced total energy consumption by more than 20% without producing large scheduling overheads. With the similar heuristic ideology, it outperformed Min-Min and RASA with respect to energy saving by about 29% and 28%, respectively.

  20. Ternary alloy material prediction using genetic algorithm and cluster expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chong [Iowa State Univ., Ames, IA (United States)

    2015-12-01

    This thesis summarizes our study on the crystal structures prediction of Fe-V-Si system using genetic algorithm and cluster expansion. Our goal is to explore and look for new stable compounds. We started from the current ten known experimental phases, and calculated formation energies of those compounds using density functional theory (DFT) package, namely, VASP. The convex hull was generated based on the DFT calculations of the experimental known phases. Then we did random search on some metal rich (Fe and V) compositions and found that the lowest energy structures were body centered cube (bcc) underlying lattice, under which we did our computational systematic searches using genetic algorithm and cluster expansion. Among hundreds of the searched compositions, thirteen were selected and DFT formation energies were obtained by VASP. The stability checking of those thirteen compounds was done in reference to the experimental convex hull. We found that the composition, 24-8-16, i.e., Fe3VSi2 is a new stable phase and it can be very inspiring to the future experiments.

  1. PinaColada: peptide-inhibitor ant colony ad-hoc design algorithm.

    Science.gov (United States)

    Zaidman, Daniel; Wolfson, Haim J

    2016-08-01

    Design of protein-protein interaction (PPI) inhibitors is a major challenge in Structural Bioinformatics. Peptides, especially short ones (5-15 amino acid long), are natural candidates for inhibition of protein-protein complexes due to several attractive features such as high structural compatibility with the protein binding site (mimicking the surface of one of the proteins), small size and the ability to form strong hotspot binding connections with the protein surface. Efficient rational peptide design is still a major challenge in computer aided drug design, due to the huge space of possible sequences, which is exponential in the length of the peptide, and the high flexibility of peptide conformations. In this article we present PinaColada, a novel computational method for the design of peptide inhibitors for protein-protein interactions. We employ a version of the ant colony optimization heuristic, which is used to explore the exponential space ([Formula: see text]) of length n peptide sequences, in combination with our fast robotics motivated PepCrawler algorithm, which explores the conformational space for each candidate sequence. PinaColada is being run in parallel, on a DELL PowerEdge 2.8 GHZ computer with 20 cores and 256 GB memory, and takes up to 24 h to design a peptide of 5-15 amino acids length. An online server available at: http://bioinfo3d.cs.tau.ac.il/PinaColada/. danielza@post.tau.ac.il; wolfson@tau.ac.il. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system

    OpenAIRE

    Mohamed, Ahmed F.; Elarini, Mahdi M.; Othman, Ahmed M.

    2013-01-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) whic...

  3. Building optimal regression tree by ant colony system-genetic algorithm: Application to modeling of melting points

    Energy Technology Data Exchange (ETDEWEB)

    Hemmateenejad, Bahram, E-mail: hemmatb@sums.ac.ir [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of); Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz (Iran, Islamic Republic of); Shamsipur, Mojtaba [Department of Chemistry, Razi University, Kermanshah (Iran, Islamic Republic of); Zare-Shahabadi, Vali [Young Researchers Club, Mahshahr Branch, Islamic Azad University, Mahshahr (Iran, Islamic Republic of); Akhond, Morteza [Department of Chemistry, Shiraz University, Shiraz (Iran, Islamic Republic of)

    2011-10-17

    Highlights: {yields} Ant colony systems help to build optimum classification and regression trees. {yields} Using of genetic algorithm operators in ant colony systems resulted in more appropriate models. {yields} Variable selection in each terminal node of the tree gives promising results. {yields} CART-ACS-GA could model the melting point of organic materials with prediction errors lower than previous models. - Abstract: The classification and regression trees (CART) possess the advantage of being able to handle large data sets and yield readily interpretable models. A conventional method of building a regression tree is recursive partitioning, which results in a good but not optimal tree. Ant colony system (ACS), which is a meta-heuristic algorithm and derived from the observation of real ants, can be used to overcome this problem. The purpose of this study was to explore the use of CART and its combination with ACS for modeling of melting points of a large variety of chemical compounds. Genetic algorithm (GA) operators (e.g., cross averring and mutation operators) were combined with ACS algorithm to select the best solution model. In addition, at each terminal node of the resulted tree, variable selection was done by ACS-GA algorithm to build an appropriate partial least squares (PLS) model. To test the ability of the resulted tree, a set of approximately 4173 structures and their melting points were used (3000 compounds as training set and 1173 as validation set). Further, an external test set containing of 277 drugs was used to validate the prediction ability of the tree. Comparison of the results obtained from both trees showed that the tree constructed by ACS-GA algorithm performs better than that produced by recursive partitioning procedure.

  4. jClustering, an open framework for the development of 4D clustering algorithms.

    Directory of Open Access Journals (Sweden)

    José María Mateos-Pérez

    Full Text Available We present jClustering, an open framework for the design of clustering algorithms in dynamic medical imaging. We developed this tool because of the difficulty involved in manually segmenting dynamic PET images and the lack of availability of source code for published segmentation algorithms. Providing an easily extensible open tool encourages publication of source code to facilitate the process of comparing algorithms and provide interested third parties with the opportunity to review code. The internal structure of the framework allows an external developer to implement new algorithms easily and quickly, focusing only on the particulars of the method being implemented and not on image data handling and preprocessing. This tool has been coded in Java and is presented as an ImageJ plugin in order to take advantage of all the functionalities offered by this imaging analysis platform. Both binary packages and source code have been published, the latter under a free software license (GNU General Public License to allow modification if necessary.

  5. Active Semisupervised Clustering Algorithm with Label Propagation for Imbalanced and Multidensity Datasets

    Directory of Open Access Journals (Sweden)

    Mingwei Leng

    2013-01-01

    Full Text Available The accuracy of most of the existing semisupervised clustering algorithms based on small size of labeled dataset is low when dealing with multidensity and imbalanced datasets, and labeling data is quite expensive and time consuming in many real-world applications. This paper focuses on active data selection and semisupervised clustering algorithm in multidensity and imbalanced datasets and proposes an active semisupervised clustering algorithm. The proposed algorithm uses an active mechanism for data selection to minimize the amount of labeled data, and it utilizes multithreshold to expand labeled datasets on multidensity and imbalanced datasets. Three standard datasets and one synthetic dataset are used to demonstrate the proposed algorithm, and the experimental results show that the proposed semisupervised clustering algorithm has a higher accuracy and a more stable performance in comparison to other clustering and semisupervised clustering algorithms, especially when the datasets are multidensity and imbalanced.

  6. A roadmap of clustering algorithms: finding a match for a biomedical application.

    Science.gov (United States)

    Andreopoulos, Bill; An, Aijun; Wang, Xiaogang; Schroeder, Michael

    2009-05-01

    Clustering is ubiquitously applied in bioinformatics with hierarchical clustering and k-means partitioning being the most popular methods. Numerous improvements of these two clustering methods have been introduced, as well as completely different approaches such as grid-based, density-based and model-based clustering. For improved bioinformatics analysis of data, it is important to match clusterings to the requirements of a biomedical application. In this article, we present a set of desirable clustering features that are used as evaluation criteria for clustering algorithms. We review 40 different clustering algorithms of all approaches and datatypes. We compare algorithms on the basis of desirable clustering features, and outline algorithms' benefits and drawbacks as a basis for matching them to biomedical applications.

  7. Voltage Profile Enhancement and Reduction of Real Power loss by Hybrid Biogeography Based Artificial Bee Colony algorithm

    Directory of Open Access Journals (Sweden)

    K. Lenin

    2014-04-01

    Full Text Available This paper presents Hybrid Biogeography algorithm for solving the multi-objective reactive power dispatch problem in a power system. Real Power Loss minimization and maximization of voltage stability margin are taken as the objectives. Artificial bee colony optimization (ABC is quick and forceful algorithm for global optimization. Biogeography-Based Optimization (BBO is a new-fangled biogeography inspired algorithm. It mainly utilizes the biogeography-based relocation operator to share the information among solutions. In this work, a hybrid algorithm with BBO and ABC is projected, and named as HBBABC (Hybrid Biogeography based Artificial Bee Colony Optimization, for the universal numerical optimization problem. HBBABC merge the searching behavior of ABC with that of BBO. Both the algorithms have different solution probing tendency like ABC have good exploration probing tendency while BBO have good exploitation probing tendency.  HBBABC used to solve the reactive power dispatch problem and the proposed technique has been tested in standard IEEE30 bus test system.

  8. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system.

    Science.gov (United States)

    Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M

    2014-05-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.

  9. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system

    Directory of Open Access Journals (Sweden)

    Ahmed F. Mohamed

    2014-05-01

    Full Text Available One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC. The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.

  10. KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance

    Directory of Open Access Journals (Sweden)

    Zhiwen ZU

    2018-04-01

    Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.

  11. Using internal evaluation measures to validate the quality of diverse stream clustering algorithms

    NARCIS (Netherlands)

    Hassani, M.; Seidl, T.

    2017-01-01

    Measuring the quality of a clustering algorithm has shown to be as important as the algorithm itself. It is a crucial part of choosing the clustering algorithm that performs best for an input data. Streaming input data have many features that make them much more challenging than static ones. They

  12. The application of mixed recommendation algorithm with user clustering in the microblog advertisements promotion

    Science.gov (United States)

    Gong, Lina; Xu, Tao; Zhang, Wei; Li, Xuhong; Wang, Xia; Pan, Wenwen

    2017-03-01

    The traditional microblog recommendation algorithm has the problems of low efficiency and modest effect in the era of big data. In the aim of solving these issues, this paper proposed a mixed recommendation algorithm with user clustering. This paper first introduced the situation of microblog marketing industry. Then, this paper elaborates the user interest modeling process and detailed advertisement recommendation methods. Finally, this paper compared the mixed recommendation algorithm with the traditional classification algorithm and mixed recommendation algorithm without user clustering. The results show that the mixed recommendation algorithm with user clustering has good accuracy and recall rate in the microblog advertisements promotion.

  13. Ant-Based Phylogenetic Reconstruction (ABPR: A new distance algorithm for phylogenetic estimation based on ant colony optimization

    Directory of Open Access Journals (Sweden)

    Karla Vittori

    2008-12-01

    Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.

  14. Inverse estimation of the spheroidal particle size distribution using Ant Colony Optimization algorithms in multispectral extinction technique

    Science.gov (United States)

    He, Zhenzong; Qi, Hong; Wang, Yuqing; Ruan, Liming

    2014-10-01

    Four improved Ant Colony Optimization (ACO) algorithms, i.e. the probability density function based ACO (PDF-ACO) algorithm, the Region ACO (RACO) algorithm, Stochastic ACO (SACO) algorithm and Homogeneous ACO (HACO) algorithm, are employed to estimate the particle size distribution (PSD) of the spheroidal particles. The direct problems are solved by the extended Anomalous Diffraction Approximation (ADA) and the Lambert-Beer law. Three commonly used monomodal distribution functions i.e. the Rosin-Rammer (R-R) distribution function, the normal (N-N) distribution function, and the logarithmic normal (L-N) distribution function are estimated under dependent model. The influence of random measurement errors on the inverse results is also investigated. All the results reveal that the PDF-ACO algorithm is more accurate than the other three ACO algorithms and can be used as an effective technique to investigate the PSD of the spheroidal particles. Furthermore, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution functions to retrieve the PSD of spheroidal particles using PDF-ACO algorithm. The investigation shows a reasonable agreement between the original distribution function and the general distribution function when only considering the variety of the length of the rotational semi-axis.

  15. A hybrid artificial bee colony algorithm and pattern search method for inversion of particle size distribution from spectral extinction data

    Science.gov (United States)

    Wang, Li; Li, Feng; Xing, Jian

    2017-10-01

    In this paper, a hybrid artificial bee colony (ABC) algorithm and pattern search (PS) method is proposed and applied for recovery of particle size distribution (PSD) from spectral extinction data. To be more useful and practical, size distribution function is modelled as the general Johnson's ? function that can overcome the difficulty of not knowing the exact type beforehand encountered in many real circumstances. The proposed hybrid algorithm is evaluated through simulated examples involving unimodal, bimodal and trimodal PSDs with different widths and mean particle diameters. For comparison, all examples are additionally validated by the single ABC algorithm. In addition, the performance of the proposed algorithm is further tested by actual extinction measurements with real standard polystyrene samples immersed in water. Simulation and experimental results illustrate that the hybrid algorithm can be used as an effective technique to retrieve the PSDs with high reliability and accuracy. Compared with the single ABC algorithm, our proposed algorithm can produce more accurate and robust inversion results while taking almost comparative CPU time over ABC algorithm alone. The superiority of ABC and PS hybridization strategy in terms of reaching a better balance of estimation accuracy and computation effort increases its potentials as an excellent inversion technique for reliable and efficient actual measurement of PSD.

  16. Solving the Traveling Salesman Problem Based on The Genetic Reactive Bone Route Algorithm whit Ant Colony System

    Directory of Open Access Journals (Sweden)

    Majid Yousefikhoshbakht

    2016-07-01

    Full Text Available The TSP is considered one of the most well-known combinatorial optimization tasks and researchers have paid so much attention to the TSP for many years. In this problem, a salesman starts to move from an arbitrary place called depot and after visits all of the nodes, finally comes back to the depot. The objective is to minimize the total distance traveled by the salesman.  Because this problem is a non-deterministic polynomial (NP-hard problem in nature, a hybrid meta-heuristic algorithm called REACSGA is used for solving the TSP. In REACSGA, a reactive bone route algorithm that uses the ant colony system (ACS for generating initial diversified solutions and the genetic algorithm (GA as an improved procedure are applied. Since the performance of the Metaheuristic algorithms is significantly influenced by their parameters, Taguchi Method is used to set the parameters of the proposed algorithm. The proposed algorithm is tested on several standard instances involving 24 to 318 nodes from the literature. The computational result shows that the results of the proposed algorithm are competitive with other metaheuristic algorithms for solving the TSP in terms of better quality of solution and computational time respectively. In addition, the proposed REACSGA is significantly efficient and finds closely the best known solutions for most of the instances in which thirteen best known solutions are also found.

  17. An Affinity Propagation Clustering Algorithm for Mixed Numeric and Categorical Datasets

    Directory of Open Access Journals (Sweden)

    Kang Zhang

    2014-01-01

    Full Text Available Clustering has been widely used in different fields of science, technology, social science, and so forth. In real world, numeric as well as categorical features are usually used to describe the data objects. Accordingly, many clustering methods can process datasets that are either numeric or categorical. Recently, algorithms that can handle the mixed data clustering problems have been developed. Affinity propagation (AP algorithm is an exemplar-based clustering method which has demonstrated good performance on a wide variety of datasets. However, it has limitations on processing mixed datasets. In this paper, we propose a novel similarity measure for mixed type datasets and an adaptive AP clustering algorithm is proposed to cluster the mixed datasets. Several real world datasets are studied to evaluate the performance of the proposed algorithm. Comparisons with other clustering algorithms demonstrate that the proposed method works well not only on mixed datasets but also on pure numeric and categorical datasets.

  18. Clustering for Binary Data Sets by Using Genetic Algorithm-Incremental K-means

    Science.gov (United States)

    Saharan, S.; Baragona, R.; Nor, M. E.; Salleh, R. M.; Asrah, N. M.

    2018-04-01

    This research was initially driven by the lack of clustering algorithms that specifically focus in binary data. To overcome this gap in knowledge, a promising technique for analysing this type of data became the main subject in this research, namely Genetic Algorithms (GA). For the purpose of this research, GA was combined with the Incremental K-means (IKM) algorithm to cluster the binary data streams. In GAIKM, the objective function was based on a few sufficient statistics that may be easily and quickly calculated on binary numbers. The implementation of IKM will give an advantage in terms of fast convergence. The results show that GAIKM is an efficient and effective new clustering algorithm compared to the clustering algorithms and to the IKM itself. In conclusion, the GAIKM outperformed other clustering algorithms such as GCUK, IKM, Scalable K-means (SKM) and K-means clustering and paves the way for future research involving missing data and outliers.

  19. Robust K-Median and K-Means Clustering Algorithms for Incomplete Data

    Directory of Open Access Journals (Sweden)

    Jinhua Li

    2016-01-01

    Full Text Available Incomplete data with missing feature values are prevalent in clustering problems. Traditional clustering methods first estimate the missing values by imputation and then apply the classical clustering algorithms for complete data, such as K-median and K-means. However, in practice, it is often hard to obtain accurate estimation of the missing values, which deteriorates the performance of clustering. To enhance the robustness of clustering algorithms, this paper represents the missing values by interval data and introduces the concept of robust cluster objective function. A minimax robust optimization (RO formulation is presented to provide clustering results, which are insensitive to estimation errors. To solve the proposed RO problem, we propose robust K-median and K-means clustering algorithms with low time and space complexity. Comparisons and analysis of experimental results on both artificially generated and real-world incomplete data sets validate the robustness and effectiveness of the proposed algorithms.

  20. Robust Fault-Tolerant Control for Satellite Attitude Stabilization Based on Active Disturbance Rejection Approach with Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Fei Song

    2014-01-01

    Full Text Available This paper proposed a robust fault-tolerant control algorithm for satellite stabilization based on active disturbance rejection approach with artificial bee colony algorithm. The actuating mechanism of attitude control system consists of three working reaction flywheels and one spare reaction flywheel. The speed measurement of reaction flywheel is adopted for fault detection. If any reaction flywheel fault is detected, the corresponding fault flywheel is isolated and the spare reaction flywheel is activated to counteract the fault effect and ensure that the satellite is working safely and reliably. The active disturbance rejection approach is employed to design the controller, which handles input information with tracking differentiator, estimates system uncertainties with extended state observer, and generates control variables by state feedback and compensation. The designed active disturbance rejection controller is robust to both internal dynamics and external disturbances. The bandwidth parameter of extended state observer is optimized by the artificial bee colony algorithm so as to improve the performance of attitude control system. A series of simulation experiment results demonstrate the performance superiorities of the proposed robust fault-tolerant control algorithm.

  1. ADAPTIVE CLUSTER BASED ROUTING PROTOCOL WITH ANT COLONY OPTIMIZATION FOR MOBILE AD-HOC NETWORK IN DISASTER AREA

    Directory of Open Access Journals (Sweden)

    Enrico Budianto

    2012-07-01

    Full Text Available In post-disaster rehabilitation efforts, the availability of telecommunication facilities takes important role. However, the process to improve telecommunication facilities in disaster area is risky if it is done by humans. Therefore, a network method that can work efficiently, effectively, and capable to reach the widest possible area is needed. This research introduces a cluster-based routing protocol named Adaptive Cluster Based Routing Protocol (ACBRP equipped by Ant Colony Optimization method, and its implementation in a simulator developed by author. After data analysis and statistical tests, it can be concluded that routing protocol ACBRP performs better than AODV and DSR routing protocol. Pada upaya rehabilitasi pascabencana, ketersediaan fasilitas telekomunikasi memiliki peranan yang sangat penting. Namun, proses untuk memperbaiki fasilitas telekomunikasi di daerah bencana memiliki resiko jika dilakukan oleh manusia. Oleh karena itu, metode jaringan yang dapat bekerja secara efisien, efektif, dan mampu mencapai area seluas mungkin diperlukan. Penelitian ini memperkenalkan sebuah protokol routing berbasis klaster bernama Adaptive Cluster Based Routing Protocol (ACBRP, yang dilengkapi dengan metode Ant Colony Optimization, dan diimplementasikan pada simulator yang dikembangkan penulis. Setelah data dianalisis dan dilakukan uji statistik, disimpulkan bahwa protokol routing ACBRP beroperasi lebih baik daripada protokol routing AODV maupun DSR.

  2. A universal optimization strategy for ant colony optimization algorithms based on the Physarum-inspired mathematical model

    International Nuclear Information System (INIS)

    Zhang, Zili; Gao, Chao; Liu, Yuxin; Qian, Tao

    2014-01-01

    Ant colony optimization (ACO) algorithms often fall into the local optimal solution and have lower search efficiency for solving the travelling salesman problem (TSP). According to these shortcomings, this paper proposes a universal optimization strategy for updating the pheromone matrix in the ACO algorithms. The new optimization strategy takes advantages of the unique feature of critical paths reserved in the process of evolving adaptive networks of the Physarum-inspired mathematical model (PMM). The optimized algorithms, denoted as PMACO algorithms, can enhance the amount of pheromone in the critical paths and promote the exploitation of the optimal solution. Experimental results in synthetic and real networks show that the PMACO algorithms are more efficient and robust than the traditional ACO algorithms, which are adaptable to solve the TSP with single or multiple objectives. Meanwhile, we further analyse the influence of parameters on the performance of the PMACO algorithms. Based on these analyses, the best values of these parameters are worked out for the TSP. (paper)

  3. Identification of cultivated land using remote sensing images based on object-oriented artificial bee colony algorithm

    Science.gov (United States)

    Li, Nan; Zhu, Xiufang

    2017-04-01

    Cultivated land resources is the key to ensure food security. Timely and accurate access to cultivated land information is conducive to a scientific planning of food production and management policies. The GaoFen 1 (GF-1) images have high spatial resolution and abundant texture information and thus can be used to identify fragmentized cultivated land. In this paper, an object-oriented artificial bee colony algorithm was proposed for extracting cultivated land from GF-1 images. Firstly, the GF-1 image was segmented by eCognition software and some samples from the segments were manually identified into 2 types (cultivated land and non-cultivated land). Secondly, the artificial bee colony (ABC) algorithm was used to search for classification rules based on the spectral and texture information extracted from the image objects. Finally, the extracted classification rules were used to identify the cultivated land area on the image. The experiment was carried out in Hongze area, Jiangsu Province using wide field-of-view sensor on the GF-1 satellite image. The total precision of classification result was 94.95%, and the precision of cultivated land was 92.85%. The results show that the object-oriented ABC algorithm can overcome the defect of insufficient spectral information in GF-1 images and obtain high precision in cultivated identification.

  4. Application of Ant-Colony-Optimization algorithm for improved management of first flush effects in urban wastewater systems.

    Science.gov (United States)

    Verdaguer, M; Clara, N; Gutiérrez, O; Poch, M

    2014-07-01

    The first flush effect in combined sewer systems during storm events often causes overflows and overloads of the sewage treatment, which reduces the efficiency of the sewage treatment and decreases the quality of the receiving waters due to the pollutants that are contributed. The use of retention tanks constitutes a widely used way to mitigate this effect. However, the management of the pollutant loads encounters difficulties when the retention tanks are emptied. A new approach is proposed to solve this problem by fulfilling the treatment requirements in real time, focussing on the characteristics of the wastewater. The method is based on the execution of an Ant Colony Optimisation algorithm to obtain a satisfactory sequence for the discharge of the retention tanks. The discharge sequence considers the volume of stormwater and its concentration of pollutants including Suspended Solids, Biological Oxygen Demand and Chemical Oxygen Demand, Total Nitrogen and Total Phosphorus. The Ant Colony Optimisation algorithm was applied successfully to a case study with overall reduction of pollutant loads stored in retention tanks. The algorithm can be adapted in a simple way to the different scenarios, infrastructures and controllers of sewer systems. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Azcaxalli: A system based on Ant Colony Optimization algorithms, applied to fuel reloads design in a Boiling Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel-Estrada, Jaime, E-mail: jaime.esquivel@fi.uaemex.m [Facultad de Ingenieria, Universidad Autonoma del Estado de Mexico, Cerro de Coatepec S/N, Toluca de Lerdo, Estado de Mexico 50000 (Mexico); Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Ortiz-Servin, Juan Jose, E-mail: juanjose.ortiz@inin.gob.m [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico); Castillo, Jose Alejandro; Perusquia, Raul [Instituto Nacional de Investigaciones Nucleares, Carr. Mexico Toluca S/N, Ocoyoacac, Estado de Mexico 52750 (Mexico)

    2011-01-15

    This paper presents some results of the implementation of several optimization algorithms based on ant colonies, applied to the fuel reload design in a Boiling Water Reactor. The system called Azcaxalli is constructed with the following algorithms: Ant Colony System, Ant System, Best-Worst Ant System and MAX-MIN Ant System. Azcaxalli starts with a random fuel reload. Ants move into reactor core channels according to the State Transition Rule in order to select two fuel assemblies into a 1/8 part of the reactor core and change positions between them. This rule takes into account pheromone trails and acquired knowledge. Acquired knowledge is obtained from load cycle values of fuel assemblies. Azcaxalli claim is to work in order to maximize the cycle length taking into account several safety parameters. Azcaxalli's objective function involves thermal limits at the end of the cycle, cold shutdown margin at the beginning of the cycle and the neutron effective multiplication factor for a given cycle exposure. Those parameters are calculated by CM-PRESTO code. Through the Haling Principle is possible to calculate the end of the cycle. This system was applied to an equilibrium cycle of 18 months of Laguna Verde Nuclear Power Plant in Mexico. The results show that the system obtains fuel reloads with higher cycle lengths than the original fuel reload. Azcaxalli results are compared with genetic algorithms, tabu search and neural networks results.

  6. Function-Oriented Networking and On-Demand Routing System in Network Using Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Young-Bo Sim

    2017-11-01

    Full Text Available In this paper, we proposed and developed Function-Oriented Networking (FON, a platform for network users. It has a different philosophy as opposed to technologies for network managers of Software-Defined Networking technology, OpenFlow. It is a technology that can immediately reflect the demands of the network users in the network, unlike the existing OpenFlow and Network Functions Virtualization (NFV, which do not reflect directly the needs of the network users. It allows the network user to determine the policy of the direct network, so it can be applied more precisely than the policy applied by the network manager. This is expected to increase the satisfaction of the service users when the network users try to provide new services. We developed FON function that performs on-demand routing for Low-Delay Required service. We analyzed the characteristics of the Ant Colony Optimization (ACO algorithm and found that the algorithm is suitable for low-delay required services. It was also the first in the world to implement the routing software using ACO Algorithm in the real Ethernet network. In order to improve the routing performance, several algorithms of the ACO Algorithm have been developed to enable faster path search-routing and path recovery. The relationship between the network performance index and the ACO routing parameters is derived, and the results are compared and analyzed. Through this, it was possible to develop the ACO algorithm.

  7. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    Energy Technology Data Exchange (ETDEWEB)

    Chudnovsky, V

    2000-03-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system.

  8. Higher-spin cluster algorithms: the Heisenberg spin and U(1) quantum link models

    International Nuclear Information System (INIS)

    Chudnovsky, V.

    2000-01-01

    I discuss here how the highly-efficient spin-1/2 cluster algorithm for the Heisenberg antiferromagnet may be extended to higher-dimensional representations; some numerical results are provided. The same extensions can be used for the U(1) flux cluster algorithm, but have not yielded signals of the desired Coulomb phase of the system

  9. Study of parameters of the nearest neighbour shared algorithm on clustering documents

    Science.gov (United States)

    Mustika Rukmi, Alvida; Budi Utomo, Daryono; Imro’atus Sholikhah, Neni

    2018-03-01

    Document clustering is one way of automatically managing documents, extracting of document topics and fastly filtering information. Preprocess of clustering documents processed by textmining consists of: keyword extraction using Rapid Automatic Keyphrase Extraction (RAKE) and making the document as concept vector using Latent Semantic Analysis (LSA). Furthermore, the clustering process is done so that the documents with the similarity of the topic are in the same cluster, based on the preprocesing by textmining performed. Shared Nearest Neighbour (SNN) algorithm is a clustering method based on the number of "nearest neighbors" shared. The parameters in the SNN Algorithm consist of: k nearest neighbor documents, ɛ shared nearest neighbor documents and MinT minimum number of similar documents, which can form a cluster. Characteristics The SNN algorithm is based on shared ‘neighbor’ properties. Each cluster is formed by keywords that are shared by the documents. SNN algorithm allows a cluster can be built more than one keyword, if the value of the frequency of appearing keywords in document is also high. Determination of parameter values on SNN algorithm affects document clustering results. The higher parameter value k, will increase the number of neighbor documents from each document, cause similarity of neighboring documents are lower. The accuracy of each cluster is also low. The higher parameter value ε, caused each document catch only neighbor documents that have a high similarity to build a cluster. It also causes more unclassified documents (noise). The higher the MinT parameter value cause the number of clusters will decrease, since the number of similar documents can not form clusters if less than MinT. Parameter in the SNN Algorithm determine performance of clustering result and the amount of noise (unclustered documents ). The Silhouette coeffisient shows almost the same result in many experiments, above 0.9, which means that SNN algorithm works well

  10. An Enhanced Discrete Artificial Bee Colony Algorithm to Minimize the Total Flow Time in Permutation Flow Shop Scheduling with Limited Buffers

    Directory of Open Access Journals (Sweden)

    Guanlong Deng

    2016-01-01

    Full Text Available This paper presents an enhanced discrete artificial bee colony algorithm for minimizing the total flow time in the flow shop scheduling problem with buffer capacity. First, the solution in the algorithm is represented as discrete job permutation to directly convert to active schedule. Then, we present a simple and effective scheme called best insertion for the employed bee and onlooker bee and introduce a combined local search exploring both insertion and swap neighborhood. To validate the performance of the presented algorithm, a computational campaign is carried out on the Taillard benchmark instances, and computations and comparisons show that the proposed algorithm is not only capable of solving the benchmark set better than the existing discrete differential evolution algorithm and iterated greedy algorithm, but also capable of performing better than two recently proposed discrete artificial bee colony algorithms.

  11. A heart disease recognition embedded system with fuzzy cluster algorithm.

    Science.gov (United States)

    de Carvalho, Helton Hugo; Moreno, Robson Luiz; Pimenta, Tales Cleber; Crepaldi, Paulo C; Cintra, Evaldo

    2013-06-01

    This article presents the viability analysis and the development of heart disease identification embedded system. It offers a time reduction on electrocardiogram - ECG signal processing by reducing the amount of data samples, without any significant loss. The goal of the developed system is the analysis of heart signals. The ECG signals are applied into the system that performs an initial filtering, and then uses a Gustafson-Kessel fuzzy clustering algorithm for the signal classification and correlation. The classification indicated common heart diseases such as angina, myocardial infarction and coronary artery diseases. The system uses the European electrocardiogram ST-T Database (EDB) as a reference for tests and evaluation. The results prove the system can perform the heart disease detection on a data set reduced from 213 to just 20 samples, thus providing a reduction to just 9.4% of the original set, while maintaining the same effectiveness. This system is validated in a Xilinx Spartan(®)-3A FPGA. The field programmable gate array (FPGA) implemented a Xilinx Microblaze(®) Soft-Core Processor running at a 50MHz clock rate. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Image Watermarking Algorithm Based on Multiobjective Ant Colony Optimization and Singular Value Decomposition in Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Khaled Loukhaoukha

    2013-01-01

    Full Text Available We present a new optimal watermarking scheme based on discrete wavelet transform (DWT and singular value decomposition (SVD using multiobjective ant colony optimization (MOACO. A binary watermark is decomposed using a singular value decomposition. Then, the singular values are embedded in a detailed subband of host image. The trade-off between watermark transparency and robustness is controlled by multiple scaling factors (MSFs instead of a single scaling factor (SSF. Determining the optimal values of the multiple scaling factors (MSFs is a difficult problem. However, a multiobjective ant colony optimization is used to determine these values. Experimental results show much improved performances of the proposed scheme in terms of transparency and robustness compared to other watermarking schemes. Furthermore, it does not suffer from the problem of high probability of false positive detection of the watermarks.

  13. A Novel Rough Set Reduct Algorithm for Medical Domain Based on Bee Colony Optimization

    OpenAIRE

    Suguna, N.; Thanushkodi, K.

    2010-01-01

    Feature selection refers to the problem of selecting relevant features which produce the most predictive outcome. In particular, feature selection task is involved in datasets containing huge number of features. Rough set theory has been one of the most successful methods used for feature selection. However, this method is still not able to find optimal subsets. This paper proposes a new feature selection method based on Rough set theory hybrid with Bee Colony Optimization (BCO) in an attempt...

