WorldWideScience

Sample records for colloidal particles behaviour

  1. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  2. Colloidal capsules: nano- and microcapsules with colloidal particle shells.

    Science.gov (United States)

    Bollhorst, Tobias; Rezwan, Kurosch; Maas, Michael

    2017-04-18

    Utilizing colloidal particles for the assembly of the shell of nano- and microcapsules holds great promise for the tailor-made design of new functional materials. Increasing research efforts are devoted to the synthesis of such colloidal capsules, by which the integration of modular building blocks with distinct physical, chemical, or morphological characteristics in a capsule's shell can result in novel properties, not present in previous encapsulation structures. This review will provide a comprehensive overview of the synthesis strategies and the progress made so far of bringing nano- and microcapsules with shells of densely packed colloidal particles closer to application in fields such as chemical engineering, materials science, or pharmaceutical and life science. The synthesis routes are categorized into the four major themes for colloidal capsule formation, i.e. the Pickering-emulsion based formation of colloidal capsules, the colloidal particle deposition on (sacrificial) templates, the amphiphilicity driven self-assembly of nanoparticle vesicles from polymer-grafted colloids, and the closely related field of nanoparticle membrane-loading of liposomes and polymersomes. The varying fields of colloidal capsule research are then further categorized and discussed for micro- and nano-scaled structures. Finally, a special section is dedicated to colloidal capsules for biological applications, as a diverse range of reports from this field aim at pharmaceutical agent encapsulation, targeted drug-delivery, and theranostics.

  3. Colloidal iron(III) pyrophosphate particles

    NARCIS (Netherlands)

    Rossi, L.; Velikov, K. P.; Philipse, A.P.

    2014-01-01

    Ferric pyrophosphate is a widely used material in the area of mineral fortification but its synthesis and properties in colloidal form are largely unknown. In this article, we report on the synthesis and characterisation of colloidal iron(III) pyrophosphate particles with potential for application

  4. Patchy particles made by colloidal fusion

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  5. Patchy particles made by colloidal fusion.

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-12

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or 'patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  6. Inventions Utilizing Microfluidics and Colloidal Particles

    Science.gov (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  7. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  8. Liquid crystal phase behaviour of colloidal platelets in external fields

    NARCIS (Netherlands)

    Beek, David van der

    2005-01-01

    In this thesis, the liquid crystal phase behaviour of colloidal platelets in external fields is studied. We have specifically investigated the influence of morphological, gravitational, magnetic and centrifugal fields. Part I of this thesis involves sterically stabilised colloidal gibbsite

  9. Densification and crystallization behaviour of colloidal cordierite-type gels

    Directory of Open Access Journals (Sweden)

    LJILJANA KOSTIC-GVOZDENOVIC

    2001-05-01

    Full Text Available Three cordierite-type gels were prepared from an aqueous solution of Mg(NO32, a boehmite sol and silica sols of very small particle sizes. The effect of varying the silica particle size on the crystallization and densification behaviour was studied. Phase development was examined by thermal analysis and X-ray diffraction, while the densification behaviour was characterized by measuring the linear shrinkage of pellets. The activation energy of densification by viscous flow was determined using the Franckel model for non-isothermal conditions and a constant heating rate. The results show that spinel crystallizes from the colloidal gels prior to cristobalite, and their reaction gives a-cordierite, which is specific for three-phase gels. Decreasing the silica particles size lowers the cristobalite crystallization temperature and the a-cordierite formation temperature. The activation energy of densification by viscous flow is lower and the densification more efficient, the smaller the silica particles are.

  10. Study of colloidal particles behaviour in the PWR primary circuit conditions; Etude du comportement des particules colloidales dans les conditions physicochimiques du circuit primaire des reacteurs a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Barale, M

    2006-12-15

    EDF wants to understand, model and limit primary circuit contamination of Pressurized Water Reactors by colloidal particles resulting from corrosion. The electrostatic behaviour of representative oxide particles (cobalt ferrite, nickel ferrite and magnetite) has been studied in primary circuit conditions with the influence of boric acid and lithium hydroxide. The isoelectric point (IEP) and the point of zero charge (PZC) of particles, measured between 5 C and 320 C, exhibit a minimum towards 200 C. The thermodynamic constants of the protonation equilibrium of surface sites were calculated. When boric acid is added, zeta potential and IEP decrease because of borate ions sorption. On the contrary, there is not effect of lithium ions. The modelling of these results under conditions representative of primary circuit shows that these oxides exhibit a negative surface charge, explaining their sorption and adhesion behaviour. (author)

  11. Particle size effects in colloidal gelatin particle suspensions

    NARCIS (Netherlands)

    Riemsdijk, van L.E.; Snoeren, J.P.M.; Goot, van der A.J.; Boom, R.M.; Hamer, R.J.

    2010-01-01

    This paper describes the effects of simple shear flow on the formation and properties of colloidal gelatin particle suspensions. Microscopy and light scattering show that simple shear flow of a phase-separating gelatin–dextran mixture gave smaller particles with a narrower size distribution. Upon

  12. Dynamics of colloidal particles with capillary interactions.

    Science.gov (United States)

    Domínguez, Alvaro; Oettel, Martin; Dietrich, S

    2010-07-01

    We investigate the dynamics of colloids at a fluid interface driven by attractive capillary interactions. At submillimeter length scales, the capillary attraction is formally analogous to two-dimensional gravity. In particular it is a nonintegrable interaction and it can be actually relevant for collective phenomena in spite of its weakness at the level of the pair potential. We introduce a mean-field model for the dynamical evolution of the particle number density at the interface. For generic values of the physical parameters the homogeneous distribution is found to be unstable against large-scale clustering driven by the capillary attraction. We also show that for the instability to be observable, the appropriate values for the relevant parameters (colloid radius, surface charge, external electric field, etc.) are experimentally well accessible. Our analysis contributes to current studies of the structure and dynamics of systems governed by long-ranged interactions and points toward their experimental realizations via colloidal suspensions.

  13. Colloquium: Toward living matter with colloidal particles

    Science.gov (United States)

    Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.

    2017-07-01

    A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.

  14. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  15. Near-wall diffusion tensor of an axisymmetric colloidal particle

    CERN Document Server

    Lisicki, Maciej; Wajnryb, Eligiusz

    2016-01-01

    Hydrodynamic interactions with confining boundaries often lead to drastic changes in the diffusive behaviour of microparticles in suspensions. For axially symmetric particles, earlier numerical studies have suggested a simple form of the near-wall diffusion matrix which depends on the distance and orientation of the particle with respect to the wall, which is usually calculated numerically. In this work, we derive explicit analytical formulae for the dominant correction to the bulk diffusion tensor of an axially symmetric colloidal particle due to the presence of a nearby no-slip wall. The relative correction scales as powers of inverse wall-particle distance and its angular structure is represented by simple polynomials in sines and cosines of the particle's inclination angle to the wall. We analyse the correction for translational and rotational motion, as well as the translation-rotation coupling. Our findings provide a simple approximation to the anisotropic diffusion tensor near a wall, which completes a...

  16. Experiments in which oil, water and colloidal particles meet

    NARCIS (Netherlands)

    Elbers, N.A.

    2015-01-01

    In this thesis, the results are reported of experimental studies in which oil, water and colloidal particles meet. Colloidal particles are particles that have at least one characteristic length scale in the range between a few nanometers (nm) and several micrometers (μm). Mixtures of oil and water,

  17. Probing colloidal particle aggregation by light scattering.

    Science.gov (United States)

    Trefalt, Gregor; Szilagyi, Istvan; Oncsik, Tamas; Sadeghpour, Amin; Borkovec, Michal

    2013-01-01

    The present article reviews recent progress in the measurement of aggregation rates in colloidal suspensions by light scattering. Time-resolved light scattering offers the possibility to measure absolute aggregation rate constants for homoaggregation as well as heteroaggregation processes. We further discuss the typical concentration dependencies of the aggregation rate constants on additives. Addition of simple salts containing monovalent counterions leads to screening of the electrostatic repulsion of the charged particles and a transition from slow to rapid aggregation. Addition of salts containing multivalent counterions may lead to a charge reversal, which results in a sequence of two instability regions. Heteroaggregation rates between oppositely charged particles decrease with increasing salt level. This decrease is caused by screening of the electrostatic attraction between these particles.

  18. Out-of-Equilibrium Dynamics of Colloidal Particles at Interfaces

    Science.gov (United States)

    Wang, Anna

    It is widely assumed that when colloidal particles adsorb to a fluid-fluid interface, they reach equilibrium rapidly. Recently, however, Kaz et al. [Nature Materials, 11, 138-142 (2012)] found that a variety of functionalised latex microspheres breaching an aqueous phase-oil interface relax logarithmically with time toward equilibrium. The relaxation is so slow that the time projected for the particles to reach the equilibrium contact angle of 110° is months--far longer than typical experimental timescales. In this thesis, we seek to understand the out-of-equilibrium behaviour of particles near interfaces. Because contact line pinning is likely an extra source of dissipation at interfaces, we start with experiments to elucidate the origins of contact-line pinning and find that polymer hairs on aqueous dispersed polymer particles strongly pin the contact-line. For particles without polymer hairs, nanoscale surface roughness can also pin the contact-line, though with a lower energy. We then extend our digital holography capabilities to track non-spherical particles. We demonstrate that we can track the centre-of-mass of a colloidal spherocylinder to a precision of 35 nm in all three dimensions and its orientation to a precision of 1.5°. Furthermore, the measured translational and rotational diffusion coefficients for the spherocylinders agree with hydrodynamic predictions to within 0.3%. This new functionality enables us to track colloidal ellipsoids and spherocylinders as they breach interfaces. By comparing the adsorption trajectories of the non-spherical particles to what is predicted from energy minimisation, we learn that contact-line pinning affects not just the timescales of breaching, but also the pathway to equilibrium. In fact, a particle's path to equilibrium can have complications even before the particle breaches the interface. Some particles are attracted to the interface, but stay within a few nanometers without ever breaching. We refer to this

  19. Quantitative uptake of colloidal particles by cell cultures.

    Science.gov (United States)

    Feliu, Neus; Hühn, Jonas; Zyuzin, Mikhail V; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif; Said, Alaa Hassan; Escudero, Alberto; Pelaz, Beatriz; Gonzalez, Elena; Duarte, Miguel A Correa; Roy, Sathi; Chakraborty, Indranath; Lim, Mei L; Sjöqvist, Sebastian; Jungebluth, Philipp; Parak, Wolfgang J

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  20. Quantitative uptake of colloidal particles by cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: wolfgang.parak@physik.uni-marburg.de [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  1. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    increase of the effective refractive index of the diffractive medium, resulting in the red-shift of the optical stop bands. The wavelength shift is linearly proportional to the vapor partial pressure for a spectrum of vapors. Optical simulation and theoretical prediction based on Kelvin equation suggest that a liquid film is formed on the walls of the macropores during vapor condensation. The third topic describes introducing doctor blade coating fabricated large area and low cost macroporous films for thermochromic smart windows, which are useful for energy control in glazed buildings. The fabricated macroporous polymer films exhibit brilliant colors and are capable of reflecting solar radiation when in-situ heated, and become transparent as cavities are filled with a solvent which has the same refractive index as that of the polymer when cooled to building temperature. The fourth topic reports the roll-to roll fabricated excellent water-repelling and self-cleaning macroporous polymer films. The size of the voids can be easily controlled by tuning the duration of an oxygen reactive-ion etching process prior to the removal of the templating silica spheres from silica colloidal-polymer composites. After surface functionalization with fluorosilane, superhydrophobic surface with large apparent water contact angle and small sliding angle can be obtained. The self-cleaning functionality can be achieved on superhydrophobic macroporous coatings by preventing bacterial contamination is further demonstrated. The fifth topic presented is that the template macroporous polymer films with interconnected voids and uniform interconnecting nanopores can be directly used as filtration membranes to achieve size-exclusive separation of particles. The results also demonstrate that more than 85% of small sized particles are recovered after filtration. The results also demonstrate that Escherichia coli can be filtrated by the from macroporous polymer films aqueous solution.

  2. Colloidal zein particles at water-water interfaces

    NARCIS (Netherlands)

    Chatsisvili, Nino; Philipse, Albert P.; Loppinet, Benoit; Tromp, R. Hans

    2017-01-01

    We synthesize colloidal zein particles using the anti-solvent precipitation method and study particle behavior at water-water interfaces. When added to phase-separating aqueous mixtures of fish gelatin and dextran, particles accumulate at the interface. In order to explain the mechanism of particle

  3. Anisotropic self-assembly of colloidal particles in polymer-colloid composites: A simulation study

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby

    2010-03-01

    The self-assembly of colloidal particles has potential applications in optical fibers, sensors and photovoltaic cells. In this work we have carried out stochastic molecular dynamics simulations of colloid-polymer composites in order to investigate the fundamental self-assembly processes of the particles, in an effort to design more optimal materials for the applications stated above. Results were obtained for spherical colloidal particles of different screening lengths dispersed in a polymer matrix at melt density. By tuning the screening length and interaction strengths between the colloid and polymer, self-assembly into structures that generate anisotropy in the composite material is demonstrated. This phenomenon in colloid-polymer mixtures is analogous to the previously observed self-assembly of grafted nanoparticles in polymer nanocomposites. Our results show a potentially easier way of producing anisotropic self-assembly in polymer-nanocomposites based on colloidal particles as fillers. We also discuss the dynamics of the polymer chains and colloidal particles for different screening lengths and polymer-filler interaction strengths.

  4. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  5. Self-assembled tunable networks of sticky colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Demortiere, Arnaud; Snezhko, Oleksiy Alexey; Sapozhnikov, Maksim; Becker, Nicholas G.; Proslier, Thomas; Aronson, Igor S.

    2017-07-18

    Self-assembled tunable networks of microscopic polymer fibers ranging from wavy colloidal "fur" to highly interconnected networks are created from polymer systems and an applied electric field. The networks emerge via dynamic self-assembly in an alternating (ac) electric field from a non-aqueous suspension of "sticky" polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles.

  6. Hybrid electrokinetics for separation, mixing, and concentration of colloidal particles.

    Science.gov (United States)

    Sin, Mandy L Y; Shimabukuro, Yusuke; Wong, Pak Kin

    2009-04-22

    The advent of nanotechnology has facilitated the preparation of colloidal particles with adjustable sizes and the control of their size-dependent properties. Physical manipulation, such as separation, mixing, and concentration, of these colloidal particles represents an essential step for fully utilizing their potential in a wide spectrum of nanotechnology applications. In this study, we investigate hybrid electrokinetics, the combination of dielectrophoresis and electrohydrodynamics, for active manipulation of colloidal particles ranging from nanometers to micrometers in size. A concentric electrode configuration, which is optimized for generating electrohydrodynamic flow, has been designed to elucidate the effectiveness of hybrid electrokinetics and define the operating regimes for different microfluidic operations. The results indicate that the relative importance of electrohydrodynamics increases with decreasing particle size as predicted by a scaling analysis and that electrohydrodynamics is pivotal for manipulating nanoscale particles. Using the concentric electrodes, we demonstrate separation, mixing, and concentration of colloidal particles by adjusting the relative strengths of different electrokinetic phenomena. The effectiveness of hybrid electrokinetics indicates its potential to serve as a generic technique for active manipulation of colloidal particles in various nanotechnology applications.

  7. Hybrid electrokinetics for separation, mixing, and concentration of colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Sin, Mandy L Y; Shimabukuro, Yusuke; Wong, Pak Kin [Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, AZ (United States)], E-mail: pak@email.arizona.edu

    2009-04-22

    The advent of nanotechnology has facilitated the preparation of colloidal particles with adjustable sizes and the control of their size-dependent properties. Physical manipulation, such as separation, mixing, and concentration, of these colloidal particles represents an essential step for fully utilizing their potential in a wide spectrum of nanotechnology applications. In this study, we investigate hybrid electrokinetics, the combination of dielectrophoresis and electrohydrodynamics, for active manipulation of colloidal particles ranging from nanometers to micrometers in size. A concentric electrode configuration, which is optimized for generating electrohydrodynamic flow, has been designed to elucidate the effectiveness of hybrid electrokinetics and define the operating regimes for different microfluidic operations. The results indicate that the relative importance of electrohydrodynamics increases with decreasing particle size as predicted by a scaling analysis and that electrohydrodynamics is pivotal for manipulating nanoscale particles. Using the concentric electrodes, we demonstrate separation, mixing, and concentration of colloidal particles by adjusting the relative strengths of different electrokinetic phenomena. The effectiveness of hybrid electrokinetics indicates its potential to serve as a generic technique for active manipulation of colloidal particles in various nanotechnology applications.

  8. Particle arrays with patterned pores by nanomachining with colloidal masks.

    Science.gov (United States)

    Choi, Dae-Geun; Kim, Sarah; Lee, Eeunsug; Yang, Seung-Man

    2005-02-16

    In summary, we have developed a new strategy for the fabrication of arrayed colloidal particles well-ordered nanometric holes of three or four fold symmetry by anisotropic reactive ion (plasma) etching of self-organized layers of colloidal spheres. We demonstrated that a mesoporous silica matrix with regular open windows could be used as a lithographic mask and the resulting arrangement of pores on a particle was dependent on the orientation of the colloidal particle stacking. A variety of organic and inorganic materials such as metals for metal-polymer composites, DNA and proteins, semiconducting and ceramic materials, and other polymers and small chemicals can be incorporated via chemical and physical attachment. Particles with patterned pores and composite particles by our nanomachining process can be used as novel functional materials in the field of electronics, photonics, and biotech areas.

  9. Multi-particle collision dynamics simulations of sedimenting colloidal dispersions in confinement.

    Science.gov (United States)

    Wysocki, Adam; Royall, C Patrick; Winkler, Roland G; Gompper, Gerhard; Tanaka, Hajime; van Blaaderen, Alfons; Löwen, Hartmut

    2010-01-01

    The sedimentation of an initially inhomogeneous distribution of hard-sphere colloids confined in a slit is simulated using the multi-particle collision dynamics scheme which takes into account hydrodynamic interactions mediated by the solvent. This system is an example for soft matter driven out of equilibrium where various length and time scales are involved. The initial laterally homogeneous density profiles exhibit a hydrodynamic Rayleigh-Taylor-like instability. Solvent backflow effects lead to an intricate non-linear behaviour which is analyzed via the solvent flow field and the colloidal velocity correlation function. Our simulation data are in good agreement with real-space microscopy experiments.

  10. Wetting-induced clustering and phoretic motions of colloidal particles

    Science.gov (United States)

    Narayanan, Theyencheri; Semeraro, Enrico; Dattani, Rajiv

    In recent years, self-propelled colloidal systems have received considerable attention as models for active matter. Most commonly used synthetic self-propelled systems involve Janus particles with asymmetric chemical composition in a catalytic medium. An analogous behavior can be obtained when particles are suspended in a phase separating binary liquid mixture due to preferential adsorption of one of the liquid species on the colloidal particles. Above an aggregation temperature (TA), particles become attractive and aggregate to form compact colloidal clusters. In the two phase region of the binary mixture, particles partition into the phase rich in adsorbed component. We have used silica colloids suspended in a binary mixture of 3-methyl pyridine and heavy water to probe this adsorption-induced phoretic motion of particles. Using ultra small-angle X-ray scattering and photon correlation spectroscopy, we investigated the static and dynamic behavior of this system. In the one phase region below TA, particles display a repulsive structure factor with diffusive dynamics. In the two-phase region of the host liquid, the static structure is similar but the dynamics is strongly enhanced with the onset of phase separation reminiscent of self-propelled motion.

  11. The attachment of colloidal particles to environmentally relevant surfaces and the effect of particle shape.

    Science.gov (United States)

    McNew, Coy P; Kananizadeh, Negin; Li, Yusong; LeBoeuf, Eugene J

    2017-02-01

    Despite the prevalence of nonspherical colloidal particles, the role of particle shape in the transport of colloids is largely understudied. This study investigates the attachment of colloidal particles onto environmentally relevant surfaces while varying particle shape and ionic strength. Using quartz crystal microbalance and atomic force microscopy measurements, the role of particle shape was elucidated and possible mechanisms discussed. The attachment of both spherical and stretched polystyrene colloidal particles onto a smooth alginate-coated silica surface showed qualitative agreement with DLVO theory. Attachment onto a Harpeth humic acid (HHA) surface, however, significantly deviated from DLVO theory due to its high surface heterogeneity and extended confirmation from the silica surface. This extended confirmation provided increased potential for spherical particle entanglement, while the enlarged major axis of the stretched particles hindered their ability to attach. As ionic strength increased, the HHA layer condensed and provided less potential for spherical particle entanglement and therefore the selectivity for spherical particle attachment vanished. The findings presented in this study suggest that colloidal particle shape may play a complex and important role in predicting the transport of colloidal particles, especially in the presence of natural organic matter-coated surfaces. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects

    Science.gov (United States)

    Rodríguez-Arco, Laura; Li, Mei; Mann, Stephen

    2017-08-01

    The spontaneous assembly of micro-compartmentalized colloidal objects capable of controlled interactions offers a step towards rudimentary forms of collective behaviour in communities of artificial cell-like entities (synthetic protocells). Here we report a primitive form of artificial phagocytosis in a binary community of synthetic protocells in which multiple silica colloidosomes are selectively ingested by self-propelled magnetic Pickering emulsion (MPE) droplets comprising particle-free fatty acid-stabilized apertures. Engulfment of the colloidosomes enables selective delivery and release of water-soluble payloads, and can be coupled to enzyme activity within the MPE droplets. Our results highlight opportunities for the development of new materials based on consortia of colloidal objects, and provide a novel microscale engineering approach to inducing higher-order behaviour in mixed populations of synthetic protocells.

  13. Calculation of the electrophoretic mobility of a spherical colloid particle

    NARCIS (Netherlands)

    Wiersema, P.H.; Loeb, A.L.; Overbeek, J.Th.G.

    A new calculation of the relation between the electrophoretic mobility and the ζ-potential of a spherical colloid particle is presented. The model consists of a rigid, electrically insulating sphere surrounded by a Gouy-Chapman double layer. The appropriate differential equations (which account for

  14. Lattice symmetries and the topologically protected transport of colloidal particles.

    Science.gov (United States)

    Loehr, Johannes; de Las Heras, Daniel; Loenne, Michael; Bugase, Jonas; Jarosz, Adam; Urbaniak, Maciej; Stobiecki, Feliks; Tomita, Andreea; Huhnstock, Rico; Koch, Iris; Ehresmann, Arno; Holzinger, Dennis; Fischer, Thomas M

    2017-07-26

    The topologically protected transport of colloidal particles on top of periodic magnetic patterns is studied experimentally, theoretically, and with computer simulations. To uncover the interplay between topology and symmetry we use patterns of all possible two dimensional magnetic point group symmetries with equal lengths lattice vectors. Transport of colloids is achieved by modulating the potential with external, homogeneous but time dependent magnetic fields. The modulation loops can be classified into topologically distinct classes. All loops falling into the same class cause motion in the same direction, making the transport robust against internal and external perturbations. We show that the lattice symmetry has a profound influence on the transport modes, the accessibility of transport networks, and the individual transport directions of paramagnetic and diamagnetic colloidal particles. We show how the transport of colloidal particles above a two fold symmetric stripe pattern changes from universal adiabatic transport at large elevations via a topologically protected ratchet motion at intermediate elevations toward a non-transport regime at low elevations. Transport above four-fold symmetric patterns is closely related to the two-fold symmetric case. The three-fold symmetric case however consists of a whole family of patterns that continuously vary with a phase variable. We show how this family can be divided into two topologically distinct classes supporting different transport modes and being protected by proper and improper six fold symmetries. We discuss and experimentally demonstrate the topological transition between both classes. All three-fold symmetric patterns support independent transport directions of paramagnetic and diamagnetic particles. The similarities and the differences in the lattice symmetry protected transport of classical over-damped colloidal particles versus the topologically protected transport in quantum mechanical systems are

  15. Stabilization of foams with inorganic colloidal particles.

    Science.gov (United States)

    Gonzenbach, Urs T; Studart, André R; Tervoort, Elena; Gauckler, Ludwig J

    2006-12-19

    Wet foams are used in many important technologies either as end or intermediate products. However, the thermodynamic instability of wet foams leads to undesired bubble coarsening over time. Foam stability can be drastically improved by using particles instead of surfactants as foam stabilizers, since particles tend to adsorb irreversibly at the air-water interface. Recently, we presented a novel method for the preparation of high-volume particle-stabilized foams which show neither bubble growth nor drainage over more than 4 days. The method is based on the in-situ hydrophobization of initially hydrophilic particles to enable their adsorption on the surface of air bubbles. In-situ hydrophobization is accomplished through the adsorption of short-chain amphiphiles on the particle surface. In this work, we illustrate how this novel method can be applied to particles with various surface chemistries. For that purpose, the functional group of the amphiphilic molecule was tailored according to the surface chemistry of the particles to be used as foam stabilizers. Short-chain carboxylic acids, alkyl gallates, and alkylamines were shown to be appropriate amphiphiles to in-situ hydrophobize the surface of different inorganic particles. Ultrastable wet foams of various chemical compositions were prepared using these amphiphiles. The simplicity and versatility of this approach is expected to aid the formulation of stable wet foams for a variety of applications in materials manufacturing, food, cosmetics, and oil recovery, among others.

  16. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  17. Coalescence, evaporation and particle deposition of consecutively printed colloidal drops

    Science.gov (United States)

    Chhasatia, Viral; Yang, Xin; Shah, Jaymeen; Sun, Ying

    2012-11-01

    In applications such as inkjet printing and spray deposition, colloid drops are often used as building blocks for line and pattern printing where their interactions play important roles in determining the deposition morphology and properties. In this study, the particle deposition dynamics of two consecutively printed evaporating colloidal drops is examined using a fluorescence microscope and a synchronized side-view camera. The results show that the relaxation time of the water-air interface of the merged drop is shorter than that of a single drop impacting on a dry surface. It is also found that both morphology and particle distribution uniformity of the deposit change significantly with varying jetting delay and spatial spacing between two drops. As the drop spacing increases while keeping jetting delay constant, the circularity of the coalesced drop reduces. For the regime where the time scale for drop evaporation is comparable with the relaxation time scale for two drops to completely coalesce, the capillary flow induced by the local curvature variation of the air-water interface redistributes particles inside a merged drop, causing suppression of the coffee-ring effect for the case of a high jetting frequency while resulting in a region of particle accumulation in the middle of the merged drop at a low jetting frequency. By tuning the interplay of wetting, evaporation, capillary relaxation, and particle assembly, the deposition morphology of consecutively printed colloidal drops can be controlled.

  18. Mesophase behaviour of polyhedral particles

    KAUST Repository

    Agarwal, Umang

    2011-02-13

    Translational and orientational excluded-volume fields encoded in particles with anisotropic shapes can lead to purely entropy-driven assembly of morphologies with specific order and symmetry. To elucidate this complex correlation, we carried out detailed Monte Carlo simulations of six convex space-filling polyhedrons, namely, truncated octahedrons, rhombic dodecahedrons, hexagonal prisms, cubes, gyrobifastigiums and triangular prisms. Simulations predict the formation of various new liquid-crystalline and plastic-crystalline phases at intermediate volume fractions. By correlating these findings with particle anisotropy and rotational symmetry, simple guidelines for predicting phase behaviour of polyhedral particles are proposed: high rotational symmetry is in general conducive to mesophase formation, with low anisotropy favouring plastic-solid behaviour and intermediate anisotropy (or high uniaxial anisotropy) favouring liquid-crystalline behaviour. It is also found that dynamical disorder is crucial in defining mesophase behaviour, and that the apparent kinetic barrier for the liquid-mesophase transition is much lower for liquid crystals (orientational order) than for plastic solids (translational order). © 2011 Macmillan Publishers Limited. All rights reserved.

  19. Bayesian approach to analyzing holograms of colloidal particles.

    Science.gov (United States)

    Dimiduk, Thomas G; Manoharan, Vinothan N

    2016-10-17

    We demonstrate a Bayesian approach to tracking and characterizing colloidal particles from in-line digital holograms. We model the formation of the hologram using Lorenz-Mie theory. We then use a tempered Markov-chain Monte Carlo method to sample the posterior probability distributions of the model parameters: particle position, size, and refractive index. Compared to least-squares fitting, our approach allows us to more easily incorporate prior information about the parameters and to obtain more accurate uncertainties, which are critical for both particle tracking and characterization experiments. Our approach also eliminates the need to supply accurate initial guesses for the parameters, so it requires little tuning.

  20. Charging of heated colloidal particles using the electrolyte Seebeck effect.

    Science.gov (United States)

    Majee, Arghya; Würger, Alois

    2012-03-16

    We propose a novel actuation mechanism for colloids, which is based on the Seebeck effect of the electrolyte solution: Laser heating of a nonionic particle accumulates in its vicinity a net charge Q, which is proportional to the excess temperature at the particle surface. The corresponding long-range thermoelectric field E is proportional to 1/r(2) provides a tool for controlled interactions with nearby beads or with additional molecular solutes. An external field E(ext) drags the thermocharged particle at a velocity that depends on its size and absorption properties; the latter point could be particularly relevant for separating carbon nanotubes according to their electronic band structure.

  1. Tuning particle geometry of chemically anisotropic dumbbell-shaped colloids.

    Science.gov (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K

    2017-03-15

    Chemically anisotropic dumbbell-shaped colloids are prepared starting from cross-linked polymer seed particles coated with a chlorinated outer layer. These chlorinated seeds are swollen with monomer. Subsequently, a liquid protrusion is formed on the surface of the seed particle by phase separation between the monomer and the swollen polymer network. Solidification of these liquid lobes by polymerization leads to the desired dumbbell-shaped colloids. The chlorine groups remain confined on the seed lobe of the particles, ensuring chemical anisotropy of the resulting particles. Exploiting the asymmetric distribution of the chemically reactive surface chlorine groups allows for site-specific surface modifications. Here we show that the geometry of the resulting chemically anisotropic dumbbells can be systematically tuned by a number of experimental parameters including the volume of styrene by which the seeds are swollen, the cross-link density of the chlorinated seeds and chemical composition/thickness of the chlorinated coating deposited on the seed particles. Being able to control the particle geometry, and therefore the Janus balance of these chemically anisotropic particles, provides a promising starting point for the synthesis of sophisticated building blocks for future (self-assembly) studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Phytosterol colloidal particles as Pickering stabilizers for emulsions.

    Science.gov (United States)

    Liu, Fu; Tang, Chuan-He

    2014-06-04

    Water-insoluble phytosterols were developed into a kind of colloidal particle as Pickering stabilizers for emulsions by a classic anti-solvent method using 100% ethanol as the organic phase to solubilize the phytosterols and whey protein concentrate (WPC) as the emulsifier. The colloidal particles in the dispersion, with morphology of stacked platelet-like sheets, had a mean diameter of 44.7 and 24.7 μm for the volume- and surface-averaged sizes, respectively. The properties and stability of the emulsions stabilized by these colloidal particles were highly dependent upon the applied total solid concentration (c; in the dispersion) and oil fraction (ø). The results indicated that (1) at a low c value (emulsions were susceptible to phase separation, even at a low ø of 0.2, (2) at low ø values (e.g., 0.2 or 0.3) and a relatively high c value (1.0%, w/v, or above), a severe droplet flocculation occurred for the emulsions, and (3) when both c and ø were appropriately high, a kind of self-supporting gel-like emulsions could be formed. More interestingly, a phase inversion of the emulsions from the oil-in-water to water-in-oil type was observed, upon the ø increasing from 0.2 to 0.6 (especially at high c values, e.g., 3.0%, w/v). The elaborated Pickering emulsions stabilized by the phytosterol colloidal particles with a gel-like behavior would provide a candidate to act as a novel delivery system for active ingredients.

  3. Electrophoretic Retardation of Colloidal Particles in Nonpolar Liquids

    Directory of Open Access Journals (Sweden)

    Filip Strubbe

    2013-04-01

    Full Text Available We have measured the electrophoretic mobility of single, optically trapped colloidal particles, while gradually depleting the co-ions and counterions in the liquid around the particle by applying a dc voltage. This is achieved in a nonpolar liquid, where charged reverse micelles act as co-ions and counterions. By increasing the dc voltage, the mobility first increases when the concentrations of co-ions and counterions near the particle start to decrease. At sufficiently high dc voltage (around 2 V, the mobility reaches a saturation value when the co-ions and counterions are fully separated. The increase in mobility is larger when the equilibrium ionic strength is higher. The dependence of the experimental data on the equilibrium ionic strength and on the applied voltage is in good agreement with the standard theory of electrophoretic retardation, assuming that the bare particle charge remains constant. This method is useful for studying the electrophoretic retardation effect and charging mechanisms for nonpolar colloids, and it sheds light on previously unexplained particle acceleration in electronic ink devices.

  4. Restricted dislocation motion in crystals of colloidal dimer particles.

    Science.gov (United States)

    Gerbode, Sharon J; Lee, Stephanie H; Liddell, Chekesha M; Cohen, Itai

    2008-08-01

    At high area fractions, monolayers of colloidal dimer particles form a degenerate crystal (DC) structure in which the particle lobes occupy triangular lattice sites while the particles are oriented randomly along any of the three lattice directions. We report that dislocation glide in DCs is blocked by certain particle orientations. The mean number of lattice constants between such obstacles is Z[over](exp)=4.6+/-0.2 in experimentally observed DC grains and Z[over](sim)=6.18+/-0.01 in simulated monocrystalline DCs. Dislocation propagation beyond these obstacles is observed to proceed through dislocation reactions. We estimate that the energetic cost of dislocation pair separation via such reactions in an otherwise defect free DC grows linearly with final separation, hinting that the material properties of DCs may be dramatically different from those of 2-D crystals of spheres.

  5. Information storage and retrieval in a single levitating colloidal particle

    Science.gov (United States)

    Myers, Christopher J.; Celebrano, Michele; Krishnan, Madhavi

    2015-10-01

    The binary switch is a basic component of digital information. From phase-change alloys to nanomechanical beams, molecules and atoms, new strategies for controlled bistability hold great interest for emerging technologies. We present a generic methodology for precise and parallel spatiotemporal control of nanometre-scale matter in a fluid, and demonstrate the ability to attain digital functionalities such as switching, gating and data storage in a single colloid, with further implications for signal amplification and logic operations. This fluid-phase bit can be arrayed at high densities, manipulated by either electrical or optical fields, supports low-energy, high-speed operation and marks a first step toward ‘colloidal information’. The principle generalizes to any system where spatial perturbation of a particle elicits a differential response amenable to readout.

  6. Convection in colloidal suspensions with particle-concentration-dependent viscosity.

    Science.gov (United States)

    Glässl, M; Hilt, M; Zimmermann, W

    2010-07-01

    The onset of thermal convection in a horizontal layer of a colloidal suspension is investigated in terms of a continuum model for binary-fluid mixtures where the viscosity depends on the local concentration of colloidal particles. With an increasing difference between the viscosity at the warmer and the colder boundary the threshold of convection is reduced in the range of positive values of the separation ratio psi with the onset of stationary convection as well as in the range of negative values of psi with an oscillatory Hopf bifurcation. Additionally the convection rolls are shifted downwards with respect to the center of the horizontal layer for stationary convection psi>0 and upwards for the Hopf bifurcation (psi<0.

  7. Stability of dispersions of colloidal alumina particles in aqueous suspensions.

    Science.gov (United States)

    Singh, Bimal P; Menchavez, Ruben; Takai, Chika; Fuji, Masayoshi; Takahashi, Minoru

    2005-11-01

    The colloidal stability of suspensions of alumina particles has been investigated by measuring particle size distribution, sedimentation, viscosity, and zeta potential. Alumina particles were found to be optimally dispersed at pH around 3 to 7.8 without dispersant and at pH 8.5 and beyond with dispersant. The above results corroborate zeta potential and viscosity measurement data well. The surface charge of alumina powder changed significantly with anionic polyelectrolyte (ammonium polycarboxylate, APC) and the iep shifted toward more acidic range under different dispersant conditions. It was found that the essential role played by pH and dispersant (APC) on the charge generation and shift in the isoelectric point of alumina manifests two features: (i) the stability decreases on approaching the isoelectric point from either side of pH, and (ii) the maximum instability was found at pH 9.1 for alumina only and at pH 6.8 for alumina/APC, which is close to the isoelectric points for both the system, respectively. Using the model based on the electrical double-layer theory of surfactant adsorption through shift in isoelectric points, the authors could estimate the specific free energy of interaction (7.501 kcal/mol) between particles and dispersant. The interaction energy, zeta potential, sedimentation, and viscosity results, were used to explain the colloidal stability of the suspension.

  8. Programmable colloidal molecules from sequential capillarity-assisted particle assembly

    Science.gov (United States)

    Ni, Songbo; Leemann, Jessica; Buttinoni, Ivo; Isa, Lucio; Wolf, Heiko

    2016-01-01

    The assembly of artificial nanostructured and microstructured materials which display structures and functionalities that mimic nature’s complexity requires building blocks with specific and directional interactions, analogous to those displayed at the molecular level. Despite remarkable progress in synthesizing “patchy” particles encoding anisotropic interactions, most current methods are restricted to integrating up to two compositional patches on a single “molecule” and to objects with simple shapes. Currently, decoupling functionality and shape to achieve full compositional and geometrical programmability remains an elusive task. We use sequential capillarity-assisted particle assembly which uniquely fulfills the demands described above. This is a new method based on simple, yet essential, adaptations to the well-known capillary assembly of particles over topographical templates. Tuning the depth of the assembly sites (traps) and the surface tension of moving droplets of colloidal suspensions enables controlled stepwise filling of traps to “synthesize” colloidal molecules. After deposition and mechanical linkage, the colloidal molecules can be dispersed in a solvent. The template’s shape solely controls the molecule’s geometry, whereas the filling sequence independently determines its composition. No specific surface chemistry is required, and multifunctional molecules with organic and inorganic moieties can be fabricated. We demonstrate the “synthesis” of a library of structures, ranging from dumbbells and triangles to units resembling bar codes, block copolymers, surfactants, and three-dimensional chiral objects. The full programmability of our approach opens up new directions not only for assembling and studying complex materials with single-particle-level control but also for fabricating new microscale devices for sensing, patterning, and delivery applications. PMID:27051882

  9. Clarification of Colloidal Particles in Lake and River Water Using AC Electrokinetic

    Directory of Open Access Journals (Sweden)

    Mohtar M.N.

    2016-01-01

    Full Text Available Scenery of clear water of a lake or river is always a fascinating view. The clarity of a water is subjected to the water free from colloidal particles. Lake or river usually have foreign colloidal particles such as sand, mud, foreign particle, etc. which make the water cloudy. Usually the cloudy water become clear because of natural sedimentation process. However it is not easy to clarify cloudy water of a lake or river and make it clear especially if the sediment of colloidal particle is influence or disturb by water current. The approach by AC Electrokinetic phenomenon able to manipulate colloidal particles in a suspension. It can separate, trap or sort colloidal particle which made the phenomenon as possible reliable option for clarifying lake or river water from colloidal particles hence make it clear water. This work will simulate the process of clarification of colloidal suspension using AC Electrokinetic phenomenon in a lab. Electrodes were fabricated on Indium Tin Oxide (ITO coated glass slide using laser etching technique. The electrode which poses unique geometry will be able to demonstrate electric field gradient as soon as it is introduced with electrical signal. Base on the surface potential of the colloids and the surface potential of the electrode, the colloids will be manipulated. This phenomenon is known as AC Electrokinetics. This can be regarded as guided sedimentation process. The trapped colloidal particle can be now easily extracted or remove from the water thus transform the water from cloudy to clear hence complete water clarification process.