  14. Combinatorial Clustering Algorithm of Quantum-Behaved Particle Swarm Optimization and Cloud Model

    Directory of Open Access Journals (Sweden)

    Mi-Yuan Shan

    2013-01-01

    Full Text Available We propose a combinatorial clustering algorithm of cloud model and quantum-behaved particle swarm optimization (COCQPSO to solve the stochastic problem. The algorithm employs a novel probability model as well as a permutation-based local search method. We are setting the parameters of COCQPSO based on the design of experiment. In the comprehensive computational study, we scrutinize the performance of COCQPSO on a set of widely used benchmark instances. By benchmarking combinatorial clustering algorithm with state-of-the-art algorithms, we can show that its performance compares very favorably. The fuzzy combinatorial optimization algorithm of cloud model and quantum-behaved particle swarm optimization (FCOCQPSO in vague sets (IVSs is more expressive than the other fuzzy sets. Finally, numerical examples show the clustering effectiveness of COCQPSO and FCOCQPSO clustering algorithms which are extremely remarkable.

  15. A Self-Adaptive Fuzzy c-Means Algorithm for Determining the Optimal Number of Clusters

    Science.gov (United States)

    Wang, Zhihao; Yi, Jing

    2016-01-01

    For the shortcoming of fuzzy c-means algorithm (FCM) needing to know the number of clusters in advance, this paper proposed a new self-adaptive method to determine the optimal number of clusters. Firstly, a density-based algorithm was put forward. The algorithm, according to the characteristics of the dataset, automatically determined the possible maximum number of clusters instead of using the empirical rule n and obtained the optimal initial cluster centroids, improving the limitation of FCM that randomly selected cluster centroids lead the convergence result to the local minimum. Secondly, this paper, by introducing a penalty function, proposed a new fuzzy clustering validity index based on fuzzy compactness and separation, which ensured that when the number of clusters verged on that of objects in the dataset, the value of clustering validity index did not monotonically decrease and was close to zero, so that the optimal number of clusters lost robustness and decision function. Then, based on these studies, a self-adaptive FCM algorithm was put forward to estimate the optimal number of clusters by the iterative trial-and-error process. At last, experiments were done on the UCI, KDD Cup 1999, and synthetic datasets, which showed that the method not only effectively determined the optimal number of clusters, but also reduced the iteration of FCM with the stable clustering result. PMID:28042291

  16. The global kernel k-means algorithm for clustering in feature space.

    Science.gov (United States)

    Tzortzis, Grigorios F; Likas, Aristidis C

    2009-07-01

    Kernel k-means is an extension of the standard k -means clustering algorithm that identifies nonlinearly separable clusters. In order to overcome the cluster initialization problem associated with this method, we propose the global kernel k-means algorithm, a deterministic and incremental approach to kernel-based clustering. Our method adds one cluster at each stage, through a global search procedure consisting of several executions of kernel k-means from suitable initializations. This algorithm does not depend on cluster initialization, identifies nonlinearly separable clusters, and, due to its incremental nature and search procedure, locates near-optimal solutions avoiding poor local minima. Furthermore, two modifications are developed to reduce the computational cost that do not significantly affect the solution quality. The proposed methods are extended to handle weighted data points, which enables their application to graph partitioning. We experiment with several data sets and the proposed approach compares favorably to kernel k -means with random restarts.

  17. Application of Artificial Bee Colony Algorithm and Finite Element Analysis for Optimum Design of Brushless Permanent Magnet Motor

    Directory of Open Access Journals (Sweden)

    Reza Ilka

    2012-04-01

    Full Text Available ABSTRACT: This paper develops a mathematical relationship for the purpose of designing and selecting the optimum dimensions of a brushless permanent magnet motor. The design is optimised by the use of artificial bee colony algorithm with the goal of maximizing the power density and efficiency of the motor. The required dimensions of the brushless motor are calculated based on the optimum power density and efficiency requirements. Finally, the predicted results of the optimisation are validated using a 2-D numerical program based on finite element analysis.ABSTRAK: Kajian ini mencadangkan persamaan yang menghubungkan rekabentuk dan dimensi magnet motor kekal tanpa berus. Rekabentuk optima berdasarkan algorisma koloni lebah tiruan dengan tujuan meningkatkan ketumpatan kuasa dan keberkesanan dibentangkan dalam kajian ini. Dimensi magnet motor kekal tanpa berus dihitung dengan ketumpatan kuasa optima dan keberkesanan. Akhirnya, keputusan telah disahkan dengan menggunakan program berangka 2-D berdasarkan analisis elemen finit.KEYWORDS: brushless; permanent magnet motor; power density; artificial bee colony; algorithm; finite element analysis

  18. A fast readout algorithm for Cluster Counting/Timing drift chambers on a FPGA board

    Energy Technology Data Exchange (ETDEWEB)

    Cappelli, L. [Università di Cassino e del Lazio Meridionale (Italy); Creti, P.; Grancagnolo, F. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Pepino, A., E-mail: Aurora.Pepino@le.infn.it [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Tassielli, G. [Istituto Nazionale di Fisica Nucleare, Lecce (Italy); Fermilab, Batavia, IL (United States); Università Marconi, Roma (Italy)

    2013-08-01

    A fast readout algorithm for Cluster Counting and Timing purposes has been implemented and tested on a Virtex 6 core FPGA board. The algorithm analyses and stores data coming from a Helium based drift tube instrumented by 1 GSPS fADC and represents the outcome of balancing between cluster identification efficiency and high speed performance. The algorithm can be implemented in electronics boards serving multiple fADC channels as an online preprocessing stage for drift chamber signals.

  19. Discovery of Transition Rules for Cellular Automata Using Artificial Bee Colony and Particle Swarm Optimization Algorithms in Urban Growth Modeling

    Directory of Open Access Journals (Sweden)

    Fereydoun Naghibi

    2016-12-01

    Full Text Available This paper presents an advanced method in urban growth modeling to discover transition rules of cellular automata (CA using the artificial bee colony (ABC optimization algorithm. Also, comparisons between the simulation results of CA models optimized by the ABC algorithm and the particle swarm optimization algorithms (PSO as intelligent approaches were performed to evaluate the potential of the proposed methods. According to previous studies, swarm intelligence algorithms for solving optimization problems such as discovering transition rules of CA in land use change/urban growth modeling can produce reasonable results. Modeling of urban growth as a dynamic process is not straightforward because of the existence of nonlinearity and heterogeneity among effective involved variables which can cause a number of challenges for traditional CA. ABC algorithm, the new powerful swarm based optimization algorithms, can be used to capture optimized transition rules of CA. This paper has proposed a methodology based on remote sensing data for modeling urban growth with CA calibrated by the ABC algorithm. The performance of ABC-CA, PSO-CA, and CA-logistic models in land use change detection is tested for the city of Urmia, Iran, between 2004 and 2014. Validations of the models based on statistical measures such as overall accuracy, figure of merit, and total operating characteristic were made. We showed that the overall accuracy of the ABC-CA model was 89%, which was 1.5% and 6.2% higher than those of the PSO-CA and CA-logistic model, respectively. Moreover, the allocation disagreement (simulation error of the simulation results for the ABC-CA, PSO-CA, and CA-logistic models are 11%, 12.5%, and 17.2%, respectively. Finally, for all evaluation indices including running time, convergence capability, flexibility, statistical measurements, and the produced spatial patterns, the ABC-CA model performance showed relative improvement and therefore its superiority was

  20. An Ant Colony Optimization and Hybrid Metaheuristics Algorithm to Solve the Split Delivery Vehicle Routing Problem

    Science.gov (United States)

    2015-01-01

    solution approach that combines heuristic search and integer programming. Boudia et al. (2007) solved an SDVRP instance using a memetic algorithm with...Boudia, M., Prins, C., Reghioui, M., 2007. An effective memetic algorithm with population management for the split delivery vehicle routing problem

  1. Hybrid Tracking Algorithm Improvements and Cluster Analysis Methods.

    Science.gov (United States)

    1982-02-26

    UPGMA ), and Ward’s method. Ling’s papers describe a (k,r) clustering method. Each of these methods have individual characteristics which make them...Reference 7), UPGMA is probably the most frequently used clustering strategy. UPGMA tries to group new points into an existing cluster by using an

  2. Genetic algorithm based two-mode clustering of metabolomics data

    NARCIS (Netherlands)

    Hageman, J.A.; van den Berg, R.A.; Westerhuis, J.A.; van der Werf, M.J.; Smilde, A.K.

    2008-01-01

    Metabolomics and other omics tools are generally characterized by large data sets with many variables obtained under different environmental conditions. Clustering methods and more specifically two-mode clustering methods are excellent tools for analyzing this type of data. Two-mode clustering

  3. A Tabu Search Algorithm for application placement in computer clustering

    NARCIS (Netherlands)

    van der Gaast, Jelmer; Rietveld, Cornelieus A.; Gabor, Adriana; Zhang, Yingqian

    2014-01-01

    This paper presents and analyzes a model for the problem of placing applications on computer clusters (APP). In this problem, organizations requesting a set of software applications have to be assigned to computer clusters such that the costs of opening clusters and installing the necessary

  4. A Hybrid Fuzzy Multi-hop Unequal Clustering Algorithm for Dense Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Shawkat K. Guirguis

    2017-01-01

    Full Text Available Clustering is carried out to explore and solve power dissipation problem in wireless sensor network (WSN. Hierarchical network architecture, based on clustering, can reduce energy consumption, balance traffic load, improve scalability, and prolong network lifetime. However, clustering faces two main challenges: hotspot problem and searching for effective techniques to perform clustering. This paper introduces a fuzzy unequal clustering technique for heterogeneous dense WSNs to determine both final cluster heads and their radii. Proposed fuzzy system blends three effective parameters together which are: the distance to the base station, the density of the cluster, and the deviation of the noders residual energy from the average network energy. Our objectives are achieving gain for network lifetime, energy distribution, and energy consumption. To evaluate the proposed algorithm, WSN clustering based routing algorithms are analyzed, simulated, and compared with obtained results. These protocols are LEACH, SEP, HEED, EEUC, and MOFCA.

  5. Clustering performance comparison using K-means and expectation maximization algorithms.

    Science.gov (United States)

    Jung, Yong Gyu; Kang, Min Soo; Heo, Jun

    2014-11-14

    Clustering is an important means of data mining based on separating data categories by similar features. Unlike the classification algorithm, clustering belongs to the unsupervised type of algorithms. Two representatives of the clustering algorithms are the K -means and the expectation maximization (EM) algorithm. Linear regression analysis was extended to the category-type dependent variable, while logistic regression was achieved using a linear combination of independent variables. To predict the possibility of occurrence of an event, a statistical approach is used. However, the classification of all data by means of logistic regression analysis cannot guarantee the accuracy of the results. In this paper, the logistic regression analysis is applied to EM clusters and the K -means clustering method for quality assessment of red wine, and a method is proposed for ensuring the accuracy of the classification results.

  6. A Trajectory Regression Clustering Technique Combining a Novel Fuzzy C-Means Clustering Algorithm with the Least Squares Method

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2018-04-01

    Full Text Available Rapidly growing GPS (Global Positioning System trajectories hide much valuable information, such as city road planning, urban travel demand, and population migration. In order to mine the hidden information and to capture better clustering results, a trajectory regression clustering method (an unsupervised trajectory clustering method is proposed to reduce local information loss of the trajectory and to avoid getting stuck in the local optimum. Using this method, we first define our new concept of trajectory clustering and construct a novel partitioning (angle-based partitioning method of line segments; second, the Lagrange-based method and Hausdorff-based K-means++ are integrated in fuzzy C-means (FCM clustering, which are used to maintain the stability and the robustness of the clustering process; finally, least squares regression model is employed to achieve regression clustering of the trajectory. In our experiment, the performance and effectiveness of our method is validated against real-world taxi GPS data. When comparing our clustering algorithm with the partition-based clustering algorithms (K-means, K-median, and FCM, our experimental results demonstrate that the presented method is more effective and generates a more reasonable trajectory.

  7. A novel artificial immune algorithm for spatial clustering with obstacle constraint and its applications.

    Science.gov (United States)

    Sun, Liping; Luo, Yonglong; Ding, Xintao; Zhang, Ji

    2014-01-01

    An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE) algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  8. A Novel Artificial Immune Algorithm for Spatial Clustering with Obstacle Constraint and Its Applications

    Directory of Open Access Journals (Sweden)

    Liping Sun

    2014-01-01

    Full Text Available An important component of a spatial clustering algorithm is the distance measure between sample points in object space. In this paper, the traditional Euclidean distance measure is replaced with innovative obstacle distance measure for spatial clustering under obstacle constraints. Firstly, we present a path searching algorithm to approximate the obstacle distance between two points for dealing with obstacles and facilitators. Taking obstacle distance as similarity metric, we subsequently propose the artificial immune clustering with obstacle entity (AICOE algorithm for clustering spatial point data in the presence of obstacles and facilitators. Finally, the paper presents a comparative analysis of AICOE algorithm and the classical clustering algorithms. Our clustering model based on artificial immune system is also applied to the case of public facility location problem in order to establish the practical applicability of our approach. By using the clone selection principle and updating the cluster centers based on the elite antibodies, the AICOE algorithm is able to achieve the global optimum and better clustering effect.

  9. A Scheduling Algorithm for Minimizing the Packet Error Probability in Clusterized TDMA Networks

    Directory of Open Access Journals (Sweden)

    Arash T. Toyserkani

    2009-01-01

    Full Text Available We consider clustered wireless networks, where transceivers in a cluster use a time-slotted mechanism (TDMA to access a wireless channel that is shared among several clusters. An approximate expression for the packet-loss probability is derived for networks with one or more mutually interfering clusters in Rayleigh fading environments, and the approximation is shown to be good for relevant scenarios. We then present a scheduling algorithm, based on Lagrangian duality, that exploits the derived packet-loss model in an attempt to minimize the average packet-loss probability in the network. Computer simulations of the proposed scheduling algorithm show that a significant increase in network throughput can be achieved compared to uncoordinated scheduling. Empirical trials also indicate that the proposed optimization algorithm almost always converges to an optimal schedule with a reasonable number of iterations. Thus, the proposed algorithm can also be used for bench-marking suboptimal scheduling algorithms.

  10. Analysis of Ant Colony Optimization and Population-Based Evolutionary Algorithms on Dynamic Problems

    DEFF Research Database (Denmark)

    Lissovoi, Andrei

    the dynamic optimum for finite alphabets up to size μ, while MMAS is able to do so for any finite alphabet size. Parallel Evolutionary Algorithms on Maze. We prove that while a (1 + λ) EA is unable to track the optimum of the dynamic fitness function Maze for offspring population size up to λ = O(n1-ε......This thesis presents new running time analyses of nature-inspired algorithms on various dynamic problems. It aims to identify and analyse the features of algorithms and problem classes which allow efficient optimization to occur in the presence of dynamic behaviour. We consider the following...... settings: λ-MMAS on Dynamic Shortest Path Problems. We investigate how in-creasing the number of ants simulated per iteration may help an ACO algorithm to track optimum in a dynamic problem. It is shown that while a constant number of ants per-vertex is sufficient to track some oscillations, there also...

  11. An improved initialization center k-means clustering algorithm based on distance and density

    Science.gov (United States)

    Duan, Yanling; Liu, Qun; Xia, Shuyin

    2018-04-01

    Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.

  12. A highly efficient multi-core algorithm for clustering extremely large datasets

    Directory of Open Access Journals (Sweden)

    Kraus Johann M

    2010-04-01

    Full Text Available Abstract Background In recent years, the demand for computational power in computational biology has increased due to rapidly growing data sets from microarray and other high-throughput technologies. This demand is likely to increase. Standard algorithms for analyzing data, such as cluster algorithms, need to be parallelized for fast processing. Unfortunately, most approaches for parallelizing algorithms largely rely on network communication protocols connecting and requiring multiple computers. One answer to this problem is to utilize the intrinsic capabilities in current multi-core hardware to distribute the tasks among the different cores of one computer. Results We introduce a multi-core parallelization of the k-means and k-modes cluster algorithms based on the design principles of transactional memory for clustering gene expression microarray type data and categorial SNP data. Our new shared memory parallel algorithms show to be highly efficient. We demonstrate their computational power and show their utility in cluster stability and sensitivity analysis employing repeated runs with slightly changed parameters. Computation speed of our Java based algorithm was increased by a factor of 10 for large data sets while preserving computational accuracy compared to single-core implementations and a recently published network based parallelization. Conclusions Most desktop computers and even notebooks provide at least dual-core processors. Our multi-core algorithms show that using modern algorithmic concepts, parallelization makes it possible to perform even such laborious tasks as cluster sensitivity and cluster number estimation on the laboratory computer.

  13. Clustering of 770,000 genomes reveals post-colonial population structure of North America

    Science.gov (United States)

    Han, Eunjung; Carbonetto, Peter; Curtis, Ross E.; Wang, Yong; Granka, Julie M.; Byrnes, Jake; Noto, Keith; Kermany, Amir R.; Myres, Natalie M.; Barber, Mathew J.; Rand, Kristin A.; Song, Shiya; Roman, Theodore; Battat, Erin; Elyashiv, Eyal; Guturu, Harendra; Hong, Eurie L.; Chahine, Kenneth G.; Ball, Catherine A.

    2017-02-01

    Despite strides in characterizing human history from genetic polymorphism data, progress in identifying genetic signatures of recent demography has been limited. Here we identify very recent fine-scale population structure in North America from a network of over 500 million genetic (identity-by-descent, IBD) connections among 770,000 genotyped individuals of US origin. We detect densely connected clusters within the network and annotate these clusters using a database of over 20 million genealogical records. Recent population patterns captured by IBD clustering include immigrants such as Scandinavians and French Canadians; groups with continental admixture such as Puerto Ricans; settlers such as the Amish and Appalachians who experienced geographic or cultural isolation; and broad historical trends, including reduced north-south gene flow. Our results yield a detailed historical portrait of North America after European settlement and support substantial genetic heterogeneity in the United States beyond that uncovered by previous studies.

  14. An enhanced deterministic K-Means clustering algorithm for cancer subtype prediction from gene expression data.

    Science.gov (United States)

    Nidheesh, N; Abdul Nazeer, K A; Ameer, P M

    2017-12-01

    Clustering algorithms with steps involving randomness usually give different results on different executions for the same dataset. This non-deterministic nature of algorithms such as the K-Means clustering algorithm limits their applicability in areas such as cancer subtype prediction using gene expression data. It is hard to sensibly compare the results of such algorithms with those of other algorithms. The non-deterministic nature of K-Means is due to its random selection of data points as initial centroids. We propose an improved, density based version of K-Means, which involves a novel and systematic method for selecting initial centroids. The key idea of the algorithm is to select data points which belong to dense regions and which are adequately separated in feature space as the initial centroids. We compared the proposed algorithm to a set of eleven widely used single clustering algorithms and a prominent ensemble clustering algorithm which is being used for cancer data classification, based on the performances on a set of datasets comprising ten cancer gene expression datasets. The proposed algorithm has shown better overall performance than the others. There is a pressing need in the Biomedical domain for simple, easy-to-use and more accurate Machine Learning tools for cancer subtype prediction. The proposed algorithm is simple, easy-to-use and gives stable results. Moreover, it provides comparatively better predictions of cancer subtypes from gene expression data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2014-01-01

    Full Text Available Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  16. Towards enhancement of performance of K-means clustering using nature-inspired optimization algorithms.

    Science.gov (United States)

    Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.

  17. Towards Enhancement of Performance of K-Means Clustering Using Nature-Inspired Optimization Algorithms

    Science.gov (United States)

    Deb, Suash; Yang, Xin-She

    2014-01-01

    Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730

  18. K-Nearest Neighbor Intervals Based AP Clustering Algorithm for Large Incomplete Data

    Directory of Open Access Journals (Sweden)

    Cheng Lu

    2015-01-01

    Full Text Available The Affinity Propagation (AP algorithm is an effective algorithm for clustering analysis, but it can not be directly applicable to the case of incomplete data. In view of the prevalence of missing data and the uncertainty of missing attributes, we put forward a modified AP clustering algorithm based on K-nearest neighbor intervals (KNNI for incomplete data. Based on an Improved Partial Data Strategy, the proposed algorithm estimates the KNNI representation of missing attributes by using the attribute distribution information of the available data. The similarity function can be changed by dealing with the interval data. Then the improved AP algorithm can be applicable to the case of incomplete data. Experiments on several UCI datasets show that the proposed algorithm achieves impressive clustering results.

  19. A new clustering algorithm for scanning electron microscope images

    Science.gov (United States)

    Yousef, Amr; Duraisamy, Prakash; Karim, Mohammad

    2016-04-01

    A scanning electron microscope (SEM) is a type of electron microscope that produces images of a sample by scanning it with a focused beam of electrons. The electrons interact with the sample atoms, producing various signals that are collected by detectors. The gathered signals contain information about the sample's surface topography and composition. The electron beam is generally scanned in a raster scan pattern, and the beam's position is combined with the detected signal to produce an image. The most common configuration for an SEM produces a single value per pixel, with the results usually rendered as grayscale images. The captured images may be produced with insufficient brightness, anomalous contrast, jagged edges, and poor quality due to low signal-to-noise ratio, grained topography and poor surface details. The segmentation of the SEM images is a tackling problems in the presence of the previously mentioned distortions. In this paper, we are stressing on the clustering of these type of images. In that sense, we evaluate the performance of the well-known unsupervised clustering and classification techniques such as connectivity based clustering (hierarchical clustering), centroid-based clustering, distribution-based clustering and density-based clustering. Furthermore, we propose a new spatial fuzzy clustering technique that works efficiently on this type of images and compare its results against these regular techniques in terms of clustering validation metrics.

  20. Transfer function fitting using a continuous Ant Colony Optimization (ACO algorithm

    Directory of Open Access Journals (Sweden)

    A. Reineix

    2015-03-01

    Full Text Available An original approach is proposed in order to achieve the  fitting of ultra-wideband complex frequency functions, such  as the complex impedances, by using the so-called ACO  (Ant Colony Optimization methods. First, we present the  optimization principle of ACO, which originally was  dedicated to the combinatorial problems. Further on, the  extension to the continuous and mixed problems is  explained in more details. The interest in this approach is  proved by its ability to define practical constraints and  objectives, such as minimizing the number of filters used in  the model with respect to a fixed relative error. Finally, the  establishment of the model for the first and second order  filter types illustrates the power of the method and its  interest for the time-domain electromagnetic computation.

  1. A Novel Ant Colony Algorithm for the Single-Machine Total Weighted Tardiness Problem with Sequence Dependent Setup Times

    Directory of Open Access Journals (Sweden)

    Fardin Ahmadizar

    2011-08-01

    Full Text Available This paper deals with the NP-hard single-machine total weighted tardiness problem with sequence dependent setup times. Incorporating fuzzy sets and genetic operators, a novel ant colony optimization algorithm is developed for the problem. In the proposed algorithm, artificial ants construct solutions as orders of jobs based on the heuristic information as well as pheromone trails. To calculate the heuristic information, three well-known priority rules are adopted as fuzzy sets and then aggregated. When all artificial ants have terminated their constructions, genetic operators such as crossover and mutation are applied to generate new regions of the solution space. A local search is then performed to improve the performance quality of some of the solutions found. Moreover, at run-time the pheromone trails are locally as well as globally updated, and limited between lower and upper bounds. The proposed algorithm is experimented on a set of benchmark problems from the literature and compared with other metaheuristics.

  2. Coupling ant colony and the degraded ceiling algorithm for the redundancy allocation problem of series-parallel systems

    International Nuclear Information System (INIS)

    Nahas, Nabil; Nourelfath, Mustapha; Ait-Kadi, Daoud

    2007-01-01

    The redundancy allocation problem (RAP) is a well known NP-hard problem which involves the selection of elements and redundancy levels to maximize system reliability given various system-level constraints. As telecommunications and internet protocol networks, manufacturing and power systems are becoming more and more complex, while requiring short developments schedules and very high reliability, it is becoming increasingly important to develop efficient solutions to the RAP. This paper presents an efficient algorithm to solve this reliability optimization problem. The idea of a heuristic approach design is inspired from the ant colony meta-heuristic optimization method and the degraded ceiling local search technique. Our hybridization of the ant colony meta-heuristic with the degraded ceiling performs well and is competitive with the best-known heuristics for redundancy allocation. Numerical results for the 33 test problems from previous research are reported and compared. The solutions found by our approach are all better than or are in par with the well-known best solutions

  3. Novel density-based and hierarchical density-based clustering algorithms for uncertain data.

    Science.gov (United States)

    Zhang, Xianchao; Liu, Han; Zhang, Xiaotong

    2017-09-01

    Uncertain data has posed a great challenge to traditional clustering algorithms. Recently, several algorithms have been proposed for clustering uncertain data, and among them density-based techniques seem promising for handling data uncertainty. However, some issues like losing uncertain information, high time complexity and nonadaptive threshold have not been addressed well in the previous density-based algorithm FDBSCAN and hierarchical density-based algorithm FOPTICS. In this paper, we firstly propose a novel density-based algorithm PDBSCAN, which improves the previous FDBSCAN from the following aspects: (1) it employs a more accurate method to compute the probability that the distance between two uncertain objects is less than or equal to a boundary value, instead of the sampling-based method in FDBSCAN; (2) it introduces new definitions of probability neighborhood, support degree, core object probability, direct reachability probability, thus reducing the complexity and solving the issue of nonadaptive threshold (for core object judgement) in FDBSCAN. Then, we modify the algorithm PDBSCAN to an improved version (PDBSCANi), by using a better cluster assignment strategy to ensure that every object will be assigned to the most appropriate cluster, thus solving the issue of nonadaptive threshold (for direct density reachability judgement) in FDBSCAN. Furthermore, as PDBSCAN and PDBSCANi have difficulties for clustering uncertain data with non-uniform cluster density, we propose a novel hierarchical density-based algorithm POPTICS by extending the definitions of PDBSCAN, adding new definitions of fuzzy core distance and fuzzy reachability distance, and employing a new clustering framework. POPTICS can reveal the cluster structures of the datasets with different local densities in different regions better than PDBSCAN and PDBSCANi, and it addresses the issues in FOPTICS. Experimental results demonstrate the superiority of our proposed algorithms over the existing

  4. A scalable and practical one-pass clustering algorithm for recommender system

    Science.gov (United States)

    Khalid, Asra; Ghazanfar, Mustansar Ali; Azam, Awais; Alahmari, Saad Ali

    2015-12-01

    KMeans clustering-based recommendation algorithms have been proposed claiming to increase the scalability of recommender systems. One potential drawback of these algorithms is that they perform training offline and hence cannot accommodate the incremental updates with the arrival of new data, making them unsuitable for the dynamic environments. From this line of research, a new clustering algorithm called One-Pass is proposed, which is a simple, fast, and accurate. We show empirically that the proposed algorithm outperforms K-Means in terms of recommendation and training time while maintaining a good level of accuracy.

  5. Feature Selection Method Based on Artificial Bee Colony Algorithm and Support Vector Machines for Medical Datasets Classification

    Directory of Open Access Journals (Sweden)

    Mustafa Serter Uzer

    2013-01-01

    Full Text Available This paper offers a hybrid approach that uses the artificial bee colony (ABC algorithm for feature selection and support vector machines for classification. The purpose of this paper is to test the effect of elimination of the unimportant and obsolete features of the datasets on the success of the classification, using the SVM classifier. The developed approach conventionally used in liver diseases and diabetes diagnostics, which are commonly observed and reduce the quality of life, is developed. For the diagnosis of these diseases, hepatitis, liver disorders and diabetes datasets from the UCI database were used, and the proposed system reached a classification accuracies of 94.92%, 74.81%, and 79.29%, respectively. For these datasets, the classification accuracies were obtained by the help of the 10-fold cross-validation method. The results show that the performance of the method is highly successful compared to other results attained and seems very promising for pattern recognition applications.

  6. Constructing a graph of connections in clustering algorithm of complex objects

    Directory of Open Access Journals (Sweden)

    Татьяна Шатовская

    2015-05-01

    Full Text Available The article describes the results of modifying the algorithm Chameleon. Hierarchical multi-level algorithm consists of several phases: the construction of the count, coarsening, the separation and recovery. Each phase can be used various approaches and algorithms. The main aim of the work is to study the quality of the clustering of different sets of data using a set of algorithms combinations at different stages of the algorithm and improve the stage of construction by the optimization algorithm of k choice in the graph construction of k of nearest neighbors

  7. Medical Image Retrieval Based On the Parallelization of the Cluster Sampling Algorithm

    OpenAIRE

    Ali, Hesham Arafat; Attiya, Salah; El-henawy, Ibrahim

    2017-01-01

    In this paper we develop parallel cluster sampling algorithms and show that a multi-chain version is embarrassingly parallel and can be used efficiently for medical image retrieval among other applications.

  8. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Bohui Zhu

    2013-01-01

    Full Text Available This paper presents a novel maximum margin clustering method with immune evolution (IEMMC for automatic diagnosis of electrocardiogram (ECG arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.

  9. Kernel Clustering with a Differential Harmony Search Algorithm for Scheme Classification

    Directory of Open Access Journals (Sweden)

    Yu Feng

    2017-01-01

    Full Text Available This paper presents a kernel fuzzy clustering with a novel differential harmony search algorithm to coordinate with the diversion scheduling scheme classification. First, we employed a self-adaptive solution generation strategy and differential evolution-based population update strategy to improve the classical harmony search. Second, we applied the differential harmony search algorithm to the kernel fuzzy clustering to help the clustering method obtain better solutions. Finally, the combination of the kernel fuzzy clustering and the differential harmony search is applied for water diversion scheduling in East Lake. A comparison of the proposed method with other methods has been carried out. The results show that the kernel clustering with the differential harmony search algorithm has good performance to cooperate with the water diversion scheduling problems.

  10. An Adaptive Sweep-Circle Spatial Clustering Algorithm Based on Gestalt

    Directory of Open Access Journals (Sweden)

    Qingming Zhan

    2017-08-01

    Full Text Available An adaptive spatial clustering (ASC algorithm is proposed in this present study, which employs sweep-circle techniques and a dynamic threshold setting based on the Gestalt theory to detect spatial clusters. The proposed algorithm can automatically discover clusters in one pass, rather than through the modification of the initial model (for example, a minimal spanning tree, Delaunay triangulation, or Voronoi diagram. It can quickly identify arbitrarily-shaped clusters while adapting efficiently to non-homogeneous density characteristics of spatial data, without the need for prior knowledge or parameters. The proposed algorithm is also ideal for use in data streaming technology with dynamic characteristics flowing in the form of spatial clustering in large data sets.

  11. PARTIAL TRAINING METHOD FOR HEURISTIC ALGORITHM OF POSSIBLE CLUSTERIZATION UNDER UNKNOWN NUMBER OF CLASSES

    Directory of Open Access Journals (Sweden)

    D. A. Viattchenin

    2009-01-01

    Full Text Available A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible  clusterization with partial  training is proposed in the  paper.  The  method  is  based  on  data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.

  12. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space

    OpenAIRE

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-01-01

    Motivation: UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. Application: We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without ex...

  13. Clustered K nearest neighbor algorithm for daily inflow forecasting

    NARCIS (Netherlands)

    Akbari, M.; Van Overloop, P.J.A.T.M.; Afshar, A.