  10. Bond rupture between colloidal particles with a depletion interaction

    Energy Technology Data Exchange (ETDEWEB)

    Whitaker, Kathryn A.; Furst, Eric M., E-mail: furst@udel.edu [Department of Chemical and Biomolecular Engineering and Center for Molecular and Engineering Thermodynamics, University of Delaware, Newark, Delaware 19716 (United States)

    2016-05-15

    The force required to break the bonds of a depletion gel is measured by dynamically loading pairs of colloidal particles suspended in a solution of a nonadsorbing polymer. Sterically stabilized poly(methyl methacrylate) colloids that are 2.7 μm diameter are brought into contact in a solvent mixture of cyclohexane-cyclohexyl bromide and polystyrene polymer depletant. The particle pairs are subject to a tensile load at a constant loading rate over many approach-retraction cycles. The stochastic nature of the thermal rupture events results in a distribution of bond rupture forces with an average magnitude and variance that increases with increasing depletant concentration. The measured force distribution is described by the flux of particle pairs sampling the energy barrier of the bond interaction potential based on the Asakura–Oosawa depletion model. A transition state model demonstrates the significance of lubrication hydrodynamic interactions and the effect of the applied loading rate on the rupture force of bonds in a depletion gel.

  11. Model simulations of particle aggregation effect on colloid exchange between streams and streambeds.

    Science.gov (United States)

    Areepitak, Trachu; Ren, Jianhong

    2011-07-01

    Colloids found in natural streams have large reactive surface areas, which makes them significant absorbents and carriers for pollutants. Stream-subsurface exchange plays a critical role in regulating the transport of colloids and contaminants in natural streams. Previous process-based multiphase exchange models were developed without consideration of colloid-colloid interaction. However, many studies have indicated that aggregation is a significant process and needs to be considered in stream process analysis. Herein, a new colloid exchange model was developed by including particle aggregation in addition to colloid settling and filtration. Self-preserving size distribution concepts and classical aggregation theory were employed to model the aggregation process. Model simulations indicate that under conditions of low filtration and high degree of particle-particle interaction, aggregation could either decrease or increase the amount of colloids retained in streambeds, depending on the initial particle size. Thus, two possible cases may occur including enhanced colloid deposition and facilitated colloid transport. Also, when the aggregation rate is high and filtration increases, more particles are retained by bed sediments due to filtration, and fewer are aggregated, which reduces the extent of aggregation effect on colloid deposition. The work presented here will contribute to a better understanding and prediction of colloid transport phenomena in natural streams.

  12. Correlated rigidity percolation and gelation of colloidal particles

    Science.gov (United States)

    Zhang, Shang; Zhang, Leyou; Rocklin, D. Zeb; Mao, Xiaoming

    Rigidity percolation on a lattice with sites or bonds randomly diluted is controlled by the isostatic point, where the degrees of freedom and constraints balance, and the system is at the verge of mechanical instability. In the case of triangular lattice rigidity percolation occurs very close to p = 2 / 3 as predicted from isostaticity. Interestingly, we found that when the site dilution is correlated, this transition occurs at a lower p, meaning that less material is needed for rigidity in the disordered structure. This correlation may be seen as a consequence of short range attraction between the particles which makes them cluster. We characterized critical scaling associated with the site correlation parameter, and will discuss implication to understand experimental systems such as gelation of colloidal particles.

  13. Effect of particle shape on colloid retention and release in saturated porous media.

    Science.gov (United States)

    Liu, Qiang; Lazouskaya, Volha; He, Qingxiang; Jin, Yan

    2010-01-01

    Colloidal particles of environmental concern often have nonspherical shapes. However, theories and models such as the classical filtration theory have been developed based on the behavior of spherical particles. This study examined the effect of particle shape on colloid retention (e.g., attachment and straining) and release in saturated porous media. Two- and three-step transport experiments were conducted in water-saturated glass bead columns using colloids dispersed in deionized water and an electrolyte solution. The particles used in the experiments were carboxylate-modified latex colloids of spherical (500 nm diam.) and rod (aspect ratio, 7.0) shapes. The rod-like particles were prepared by stretching the spherical particles. Analysis of the colloid breakthrough curves indicates that particle shape affected transport behavior, but retention did not increase with increasing aspect ratio. Retention of the spherical particles occurred mainly in the secondary energy minimum, whereas retention of rod-like particles occurred in primary and secondary energy minima. There was less straining of rod-like particles compared with spherical ones, indicating that the minor axis was the critical dimension controlling the process. Release of spherical particles on elution was instantaneous, whereas release of rod-like particles was rate limited, giving rise to long tails, implying an orientation effect for rod-like colloids. The results suggest that the differences in electrostatic properties and shape contributed to the observed different retention and release behaviors of the two colloids.

  14. Brownian motion studies of viscoelastic colloidal gels by rotational single particle tracking

    Directory of Open Access Journals (Sweden)

    Mengning Liang

    2014-05-01

    Full Text Available Colloidal gels have unique properties due to a complex microstructure which forms into an extended network. Although the bulk properties of colloidal gels have been studied, there has been difficulty correlating those properties with individual colloidal dynamics on the microscale due to the very high viscosity and elasticity of the material. We utilize rotational X-ray tracking (RXT to investigate the rotational motion of component crystalline colloidal particles in a colloidal gel of alumina and decanoic acid. Our investigation has determined that the high elasticity of the bulk is echoed by a high elasticity experienced by individual colloidal particles themselves but also finds an unexpected high degree of rotational diffusion, indicating a large degree of freedom in the rotational motion of individual colloids even within a tightly bound system.

  15. Brownian motion of a nano-colloidal particle: the role of the solvent.

    Science.gov (United States)

    Torres-Carbajal, Alexis; Herrera-Velarde, Salvador; Castañeda-Priego, Ramón

    2015-07-15

    Brownian motion is a feature of colloidal particles immersed in a liquid-like environment. Usually, it can be described by means of the generalised Langevin equation (GLE) within the framework of the Mori theory. In principle, all quantities that appear in the GLE can be calculated from the molecular information of the whole system, i.e., colloids and solvent molecules. In this work, by means of extensive Molecular Dynamics simulations, we study the effects of the microscopic details and the thermodynamic state of the solvent on the movement of a single nano-colloid. In particular, we consider a two-dimensional model system in which the mass and size of the colloid are two and one orders of magnitude, respectively, larger than the ones associated with the solvent molecules. The latter ones interact via a Lennard-Jones-type potential to tune the nature of the solvent, i.e., it can be either repulsive or attractive. We choose the linear momentum of the Brownian particle as the observable of interest in order to fully describe the Brownian motion within the Mori framework. We particularly focus on the colloid diffusion at different solvent densities and two temperature regimes: high and low (near the critical point) temperatures. To reach our goal, we have rewritten the GLE as a second kind Volterra integral in order to compute the memory kernel in real space. With this kernel, we evaluate the momentum-fluctuating force correlation function, which is of particular relevance since it allows us to establish when the stationarity condition has been reached. Our findings show that even at high temperatures, the details of the attractive interaction potential among solvent molecules induce important changes in the colloid dynamics. Additionally, near the critical point, the dynamical scenario becomes more complex; all the correlation functions decay slowly in an extended time window, however, the memory kernel seems to be only a function of the solvent density. Thus, the

  16. Modes of surface premelting in colloidal crystals composed of attractive particles

    Science.gov (United States)

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-01

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  17. Nonequilibrium dynamics of mixtures of active and passive colloidal particles

    Science.gov (United States)

    Wittkowski, Raphael; Stenhammar, Joakim; Cates, Michael E.

    2017-10-01

    We develop a mesoscopic field theory for the collective nonequilibrium dynamics of multicomponent mixtures of interacting active (i.e., motile) and passive (i.e., nonmotile) colloidal particles with isometric shape in two spatial dimensions. By a stability analysis of the field theory, we obtain equations for the spinodal that describes the onset of a motility-induced instability leading to cluster formation in such mixtures. The prediction for the spinodal is found to be in good agreement with particle-resolved computer simulations. Furthermore, we show that in active-passive mixtures the spinodal instability can be of two different types. One type is associated with a stationary bifurcation and occurs also in one-component active systems, whereas the other type is associated with a Hopf bifurcation and can occur only in active-passive mixtures. Remarkably, the Hopf bifurcation leads to moving clusters. This explains recent results from simulations of active-passive particle mixtures, where moving clusters and interfaces that are not seen in the corresponding one-component systems have been observed.

  18. Sculpting Silica Colloids by Etching Particles with Nonuniform Compositions

    Science.gov (United States)

    2017-01-01

    We present the synthesis of new shapes of colloidal silica particles by manipulating their chemical composition and subsequent etching. Segments of silica rods, prepared by the ammonia catalyzed hydrolysis and condensation of tetraethylorthosilicate (TEOS) from polyvinylpyrrolidone loaded water droplets, were grown under different conditions. Upon decreasing temperature, delaying ethanol addition, or increasing monomer concentration, the rate of dissolution of the silica segment subsequently formed decreased. A watery solution of NaOH (∼mM) selectively etched these segments. Further tuning the conditions resulted in rod–cone or cone–cone shapes. Deliberately modulating the composition along the particle’s length by delayed addition of (3-aminopropyl)-triethoxysilane (APTES) also allowed us to change the composition stepwise. The faster etching of this coupling agent in neutral conditions or HF afforded an even larger variety of particle morphologies while in addition changing the chemical functionality. A comparable step in composition was applied to silica spheres. Biamine functional groups used in a similar way as APTES caused a charge inversion during the growth, causing dumbbells and higher order aggregates to form. These particles etched more slowly at the neck, resulting in a biconcave silica ring sandwiched between two silica spheres, which could be separated by specifically etching the functionalized layer using HF. PMID:28413261

  19. Nanometre-scale deposition of colloidal Au particles using electrophoresis in a nanopipette probe

    Science.gov (United States)

    Iwata, F.; Nagami, S.; Sumiya, Y.; Sasaki, A.

    2007-03-01

    We describe a novel technique of local electrophoretic deposition of colloidal particles using a scanning probe microscope with a nanopipette probe filled with a colloidal solution. The colloidal solution including nanometre-scale particles was put into the nanopipette probe. A thin metal wire was inserted into the nanopipette probe as an electrode for the electrophoretic deposition. With the probe edge nearly in contact with the conductive surface and with an electric potential applied between the electrode and the surface, the colloidal particles migrated toward the edge of the probe, causing them to be deposited on the surface. It was possible for nanometre-scale Au colloidal particles in an aqueous solution to be deposited on Si surfaces. The size of the Au dots could be modified by adjusting the deposition time and voltage. Dot array and line patterns were successfully plotted on the surface. This technique of local deposition should provide the possibility for fabricating nanostructures such as nanomachines and nanoelectronics.

  20. Attachment of micro- and nano-particles on tipless cantilevers for colloidal probe microscopy.

    Science.gov (United States)

    D'Sa, Dexter J; Chan, Hak-Kim; Chrzanowski, Wojciech

    2014-07-15

    Current colloidal probe preparation techniques face several challenges in the production of functional probes using particles ⩽5 μm. Challenges include: glue encapsulated particles, glue altered particle properties, improper particle or agglomerate attachment, and lengthy procedures. We present a method to rapidly and reproducibly produce functional micro and nano-colloidal probes. Using a six-step procedure, cantilevers mounted on a custom designed 45° holder were used to approach and obtain a minimal amount of epoxy resin (viscosity of ∼14,000 cP) followed by a single micron/nano particle on the apex of a tipless cantilever. The epoxy and particles were prepared on individual glass slides and subsequently affixed to a 10× or 40× optical microscope lens using another custom designed holder. Scanning electron microscopy and comparative glue-colloidal probe measurements were used to confirm colloidal probe functionality. The method presented allowed rapid and reproducible production of functional colloidal probes (80% success). Single nano-particles were prominently affixed to the apex of the cantilever, unaffected by the epoxy. Nano-colloidal probes were used to conduct topographical, instantaneous force, and adhesive force mapping measurements in dry and liquid media conveying their versatility and functionality in studying nano-colloidal systems. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Hexadecapolar colloids

    Science.gov (United States)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  2. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants.

    Science.gov (United States)

    Pawlowska, Agnieszka; Sznajder, Izabela; Sadowski, Zygmunt

    2017-07-01

    Colloidal particles have an ability to sorb heavy metals, metalloids, and organic compounds (e.g. biosurfactants) present in soil and groundwater. The pH and ionic strength changes may promote release of such particles causing potential contaminant transport. Therefore, it is very important to know how a colloid particle-mineral particle and colloid-mineral-biosurfactant system behaves in the natural environment. They can have negative impact on the environment and human health. This study highlighted the influence of biosurfactants produced by Pseudomonas aeruginosa on the transport of colloidal hematite (α-Fe2O3) through porous bed (materials collected from the Szklary and Zloty Stok solid waste heaps from Lower Silesia, Poland). Experiments were conducted using column set in two variants: colloid solution with porous bed and porous bed with adsorbed biosurfactants, in the ionic strengths of 5 × 10-4 and 5 × 10-3 M KCl. The zeta potential of mineral materials and colloidal hematite, before and after adsorption of biosurfactant, was determined. Obtained results showed that reduction in ionic strength facilitates colloidal hematite transport through the porous bed. The mobility of colloidal hematite was higher when the rhamnolipid adsorbed on the surface of mineral grain.

  3. Statics and dynamics of colloidal particles on optical tray arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory

    2009-01-01

    We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.

  4. Synthesis and Characterization of Polyelectrolyte Grafted Charged Colloidal Particles

    Science.gov (United States)

    Mohanty, Priti Sundar; Harada, Tamotsu; Matsumoto, Kozo; Matsuoka, Hideki

    2006-05-01

    Novel polyelectrolyte grafted charged colloidal particles have been synthesized via emulsion polymerization method using block copolymer as an emulsifier and have been characterized by determining the surface charge number (Z), chain density (σ) using conductometric titration, the size distribution, hydrodynamic (Rh) radius by dynamic light scattering and the core radius (Rc) by atomic force microscopy. The structural ordering and dynamics have been investigated in a very dilute concentration and the effect of salt concentration (Cs) on hydrodynamic radius have also been studied using dynamic light scattering. The conductivity titration curve was found to show two equivalence points and the potentiometric titration curves are found to sensitive only after a critical salt concentrations. The corresponding measured hydrodynamic radius is also found to decrease after a critical salt concentration. At high salt concentration, the hydrodynamic radius shows a close agreement with that of the core radius measured by the atomic force microscope. These experimental results are in agreement with the recent theoretical prediction and experimental observation that most of the counterions are confined inside the brush region which led to stretching of the chains at low salt concentration.

  5. Phase behaviour of rod-like colloid + flexible polymer mixtures

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Stroobants, A.

    The effect of non-adsorbing, flexible polymer on the isotropic-nematic transition in dispersions of rod-like colloids is investigated. A widening of the biphasic gap is observed, in combination with a marked polymer partitioning between the coexisting phases. Under certain conditions, areas of

  6. Phase behaviour and dynamics of suspensions of hard colloidal platelets

    NARCIS (Netherlands)

    Kooij, F.M. van der

    2000-01-01

    In this thesis we aim to provide a many-sided answer to the question: what are the consequences of plate-like colloidal shape on a suspensions' physical properties? A central role in this investigation is played by the experimental model system of platelets which, building on the Van 't Hoff

  7. Surface roughness directed self-assembly of patchy particles into colloidal micelles.

    Science.gov (United States)

    Kraft, Daniela J; Ni, Ran; Smallenburg, Frank; Hermes, Michiel; Yoon, Kisun; Weitz, David A; van Blaaderen, Alfons; Groenewold, Jan; Dijkstra, Marjolein; Kegel, Willem K

    2012-07-03

    Colloidal particles with site-specific directional interactions, so called "patchy particles", are promising candidates for bottom-up assembly routes towards complex structures with rationally designed properties. Here we present an experimental realization of patchy colloidal particles based on material independent depletion interaction and surface roughness. Curved, smooth patches on rough colloids are shown to be exclusively attractive due to their different overlap volumes. We discuss in detail the case of colloids with one patch that serves as a model for molecular surfactants both with respect to their geometry and their interactions. These one-patch particles assemble into clusters that resemble surfactant micelles with the smooth and attractive sides of the colloids located at the interior. We term these clusters "colloidal micelles". Direct Monte Carlo simulations starting from a homogeneous state give rise to cluster size distributions that are in good agreement with those found in experiments. Important differences with surfactant micelles originate from the colloidal character of our model system and are investigated by simulations and addressed theoretically. Our new "patchy" model system opens up the possibility for self-assembly studies into finite-sized superstructures as well as crystals with as of yet inaccessible structures.

  8. Transmission electron microscopy investigation of colloids and particles from landfill leachates.

    Science.gov (United States)

    Matura, Marek; Ettler, Vojtech; Klementová, Mariana

    2012-05-01

    Leachates collected at two (active and closed) municipal solid waste (MSW) landfills were examined for colloids and particles by transmission electron microscopy, energy dispersive spectrometry, selected area electron diffraction and for the chemical compositions of the filtrates after the filtration to 0.1 µm and ultrafiltration to 1 kDa (~ 1 nm). Six groups of colloids/particles in the range 5 nm to 5 µm were determined (in decreasing order of abundance): carbonates, phyllosilicates (clay minerals and micas), quartz, Fe-oxides, organics and others (salts, phosphates). Inorganic colloids/particles in leachates from the active landfill predominantly consist of calcite (CaCO(3)) and minor clay minerals and quartz (SiO(2)). The colloids/particles in the leachates from the closed landfill consist of all the observed groups with dominant phyllosilicates. Whereas calcite, Fe-oxides and phosphates can precipitate directly from the leachates, phyllosilicates and quartz are more probably either derived from the waste or formed by erosion of the geological environment of the landfill. Low amounts of organic colloids/particles were observed, indicating the predominance of organic molecules in the 'truly dissolved' fraction (fulvic compounds). Especially newly formed calcite colloids forming particles of 500 nm and stacking in larger aggregates can bind trace inorganic contaminants (metals/metalloids) and immobilize them in landfill environments.

  9. Direct numerical simulations of agglomeration of circular colloidal particles in two-dimensional shear flow

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon, E-mail: yjchoi@uvic.ca; Djilali, Ned, E-mail: ndjilali@uvic.ca [Institute for Integrated Energy Systems and Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia V8W 3P6 (Canada)

    2016-01-15

    Colloidal agglomeration of nanoparticles in shear flow is investigated by solving the fluid-particle and particle-particle interactions in a 2D system. We use an extended finite element method in which the dynamics of the particles is solved in a fully coupled manner with the flow, allowing an accurate description of the fluid-particle interfaces without the need of boundary-fitted meshes or of empirical correlations to account for the hydrodynamic interactions between the particles. Adaptive local mesh refinement using a grid deformation method is incorporated with the fluid-structure interaction algorithm, and the particle-particle interaction at the microscopic level is modeled using the Lennard-Jones potential. Motivated by the process used in fabricating fuel cell catalysts from a colloidal ink, the model is applied to investigate agglomeration of colloidal particles under external shear flow in a sliding bi-periodic Lees-Edwards frame with varying shear rates and particle fraction ratios. Both external shear and particle fraction are found to have a crucial impact on the structure formation of colloidal particles in a suspension. Segregation intensity and graph theory are used to analyze the underlying agglomeration patterns and structures, and three agglomeration regimes are identified.

  10. Balls, beams and blocks: In situ observation of colloidal particles in confinement and under electron irradiation

    NARCIS (Netherlands)

    Vlug, W.S.|info:eu-repo/dai/nl/413534863

    2017-01-01

    We studied the dynamic behavior of colloidal particles – approximately between 10 and 1000 nanometers – in real space on the single particle level using a microscope. In particular, we studied the dynamic behavior of particles that were not freely diffusing but instead were restricted in their

  11. Colloidal lattices of environmentally responsive microgel particles at ionic liquid-water interfaces.

    Science.gov (United States)

    Chen, Haobo; Nofen, Elizabeth M; Rykaczewski, Konrad; Dai, Lenore L

    2017-10-15

    This work reports new evidence of the versatility of soft and environmentally responsive micron-sized colloidal gel particles as stabilizers at ionic liquid-water droplet interfaces. These particles display a duality with properties ascribed typically to both polymeric and colloidal systems. The utilization of fluorescently labeled composite microgel particles allows in-situ and facile visualization without the necessity of invasive sample preparation. When the prepared particles form monolayers equilibrated at the ionic liquid-water interface on fully covered droplets, the colloidal lattice re-orders itself depending on the surface charge of these particles. Finally, we demonstrate that the spontaneously formed and densely packed layer of microgel particles can be employed for extraction applications, as the interface remains permeable to small active species. Copyright © 2017. Published by Elsevier Inc.

  12. Anomalous Brownian motion of colloidal particle in a nematic environment: effect of the director fluctuations

    Directory of Open Access Journals (Sweden)

    T. Turiv

    2015-06-01

    Full Text Available As recently reported [Turiv T. et al., Science, 2013, Vol. 342, 1351], fluctuations in the orientation of the liquid crystal (LC director can transfer momentum from the LC to a colloid, such that the diffusion of the colloid becomes anomalous on a short time scale. Using video microscopy and single particle tracking, we investigate random thermal motion of colloidal particles in a nematic liquid crystal for the time scales shorter than the expected time of director fluctuations. At long times, compared to the characteristic time of the nematic director relaxation we observe typical anisotropic Brownian motion with the mean square displacement (MSD linear in time τ and inversly proportional to the effective viscosity of the nematic medium. At shorter times, however, the dynamics is markedly nonlinear with MSD growing more slowly (subdiffusion or faster (superdiffusion than τ. These results are discussed in the context of coupling of colloidal particle's dynamics to the director fluctuation dynamics.

  13. Colloidal particles in a drying suspension: a phase field crystal approach.

    Science.gov (United States)

    Ganai, Nirmalendu; Saha, Arnab; Sengupta, Surajit

    2013-08-01

    Using a phase field crystal model we study the structure and dynamics of a drop of colloidal suspension during evaporation of the solvent. We model an experimental system where contact line pinning of the drop on the substrate is non-existent. Under such carefully controlled conditions, evaporation of the drop produces an ordered or disordered arrangement of the colloidal residue depending only on the initial average density of solute and the drying rate. We obtain a non-equilibrium phase boundary showing amorphous and crystalline phases of single component and binary mixtures of colloidal particles in the density-drying rate plane. While single-component colloids order in the two-dimensional triangular lattice, a symmetric binary mixture of mutually repulsive particles can be ordered into three triangular sub-lattices in two dimensions. Two of them are occupied by the two species of particles with the third sub-lattice vacant.

  14. Surface roughness directed self-assembly of patchy particles into colloidal micelles

    Science.gov (United States)

    Kraft, Daniela J.; Ni, Ran; Smallenburg, Frank; Hermes, Michiel; Yoon, Kisun; Weitz, David A.; van Blaaderen, Alfons; Groenewold, Jan; Dijkstra, Marjolein; Kegel, Willem K.

    2012-01-01

    Colloidal particles with site-specific directional interactions, so called “patchy particles”, are promising candidates for bottom-up assembly routes towards complex structures with rationally designed properties. Here we present an experimental realization of patchy colloidal particles based on material independent depletion interaction and surface roughness. Curved, smooth patches on rough colloids are shown to be exclusively attractive due to their different overlap volumes. We discuss in detail the case of colloids with one patch that serves as a model for molecular surfactants both with respect to their geometry and their interactions. These one-patch particles assemble into clusters that resemble surfactant micelles with the smooth and attractive sides of the colloids located at the interior. We term these clusters “colloidal micelles”. Direct Monte Carlo simulations starting from a homogeneous state give rise to cluster size distributions that are in good agreement with those found in experiments. Important differences with surfactant micelles originate from the colloidal character of our model system and are investigated by simulations and addressed theoretically. Our new “patchy” model system opens up the possibility for self-assembly studies into finite-sized superstructures as well as crystals with as of yet inaccessible structures. PMID:22715288

  15. Colloidal stability of the surrfactant/lipid/dna particles

    OpenAIRE

    KRIVTSOV A.; Olsson, U.; Lindman, B; BILALOV A.

    2014-01-01

    The DNA incorporated 1 μm size vesicular multi-lamellar aggregates were obtained. Colloidal stability of the cationic surfactant-DNA/lecithin self-assemblies obtained by “solvent shifting” method increases with lecithin content was found.

  16. Role of particle shape anisotropy on crack formation in drying of colloidal suspension.

    Science.gov (United States)

    Dugyala, Venkateshwar Rao; Lama, Hisay; Satapathy, Dillip K; Basavaraj, Madivala G

    2016-08-01

    Cracks in a colloidal film formed by evaporation induced drying can be controlled by changing drying conditions. We show, for the first time that the crack morphologies in colloidal films are dependent on shape of constituting particles apart from the microstructure and particle assembly. In order to investigate the particle shape effect on crack patterns, monodispered spherical and ellipsoidal particles are used in sessile drop experiments. On observing the dried sessile drop we found cracks along the radial direction for spherical particle dispersions and circular crack patterns for ellipsoidal particle dispersions. The change in crack pattern is a result of self assembly of shape anisotropic particles and their ordering. The ordering of particles dictate the crack direction and the cracks follow the path of least resistance to release the excess stress stored in the particle film. Ellipsoids having different aspect ratio (~3 to 7) are used and circular crack patterns are repeatedly observed in all experiments.

  17. Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals

    OpenAIRE

    Varney, Michael C. M.; Zhang, Qiaoxuan; Senyuk, Bohdan; Smalyukh, Ivan I.

    2016-01-01

    We study elastic interactions between colloidal particles and deformation landscapes of undulations in a cholesteric liquid crystal under an electric field applied normal to cholesteric layers. The onset of undulation instability is influenced by the presence of colloidal inclusions and, in turn, layers' undulations mediate the spatial patterning of particle locations. We find that the bending of cholesteric layers around a colloidal particle surface prompts the local nucleation of an undulat...

  18. Toward coordinated colloids: site-selective growth of titania on patchy silica particles.

    Science.gov (United States)

    Bae, Changdeuck; Kim, Hyunchul; Montero Moreno, Josep M; Yi, Gi-Ra; Shin, Hyunjung

    2015-03-23

    Rational synthesis of coordinated spherical colloids is reported by site-selective growth of secondary hemispherical patches on primary spherical particles with quasi-defined coordination numbers and positions. We clarify the importance of mass transport phenomena on the site-specific secondary nucleation/growth in nanoparticulate colloidal systems. By comparing ultrasonic and conventional agitation during patch growth, we found that enhanced mass transfer is the key to controlled, homogeneous transport of the molecular precursors in a solvent onto the nanoparticles. With chemically defined nucleation sites, the surfaces of spherical silica particles were modified for use as a new kind of colloid with patches at desired coordination positions. Our observations represent a significant breakthrough in colloidal chemistry and self-assembly.

  19. Colloidal self assembly of non-magnetic particles in magnetic nanofluid

    Energy Technology Data Exchange (ETDEWEB)

    Jadav, Mudra; Patel, Rajesh, E-mail: rjp@mkbhavuni.edu.in, E-mail: rpat7@yahoo.co [Department of Physics, Maharaja Krishnakumarsinhji Bhavnagar University, Bhavnagar-364002 (India)

    2015-06-24

    Here we present a technique using magnetic nanofluid to induce bidispersed suspension of nonmagnetic particles to assemble into colloidal chain, triangle, rectangle, ring-flower configurations. By changing the amplitude and direction of the magnetic field, we could tune the structure of nonmagnetic particles in magnetic nanofluid. The structures are assembled using magneto static interactions between effectively nonmagnetic particles dispersed in magnetizable magnetic nanofluid. The assembly of complex structures out of simple colloidal building blocks is of practical interest in photonic crystals and DNA biosensors.

  20. Hollow colloidal particles by emulsion templating, from synthesis to self-assembly

    NARCIS (Netherlands)

    Zoldesi, C.I.

    2006-01-01

    This research was focused on developing a new method to prepare hollow colloidal particles in the micrometer range, based on emulsion templating, characterization of both the templates and the resulting particles from physical and chemical viewpoint, and fabrication of materials based on such

  1. Tailored microstructure of colloidal lipid particles for Pickering emulsions with tunable properties

    NARCIS (Netherlands)

    Schroder, Anja; Sprakel, Joris; Schroën, Karin; Berton-Carabin, Claire C.

    2017-01-01

    Sub-micron colloidal lipid particles (CLPs) can successfully be used as Pickering stabilizers in oil-in-water (O/W) emulsions, leading to an enhanced physical stability compared to conventional emulsifier-stabilized emulsions. Varying the lipid solid-liquid ratio leads to particles with distinct

  2. Directed assembly of colloidal particles for micro/nano photonics (Conference Presentation)

    Science.gov (United States)

    Zheng, Yuebing

    2017-02-01

    Bottom-up fabrication of complex structures with chemically synthesized colloidal particles as building blocks pave an efficient and cost-effective way towards micro/nano photonics with unprecedented functionality and tunability. Novel properties can arise from quantum effects of colloidal particles, as well as inter-particle interactions and spatial arrangement in particle assemblies. Herein, I discuss our recent developments and applications of three types of techniques for directed assembly of colloidal particles: moiré nanosphere lithography (MNSL), bubble-pen lithography (BPL), and optothermal tweezers (OTTs). Specifically, MNSL provides an efficient approach towards creating moiré metasurface with tunable and multiband optical responses from visible to mid-infrared regime. Au moiré metasurfaces have been applied for surface-enhanced infrared spectroscopy, optical capture and patterning of bacteria, and photothermal denaturation of proteins. BPL is developed to pattern a variety of colloidal particles on plasmonic substrates and two-dimensional atomic-layer materials in an arbitrary manner. The laser-directed microbubble captures and immobilizes nanoparticles through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. OTTs are developed to create dynamic nanoparticle assemblies at low optical power. Such nanoparticle assemblies have been used for surface-enhanced Raman spectroscopy for molecular analysis in their native environments.

  3. Hydrodynamic entrapment, scattering, and escape of swimming bodies near colloidal particles

    Science.gov (United States)

    Spagnolie, Saverio; Moreno Flores, Gregorio; Bartolo, Denis; Lauga, Eric

    2014-11-01

    Microorganisms and other self-propelling bodies in viscous fluids are known to traverse complex trajectories in the presence of boundaries, due to passive hydrodynamic and other physical effects. Motivated by the experimental findings of Takagi et al.. on self-propulsion in a field of colloidal particles, we derive the far-field hydrodynamic interaction between model ``pusher'' and ``puller'' dipole swimmers and no-slip spherical bodies of varying size. Using the analytical estimates for the swimming trajectories, we predict the critical colloid size or dipole strength for which hydrodynamic entrapment occurs, the scattering dynamics for near-obstacle interactions, and the consequences of Brownian fluctuations. The dynamics include billiard-like motion between colloids, intermittent periods of entrapped/orbiting states near single colloids, and apparently randomized escape behavior. We envision applications of the theory to techniques for sorting microorganisms or other self-propelled swimmers, and to the behavior of motile suspensions in inhomogeneous environments.

  4. Synthesis and self-assembly of Janus and patchy colloidal particles

    Science.gov (United States)

    Jiang, Shan

    Colloidal particles are considered classically as spherical particles with homogeneous surface chemistry. When this is so, the interactions between particles are isotropic and governed only by their separations. One can take advantage of this to simulate atoms, visualizing them one-by-one in a microscope, albeit at a larger length scale and longer time scale than for true atoms. However if the particles are not homogeneous, but Janus or patchy instead, with different surface chemistry on different hemispheres or otherwise different surface sites that are addressably controlled, the interactions between these particles depend not only on their separation, but also on their orientation. Research on Janus and patchy colloidal particles has opened a new chapter in the colloid research field, allowing us to mimic the behavior of these colloidal analogues of molecules, and in this way to ask new and exciting questions of condensed matter physics. In this dissertation, I investigated the synthesis and self-assembly of Janus and patchy colloidal particles with emphasis on Janus amphiphilic particles, which are the colloidal counterpart of surfactant molecules. Improving the scale-up capability, and also the capacity to control the geometry of Janus particles, I developed a simple and versatile method to synthesize Janus particles using an approach based on Pickering emulsions with particles adsorbed at the liquid-liquid interface. I showed that this method can be scaled up to synthesize Janus particles in large quantity. Also, the Janus balance can be predictably controlled by adding surfactant molecules during emulsification. In addition, going beyond the Janus geometry, I developed another synthetic method to fabricate trivalent patchy colloidal particles using micro-contact printing. With these synthetic methods in hand, I explored the self-assembly of Janus amphiphilic particles in aqueous solutions, while controlling systematically the salt concentration, the particle

  5. Single Molecule Raman Detection of Enkephalin on Silver Colloidal Particles

    DEFF Research Database (Denmark)

    Kneipp, Katrin; Kneipp, Holger; Abdali, Salim

    2004-01-01

    Enkephalin, an endogeneous substance in the human brain showing morphine-like biological functions, has been detected at the single molecule level based on the surface-enhanced Raman signal of the ring breathing mode of phenylalanine, which is one building block of the molecule. For enhancing...... the Raman signal the enkephalin molecules have been attached to silver colloidal cluster structures. The experiments demonstrate that the SERS signal of the strongly enhanced ring breathing vibration of phenylalanine at 1000 cm-1 can be used as “intrinsic marker” for detecting a single enkephalin molecule...... and for monitoring its diffusion on the surface of the silver colloidal cluster without using a specific label molecule....

  6. Particle-scale structure in frozen colloidal suspensions from small-angle x-ray scattering

    KAUST Repository

    Spannuth, Melissa

    2011-02-01

    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has concentrated mostly on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small-angle x-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high-density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by standard interparticle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium densification processes. © 2011 American Physical Society.

  7. A study on particle deposition of an evaporating colloidal droplet

    Energy Technology Data Exchange (ETDEWEB)

    Wee, Sang Kwon; Lee, Jung Yong [Samsung Advanced Institute of Technology, Yongin (Korea, Republic of)

    2006-07-15

    The presented study aims to investigate the colloidal droplet deposition caused by evaporation of the liquid. In the numerical analysis, the evaporation is carried out by using different evaporation function intended to obtain different shape of solute deposition. In the experiment, the colloidal droplets of different solvents are placed on a glass plate and the surface profiles are measured after drying the solvents of the droplets to investigate the effect of the solvent evaporation on the final deposition profile. Comparing the surface profiles obtained under different conditions, the optimum drying conditions of colloidal droplets are determined to obtain uniform surface profiles. The numerical results showed that ring-shaped deposition of solute was formed at the edge of the droplet due to the coffee stain effect and the height of the ring was reduced at the lower evaporation rate. The experiments showed that the boiling point of a solvent was critical to the surface uniformity of the deposition profile and the mixture of solvents with different boiling points influenced the uniformity as well.

  8. Colloidal particle motion in micro galvanic reactors through tailored electrokinetic fluid flow

    Science.gov (United States)

    Jan, Linda; Punckt, Christian; Khusid, Boris; Aksay, Ilhan A.

    2010-11-01

    Using an array of galvanic micro electrodes (e.g., anodic copper and cathodic gold) in contact with an acidic colloidal suspension, we have previously demonstrated autonomous control of particle trajectory and the location of particle deposition which affected the crystallinity of 2D colloidal crystals on the anodes. Particle velocities and the locations of initial particle deposition are affected by the electrode geometry and reaction time. We now present data on the effects of geometry and time on the copper dissolution rate and the associated electrokinetic phenomena. Particle velocities increase with the copper dissolution rate and the steepness of its lateral variation. Experiments and theoretical results reveal that the different location of deposition is related to the difference in the lateral gradient of the dissolution rate.

  9. Complex plasmas and colloidal dispersions particle-resolved studies of classical liquids and solids

    CERN Document Server

    Ivlev, Alexei; Morfill, Gregor; Royall, C. Patrick

    2012-01-01

    Complex plasmas and colloidal dispersions represent different states of soft matter. They are complementary in many ways, with the most important being that complex plasmas are virtually undamped at the particle timescales, whereas colloidal dispersions are overdamped and therefore can be brought into equilibrium in a very controlled manner. Otherwise, both fields have similar advantages: fully resolved 3D particle trajectories can easily be visualized, the pair interactions are tunable, and particles can be manipulated individually or collectively. These unique properties allow us to investigate generic processes occurring in liquids or solids at the most fundamental individual particle level. The principal research topics to be addressed in the book include: particle dynamics in liquids, with the emphasis on mesoscopic processes in the supercooled (glassy) state, e.g. dynamical heterogeneity, phase transitions in solids, with particular attention to the evolutionary paths of crystal structure development an...

  10. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles.

    Science.gov (United States)

    Buttinoni, Ivo; Bialké, Julian; Kümmel, Felix; Löwen, Hartmut; Bechinger, Clemens; Speck, Thomas

    2013-06-07

    We study experimentally and numerically a (quasi-)two-dimensional colloidal suspension of self-propelled spherical particles. The particles are carbon-coated Janus particles, which are propelled due to diffusiophoresis in a near-critical water-lutidine mixture. At low densities, we find that the driving stabilizes small clusters. At higher densities, the suspension undergoes a phase separation into large clusters and a dilute gas phase. The same qualitative behavior is observed in simulations of a minimal model for repulsive self-propelled particles lacking any alignment interactions. The observed behavior is rationalized in terms of a dynamical instability due to the self-trapping of self-propelled particles.

  11. Influence of particle shape on bending rigidity of colloidal monolayer membranes and particle deposition during droplet evaporation in confined geometries.

    Science.gov (United States)

    Yunker, Peter J; Gratale, Matthew; Lohr, Matthew A; Still, Tim; Lubensky, T C; Yodh, A G

    2012-06-01

    We investigate the influence of particle shape on the bending rigidity of colloidal monolayer membranes (CMMs) and on evaporative processes associated with these membranes. Aqueous suspensions of colloidal particles are confined between glass plates and allowed to evaporate. Confinement creates ribbonlike air-water interfaces and facilitates measurement and characterization of CMM geometry during drying. Interestingly, interfacial buckling events occur during evaporation. Extension of the description of buckled elastic membranes to our quasi-2D geometry enables the determination of the ratio of CMM bending rigidity to its Young's modulus. Bending rigidity increases with increasing particle anisotropy, and particle deposition during evaporation is strongly affected by membrane elastic properties. During drying, spheres are deposited heterogeneously, but ellipsoids are not. Apparently, increased bending rigidity reduces contact line bending and pinning and induces uniform deposition of ellipsoids. Surprisingly, suspensions of spheres doped with a small number of ellipsoids are also deposited uniformly.