    2010-01-01

    Instance based learning (IBL) algorithms are a common choice among data driven algorithms for inflow forecasting. They are based on the similarity principle and prediction is made by the finite number of similar neighbors. In this sense, the similarity of a query instance is estimated according to

  14. A Coupled User Clustering Algorithm Based on Mixed Data for Web-Based Learning Systems

    Directory of Open Access Journals (Sweden)

    Ke Niu

    2015-01-01

    Full Text Available In traditional Web-based learning systems, due to insufficient learning behaviors analysis and personalized study guides, a few user clustering algorithms are introduced. While analyzing the behaviors with these algorithms, researchers generally focus on continuous data but easily neglect discrete data, each of which is generated from online learning actions. Moreover, there are implicit coupled interactions among the data but are frequently ignored in the introduced algorithms. Therefore, a mass of significant information which can positively affect clustering accuracy is neglected. To solve the above issues, we proposed a coupled user clustering algorithm for Wed-based learning systems by taking into account both discrete and continuous data, as well as intracoupled and intercoupled interactions of the data. The experiment result in this paper demonstrates the outperformance of the proposed algorithm.

  15. Optimization on Paddy Crops in Central Java (with Solver, SVD on Least Square and ACO (Ant Colony Algorithm))

    Science.gov (United States)

    Parhusip, H. A.; Trihandaru, S.; Susanto, B.; Prasetyo, S. Y. J.; Agus, Y. H.; Simanjuntak, B. H.

    2017-03-01

    Several algorithms and objective functions on paddy crops have been studied to get optimal paddy crops in Central Java based on the data given from Surakarta and Boyolali. The algorithms are linear solver, least square and Ant Colony Algorithms (ACO) to develop optimization procedures on paddy crops modelled with Modified GSTAR (Generalized Space-Time Autoregressive) and nonlinear models where the nonlinear models are quadratic and power functions. The studied data contain paddy crops from Surakarta and Boyolali determining the best period of planting in the year 1992-2012 for Surakarta where 3 periods for planting are known and the optimal amount of paddy crops in Boyolali in the year 2008-2013. Having these analyses may guide the local agriculture government to give a decision on rice sustainability in its region. The best period for planting in Surakarta is observed, i.e. the best period is in September-December based on the data 1992-2012 by considering the planting area, the cropping area, and the paddy crops are the most important factors to be taken into account. As a result, we can refer the paddy crops in this best period (about 60.4 thousand tons per year) as the optimal results in 1992-2012 where the used objective function is quadratic. According to the research, the optimal paddy crops in Boyolali about 280 thousand tons per year where the studied factors are the amount of rainfalls, the harvested area and the paddy crops in 2008-2013. In this case, linear and power functions are studied to be the objective functions. Compared to all studied algorithms, the linear solver is still recommended to be an optimization tool for a local agriculture government to predict paddy crops in future.

  16. Clustering Algorithm As A Planning Support Tool For Rural Electrification Optimization

    Directory of Open Access Journals (Sweden)

    Ronaldo Pornillosa Parreno Jr

    2015-08-01

    Full Text Available Abstract In this study clustering algorithm was developed to optimize electrification plans by screening and grouping potential customers to be supplied with electricity. The algorithm provided adifferent approach in clustering problem which combines conceptual and distance-based clustering algorithmsto analyze potential clusters using spanning tree with the shortest possible edge weight and creating final cluster trees based on the test of inconsistency for the edges. The clustering criteria consists of commonly used distance measure with the addition of household information as basis for the ability to pay ATP value. The combination of these two parameters resulted to a more significant and realistic clusters since distance measure alone could not take the effect of the household characteristics in screening the most sensible groupings of households. In addition the implications of varying geographical features were incorporated in the algorithm by using routing index across the locations of the households. This new approach of connecting the households in an area was applied in an actual case study of one village or barangay that was not yet energized. The results of clustering algorithm generated cluster trees which could becomethetheoretical basis for power utilities to plan the initial network arrangement of electrification. Scenario analysis conducted on the two strategies of clustering the households provideddifferent alternatives for the optimization of the cost of electrification. Futhermorethe benefits associated with the two strategies formulated from the two scenarios was evaluated using benefit cost ratio BC to determine which is more economically advantageous. The results of the study showed that clustering algorithm proved to be effective in solving electrification optimization problem and serves its purpose as a planning support tool which can facilitate electrification in rural areas and achieve cost-effectiveness.

  17. Study on text mining algorithm for ultrasound examination of chronic liver diseases based on spectral clustering

    Science.gov (United States)

    Chang, Bingguo; Chen, Xiaofei

    2018-05-01

    Ultrasonography is an important examination for the diagnosis of chronic liver disease. The doctor gives the liver indicators and suggests the patient's condition according to the description of ultrasound report. With the rapid increase in the amount of data of ultrasound report, the workload of professional physician to manually distinguish ultrasound results significantly increases. In this paper, we use the spectral clustering method to cluster analysis of the description of the ultrasound report, and automatically generate the ultrasonic diagnostic diagnosis by machine learning. 110 groups ultrasound examination report of chronic liver disease were selected as test samples in this experiment, and the results were validated by spectral clustering and compared with k-means clustering algorithm. The results show that the accuracy of spectral clustering is 92.73%, which is higher than that of k-means clustering algorithm, which provides a powerful ultrasound-assisted diagnosis for patients with chronic liver disease.

  18. Unsupervised Cryo-EM Data Clustering through Adaptively Constrained K-Means Algorithm.

    Science.gov (United States)

    Xu, Yaofang; Wu, Jiayi; Yin, Chang-Cheng; Mao, Youdong

    2016-01-01

    In single-particle cryo-electron microscopy (cryo-EM), K-means clustering algorithm is widely used in unsupervised 2D classification of projection images of biological macromolecules. 3D ab initio reconstruction requires accurate unsupervised classification in order to separate molecular projections of distinct orientations. Due to background noise in single-particle images and uncertainty of molecular orientations, traditional K-means clustering algorithm may classify images into wrong classes and produce classes with a large variation in membership. Overcoming these limitations requires further development on clustering algorithms for cryo-EM data analysis. We propose a novel unsupervised data clustering method building upon the traditional K-means algorithm. By introducing an adaptive constraint term in the objective function, our algorithm not only avoids a large variation in class sizes but also produces more accurate data clustering. Applications of this approach to both simulated and experimental cryo-EM data demonstrate that our algorithm is a significantly improved alterative to the traditional K-means algorithm in single-particle cryo-EM analysis.

  19. Ant colony optimization algorithm for interpretable Bayesian classifiers combination: application to medical predictions.

    Directory of Open Access Journals (Sweden)

    Salah Bouktif

    Full Text Available Prediction and classification techniques have been well studied by machine learning researchers and developed for several real-word problems. However, the level of acceptance and success of prediction models are still below expectation due to some difficulties such as the low performance of prediction models when they are applied in different environments. Such a problem has been addressed by many researchers, mainly from the machine learning community. A second problem, principally raised by model users in different communities, such as managers, economists, engineers, biologists, and medical practitioners, etc., is the prediction models' interpretability. The latter is the ability of a model to explain its predictions and exhibit the causality relationships between the inputs and the outputs. In the case of classification, a successful way to alleviate the low performance is to use ensemble classiers. It is an intuitive strategy to activate collaboration between different classifiers towards a better performance than individual classier. Unfortunately, ensemble classifiers method do not take into account the interpretability of the final classification outcome. It even worsens the original interpretability of the individual classifiers. In this paper we propose a novel implementation of classifiers combination approach that does not only promote the overall performance but also preserves the interpretability of the resulting model. We propose a solution based on Ant Colony Optimization and tailored for the case of Bayesian classifiers. We validate our proposed solution with case studies from medical domain namely, heart disease and Cardiotography-based predictions, problems where interpretability is critical to make appropriate clinical decisions.The datasets, Prediction Models and software tool together with supplementary materials are available at http://faculty.uaeu.ac.ae/salahb/ACO4BC.htm.

  20. Thermodynamic Optimization of a Geothermal- Based Organic Rankine Cycle System Using an Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Osman Özkaraca

    2017-10-01

    Full Text Available Geothermal energy is a renewable form of energy, however due to misuse, processing and management issues, it is necessary to use the resource more efficiently. To increase energy efficiency, energy systems engineers carry out careful energy control studies and offer alternative solutions. With this aim, this study was conducted to improve the performance of a real operating air-cooled organic Rankine cycle binary geothermal power plant (GPP and its components in the aspects of thermodynamic modeling, exergy analysis and optimization processes. In-depth information is obtained about the exergy (maximum work a system can make, exergy losses and destruction at the power plant and its components. Thus the performance of the power plant may be predicted with reasonable accuracy and better understanding is gained for the physical process to be used in improving the performance of the power plant. The results of the exergy analysis show that total exergy production rate and exergy efficiency of the GPP are 21 MW and 14.52%, respectively, after removing parasitic loads. The highest amount of exergy destruction occurs, respectively, in condenser 2, vaporizer HH2, condenser 1, pumps 1 and 2 as components requiring priority performance improvement. To maximize the system exergy efficiency, the artificial bee colony (ABC is applied to the model that simulates the actual GPP. Under all the optimization conditions, the maximum exergy efficiency for the GPP and its components is obtained. Two of these conditions such as Case 4 related to the turbine and Case 12 related to the condenser have the best performance. As a result, the ABC optimization method provides better quality information than exergy analysis. Based on the guidance of this study, the performance of power plants based on geothermal energy and other energy resources may be improved.

  1. Modeling design iteration in product design and development and its solution by a novel artificial bee colony algorithm.

    Science.gov (United States)

    Chen, Tinggui; Xiao, Renbin

    2014-01-01

    Due to fierce market competition, how to improve product quality and reduce development cost determines the core competitiveness of enterprises. However, design iteration generally causes increases of product cost and delays of development time as well, so how to identify and model couplings among tasks in product design and development has become an important issue for enterprises to settle. In this paper, the shortcomings existing in WTM model are discussed and tearing approach as well as inner iteration method is used to complement the classic WTM model. In addition, the ABC algorithm is also introduced to find out the optimal decoupling schemes. In this paper, firstly, tearing approach and inner iteration method are analyzed for solving coupled sets. Secondly, a hybrid iteration model combining these two technologies is set up. Thirdly, a high-performance swarm intelligence algorithm, artificial bee colony, is adopted to realize problem-solving. Finally, an engineering design of a chemical processing system is given in order to verify its reasonability and effectiveness.

  2. Investigation on the Inversion of the Atmospheric Duct Using the Artificial Bee Colony Algorithm Based on Opposition-Based Learning

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2016-01-01

    Full Text Available The artificial bee colony (ABC algorithm is a recently introduced optimization method in the research field of swarm intelligence. This paper presents an improved ABC algorithm named as OGABC based on opposition-based learning (OBL and global best search equation to overcome the shortcomings of the slow convergence rate and sinking into local optima in the process of inversion of atmospheric duct. Taking the inversion of the surface duct using refractivity from clutter (RFC technique as an example to validate the performance of the proposed OGABC, the inversion results are compared with those of the modified invasive weed optimization (MIWO and ABC. The radar sea clutter power calculated by parabolic equation method using the simulated and measured refractivity profile is utilized to carry out the inversion of the surface duct, respectively. The comparative investigation results indicate that the performance of OGABC is superior to that of MIWO and ABC in terms of stability, accuracy, and convergence rate during the process of inversion.

  3. Protein folding optimization based on 3D off-lattice model via an improved artificial bee colony algorithm.

    Science.gov (United States)

    Li, Bai; Lin, Mu; Liu, Qiao; Li, Ya; Zhou, Changjun

    2015-10-01

    Protein folding is a fundamental topic in molecular biology. Conventional experimental techniques for protein structure identification or protein folding recognition require strict laboratory requirements and heavy operating burdens, which have largely limited their applications. Alternatively, computer-aided techniques have been developed to optimize protein structures or to predict the protein folding process. In this paper, we utilize a 3D off-lattice model to describe the original protein folding scheme as a simplified energy-optimal numerical problem, where all types of amino acid residues are binarized into hydrophobic and hydrophilic ones. We apply a balance-evolution artificial bee colony (BE-ABC) algorithm as the minimization solver, which is featured by the adaptive adjustment of search intensity to cater for the varying needs during the entire optimization process. In this work, we establish a benchmark case set with 13 real protein sequences from the Protein Data Bank database and evaluate the convergence performance of BE-ABC algorithm through strict comparisons with several state-of-the-art ABC variants in short-term numerical experiments. Besides that, our obtained best-so-far protein structures are compared to the ones in comprehensive previous literature. This study also provides preliminary insights into how artificial intelligence techniques can be applied to reveal the dynamics of protein folding. Graphical Abstract Protein folding optimization using 3D off-lattice model and advanced optimization techniques.

  4. A novel hybrid approach based on Particle Swarm Optimization and Ant Colony Algorithm to forecast energy demand of Turkey

    International Nuclear Information System (INIS)

    Kıran, Mustafa Servet; Özceylan, Eren; Gündüz, Mesut; Paksoy, Turan

    2012-01-01

    Highlights: ► PSO and ACO algorithms are hybridized for forecasting energy demands of Turkey. ► Linear and quadratic forms are developed to meet the fluctuations of indicators. ► GDP, population, export and import have significant impacts on energy demand. ► Quadratic form provides better fit solution than linear form. ► Proposed approach gives lower estimation error than ACO and PSO, separately. - Abstract: This paper proposes a new hybrid method (HAP) for estimating energy demand of Turkey using Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Proposed energy demand model (HAPE) is the first model which integrates two mentioned meta-heuristic techniques. While, PSO, developed for solving continuous optimization problems, is a population based stochastic technique; ACO, simulating behaviors between nest and food source of real ants, is generally used for discrete optimizations. Hybrid method based PSO and ACO is developed to estimate energy demand using gross domestic product (GDP), population, import and export. HAPE is developed in two forms which are linear (HAPEL) and quadratic (HAPEQ). The future energy demand is estimated under different scenarios. In order to show the accuracy of the algorithm, a comparison is made with ACO and PSO which are developed for the same problem. According to obtained results, relative estimation errors of the HAPE model are the lowest of them and quadratic form (HAPEQ) provides better-fit solutions due to fluctuations of the socio-economic indicators.

  5. An adaptive immune optimization algorithm with dynamic lattice searching operation for fast optimization of atomic clusters

    International Nuclear Information System (INIS)

    Wu, Xia; Wu, Genhua

    2014-01-01

    Highlights: • A high efficient method for optimization of atomic clusters is developed. • Its performance is studied by optimizing Lennard-Jones clusters and Ag clusters. • The method is proved to be quite efficient. • A new Ag 61 cluster with stacking-fault face-centered cubic motif is found. - Abstract: Geometrical optimization of atomic clusters is performed by a development of adaptive immune optimization algorithm (AIOA) with dynamic lattice searching (DLS) operation (AIOA-DLS method). By a cycle of construction and searching of the dynamic lattice (DL), DLS algorithm rapidly makes the clusters more regular and greatly reduces the potential energy. DLS can thus be used as an operation acting on the new individuals after mutation operation in AIOA to improve the performance of the AIOA. The AIOA-DLS method combines the merit of evolutionary algorithm and idea of dynamic lattice. The performance of the proposed method is investigated in the optimization of Lennard-Jones clusters within 250 atoms and silver clusters described by many-body Gupta potential within 150 atoms. Results reported in the literature are reproduced, and the motif of Ag 61 cluster is found to be stacking-fault face-centered cubic, whose energy is lower than that of previously obtained icosahedron

  6. Clinical assessment using an algorithm based on clustering Fuzzy c-means

    NARCIS (Netherlands)

    Guijarro-Rodriguez, A.; Cevallos-Torres, L.; Yepez-Holguin, J.; Botto-Tobar, M.; Valencia-García, R.; Lagos-Ortiz, K.; Alcaraz-Mármol, G.; Del Cioppo, J.; Vera-Lucio, N.; Bucaram-Leverone, M.

    2017-01-01

    The Fuzzy c-means (FCM) algorithms dene a grouping criterion from a function, which seeks to minimize iteratively the function up to an optimal fuzzy partition is obtained. In the execution of this algorithm relates each element to the clusters that were determined in the same n-dimensional space,

  7. A Framework for Evaluation and Exploration of Clustering Algorithms in Subspaces of High Dimensional Databases

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2011-01-01

    comparative studies on the advantages and disadvantages of the different algorithms exist. Part of the underlying problem is the lack of available open source implementations that could be used by researchers to understand, compare, and extend subspace and projected clustering algorithms. In this work, we...

  8. Optimization Route of Food Logistics Distribution Based on Genetic and Graph Cluster Scheme Algorithm

    OpenAIRE

    Jing Chen

    2015-01-01

    This study takes the concept of food logistics distribution as the breakthrough point, by means of the aim of optimization of food logistics distribution routes and analysis of the optimization model of food logistics route, as well as the interpretation of the genetic algorithm, it discusses the optimization of food logistics distribution route based on genetic and cluster scheme algorithm.

  9. GenClust: A genetic algorithm for clustering gene expression data

    Directory of Open Access Journals (Sweden)

    Raimondi Alessandra

    2005-12-01

    Full Text Available Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a a novel coding of the search space that is simple, compact and easy to update; (b it can be used naturally in conjunction with data driven internal validation methods. We have experimented with the FOM methodology, specifically conceived for validating clusters of gene expression data. The validity of GenClust has been assessed experimentally on real data sets, both with the use of validation measures and in comparison with other algorithms, i.e., Average Link, Cast, Click and K-means. Conclusion Experiments show that none of the algorithms we have used is markedly superior to the others across data sets and validation measures; i.e., in many cases the observed differences between the worst and best performing algorithm may be statistically insignificant and they could be considered equivalent. However, there are cases in which an algorithm may be better than others and therefore worthwhile. In particular, experiments for GenClust show that, although simple in its data representation, it converges very rapidly to a local optimum and that its ability to identify meaningful clusters is comparable, and sometimes superior, to that of more sophisticated algorithms. In addition, it is well suited for use in conjunction with data driven internal validation measures and, in particular, the FOM methodology.

  10. Soil data clustering by using K-means and fuzzy K-means algorithm

    Directory of Open Access Journals (Sweden)

    E. Hot

    2016-06-01

    Full Text Available A problem of soil clustering based on the chemical characteristics of soil, and proper visual representation of the obtained results, is analysed in the paper. To that aim, K-means and fuzzy K-means algorithms are adapted for soil data clustering. A database of soil characteristics sampled in Montenegro is used for a comparative analysis of implemented algorithms. The procedure of setting proper values for control parameters of fuzzy K-means is illustrated on the used database. In addition, validation of clustering is made through visualisation. Classified soil data are presented on the static Google map and dynamic Open Street Map.

  11. Improved Density Based Spatial Clustering of Applications of Noise Clustering Algorithm for Knowledge Discovery in Spatial Data

    Directory of Open Access Journals (Sweden)

    Arvind Sharma

    2016-01-01

    Full Text Available There are many techniques available in the field of data mining and its subfield spatial data mining is to understand relationships between data objects. Data objects related with spatial features are called spatial databases. These relationships can be used for prediction and trend detection between spatial and nonspatial objects for social and scientific reasons. A huge data set may be collected from different sources as satellite images, X-rays, medical images, traffic cameras, and GIS system. To handle this large amount of data and set relationship between them in a certain manner with certain results is our primary purpose of this paper. This paper gives a complete process to understand how spatial data is different from other kinds of data sets and how it is refined to apply to get useful results and set trends to predict geographic information system and spatial data mining process. In this paper a new improved algorithm for clustering is designed because role of clustering is very indispensable in spatial data mining process. Clustering methods are useful in various fields of human life such as GIS (Geographic Information System, GPS (Global Positioning System, weather forecasting, air traffic controller, water treatment, area selection, cost estimation, planning of rural and urban areas, remote sensing, and VLSI designing. This paper presents study of various clustering methods and algorithms and an improved algorithm of DBSCAN as IDBSCAN (Improved Density Based Spatial Clustering of Application of Noise. The algorithm is designed by addition of some important attributes which are responsible for generation of better clusters from existing data sets in comparison of other methods.

  12. Reconstruction of a digital core containing clay minerals based on a clustering algorithm

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K -means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  13. Reconstruction of a digital core containing clay minerals based on a clustering algorithm.

    Science.gov (United States)

    He, Yanlong; Pu, Chunsheng; Jing, Cheng; Gu, Xiaoyu; Chen, Qingdong; Liu, Hongzhi; Khan, Nasir; Dong, Qiaoling

    2017-10-01

    It is difficult to obtain a core sample and information for digital core reconstruction of mature sandstone reservoirs around the world, especially for an unconsolidated sandstone reservoir. Meanwhile, reconstruction and division of clay minerals play a vital role in the reconstruction of the digital cores, although the two-dimensional data-based reconstruction methods are specifically applicable as the microstructure reservoir simulation methods for the sandstone reservoir. However, reconstruction of clay minerals is still challenging from a research viewpoint for the better reconstruction of various clay minerals in the digital cores. In the present work, the content of clay minerals was considered on the basis of two-dimensional information about the reservoir. After application of the hybrid method, and compared with the model reconstructed by the process-based method, the digital core containing clay clusters without the labels of the clusters' number, size, and texture were the output. The statistics and geometry of the reconstruction model were similar to the reference model. In addition, the Hoshen-Kopelman algorithm was used to label various connected unclassified clay clusters in the initial model and then the number and size of clay clusters were recorded. At the same time, the K-means clustering algorithm was applied to divide the labeled, large connecting clusters into smaller clusters on the basis of difference in the clusters' characteristics. According to the clay minerals' characteristics, such as types, textures, and distributions, the digital core containing clay minerals was reconstructed by means of the clustering algorithm and the clay clusters' structure judgment. The distributions and textures of the clay minerals of the digital core were reasonable. The clustering algorithm improved the digital core reconstruction and provided an alternative method for the simulation of different clay minerals in the digital cores.

  14. Graph-based clustering and data visualization algorithms

    CERN Document Server

    Vathy-Fogarassy, Ágnes

    2013-01-01

    This work presents a data visualization technique that combines graph-based topology representation and dimensionality reduction methods to visualize the intrinsic data structure in a low-dimensional vector space. The application of graphs in clustering and visualization has several advantages. A graph of important edges (where edges characterize relations and weights represent similarities or distances) provides a compact representation of the entire complex data set. This text describes clustering and visualization methods that are able to utilize information hidden in these graphs, based on

  15. Protein Tertiary Structure Prediction Based on Main Chain Angle Using a Hybrid Bees Colony Optimization Algorithm

    Science.gov (United States)

    Mahmood, Zakaria N.; Mahmuddin, Massudi; Mahmood, Mohammed Nooraldeen

    Encoding proteins of amino acid sequence to predict classified into their respective families and subfamilies is important research area. However for a given protein, knowing the exact action whether hormonal, enzymatic, transmembranal or nuclear receptors does not depend solely on amino acid sequence but on the way the amino acid thread folds as well. This study provides a prototype system that able to predict a protein tertiary structure. Several methods are used to develop and evaluate the system to produce better accuracy in protein 3D structure prediction. The Bees Optimization algorithm which inspired from the honey bees food foraging method, is used in the searching phase. In this study, the experiment is conducted on short sequence proteins that have been used by the previous researches using well-known tools. The proposed approach shows a promising result.

  16. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network.

    Science.gov (United States)

    Vimalarani, C; Subramanian, R; Sivanandam, S N

    2016-01-01

    Wireless Sensor Network (WSN) is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO) algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO) algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  17. An Enhanced PSO-Based Clustering Energy Optimization Algorithm for Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    C. Vimalarani

    2016-01-01

    Full Text Available Wireless Sensor Network (WSN is a network which formed with a maximum number of sensor nodes which are positioned in an application environment to monitor the physical entities in a target area, for example, temperature monitoring environment, water level, monitoring pressure, and health care, and various military applications. Mostly sensor nodes are equipped with self-supported battery power through which they can perform adequate operations and communication among neighboring nodes. Maximizing the lifetime of the Wireless Sensor networks, energy conservation measures are essential for improving the performance of WSNs. This paper proposes an Enhanced PSO-Based Clustering Energy Optimization (EPSO-CEO algorithm for Wireless Sensor Network in which clustering and clustering head selection are done by using Particle Swarm Optimization (PSO algorithm with respect to minimizing the power consumption in WSN. The performance metrics are evaluated and results are compared with competitive clustering algorithm to validate the reduction in energy consumption.

  18. Data Clustering on Breast Cancer Data Using Firefly Algorithm with Golden Ratio Method

    Directory of Open Access Journals (Sweden)

    DEMIR, M.

    2015-05-01

    Full Text Available Heuristic methods are problem solving methods. In general, they obtain near-optimal solutions, and they do not take the care of provability of this case. The heuristic methods do not guarantee to obtain the optimal results; however, they guarantee to obtain near-optimal solutions in considerable time. In this paper, an application was performed by using firefly algorithm - one of the heuristic methods. The golden ratio was applied to different steps of firefly algorithm and different parameters of firefly algorithm to develop a new algorithm - called Firefly Algorithm with Golden Ratio (FAGR. It was shown that the golden ratio made firefly algorithm be superior to the firefly algorithm without golden ratio. At this aim, the developed algorithm was applied to WBCD database (breast cancer database to cluster data obtained from breast cancer patients. The highest obtained success rate among all executions is 96% and the highest obtained average success rate in all executions is 94.5%.

  19. Fuzzy Weight Cluster-Based Routing Algorithm for Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Teng Gao

    2015-01-01

    Full Text Available Cluster-based protocol is a kind of important routing in wireless sensor networks. However, due to the uneven distribution of cluster heads in classical clustering algorithm, some nodes may run out of energy too early, which is not suitable for large-scale wireless sensor networks. In this paper, a distributed clustering algorithm based on fuzzy weighted attributes is put forward to ensure both energy efficiency and extensibility. On the premise of a comprehensive consideration of all attributes, the corresponding weight of each parameter is assigned by using the direct method of fuzzy engineering theory. Then, each node works out property value. These property values will be mapped to the time axis and be triggered by a timer to broadcast cluster headers. At the same time, the radio coverage method is adopted, in order to avoid collisions and to ensure the symmetrical distribution of cluster heads. The aggregated data are forwarded to the sink node in the form of multihop. The simulation results demonstrate that clustering algorithm based on fuzzy weighted attributes has a longer life expectancy and better extensibility than LEACH-like algorithms.

  20. Functional Principal Component Analysis and Randomized Sparse Clustering Algorithm for Medical Image Analysis

    Science.gov (United States)

    Lin, Nan; Jiang, Junhai; Guo, Shicheng; Xiong, Momiao

    2015-01-01

    Due to the advancement in sensor technology, the growing large medical image data have the ability to visualize the anatomical changes in biological tissues. As a consequence, the medical images have the potential to enhance the diagnosis of disease, the prediction of clinical outcomes and the characterization of disease progression. But in the meantime, the growing data dimensions pose great methodological and computational challenges for the representation and selection of features in image cluster analysis. To address these challenges, we first extend the functional principal component analysis (FPCA) from one dimension to two dimensions to fully capture the space variation of image the signals. The image signals contain a large number of redundant features which provide no additional information for clustering analysis. The widely used methods for removing the irrelevant features are sparse clustering algorithms using a lasso-type penalty to select the features. However, the accuracy of clustering using a lasso-type penalty depends on the selection of the penalty parameters and the threshold value. In practice, they are difficult to determine. Recently, randomized algorithms have received a great deal of attentions in big data analysis. This paper presents a randomized algorithm for accurate feature selection in image clustering analysis. The proposed method is applied to both the liver and kidney cancer histology image data from the TCGA database. The results demonstrate that the randomized feature selection method coupled with functional principal component analysis substantially outperforms the current sparse clustering algorithms in image cluster analysis. PMID:26196383

  1. A Fast General-Purpose Clustering Algorithm Based on FPGAs for High-Throughput Data Processing

    CERN Document Server

    Annovi, A; The ATLAS collaboration; Castegnaro, A; Gatta, M

    2012-01-01

    We present a fast general-purpose algorithm for high-throughput clustering of data ”with a two dimensional organization”. The algorithm is designed to be implemented with FPGAs or custom electronics. The key feature is a processing time that scales linearly with the amount of data to be processed. This means that clustering can be performed in pipeline with the readout, without suffering from combinatorial delays due to looping multiple times through all the data. This feature makes this algorithm especially well suited for problems where the data has high density, e.g. in the case of tracking devices working under high-luminosity condition such as those of LHC or Super-LHC. The algorithm is organized in two steps: the first step (core) clusters the data; the second step analyzes each cluster of data to extract the desired information. The current algorithm is developed as a clustering device for modern high-energy physics pixel detectors. However, the algorithm has much broader field of applications. In ...

  2. Performance quantification of clustering algorithms for false positive removal in fMRI by ROC curves

    Directory of Open Access Journals (Sweden)

    André Salles Cunha Peres

    Full Text Available Abstract Introduction Functional magnetic resonance imaging (fMRI is a non-invasive technique that allows the detection of specific cerebral functions in humans based on hemodynamic changes. The contrast changes are about 5%, making visual inspection impossible. Thus, statistic strategies are applied to infer which brain region is engaged in a task. However, the traditional methods like general linear model and cross-correlation utilize voxel-wise calculation, introducing a lot of false-positive data. So, in this work we tested post-processing cluster algorithms to diminish the false-positives. Methods In this study, three clustering algorithms (the hierarchical cluster, k-means and self-organizing maps were tested and compared for false-positive removal in the post-processing of cross-correlation analyses. Results Our results showed that the hierarchical cluster presented the best performance to remove the false positives in fMRI, being 2.3 times more accurate than k-means, and 1.9 times more accurate than self-organizing maps. Conclusion The hierarchical cluster presented the best performance in false-positive removal because it uses the inconsistency coefficient threshold, while k-means and self-organizing maps utilize a priori cluster number (centroids and neurons number; thus, the hierarchical cluster avoids clustering scattered voxels, as the inconsistency coefficient threshold allows only the voxels to be clustered that are at a minimum distance to some cluster.

  3. Comparison of Clustering Algorithms for the Identification of Topics on Twitter

    Directory of Open Access Journals (Sweden)

    Marjori N. M. Klinczak

    2016-05-01

    Full Text Available Topic Identification in Social Networks has become an important task when dealing with event detection, particularly when global communities are affected. In order to attack this problem, text processing techniques and machine learning algorithms have been extensively used. In this paper we compare four clustering algorithms – k-means, k-medoids, DBSCAN and NMF (Non-negative Matrix Factorization – in order to detect topics related to textual messages obtained from Twitter. The algorithms were applied to a database initially composed by tweets having hashtags related to the recent Nepal earthquake as initial context. Obtained results suggest that the NMF clustering algorithm presents superior results, providing simpler clusters that are also easier to interpret.

  4. Online cluster-finding algorithms for the PANDA electromagnetic calorimeter

    NARCIS (Netherlands)

    Tiemens, Marcel

    2017-01-01

    Om zeldzame processen zoals de vorming van exotische deeltjes te kunnen bestuderen, is het PANDA experiment opgezet. Om de grote hoeveelheden data te kunnen verwerken, verwerken de subsystemen de data voor. Een voorbeeld is het algoritme om online naar clusters te zoeken in de data van de

  5. A Class of Manifold Regularized Multiplicative Update Algorithms for Image Clustering.

    Science.gov (United States)

    Yang, Shangming; Yi, Zhang; He, Xiaofei; Li, Xuelong

    2015-12-01

    Multiplicative update algorithms are important tools for information retrieval, image processing, and pattern recognition. However, when the graph regularization is added to the cost function, different classes of sample data may be mapped to the same subspace, which leads to the increase of data clustering error rate. In this paper, an improved nonnegative matrix factorization (NMF) cost function is introduced. Based on the cost function, a class of novel graph regularized NMF algorithms is developed, which results in a class of extended multiplicative update algorithms with manifold structure regularization. Analysis shows that in the learning, the proposed algorithms can efficiently minimize the rank of the data representation matrix. Theoretical results presented in this paper are confirmed by simulations. For different initializations and data sets, variation curves of cost functions and decomposition data are presented to show the convergence features of the proposed update rules. Basis images, reconstructed images, and clustering results are utilized to present the efficiency of the new algorithms. Last, the clustering accuracies of different algorithms are also investigated, which shows that the proposed algorithms can achieve state-of-the-art performance in applications of image clustering.