  12. Critical behaviour and interfacial fluctuations in a phase-separating model colloid-polymer mixture: grand canonical Monte Carlo simulations

    Energy Technology Data Exchange (ETDEWEB)

    Vink, R L C; Horbach, J [Institut fuer Physik, Johannes Gutenberg-Universitaet, D-55099 Mainz, Staudinger Weg 7 (Germany)

    2004-09-29

    By using Monte Carlo simulations in the grand canonical ensemble we investigate the bulk phase behaviour of a model colloid-polymer mixture, the so-called Asakura-Oosawa model. In this model the colloids and polymers are considered as spheres with a hard-sphere colloid-colloid and colloid-polymer interaction and a zero interaction between polymers. In order to circumvent the problem of low acceptance rates for colloid insertions, we introduce a cluster move where a cluster of polymers is replaced by a colloid. We consider the transition from a colloid-poor to colloid-rich phase which is analogous to the gas-liquid transition in simple liquids. Successive umbrella sampling, recently introduced by Virnau and Mueller (2003 Preprint cond-mat/0306678), is used to access the phase-separated regime. We calculate the demixing binodal and the interfacial tension, also in the region close to the critical point. Finite size scaling techniques are used to accurately locate the critical point. Also investigated are the colloid density profiles in the phase-separated regime. We extract the interfacial thickness w from the latter profiles and demonstrate that the interfaces are subject to spatial fluctuations that can be understood by capillary wave theory. In particular, we find that, as predicted by capillary wave theory, w{sup 2} diverges logarithmically with the size of the system parallel to the interface.

  13. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  14. New insights on the formation of colloidal whey protein particles

    NARCIS (Netherlands)

    Riemsdijk, van L.E.; Snoeren, J.P.M.; Goot, van der A.J.; Boom, R.M.; Hamer, R.J.

    2011-01-01

    This paper describes the formation and properties of whey protein particle suspensions having different particle sizes and different abilities to form S–S bridges. Simple shear flow was used to control the protein particles size. The ability to form S–S bridges was steered by blocking the reactive

  15. Multi-particle collision dynamics simulations of sedimenting colloidal dispersions in confinement

    NARCIS (Netherlands)

    Wysocki, Adam; Royall, C.P.; Winkler, R.G.; Gompper, Gerhard; Tanaka, H.; van Blaaderen, A.|info:eu-repo/dai/nl/092946488; Löwen, H.

    2010-01-01

    The sedimentation of an initially inhomogeneous distribution of hard-sphere colloids confined in a slit is simulated using the multi-particle collision dynamics scheme which takes into account hydrodynamic interactions mediated by the solvent. This system is an example for soft matter driven out of

  16. Focused ion beam milling of nanocavities in single colloidal particles and self-assembled opals

    NARCIS (Netherlands)

    Woldering, L.A.; Otter, A.M.; Husken, B.H.; Vos, Willem L.

    2006-01-01

    We present a new method of realizing single nanocavities in individual colloidal particles on the surface of silicon dioxide artificial opals using a focused ion beam milling technique. We show that both the radius and the position of the nanocavity can be controlled with nanometre precision, to

  17. Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals

    Science.gov (United States)

    Varney, Michael C. M.; Zhang, Qiaoxuan; Senyuk, Bohdan; Smalyukh, Ivan I.

    2016-10-01

    We study elastic interactions between colloidal particles and deformation landscapes of undulations in a cholesteric liquid crystal under an electric field applied normal to cholesteric layers. The onset of undulation instability is influenced by the presence of colloidal inclusions and, in turn, layers' undulations mediate the spatial patterning of particle locations. We find that the bending of cholesteric layers around a colloidal particle surface prompts the local nucleation of an undulations lattice at electric fields below the well-defined threshold known for liquid crystals without inclusions, and that the onset of the resulting lattice is locally influenced, both dimensionally and orientationally, by the initial arrangements of colloids defined using laser tweezers. Spherical particles tend to spatially localize in the regions of strong distortions of the cholesteric layers, while colloidal nanowires exhibit an additional preference for multistable alignment offset along various vectors of the undulations lattice. Magnetic rotation of superparamagnetic colloidal particles couples with the locally distorted helical axis and undulating cholesteric layers in a manner that allows for a controlled three-dimensional translation of these particles. These interaction modes lend insight into the physics of liquid crystal structure-colloid elastic interactions, as well as point the way towards guided self-assembly of reconfigurable colloidal composites with potential applications in diffraction optics and photonics.

  18. Studying the dynamics of colloidal particles with digital holographic microscopy and electromagnetic scattering solutions

    Directory of Open Access Journals (Sweden)

    V. N. Manoharan

    2011-09-01

    Full Text Available Digital holographic microscopy (DHM can measure the 3D positions as well as the scattering properties of colloidal particles in a single 2D image. We describe DHM and our analysis of recorded holograms with exact scattering solutions, which permit the measurement of 3D particle positions with ∼10 nm precision and millisecond time resolution, and discuss studies of the Brownian dynamics of clusters of spheres with DHM.

  19. Colloidal astaxanthin: preparation, characterisation and bioavailability evaluation.

    Science.gov (United States)

    Anarjan, Navideh; Tan, Chin Ping; Nehdi, Imededdine Arbi; Ling, Tau Chuan

    2012-12-01

    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (ppowder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Characterisation and Treatment of Nano-sized Particles, Colloids and Associated Polycyclic Aromatic Hydrocarbons in Stormwater

    DEFF Research Database (Denmark)

    Nielsen, Katrine

    Stormwater from urban areas contains a vast array of different pollutants, including particulate matter and organic and inorganic compounds as well as microbial pollution. These compounds can be found associated with particulate matter, colloids and nano-sized particles in stormwater. The associa......Stormwater from urban areas contains a vast array of different pollutants, including particulate matter and organic and inorganic compounds as well as microbial pollution. These compounds can be found associated with particulate matter, colloids and nano-sized particles in stormwater.......Since little is known about the colloids and nano-sized particle-enhanced transportation of pollutants in stormwater, it has been difficult to determine their quantitative role in the total release of pollutants into receiving waters.Therefore the main purpose of this thesis has been to document the presence......-sized particles in the stormwater, in terms of particle size distribution (PSD) and zeta potential. In combination with the characterisation of the particles, concentrations of organic and inorganic compounds were quantified in the stormwater, with a focus on PAHs, together with physical and chemical parameters...

  1. A new tracking algorithm for multiple colloidal particles close to contact

    Science.gov (United States)

    Yücel, Harun; Turan Okumuşoğlu, Nazmi

    2017-11-01

    In this paper, we propose a new algorithm based on radial symmetry center method to track colloidal particles close to contact, where the optical images of the particles start to overlap in digital video microscopy. This overlapping effect is important to observe the pair interaction potential in colloidal studies and it appears as additional interaction in the measurement of the interaction with conventional tracking analysis. The proposed algorithm in this work is simple, fast and applicable for not only two particles but also three and more particles without any modification. The algorithm uses gradient vectors of the particle intensity distribution, which allows us to use a part of the symmetric intensity distribution in the calculation of the actual particle position. In this study, simulations are performed to see the performance of the proposed algorithm for two and three particles, where the simulation images are generated by using fitted curve to experimental particle image for different sized particles. As a result, the algorithm yields the maximum error smaller than 2 nm for 5.53 μm silica particles in contact condition.

  2. Analytical theory of polymer-network-mediated interaction between colloidal particles.

    Science.gov (United States)

    Di Michele, Lorenzo; Zaccone, Alessio; Eiser, Erika

    2012-06-26

    Nanostructured materials based on colloidal particles embedded in a polymer network are used in a variety of applications ranging from nanocomposite rubbers to organic-inorganic hybrid solar cells. Further, polymer-network-mediated colloidal interactions are highly relevant to biological studies whereby polymer hydrogels are commonly employed to probe the mechanical response of living cells, which can determine their biological function in physiological environments. The performance of nanomaterials crucially relies upon the spatial organization of the colloidal particles within the polymer network that depends, in turn, on the effective interactions between the particles in the medium. Existing models based on nonlocal equilibrium thermodynamics fail to clarify the nature of these interactions, precluding the way toward the rational design of polymer-composite materials. In this article, we present a predictive analytical theory of these interactions based on a coarse-grained model for polymer networks. We apply the theory to the case of colloids partially embedded in cross-linked polymer substrates and clarify the origin of attractive interactions recently observed experimentally. Monte Carlo simulation results that quantitatively confirm the theoretical predictions are also presented.

  3. Preparation of Ultrafine Colloidal Gold Particles using a Bioactive Molecule

    Science.gov (United States)

    Pal, Anjali

    2004-02-01

    Synthesis of nanometer-sized particles with new physical properties is an area of tremendous interest. In metal particles, the changes in size modify the electron density in the particles, which shifts the plasmon band. The most significant size effects occur when the particles are ultrafine (size is synthesis of ultrafine metal particles is enormously important to exploit their unique and selective application. Here we report a novel method for the synthesis of ultrafine gold particles in the size range of 0.5-3 nm using dopamine hydrochloride (dhc), an important neurotransmitter. This is the first time where such an important bioactive molecule like dhc has been used as a reagent for the transformation of Au(III) to Au(0). The synthesis is carried out, for the first time, either in simple aqueous or in a nonionic micellar (for example Triton X-100 (TX-100)) medium. The gold sol has a beautiful yellow-brown color showing λmax at 470 nm. The appearance of the absorption peak at substantially shorter wavelength (usually gold sol absorbs at ˜520 nm) indicates that the particles are very small. The method discussed here is very simple, reproducible and does not involve any reagent, which contains 'P' or 'S' atoms. Also in this case no polymer or dendrimer or thiol-related stabilizer is used. The effects of different parameters (such as the presence or absence of O2, temperature, TX-100 concentration and dhc concentration) on the formation of ultrafine gold particles are discussed. The effects of 3-mercapto propionic acid and pyridine on the ultrafine gold sol are also studied and compared with those on photochemically prepared gold sol. It is observed that 3-mercapto propionic acid dampens the plasmon absorption at 470 nm of ultrafine gold particles. Pyridine, on the other hand, has no effect on the particles.

  4. Nanoscale size dependence in the conjugation of amyloid beta and ovalbumin proteins on the surface of gold colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, K; Briglio, N M; Hartati, D Sri; Tsang, S M W; MacCormac, J E; Welchons, D R [Department of Chemistry, State University of New York College at Geneseo, One College Circle, Geneseo, NY 14454 (United States)], E-mail: yokoyama@geneseo.edu

    2008-09-17

    Absorption spectroscopy was utilized to investigate the conjugation of amyloid {beta} protein solution (A{beta}{sub 1-40}) and chicken egg albumin (ovalbumin) with various sizes of gold colloidal nanoparticles for various pHs, ranging from pH 2 to pH 10. The pH value that indicates the colour change, pH{sub o}, exhibited colloidal size dependence for both A{beta}{sub 1-40} and ovalbumin coated particles. In particular, A{beta}{sub 1-40} coated gold colloidal particles exhibited non-continuous size dependence peaking at 40 and 80 nm, implying that their corresponding cage-like structures provide efficient net charge cancellation at these core sizes. Remarkably, only the pH{sub o} value for ovalbumin coated 80 nm gold colloid was pH>7, and a specific cage-like structure is speculated to have a positive net charge facing outward when ovalbumin self-assembles over this particular gold colloid. The previously reported reversible colour change between pH 4 and 10 took place only with A{beta}{sub 1-40} coated 20 nm gold colloids; this was also explored with ovalbumin coated gold colloids. Interestingly, gold colloidal nanoparticles showed a quasi-reversible colour change when they were coated with ovalbumin for all test sizes. The ovalbumin coated gold colloid was found to maintain reversible properties longer than A{beta}{sub 1-40} coated gold colloid.

  5. Nanoscale size dependence in the conjugation of amyloid beta and ovalbumin proteins on the surface of gold colloidal particles

    Science.gov (United States)

    Yokoyama, K.; Briglio, N. M.; Sri Hartati, D.; Tsang, S. M. W.; MacCormac, J. E.; Welchons, D. R.

    2008-09-01

    Absorption spectroscopy was utilized to investigate the conjugation of amyloid β protein solution (Aβ1-40) and chicken egg albumin (ovalbumin) with various sizes of gold colloidal nanoparticles for various pHs, ranging from pH 2 to pH 10. The pH value that indicates the colour change, pHo, exhibited colloidal size dependence for both Aβ1-40 and ovalbumin coated particles. In particular, Aβ1-40 coated gold colloidal particles exhibited non-continuous size dependence peaking at 40 and 80 nm, implying that their corresponding cage-like structures provide efficient net charge cancellation at these core sizes. Remarkably, only the pHo value for ovalbumin coated 80 nm gold colloid was pH>7, and a specific cage-like structure is speculated to have a positive net charge facing outward when ovalbumin self-assembles over this particular gold colloid. The previously reported reversible colour change between pH 4 and 10 took place only with Aβ1-40 coated 20 nm gold colloids; this was also explored with ovalbumin coated gold colloids. Interestingly, gold colloidal nanoparticles showed a quasi-reversible colour change when they were coated with ovalbumin for all test sizes. The ovalbumin coated gold colloid was found to maintain reversible properties longer than Aβ1-40 coated gold colloid.

  6. Colloidal particles at fluid interfaces: Effective interactions, dynamics and a gravitation-like instability

    Science.gov (United States)

    Bleibel, J.; Domínguez, A.; Oettel, M.

    2013-11-01

    Colloidal particles of micrometer size usually become irreversibly trapped at fluid interfaces if they are partially wetted by one phase. This opens the chance to create two-dimensional model systems where the effective interactions between the particles are possibly influenced by the presence of the interface to a great extent. We will review recent developments in the quantitive understanding of these effective interactions with a special emphasis on electrostatics and capillarity. Charged colloids of micrometer size at an interface form effective dipoles whose strength sensitively depends on the double layer structure. We discuss the success of modified Poisson-Boltzmann equations with regard to measured colloidal dipole moments. On the other hand, for somewhat larger particles capillary interactions arise which are long-ranged and analogous to two-dimensional screened Newtonian gravity with the capillary length λ as the screening length. For colloidal diameters of around 10 micrometer, the collective effect of these long-ranged capillary interactions will dominate thermal motion and residual, short-ranged repulsions, and results in an instability towards a collapsed state for a finite patch of particles. Such long-ranged interactions with the associated instability are also of interest in other branches of physics, such as self-gravitating fluids in cosmology, two-dimensional vortex flow in hydrodynamics, and bacterial chemotaxis in biology. Starting from the colloidal case we develop and discuss a dynamical "phase diagram" in the temperature and interaction range variables which appears to be of more general scope and applicable also to other systems.

  7. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed

    Science.gov (United States)

    Lu, Shengtao; Liu, Fang; Xing, Bengang; Yeow, Edwin K. L.

    2015-12-01

    A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.

  8. Core-shell colloidal particles with dynamically tunable scattering properties.

    Science.gov (United States)

    Meng, Guangnan; Manoharan, Vinothan N; Perro, Adeline

    2017-09-27

    We design polystyrene-poly(N'-isopropylacrylamide-co-acrylic acid) core-shell particles that exhibit dynamically tunable scattering. We show that under normal solvent conditions the shell is nearly index-matched to pure water, and the particle scattering is dominated by Rayleigh scattering from the core. As the temperature or salt concentration increases, both the scattering cross-section and the forward scattering increase, characteristic of Mie scatterers. The magnitude of the change in the scattering cross-section and scattering anisotropy can be controlled through the solvent conditions and the size of the core. Such particles may find use as optical switches or optical filters with tunable opacity.

  9. Emulsification of partially miscible liquids using colloidal particles: nonspherical and extended domain structures.

    Science.gov (United States)

    Clegg, Paul S; Herzig, Eva M; Schofield, Andrew B; Egelhaaf, Stefan U; Horozov, Tommy S; Binks, Bernard P; Cates, Michael E; Poon, Wilson C K

    2007-05-22

    We present microscopy studies of particle-stabilized emulsions with unconventional morphologies. The emulsions comprise pairs of partially miscible fluids and are stabilized by colloids. Alcohol-oil mixtures are employed; silica colloids are chemically modified so that they have partial wettability. We create our morphologies by two distinct routes: starting with a conventional colloid-stabilized emulsion or starting in the single-fluid phase with the colloids dispersed. In the first case temperature cycling leads to the creation of extended fluid domains built around some of the initial fluid droplets. In the second case quenching into the demixed region leads to the formation of domains which reflect the demixing kinetics. The structures are stable due to a jammed, semisolid, multilayer of colloids on the liquid-liquid interface. The differing morphologies reflect the roles in formation of the arrested state of heterogeneous and homogeneous nucleation and spinodal decomposition. The latter results in metastable, bicontinuous emulsions with frozen interfaces, at least for the thin-slab samples, investigated here.

  10. Transport of colloidal silica in unsaturated sand: Effect of charging properties of sand and silica particles.

    Science.gov (United States)

    Fujita, Yosuke; Kobayashi, Motoyoshi

    2016-07-01

    We have studied the transport of colloidal silica in various degrees of a water-saturated Toyoura sand column, because silica particles are widely used as catalyst carriers and abrasive agents, and their toxicity is reported recently. Since water-silica, water-sand, and air-water interfaces have pH-dependent negative charges, the magnitude of surface charge was controlled by changing the solution pH. The results show that, at high pH conditions (pH 7.4), the deposition of colloidal silica to the sand surface is interrupted and the silica concentration at the column outlet immediately reaches the input concentration in saturated conditions. In addition, the relative concentration of silica at the column outlet only slightly decreases to 0.9 with decreasing degrees of water saturation to 38%, because silica particles are trapped in straining regions in the soil pore and air-water interface. On the other hand, at pH 5 conditions (low pH), where sand and colloid have less charge, reduced repulsive forces result in colloidal silica attaching onto the sand in saturated conditions. The deposition amount of silica particles remarkably increases with decreasing degrees of water saturation to 37%, which is explained by more particles being retained in the sand column associated with the air-water interface. In conclusion, at higher pH, the mobility of silica particles is high, and the air-water interface is inactive for the deposition of silica. On the other hand, at low pH, the deposition amount increases with decreasing water saturation, and the particle transport is inhibited. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Harnessing the advantages of hard and soft colloids by the use of core-shell particles as interfacial stabilizers

    NARCIS (Netherlands)

    Buchcic, C.; Tromp, R.H.; Meinders, M.B.J.; Cohen Stuart, M.A.

    2017-01-01

    The ability of colloidal particles to penetrate fluid interfaces is a crucial factor in the preparation of particle stabilized disperse systems such as foams and emulsions. For hard micron-sized particles the insertion into fluid interfaces requires substantial energy input, but soft particles

  12. Colloidal polymer particles as catalyst carriers and phase transfer agents in multiphasic hydroformylation reactions.

    Science.gov (United States)

    Peral, D; Stehl, D; Bibouche, B; Yu, H; Mardoukh, J; Schomäcker, R; Klitzing, R von; Vogt, D

    2017-11-29

    Colloidal particles have been used to covalently bind ligands for the heterogenization of homogeneous catalysts. The replacement of the covalent bonds by electrostatic interactions between particles and the catalyst could preserve the selectivity of a truly homogeneous catalytic process. Functionalized polymer particles with trimethylammonium moieties, dispersed in water, with a hydrophobic core and a hydrophilic shell have been synthesized by emulsion polymerization and have been thoroughly characterized. The ability of the particles with different monomer compositions to act as catalyst carriers has been studied. Finally, the colloidal dispersions have been applied as phase transfer agents in the multiphasic rhodium-catalyzed hydroformylation of 1-octene. The hydrodynamic radius of the particles has been shown to be around 100 nm, and a core-shell structure could be observed by atomic force microscopy. The polymer particles were proven to act as carriers for the water-soluble hydroformylation catalyst, due to electrostatic interaction between the functionalized particles bearing ammonium groups and the sulfonated ligands of the catalyst. The particles were stable under the hydroformylation conditions and the aqueous catalyst phase could be recycled three times. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Combined deterministic-stochastic framework for modeling the agglomeration of colloidal particles.