  6. A Fast Density-Based Clustering Algorithm for Real-Time Internet of Things Stream

    Science.gov (United States)

    Ying Wah, Teh

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets. PMID:25110753

  7. A fast density-based clustering algorithm for real-time Internet of Things stream.

    Science.gov (United States)

    Amini, Amineh; Saboohi, Hadi; Wah, Teh Ying; Herawan, Tutut

    2014-01-01

    Data streams are continuously generated over time from Internet of Things (IoT) devices. The faster all of this data is analyzed, its hidden trends and patterns discovered, and new strategies created, the faster action can be taken, creating greater value for organizations. Density-based method is a prominent class in clustering data streams. It has the ability to detect arbitrary shape clusters, to handle outlier, and it does not need the number of clusters in advance. Therefore, density-based clustering algorithm is a proper choice for clustering IoT streams. Recently, several density-based algorithms have been proposed for clustering data streams. However, density-based clustering in limited time is still a challenging issue. In this paper, we propose a density-based clustering algorithm for IoT streams. The method has fast processing time to be applicable in real-time application of IoT devices. Experimental results show that the proposed approach obtains high quality results with low computation time on real and synthetic datasets.

  8. MINING ON CAR DATABASE EMPLOYING LEARNING AND CLUSTERING ALGORITHMS

    OpenAIRE

    Muhammad Rukunuddin Ghalib; Shivam Vohra; Sunish Vohra; Akash Juneja

    2013-01-01

    In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the known learning algorithms used are Naïve Bayesian (NB) and SMO (Self-Minimal-Optimisation) .Thus the following two learning algorithms are used on a Car review database and thus a model is hence created which predicts the characteristic of a review comment after getting trained. It was found that model successfully predicted correctly about the review comm...

  9. Using Improved Ant Colony Algorithm to Investigate EMU Circulation Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Yu Zhou

    2014-01-01

    Full Text Available High-speed railway is one of the most important ways to solve the long-standing travel difficulty problem in China. However, due to the high acquisition and maintenance cost, it is impossible for decision-making departments to purchase enough EMUs to satisfy the explosive travel demand. Therefore, there is an urgent need to study how to utilize EMU more efficiently and reduce costs in the case of completing a given task in train diagram. In this paper, an EMU circulation scheduling model is built based on train diagram constraints, maintenance constraints, and so forth; in the model solving process, an improved ACA algorithm has been designed. A case study is conducted to verify the feasibility of the model. Moreover, contrast tests have been carried out to compare the efficiency between the improved ACA and the traditional approaches. The results reveal that improved ACA method can solve the model with less time and the quality of each representative index is much better, which means that efficiency of the improved ACA method is higher and better scheduling scheme can be obtained.

  10. A Heuristic Task Scheduling Algorithm for Heterogeneous Virtual Clusters

    OpenAIRE

    Weiwei Lin; Wentai Wu; James Z. Wang

    2016-01-01

    Cloud computing provides on-demand computing and storage services with high performance and high scalability. However, the rising energy consumption of cloud data centers has become a prominent problem. In this paper, we first introduce an energy-aware framework for task scheduling in virtual clusters. The framework consists of a task resource requirements prediction module, an energy estimate module, and a scheduler with a task buffer. Secondly, based on this framework, we propose a virtual ...

  11. Clustering Batik Images using Fuzzy C-Means Algorithm Based on Log-Average Luminance

    Directory of Open Access Journals (Sweden)

    Ahmad Sanmorino

    2012-06-01

    Full Text Available Batik is a fabric or clothes that are made ​​with a special staining technique called wax-resist dyeing and is one of the cultural heritage which has high artistic value. In order to improve the efficiency and give better semantic to the image, some researchers apply clustering algorithm for managing images before they can be retrieved. Image clustering is a process of grouping images based on their similarity. In this paper we attempt to provide an alternative method of grouping batik image using fuzzy c-means (FCM algorithm based on log-average luminance of the batik. FCM clustering algorithm is an algorithm that works using fuzzy models that allow all data from all cluster members are formed with different degrees of membership between 0 and 1. Log-average luminance (LAL is the average value of the lighting in an image. We can compare different image lighting from one image to another using LAL. From the experiments that have been made, it can be concluded that fuzzy c-means algorithm can be used for batik image clustering based on log-average luminance of each image possessed.

  12. CAMPAIGN: an open-source library of GPU-accelerated data clustering algorithms.

    Science.gov (United States)

    Kohlhoff, Kai J; Sosnick, Marc H; Hsu, William T; Pande, Vijay S; Altman, Russ B

    2011-08-15

    Data clustering techniques are an essential component of a good data analysis toolbox. Many current bioinformatics applications are inherently compute-intense and work with very large datasets. Sequential algorithms are inadequate for providing the necessary performance. For this reason, we have created Clustering Algorithms for Massively Parallel Architectures, Including GPU Nodes (CAMPAIGN), a central resource for data clustering algorithms and tools that are implemented specifically for execution on massively parallel processing architectures. CAMPAIGN is a library of data clustering algorithms and tools, written in 'C for CUDA' for Nvidia GPUs. The library provides up to two orders of magnitude speed-up over respective CPU-based clustering algorithms and is intended as an open-source resource. New modules from the community will be accepted into the library and the layout of it is such that it can easily be extended to promising future platforms such as OpenCL. Releases of the CAMPAIGN library are freely available for download under the LGPL from https://simtk.org/home/campaign. Source code can also be obtained through anonymous subversion access as described on https://simtk.org/scm/?group_id=453. kjk33@cantab.net.

  13. On the q-Weibull distribution for reliability applications: An adaptive hybrid artificial bee colony algorithm for parameter estimation

    International Nuclear Information System (INIS)

    Xu, Meng; Droguett, Enrique López; Lins, Isis Didier; Chagas Moura, Márcio das

    2017-01-01

    The q-Weibull model is based on the Tsallis non-extensive entropy and is able to model various behaviors of the hazard rate function, including bathtub curves, by using a single set of parameters. Despite its flexibility, the q-Weibull has not been widely used in reliability applications partly because of the complicated parameters estimation. In this work, the parameters of the q-Weibull are estimated by the maximum likelihood (ML) method. Due to the intricate system of nonlinear equations, derivative-based optimization methods may fail to converge. Thus, the heuristic optimization method of artificial bee colony (ABC) is used instead. To deal with the slow convergence of ABC, it is proposed an adaptive hybrid ABC (AHABC) algorithm that dynamically combines Nelder-Mead simplex search method with ABC for the ML estimation of the q-Weibull parameters. Interval estimates for the q-Weibull parameters, including confidence intervals based on the ML asymptotic theory and on bootstrap methods, are also developed. The AHABC is validated via numerical experiments involving the q-Weibull ML for reliability applications and results show that it produces faster and more accurate convergence when compared to ABC and similar approaches. The estimation procedure is applied to real reliability failure data characterized by a bathtub-shaped hazard rate. - Highlights: • Development of an Adaptive Hybrid ABC (AHABC) algorithm for q-Weibull distribution. • AHABC combines local Nelder-Mead simplex method with ABC to enhance local search. • AHABC efficiently finds the optimal solution for the q-Weibull ML problem. • AHABC outperforms ABC and self-adaptive hybrid ABC in accuracy and convergence speed. • Useful model for reliability data with non-monotonic hazard rate.

  14. Channel Parameter Estimation for Scatter Cluster Model Using Modified MUSIC Algorithm

    Directory of Open Access Journals (Sweden)

    Jinsheng Yang

    2012-01-01

    Full Text Available Recently, the scatter cluster models which precisely evaluate the performance of the wireless communication system have been proposed in the literature. However, the conventional SAGE algorithm does not work for these scatter cluster-based models because it performs poorly when the transmit signals are highly correlated. In this paper, we estimate the time of arrival (TOA, the direction of arrival (DOA, and Doppler frequency for scatter cluster model by the modified multiple signal classification (MUSIC algorithm. Using the space-time characteristics of the multiray channel, the proposed algorithm combines the temporal filtering techniques and the spatial smoothing techniques to isolate and estimate the incoming rays. The simulation results indicated that the proposed algorithm has lower complexity and is less time-consuming in the dense multipath environment than SAGE algorithm. Furthermore, the estimations’ performance increases with elements of receive array and samples length. Thus, the problem of the channel parameter estimation of the scatter cluster model can be effectively addressed with the proposed modified MUSIC algorithm.

  15. Proposed Fuzzy-NN Algorithm with LoRaCommunication Protocol for Clustered Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Sotirios Kontogiannis

    2017-11-01

    Full Text Available Modern irrigation systems utilize sensors and actuators, interconnected together as a single entity. In such entities, A.I. algorithms are implemented, which are responsible for the irrigation process. In this paper, the authors present an irrigation Open Watering System (OWS architecture that spatially clusters the irrigation process into autonomous irrigation sections. Authors’ OWS implementation includes a Neuro-Fuzzy decision algorithm called FITRA, which originates from the Greek word for seed. In this paper, the FITRA algorithm is described in detail, as are experimentation results that indicate significant water conservations from the use of the FITRA algorithm. Furthermore, the authors propose a new communication protocol over LoRa radio as an alternative low-energy and long-range OWS clusters communication mechanism. The experimental scenarios confirm that the FITRA algorithm provides more efficient irrigation on clustered areas than existing non-clustered, time scheduled or threshold adaptive algorithms. This is due to the FITRA algorithm’s frequent monitoring of environmental conditions, fuzzy and neural network adaptation as well as adherence to past irrigation preferences.

  16. A Cluster-Based Fuzzy Fusion Algorithm for Event Detection in Heterogeneous Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    ZiQi Hao

    2015-01-01

    Full Text Available As limited energy is one of the tough challenges in wireless sensor networks (WSN, energy saving becomes important in increasing the lifecycle of the network. Data fusion enables combining information from several sources thus to provide a unified scenario, which can significantly save sensor energy and enhance sensing data accuracy. In this paper, we propose a cluster-based data fusion algorithm for event detection. We use k-means algorithm to form the nodes into clusters, which can significantly reduce the energy consumption of intracluster communication. Distances between cluster heads and event and energy of clusters are fuzzified, thus to use a fuzzy logic to select the clusters that will participate in data uploading and fusion. Fuzzy logic method is also used by cluster heads for local decision, and then the local decision results are sent to the base station. Decision-level fusion for final decision of event is performed by base station according to the uploaded local decisions and fusion support degree of clusters calculated by fuzzy logic method. The effectiveness of this algorithm is demonstrated by simulation results.

  17. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M. [Servicio de Radiofisica Hospitalaria, Hospital Regional Universitario ' ' Carlos Haya' ' , Avda. Carlos Haya s/n, E-29010 Malaga (Spain); Unidad de Radiofisica Hospitalaria, Hospital Xanit Internacional, Avda. de los Argonautas s/n, E-29630 Benalmadena (Malaga) (Spain); NCTeam, Strahlenklinik, Universitaetsklinikum Essen, Hufelandstr. 55, D-45122 Essen (Germany); Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, E-18071 Granada (Spain)

    2010-07-15

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within {approx}3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  18. Ant colony algorithm implementation in electron and photon Monte Carlo transport: Application to the commissioning of radiosurgery photon beams

    International Nuclear Information System (INIS)

    Garcia-Pareja, S.; Galan, P.; Manzano, F.; Brualla, L.; Lallena, A. M.

    2010-01-01

    Purpose: In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. Methods: The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. Results: The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within ∼3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. Conclusions: The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  19. Ant colony algorithm implementation in electron and photon Monte Carlo transport: application to the commissioning of radiosurgery photon beams.

    Science.gov (United States)

    García-Pareja, S; Galán, P; Manzano, F; Brualla, L; Lallena, A M

    2010-07-01

    In this work, the authors describe an approach which has been developed to drive the application of different variance-reduction techniques to the Monte Carlo simulation of photon and electron transport in clinical accelerators. The new approach considers the following techniques: Russian roulette, splitting, a modified version of the directional bremsstrahlung splitting, and the azimuthal particle redistribution. Their application is controlled by an ant colony algorithm based on an importance map. The procedure has been applied to radiosurgery beams. Specifically, the authors have calculated depth-dose profiles, off-axis ratios, and output factors, quantities usually considered in the commissioning of these beams. The agreement between Monte Carlo results and the corresponding measurements is within approximately 3%/0.3 mm for the central axis percentage depth dose and the dose profiles. The importance map generated in the calculation can be used to discuss simulation details in the different parts of the geometry in a simple way. The simulation CPU times are comparable to those needed within other approaches common in this field. The new approach is competitive with those previously used in this kind of problems (PSF generation or source models) and has some practical advantages that make it to be a good tool to simulate the radiation transport in problems where the quantities of interest are difficult to obtain because of low statistics.

  20. The modification of hybrid method of ant colony optimization, particle swarm optimization and 3-OPT algorithm in traveling salesman problem

    Science.gov (United States)

    Hertono, G. F.; Ubadah; Handari, B. D.

    2018-03-01

    The traveling salesman problem (TSP) is a famous problem in finding the shortest tour to visit every vertex exactly once, except the first vertex, given a set of vertices. This paper discusses three modification methods to solve TSP by combining Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO) and 3-Opt Algorithm. The ACO is used to find the solution of TSP, in which the PSO is implemented to find the best value of parameters α and β that are used in ACO.In order to reduce the total of tour length from the feasible solution obtained by ACO, then the 3-Opt will be used. In the first modification, the 3-Opt is used to reduce the total tour length from the feasible solutions obtained at each iteration, meanwhile, as the second modification, 3-Opt is used to reduce the total tour length from the entire solution obtained at every iteration. In the third modification, 3-Opt is used to reduce the total tour length from different solutions obtained at each iteration. Results are tested using 6 benchmark problems taken from TSPLIB by calculating the relative error to the best known solution as well as the running time. Among those modifications, only the second and third modification give satisfactory results except the second one needs more execution time compare to the third modifications.

  1. High-speed detection of emergent market clustering via an unsupervised parallel genetic algorithm

    Directory of Open Access Journals (Sweden)

    Dieter Hendricks

    2016-02-01

    Full Text Available We implement a master-slave parallel genetic algorithm with a bespoke log-likelihood fitness function to identify emergent clusters within price evolutions. We use graphics processing units (GPUs to implement a parallel genetic algorithm and visualise the results using disjoint minimal spanning trees. We demonstrate that our GPU parallel genetic algorithm, implemented on a commercially available general purpose GPU, is able to recover stock clusters in sub-second speed, based on a subset of stocks in the South African market. This approach represents a pragmatic choice for low-cost, scalable parallel computing and is significantly faster than a prototype serial implementation in an optimised C-based fourth-generation programming language, although the results are not directly comparable because of compiler differences. Combined with fast online intraday correlation matrix estimation from high frequency data for cluster identification, the proposed implementation offers cost-effective, near-real-time risk assessment for financial practitioners.

  2. Risk Assessment for Bridges Safety Management during Operation Based on Fuzzy Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Xia Hanyu

    2016-01-01

    Full Text Available In recent years, large span and large sea-crossing bridges are built, bridges accidents caused by improper operational management occur frequently. In order to explore the better methods for risk assessment of the bridges operation departments, the method based on fuzzy clustering algorithm is selected. Then, the implementation steps of fuzzy clustering algorithm are described, the risk evaluation system is built, and Taizhou Bridge is selected as an example, the quantitation of risk factors is described. After that, the clustering algorithm based on fuzzy equivalence is calculated on MATLAB 2010a. In the last, Taizhou Bridge operation management departments are classified and sorted according to the degree of risk, and the safety situation of operation departments is analyzed.

  3. Study on Data Clustering and Intelligent Decision Algorithm of Indoor Localization

    Science.gov (United States)

    Liu, Zexi

    2018-01-01

    Indoor positioning technology enables the human beings to have the ability of positional perception in architectural space, and there is a shortage of single network coverage and the problem of location data redundancy. So this article puts forward the indoor positioning data clustering algorithm and intelligent decision-making research, design the basic ideas of multi-source indoor positioning technology, analyzes the fingerprint localization algorithm based on distance measurement, position and orientation of inertial device integration. By optimizing the clustering processing of massive indoor location data, the data normalization pretreatment, multi-dimensional controllable clustering center and multi-factor clustering are realized, and the redundancy of locating data is reduced. In addition, the path is proposed based on neural network inference and decision, design the sparse data input layer, the dynamic feedback hidden layer and output layer, low dimensional results improve the intelligent navigation path planning.

  4. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network.

    Science.gov (United States)

    Chen, Yuzhong; Weng, Shining; Guo, Wenzhong; Xiong, Naixue

    2016-02-19

    Vehicular ad hoc networks (VANETs) have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  5. A Game Theory Algorithm for Intra-Cluster Data Aggregation in a Vehicular Ad Hoc Network

    Directory of Open Access Journals (Sweden)

    Yuzhong Chen

    2016-02-01

    Full Text Available Vehicular ad hoc networks (VANETs have an important role in urban management and planning. The effective integration of vehicle information in VANETs is critical to traffic analysis, large-scale vehicle route planning and intelligent transportation scheduling. However, given the limitations in the precision of the output information of a single sensor and the difficulty of information sharing among various sensors in a highly dynamic VANET, effectively performing data aggregation in VANETs remains a challenge. Moreover, current studies have mainly focused on data aggregation in large-scale environments but have rarely discussed the issue of intra-cluster data aggregation in VANETs. In this study, we propose a multi-player game theory algorithm for intra-cluster data aggregation in VANETs by analyzing the competitive and cooperative relationships among sensor nodes. Several sensor-centric metrics are proposed to measure the data redundancy and stability of a cluster. We then study the utility function to achieve efficient intra-cluster data aggregation by considering both data redundancy and cluster stability. In particular, we prove the existence of a unique Nash equilibrium in the game model, and conduct extensive experiments to validate the proposed algorithm. Results demonstrate that the proposed algorithm has advantages over typical data aggregation algorithms in both accuracy and efficiency.

  6. A harmony search algorithm for clustering with feature selection

    Directory of Open Access Journals (Sweden)

    Carlos Cobos

    2010-01-01

    Full Text Available En este artículo se presenta un nuevo algoritmo de clustering denominado IHSK, con la capacidad de seleccionar características en un orden de complejidad lineal. El algoritmo es inspirado en la combinación de los algoritmos de búsqueda armónica y K-means. Para la selección de las características se usó el concepto de variabilidad y un método heurístico que penaliza la presencia de dimensiones con baja probabilidad de aportar en la solución actual. El algoritmo fue probado con conjuntos de datos sintéticos y reales, obteniendo resultados prometedores.

  7. Segmentation of Mushroom and Cap width Measurement using Modified K-Means Clustering Algorithm

    Directory of Open Access Journals (Sweden)

    Eser Sert

    2014-01-01

    Full Text Available Mushroom is one of the commonly consumed foods. Image processing is one of the effective way for examination of visual features and detecting the size of a mushroom. We developed software for segmentation of a mushroom in a picture and also to measure the cap width of the mushroom. K-Means clustering method is used for the process. K-Means is one of the most successful clustering methods. In our study we customized the algorithm to get the best result and tested the algorithm. In the system, at first mushroom picture is filtered, histograms are balanced and after that segmentation is performed. Results provided that customized algorithm performed better segmentation than classical K-Means algorithm. Tests performed on the designed software showed that segmentation on complex background pictures is performed with high accuracy, and 20 mushrooms caps are measured with 2.281 % relative error.

  8. Optimal Selection of Clustering Algorithm via Multi-Criteria Decision Analysis (MCDA for Load Profiling Applications

    Directory of Open Access Journals (Sweden)

    Ioannis P. Panapakidis

    2018-02-01

    Full Text Available Due to high implementation rates of smart meter systems, considerable amount of research is placed in machine learning tools for data handling and information retrieval. A key tool in load data processing is clustering. In recent years, a number of researches have proposed different clustering algorithms in the load profiling field. The present paper provides a methodology for addressing the aforementioned problem through Multi-Criteria Decision Analysis (MCDA and namely, using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS. A comparison of the algorithms is employed. Next, a single test case on the selection of an algorithm is examined. User specific weights are applied and based on these weight values, the optimal algorithm is drawn.

  9. An adaptive clustering algorithm for image matching based on corner feature

    Science.gov (United States)

    Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song

    2018-04-01

    The traditional image matching algorithm always can not balance the real-time and accuracy better, to solve the problem, an adaptive clustering algorithm for image matching based on corner feature is proposed in this paper. The method is based on the similarity of the matching pairs of vector pairs, and the adaptive clustering is performed on the matching point pairs. Harris corner detection is carried out first, the feature points of the reference image and the perceived image are extracted, and the feature points of the two images are first matched by Normalized Cross Correlation (NCC) function. Then, using the improved algorithm proposed in this paper, the matching results are clustered to reduce the ineffective operation and improve the matching speed and robustness. Finally, the Random Sample Consensus (RANSAC) algorithm is used to match the matching points after clustering. The experimental results show that the proposed algorithm can effectively eliminate the most wrong matching points while the correct matching points are retained, and improve the accuracy of RANSAC matching, reduce the computation load of whole matching process at the same time.

  10. Unit commitment solution using agglomerative and divisive cluster algorithm : an effective new methodology

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, N.M.; Reddy, K.R. [G. Narayanamma Inst. of Technology and Science, Hyderabad (India). Dept. of Electrical Engineering; Ramana, N.V. [JNTU College of Engineering, Jagityala (India). Dept. of Electrical Engineering

    2008-07-01

    Thermal power plants consist of several generating units with different generating capacities, fuel cost per MWH generated, minimum up/down times, and start-up or shut-down costs. The Unit Commitment (UC) problem in power systems involves determining the start-up and shut-down schedules of thermal generating units to meet forecasted load over a future short term for a period of one to seven days. This paper presented a new approach for the most complex UC problem using agglomerative and divisive hierarchical clustering. Euclidean costs, which are a measure of differences in fuel cost and start-up costs of any two units, were first calculated. Then, depending on the value of Euclidean costs, similar type of units were placed in a cluster. The proposed methodology has 2 individual algorithms. An agglomerative cluster algorithm is used while the load is increasing, and a divisive cluster algorithm is used when the load is decreasing. A search was conducted for an optimal solution for a minimal number of clusters and cluster data points. A standard ten-unit thermal unit power system was used to test and evaluate the performance of the method for a period of 24 hours. The new approach proved to be quite effective and satisfactory. 15 refs., 9 tabs., 5 figs.

  11. Penentuan Letak dan Kapasitas Optimal Bank Kapasitor pada Jaring Transmisi 150 kV Sumatera Utara Menggunakan Artificial Bee Colony Algorithm

    Directory of Open Access Journals (Sweden)

    Andita Noor Shafira

    2017-01-01

    Full Text Available Listrik merupakan suatu kebutuhan mutlak yang harus dipenuhi untuk menjamin keberlangsungan hidup masyarakat masa kini. Kebutuhan ini terus meningkat seiring dengan pertumbuhan beban yang semakin bertambah dari tahun ke tahun. Pertumbuhan beban yang diikuti dengan peningkatan permintaan suplai daya reaktif akibat beban bersifat induktif meningkat menyebabkan perencanaan dan operasi dari sistem interkoneksi menjadi lebih kompleks sehingga kualitas sistem menjadi kurang dapat diandalkan. Aliran daya reaktif dapat menyebabkan drop tegangan dan kerugian daya dalam sistem transmisi. Untuk itu dilakukan penentuan letak dan kapasitas kapasitor shunt untuk mengurangi kerugian daya dengan menggunakan Newton-Raphson dan metode optimisasi Artificial Bee Colony Algorithm. Pada percobaan ini dilakukan pemasangan lima kapasitor dengan jumlah koloni sebesar 50 dan Max Cycle Number sebesar 150. Hasil simulasi menggunakan metode Artificial Bee Colony Algorithm menunjukkan bahwa pemasangan kapasitor pada Jaring Transmisi 150 kV Sumatera Utara dapat menurunkan kerugian daya aktif sebesar 8,37%.

  12. An improved K-means clustering algorithm in agricultural image segmentation

    Science.gov (United States)

    Cheng, Huifeng; Peng, Hui; Liu, Shanmei

    Image segmentation is the first important step to image analysis and image processing. In this paper, according to color crops image characteristics, we firstly transform the color space of image from RGB to HIS, and then select proper initial clustering center and cluster number in application of mean-variance approach and rough set theory followed by clustering calculation in such a way as to automatically segment color component rapidly and extract target objects from background accurately, which provides a reliable basis for identification, analysis, follow-up calculation and process of crops images. Experimental results demonstrate that improved k-means clustering algorithm is able to reduce the computation amounts and enhance precision and accuracy of clustering.

  13. Clustering and Candidate Motif Detection in Exosomal miRNAs by Application of Machine Learning Algorithms.

    Science.gov (United States)

    Gaur, Pallavi; Chaturvedi, Anoop

    2017-07-22

    The clustering pattern and motifs give immense information about any biological data. An application of machine learning algorithms for clustering and candidate motif detection in miRNAs derived from exosomes is depicted in this paper. Recent progress in the field of exosome research and more particularly regarding exosomal miRNAs has led much bioinformatic-based research to come into existence. The information on clustering pattern and candidate motifs in miRNAs of exosomal origin would help in analyzing existing, as well as newly discovered miRNAs within exosomes. Along with obtaining clustering pattern and candidate motifs in exosomal miRNAs, this work also elaborates the usefulness of the machine learning algorithms that can be efficiently used and executed on various programming languages/platforms. Data were clustered and sequence candidate motifs were detected successfully. The results were compared and validated with some available web tools such as 'BLASTN' and 'MEME suite'. The machine learning algorithms for aforementioned objectives were applied successfully. This work elaborated utility of machine learning algorithms and language platforms to achieve the tasks of clustering and candidate motif detection in exosomal miRNAs. With the information on mentioned objectives, deeper insight would be gained for analyses of newly discovered miRNAs in exosomes which are considered to be circulating biomarkers. In addition, the execution of machine learning algorithms on various language platforms gives more flexibility to users to try multiple iterations according to their requirements. This approach can be applied to other biological data-mining tasks as well.

  14. Efficient algorithms for accurate hierarchical clustering of huge datasets: tackling the entire protein space.

    Science.gov (United States)

    Loewenstein, Yaniv; Portugaly, Elon; Fromer, Menachem; Linial, Michal

    2008-07-01

    UPGMA (average linking) is probably the most popular algorithm for hierarchical data clustering, especially in computational biology. However, UPGMA requires the entire dissimilarity matrix in memory. Due to this prohibitive requirement, UPGMA is not scalable to very large datasets. We present a novel class of memory-constrained UPGMA (MC-UPGMA) algorithms. Given any practical memory size constraint, this framework guarantees the correct clustering solution without explicitly requiring all dissimilarities in memory. The algorithms are general and are applicable to any dataset. We present a data-dependent characterization of hardness and clustering efficiency. The presented concepts are applicable to any agglomerative clustering formulation. We apply our algorithm to the entire collection of protein sequences, to automatically build a comprehensive evolutionary-driven hierarchy of proteins from sequence alone. The newly created tree captures protein families better than state-of-the-art large-scale methods such as CluSTr, ProtoNet4 or single-linkage clustering. We demonstrate that leveraging the entire mass embodied in all sequence similarities allows to significantly improve on current protein family clusterings which are unable to directly tackle the sheer mass of this data. Furthermore, we argue that non-metric constraints are an inherent complexity of the sequence space and should not be overlooked. The robustness of UPGMA allows significant improvement, especially for multidomain proteins, and for large or divergent families. A comprehensive tree built from all UniProt sequence similarities, together with navigation and classification tools will be made available as part of the ProtoNet service. A C++ implementation of the algorithm is available on request.

  15. An Effective Tri-Clustering Algorithm Combining Expression Data with Gene Regulation Information

    Directory of Open Access Journals (Sweden)

    Ao Li

    2009-04-01

    Full Text Available Motivation: Bi-clustering algorithms aim to identify sets of genes sharing similar expression patterns across a subset of conditions. However direct interpretation or prediction of gene regulatory mechanisms may be difficult as only gene expression data is used. Information about gene regulators may also be available, most commonly about which transcription factors may bind to the promoter region and thus control the expression level of a gene. Thus a method to integrate gene expression and gene regulation information is desirable for clustering and analyzing. Methods: By incorporating gene regulatory information with gene expression data, we define regulated expression values (REV as indicators of how a gene is regulated by a specific factor. Existing bi-clustering methods are extended to a three dimensional data space by developing a heuristic TRI-Clustering algorithm. An additional approach named Automatic Boundary Searching algorithm (ABS is introduced to automatically determine the boundary threshold. Results: Results based on incorporating ChIP-chip data representing transcription factor-gene interactions show that the algorithms are efficient and robust for detecting tri-clusters. Detailed analysis of the tri-cluster extracted from yeast sporulation REV data shows genes in this cluster exhibited significant differences during the middle and late stages. The implicated regulatory network was then reconstructed for further study of defined regulatory mechanisms. Topological and statistical analysis of this network demonstrated evidence of significant changes of TF activities during the different stages of yeast sporulation, and suggests this approach might be a general way to study regulatory networks undergoing transformations.

  16. Chaos control of ferroresonance system based on RBF-maximum entropy clustering algorithm

    International Nuclear Information System (INIS)

    Liu Fan; Sun Caixin; Sima Wenxia; Liao Ruijin; Guo Fei

    2006-01-01

    With regards to the ferroresonance overvoltage of neutral grounded power system, a maximum-entropy learning algorithm based on radial basis function neural networks is used to control the chaotic system. The algorithm optimizes the object function to derive learning rule of central vectors, and uses the clustering function of network hidden layers. It improves the regression and learning ability of neural networks. The numerical experiment of ferroresonance system testifies the effectiveness and feasibility of using the algorithm to control chaos in neutral grounded system

  17. Solving a Closed-Loop Location-Inventory-Routing Problem with Mixed Quality Defects Returns in E-Commerce by Hybrid Ant Colony Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Shuai Deng

    2016-01-01

    Full Text Available This paper presents a closed-loop location-inventory-routing problem model considering both quality defect returns and nondefect returns in e-commerce supply chain system. The objective is to minimize the total cost produced in both forward and reverse logistics networks. We propose a combined optimization algorithm named hybrid ant colony optimization algorithm (HACO to address this model that is an NP-hard problem. Our experimental results show that the proposed HACO is considerably efficient and effective in solving this model.

  18. A Multilevel Gamma-Clustering Layout Algorithm for Visualization of Biological Networks

    Science.gov (United States)

    Hruz, Tomas; Lucas, Christoph; Laule, Oliver; Zimmermann, Philip

    2013-01-01

    Visualization of large complex networks has become an indispensable part of systems biology, where organisms need to be considered as one complex system. The visualization of the corresponding network is challenging due to the size and density of edges. In many cases, the use of standard visualization algorithms can lead to high running times and poorly readable visualizations due to many edge crossings. We suggest an approach that analyzes the structure of the graph first and then generates a new graph which contains specific semantic symbols for regular substructures like dense clusters. We propose a multilevel gamma-clustering layout visualization algorithm (MLGA) which proceeds in three subsequent steps: (i) a multilevel γ-clustering is used to identify the structure of the underlying network, (ii) the network is transformed to a tree, and (iii) finally, the resulting tree which shows the network structure is drawn using a variation of a force-directed algorithm. The algorithm has a potential to visualize very large networks because it uses modern clustering heuristics which are optimized for large graphs. Moreover, most of the edges are removed from the visual representation which allows keeping the overview over complex graphs with dense subgraphs. PMID:23864855

  19. An effective trust-based recommendation method using a novel graph clustering algorithm

    Science.gov (United States)

    Moradi, Parham; Ahmadian, Sajad; Akhlaghian, Fardin

    2015-10-01

    Recommender systems are programs that aim to provide personalized recommendations to users for specific items (e.g. music, books) in online sharing communities or on e-commerce sites. Collaborative filtering methods are important and widely accepted types of recommender systems that generate recommendations based on the ratings of like-minded users. On the other hand, these systems confront several inherent issues such as data sparsity and cold start problems, caused by fewer ratings against the unknowns that need to be predicted. Incorporating trust information into the collaborative filtering systems is an attractive approach to resolve these problems. In this paper, we present a model-based collaborative filtering method by applying a novel graph clustering algorithm and also considering trust statements. In the proposed method first of all, the problem space is represented as a graph and then a sparsest subgraph finding algorithm is applied on the graph to find the initial cluster centers. Then, the proposed graph clustering algorithm is performed to obtain the appropriate users/items clusters. Finally, the identified clusters are used as a set of neighbors to recommend unseen items to the current active user. Experimental results based on three real-world datasets demonstrate that the proposed method outperforms several state-of-the-art recommender system methods.