    Science.gov (United States)

    Mortuza, S M; Kariyawasam, Lahiru K; Banerjee, Soumik

    2015-07-01

    We present a multiscale model, based on molecular dynamics (MD) and kinetic Monte Carlo (kMC), to study the aggregation driven growth of colloidal particles. Coarse-grained molecular dynamics (CGMD) simulations are employed to detect key agglomeration events and calculate the corresponding rate constants. The kMC simulations employ these rate constants in a stochastic framework to track the growth of the agglomerates over longer time scales and length scales. One of the hallmarks of the model is a unique methodology to detect and characterize agglomeration events. The model accounts for individual cluster-scale effects such as change in size due to aggregation as well as local molecular-scale effects such as changes in the number of neighbors of each molecule in a colloidal cluster. Such definition of agglomeration events allows us to grow the cluster to sizes that are inaccessible to molecular simulations as well as track the shape of the growing cluster. A well-studied system, comprising fullerenes in NaCl electrolyte solution, was simulated to validate the model. Under the simulated conditions, the agglomeration process evolves from a diffusion limited cluster aggregation (DLCA) regime to percolating cluster in transition and finally to a gelation regime. Overall the data from the multiscale numerical model shows good agreement with existing theory of colloidal particle growth. Although in the present study we validated our model by specifically simulating fullerene agglomeration in electrolyte solution, the model is versatile and can be applied to a wide range of colloidal systems.

  14. Surfaces with self-repairable ultrahydrophobicity based on self-organizing freely floating colloidal particles.

    Science.gov (United States)

    Puretskiy, Nikolay; Stoychev, Georgi; Synytska, Alla; Ionov, Leonid

    2012-02-28

    We report an approach for the design of materials with self-repairable ultrahydrophobic properties. The materials are based on highly fluorinated crystalline fusible wax with incorporated colloidal particles. Due to the highly pronounced tendency of the wax to crystallize, the formation of blends with rough fractal surfaces was observed. In order to prove their self-repairing ability, we mechanically damaged them by scratching, which removed most of the particles from the surface. Melting of the damaged blend resulted in reorganization of the particles at the wax-air interface, restoring the initial structure and thus the ultrahydrophobic behavior. © 2012 American Chemical Society

  15. Magnetic Hetero-flocculation of Paramagnetic Colloidal Particles.

    Science.gov (United States)

    Ebner; Ritter; Ploehn

    2000-05-01

    The feasibility of a high-gradient magnetic separation process, utilizing magnetite as the energizable element in lieu of stainless steel wool, is evaluated by means of an equilibrium, two-particle, magnetic hetero-flocculation model. The model calculates the net force, defined as the sum of the magnetic, electrostatic, and van der Waals forces, exerted on a paramagnetic nanoparticle that is in the proximity of a fixed magnetite particle. Since the nanoparticle-magnetite system is assumed to be in direct contact with the moving fluid, the influence of the hydrodynamic force on the magnetic attractive force between the two particles is also explored. This model clearly reveals the ranges and conditions over which each of these various forces contributes to the net force relative to Brownian (thermal) motion. The model also reveals the feasibility of using magnetite particles instead of stainless steel as the energizable element for high-gradient magnetic separation. Important variables investigated include the size and surface charge of the particles, the magnetic field, the flow velocity, the electrolyte concentration, and the magnetic susceptibility of the nanoparticle. Copyright 2000 Academic Press.

  16. Acoustic separation of oil droplets, colloidal particles and their mixtures in a microfluidic cell

    KAUST Repository

    Vakarelski, Ivan Uriev

    2016-06-15

    Here we report direct macroscopic and microscopic observations of acoustic driven separation of dodecane oil droplets in water in the presence and absence of colloidal silica particles suspended in the water phase. The experiments were conducted in a simple rectangular channel glass microfluidic cell in which an ultrasound standing wave pattern was generated at 300 KHz frequency. The separation process of both oil droplets and colloidal particles inside the cell was recorded using a high-speed video camera equipped with a macro-objective lens for macroscopic observation or with a high-speed camera attached to an inverted optical microscope for a higher resolution microscopic observation. We characterize the clustering process in the case of emulsion droplets or solid colloidal particles and ultimately demonstrate the emulsion droplets separation from the solid particles in the mixtures based on their different acoustic contrast factors. Finally, we conduct proof of concept experiment to show that the same approach can be used in a continuous fluid flow process.

  17. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    Science.gov (United States)

    Shin, Sangwoo; Ault, Jesse T.; Warren, Patrick B.; Stone, Howard A.

    2017-10-01

    The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  18. Accumulation of Colloidal Particles in Flow Junctions Induced by Fluid Flow and Diffusiophoresis

    Directory of Open Access Journals (Sweden)

    Sangwoo Shin

    2017-11-01

    Full Text Available The flow of solutions containing solutes and colloidal particles in porous media is widely found in systems including underground aquifers, hydraulic fractures, estuarine or coastal habitats, water filtration systems, etc. In such systems, solute gradients occur when there is a local change in the solute concentration. While the effects of solute gradients have been found to be important for many applications, we observe an unexpected colloidal behavior in porous media driven by the combination of solute gradients and the fluid flow. When two flows with different solute concentrations are in contact near a junction, a sharp solute gradient is formed at the interface, which may allow strong diffusiophoresis of the particles directed against the flow. Consequently, the particles accumulate near the pore entrance, rapidly approaching the packing limit. These colloidal dynamics have important implications for the clogging of a porous medium, where particles that are orders of magnitude smaller than the pore width can accumulate and block the pores within a short period of time. We also show that this effect can be exploited as a useful tool for preconcentrating biomolecules for rapid bioassays.

  19. Large-area optoelastic manipulation of colloidal particles in liquid crystals using photoresponsive molecular surface monolayers.

    Science.gov (United States)

    Martinez, Angel; Mireles, Hector C; Smalyukh, Ivan I

    2011-12-27

    Noncontact optical trapping and manipulation of micrometer- and nanometer-sized particles are typically achieved by use of forces and torques exerted by tightly focused high-intensity laser beams. Although they were instrumental for many scientific breakthroughs, these approaches find few technological applications mainly because of the small-area manipulation capabilities, the need for using high laser powers, limited application to anisotropic fluids and low-refractive-index particles, as well as complexity of implementation. To overcome these limitations, recent research efforts have been directed toward extending the scope of noncontact optical control through the use of optically-guided electrokinetic forces, vortex laser beams, plasmonics, and optofluidics. Here we demonstrate manipulation of colloidal particles and self-assembled structures in nematic liquid crystals by means of single-molecule-thick, light-controlled surface monolayers. Using polarized light of intensity from 1,000 to 100,000 times smaller than that in conventional optical tweezers, we rotate, translate, localize, and assemble spherical and complex-shaped particles of various sizes and compositions. By controlling boundary conditions through the monolayer, we manipulate the liquid crystal director field and the landscape of ensuing elastic forces exerted on colloids by the host medium. This permits the centimeter-scale, massively parallel manipulation of particles and complex colloidal structures that can be dynamically controlled by changing illumination or assembled into stationary stable configurations dictated by the "memorized" optoelastic potential landscape due to the last illumination pattern. We characterize the strength of optically guided elastic forces and discuss the potential uses of this noncontact manipulation in fabrication of novel optically- and electrically-tunable composites from liquid crystals and colloids.

  20. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, P.J.; Daria, V.R.; Glückstad, J.

    2005-01-01

    We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method...

  1. Lectin-recognizable colloidal dispersions stabilized by n-dodecyl beta-D-maltoside: particle-particle and particle-surface interactions.

    Science.gov (United States)

    Bae, Woo-Sung; Urban, Marek W

    2006-04-01

    Recently, we reported that it is possible to utilize sugars as stabilizing agents for colloidal particles. This study shows that when n-dodecyl beta-D-maltoside (DDM) is utilized as a dispersing and stabilizing agent in the synthesis and stabilization of poly[methyl methacrylate-co-(n-butyl acrylate)] (p-MMA/nBA) colloidal particles, stable colloidal dispersions can be formed. Since understanding of sugar-protein interactions have numerous practical and scientific implications, these studies examine DDM-stabilized p-MMA/nBA colloidal particles and their specific binding properties with concanavalin A (Con A). By use of spectroscopic analysis, unique binding characteristics that are a function of DDM concentration, time, and the concentration of Con A are detected. When DDM-stabilized p-MMA/nBA particles are allowed to coalesce, DDM is released from the particle surfaces and, under suitable conditions, selectively stratifies in the areas of the excess of interfacial energy near the film-air (F-A) interface, thus providing sites for attracting Con A via alpha-glucose-OH hydrogen bonding. Consequently, adsorption of Con A at the F-A interfaces occur and the degree of adsorption is controlled by the amount of DDM at the F-A interface.

  2. Effects of particle shape on growth dynamics at edges of evaporating drops of colloidal suspensions.

    Science.gov (United States)

    Yunker, Peter J; Lohr, Matthew A; Still, Tim; Borodin, Alexei; Durian, D J; Yodh, A G

    2013-01-18

    We study the influence of particle shape on growth processes at the edges of evaporating drops. Aqueous suspensions of colloidal particles evaporate on glass slides, and convective flows during evaporation carry particles from drop center to drop edge, where they accumulate. The resulting particle deposits grow inhomogeneously from the edge in two dimensions, and the deposition front, or growth line, varies spatiotemporally. Measurements of the fluctuations of the deposition front during evaporation enable us to identify distinct growth processes that depend strongly on particle shape. Sphere deposition exhibits a classic Poisson-like growth process; deposition of slightly anisotropic particles, however, belongs to the Kardar-Parisi-Zhang universality class, and deposition of highly anisotropic ellipsoids appears to belong to a third universality class, characterized by Kardar-Parisi-Zhang fluctuations in the presence of quenched disorder.

  3. Synthesis and characterization of colloidal gold particles as labels for antibodies as used in lateral flow devices.

    Science.gov (United States)

    Cvak, Barbara; Pum, Dietmar; Molinelli, Alexandra; Krska, Rudolf

    2012-04-21

    Based on well established citrate reduction protocols for the synthesis of colloidal gold particles, this work focuses on the characterization of these colloids for further use as color labels in lateral flow devices. A reproducible production method has been developed for the synthesis of well characterized colloidal gold particles to be employed in Lateral Flow Devices (LFDs). It has been demonstrated that when undertaking chemical reduction of gold salts with sodium citrate, the amount of reducing agent employed could be used to directly control the size of the resultant particles. A protocol was thereby developed for the synthesis of colloidal gold particles of pre-defined diameters in the range of 15 to 60 nm and of consistent size distribution. The absorption maxima (λ(max)) of the reaction solutions were analyzed by UV/VIS measurements to determine approximate particle sizes, which were confirmed with transmission electron microscopy (TEM) measurements. Colloidal gold particles of about 40 nm in diameter were synthesized and used for labeling monoclonal anti-mycotoxin antibodies (e.g. zearalenone). To deduce the extent of antibody coupling to these particles, smaller colloids with 15 nm diameter were labeled with anti-species specific antibodies. Both solutions were mixed and then scanned by TEM to obtain information about the success of coupling.

  4. Buckling instabilities of nanoscale polymer films and colloidal particle layers

    Science.gov (United States)

    Gurmessa, Bekele Jemama

    remarkable. Finally, through an integrated experimental methods and theoretical modeling, the response of discrete colloidal layers to mechanical deformations have been exploited. The buckling profiles measured experimentally demonstrate a great insight that the continuum model may not be able to predict the response of discrete systems. Theoretically, a granular model was constructed and structural stability analysis was investigated to predict the experimental observations. The overall agreement of the experiment and the modeling was good.

  5. Deposition kinetics of colloidal particles at high ionic strengths

    Science.gov (United States)

    Cejas, Cesare; Monti, Fabrice; Truchet, Marine; Burnouf, Jean-Pierre; Tabeling, Patrick

    Using microfluidic experiments, we describe the deposition of a fluid suspension of weakly brownian particles transported in a straight channel at small Reynolds numbers under conditions of high ionic strengths. Our studies fall in a regime where electrostatic interactions are neglected and particle-wall van der Waals interactions govern the deposition mechanism on channel walls. We calculate the deposition kinetics analytically for a wide range of physical parameters. We find that the theory agrees with numerical Langevin simulations, which both confirm the experimental results. From this analysis, we demonstrate a universal dimensionless deposition function described by contributions from advection-diffusion transport and adhesion interactions (Hamaker constant). Results show that we accurately confirm the theoretical expression for the deposition kinetics. From a surface science perspective, working in the van der Waals regime enables to measure the Hamaker constant, a task that would take much longer to perform with the standard AFM. Funding from Sanofi Recherche and ESPCI.

  6. Four-dimensional optical manipulation of colloidal particles

    DEFF Research Database (Denmark)

    Rodrigo, Peter John; Daria, Vincent Ricardo Mancao; Glückstad, Jesper

    2010-01-01

    The technical development of optical tweezers, along with their application in the biological and physical sciences, has progressed significantly since the demonstration of an optical trap for micron-sized particles based on a single, tightly focused laser beam was first reported more than twenty...... of the best in the field, this compendium presents important historical and current developments of optical tweezers in a range of scientific areas, from the manipulation of bacteria to the treatment of DNA....

  7. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    Science.gov (United States)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  8. Rheology of dense suspensions of non colloidal particles

    Directory of Open Access Journals (Sweden)

    Guazzelli Élisabeth

    2017-01-01

    Full Text Available Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing and in natural phenomena (e.g. flows of slurries, debris, and lava. Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers or non-Newtonian fluids that we will also address.

  9. Rheology of dense suspensions of non colloidal particles

    Science.gov (United States)

    Guazzelli, Élisabeth

    2017-06-01

    Dense suspensions are materials with broad applications both in industrial processes (e.g. waste disposal, concrete, drilling muds, metalworking chip transport, and food processing) and in natural phenomena (e.g. flows of slurries, debris, and lava). Despite its long research history and its practical relevance, the mechanics of dense suspensions remain poorly understood. The major difficulty is that the grains interact both by hydrodynamic interactions through the liquid and by mechanical contact. These systems thus belong to an intermediate regime between pure suspensions and granular flows. We show that we can unify suspension and granular rheology under a common framework by transferring the frictional approach of dry granular media to wet suspensions of spherical particles. We also discuss non-Newtonian behavior such as normal-stress differences and shear-induced migration. Beyond the classical problem of dense suspension of hard spheres which is far from being completely resolved, there are also entirely novel avenues of study concerning more complex mixtures of particles and fluids such as those involving other types of particles (e.g. fibers) or non-Newtonian fluids that we will also address.

  10. Functionalization of emissive conjugated polymer nanoparticles by coprecipitation: consequences for particle photophysics and colloidal properties.

    Science.gov (United States)

    Singh, Amita; Bezuidenhout, Michael; Walsh, Nichola; Beirne, Jason; Felletti, Riccardo; Wang, Suxiao; Fitzgerald, Kathleen T; Gallagher, William M; Kiely, Patrick; Redmond, Gareth

    2016-07-29

    The functionalization of polyfluorene (PFO) nanoparticles by coprecipitation of the conjugated polymer with an amphiphilic comb polymer, consisting of a hydrophobic polystyrene backbone with hydrophilic, carboxylic acid-terminated polyethylene oxide side-chains (PS-PEG-COOH), is investigated. The comb polymer affects the properties of the formed hybrid nanoparticles. Non-functionalized particles are typically larger (28 nm) than functionalized ones (20 nm); peak molar extinction coefficients are found to differ in a similar trend. Zeta potentials are negative, consistent with negative surface charge on PFO particles due to chemical defect formation, with additional charge on functionalized particles due to the pendant carboxylic acid groups. Emission quantum yields of functionalized particles are typically larger, consistent with lower efficiency of energy transfer to quenchers in smaller particles and weaker PFO interchain interactions due to chain dilution. The trend in per-particle fluorescence brightness values, as confirmed by single particle fluorescence imaging, reflects the nanoparticle extinction coefficients. Photostability studies on aqueous dispersions of hybrid particles indicate mild photobrightening under continuous illumination while PFO particles exhibit slow exponential emission decay. Functionalized particles are also resistant to aggregation during exposure to adenocarcinoma cells. Generally, the hybrid particles exhibit more favorable time-, pH- and medium-dependent stabilities, likely due to steric and electrostatic stabilization by PEG-carboxylic acid functionalities. Overall, the functionalized particles exhibit attractive properties: Reasonably small size, tight size distribution, high absorption cross section, radiative rate and emission quantum yield, excellent brightness and photostability, and good colloidal stability.

  11. Functionalization of emissive conjugated polymer nanoparticles by coprecipitation: consequences for particle photophysics and colloidal properties

    Science.gov (United States)

    Singh, Amita; Bezuidenhout, Michael; Walsh, Nichola; Beirne, Jason; Felletti, Riccardo; Wang, Suxiao; Fitzgerald, Kathleen T.; Gallagher, William M.; Kiely, Patrick; Redmond, Gareth

    2016-07-01

    The functionalization of polyfluorene (PFO) nanoparticles by coprecipitation of the conjugated polymer with an amphiphilic comb polymer, consisting of a hydrophobic polystyrene backbone with hydrophilic, carboxylic acid-terminated polyethylene oxide side-chains (PS-PEG-COOH), is investigated. The comb polymer affects the properties of the formed hybrid nanoparticles. Non-functionalized particles are typically larger (28 nm) than functionalized ones (20 nm); peak molar extinction coefficients are found to differ in a similar trend. Zeta potentials are negative, consistent with negative surface charge on PFO particles due to chemical defect formation, with additional charge on functionalized particles due to the pendant carboxylic acid groups. Emission quantum yields of functionalized particles are typically larger, consistent with lower efficiency of energy transfer to quenchers in smaller particles and weaker PFO interchain interactions due to chain dilution. The trend in per-particle fluorescence brightness values, as confirmed by single particle fluorescence imaging, reflects the nanoparticle extinction coefficients. Photostability studies on aqueous dispersions of hybrid particles indicate mild photobrightening under continuous illumination while PFO particles exhibit slow exponential emission decay. Functionalized particles are also resistant to aggregation during exposure to adenocarcinoma cells. Generally, the hybrid particles exhibit more favorable time-, pH- and medium-dependent stabilities, likely due to steric and electrostatic stabilization by PEG-carboxylic acid functionalities. Overall, the functionalized particles exhibit attractive properties: Reasonably small size, tight size distribution, high absorption cross section, radiative rate and emission quantum yield, excellent brightness and photostability, and good colloidal stability.

  12. Characterization and Significance of Sub-Visible Particles and Colloids in a Submerged Anaerobic Membrane Bioreactor (SAnMBR).