  20. Performance of a Real-time Multipurpose 2-Dimensional Clustering Algorithm Developed for the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00372074; The ATLAS collaboration; Sotiropoulou, Calliope Louisa; Annovi, Alberto; Kordas, Kostantinos

    2016-01-01

    In this paper the performance of the 2D pixel clustering algorithm developed for the Input Mezzanine card of the ATLAS Fast TracKer system is presented. Fast TracKer is an approved ATLAS upgrade that has the goal to provide a complete list of tracks to the ATLAS High Level Trigger for each level-1 accepted event, at up to 100 kHz event rate with a very small latency, in the order of 100µs. The Input Mezzanine card is the input stage of the Fast TracKer system. Its role is to receive data from the silicon detector and perform real time clustering, thus to reduce the amount of data propagated to the subsequent processing levels with minimal information loss. We focus on the most challenging component on the Input Mezzanine card, the 2D clustering algorithm executed on the pixel data. We compare two different implementations of the algorithm. The first is one called the ideal one which searches clusters of pixels in the whole silicon module at once and calculates the cluster centroids exploiting the whole avail...

  1. Performance of a Real-time Multipurpose 2-Dimensional Clustering Algorithm Developed for the ATLAS Experiment

    CERN Document Server

    Gkaitatzis, Stamatios; The ATLAS collaboration

    2016-01-01

    In this paper the performance of the 2D pixel clustering algorithm developed for the Input Mezzanine card of the ATLAS Fast TracKer system is presented. Fast TracKer is an approved ATLAS upgrade that has the goal to provide a complete list of tracks to the ATLAS High Level Trigger for each level-1 accepted event, at up to 100 kHz event rate with a very small latency, in the order of 100 µs. The Input Mezzanine card is the input stage of the Fast TracKer system. Its role is to receive data from the silicon detector and perform real time clustering, thus to reduce the amount of data propagated to the subsequent processing levels with minimal information loss. We focus on the most challenging component on the Input Mezzanine card, the 2D clustering algorithm executed on the pixel data. We compare two different implementations of the algorithm. The first is one called the ideal one which searches clusters of pixels in the whole silicon module at once and calculates the cluster centroids exploiting the whole avai...

  2. An Initial Seed Selection Algorithm for K-means Clustering of Georeferenced Data to Improve Replicability of Cluster Assignments for Mapping Application

    OpenAIRE

    Khan, Fouad

    2016-01-01

    K-means is one of the most widely used clustering algorithms in various disciplines, especially for large datasets. However the method is known to be highly sensitive to initial seed selection of cluster centers. K-means++ has been proposed to overcome this problem and has been shown to have better accuracy and computational efficiency than k-means. In many clustering problems though -such as when classifying georeferenced data for mapping applications- standardization of clustering methodolo...

  3. FRCA: A Fuzzy Relevance-Based Cluster Head Selection Algorithm for Wireless Mobile Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Taegwon Jeong

    2011-05-01

    Full Text Available Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP, the Weighted-based Adaptive Clustering Algorithm (WACA, and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM. The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  4. FRCA: a fuzzy relevance-based cluster head selection algorithm for wireless mobile ad-hoc sensor networks.

    Science.gov (United States)

    Lee, Chongdeuk; Jeong, Taegwon

    2011-01-01

    Clustering is an important mechanism that efficiently provides information for mobile nodes and improves the processing capacity of routing, bandwidth allocation, and resource management and sharing. Clustering algorithms can be based on such criteria as the battery power of nodes, mobility, network size, distance, speed and direction. Above all, in order to achieve good clustering performance, overhead should be minimized, allowing mobile nodes to join and leave without perturbing the membership of the cluster while preserving current cluster structure as much as possible. This paper proposes a Fuzzy Relevance-based Cluster head selection Algorithm (FRCA) to solve problems found in existing wireless mobile ad hoc sensor networks, such as the node distribution found in dynamic properties due to mobility and flat structures and disturbance of the cluster formation. The proposed mechanism uses fuzzy relevance to select the cluster head for clustering in wireless mobile ad hoc sensor networks. In the simulation implemented on the NS-2 simulator, the proposed FRCA is compared with algorithms such as the Cluster-based Routing Protocol (CBRP), the Weighted-based Adaptive Clustering Algorithm (WACA), and the Scenario-based Clustering Algorithm for Mobile ad hoc networks (SCAM). The simulation results showed that the proposed FRCA achieves better performance than that of the other existing mechanisms.

  5. MixSim : An R Package for Simulating Data to Study Performance of Clustering Algorithms

    Directory of Open Access Journals (Sweden)

    Volodymyr Melnykov

    2012-11-01

    Full Text Available The R package MixSim is a new tool that allows simulating mixtures of Gaussian distributions with different levels of overlap between mixture components. Pairwise overlap, defined as a sum of two misclassification probabilities, measures the degree of interaction between components and can be readily employed to control the clustering complexity of datasets simulated from mixtures. These datasets can then be used for systematic performance investigation of clustering and finite mixture modeling algorithms. Among other capabilities of MixSim, there are computing the exact overlap for Gaussian mixtures, simulating Gaussian and non-Gaussian data, simulating outliers and noise variables, calculating various measures of agreement between two partitionings, and constructing parallel distribution plots for the graphical display of finite mixture models. All features of the package are illustrated in great detail. The utility of the package is highlighted through a small comparison study of several popular clustering algorithms.

  6. An improved optimum-path forest clustering algorithm for remote sensing image segmentation

    Science.gov (United States)

    Chen, Siya; Sun, Tieli; Yang, Fengqin; Sun, Hongguang; Guan, Yu

    2018-03-01

    Remote sensing image segmentation is a key technology for processing remote sensing images. The image segmentation results can be used for feature extraction, target identification and object description. Thus, image segmentation directly affects the subsequent processing results. This paper proposes a novel Optimum-Path Forest (OPF) clustering algorithm that can be used for remote sensing segmentation. The method utilizes the principle that the cluster centres are characterized based on their densities and the distances between the centres and samples with higher densities. A new OPF clustering algorithm probability density function is defined based on this principle and applied to remote sensing image segmentation. Experiments are conducted using five remote sensing land cover images. The experimental results illustrate that the proposed method can outperform the original OPF approach.

  7. The Hierarchical Spectral Merger Algorithm: A New Time Series Clustering Procedure

    KAUST Repository

    Euán, Carolina

    2018-04-12

    We present a new method for time series clustering which we call the Hierarchical Spectral Merger (HSM) method. This procedure is based on the spectral theory of time series and identifies series that share similar oscillations or waveforms. The extent of similarity between a pair of time series is measured using the total variation distance between their estimated spectral densities. At each step of the algorithm, every time two clusters merge, a new spectral density is estimated using the whole information present in both clusters, which is representative of all the series in the new cluster. The method is implemented in an R package HSMClust. We present two applications of the HSM method, one to data coming from wave-height measurements in oceanography and the other to electroencefalogram (EEG) data.

  8. The experimental results on the quality of clustering diverse set of data using a modified algorithm chameleon

    Directory of Open Access Journals (Sweden)

    Татьяна Борисовна Шатовская

    2015-03-01

    Full Text Available In this work results of modified Chameleon algorithm are discussed. Hierarchical multilevel algorithms consist of several stages: building the graph, coarsening, partitioning, recovering. Exploring of clustering quality for different data sets with different combinations of algorithms on different stages of the algorithm is the main aim of the article. And also aim is improving the construction phase through the optimization algorithm of choice k in the building the graph k-nearest neighbors

  9. A priori data-driven multi-clustered reservoir generation algorithm for echo state network.

    Directory of Open Access Journals (Sweden)

    Xiumin Li

    Full Text Available Echo state networks (ESNs with multi-clustered reservoir topology perform better in reservoir computing and robustness than those with random reservoir topology. However, these ESNs have a complex reservoir topology, which leads to difficulties in reservoir generation. This study focuses on the reservoir generation problem when ESN is used in environments with sufficient priori data available. Accordingly, a priori data-driven multi-cluster reservoir generation algorithm is proposed. The priori data in the proposed algorithm are used to evaluate reservoirs by calculating the precision and standard deviation of ESNs. The reservoirs are produced using the clustering method; only the reservoir with a better evaluation performance takes the place of a previous one. The final reservoir is obtained when its evaluation score reaches the preset requirement. The prediction experiment results obtained using the Mackey-Glass chaotic time series show that the proposed reservoir generation algorithm provides ESNs with extra prediction precision and increases the structure complexity of the network. Further experiments also reveal the appropriate values of the number of clusters and time window size to obtain optimal performance. The information entropy of the reservoir reaches the maximum when ESN gains the greatest precision.

  10. Fuzzy-Logic Based Distributed Energy-Efficient Clustering Algorithm for Wireless Sensor Networks.

    Science.gov (United States)

    Zhang, Ying; Wang, Jun; Han, Dezhi; Wu, Huafeng; Zhou, Rundong

    2017-07-03

    Due to the high-energy efficiency and scalability, the clustering routing algorithm has been widely used in wireless sensor networks (WSNs). In order to gather information more efficiently, each sensor node transmits data to its Cluster Head (CH) to which it belongs, by multi-hop communication. However, the multi-hop communication in the cluster brings the problem of excessive energy consumption of the relay nodes which are closer to the CH. These nodes' energy will be consumed more quickly than the farther nodes, which brings the negative influence on load balance for the whole networks. Therefore, we propose an energy-efficient distributed clustering algorithm based on fuzzy approach with non-uniform distribution (EEDCF). During CHs' election, we take nodes' energies, nodes' degree and neighbor nodes' residual energies into consideration as the input parameters. In addition, we take advantage of Takagi, Sugeno and Kang (TSK) fuzzy model instead of traditional method as our inference system to guarantee the quantitative analysis more reasonable. In our scheme, each sensor node calculates the probability of being as CH with the help of fuzzy inference system in a distributed way. The experimental results indicate EEDCF algorithm is better than some current representative methods in aspects of data transmission, energy consumption and lifetime of networks.

  11. A clustering algorithm for sample data based on environmental pollution characteristics

    Science.gov (United States)

    Chen, Mei; Wang, Pengfei; Chen, Qiang; Wu, Jiadong; Chen, Xiaoyun

    2015-04-01

    Environmental pollution has become an issue of serious international concern in recent years. Among the receptor-oriented pollution models, CMB, PMF, UNMIX, and PCA are widely used as source apportionment models. To improve the accuracy of source apportionment and classify the sample data for these models, this study proposes an easy-to-use, high-dimensional EPC algorithm that not only organizes all of the sample data into different groups according to the similarities in pollution characteristics such as pollution sources and concentrations but also simultaneously detects outliers. The main clustering process consists of selecting the first unlabelled point as the cluster centre, then assigning each data point in the sample dataset to its most similar cluster centre according to both the user-defined threshold and the value of similarity function in each iteration, and finally modifying the clusters using a method similar to k-Means. The validity and accuracy of the algorithm are tested using both real and synthetic datasets, which makes the EPC algorithm practical and effective for appropriately classifying sample data for source apportionment models and helpful for better understanding and interpreting the sources of pollution.

  12. Short-term hydro-thermal-wind complementary scheduling considering uncertainty of wind power using an enhanced multi-objective bee colony optimization algorithm

    International Nuclear Information System (INIS)

    Zhou, Jianzhong; Lu, Peng; Li, Yuanzheng; Wang, Chao; Yuan, Liu; Mo, Li

    2016-01-01

    Highlights: • HTWCS system is established while considering uncertainty of wind power. • An enhanced multi-objective bee colony optimization algorithm is proposed. • Some heuristic repairing strategies are designed to handle various constraints. • HTWCS problem with economic/environment objectives is solved by EMOBCO. - Abstract: This paper presents a short-term economic/environmental hydro-thermal-wind complementary scheduling (HTWCS) system considering uncertainty of wind power, as well as various complicated non-linear constraints. HTWCS system is formulated as a multi-objective optimization problem to optimize conflictive objectives, i.e., economic and environmental criteria. Then an enhanced multi-objective bee colony optimization algorithm (EMOBCO) is proposed to solve this problem, which adopts Elite archive set, adaptive mutation/selection mechanism and local searching strategy to improve global searching ability of standard bee colony optimization (BCO). Especially, a novel constraints-repairing strategy with compressing decision space and a violation-adjustment method are used to handle various hydraulic and electric constraints. Finally, a daily scheduling simulation case of hydro-thermal-wind system is conducted to verify feasibility and effectiveness of the proposed EMOBCO in solving HTWCS problem. The simulation results indicate that the proposed EMOBCO can provide lower economic cost and smaller pollutant emission than other method established recently while considering various complex constraints in HTWCS problem.

  13. DESIGNING APPLICATION OF ANT COLONY SYSTEM ALGORITHM FOR THE SHORTEST ROUTE OF BANDA ACEH CITY AND ACEH BESAR REGENCY TOURISM BY USING GRAPHICAL USER INTERFACE MATLAB

    Directory of Open Access Journals (Sweden)

    Durisman Durisman

    2017-09-01

    Full Text Available Banda Aceh city and Aceh Besar Regency are two of the leading tourism areas located in the province of Aceh. For travelling, there are some important things to be considered, such as determining schedule and distance of tourism. Every tourist certainly chooses the shortest route to reach the destination since it can save time, energy, and money. The purpose of this reserach is to develop a method that can be used in calculating the shortest route and applied to the tourism of Banda Aceh city and Aceh Besar regency. In this reserach, Ant Colony Optimization algorithm is used to determine the shortest route to tourism of Banda Aceh city and Aceh Besar regency. From the analysis made by using both manual calculation and  GUI MATLAB program application test, the shortest route can be obtained with a minimum distance of 120.85 km in one travel. Based on the test result, the application for tourism (in Banda Aceh city and Aceh Besar regency shortest route searching built by utilizing the Ant Colony Optimization algorithm can find optimal route.  Keyword: tourism, the shortest route, Ant Colony Optimization

  14. Cluster-Based Multipolling Sequencing Algorithm for Collecting RFID Data in Wireless LANs

    Science.gov (United States)

    Choi, Woo-Yong; Chatterjee, Mainak

    2015-03-01

    With the growing use of RFID (Radio Frequency Identification), it is becoming important to devise ways to read RFID tags in real time. Access points (APs) of IEEE 802.11-based wireless Local Area Networks (LANs) are being integrated with RFID networks that can efficiently collect real-time RFID data. Several schemes, such as multipolling methods based on the dynamic search algorithm and random sequencing, have been proposed. However, as the number of RFID readers associated with an AP increases, it becomes difficult for the dynamic search algorithm to derive the multipolling sequence in real time. Though multipolling methods can eliminate the polling overhead, we still need to enhance the performance of the multipolling methods based on random sequencing. To that extent, we propose a real-time cluster-based multipolling sequencing algorithm that drastically eliminates more than 90% of the polling overhead, particularly so when the dynamic search algorithm fails to derive the multipolling sequence in real time.

  15. Channel processor in 2D cluster finding algorithm for high energy physics application

    International Nuclear Information System (INIS)

    Paul, Rourab; Chakrabarti, Amlan; Mitra, Jubin; Khan, Shuaib A.; Nayak, Tapan; Mukherjee, Sanjoy

    2016-01-01

    In a Large Ion Collider Experiment (ALICE) at CERN 1 TB/s (approximately) data comes from front end electronics. Previously, we had 1 GBT link operated with a cluster clock frequencies of 133 MHz and 320 MHz in Run 1 and Run 2 respectively. The cluster algorithm proposed in Run 1 and 2 could not work in Run 3 as the data speed increased almost 20 times. Older version cluster algorithm receives data sequentially as a stream. It has 2 main sub processes - Channel Processor, Merging process. The initial step of channel processor finds a peak Q max and sums up pads (sensors) data from -2 time bin to +2 time bin in the time direction. The computed value stores in a register named cluster fragment data (cfd o ). The merging process merges cfd o in pad direction. The data streams in Run 2 comes sequentially, which processed by the channel processor and merging block in a sequential manner with very less resource over head. In Run 3 data comes parallely, 1600 data from 1600 pads of a single time instant comes at each 200 ns interval (5 MHz) which is very challenging to process in the budgeted resource platform of Arria 10 FPGA hardware with 250 to 320 MHz cluster clock

  16. Energy Efficient and Safe Weighted Clustering Algorithm for Mobile Wireless Sensor Networks

    Directory of Open Access Journals (Sweden)

    Amine Dahane

    2015-01-01

    Full Text Available The main concern of clustering approaches for mobile wireless sensor networks (WSNs is to prolong the battery life of the individual sensors and the network lifetime. For a successful clustering approach the need of a powerful mechanism to safely elect a cluster head remains a challenging task in many research works that take into account the mobility of the network. The approach based on the computing of the weight of each node in the network is one of the proposed techniques to deal with this problem. In this paper, we propose an energy efficient and safe weighted clustering algorithm (ES-WCA for mobile WSNs using a combination of five metrics. Among these metrics lies the behavioral level metric which promotes a safe choice of a cluster head in the sense where this last one will never be a malicious node. Moreover, the highlight of our work is summarized in a comprehensive strategy for monitoring the network, in order to detect and remove the malicious nodes. We use simulation study to demonstrate the performance of the proposed algorithm.

  17. An algorithm of discovering signatures from DNA databases on a computer cluster.

    Science.gov (United States)

    Lee, Hsiao Ping; Sheu, Tzu-Fang

    2014-10-05

    Signatures are short sequences that are unique and not similar to any other sequence in a database that can be used as the basis to identify different species. Even though several signature discovery algorithms have been proposed in the past, these algorithms require the entirety of databases to be loaded in the memory, thus restricting the amount of data that they can process. It makes those algorithms unable to process databases with large amounts of data. Also, those algorithms use sequential models and have slower discovery speeds, meaning that the efficiency can be improved. In this research, we are debuting the utilization of a divide-and-conquer strategy in signature discovery and have proposed a parallel signature discovery algorithm on a computer cluster. The algorithm applies the divide-and-conquer strategy to solve the problem posed to the existing algorithms where they are unable to process large databases and uses a parallel computing mechanism to effectively improve the efficiency of signature discovery. Even when run with just the memory of regular personal computers, the algorithm can still process large databases such as the human whole-genome EST database which were previously unable to be processed by the existing algorithms. The algorithm proposed in this research is not limited by the amount of usable memory and can rapidly find signatures in large databases, making it useful in applications such as Next Generation Sequencing and other large database analysis and processing. The implementation of the proposed algorithm is available at http://www.cs.pu.edu.tw/~fang/DDCSDPrograms/DDCSD.htm.

  18. Clustering methods and visualization algorithms to aid nuclear reactor operative diagnostics

    International Nuclear Information System (INIS)

    Pepelyshev, Yu.N.; Dzwinel, W.

    1990-01-01

    The software system developed plays the role of the aid to an operator for nuclear reactor diagnostics. The noise analysis of the reactor parameters such as power, temperature and coolant flow rate constitutes the basis of the system. Combination of data acquisition, data preprocessing, clustering and cluster visualization algorithms with heuristic techniques of results analysis, determine the way of its implementation. Two regimes are available. The first one - extended - is recommended for a long term investigations and the second - suppressed for the aid to the reactor operation monitoring. The system has been tested and developed at the JINR IBR-2 pulsed reactor. 13 refs.; 4 figs.; 2 tabs

  19. K-mean clustering algorithm for processing signals from compound semiconductor detectors

    International Nuclear Information System (INIS)

    Tada, Tsutomu; Hitomi, Keitaro; Wu, Yan; Kim, Seong-Yun; Yamazaki, Hiromichi; Ishii, Keizo

    2011-01-01

    The K-mean clustering algorithm was employed for processing signal waveforms from TlBr detectors. The signal waveforms were classified based on its shape reflecting the charge collection process in the detector. The classified signal waveforms were processed individually to suppress the pulse height variation of signals due to the charge collection loss. The obtained energy resolution of a 137 Cs spectrum measured with a 0.5 mm thick TlBr detector was 1.3% FWHM by employing 500 clusters.

  20. What to Do When K-Means Clustering Fails: A Simple yet Principled Alternative Algorithm.

    Science.gov (United States)

    Raykov, Yordan P; Boukouvalas, Alexis; Baig, Fahd; Little, Max A

    The K-means algorithm is one of the most popular clustering algorithms in current use as it is relatively fast yet simple to understand and deploy in practice. Nevertheless, its use entails certain restrictive assumptions about the data, the negative consequences of which are not always immediately apparent, as we demonstrate. While more flexible algorithms have been developed, their widespread use has been hindered by their computational and technical complexity. Motivated by these considerations, we present a flexible alternative to K-means that relaxes most of the assumptions, whilst remaining almost as fast and simple. This novel algorithm which we call MAP-DP (maximum a-posteriori Dirichlet process mixtures), is statistically rigorous as it is based on nonparametric Bayesian Dirichlet process mixture modeling. This approach allows us to overcome most of the limitations imposed by K-means. The number of clusters K is estimated from the data instead of being fixed a-priori as in K-means. In addition, while K-means is restricted to continuous data, the MAP-DP framework can be applied to many kinds of data, for example, binary, count or ordinal data. Also, it can efficiently separate outliers from the data. This additional flexibility does not incur a significant computational overhead compared to K-means with MAP-DP convergence typically achieved in the order of seconds for many practical problems. Finally, in contrast to K-means, since the algorithm is based on an underlying statistical model, the MAP-DP framework can deal with missing data and enables model testing such as cross validation in a principled way. We demonstrate the simplicity and effectiveness of this algorithm on the health informatics problem of clinical sub-typing in a cluster of diseases known as parkinsonism.

  1. Enhancement of RWSN Lifetime via Firework Clustering Algorithm Validated by ANN

    Directory of Open Access Journals (Sweden)

    Ahmad Ali

    2018-03-01

    Full Text Available Nowadays, wireless power transfer is ubiquitously used in wireless rechargeable sensor networks (WSNs. Currently, the energy limitation is a grave concern issue for WSNs. However, lifetime enhancement of sensor networks is a challenging task need to be resolved. For addressing this issue, a wireless charging vehicle is an emerging technology to expand the overall network efficiency. The present study focuses on the enhancement of overall network lifetime of the rechargeable wireless sensor network. To resolve the issues mentioned above, we propose swarm intelligence based hard clustering approach using fireworks algorithm with the adaptive transfer function (FWA-ATF. In this work, the virtual clustering method has been applied in the routing process which utilizes the firework optimization algorithm. Still now, an FWA-ATF algorithm yet not applied by any researcher for RWSN. Furthermore, the validation study of the proposed method using the artificial neural network (ANN backpropagation algorithm incorporated in the present study. Different algorithms are applied to evaluate the performance of proposed technique that gives the best results in this mechanism. Numerical results indicate that our method outperforms existing methods and yield performance up to 80% regarding energy consumption and vacation time of wireless charging vehicle.

  2. Hopfield-K-Means clustering algorithm: A proposal for the segmentation of electricity customers

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Jose J.; Aguado, Jose A.; Martin, F.; Munoz, F.; Rodriguez, A.; Ruiz, Jose E. [Department of Electrical Engineering, University of Malaga, C/ Dr. Ortiz Ramos, sn., Escuela de Ingenierias, 29071 Malaga (Spain)

    2011-02-15

    Customer classification aims at providing electric utilities with a volume of information to enable them to establish different types of tariffs. Several methods have been used to segment electricity customers, including, among others, the hierarchical clustering, Modified Follow the Leader and K-Means methods. These, however, entail problems with the pre-allocation of the number of clusters (Follow the Leader), randomness of the solution (K-Means) and improvement of the solution obtained (hierarchical algorithm). Another segmentation method used is Hopfield's autonomous recurrent neural network, although the solution obtained only guarantees that it is a local minimum. In this paper, we present the Hopfield-K-Means algorithm in order to overcome these limitations. This approach eliminates the randomness of the initial solution provided by K-Means based algorithms and it moves closer to the global optimun. The proposed algorithm is also compared against other customer segmentation and characterization techniques, on the basis of relative validation indexes. Finally, the results obtained by this algorithm with a set of 230 electricity customers (residential, industrial and administrative) are presented. (author)

  3. [Automatic Sleep Stage Classification Based on an Improved K-means Clustering Algorithm].

    Science.gov (United States)

    Xiao, Shuyuan; Wang, Bei; Zhang, Jian; Zhang, Qunfeng; Zou, Junzhong

    2016-10-01

    Sleep stage scoring is a hotspot in the field of medicine and neuroscience.Visual inspection of sleep is laborious and the results may be subjective to different clinicians.Automatic sleep stage classification algorithm can be used to reduce the manual workload.However,there are still limitations when it encounters complicated and changeable clinical cases.The purpose of this paper is to develop an automatic sleep staging algorithm based on the characteristics of actual sleep data.In the proposed improved K-means clustering algorithm,points were selected as the initial centers by using a concept of density to avoid the randomness of the original K-means algorithm.Meanwhile,the cluster centers were updated according to the‘Three-Sigma Rule’during the iteration to abate the influence of the outliers.The proposed method was tested and analyzed on the overnight sleep data of the healthy persons and patients with sleep disorders after continuous positive airway pressure(CPAP)treatment.The automatic sleep stage classification results were compared with the visual inspection by qualified clinicians and the averaged accuracy reached 76%.With the analysis of morphological diversity of sleep data,it was proved that the proposed improved K-means algorithm was feasible and valid for clinical practice.

  4. Hopfield-K-Means clustering algorithm: A proposal for the segmentation of electricity customers

    International Nuclear Information System (INIS)

    Lopez, Jose J.; Aguado, Jose A.; Martin, F.; Munoz, F.; Rodriguez, A.; Ruiz, Jose E.

    2011-01-01

    Customer classification aims at providing electric utilities with a volume of information to enable them to establish different types of tariffs. Several methods have been used to segment electricity customers, including, among others, the hierarchical clustering, Modified Follow the Leader and K-Means methods. These, however, entail problems with the pre-allocation of the number of clusters (Follow the Leader), randomness of the solution (K-Means) and improvement of the solution obtained (hierarchical algorithm). Another segmentation method used is Hopfield's autonomous recurrent neural network, although the solution obtained only guarantees that it is a local minimum. In this paper, we present the Hopfield-K-Means algorithm in order to overcome these limitations. This approach eliminates the randomness of the initial solution provided by K-Means based algorithms and it moves closer to the global optimun. The proposed algorithm is also compared against other customer segmentation and characterization techniques, on the basis of relative validation indexes. Finally, the results obtained by this algorithm with a set of 230 electricity customers (residential, industrial and administrative) are presented. (author)

  5. Forecasting Jakarta composite index (IHSG) based on chen fuzzy time series and firefly clustering algorithm

    Science.gov (United States)

    Ningrum, R. W.; Surarso, B.; Farikhin; Safarudin, Y. M.

    2018-03-01

    This paper proposes the combination of Firefly Algorithm (FA) and Chen Fuzzy Time Series Forecasting. Most of the existing fuzzy forecasting methods based on fuzzy time series use the static length of intervals. Therefore, we apply an artificial intelligence, i.e., Firefly Algorithm (FA) to set non-stationary length of intervals for each cluster on Chen Method. The method is evaluated by applying on the Jakarta Composite Index (IHSG) and compare with classical Chen Fuzzy Time Series Forecasting. Its performance verified through simulation using Matlab.

  6. An Automatic K-Means Clustering Algorithm of GPS Data Combining a Novel Niche Genetic Algorithm with Noise and Density

    Directory of Open Access Journals (Sweden)

    Xiangbing Zhou

    2017-12-01

    Full Text Available Rapidly growing Global Positioning System (GPS data plays an important role in trajectory and their applications (e.g., GPS-enabled smart devices. In order to employ K-means to mine the better origins and destinations (OD behind the GPS data and overcome its shortcomings including slowness of convergence, sensitivity to initial seeds selection, and getting stuck in a local optimum, this paper proposes and focuses on a novel niche genetic algorithm (NGA with density and noise for K-means clustering (NoiseClust. In NoiseClust, an improved noise method and K-means++ are proposed to produce the initial population and capture higher quality seeds that can automatically determine the proper number of clusters, and also handle the different sizes and shapes of genes. A density-based method is presented to divide the number of niches, with its aim to maintain population diversity. Adaptive probabilities of crossover and mutation are also employed to prevent the convergence to a local optimum. Finally, the centers (the best chromosome are obtained and then fed into the K-means as initial seeds to generate even higher quality clustering results by allowing the initial seeds to readjust as needed. Experimental results based on taxi GPS data sets demonstrate that NoiseClust has high performance and effectiveness, and easily mine the city’s situations in four taxi GPS data sets.

  7. Dynamic connectivity algorithms for Monte Carlo simulations of the random-cluster model

    International Nuclear Information System (INIS)

    Elçi, Eren Metin; Weigel, Martin

    2014-01-01

    We review Sweeny's algorithm for Monte Carlo simulations of the random cluster model. Straightforward implementations suffer from the problem of computational critical slowing down, where the computational effort per edge operation scales with a power of the system size. By using a tailored dynamic connectivity algorithm we are able to perform all operations with a poly-logarithmic computational effort. This approach is shown to be efficient in keeping online connectivity information and is of use for a number of applications also beyond cluster-update simulations, for instance in monitoring droplet shape transitions. As the handling of the relevant data structures is non-trivial, we provide a Python module with a full implementation for future reference.

  8. Application of a clustering-based peak alignment algorithm to analyze various DNA fingerprinting data.

    Science.gov (United States)

    Ishii, Satoshi; Kadota, Koji; Senoo, Keishi

    2009-09-01

    DNA fingerprinting analysis such as amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic PCR (rep-PCR), ribosomal intergenic spacer analysis (RISA), and denaturing gradient gel electrophoresis (DGGE) are frequently used in various fields of microbiology. The major difficulty in DNA fingerprinting data analysis is the alignment of multiple peak sets. We report here an R program for a clustering-based peak alignment algorithm, and its application to analyze various DNA fingerprinting data, such as ARDRA, rep-PCR, RISA, and DGGE data. The results obtained by our clustering algorithm and by BioNumerics software showed high similarity. Since several R packages have been established to statistically analyze various biological data, the distance matrix obtained by our R program can be used for subsequent statistical analyses, some of which were not previously performed but are useful in DNA fingerprinting studies.

  9. A New Waveform Signal Processing Method Based on Adaptive Clustering-Genetic Algorithms

    International Nuclear Information System (INIS)

    Noha Shaaban; Fukuzo Masuda; Hidetsugu Morota

    2006-01-01

    We present a fast digital signal processing method for numerical analysis of individual pulses from CdZnTe compound semiconductor detectors. Using Maxi-Mini Distance Algorithm and Genetic Algorithms based discrimination technique. A parametric approach has been used for classifying the discriminated waveforms into a set of clusters each has a similar signal shape with a corresponding pulse height spectrum. A corrected total pulse height spectrum was obtained by applying a normalization factor for the full energy peak for each cluster with a highly improvements in the energy spectrum characteristics. This method applied successfully for both simulated and real measured data, it can be applied to any detector suffers from signal shape variation. (authors)

  10. Clustering for Different Scales of Measurement - the Gap-Ratio Weighted K-means Algorithm

    OpenAIRE

    Guérin, Joris; Gibaru, Olivier; Thiery, Stéphane; Nyiri, Eric

    2017-01-01

    This paper describes a method for clustering data that are spread out over large regions and which dimensions are on different scales of measurement. Such an algorithm was developed to implement a robotics application consisting in sorting and storing objects in an unsupervised way. The toy dataset used to validate such application consists of Lego bricks of different shapes and colors. The uncontrolled lighting conditions together with the use of RGB color features, respectively involve data...

  11. Hybrid Pareto artificial bee colony algorithm for multi-objective single machine group scheduling problem with sequence-dependent setup times and learning effects.

    Science.gov (United States)

    Yue, Lei; Guan, Zailin; Saif, Ullah; Zhang, Fei; Wang, Hao

    2016-01-01

    Group scheduling is significant for efficient and cost effective production system. However, there exist setup times between the groups, which require to decrease it by sequencing groups in an efficient way. Current research is focused on a sequence dependent group scheduling problem with an aim to minimize the makespan in addition to minimize the total weighted tardiness simultaneously. In most of the production scheduling problems, the processing time of jobs is assumed as fixed. However, the actual processing time of jobs may be reduced due to "learning effect". The integration of sequence dependent group scheduling problem with learning effects has been rarely considered in literature. Therefore, current research considers a single machine group scheduling problem with sequence dependent setup times and learning effects simultaneously. A novel hybrid Pareto artificial bee colony algorithm (HPABC) with some steps of genetic algorithm is proposed for current problem to get Pareto solutions. Furthermore, five different sizes of test problems (small, small medium, medium, large medium, large) are tested using proposed HPABC. Taguchi method is used to tune the effective parameters of the proposed HPABC for each problem category. The performance of HPABC is compared with three famous multi objective optimization algorithms, improved strength Pareto evolutionary algorithm (SPEA2), non-dominated sorting genetic algorithm II (NSGAII) and particle swarm optimization algorithm (PSO). Results indicate that HPABC outperforms SPEA2, NSGAII and PSO and gives better Pareto optimal solutions in terms of diversity and quality for almost all the instances of the different sizes of problems.

  12. A comparison of genetic algorithm and artificial bee colony approaches in solving blocking hybrid flowshop scheduling problem with sequence dependent setup/changeover times

    Directory of Open Access Journals (Sweden)

    Pongpan Nakkaew

    2016-06-01

    Full Text Available In manufacturing process where efficiency is crucial in order to remain competitive, flowshop is a common configuration in which machines are arranged in series and products are produced through the stages one by one. In certain production processes, the machines are frequently configured in the way that each production stage may contain multiple processing units in parallel or hybrid. Moreover, along with precedent conditions, the sequence dependent setup times may exist. Finally, in case there is no buffer, a machine is said to be blocked if the next stage to handle its output is being occupied. Such NP-Hard problem, referred as Blocking Hybrid Flowshop Scheduling Problem with Sequence Dependent Setup/Changeover Times, is usually not possible to find the best exact solution to satisfy optimization objectives such as minimization of the overall production time. Thus, it is usually solved by approximate algorithms such as metaheuristics. In this paper, we investigate comparatively the effectiveness of the two approaches: a Genetic Algorithm (GA and an Artificial Bee Colony (ABC algorithm. GA is inspired by the process of natural selection. ABC, in the same manner, resembles the way types of bees perform specific functions and work collectively to find their foods by means of division of labor. Additionally, we apply an algorithm to improve the GA and ABC algorithms so that they can take advantage of parallel processing resources of modern multiple core processors while eliminate the need for screening the optimal parameters of both algorithms in advance.

  13. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm.

    Science.gov (United States)

    Bourobou, Serge Thomas Mickala; Yoo, Younghwan

    2015-05-21

    This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things) based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen's temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  14. User Activity Recognition in Smart Homes Using Pattern Clustering Applied to Temporal ANN Algorithm

    Directory of Open Access Journals (Sweden)

    Serge Thomas Mickala Bourobou

    2015-05-01

    Full Text Available This paper discusses the possibility of recognizing and predicting user activities in the IoT (Internet of Things based smart environment. The activity recognition is usually done through two steps: activity pattern clustering and activity type decision. Although many related works have been suggested, they had some limited performance because they focused only on one part between the two steps. This paper tries to find the best combination of a pattern clustering method and an activity decision algorithm among various existing works. For the first step, in order to classify so varied and complex user activities, we use a relevant and efficient unsupervised learning method called the K-pattern clustering algorithm. In the second step, the training of smart environment for recognizing and predicting user activities inside his/her personal space is done by utilizing the artificial neural network based on the Allen’s temporal relations. The experimental results show that our combined method provides the higher recognition accuracy for various activities, as compared with other data mining classification algorithms. Furthermore, it is more appropriate for a dynamic environment like an IoT based smart home.

  15. Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor

    Science.gov (United States)

    Mitchell, Derek

    2016-05-01

    In the absence of human intervention, the honeybee ( Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW-1 K for wooden hives and greater than 5 kgW-1 K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW-1 K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.

  16. Urban Growth Modeling Using Cellular Automata with Multi-Temporal Remote Sensing Images Calibrated by the Artificial Bee Colony Optimization Algorithm.

    Science.gov (United States)

    Naghibi, Fereydoun; Delavar, Mahmoud Reza; Pijanowski, Bryan

    2016-12-14

    Cellular Automata (CA) is one of the most common techniques used to simulate the urbanization process. CA-based urban models use transition rules to deliver spatial patterns of urban growth and urban dynamics over time. Determining the optimum transition rules of the CA is a critical step because of the heterogeneity and nonlinearities existing among urban growth driving forces. Recently, new CA models integrated with optimization methods based on swarm intelligence algorithms were proposed to overcome this drawback. The Artificial Bee Colony (ABC) algorithm is an advanced meta-heuristic swarm intelligence-based algorithm. Here, we propose a novel CA-based urban change model that uses the ABC algorithm to extract optimum transition rules. We applied the proposed ABC-CA model to simulate future urban growth in Urmia (Iran) with multi-temporal Landsat images from 1997, 2006 and 2015. Validation of the simulation results was made through statistical methods such as overall accuracy, the figure of merit and total operating characteristics (TOC). Additionally, we calibrated the CA model by ant colony optimization (ACO) to assess the performance of our proposed model versus similar swarm intelligence algorithm methods. We showed that the overall accuracy and the figure of merit of the ABC-CA model are 90.1% and 51.7%, which are 2.9% and 8.8% higher than those of the ACO-CA model, respectively. Moreover, the allocation disagreement of the simulation results for the ABC-CA model is 9.9%, which is 2.9% less than that of the ACO-CA model. Finally, the ABC-CA model also outperforms the ACO-CA model with fewer quantity and allocation errors and slightly more hits.

  17. Segmentation of dermatoscopic images by frequency domain filtering and k-means clustering algorithms.

    Science.gov (United States)

    Rajab, Maher I

    2011-11-01

    Since the introduction of epiluminescence microscopy (ELM), image analysis tools have been extended to the field of dermatology, in an attempt to algorithmically reproduce clinical evaluation. Accurate image segmentation of skin lesions is one of the key steps for useful, early and non-invasive diagnosis of coetaneous melanomas. This paper proposes two image segmentation algorithms based on frequency domain processing and k-means clustering/fuzzy k-means clustering. The two methods are capable of segmenting and extracting the true border that reveals the global structure irregularity (indentations and protrusions), which may suggest excessive cell growth or regression of a melanoma. As a pre-processing step, Fourier low-pass filtering is applied to reduce the surrounding noise in a skin lesion image. A quantitative comparison of the techniques is enabled by the use of synthetic skin lesion images that model lesions covered with hair to which Gaussian noise is added. The proposed techniques are also compared with an established optimal-based thresholding skin-segmentation method. It is demonstrated that for lesions with a range of different border irregularity properties, the k-means clustering and fuzzy k-means clustering segmentation methods provide the best performance over a range of signal to noise ratios. The proposed segmentation techniques are also demonstrated to have similar performance when tested on real skin lesions representing high-resolution ELM images. This study suggests that the segmentation results obtained using a combination of low-pass frequency filtering and k-means or fuzzy k-means clustering are superior to the result that would be obtained by using k-means or fuzzy k-means clustering segmentation methods alone. © 2011 John Wiley & Sons A/S.

  18. Big Data GPU-Driven Parallel Processing Spatial and Spatio-Temporal Clustering Algorithms

    Science.gov (United States)

    Konstantaras, Antonios; Skounakis, Emmanouil; Kilty, James-Alexander; Frantzeskakis, Theofanis; Maravelakis, Emmanuel

    2016-04-01

    Advances in graphics processing units' technology towards encompassing parallel architectures [1], comprised of thousands of cores and multiples of parallel threads, provide the foundation in terms of hardware for the rapid processing of various parallel applications regarding seismic big data analysis. Seismic data are normally stored as collections of vectors in massive matrices, growing rapidly in size as wider areas are covered, denser recording networks are being established and decades of data are being compiled together [2]. Yet, many processes regarding seismic data analysis are performed on each seismic event independently or as distinct tiles [3] of specific grouped seismic events within a much larger data set. Such processes, independent of one another can be performed in parallel narrowing down processing times drastically [1,3]. This research work presents the development and implementation of three parallel processing algorithms using Cuda C [4] for the investigation of potentially distinct seismic regions [5,6] present in the vicinity of the southern Hellenic seismic arc. The algorithms, programmed and executed in parallel comparatively, are the: fuzzy k-means clustering with expert knowledge [7] in assigning overall clusters' number; density-based clustering [8]; and a selves-developed spatio-temporal clustering algorithm encompassing expert [9] and empirical knowledge [10] for the specific area under investigation. Indexing terms: GPU parallel programming, Cuda C, heterogeneous processing, distinct seismic regions, parallel clustering algorithms, spatio-temporal clustering References [1] Kirk, D. and Hwu, W.: 'Programming massively parallel processors - A hands-on approach', 2nd Edition, Morgan Kaufman Publisher, 2013 [2] Konstantaras, A., Valianatos, F., Varley, M.R. and Makris, J.P.: 'Soft-Computing Modelling of Seismicity in the Southern Hellenic Arc', Geoscience and Remote Sensing Letters, vol. 5 (3), pp. 323-327, 2008 [3] Papadakis, S. and

  19. A Spectrum Sensing Method Based on Signal Feature and Clustering Algorithm in Cognitive Wireless Multimedia Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yongwei Zhang

    2017-01-01

    Full Text Available In order to solve the problem of difficulty in determining the threshold in spectrum sensing technologies based on the random matrix theory, a spectrum sensing method based on clustering algorithm and signal feature is proposed for Cognitive Wireless Multimedia Sensor Networks. Firstly, the wireless communication signal features are obtained according to the sampling signal covariance matrix. Then, the clustering algorithm is used to classify and test the signal features. Different signal features and clustering algorithms are compared in this paper. The experimental results show that the proposed method has better sensing performance.

  20. The efficiency of average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling in identifying homogeneous precipitation catchments

    Science.gov (United States)

    Chuan, Zun Liang; Ismail, Noriszura; Shinyie, Wendy Ling; Lit Ken, Tan; Fam, Soo-Fen; Senawi, Azlyna; Yusoff, Wan Nur Syahidah Wan

    2018-04-01

    Due to the limited of historical precipitation records, agglomerative hierarchical clustering algorithms widely used to extrapolate information from gauged to ungauged precipitation catchments in yielding a more reliable projection of extreme hydro-meteorological events such as extreme precipitation events. However, identifying the optimum number of homogeneous precipitation catchments accurately based on the dendrogram resulted using agglomerative hierarchical algorithms are very subjective. The main objective of this study is to propose an efficient regionalized algorithm to identify the homogeneous precipitation catchments for non-stationary precipitation time series. The homogeneous precipitation catchments are identified using average linkage hierarchical clustering algorithm associated multi-scale bootstrap resampling, while uncentered correlation coefficient as the similarity measure. The regionalized homogeneous precipitation is consolidated using K-sample Anderson Darling non-parametric test. The analysis result shows the proposed regionalized algorithm performed more better compared to the proposed agglomerative hierarchical clustering algorithm in previous studies.

  1. A Smartphone Indoor Localization Algorithm Based on WLAN Location Fingerprinting with Feature Extraction and Clustering.

    Science.gov (United States)

    Luo, Junhai; Fu, Liang

    2017-06-09

    With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS), which is collected from Access Points (APs). The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA) is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC) algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML) estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.

  2. A Smartphone Indoor Localization Algorithm Based on WLAN Location Fingerprinting with Feature Extraction and Clustering

    Directory of Open Access Journals (Sweden)

    Junhai Luo

    2017-06-01

    Full Text Available With the development of communication technology, the demand for location-based services is growing rapidly. This paper presents an algorithm for indoor localization based on Received Signal Strength (RSS, which is collected from Access Points (APs. The proposed localization algorithm contains the offline information acquisition phase and online positioning phase. Firstly, the AP selection algorithm is reviewed and improved based on the stability of signals to remove useless AP; secondly, Kernel Principal Component Analysis (KPCA is analyzed and used to remove the data redundancy and maintain useful characteristics for nonlinear feature extraction; thirdly, the Affinity Propagation Clustering (APC algorithm utilizes RSS values to classify data samples and narrow the positioning range. In the online positioning phase, the classified data will be matched with the testing data to determine the position area, and the Maximum Likelihood (ML estimate will be employed for precise positioning. Eventually, the proposed algorithm is implemented in a real-world environment for performance evaluation. Experimental results demonstrate that the proposed algorithm improves the accuracy and computational complexity.

  3. An image segmentation method based on fuzzy C-means clustering and Cuckoo search algorithm

    Science.gov (United States)

    Wang, Mingwei; Wan, Youchuan; Gao, Xianjun; Ye, Zhiwei; Chen, Maolin

    2018-04-01

    Image segmentation is a significant step in image analysis and machine vision. Many approaches have been presented in this topic; among them, fuzzy C-means (FCM) clustering is one of the most widely used methods for its high efficiency and ambiguity of images. However, the success of FCM could not be guaranteed because it easily traps into local optimal solution. Cuckoo search (CS) is a novel evolutionary algorithm, which has been tested on some optimization problems and proved to be high-efficiency. Therefore, a new segmentation technique using FCM and blending of CS algorithm is put forward in the paper. Further, the proposed method has been measured on several images and compared with other existing FCM techniques such as genetic algorithm (GA) based FCM and particle swarm optimization (PSO) based FCM in terms of fitness value. Experimental results indicate that the proposed method is robust, adaptive and exhibits the better performance than other methods involved in the paper.

  4. Evaluating patterns of a white-band disease (WBD outbreak in Acropora palmata using spatial analysis: a comparison of transect and colony clustering.

    Directory of Open Access Journals (Sweden)

    Jennifer A Lentz

    Full Text Available BACKGROUND: Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD, a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands. METHODOLOGY/PRINCIPAL FINDINGS: Ripley's K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect and transect-level (presence/absence of WBD within transects data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley's K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1 at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD. CONCLUSIONS: As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other

  5. Evaluating patterns of a white-band disease (WBD) outbreak in Acropora palmata using spatial analysis: a comparison of transect and colony clustering.

    Science.gov (United States)

    Lentz, Jennifer A; Blackburn, Jason K; Curtis, Andrew J

    2011-01-01

    Despite being one of the first documented, there is little known of the causative agent or environmental stressors that promote white-band disease (WBD), a major disease of Caribbean Acropora palmata. Likewise, there is little known about the spatiality of outbreaks. We examined the spatial patterns of WBD during a 2004 outbreak at Buck Island Reef National Monument in the US Virgin Islands. Ripley's K statistic was used to measure spatial dependence of WBD across scales. Localized clusters of WBD were identified using the DMAP spatial filtering technique. Statistics were calculated for colony- (number of A. palmata colonies with and without WBD within each transect) and transect-level (presence/absence of WBD within transects) data to evaluate differences in spatial patterns at each resolution of coral sampling. The Ripley's K plots suggest WBD does cluster within the study area, and approached statistical significance (p = 0.1) at spatial scales of 1100 m or less. Comparisons of DMAP results suggest the transect-level overestimated the prevalence and spatial extent of the outbreak. In contrast, more realistic prevalence estimates and spatial patterns were found by weighting each transect by the number of individual A. palmata colonies with and without WBD. As the search for causation continues, surveillance and proper documentation of the spatial patterns may inform etiology, and at the same time assist reef managers in allocating resources to tracking the disease. Our results indicate that the spatial scale of data collected can drastically affect the calculation of prevalence and spatial distribution of WBD outbreaks. Specifically, we illustrate that higher resolution sampling resulted in more realistic disease estimates. This should assist in selecting appropriate sampling designs for future outbreak investigations. The spatial techniques used here can be used to facilitate other coral disease studies, as well as, improve reef conservation and management.

  6. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    Directory of Open Access Journals (Sweden)

    Xiang-ming Gao

    2017-01-01

    Full Text Available Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD and support vector machine (SVM optimized with an artificial bee colony (ABC algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  7. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction.

    Science.gov (United States)

    Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  8. Clustering of tethered satellite system simulation data by an adaptive neuro-fuzzy algorithm

    Science.gov (United States)

    Mitra, Sunanda; Pemmaraju, Surya

    1992-01-01

    Recent developments in neuro-fuzzy systems indicate that the concepts of adaptive pattern recognition, when used to identify appropriate control actions corresponding to clusters of patterns representing system states in dynamic nonlinear control systems, may result in innovative designs. A modular, unsupervised neural network architecture, in which fuzzy learning rules have been embedded is used for on-line identification of similar states. The architecture and control rules involved in Adaptive Fuzzy Leader Clustering (AFLC) allow this system to be incorporated in control systems for identification of system states corresponding to specific control actions. We have used this algorithm to cluster the simulation data of Tethered Satellite System (TSS) to estimate the range of delta voltages necessary to maintain the desired length rate of the tether. The AFLC algorithm is capable of on-line estimation of the appropriate control voltages from the corresponding length error and length rate error without a priori knowledge of their membership functions and familarity with the behavior of the Tethered Satellite System.

  9. An Efficient MapReduce-Based Parallel Clustering Algorithm for Distributed Traffic Subarea Division

    Directory of Open Access Journals (Sweden)

    Dawen Xia

    2015-01-01

    Full Text Available Traffic subarea division is vital for traffic system management and traffic network analysis in intelligent transportation systems (ITSs. Since existing methods may not be suitable for big traffic data processing, this paper presents a MapReduce-based Parallel Three-Phase K-Means (Par3PKM algorithm for solving traffic subarea division problem on a widely adopted Hadoop distributed computing platform. Specifically, we first modify the distance metric and initialization strategy of K-Means and then employ a MapReduce paradigm to redesign the optimized K-Means algorithm for parallel clustering of large-scale taxi trajectories. Moreover, we propose a boundary identifying method to connect the borders of clustering results for each cluster. Finally, we divide traffic subarea of Beijing based on real-world trajectory data sets generated by 12,000 taxis in a period of one month using the proposed approach. Experimental evaluation results indicate that when compared with K-Means, Par2PK-Means, and ParCLARA, Par3PKM achieves higher efficiency, more accuracy, and better scalability and can effectively divide traffic subarea with big taxi trajectory data.

  10. A Network-Based Algorithm for Clustering Multivariate Repeated Measures Data

    Science.gov (United States)

    Koslovsky, Matthew; Arellano, John; Schaefer, Caroline; Feiveson, Alan; Young, Millennia; Lee, Stuart

    2017-01-01

    The National Aeronautics and Space Administration (NASA) Astronaut Corps is a unique occupational cohort for which vast amounts of measures data have been collected repeatedly in research or operational studies pre-, in-, and post-flight, as well as during multiple clinical care visits. In exploratory analyses aimed at generating hypotheses regarding physiological changes associated with spaceflight exposure, such as impaired vision, it is of interest to identify anomalies and trends across these expansive datasets. Multivariate clustering algorithms for repeated measures data may help parse the data to identify homogeneous groups of astronauts that have higher risks for a particular physiological change. However, available clustering methods may not be able to accommodate the complex data structures found in NASA data, since the methods often rely on strict model assumptions, require equally-spaced and balanced assessment times, cannot accommodate missing data or differing time scales across variables, and cannot process continuous and discrete data simultaneously. To fill this gap, we propose a network-based, multivariate clustering algorithm for repeated measures data that can be tailored to fit various research settings. Using simulated data, we demonstrate how our method can be used to identify patterns in complex data structures found in practice.

  11. Clustering and Genetic Algorithm Based Hybrid Flowshop Scheduling with Multiple Operations

    Directory of Open Access Journals (Sweden)

    Yingfeng Zhang

    2014-01-01

    Full Text Available This research is motivated by a flowshop scheduling problem of our collaborative manufacturing company for aeronautic products. The heat-treatment stage (HTS and precision forging stage (PFS of the case are selected as a two-stage hybrid flowshop system. In HTS, there are four parallel machines and each machine can process a batch of jobs simultaneously. In PFS, there are two machines. Each machine can install any module of the four modules for processing the workpeices with different sizes. The problem is characterized by many constraints, such as batching operation, blocking environment, and setup time and working time limitations of modules, and so forth. In order to deal with the above special characteristics, the clustering and genetic algorithm is used to calculate the good solution for the two-stage hybrid flowshop problem. The clustering is used to group the jobs according to the processing ranges of the different modules of PFS. The genetic algorithm is used to schedule the optimal sequence of the grouped jobs for the HTS and PFS. Finally, a case study is used to demonstrate the efficiency and effectiveness of the designed genetic algorithm.

  12. Clustering Educational Digital Library Usage Data: A Comparison of Latent Class Analysis and K-Means Algorithms

    Science.gov (United States)

    Xu, Beijie; Recker, Mimi; Qi, Xiaojun; Flann, Nicholas; Ye, Lei

    2013-01-01

    This article examines clustering as an educational data mining method. In particular, two clustering algorithms, the widely used K-means and the model-based Latent Class Analysis, are compared, using usage data from an educational digital library service, the Instructional Architect (IA.usu.edu). Using a multi-faceted approach and multiple data…

  13. A Knowledge-Informed and Pareto-Based Artificial Bee Colony Optimization Algorithm for Multi-Objective Land-Use Allocation

    Directory of Open Access Journals (Sweden)

    Lina Yang

    2018-02-01

    Full Text Available Land-use allocation is of great significance in urban development. This type of allocation is usually considered to be a complex multi-objective spatial optimization problem, whose optimized result is a set of Pareto-optimal solutions (Pareto front reflecting different tradeoffs in several objectives. However, obtaining a Pareto front is a challenging task, and the Pareto front obtained by state-of-the-art algorithms is still not sufficient. To achieve better Pareto solutions, taking the grid-representative land-use allocation problem with two objectives as an example, an artificial bee colony optimization algorithm for multi-objective land-use allocation (ABC-MOLA is proposed. In this algorithm, the traditional ABC’s search direction guiding scheme and solution maintaining process are modified. In addition, a knowledge-informed neighborhood search strategy, which utilizes the auxiliary knowledge of natural geography and spatial structures to facilitate the neighborhood spatial search around each solution, is developed to further improve the Pareto front’s quality. A series of comparison experiments (a simulated experiment with small data volume and a real-world data experiment for a large area shows that all the Pareto fronts obtained by ABC-MOLA totally dominate the Pareto fronts by other algorithms, which demonstrates ABC-MOLA’s effectiveness in achieving Pareto fronts of high quality.

  14. A Distributed Algorithm for the Cluster-Based Outlier Detection Using Unsupervised Extreme Learning Machines

    Directory of Open Access Journals (Sweden)

    Xite Wang

    2017-01-01

    Full Text Available Outlier detection is an important data mining task, whose target is to find the abnormal or atypical objects from a given dataset. The techniques for detecting outliers have a lot of applications, such as credit card fraud detection and environment monitoring. Our previous work proposed the Cluster-Based (CB outlier and gave a centralized method using unsupervised extreme learning machines to compute CB outliers. In this paper, we propose a new distributed algorithm for the CB outlier detection (DACB. On the master node, we collect a small number of points from the slave nodes to obtain a threshold. On each slave node, we design a new filtering method that can use the threshold to efficiently speed up the computation. Furthermore, we also propose a ranking method to optimize the order of cluster scanning. At last, the effectiveness and efficiency of the proposed approaches are verified through a plenty of simulation experiments.

  15. Development of a Genetic Algorithm to Automate Clustering of a Dependency Structure Matrix

    Science.gov (United States)

    Rogers, James L.; Korte, John J.; Bilardo, Vincent J.

    2006-01-01

    Much technology assessment and organization design data exists in Microsoft Excel spreadsheets. Tools are needed to put this data into a form that can be used by design managers to make design decisions. One need is to cluster data that is highly coupled. Tools such as the Dependency Structure Matrix (DSM) and a Genetic Algorithm (GA) can be of great benefit. However, no tool currently combines the DSM and a GA to solve the clustering problem. This paper describes a new software tool that interfaces a GA written as an Excel macro with a DSM in spreadsheet format. The results of several test cases are included to demonstrate how well this new tool works.

  16. Implementation of the ALICE HLT hardware cluster finder algorithm in Vivado HLS

    Energy Technology Data Exchange (ETDEWEB)

    Gruell, Frederik; Engel, Heiko; Kebschull, Udo [Infrastructure and Computer Systems in Data Processing, Goethe University Frankfurt (Germany); Collaboration: ALICE-Collaboration

    2016-07-01

    The FastClusterFinder algorithm running in the ALICE High-Level Trigger (HLT) read-out boards extracts clusters from raw data from the Time Projection Chamber (TPC) detector and forwards them to the HLT data processing framework for tracking, event reconstruction and compression. It serves as an early stage of feature extraction in the FPGA of the board. Past and current implementations are written in VHDL on reconfigurable hardware for high throughput and low latency. We examine Vivado HLS, a high-level language that promises an increased developer productivity, as an alternative. The implementation of the application is compared to descriptions in VHDL and MaxJ in terms of productivity, resource usage and maximum clock frequency.

  17. Implementation of Automatic Clustering Algorithm and Fuzzy Time Series in Motorcycle Sales Forecasting

    Science.gov (United States)

    Rasim; Junaeti, E.; Wirantika, R.

    2018-01-01

    Accurate forecasting for the sale of a product depends on the forecasting method used. The purpose of this research is to build motorcycle sales forecasting application using Fuzzy Time Series method combined with interval determination using automatic clustering algorithm. Forecasting is done using the sales data of motorcycle sales in the last ten years. Then the error rate of forecasting is measured using Means Percentage Error (MPE) and Means Absolute Percentage Error (MAPE). The results of forecasting in the one-year period obtained in this study are included in good accuracy.

  18. Clustering Multiple Sclerosis Subgroups with Multifractal Methods and Self-Organizing Map Algorithm

    Science.gov (United States)

    Karaca, Yeliz; Cattani, Carlo

    Magnetic resonance imaging (MRI) is the most sensitive method to detect chronic nervous system diseases such as multiple sclerosis (MS). In this paper, Brownian motion Hölder regularity functions (polynomial, periodic (sine), exponential) for 2D image, such as multifractal methods were applied to MR brain images, aiming to easily identify distressed regions, in MS patients. With these regions, we have proposed an MS classification based on the multifractal method by using the Self-Organizing Map (SOM) algorithm. Thus, we obtained a cluster analysis by identifying pixels from distressed regions in MR images through multifractal methods and by diagnosing subgroups of MS patients through artificial neural networks.

  19. Mobility-Aware and Load Balancing Based Clustering Algorithm for Energy Conservation in MANET

    Institute of Scientific and Technical Information of China (English)

    XU Li; ZHENG Bao-yu; GUO Gong-de

    2005-01-01

    Mobile ad hoc network (MANET) is one of wireless communication network architecture that has received a lot of attention. MANET is characterized by dynamic network topology and limited energy. With mobility-aware and load balancing based clustering algorithm (MLCA), this paper proposes a new topology management strategy to conserve energy. Performance simulation results show that the proposed MLCA strategy can balances the traffic load inside the whole network, so as to prolong the network lifetime, meanly, at the same time, achieve higher throughput ratio and network stability.

  20. Parallel implementation of D-Phylo algorithm for maximum likelihood clusters.

    Science.gov (United States)

    Malik, Shamita; Sharma, Dolly; Khatri, Sunil Kumar

    2017-03-01

    This study explains a newly developed parallel algorithm for phylogenetic analysis of DNA sequences. The newly designed D-Phylo is a more advanced algorithm for phylogenetic analysis using maximum likelihood approach. The D-Phylo while misusing the seeking capacity of k -means keeps away from its real constraint of getting stuck at privately conserved motifs. The authors have tested the behaviour of D-Phylo on Amazon Linux Amazon Machine Image(Hardware Virtual Machine)i2.4xlarge, six central processing unit, 122 GiB memory, 8  ×  800 Solid-state drive Elastic Block Store volume, high network performance up to 15 processors for several real-life datasets. Distributing the clusters evenly on all the processors provides us the capacity to accomplish a near direct speed if there should arise an occurrence of huge number of processors.

  1. [A cloud detection algorithm for MODIS images combining Kmeans clustering and multi-spectral threshold method].

    Science.gov (United States)

    Wang, Wei; Song, Wei-Guo; Liu, Shi-Xing; Zhang, Yong-Ming; Zheng, Hong-Yang; Tian, Wei

    2011-04-01

    An improved method for detecting cloud combining Kmeans clustering and the multi-spectral threshold approach is described. On the basis of landmark spectrum analysis, MODIS data is categorized into two major types initially by Kmeans method. The first class includes clouds, smoke and snow, and the second class includes vegetation, water and land. Then a multi-spectral threshold detection is applied to eliminate interference such as smoke and snow for the first class. The method is tested with MODIS data at different time under different underlying surface conditions. By visual method to test the performance of the algorithm, it was found that the algorithm can effectively detect smaller area of cloud pixels and exclude the interference of underlying surface, which provides a good foundation for the next fire detection approach.

  2. Genetic algorithm with fuzzy clustering for optimization of nuclear reactor problems

    International Nuclear Information System (INIS)

    Machado, Marcelo Dornellas; Sacco, Wagner Figueiredo; Schirru, Roberto

    2000-01-01

    Genetic Algorithms (GAs) are biologically motivated adaptive systems which have been used, with good results, in function optimization. However, traditional GAs rapidly push an artificial population toward convergence. That is, all individuals in the population soon become nearly identical. Niching Methods allow genetic algorithms to maintain a population of diverse individuals. GAs that incorporate these methods are capable of locating multiple, optimal solutions within a single population. The purpose of this study is to introduce a new niching technique based on the fuzzy clustering method FCM, bearing in mind its eventual application in nuclear reactor related problems, specially the nuclear reactor core reload one, which has multiple solutions. tests are performed using widely known test functions and their results show that the new method is quite promising, specially to a future application in real world problems like the nuclear reactor core reload. (author)

  3. Performance Analysis of Combined Methods of Genetic Algorithm and K-Means Clustering in Determining the Value of Centroid

    Science.gov (United States)

    Adya Zizwan, Putra; Zarlis, Muhammad; Budhiarti Nababan, Erna

    2017-12-01

    The determination of Centroid on K-Means Algorithm directly affects the quality of the clustering results. Determination of centroid by using random numbers has many weaknesses. The GenClust algorithm that combines the use of Genetic Algorithms and K-Means uses a genetic algorithm to determine the centroid of each cluster. The use of the GenClust algorithm uses 50% chromosomes obtained through deterministic calculations and 50% is obtained from the generation of random numbers. This study will modify the use of the GenClust algorithm in which the chromosomes used are 100% obtained through deterministic calculations. The results of this study resulted in performance comparisons expressed in Mean Square Error influenced by centroid determination on K-Means method by using GenClust method, modified GenClust method and also classic K-Means.

  4. Automated segmentation of white matter fiber bundles using diffusion tensor imaging data and a new density based clustering algorithm.