    Science.gov (United States)

    Zhou, Zhongbo; Tan, Yiting; Xiao, Yeyuan; Stuckey, David C

    2016-12-06

    The distribution, composition and morphological structure of subvisible particles and colloids (0.01-10 μm) in the supernatant of a lab-scale submerged anaerobic membrane bioreactor (SAnMBR), and their role in membrane fouling, was investigated. Photometric analysis showed that the supernatant and membrane foulants were dominated by particles and colloids (0.45-10 μm), which accounted for over 90% of the total organics (proteins and polysaccharides). Excitation-emission matrix (EEM) fluorescence spectra and monosaccharide analysis showed that these particles and colloids were rich in fluorescent proteins, rhamnose, ribose and arabinose, all of which could be related to cellular and extracellular substances. Fluorescence and scanning electron microscopy confirmed the presence of bacterial cells in/on the subvisible particles and colloids. The microparticles (5-10 μm) were primarily composed of Streptobacilli and/or filamentous bacteria in the form of microcolonies, while the submicrometer particles and colloids (1-5 μm and 100 kDa-1 μm) had more free/single cocci and bacilli. The ratio of live/dead cells varied in different size-fractions, and the particles (1-10 μm) contained more live cells compared with the colloids (100 kDa-1 μm). Our findings suggest that bacterial cells in/on the particles and colloids could have an important effect on fouling in SAnMBRs as they represent pioneering species attaching to membranes to form fouling layers/biofilm. Such insights reveal that previous foulant-characterization studies in MBRs tended to overestimate organic fouling, while the biofouling induced by these bacteria in/on the particles and colloids was overlooked.

  13. Measuring Colloidal Charges in Low Polar Media from Statistics of Particle Trajectories

    Science.gov (United States)

    Evans, Daniel Jo

    This thesis presents insights into the mechanism by which colloidal particles can acquire electrostatic charges in apolar media. It introduces advances in experimental techniques for measuring electrostatic interactions between colloidal particles suspended in such media and applies those techniques to a model system. We present precision measurements of the pair interactions between micron-scale poly (methylmethacrylate) (PMMA) spheres dispersed in a fluid medium with a low dielectric constant. Our measurement technique is based on blinking optical tweezer manipulation of dielectric spheres using digital high-speed video microscopy. We extract interaction measurements from particle trajectories using artifact-free particle tracking, making use of optimal statistical methods to reduce measurement errors to the femtonewton frontier while covering an extremely wide range of interaction energies. Despite the absence of charge control agents or added organic salts, these measurements reveal strong and long-ranged electrostatic repulsions consistent with substantial charges on the particles whose interactions are screened by trace concentrations of mobile ions in solution. Electrostatic interactions are revealed to be consistent with the screened-Coulomb potential predicted by DLVO theory. The hydrodynamic interaction is described by low-Reynolds number hydrodynamic coupling for two-spheres in a quiescent fluid. Linear dependence of the estimated charge on particle radius is consistent with charge renormalization theory, and offers insights into the charging mechanism in this interesting class of systems.

  14. EFFECT OF NONCLASSICAL POLARIZATION OF Na+ AND K+ ON THE STABILITY OF SOIL COLLOIDAL PARTICLES IN SUSPENSION

    Science.gov (United States)

    Wu-Quan, Ding; Jia-Hong, He; Lei, Wang; Xin-Min, Liu; Hang, Li

    The study of soil colloids is essential because the stability of soil colloidal particles are important processes of interest to researchers in environmental fields. The strong nonclassical polarization of the adsorbed cations (Na+ and K+) decreased the electric field and the electrostatic repulsion between adjacent colloidal particles. The decrease of the absolute values of surface potential was greater for K+ than for Na+. The lower the concentration of Na+ and K+ in soil colloids, the greater the electrostatic repulsion between adjacent colloidal particles. The net pressure and the electrostatic repulsion was greater for Na+ than for K+ at the same ion concentration. For K+ and Na+ concentrations higher than 50mmol L-1 or 100 mmol L-1, there was a net negative (or attractive) pressure between two adjacent soil particles. The increasing total average aggregation (TAA) rate of soil colloids with increasing Na+ and K+ concentrations exhibited two stages: the growth rates of TAA increased rapidly at first and then increased slowly and eventually almost negligibly. The critical coagulation concentrations of soil colloids in Na+ and K+ were 91.6mmol L-1 and 47.8mmol L-1, respectively, and these were similar to the concentrations at the net negative pressure.

  15. Pseudo-steady rates of crystal nucleation in suspensions of charged colloidal particles

    CERN Document Server

    Dixit, N M

    2003-01-01

    We develop an analytical model to describe crystal nucleation in suspensions of charged colloidal particles. The particles are assumed to interact with a repulsive hard-core Yukawa potential. The thermodynamic properties of the suspensions are determined by mapping onto an effective hard-sphere system using perturbation theory. Hydrodynamic effects are calculated by approximating particle interactions with the excluded shell potential. The rates of particle aggregation and dissociation from cluster surfaces in supersaturated suspensions are determined by solving the diffusion and Smoluchowski equations, respectively, which allow the calculation of pseudo-steady rates of crystal nucleation. By decoupling thermodynamic and hydrodynamic effects, we find intriguing non-monotonic dependencies of the nucleation rate on the strength and the range of particle repulsions. In particular, we find that the rate at any effective hard-sphere volume fraction can be lower than that of the hard-sphere system at that volume fr...

  16. Sedimentation dynamics and equilibrium profiles in multicomponent mixtures of colloidal particles.

    Science.gov (United States)

    Spruijt, E; Biesheuvel, P M

    2014-02-19

    In this paper we give a general theoretical framework that describes the sedimentation of multicomponent mixtures of particles with sizes ranging from molecules to macroscopic bodies. Both equilibrium sedimentation profiles and the dynamic process of settling, or its converse, creaming, are modeled. Equilibrium profiles are found to be in perfect agreement with experiments. Our model reconciles two apparently contradicting points of view about buoyancy, thereby resolving a long-lived paradox about the correct choice of the buoyant density. On the one hand, the buoyancy force follows necessarily from the suspension density, as it relates to the hydrostatic pressure gradient. On the other hand, sedimentation profiles of colloidal suspensions can be calculated directly using the fluid density as apparent buoyant density in colloidal systems in sedimentation-diffusion equilibrium (SDE) as a result of balancing gravitational and thermodynamic forces. Surprisingly, this balance also holds in multicomponent mixtures. This analysis resolves the ongoing debate of the correct choice of buoyant density (fluid or suspension): both approaches can be used in their own domain. We present calculations of equilibrium sedimentation profiles and dynamic sedimentation that show the consequences of these insights. In bidisperse mixtures of colloids, particles with a lower mass density than the homogeneous suspension will first cream and then settle, whereas particles with a suspension-matched mass density form transient, bimodal particle distributions during sedimentation, which disappear when equilibrium is reached. In all these cases, the centers of the distributions of the particles with the lowest mass density of the two, regardless of their actual mass, will be located in equilibrium above the so-called isopycnic point, a natural consequence of their hard-sphere interactions. We include these interactions using the Boublik-Mansoori-Carnahan-Starling-Leland (BMCSL) equation of

  17. Investigating flow behaviors of colloidal materials at the single-particle scale

    Science.gov (United States)

    Lin, Yen-Chih

    My thesis work focuses on the nonlinear mechanical behaviors of colloidal suspensions at the particle-level. This work covers both quiescent and strongly sheared suspensions. For quiescent suspensions, we image their 3D structures with confocal microscopy, and implement Stress Assessment from Local Structural Anisotropy (SALSA) to visualize the stress fields in them. Unlike traditional numerical methods, SALSA takes a statistical approach converting the probability of hard-sphere Brownian collisions to stresses. This direct stress measurement allows us to quantify the particle-level stresses surrounding vacancies, dislocations, and grain boundaries in crystalline materials. To drive the suspensions away from equilibrium, we develop a confocal-rheoscope, which is able to shear and image colloidal materials simultaneously. Using this device, we investigate the nonlinear flow behavior governed by Brownian motion, shear induced diffusion, and advection, and more importantly, disentangle them. We also study particle assembly and its corresponding rheological properties under confinement. Finally, we study even more strongly sheared suspensions, in which particle dynamics are too fast to be imaged by a confocal microscope. Here, we use flow reversal rheometry to reveal the underlying mechanism of suspension shear thickening where the viscosity increases with shear rate. We show that the thickening behavior of a suspension arises from the particle contact forces rather than hydrodynamic interactions. Such findings then lead us to design a biaxial shear protocol that can tune the suspension viscosity on demand. This viscosity tuning capability is a foundational step toward using dense suspensions in 3D printing, energy storage, and robotics.

  18. Particle size and mineralogical composition of inorganic colloids in waters draining the adit of an abandoned mine, Goesdorf, Luxembourg

    Energy Technology Data Exchange (ETDEWEB)

    Filella, Montserrat [Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); SCHEMA, Rue Principale 92, L-6990 Rameldange (Luxembourg)], E-mail: montserrat.filella@unige.ch; Chanudet, Vincent [Department of Inorganic, Analytical and Applied Chemistry, University of Geneva, 30 quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Institut F.-A. Forel, University of Geneva, 10 route de Suisse, CH-1290 Versoix (Switzerland); Philippo, Simon [Musee National d' Histoire Naturelle, 25 rue Muenster, L-2160 Luxembourg (Luxembourg); Quentel, Francois [Laboratoire de Chimie Analytique, UMR-CNRS 6521, Universite de Bretagne Occidentale, 6 avenue V. Le Gorgeu, F-29238 Brest Cedex 3 (France)

    2009-01-15

    Particle size distributions and the mineralogy of inorganic colloids in waters draining the adit of an abandoned mine (Goesdorf, Luxembourg) were quantified by single particle counting based on light scattering (100 nm-2 {mu}m) combined with transmission electronic microscopy coupled with energy dispersive spectroscopy and selected area electron diffraction. This water system was chosen as a surrogate for groundwaters. The dependence of the colloid number concentration on colloid diameters can be described by a power-law distribution in all cases. Power-law slopes ranged from -3.30 to -4.44, depending on water ionic strength and flow conditions. The same main mineral types were found in the different samples: 2:1 phyllosilicates (illite and mica), chlorite, feldspars (albite and orthoclase), calcite and quartz; with a variable number of Fe oxide particles. The colloid mineralogical composition closely resembles the composition of the parent rock. Spatial variations in the structure and composition of the rock in contact with the waters, i.e. fissured rock versus shear joints, are reflected in the colloid composition. The properties of the study colloids, as well as the processes influencing them, can be considered as representative of the colloids present in groundwaters.

  19. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    Science.gov (United States)

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  20. Nano-colloid electrophoretic transport: Fully explicit modelling via dissipative particle dynamics

    Science.gov (United States)

    Hassanzadeh Afrouzi, Hamid; Farhadi, Mousa; Sedighi, Kurosh; Moshfegh, Abouzar

    2018-02-01

    In present study, a novel fully explicit approach using dissipative particle dynamics (DPD) method is introduced for modelling electrophoretic transport of nano-colloids in an electrolyte solution. Slater type charge smearing function included in 3D Ewald summation method is employed to treat electrostatic interaction. Moreover, capability of different thermostats are challenged to control the system temperature and study the dynamic response of colloidal electrophoretic mobility under practical ranges of external electric field in nano scale application (0.072 600 in DPD units regardless of electric field intensity. Nosé-Hoover-Lowe-Andersen and Lowe-Andersen thermostats are found to function more effectively under high electric fields (E > 0.145 [ v / nm ]) while thermal equilibrium is maintained. Reasonable agreements are achieved by benchmarking the radial distribution function with available electrolyte structure modellings, as well as comparing reduced mobility against conventional Smoluchowski and Hückel theories, and numerical solution of Poisson-Boltzmann equation.

  1. Colloid particle sizes in the Mississippi River and some of its tributaries, from Minneapolis to below New Orleans

    Science.gov (United States)

    Rostad, C.E.; Rees, T.F.; Daniel, S.R.

    1998-01-01

    An on-board technique was developed that combined discharge-weighted pumping to a high-speed continuous-flow centrifuge for isolation of the particulate-sized material with ultrafiltration for isolation of colloid-sized material. In order to address whether these processes changed the particle sizes during isolation, samples of particles in suspension were collected at various steps in the isolation process to evaluate changes in particle size. Particle sizes were determined using laser light-scattering photon correlation spectroscopy and indicated no change in size during the colloid isolation process. Mississippi River colloid particle sizes from twelve sites from Minneapolis to below New Orleans were compared with sizes from four tributaries and three seasons, and from predominantly autochthonous sources upstream to more allochthonous sources downstream. ?? 1998 John Wiley Sons, Ltd.

  2. Characterisation of Fe-bearing particles and colloids in the Lena River basin, NE Russia

    Science.gov (United States)

    Hirst, Catherine; Andersson, Per S.; Shaw, Samuel; Burke, Ian T.; Kutscher, Liselott; Murphy, Melissa J.; Maximov, Trofim; Pokrovsky, Oleg S.; Mörth, Carl-Magnus; Porcelli, Don

    2017-09-01

    Rivers are significant contributors of Fe to the ocean. However, the characteristics of chemically reactive Fe remain poorly constrained, especially in large Arctic rivers, which drain landscapes highly susceptible to climate change and carbon cycle alteration. The aim of this study was a detailed characterisation (size, mineralogy, and speciation) of riverine Fe-bearing particles (>0.22 μm) and colloids (1 kDa-0.22 μm) and their association with organic carbon (OC), in the Lena River and tributaries, which drain a catchment almost entirely underlain by permafrost. Samples from the main channel and tributaries representing watersheds that span a wide range in topography and lithology were taken after the spring flood in June 2013 and summer baseflow in July 2012. Fe-bearing particles were identified, using Transmission Electron Microscopy, as large (200 nm-1 μm) aggregates of smaller (20-30 nm) spherical colloids of chemically-reactive ferrihydrite. In contrast, there were also large (500 nm-1 μm) aggregates of clay (illite) particles and smaller (100-200 nm) iron oxide particles (dominantly hematite) that contain poorly reactive Fe. TEM imaging and Scanning Transmission X-ray microscopy (STXM) indicated that the ferrihydrite is present as discrete particles within networks of amorphous particulate organic carbon (POC) and attached to the surface of primary produced organic matter and clay particles. Together, these larger particles act as the main carriers of nanoscale ferrihydrite in the Lena River basin. The chemically reactive ferrihydrite accounts for on average 70 ± 15% of the total suspended Fe in the Lena River and tributaries. These observations place important constraints on Fe and OC cycling in the Lena River catchment area and Fe-bearing particle transport to the Arctic Ocean.

  3. Statistical Mechanics of Colloidal Particles in Non-Conservative Force Fields

    Science.gov (United States)

    Wakil Moyses, Henrique

    Systems that are in mechanical equilibrium but are driven away from thermodynamic equilibrium present directed motion when in a thermal bath. This thesis explores this motion when systems are out of thermodynamic equilibrium due to the presence of non-conservative force fields. The first system we explored are Brownian vortexes. These are stochastic machines that use static non-conservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. In this thesis we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak non-conservative driving. We show that the first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers. Another system we explore are colloidal Janus particles composed of an optically absorbing and transparent faces. When illuminated by a defocused optical tweezer these particles swim vigorously, without requiring any chemical fuel. Most surprisingly, these optically activated colloidal swimmers circulate back and forth through the beam of light, tracing out regular sinuous patterns. In this thesis we propose a model for this class of light-activated swimmers in which a combination of radiation

  4. Sedimentation of particles and aggregates in colloids considering both streaming and seepage

    Science.gov (United States)

    Song, Dongxing; Jin, Hui; Jin, Jingyu; Jing, Dengwei

    2016-10-01

    Sedimentation of colloids is a common phenomenon in various industrial processes. Aggregation of nanoparticles is expected to occur during the processes. However, previous studies often ignore the important features of aggregates, e.g. porosity and possible seepage, leading to a mathematical description of the sedimentation processes of low reliability. In this study, we successfully elaborated the partial differential equation of the dynamic concentration distribution of regimented colloids based on the Stokes approximation and diffusion along the negative gradient of concentration. The permeability of aggregates was obtained by the finite volume method and the ratios of the velocities of flowing around (u f) to seepage through (u s) aggregates over various primary particle sizes and aggregation structures were obtained based on the Darcy equations. After validation of the model, the effects of size and density of the particles and aggregates on the concentration profiles were investigated. Our results indicate that both an increase in size and density of particles and aggregates can accelerate the sedimentation process, and lead to more ‘thorough’ sedimentation. We mathematically explain why suspensions with high particle concentration are more unstable. What is more, replacing gravity with other volume forces, e.g. centrifugal force and magnetic forces, our model is expected to be applicable to centrifugation or magnetic sedimentation processes.

  5. Soil colloidal behavior

    Science.gov (United States)

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  6. Effective medium approximation and deposition of colloidal particles in fibrous and granular media

    Science.gov (United States)

    Li; Park

    2000-09-29

    Laminar flow of fluids through fibrous and granular media and deposition of colloidal particles from a liquid suspension are two fundamental phenomena encountered in many industrial applications. An Effective Medium Approximation (EMA) is used to determine the fluid flow permeability and particle capture efficiency of random arrays of cylindrical and spherical collectors. The EMA assumes a model system in which a packing element (a single fiber in the fibrous medium and a single sphere in the granular medium) is surrounded by a fluid envelope and an effective-medium beyond the envelope. It integrates the important features of both the cell models and Brinkman's model. The Stokes equation and Brinkman equation are solved for the fluid envelope and effective medium regions, respectively, to obtain the permeability and close-to-surface velocity field around the collectors. The convective diffusion equation is then solved to determine the particle deposition rate. The analytical expressions for the permeability and particle deposition rate are derived for all possible cases of random packing of uniform and non-uniform cylinders and spheres. Effects of various system properties and operating conditions on deposition of colloidal particles are investigated. The physical or chemical conditions include the properties which affect the magnitude of double layer interaction: the electrolyte concentration and surface potentials, and the property which affects the van der Waals interaction: the Hamaker constant. It was found that the effects of the above properties is much more significant when the surface interactions play more important roles in the particle deposition process, or when the height of the total interaction energy barrier is higher than 5 kBT. Particle deposition becomes virtually impossible when the height of the repulsive energy barrier increases beyond 20 kBT.

  7. Selection of Colloidal Silica Grouts with Respect to Gelling and Erosion Behaviour

    Directory of Open Access Journals (Sweden)

    Pingqian Shen

    2017-02-01

    Full Text Available Cembinder, Eka EXP36, and MEYCO MP320 are three colloidal silica materials that have been proposed for post-excavation grouting of deep tunnels in a radioactive waste repository. In this study, samples of these colloidal silicas were tested for their particle size distribution, gel induction time (tG, gel time (TG, and physical erosion, under mildly saline groundwater flow conditions. In order to achieve a desired gel time range, from 15 to 50 min, it is recommended that the colloidal silica is mixed with a NaCl accelerator at a 5:1 volume ratio. At 20 °C, the concentration range for the NaCl solution should be 1.5 to 1.7 M for MEYCO, 1.23 to 1.38 M for Eka EXP36, and 1.3 to 1.47 M for Cembinder. The physical erosion of the set silicas remained steady during a 10 h flow cell experiment, when grouts were subjected to 0.05 M NaCl at a superficial velocity of 2.2 × 10−5 m/s. For these test conditions, the results show that MEYCO has the highest average erosion rate (0.85 mg/h of the three grout materials, as well as the greatest variability in this rate. Cembinder performed best with the lowest silica removal rate. Extrapolation of the measured erosion rates suggests that grout fracture dilation would not be significant under natural quiescent groundwater flow conditions, but would be high if there was hydraulic communication between the geosphere and the repository.

  8. Distribution of encapsulated materials in colloidal particles and its impact on oxidative stability of encapsulated materials.