    Science.gov (United States)

    Kamali, Tahereh; Stashuk, Daniel

    2016-10-01

    Robust and accurate segmentation of brain white matter (WM) fiber bundles assists in diagnosing and assessing progression or remission of neuropsychiatric diseases such as schizophrenia, autism and depression. Supervised segmentation methods are infeasible in most applications since generating gold standards is too costly. Hence, there is a growing interest in designing unsupervised methods. However, most conventional unsupervised methods require the number of clusters be known in advance which is not possible in most applications. The purpose of this study is to design an unsupervised segmentation algorithm for brain white matter fiber bundles which can automatically segment fiber bundles using intrinsic diffusion tensor imaging data information without considering any prior information or assumption about data distributions. Here, a new density based clustering algorithm called neighborhood distance entropy consistency (NDEC), is proposed which discovers natural clusters within data by simultaneously utilizing both local and global density information. The performance of NDEC is compared with other state of the art clustering algorithms including chameleon, spectral clustering, DBSCAN and k-means using Johns Hopkins University publicly available diffusion tensor imaging data. The performance of NDEC and other employed clustering algorithms were evaluated using dice ratio as an external evaluation criteria and density based clustering validation (DBCV) index as an internal evaluation metric. Across all employed clustering algorithms, NDEC obtained the highest average dice ratio (0.94) and DBCV value (0.71). NDEC can find clusters with arbitrary shapes and densities and consequently can be used for WM fiber bundle segmentation where there is no distinct boundary between various bundles. NDEC may also be used as an effective tool in other pattern recognition and medical diagnostic systems in which discovering natural clusters within data is a necessity. Copyright

  5. Using Hierarchical Time Series Clustering Algorithm and Wavelet Classifier for Biometric Voice Classification

    Directory of Open Access Journals (Sweden)

    Simon Fong

    2012-01-01

    Full Text Available Voice biometrics has a long history in biosecurity applications such as verification and identification based on characteristics of the human voice. The other application called voice classification which has its important role in grouping unlabelled voice samples, however, has not been widely studied in research. Lately voice classification is found useful in phone monitoring, classifying speakers’ gender, ethnicity and emotion states, and so forth. In this paper, a collection of computational algorithms are proposed to support voice classification; the algorithms are a combination of hierarchical clustering, dynamic time wrap transform, discrete wavelet transform, and decision tree. The proposed algorithms are relatively more transparent and interpretable than the existing ones, though many techniques such as Artificial Neural Networks, Support Vector Machine, and Hidden Markov Model (which inherently function like a black box have been applied for voice verification and voice identification. Two datasets, one that is generated synthetically and the other one empirically collected from past voice recognition experiment, are used to verify and demonstrate the effectiveness of our proposed voice classification algorithm.

  6. Automated spike sorting algorithm based on Laplacian eigenmaps and k-means clustering.

    Science.gov (United States)

    Chah, E; Hok, V; Della-Chiesa, A; Miller, J J H; O'Mara, S M; Reilly, R B

    2011-02-01

    This study presents a new automatic spike sorting method based on feature extraction by Laplacian eigenmaps combined with k-means clustering. The performance of the proposed method was compared against previously reported algorithms such as principal component analysis (PCA) and amplitude-based feature extraction. Two types of classifier (namely k-means and classification expectation-maximization) were incorporated within the spike sorting algorithms, in order to find a suitable classifier for the feature sets. Simulated data sets and in-vivo tetrode multichannel recordings were employed to assess the performance of the spike sorting algorithms. The results show that the proposed algorithm yields significantly improved performance with mean sorting accuracy of 73% and sorting error of 10% compared to PCA which combined with k-means had a sorting accuracy of 58% and sorting error of 10%.A correction was made to this article on 22 February 2011. The spacing of the title was amended on the abstract page. No changes were made to the article PDF and the print version was unaffected.

  7. An Energy-Efficient Spectrum-Aware Reinforcement Learning-Based Clustering Algorithm for Cognitive Radio Sensor Networks.

    Science.gov (United States)

    Mustapha, Ibrahim; Mohd Ali, Borhanuddin; Rasid, Mohd Fadlee A; Sali, Aduwati; Mohamad, Hafizal

    2015-08-13

    It is well-known that clustering partitions network into logical groups of nodes in order to achieve energy efficiency and to enhance dynamic channel access in cognitive radio through cooperative sensing. While the topic of energy efficiency has been well investigated in conventional wireless sensor networks, the latter has not been extensively explored. In this paper, we propose a reinforcement learning-based spectrum-aware clustering algorithm that allows a member node to learn the energy and cooperative sensing costs for neighboring clusters to achieve an optimal solution. Each member node selects an optimal cluster that satisfies pairwise constraints, minimizes network energy consumption and enhances channel sensing performance through an exploration technique. We first model the network energy consumption and then determine the optimal number of clusters for the network. The problem of selecting an optimal cluster is formulated as a Markov Decision Process (MDP) in the algorithm and the obtained simulation results show convergence, learning and adaptability of the algorithm to dynamic environment towards achieving an optimal solution. Performance comparisons of our algorithm with the Groupwise Spectrum Aware (GWSA)-based algorithm in terms of Sum of Square Error (SSE), complexity, network energy consumption and probability of detection indicate improved performance from the proposed approach. The results further reveal that an energy savings of 9% and a significant Primary User (PU) detection improvement can be achieved with the proposed approach.

  8. A Novel Energy-Aware Distributed Clustering Algorithm for Heterogeneous Wireless Sensor Networks in the Mobile Environment.

    Science.gov (United States)

    Gao, Ying; Wkram, Chris Hadri; Duan, Jiajie; Chou, Jarong

    2015-12-10

    In order to prolong the network lifetime, energy-efficient protocols adapted to the features of wireless sensor networks should be used. This paper explores in depth the nature of heterogeneous wireless sensor networks, and finally proposes an algorithm to address the problem of finding an effective pathway for heterogeneous clustering energy. The proposed algorithm implements cluster head selection according to the degree of energy attenuation during the network's running and the degree of candidate nodes' effective coverage on the whole network, so as to obtain an even energy consumption over the whole network for the situation with high degree of coverage. Simulation results show that the proposed clustering protocol has better adaptability to heterogeneous environments than existing clustering algorithms in prolonging the network lifetime.

  9. Optimizing Energy Consumption in Vehicular Sensor Networks by Clustering Using Fuzzy C-Means and Fuzzy Subtractive Algorithms

    Science.gov (United States)

    Ebrahimi, A.; Pahlavani, P.; Masoumi, Z.

    2017-09-01

    Traffic monitoring and managing in urban intelligent transportation systems (ITS) can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC) for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs); moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH), and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM) and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  10. OPTIMIZING ENERGY CONSUMPTION IN VEHICULAR SENSOR NETWORKS BY CLUSTERING USING FUZZY C-MEANS AND FUZZY SUBTRACTIVE ALGORITHMS

    Directory of Open Access Journals (Sweden)

    A. Ebrahimi

    2017-09-01

    Full Text Available Traffic monitoring and managing in urban intelligent transportation systems (ITS can be carried out based on vehicular sensor networks. In a vehicular sensor network, vehicles equipped with sensors such as GPS, can act as mobile sensors for sensing the urban traffic and sending the reports to a traffic monitoring center (TMC for traffic estimation. The energy consumption by the sensor nodes is a main problem in the wireless sensor networks (WSNs; moreover, it is the most important feature in designing these networks. Clustering the sensor nodes is considered as an effective solution to reduce the energy consumption of WSNs. Each cluster should have a Cluster Head (CH, and a number of nodes located within its supervision area. The cluster heads are responsible for gathering and aggregating the information of clusters. Then, it transmits the information to the data collection center. Hence, the use of clustering decreases the volume of transmitting information, and, consequently, reduces the energy consumption of network. In this paper, Fuzzy C-Means (FCM and Fuzzy Subtractive algorithms are employed to cluster sensors and investigate their performance on the energy consumption of sensors. It can be seen that the FCM algorithm and Fuzzy Subtractive have been reduced energy consumption of vehicle sensors up to 90.68% and 92.18%, respectively. Comparing the performance of the algorithms implies the 1.5 percent improvement in Fuzzy Subtractive algorithm in comparison.

  11. A DISTRIBUTED ENERGY EFFICIENT CLUSTERING ALGORITHM FOR DATA AGGREGATION IN WIRELESS SENSOR NETWORKS

    Directory of Open Access Journals (Sweden)

    Seyed Mohammad Bagher Musavi Shirazi

    2018-06-01

    Full Text Available Wireless sensor networks (WSNs are a new generation of networks typically consisting of a large number of inexpensive nodes with wireless communications. The main purpose of these networks is to collect information from the environment for further processing. Nodes in the network have been equipped with limited battery lifetime, so energy saving is one of the major issues in WSNs. If we balance the load among cluster heads and prevent having an extra load on just a few nodes in the network, we can reach longer network lifetime. One solution to control energy consumption and balance the load among nodes is to use clustering techniques. In this paper, we propose a new distributed energy-efficient clustering algorithm for data aggregation in wireless sensor networks, called Distributed Clustering for Data Aggregation (DCDA. In our new approach, an optimal transmission tree is constructed among sensor nodes with a new greedy method. Base station (BS is the root, cluster heads (CHs and relay nodes are intermediate nodes, and other nodes (cluster member nodes are the leaves of this transmission tree. DCDA balances load among CHs in intra-cluster and inter-cluster data communications using different cluster sizes. For efficient inter-cluster communications, some relay nodes will transfer data between CHs. Energy consumption, distance to the base station, and cluster heads’ centric metric are three main adjustment parameters for the cluster heads election. Simulation results show that the proposed protocol leads to the reduction of individual sensor nodes’ energy consumption and prolongs network lifetime, in comparison with other known methods. ABSTRAK: Rangkaian sensor wayarles (WSN adalah rangkaian generasi baru yang terdiri daripada nod-nod murah komunikasi wayarles. Tujuan rangkaian-rangkaian ini adalah bagi mengumpul maklumat sekeliling untuk proses seterusnya. Nod dalam rangkaian ini dilengkapi bateri kurang jangka hayat, jadi simpanan tenaga

  12. KANTS: a stigmergic ant algorithm for cluster analysis and swarm art.

    Science.gov (United States)

    Fernandes, Carlos M; Mora, Antonio M; Merelo, Juan J; Rosa, Agostinho C

    2014-06-01

    KANTS is a swarm intelligence clustering algorithm inspired by the behavior of social insects. It uses stigmergy as a strategy for clustering large datasets and, as a result, displays a typical behavior of complex systems: self-organization and global patterns emerging from the local interaction of simple units. This paper introduces a simplified version of KANTS and describes recent experiments with the algorithm in the context of a contemporary artistic and scientific trend called swarm art, a type of generative art in which swarm intelligence systems are used to create artwork or ornamental objects. KANTS is used here for generating color drawings from the input data that represent real-world phenomena, such as electroencephalogram sleep data. However, the main proposal of this paper is an art project based on well-known abstract paintings, from which the chromatic values are extracted and used as input. Colors and shapes are therefore reorganized by KANTS, which generates its own interpretation of the original artworks. The project won the 2012 Evolutionary Art, Design, and Creativity Competition.

  13. A Novel Method to Predict Genomic Islands Based on Mean Shift Clustering Algorithm.

    Directory of Open Access Journals (Sweden)

    Daniel M de Brito

    Full Text Available Genomic Islands (GIs are regions of bacterial genomes that are acquired from other organisms by the phenomenon of horizontal transfer. These regions are often responsible for many important acquired adaptations of the bacteria, with great impact on their evolution and behavior. Nevertheless, these adaptations are usually associated with pathogenicity, antibiotic resistance, degradation and metabolism. Identification of such regions is of medical and industrial interest. For this reason, different approaches for genomic islands prediction have been proposed. However, none of them are capable of predicting precisely the complete repertory of GIs in a genome. The difficulties arise due to the changes in performance of different algorithms in the face of the variety of nucleotide distribution in different species. In this paper, we present a novel method to predict GIs that is built upon mean shift clustering algorithm. It does not require any information regarding the number of clusters, and the bandwidth parameter is automatically calculated based on a heuristic approach. The method was implemented in a new user-friendly tool named MSGIP--Mean Shift Genomic Island Predictor. Genomes of bacteria with GIs discussed in other papers were used to evaluate the proposed method. The application of this tool revealed the same GIs predicted by other methods and also different novel unpredicted islands. A detailed investigation of the different features related to typical GI elements inserted in these new regions confirmed its effectiveness. Stand-alone and user-friendly versions for this new methodology are available at http://msgip.integrativebioinformatics.me.

  14. A Hybrid Spectral Clustering and Deep Neural Network Ensemble Algorithm for Intrusion Detection in Sensor Networks.

    Science.gov (United States)

    Ma, Tao; Wang, Fen; Cheng, Jianjun; Yu, Yang; Chen, Xiaoyun

    2016-10-13

    The development of intrusion detection systems (IDS) that are adapted to allow routers and network defence systems to detect malicious network traffic disguised as network protocols or normal access is a critical challenge. This paper proposes a novel approach called SCDNN, which combines spectral clustering (SC) and deep neural network (DNN) algorithms. First, the dataset is divided into k subsets based on sample similarity using cluster centres, as in SC. Next, the distance between data points in a testing set and the training set is measured based on similarity features and is fed into the deep neural network algorithm for intrusion detection. Six KDD-Cup99 and NSL-KDD datasets and a sensor network dataset were employed to test the performance of the model. These experimental results indicate that the SCDNN classifier not only performs better than backpropagation neural network (BPNN), support vector machine (SVM), random forest (RF) and Bayes tree models in detection accuracy and the types of abnormal attacks found. It also provides an effective tool of study and analysis of intrusion detection in large networks.

  15. Are judgments a form of data clustering? Reexamining contrast effects with the k-means algorithm.

    Science.gov (United States)

    Boillaud, Eric; Molina, Guylaine

    2015-04-01

    A number of theories have been proposed to explain in precise mathematical terms how statistical parameters and sequential properties of stimulus distributions affect category ratings. Various contextual factors such as the mean, the midrange, and the median of the stimuli; the stimulus range; the percentile rank of each stimulus; and the order of appearance have been assumed to influence judgmental contrast. A data clustering reinterpretation of judgmental relativity is offered wherein the influence of the initial choice of centroids on judgmental contrast involves 2 combined frequency and consistency tendencies. Accounts of the k-means algorithm are provided, showing good agreement with effects observed on multiple distribution shapes and with a variety of interaction effects relating to the number of stimuli, the number of response categories, and the method of skewing. Experiment 1 demonstrates that centroid initialization accounts for contrast effects obtained with stretched distributions. Experiment 2 demonstrates that the iterative convergence inherent to the k-means algorithm accounts for the contrast reduction observed across repeated blocks of trials. The concept of within-cluster variance minimization is discussed, as is the applicability of a backward k-means calculation method for inferring, from empirical data, the values of the centroids that would serve as a representation of the judgmental context. (c) 2015 APA, all rights reserved.

  16. Consumers' Kansei Needs Clustering Method for Product Emotional Design Based on Numerical Design Structure Matrix and Genetic Algorithms.

    Science.gov (United States)

    Yang, Yan-Pu; Chen, Deng-Kai; Gu, Rong; Gu, Yu-Feng; Yu, Sui-Huai

    2016-01-01

    Consumers' Kansei needs reflect their perception about a product and always consist of a large number of adjectives. Reducing the dimension complexity of these needs to extract primary words not only enables the target product to be explicitly positioned, but also provides a convenient design basis for designers engaging in design work. Accordingly, this study employs a numerical design structure matrix (NDSM) by parameterizing a conventional DSM and integrating genetic algorithms to find optimum Kansei clusters. A four-point scale method is applied to assign link weights of every two Kansei adjectives as values of cells when constructing an NDSM. Genetic algorithms are used to cluster the Kansei NDSM and find optimum clusters. Furthermore, the process of the proposed method is presented. The details of the proposed approach are illustrated using an example of electronic scooter for Kansei needs clustering. The case study reveals that the proposed method is promising for clustering Kansei needs adjectives in product emotional design.

  17. 2D evaluation of spectral LIBS data derived from heterogeneous materials using cluster algorithm

    Science.gov (United States)

    Gottlieb, C.; Millar, S.; Grothe, S.; Wilsch, G.

    2017-08-01

    Laser-induced Breakdown Spectroscopy (LIBS) is capable of providing spatially resolved element maps in regard to the chemical composition of the sample. The evaluation of heterogeneous materials is often a challenging task, especially in the case of phase boundaries. In order to determine information about a certain phase of a material, the need for a method that offers an objective evaluation is necessary. This paper will introduce a cluster algorithm in the case of heterogeneous building materials (concrete) to separate the spectral information of non-relevant aggregates and cement matrix. In civil engineering, the information about the quantitative ingress of harmful species like Cl-, Na+ and SO42- is of great interest in the evaluation of the remaining lifetime of structures (Millar et al., 2015; Wilsch et al., 2005). These species trigger different damage processes such as the alkali-silica reaction (ASR) or the chloride-induced corrosion of the reinforcement. Therefore, a discrimination between the different phases, mainly cement matrix and aggregates, is highly important (Weritz et al., 2006). For the 2D evaluation, the expectation-maximization-algorithm (EM algorithm; Ester and Sander, 2000) has been tested for the application presented in this work. The method has been introduced and different figures of merit have been presented according to recommendations given in Haddad et al. (2014). Advantages of this method will be highlighted. After phase separation, non-relevant information can be excluded and only the wanted phase displayed. Using a set of samples with known and unknown composition, the EM-clustering method has been validated regarding to Gustavo González and Ángeles Herrador (2007).

  18. Developing the fuzzy c-means clustering algorithm based on maximum entropy for multitarget tracking in a cluttered environment

    Science.gov (United States)

    Chen, Xiao; Li, Yaan; Yu, Jing; Li, Yuxing

    2018-01-01

    For fast and more effective implementation of tracking multiple targets in a cluttered environment, we propose a multiple targets tracking (MTT) algorithm called maximum entropy fuzzy c-means clustering joint probabilistic data association that combines fuzzy c-means clustering and the joint probabilistic data association (PDA) algorithm. The algorithm uses the membership value to express the probability of the target originating from measurement. The membership value is obtained through fuzzy c-means clustering objective function optimized by the maximum entropy principle. When considering the effect of the public measurement, we use a correction factor to adjust the association probability matrix to estimate the state of the target. As this algorithm avoids confirmation matrix splitting, it can solve the high computational load problem of the joint PDA algorithm. The results of simulations and analysis conducted for tracking neighbor parallel targets and cross targets in a different density cluttered environment show that the proposed algorithm can realize MTT quickly and efficiently in a cluttered environment. Further, the performance of the proposed algorithm remains constant with increasing process noise variance. The proposed algorithm has the advantages of efficiency and low computational load, which can ensure optimum performance when tracking multiple targets in a dense cluttered environment.

  19. An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming

    Science.gov (United States)

    Hsu, Chih-Ming

    2014-12-01

    Portfolio optimisation is an important issue in the field of investment/financial decision-making and has received considerable attention from both researchers and practitioners. However, besides portfolio optimisation, a complete investment procedure should also include the selection of profitable investment targets and determine the optimal timing for buying/selling the investment targets. In this study, an integrated procedure using data envelopment analysis (DEA), artificial bee colony (ABC) and genetic programming (GP) is proposed to resolve a portfolio optimisation problem. The proposed procedure is evaluated through a case study on investing in stocks in the semiconductor sub-section of the Taiwan stock market for 4 years. The potential average 6-month return on investment of 9.31% from 1 November 2007 to 31 October 2011 indicates that the proposed procedure can be considered a feasible and effective tool for making outstanding investment plans, and thus making profits in the Taiwan stock market. Moreover, it is a strategy that can help investors to make profits even when the overall stock market suffers a loss.

  20. Extended Traffic Crash Modelling through Precision and Response Time Using Fuzzy Clustering Algorithms Compared with Multi-layer Perceptron

    Directory of Open Access Journals (Sweden)

    Iman Aghayan

    2012-11-01

    Full Text Available This paper compares two fuzzy clustering algorithms – fuzzy subtractive clustering and fuzzy C-means clustering – to a multi-layer perceptron neural network for their ability to predict the severity of crash injuries and to estimate the response time on the traffic crash data. Four clustering algorithms – hierarchical, K-means, subtractive clustering, and fuzzy C-means clustering – were used to obtain the optimum number of clusters based on the mean silhouette coefficient and R-value before applying the fuzzy clustering algorithms. The best-fit algorithms were selected according to two criteria: precision (root mean square, R-value, mean absolute errors, and sum of square error and response time (t. The highest R-value was obtained for the multi-layer perceptron (0.89, demonstrating that the multi-layer perceptron had a high precision in traffic crash prediction among the prediction models, and that it was stable even in the presence of outliers and overlapping data. Meanwhile, in comparison with other prediction models, fuzzy subtractive clustering provided the lowest value for response time (0.284 second, 9.28 times faster than the time of multi-layer perceptron, meaning that it could lead to developing an on-line system for processing data from detectors and/or a real-time traffic database. The model can be extended through improvements based on additional data through induction procedure.

  1. Informational and linguistic analysis of large genomic sequence collections via efficient Hadoop cluster algorithms.

    Science.gov (United States)

    Ferraro Petrillo, Umberto; Roscigno, Gianluca; Cattaneo, Giuseppe; Giancarlo, Raffaele

    2018-06-01

    Information theoretic and compositional/linguistic analysis of genomes have a central role in bioinformatics, even more so since the associated methodologies are becoming very valuable also for epigenomic and meta-genomic studies. The kernel of those methods is based on the collection of k-mer statistics, i.e. how many times each k-mer in {A,C,G,T}k occurs in a DNA sequence. Although this problem is computationally very simple and efficiently solvable on a conventional computer, the sheer amount of data available now in applications demands to resort to parallel and distributed computing. Indeed, those type of algorithms have been developed to collect k-mer statistics in the realm of genome assembly. However, they are so specialized to this domain that they do not extend easily to the computation of informational and linguistic indices, concurrently on sets of genomes. Following the well-established approach in many disciplines, and with a growing success also in bioinformatics, to resort to MapReduce and Hadoop to deal with 'Big Data' problems, we present KCH, the first set of MapReduce algorithms able to perform concurrently informational and linguistic analysis of large collections of genomic sequences on a Hadoop cluster. The benchmarking of KCH that we provide indicates that it is quite effective and versatile. It is also competitive with respect to the parallel and distributed algorithms highly specialized to k-mer statistics collection for genome assembly problems. In conclusion, KCH is a much needed addition to the growing number of algorithms and tools that use MapReduce for bioinformatics core applications. The software, including instructions for running it over Amazon AWS, as well as the datasets are available at http://www.di-srv.unisa.it/KCH. umberto.ferraro@uniroma1.it. Supplementary data are available at Bioinformatics online.

  2. Semi-supervised spectral algorithms for community detection in complex networks based on equivalence of clustering methods

    Science.gov (United States)

    Ma, Xiaoke; Wang, Bingbo; Yu, Liang

    2018-01-01

    Community detection is fundamental for revealing the structure-functionality relationship in complex networks, which involves two issues-the quantitative function for community as well as algorithms to discover communities. Despite significant research on either of them, few attempt has been made to establish the connection between the two issues. To attack this problem, a generalized quantification function is proposed for community in weighted networks, which provides a framework that unifies several well-known measures. Then, we prove that the trace optimization of the proposed measure is equivalent with the objective functions of algorithms such as nonnegative matrix factorization, kernel K-means as well as spectral clustering. It serves as the theoretical foundation for designing algorithms for community detection. On the second issue, a semi-supervised spectral clustering algorithm is developed by exploring the equivalence relation via combining the nonnegative matrix factorization and spectral clustering. Different from the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the spectral algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method improves the accuracy of the traditional spectral algorithms in community detection.

  3. Evaluation of the application of BIM technology based on PCA - Q Clustering Algorithm and Choquet Integral

    Directory of Open Access Journals (Sweden)

    Wei Xiaozhao

    2016-03-01

    Full Text Available For the development of the construction industry, the construction of data era is approaching, BIM (building information model with the actual needs of the construction industry has been widely used as a building information clan system software, different software for the practical application of different maturity, through the expert scoring method for the application of BIM technology maturity index mark, establish the evaluation index system, using PCA - Q clustering algorithm for the evaluation index system of classification, comprehensive evaluation in combination with the Choquet integral on the classification of evaluation index system, to achieve a reasonable assessment of the application of BIM technology maturity index. To lay a foundation for the future development of BIM Technology in various fields of construction, at the same time provides direction for the comprehensive application of BIM technology.

  4. Evaluation of Modified Categorical Data Fuzzy Clustering Algorithm on the Wisconsin Breast Cancer Dataset

    Directory of Open Access Journals (Sweden)

    Amir Ahmad

    2016-01-01

    Full Text Available The early diagnosis of breast cancer is an important step in a fight against the disease. Machine learning techniques have shown promise in improving our understanding of the disease. As medical datasets consist of data points which cannot be precisely assigned to a class, fuzzy methods have been useful for studying of these datasets. Sometimes breast cancer datasets are described by categorical features. Many fuzzy clustering algorithms have been developed for categorical datasets. However, in most of these methods Hamming distance is used to define the distance between the two categorical feature values. In this paper, we use a probabilistic distance measure for the distance computation among a pair of categorical feature values. Experiments demonstrate that the distance measure performs better than Hamming distance for Wisconsin breast cancer data.

  5. Relationship between clustering and algorithmic phase transitions in the random k-XORSAT model and its NP-complete extensions

    International Nuclear Information System (INIS)

    Altarelli, F; Monasson, R; Zamponi, F

    2008-01-01

    We study the performances of stochastic heuristic search algorithms on Uniquely Extendible Constraint Satisfaction Problems with random inputs. We show that, for any heuristic preserving the Poissonian nature of the underlying instance, the (heuristic-dependent) largest ratio α a of constraints per variables for which a search algorithm is likely to find solutions is smaller than the critical ratio α d above which solutions are clustered and highly correlated. In addition we show that the clustering ratio can be reached when the number k of variables per constraints goes to infinity by the so-called Generalized Unit Clause heuristic

  6. Parallel algorithms for large-scale biological sequence alignment on Xeon-Phi based clusters.

    Science.gov (United States)

    Lan, Haidong; Chan, Yuandong; Xu, Kai; Schmidt, Bertil; Peng, Shaoliang; Liu, Weiguo

    2016-07-19

    Computing alignments between two or more sequences are common operations frequently performed in computational molecular biology. The continuing growth of biological sequence databases establishes the need for their efficient parallel implementation on modern accelerators. This paper presents new approaches to high performance biological sequence database scanning with the Smith-Waterman algorithm and the first stage of progressive multiple sequence alignment based on the ClustalW heuristic on a Xeon Phi-based compute cluster. Our approach uses a three-level parallelization scheme to take full advantage of the compute power available on this type of architecture; i.e. cluster-level data parallelism, thread-level coarse-grained parallelism, and vector-level fine-grained parallelism. Furthermore, we re-organize the sequence datasets and use Xeon Phi shuffle operations to improve I/O efficiency. Evaluations show that our method achieves a peak overall performance up to 220 GCUPS for scanning real protein sequence databanks on a single node consisting of two Intel E5-2620 CPUs and two Intel Xeon Phi 7110P cards. It also exhibits good scalability in terms of sequence length and size, and number of compute nodes for both database scanning and multiple sequence alignment. Furthermore, the achieved performance is highly competitive in comparison to optimized Xeon Phi and GPU implementations. Our implementation is available at https://github.com/turbo0628/LSDBS-mpi .

  7. a Novel 3d Intelligent Fuzzy Algorithm Based on Minkowski-Clustering

    Science.gov (United States)

    Toori, S.; Esmaeily, A.

    2017-09-01

    Assessing and monitoring the state of the earth surface is a key requirement for global change research. In this paper, we propose a new consensus fuzzy clustering algorithm that is based on the Minkowski distance. This research concentrates on Tehran's vegetation mass and its changes during 29 years using remote sensing technology. The main purpose of this research is to evaluate the changes in vegetation mass using a new process by combination of intelligent NDVI fuzzy clustering and Minkowski distance operation. The dataset includes the images of Landsat8 and Landsat TM, from 1989 to 2016. For each year three images of three continuous days were used to identify vegetation impact and recovery. The result was a 3D NDVI image, with one dimension for each day NDVI. The next step was the classification procedure which is a complicated process of categorizing pixels into a finite number of separate classes, based on their data values. If a pixel satisfies a certain set of standards, the pixel is allocated to the class that corresponds to those criteria. This method is less sensitive to noise and can integrate solutions from multiple samples of data or attributes for processing data in the processing industry. The result was a fuzzy one dimensional image. This image was also computed for the next 28 years. The classification was done in both specified urban and natural park areas of Tehran. Experiments showed that our method worked better in classifying image pixels in comparison with the standard classification methods.

  8. A Multiple-Label Guided Clustering Algorithm for Historical Document Dating and Localization.

    Science.gov (United States)

    He, Sheng; Samara, Petros; Burgers, Jan; Schomaker, Lambert

    2016-11-01

    It is of essential importance for historians to know the date and place of origin of the documents they study. It would be a huge advancement for historical scholars if it would be possible to automatically estimate the geographical and temporal provenance of a handwritten document by inferring them from the handwriting style of such a document. We propose a multiple-label guided clustering algorithm to discover the correlations between the concrete low-level visual elements in historical documents and abstract labels, such as date and location. First, a novel descriptor, called histogram of orientations of handwritten strokes, is proposed to extract and describe the visual elements, which is built on a scale-invariant polar-feature space. In addition, the multi-label self-organizing map (MLSOM) is proposed to discover the correlations between the low-level visual elements and their labels in a single framework. Our proposed MLSOM can be used to predict the labels directly. Moreover, the MLSOM can also be considered as a pre-structured clustering method to build a codebook, which contains more discriminative information on date and geography. The experimental results on the medieval paleographic scale data set demonstrate that our method achieves state-of-the-art results.

  9. Hybrid clustering based fuzzy structure for vibration control - Part 1: A novel algorithm for building neuro-fuzzy system

    Science.gov (United States)

    Nguyen, Sy Dzung; Nguyen, Quoc Hung; Choi, Seung-Bok

    2015-01-01

    This paper presents a new algorithm for building an adaptive neuro-fuzzy inference system (ANFIS) from a training data set called B-ANFIS. In order to increase accuracy of the model, the following issues are executed. Firstly, a data merging rule is proposed to build and perform a data-clustering strategy. Subsequently, a combination of clustering processes in the input data space and in the joint input-output data space is presented. Crucial reason of this task is to overcome problems related to initialization and contradictory fuzzy rules, which usually happen when building ANFIS. The clustering process in the input data space is accomplished based on a proposed merging-possibilistic clustering (MPC) algorithm. The effectiveness of this process is evaluated to resume a clustering process in the joint input-output data space. The optimal parameters obtained after completion of the clustering process are used to build ANFIS. Simulations based on a numerical data, 'Daily Data of Stock A', and measured data sets of a smart damper are performed to analyze and estimate accuracy. In addition, convergence and robustness of the proposed algorithm are investigated based on both theoretical and testing approaches.

  10. Utility of K-Means clustering algorithm in differentiating apparent diffusion coefficient values between benign and malignant neck pathologies

    Science.gov (United States)

    Srinivasan, A.; Galbán, C.J.; Johnson, T.D.; Chenevert, T.L.; Ross, B.D.; Mukherji, S.K.

    2014-01-01

    Purpose The objective of our study was to analyze the differences between apparent diffusion coefficient (ADC) partitions (created using the K-Means algorithm) between benign and malignant neck lesions and evaluate its benefit in distinguishing these entities. Material and methods MRI studies of 10 benign and 10 malignant proven neck pathologies were post-processed on a PC using in-house software developed in MATLAB (The MathWorks, Inc., Natick, MA). Lesions were manually contoured by two neuroradiologists with the ADC values within each lesion clustered into two (low ADC-ADCL, high ADC-ADCH) and three partitions (ADCL, intermediate ADC-ADCI, ADCH) using the K-Means clustering algorithm. An unpaired two-tailed Student’s t-test was performed for all metrics to determine statistical differences in the means between the benign and malignant pathologies. Results Statistically significant difference between the mean ADCL clusters in benign and malignant pathologies was seen in the 3 cluster models of both readers (p=0.03, 0.022 respectively) and the 2 cluster model of reader 2 (p=0.04) with the other metrics (ADCH, ADCI, whole lesion mean ADC) not revealing any significant differences. Receiver operating characteristics curves demonstrated the quantitative difference in mean ADCH and ADCL in both the 2 and 3 cluster models to be predictive of malignancy (2 clusters: p=0.008, area under curve=0.850, 3 clusters: p=0.01, area under curve=0.825). Conclusion The K-Means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared to whole lesion mean ADC alone. PMID:20007723

  11. Utility of the k-means clustering algorithm in differentiating apparent diffusion coefficient values of benign and malignant neck pathologies.

    Science.gov (United States)

    Srinivasan, A; Galbán, C J; Johnson, T D; Chenevert, T L; Ross, B D; Mukherji, S K

    2010-04-01

    Does the K-means algorithm do a better job of differentiating benign and malignant neck pathologies compared to only mean ADC? The objective of our study was to analyze the differences between ADC partitions to evaluate whether the K-means technique can be of additional benefit to whole-lesion mean ADC alone in distinguishing benign and malignant neck pathologies. MR imaging studies of 10 benign and 10 malignant proved neck pathologies were postprocessed on a PC by using in-house software developed in Matlab. Two neuroradiologists manually contoured the lesions, with the ADC values within each lesion clustered into 2 (low, ADC-ADC(L); high, ADC-ADC(H)) and 3 partitions (ADC(L); intermediate, ADC-ADC(I); ADC(H)) by using the K-means clustering algorithm. An unpaired 2-tailed Student t test was performed for all metrics to determine statistical differences in the means of the benign and malignant pathologies. A statistically significant difference between the mean ADC(L) clusters in benign and malignant pathologies was seen in the 3-cluster models of both readers (P = .03 and .022, respectively) and the 2-cluster model of reader 2 (P = .04), with the other metrics (ADC(H), ADC(I); whole-lesion mean ADC) not revealing any significant differences. ROC curves demonstrated the quantitative differences in mean ADC(H) and ADC(L) in both the 2- and 3-cluster models to be predictive of malignancy (2 clusters: P = .008, area under curve = 0.850; 3 clusters: P = .01, area under curve = 0.825). The K-means clustering algorithm that generates partitions of large datasets may provide a better characterization of neck pathologies and may be of additional benefit in distinguishing benign and malignant neck pathologies compared with whole-lesion mean ADC alone.

  12. Scalable Algorithms for Clustering Large Geospatiotemporal Data Sets on Manycore Architectures

    Science.gov (United States)

    Mills, R. T.; Hoffman, F. M.; Kumar, J.; Sreepathi, S.; Sripathi, V.

    2016-12-01

    The increasing availability of high-resolution geospatiotemporal data sets from sources such as observatory networks, remote sensing platforms, and computational Earth system models has opened new possibilities for knowledge discovery using data sets fused from disparate sources. Traditional algorithms and computing platforms are impractical for the analysis and synthesis of data sets of this size; however, new algorithmic approaches that can effectively utilize the complex memory hierarchies and the extremely high levels of available parallelism in state-of-the-art high-performance computing platforms can enable such analysis. We describe a massively parallel implementation of accelerated k-means clustering and some optimizations to boost computational intensity and utilization of wide SIMD lanes on state-of-the art multi- and manycore processors, including the second-generation Intel Xeon Phi ("Knights Landing") processor based on the Intel Many Integrated Core (MIC) architecture, which includes several new features, including an on-package high-bandwidth memory. We also analyze the code in the context of a few practical applications to the analysis of climatic and remotely-sensed vegetation phenology data sets, and speculate on some of the new applications that such scalable analysis methods may enable.

  13. AHIMSA - Ad hoc histogram information measure sensing algorithm for feature selection in the context of histogram inspired clustering techniques

    Science.gov (United States)

    Dasarathy, B. V.

    1976-01-01

    An algorithm is proposed for dimensionality reduction in the context of clustering techniques based on histogram analysis. The approach is based on an evaluation of the hills and valleys in the unidimensional histograms along the different features and provides an economical means of assessing the significance of the features in a nonparametric unsupervised data environment. The method has relevance to remote sensing applications.

  14. A Fast Exact k-Nearest Neighbors Algorithm for High Dimensional Search Using k-Means Clustering and Triangle Inequality.

    Science.gov (United States)

    Wang, Xueyi

    2012-02-08

    The k-nearest neighbors (k-NN) algorithm is a widely used machine learning method that finds nearest neighbors of a test object in a feature space. We present a new exact k-NN algorithm called kMkNN (k-Means for k-Nearest Neighbors) that uses the k-means clustering and the triangle inequality to accelerate the searching for nearest neighbors in a high dimensional space. The kMkNN algorithm has two stages. In the buildup stage, instead of using complex tree structures such as metric trees, kd-trees, or ball-tree, kMkNN uses a simple k-means clustering method to preprocess the training dataset. In the searching stage, given a query object, kMkNN finds nearest training objects starting from the nearest cluster to the query object and uses the triangle inequality to reduce the distance calculations. Experiments show that the performance of kMkNN is surprisingly good compared to the traditional k-NN algorithm and tree-based k-NN algorithms such as kd-trees and ball-trees. On a collection of 20 datasets with up to 10(6) records and 10(4) dimensions, kMkNN shows a 2-to 80-fold reduction of distance calculations and a 2- to 60-fold speedup over the traditional k-NN algorithm for 16 datasets. Furthermore, kMkNN performs significant better than a kd-tree based k-NN algorithm for all datasets and performs better than a ball-tree based k-NN algorithm for most datasets. The results show that kMkNN is effective for searching nearest neighbors in high dimensional spaces.

  15. A Hybrid Method for Image Segmentation Based on Artificial Fish Swarm Algorithm and Fuzzy c-Means Clustering

    Directory of Open Access Journals (Sweden)

    Li Ma

    2015-01-01

    Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM clustering is one of the popular clustering algorithms for medical image segmentation. However, FCM has the problems of depending on initial clustering centers, falling into local optimal solution easily, and sensitivity to noise disturbance. To solve these problems, this paper proposes a hybrid artificial fish swarm algorithm (HAFSA. The proposed algorithm combines artificial fish swarm algorithm (AFSA with FCM whose advantages of global optimization searching and parallel computing ability of AFSA are utilized to find a superior result. Meanwhile, Metropolis criterion and noise reduction mechanism are introduced to AFSA for enhancing the convergence rate and antinoise ability. The artificial grid graph and Magnetic Resonance Imaging (MRI are used in the experiments, and the experimental results show that the proposed algorithm has stronger antinoise ability and higher precision. A number of evaluation indicators also demonstrate that the effect of HAFSA is more excellent than FCM and suppressed FCM (SFCM.

  16. Hybrid Optimization of Object-Based Classification in High-Resolution Images Using Continous ANT Colony Algorithm with Emphasis on Building Detection

    Science.gov (United States)

    Tamimi, E.; Ebadi, H.; Kiani, A.

    2017-09-01

    Automatic building detection from High Spatial Resolution (HSR) images is one of the most important issues in Remote Sensing (RS). Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM) classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO) algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF) classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object). These showed the superiority of the proposed method in terms of time and accuracy.

  17. Short-term hydro generation scheduling of Xiluodu and Xiangjiaba cascade hydropower stations using improved binary-real coded bee colony optimization algorithm

    International Nuclear Information System (INIS)

    Lu, Peng; Zhou, Jianzhong; Wang, Chao; Qiao, Qi; Mo, Li

    2015-01-01

    Highlights: • STHGS problem is decomposed into two parallel sub-problems of UC and ELD. • Binary coded BCO is used to solve UC sub-problem with 0–1 discrete variables. • Real coded BCO is used to solve ELD sub-problem with continuous variables. • Some heuristic repairing strategies are designed to handle various constraints. • The STHGS of Xiluodu and Xiangjiaba cascade stations is solved by IB-RBCO. - Abstract: Short-term hydro generation scheduling (STHGS) of cascade hydropower stations is a typical nonlinear mixed integer optimization problem to minimize the total water consumption while simultaneously meeting the grid requirements and other hydraulic and electrical constraints. In this paper, STHGS problem is decomposed into two parallel sub-problems of unit commitment (UC) and economic load dispatch (ELD), and the methodology of improved binary-real coded bee colony optimization (IB-RBCO) algorithm is proposed to solve them. Firstly, the improved binary coded BCO is used to solve the UC sub-problem with 0–1 discrete variables, and the heuristic repairing strategy for unit state constrains is applied to generate the feasible unit commitment schedule. Then, the improved real coded BCO is used to solve the ELD sub-problem with continuous variables, and an effective method is introduced to handle various unit operation constraints. Especially, the new updating strategy of DE/best/2/bin method with dynamic parameter control mechanism is applied to real coded BCO to improve the search ability of IB-RBCO. Finally, to verify the feasibility and effectiveness of the proposed IB-RBCO method, it is applied to solve the STHGS problem of Xiluodu and Xiangjiaba cascaded hydropower stations, and the simulating results are compared with other intelligence algorithms. The simulation results demonstrate that the proposed IB-RBCO method can get higher-quality solutions with less water consumption and shorter calculating time when facing the complex STHGS problem

  18. HYBRID OPTIMIZATION OF OBJECT-BASED CLASSIFICATION IN HIGH-RESOLUTION IMAGES USING CONTINOUS ANT COLONY ALGORITHM WITH EMPHASIS ON BUILDING DETECTION

    Directory of Open Access Journals (Sweden)

    E. Tamimi

    2017-09-01

    Full Text Available Automatic building detection from High Spatial Resolution (HSR images is one of the most important issues in Remote Sensing (RS. Due to the limited number of spectral bands in HSR images, using other features will lead to improve accuracy. By adding these features, the presence probability of dependent features will be increased, which leads to accuracy reduction. In addition, some parameters should be determined in Support Vector Machine (SVM classification. Therefore, it is necessary to simultaneously determine classification parameters and select independent features according to image type. Optimization algorithm is an efficient method to solve this problem. On the other hand, pixel-based classification faces several challenges such as producing salt-paper results and high computational time in high dimensional data. Hence, in this paper, a novel method is proposed to optimize object-based SVM classification by applying continuous Ant Colony Optimization (ACO algorithm. The advantages of the proposed method are relatively high automation level, independency of image scene and type, post processing reduction for building edge reconstruction and accuracy improvement. The proposed method was evaluated by pixel-based SVM and Random Forest (RF classification in terms of accuracy. In comparison with optimized pixel-based SVM classification, the results showed that the proposed method improved quality factor and overall accuracy by 17% and 10%, respectively. Also, in the proposed method, Kappa coefficient was improved by 6% rather than RF classification. Time processing of the proposed method was relatively low because of unit of image analysis (image object. These showed the superiority of the proposed method in terms of time and accuracy.

  19. SDN‐Based Hierarchical Agglomerative Clustering Algorithm for Interference Mitigation in Ultra‐Dense Small Cell Networks

    Directory of Open Access Journals (Sweden)

    Guang Yang

    2018-04-01

    Full Text Available Ultra‐dense small cell networks (UD‐SCNs have been identified as a promising scheme for next‐generation wireless networks capable of meeting the ever‐increasing demand for higher transmission rates and better quality of service. However, UD‐SCNs will inevitably suffer from severe interference among the small cell base stations, which will lower their spectral efficiency. In this paper, we propose a software‐defined networking (SDN‐based hierarchical agglomerative clustering (SDN‐HAC framework, which leverages SDN to centrally control all sub‐channels in the network, and decides on cluster merging using a similarity criterion based on a suitability function. We evaluate the proposed algorithm through simulation. The obtained results show that the proposed algorithm performs well and improves system payoff by 18.19% and 436.34% when compared with the traditional network architecture algorithms and non‐cooperative scenarios, respectively.

  20. The GSAM software: A global search algorithm of minima exploration for the investigation of low lying isomers of clusters

    Energy Technology Data Exchange (ETDEWEB)

    Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude [Université de Pau et des Pays de l' Adour, IPREM/ECP, UMR CNRS 5254 (France)

    2015-01-22

    The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.

  1. Developing a Reading Concentration Monitoring System by Applying an Artificial Bee Colony Algorithm to E-Books in an Intelligent Classroom

    Directory of Open Access Journals (Sweden)

    Yueh-Min Huang

    2012-10-01

    Full Text Available A growing number of educational studies apply sensors to improve student learning in real classroom settings. However, how can sensors be integrated into classrooms to help instructors find out students’ reading concentration rates and thus better increase learning effectiveness? The aim of the current study was to develop a reading concentration monitoring system for use with e-books in an intelligent classroom and to help instructors find out the students’ reading concentration rates. The proposed system uses three types of sensor technologies, namely a webcam, heartbeat sensor, and blood oxygen sensor to detect the learning behaviors of students by capturing various physiological signals. An artificial bee colony (ABC optimization approach is applied to the data gathered from these sensors to help instructors understand their students’ reading concentration rates in a classroom learning environment. The results show that the use of the ABC algorithm in the proposed system can effectively obtain near-optimal solutions. The system has a user-friendly graphical interface, making it easy for instructors to clearly understand the reading status of their students.

  2. Developing a reading concentration monitoring system by applying an artificial bee colony algorithm to e-books in an intelligent classroom.

    Science.gov (United States)

    Hsu, Chia-Cheng; Chen, Hsin-Chin; Su, Yen-Ning; Huang, Kuo-Kuang; Huang, Yueh-Min

    2012-10-22

    A growing number of educational studies apply sensors to improve student learning in real classroom settings. However, how can sensors be integrated into classrooms to help instructors find out students' reading concentration rates and thus better increase learning effectiveness? The aim of the current study was to develop a reading concentration monitoring system for use with e-books in an intelligent classroom and to help instructors find out the students' reading concentration rates. The proposed system uses three types of sensor technologies, namely a webcam, heartbeat sensor, and blood oxygen sensor to detect the learning behaviors of students by capturing various physiological signals. An artificial bee colony (ABC) optimization approach is applied to the data gathered from these sensors to help instructors understand their students' reading concentration rates in a classroom learning environment. The results show that the use of the ABC algorithm in the proposed system can effectively obtain near-optimal solutions. The system has a user-friendly graphical interface, making it easy for instructors to clearly understand the reading status of their students.

  3. On the application of artificial bee colony (ABC algorithm for optimization of well placements in fractured reservoirs; efficiency comparison with the particle swarm optimization (PSO methodology

    Directory of Open Access Journals (Sweden)

    Behzad Nozohour-leilabady

    2016-03-01

    Full Text Available The application of a recent optimization technique, the artificial bee colony (ABC, was investigated in the context of finding the optimal well locations. The ABC performance was compared with the corresponding results from the particle swarm optimization (PSO algorithm, under essentially similar conditions. Treatment of out-of-boundary solution vectors was accomplished via the Periodic boundary condition (PBC, which presumably accelerates convergence towards the global optimum. Stochastic searches were initiated from several random staring points, to minimize starting-point dependency in the established results. The optimizations were aimed at maximizing the Net Present Value (NPV objective function over the considered oilfield production durations. To deal with the issue of reservoir heterogeneity, random permeability was applied via normal/uniform distribution functions. In addition, the issue of increased number of optimization parameters was address, by considering scenarios with multiple injector and producer wells, and cases with deviated wells in a real reservoir model. The typical results prove ABC to excel PSO (in the cases studied after relatively short optimization cycles, indicating the great premise of ABC methodology to be used for well-optimization purposes.

  4. Explorations of the implementation of a parallel IDW interpolation algorithm in a Linux cluster-based parallel GIS

    Science.gov (United States)

    Huang, Fang; Liu, Dingsheng; Tan, Xicheng; Wang, Jian; Chen, Yunping; He, Binbin

    2011-04-01

    To design and implement an open-source parallel GIS (OP-GIS) based on a Linux cluster, the parallel inverse distance weighting (IDW) interpolation algorithm has been chosen as an example to explore the working model and the principle of algorithm parallel pattern (APP), one of the parallelization patterns for OP-GIS. Based on an analysis of the serial IDW interpolation algorithm of GRASS GIS, this paper has proposed and designed a specific parallel IDW interpolation algorithm, incorporating both single process, multiple data (SPMD) and master/slave (M/S) programming modes. The main steps of the parallel IDW interpolation algorithm are: (1) the master node packages the related information, and then broadcasts it to the slave nodes; (2) each node calculates its assigned data extent along one row using the serial algorithm; (3) the master node gathers the data from all nodes; and (4) iterations continue until all rows have been processed, after which the results are outputted. According to the experiments performed in the course of this work, the parallel IDW interpolation algorithm can attain an efficiency greater than 0.93 compared with similar algorithms, which indicates that the parallel algorithm can greatly reduce processing time and maximize speed and performance.

  5. Weighted Clustering

    DEFF Research Database (Denmark)

    Ackerman, Margareta; Ben-David, Shai; Branzei, Simina

    2012-01-01

    We investigate a natural generalization of the classical clustering problem, considering clustering tasks in which different instances may have different weights.We conduct the first extensive theoretical analysis on the influence of weighted data on standard clustering algorithms in both...... the partitional and hierarchical settings, characterizing the conditions under which algorithms react to weights. Extending a recent framework for clustering algorithm selection, we propose intuitive properties that would allow users to choose between clustering algorithms in the weighted setting and classify...

  6. Algorithms

    Indian Academy of Sciences (India)

    polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.

  7. Research on Energy-Saving Production Scheduling Based on a Clustering Algorithm for a Forging Enterprise

    Directory of Open Access Journals (Sweden)

    Yifei Tong

    2016-02-01

    Full Text Available Energy efficiency is a buzzword of the 21st century. With the ever growing need for energy efficient and low-carbon production, it is a big challenge for high energy-consumption enterprises to reduce their energy consumption. To this aim, a forging enterprise, DVR (the abbreviation of a forging enterprise, is researched. Firstly, an investigation into the production processes of DVR is given as well as an analysis of forging production. Then, the energy-saving forging scheduling is decomposed into two sub-problems. One is for cutting and machining scheduling, which is similar to traditional machining scheduling. The other one is for forging and heat treatment scheduling. Thirdly, former forging production scheduling is presented and solved based on an improved genetic algorithm. Fourthly, the latter is discussed in detail, followed by proposed dynamic clustering and stacking combination optimization. The proposed stacking optimization requires making the gross weight of forgings as close to the maximum batch capacity as possible. The above research can help reduce the heating times, and increase furnace utilization with high energy efficiency and low carbon emissions.

  8. Research of Ant Colony Migration Strategy in LF Algorithm%LF算法中蚁群移动策略的研究

    Institute of Scientific and Technical Information of China (English)

    牛永洁

    2013-01-01

    采用FM、误分类错误率和运行时间作为衡量改进的LF算法的评价指标,对算法中蚁群的不同移动策略进行研究.这些移动策略包括完全随机移动、局部记忆指导下的直接跳转、局部记忆指导下的定向随机靠近、全局记忆指导下的直接跳转、全局记忆指导下定向随机靠近和局部记忆与全局记忆共同指导下的定向随机靠近6种移动策略.针对每种策略,固定算法的其他运行参数,在UCI数据集的Iris数据和Wine数据上运行的结果表明,全局记忆指导下的定向随机靠近策略运行效果最好,而且收敛速度快,并能有效避免局部最优化的问题.%Using the FM,the misclassification error rate and running time as a measure of improved LF algorithm,the colony different mobile strategy algorithm research.These mobile strategy including completely random mobile,jump directly under the guidance of local memory,orientation under the guidance of local memory close to random,jump directly under the guidance of the global memory,global memory,under the guidance of directional random near and local memory and global memory common guiding under the directional random near the six kinds of mobile strategy.For each strategy,the operating parameters of the fixed algorithm,run on the UCI datasets Iris data and Wine data results show that the global memory under the guidance of directional random near the best strategy run effect,and the speed of convergence can effectively avoid local optimization problem.

  9. A Negative Selection Algorithm Based on Hierarchical Clustering of Self Set and its Application in Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Wen Chen

    2011-08-01

    Full Text Available A negative selection algorithm based on the hierarchical clustering of self set HC-RNSA is introduced in this paper. Several strategies are applied to improve the algorithm performance. First, the self data set is replaced by the self cluster centers to compare with the detector candidates in each cluster level. As the number of self clusters is much less than the self set size, the detector generation efficiency is improved. Second, during the detector generation process, the detector candidates are restricted to the lower coverage space to reduce detector redundancy. In the article, the problem that the distances between antigens coverage to a constant value in the high dimensional space is analyzed, accordingly the Principle Component Analysis (PCA method is used to reduce the data dimension, and the fractional distance function is employed to enhance the distinctiveness between the self and non-self antigens. The detector generation procedure is terminated when the expected non-self coverage is reached. The theory analysis and experimental results demonstrate that the detection rate of HC-RNSA is higher than that of the traditional negative selection algorithms while the false alarm rate and time cost are reduced.

  10. CAF: Cluster algorithm and a-star with fuzzy approach for lifetime enhancement in wireless sensor networks

    KAUST Repository

    Yuan, Y.; Li, C.; Yang, Y.; Zhang, Xiangliang; Li, L.

    2014-01-01

    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria. 2014 Yali Yuan et al.

  11. CAF: Cluster algorithm and a-star with fuzzy approach for lifetime enhancement in wireless sensor networks

    KAUST Repository

    Yuan, Y.

    2014-04-28

    Energy is a major factor in designing wireless sensor networks (WSNs). In particular, in the real world, battery energy is limited; thus the effective improvement of the energy becomes the key of the routing protocols. Besides, the sensor nodes are always deployed far away from the base station and the transmission energy consumption is index times increasing with the increase of distance as well. This paper proposes a new routing method for WSNs to extend the network lifetime using a combination of a clustering algorithm, a fuzzy approach, and an A-star method. The proposal is divided into two steps. Firstly, WSNs are separated into clusters using the Stable Election Protocol (SEP) method. Secondly, the combined methods of fuzzy inference and A-star algorithm are adopted, taking into account the factors such as the remaining power, the minimum hops, and the traffic numbers of nodes. Simulation results demonstrate that the proposed method has significant effectiveness in terms of balancing energy consumption as well as maximizing the network lifetime by comparing the performance of the A-star and fuzzy (AF) approach, cluster and fuzzy (CF)method, cluster and A-star (CA)method, A-star method, and SEP algorithm under the same routing criteria. 2014 Yali Yuan et al.

  12. Application of k-means clustering algorithm in grouping the DNA sequences of hepatitis B virus (HBV)

    Science.gov (United States)

    Bustamam, A.; Tasman, H.; Yuniarti, N.; Frisca, Mursidah, I.

    2017-07-01

    Based on WHO data, an estimated of 15 millions people worldwide who are infected with hepatitis B (HBsAg+), which is caused by HBV virus, are also infected by hepatitis D, which is caused by HDV virus. Hepatitis D infection can occur simultaneously with hepatitis B (co infection) or after a person is exposed to chronic hepatitis B (super infection). Since HDV cannot live without HBV, HDV infection is closely related to HBV infection, hence it is very realistic that every effort of prevention against hepatitis B can indirectly prevent hepatitis D. This paper presents clustering of HBV DNA sequences by using k-means clustering algorithm and R programming. Clustering processes are started with collecting HBV DNA sequences from GenBank, then performing extraction HBV DNA sequences using n-mers frequency and furthermore the extraction results are collected as a matrix and normalized using the min-max normalization with interval [0, 1] which will later be used as an input data. The number of clusters is two and the initial centroid selected of the cluster is chosen randomly. In each iteration, the distance of every object to each centroid are calculated using the Euclidean distance and the minimum distance is selected to determine the membership in a cluster until two convergent clusters are created. As the result, the HBV viruses in the first cluster is more virulent than the HBV viruses in the second cluster, so the HBV viruses in the first cluster can potentially evolve with HDV viruses that cause hepatitis D.

  13. Clustering box office movie with Partition Around Medoids (PAM) Algorithm based on Text Mining of Indonesian subtitle

    Science.gov (United States)

    Alfarizy, A. D.; Indahwati; Sartono, B.

    2017-03-01

    Indonesia is the largest Hollywood movie industry target market in Southeast Asia in 2015. Hollywood movies distributed in Indonesia targeted people in all range of ages including children. Low awareness of guiding children while watching movies make them could watch any rated films even the unsuitable ones for their ages. Even after being translated into Bahasa and passed the censorship phase, words that uncomfortable for children to watch still exist. The purpose of this research is to cluster box office Hollywood movies based on Indonesian subtitle, revenue, IMDb user rating and genres as one of the reference for adults to choose right movies for their children to watch. Text mining is used to extract words from the subtitles and count the frequency for three group of words (bad words, sexual words and terror words), while Partition Around Medoids (PAM) Algorithm with Gower similarity coefficient as proximity matrix is used as clustering method. We clustered 624 movies from 2006 until first half of 2016 from IMDb. Cluster with highest silhouette coefficient value (0.36) is the one with 5 clusters. Animation, Adventure and Comedy movies with high revenue like in cluster 5 is recommended for children to watch, while Comedy movies with high revenue like in cluster 4 should be avoided to watch.

  14. A High-Efficiency Uneven Cluster Deployment Algorithm Based on Network Layered for Event Coverage in UWSNs

    Directory of Open Access Journals (Sweden)

    Shanen Yu

    2016-12-01

    Full Text Available Most existing deployment algorithms for event coverage in underwater wireless sensor networks (UWSNs usually do not consider that network communication has non-uniform characteristics on three-dimensional underwater environments. Such deployment algorithms ignore that the nodes are distributed at different depths and have different probabilities for data acquisition, thereby leading to imbalances in the overall network energy consumption, decreasing the network performance, and resulting in poor and unreliable late network operation. Therefore, in this study, we proposed an uneven cluster deployment algorithm based network layered for event coverage. First, according to the energy consumption requirement of the communication load at different depths of the underwater network, we obtained the expected value of deployment nodes and the distribution density of each layer network after theoretical analysis and deduction. Afterward, the network is divided into multilayers based on uneven clusters, and the heterogeneous communication radius of nodes can improve the network connectivity rate. The recovery strategy is used to balance the energy consumption of nodes in the cluster and can efficiently reconstruct the network topology, which ensures that the network has a high network coverage and connectivity rate in a long period of data acquisition. Simulation results show that the proposed algorithm improves network reliability and prolongs network lifetime by significantly reducing the blind movement of overall network nodes while maintaining a high network coverage and connectivity rate.

  15. A comparison of several cluster algorithms on artificial binary data [Part 2]. Scenarios from travel market segmentation. Part 2 (Addition to Working Paper No. 7).

    OpenAIRE

    Dolnicar, Sara; Leisch, Friedrich; Steiner, Gottfried; Weingessel, Andreas

    1998-01-01

    The search for clusters in empirical data is an important and often encountered research problem. Numerous algorithms exist that are able to render groups of objects or individuals. Of course each algorithm has its strengths and weaknesses. In order to identify these crucial points artificial data was generated - based primarily on experience with structures of empirical data - and used as benchmark for evaluating the results of numerous cluster algorithms. This work is an addition to SFB Wor...

  16. Cluster-cluster clustering

    International Nuclear Information System (INIS)

    Barnes, J.; Dekel, A.; Efstathiou, G.; Frenk, C.S.; Yale Univ., New Haven, CT; California Univ., Santa Barbara; Cambridge Univ., England; Sussex Univ., Brighton, England)

    1985-01-01

    The cluster correlation function xi sub c(r) is compared with the particle correlation function, xi(r) in cosmological N-body simulations with a wide range of initial conditions. The experiments include scale-free initial conditions, pancake models with a coherence length in the initial density field, and hybrid models. Three N-body techniques and two cluster-finding algorithms are used. In scale-free models with white noise initial conditions, xi sub c and xi are essentially identical. In scale-free models with more power on large scales, it is found that the amplitude of xi sub c increases with cluster richness; in this case the clusters give a biased estimate of the particle correlations. In the pancake and hybrid models (with n = 0 or 1), xi sub c is steeper than xi, but the cluster correlation length exceeds that of the points by less than a factor of 2, independent of cluster richness. Thus the high amplitude of xi sub c found in studies of rich clusters of galaxies is inconsistent with white noise and pancake models and may indicate a primordial fluctuation spectrum with substantial power on large scales. 30 references

  17. A Local Search Algorithm for Clustering in Software as a Service Networks

    NARCIS (Netherlands)

    J.P. van der Gaast (Jelmer); C.A. Rietveld (Niels); A.F. Gabor (Adriana); Y. Zhang (Yingqian)

    2011-01-01

    textabstractIn this paper we present and analyze a model for clustering in networks that offer Software as a Service (SaaS). In this problem, organizations requesting a set of applications have to be assigned to clusters such that the costs of opening clusters and installing the necessary

  18. Robust multi-scale clustering of large DNA microarray datasets with the consensus algorithm

    DEFF Research Database (Denmark)

    Grotkjær, Thomas; Winther, Ole; Regenberg, Birgitte

    2006-01-01

    Motivation: Hierarchical and relocation clustering (e.g. K-means and self-organizing maps) have been successful tools in the display and analysis of whole genome DNA microarray expression data. However, the results of hierarchical clustering are sensitive to outliers, and most relocation methods...... analysis by collecting re-occurring clustering patterns in a co-occurrence matrix. The results show that consensus clustering obtained from clustering multiple times with Variational Bayes Mixtures of Gaussians or K-means significantly reduces the classification error rate for a simulated dataset...

  19. Mitigate the impact of transmitter finite extinction ratio using K-means clustering algorithm for 16QAM signal

    Science.gov (United States)

    Yu, Miao; Li, Yan; Shu, Tong; Zhang, Yifan; Hong, Xiaobin; Qiu, Jifang; Zuo, Yong; Guo, Hongxiang; Li, Wei; Wu, Jian

    2018-02-01

    A method of recognizing 16QAM signal based on k-means clustering algorithm is proposed to mitigate the impact of transmitter finite extinction ratio. There are pilot symbols with 0.39% overhead assigned to be regarded as initial centroids of k-means clustering algorithm. Simulation result in 10 GBaud 16QAM system shows that the proposed method obtains higher precision of identification compared with traditional decision method for finite ER and IQ mismatch. Specially, the proposed method improves the required OSNR by 5.5 dB, 4.5 dB, 4 dB and 3 dB at FEC limit with ER= 12 dB, 16 dB, 20 dB and 24 dB, respectively, and the acceptable bias error and IQ mismatch range is widened by 767% and 360% with ER =16 dB, respectively.

  20. TOWARDS FINDING A NEW KERNELIZED FUZZY C-MEANS CLUSTERING ALGORITHM

    Directory of Open Access Journals (Sweden)

    Samarjit Das

    2014-04-01

    Full Text Available Kernelized Fuzzy C-Means clustering technique is an attempt to improve the performance of the conventional Fuzzy C-Means clustering technique. Recently this technique where a kernel-induced distance function is used as a similarity measure instead of a Euclidean distance which is used in the conventional Fuzzy C-Means clustering technique, has earned popularity among research community. Like the conventional Fuzzy C-Means clustering technique this technique also suffers from inconsistency in its performance due to the fact that here also the initial centroids are obtained based on the randomly initialized membership values of the objects. Our present work proposes a new method where we have applied the Subtractive clustering technique of Chiu as a preprocessor to Kernelized Fuzzy CMeans clustering technique. With this new method we have tried not only to remove the inconsistency of Kernelized Fuzzy C-Means clustering technique but also to deal with the situations where the number of clusters is not predetermined. We have also provided a comparison of our method with the Subtractive clustering technique of Chiu and Kernelized Fuzzy C-Means clustering technique using two validity measures namely Partition Coefficient and Clustering Entropy.