    Science.gov (United States)

    Tikekar, Rohan V; Nitin, N

    2012-06-26

    The oxidative stability of encapsulated product is a critical parameter in many products from food to pharmaceutical to cosmetic industries. The overall objective of this study was to correlate differences in the distribution pattern of encapsulated material within solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) with the relative susceptibility of these materials to undergo oxidation. The distribution of an encapsulated lipid soluble dye (Nile Red) in SLNs and NLCs was quantitatively measured using fluorescence imaging. The relative susceptibility of the encapsulated material to react with free radicals generated in the aqueous phase and oxygen from the ambient environment was measured using peroxyl radical and oxygen sensitive fluorescent dyes encapsulated in the lipid phase of colloidal particles respectively. Imaging measurements demonstrate a significant exclusion of the encapsulated dye molecules from the lipid core of SLNs as compared to NLCs. Imaging results also showed significant differences in the intraparticle distribution of encapsulated dye between NLCs containing 1 and 10% liquid lipid. On the basis of these differences in distribution, we hypothesized that the relative susceptibility of encapsulated material to peroxyl radicals and oxygen would be in the order SLNs > 1% NLC > 10% NLC. Measurement of relative susceptibility of peroxyl radical sensitive dye encapsulated in SLNs and NLCs to peroxyl radicals generated in the aqueous phase validated the proposed hypotheses. However, the susceptibility of encapsulated oxygen sensitive dye to ambient oxygen was not significantly different between SLNs and NLCs. The results of this study demonstrate that difference in distribution pattern of encapsulated material within colloidal particles can significantly influence the susceptibility of encapsulated material to react with free radicals. Overall, this study demonstrates a comprehensive approach to characterize the susceptibility of

  9. Phonon Dispersion and Elastic Properties of Two-Dimensional Soft Particle Colloidal Crystals and Glasses

    Science.gov (United States)

    Still, Tim; Chen, Ke; Yunker, Peter J.; Goodrich, Carl P.; Schoenholz, Samuel; Liu, Andrea J.; Yodh, A. G.

    2013-03-01

    We investigate phonon dispersion relations and associated mechanical properties of two-dimensional colloidal glasses and crystals composed of soft, thermoresponsive microgel particles whose temperature-sensitive size facilitates in-situ variation of particle packing fraction. The phonon modes were measured using particle tracking and displacement covariance matrix techniques. Measurements of the hexagonal crystal served to check our methodology and, as expected, the observed phonon dispersion was largely in agreement with theoretical expectations. Measurements of phonon dispersion in the glassy colloids, as a function of packing fraction above the jamming transition, permitted study of the scaling of bulk and shear moduli as a function of packing fraction. We performed numerical simulations and were able to recover the experimental findings. Moreover, the obtained shear moduli are in good agreement with rheological measurements. We gratefully acknowledge financial support from the NSF through DMR12-05463, the PENN MRSEC DMR11-20901, and NASA NNX08AO0G. T. S. acknowledges financial support from DAAD.

  10. Many-body microhydrodynamics of colloidal particles with active boundary layers

    Science.gov (United States)

    Singh, Rajesh; Ghose, Somdeb; Adhikari, R.

    2015-06-01

    Colloidal particles with active boundary layers—regions surrounding the particles where non-equilibrium processes produce large velocity gradients—are common in many physical, chemical and biological contexts. The velocity or stress at the edge of the boundary layer determines the exterior fluid flow and, hence, the many-body interparticle hydrodynamic interaction. Here, we present a method to compute the many-body hydrodynamic interaction between N spherical active particles induced by their exterior microhydrodynamic flow. First, we use a boundary integral representation of the Stokes equation to eliminate bulk fluid degrees of freedom. Then, we expand the boundary velocities and tractions of the integral representation in an infinite-dimensional basis of tensorial spherical harmonics and, on enforcing boundary conditions in a weak sense on the surface of each particle, obtain a system of linear algebraic equations for the unknown expansion coefficients. The truncation of the infinite series, fixed by the degree of accuracy required, yields a finite linear system that can be solved accurately and efficiently by iterative methods. The solution linearly relates the unknown rigid body motion to the known values of the expansion coefficients, motivating the introduction of propulsion matrices. These matrices completely characterize hydrodynamic interactions in active suspensions just as mobility matrices completely characterize hydrodynamic interactions in passive suspensions. The reduction in the dimensionality of the problem, from a three-dimensional partial differential equation to a two-dimensional integral equation, allows for dynamic simulations of hundreds of thousands of active particles on multi-core computational architectures. In our simulation of 104 active colloidal particle in a harmonic trap, we find that the necessary and sufficient ingredients to obtain steady-state convective currents, the so-called ‘self-assembled pump’, are (a) one

  11. Mobilization of colloidal particles by low-frequency dynamic stress stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Beckham, Richard Edward [Los Alamos National Laboratory; Amr, Abdel - Fattah I [Los Alamos National Laboratory; Peter, Roberts M [Los Alamos National Laboratory; Reem, Ibrahim [Los Alamos National Laboratory; Tarimala, Sowmitri [Los Alamos National Laboratory

    2009-01-01

    Naturally occurring seismic events and artificially generated low-frequency (1 to 500 Hertz) elastic waves have been observed to alter the production rates of oil and water wells, sometimes increasing and sometimes decreasing production, and to influence the turbidity of surface and well water. The decreases in production are of particular concern - especially when artificially generated elastic waves are applied as a method for enhanced oil recovery. The exact conditions that result in a decrease in production remain unknown. While the underlying environment is certainly complex, the observed increase in water well turbidity after natural seismic events suggests the existence of a mechanism that can affect both the subsurface flow paths and mobilization of in-situ colloidal particles. This paper explores the macroscopic and microscopic effects of low-frequency dynamic stress stimulations on the release of colloidal particles from an analog core representing an infinitesimal section along the propagation paths of an elastic wave. Experiments on a column packed with 1-mm borosilicate beads and loaded with polystyrene microspheres demonstrate that axial mechanical stress oscillations enhance the mobilization of captured microspheres. Increasing the amplitude of the oscillations increases the number of microspheres released and can also result in cyclical spikes in effluent microsphere concentration during stimulation. Under a prolonged period of stimulation, the cyclical effluent spikes coincided with fluctuations in the column pressure data, and continue at a diminished level after stimulation. This behavior can be attributed to rearrangements of the beads in the column, resulting in possible changes to the void space and/or tortuosity of the packing. Optical microscopy observations of the beads during low frequency oscillations reveal that individual beads rotate, thereby rubbing against each other and scraping away portions of the adsorbed microspheres. These

  12. Solid colloidal particles inducing coalescence in bitumen-in-water emulsions.

    Science.gov (United States)

    Legrand, J; Chamerois, M; Placin, F; Poirier, J E; Bibette, J; Leal-Calderon, F

    2005-01-04

    Silica particles are dispersed in the continuous phase of bitumen-in-water emulsions. The mixture remains dispersed in quiescent storage conditions. However, rapid destabilization occurs once a shear is applied. Observations under the microscope reveal that the bitumen droplets form a colloidal gel and coalesce upon application of a shear. We follow the kinetic evolution of the emulsions viscosity, eta, at constant shear rate: eta remains initially constant and exhibits a dramatic increase after a finite time, tau. We study the influence of various parameters on the evolution of tau: bitumen droplet size and volume fraction, silica diameter and concentration, shear rate, etc.

  13. Novel colloidal system: Magnetite-polymer particles/lyotropic liquid crystal under magnetic field

    Science.gov (United States)

    Mănăilă-Maximean, D.; Cîrtoaje, C.; Dănilă, O.; Donescu, D.

    2017-09-01

    We obtained a new highly ordered colloidal composite using specially manufactured magnetite-polymer nanoparticles and lyotropic liquid crystal. A good compatibility between the components was ensured by the functionalization of the particles during their synthesis. We studied the laser light transmission for the mixtures filled in sandwich-glass cells with homeotropic and planar treatment of the surfaces under external magnetic field. The Fréedericksz transition critical field was estimated, and its' behavior was compared to our new theoretical model based on the Brochard-de Gennes one.

  14. Intermethod comparison of the particle size distributions of colloidal silica nanoparticles.

    Science.gov (United States)

    Tuoriniemi, Jani; Johnsson, Ann-Cathrin J H; Holmberg, Jenny Perez; Gustafsson, Stefan; Gallego-Urrea, Julián A; Olsson, Eva; Pettersson, Jan B C; Hassellöv, Martin

    2014-06-01

    There can be a large variation in the measured diameter of nanoparticles depending on which method is used. In this work, we have strived to accurately determine the mean particle diameter of 30-40 nm colloidal silica particles by using six different techniques. A quantitative agreement between the particle size distributions was obtained by scanning electron microscopy (SEM), and electrospray-scanning mobility particle sizer (ES-SMPS). However, transmission electron microscopy gave a distribution shifted to smaller sizes. After confirming that the magnification calibration was consistent, this was attributed to sample preparation artifacts. The hydrodynamic diameter, d h , was determined by dynamic light scattering (DLS) both in batch mode, and hyphenated with sedimentation field flow fractionation. Surprisingly the d h were smaller than the SEM, and ES-SMPS diameters. A plausible explanation for the smaller sizes found with DLS is that a permeable gel layer forms on the particle surface. Results from nanoparticle tracking analysis were strongly biased towards larger diameters, most likely because the silica particles provide low refractive index contrast. Calculations confirmed that the sensitivity is, depending on the shape of the laser beam, strongly size dependent for particles with diameters close to the visualization limit.

  15. Coupling colloidal forces with yield stress of charged inorganic particle suspension: A review.

    Science.gov (United States)

    Otsuki, Akira

    2018-01-12

    This paper aims to summarize the series of investigations on coupling suspension yield stress and DLVO (Derjaguin-Landau-Verwey-Overbeek) forces, i.e. van der Waals and electrical double layer forces. This summary provides a better understanding of the basic phenomena associated, historical development and current status of this useful coupling, and also discusses the applicability and limitations/variations of such coupling applied to different types of concentrated aqueous particle suspensions. Aqueous suspensions discussed are composed of charged inorganic fine particles, including metal oxide colloidal particles, mineral fine particles, and clays. The research gaps are identified and specific future perspectives are discussed to further enhance the use of this unique and useful coupling, and to aim for the transition from the modelling of similar particle suspension systems to its dissimilar/mix particle suspension systems that fit more with the current and future industry needs in particle processing. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Self-Assembly Kinetics of Colloidal Particles inside Monodispersed Micro-Droplet and Fabrication of Anisotropic Photonic Crystal Micro-Particles

    Directory of Open Access Journals (Sweden)

    Ming-Yu Zhang

    2016-09-01

    Full Text Available A new microfluidic approach to preparing anisotropic colloidal photonic crystal microparticles is developed and the self-assembly kinetics of colloidal nanoparticles is discussed. Based on the “coffee ring” effect in the self-assembly process of colloidal silica particle in strong solvent extraction environment, we successfully prepared anisotropic photonic crystal microparticles with different shapes and improved optical properties. The shapes and optical properties of photonic crystal microparticles can be controlled by adjusting the droplet size and extraction rate. We studied the self-assembly mechanism of colloidal silica particles in strong solvent extraction environment, which has potential applications in a variety of fields including optical communication technology, environmental response, photo-catalysis and chromic material.

  17. Estimation of the particle size distribution of colloids from multiangle dynamic light scattering measurements with particle swarm optimization

    Directory of Open Access Journals (Sweden)

    Leonardo Antonio Bermeo Varón

    2015-01-01

    Full Text Available In this paper particle Swarm Optimization (PSO algorithms are applied to estimate the particle size distribution (PSD of a colloidal system from the average PSD diameters, which are measured by multi-angle dynamic light scattering. The system is considered a nonlinear inverse problem, and for this reason the estimation procedure requires a Tikhonov regularization method. The inverse problem is solved through several PSO strategies. The evaluated PSOs are tested through three simulated examples corresponding to polysty-rene (PS latexes with different PSDs, and two experimental examples obtained by simply mixing 2 PS standards. In general, the evalu-ation results of the PSOs are excellent; and particularly, the PSO with the Trelea’s parameter set shows a better performance than other implemented PSOs.

  18. Collectivity in diffusion of colloidal particles: from effective interactions to spatially correlated noise

    Science.gov (United States)

    Majka, M.; Góra, P. F.

    2017-02-01

    The collectivity in the simultaneous diffusion of many particles, i.e. the interdependence of stochastic forces affecting different particles in the same solution, is a largely overlooked phenomenon with no well-established theory. Recently, we have proposed a novel type of thermodynamically consistent Langevin dynamics driven by spatially correlated noise (SCN) that can contribute to the understanding of this problem. This model draws a link between the theory of effective interactions in binary colloidal mixtures and the properties of SCN. In the current article, we review this model from the perspective of collective diffusion and generalize it to the case of multiple (N  >  2) particles. Since our theory of SCN-driven Langevin dynamics has certain issues that could not be resolved within this framework, in this article we also provide another approach to the problem of collectivity. We discuss the multi-particle Mori-Zwanzig model, which is fully microscopically consistent. Indeed, we show that this model supplies a lot of information, complementary to the SCN-based approach, e.g. it predicts the deterministic dynamics of the relative distance between the particles, it provides an approximation for non-equilibrium effective interactions and predicts the collective sub-diffusion of tracers in the group. These results provide the short-range, inertial limit of the earlier model and agree with its predictions under some general conditions. In this article we also review the origin of SCN and its consequences for a variety of physical systems, with emphasis on the colloids.

  19. Colloidal interactions between Langmuir-Blodgett bitumen films and fine solid particles.

    Science.gov (United States)

    Long, Jun; Zhang, Liyan; Xu, Zhenghe; Masliyah, Jacob H

    2006-10-10

    In oil sand processing, accumulation of surface-active compounds at various interfaces imposes a significant impact on bitumen recovery and bitumen froth cleaning (i.e., froth treatment) by altering the interfacial properties and colloidal interactions among various oil sand components. In the present study, bitumen films were prepared at toluene/water interfaces using a Langmuir-Blodgett (LB) upstroke deposition technique. The surface of the prepared LB bitumen films was found to be hydrophobic, comprised of wormlike aggregates containing a relatively high content of oxygen, sulfur, and nitrogen, indicating an accumulation of surface-active compounds in the films. Using an atomic force microscope, colloidal interactions between the LB bitumen films and fine solids (model silica particles and clay particles chosen directly from an oil sand tailing stream) were measured in industrial plant process water and compared with those measured in simple electrolyte solutions of controlled pH and divalent cation concentrations. The results show a stronger long-range repulsive force and weaker adhesion force in solutions of higher pH and lower divalent cation concentration. In plant process water, a moderate long-range repulsive force and weak adhesion were measured despite its high electrolyte content. These findings provide more insight into the mechanisms of bitumen extraction and froth treatment.

  20. Tracking control of colloidal particles through non-homogeneous stationary flows

    Energy Technology Data Exchange (ETDEWEB)

    Híjar, Humberto, E-mail: humberto.hijar@lasallistas.org.mx [Grupo de Sistemas Inteligentes, Facultad de Ingeniería, Universidad La Salle, Benjamín Franklin 47, 06140, Distrito Federal (Mexico)

    2013-12-21

    We consider the problem of controlling the trajectory of a single colloidal particle in a fluid with steady non-homogeneous flow. We use a Langevin equation to describe the dynamics of this particle, where the friction term is assumed to be given by the Faxén's Theorem for the force on a sphere immersed in a stationary flow. We use this description to propose an explicit control force field to be applied on the particle such that it will follow asymptotically any given desired trajectory, starting from an arbitrary initial condition. We show that the dynamics of the controlled particle can be mapped into a set of stochastic harmonic oscillators and that the velocity gradient of the solvent induces an asymmetric coupling between them. We study the particular case of a Brownian particle controlled through a plane Couette flow and show explicitly that the velocity gradient of the solvent renders the dynamics non-stationary and non-reversible in time. We quantify this effect in terms of the correlation functions for the position of the controlled particle, which turn out to exhibit contributions depending exclusively on the non-equilibrium character of the state of the solvent. In order to test the validity of our model, we perform simulations of the controlled particle moving in a simple shear flow, using a hybrid method combining molecular dynamics and multi-particle collision dynamics. We confirm numerically that the proposed guiding force allows for controlling the trajectory of the micro-sized particle by obligating it to follow diverse specific trajectories in fluids with homogeneous shear rates of different strengths. In addition, we find that the non-equilibrium correlation functions in simulations exhibit the same qualitative behavior predicted by the model, thus revealing the presence of the asymmetric non-equilibrium coupling mechanism induced by the velocity gradient.

  1. Size fractionation and characterisation of fresh water colloids and particles: split-flow thin-cell and electron microscopy analyses.

    Science.gov (United States)

    De Momi, Anna; Lead, Jamie R

    2006-11-01

    Split-flow thin-cell (SPLITT) was employed in conventional mode (CSF), to size-fractionate colloids and particles from a selected freshwater. Imaging and quantification by calculations of particle size distributions (PSDs) and shape factors were performed on sample analyzed by conventional high vacuum scanning electron microscopy (SEM) and environmental SEM (ESEM), to investigate the ability of SPLITT to make accurate and nonperturbing separations. SEM and ESEM images of unperturbed and SPLITT-generated fractions were used in order to obtain qualitative and quantitative information about the properties of colloids and particles. Particle size distributions (PSDs) showed that separations were very good, agreeing with theoretical behavior. ESEM PSDs showed that up to 87-88% of the material in the a fraction (expected to be 1 microm) 87-95% of the material was the expected size. The SEM data indicated a slightly higher contamination of the b fraction with the presence of submicron colloids. Moreover, analysis of conformations indicated significant nonsphericity in unfractionated colloids and particles, but after SPLITT fractionation, shape factors showed that particles were significantly more spherical than before separation.

  2. Reversal behaviour in perpendicular iron particle arrays (alumite media)

    NARCIS (Netherlands)

    Lodder, J.C.; Li, Cheng-Zhang

    1989-01-01

    Alumite was chosen as an ideal material to investigate the influence of particle interaction on the magnetic behaviour of a perpendicular anisotropic particle array. It was found that the measured reduced coercivity versus the reduced diameter curves fits the theoretical curling mode. However, the

  3. Stability of dispersions of colloidal hematite/yttrium oxide core-shell particles.

    Science.gov (United States)

    Plaza, R C; Quirantes, A; Delgado, A V

    2002-08-01

    The colloidal stability of suspensions of hematite/yttria core/shell particles is investigated in this work and compared with that of the pure hematite cores. The different electrical surface characteristics of yttrium and iron oxides, as well as the diameters of both types of spherical particles, dominate the overall process of particle aggregation. The aggregation kinetics of the suspensions was followed by measuring their optical absorbance as a function of time. By previously calculating the extinction cross section of particle doublets, it was demonstrated that for both core and core/shell particles the turbidity of the suspensions should increase on aggregation. Such an increase was in fact found in the systems in spite of the ever-present tendency of the particles to settle under gravity. The authors used the initial slope of the turbidity increment time plots as a measure of the ease of aggregation between particles. Thus, they found that the essential role played by pH on the charge generation on the two oxides and the shift of one pH unit between the isoelectric points of hematite and yttria manifest in two features: (i) the stability decreases on approaching the isoelectric point from either the acid or basic side and (ii) the maximum instability is found for hematite at pH 7 and for hematite/yttria at pH 8, that is, close to the isoelectric points of alpha-Fe(2)O(3) and Y(2)O(3), respectively. The role of added electrolyte is simply to yield the suspensions of either type more unstable. Using the surface free energy of the particles, the authors could estimate their Hamaker constants in water. From these and their zeta potentials, the DLVO theory of stability was used to quantitatively explain their results.

  4. The role of colloid particles in the albumin-lanthanides interaction: The study of aggregation mechanisms.

    Science.gov (United States)

    Tikhonova, Tatiana N; Shirshin, Evgeny A; Romanchuk, Anna Yu; Fadeev, Victor V

    2016-10-01

    We studied the interaction between bovine serum albumin (BSA) and lanthanide ions in aqueous solution in the 4.0÷9.5pH range. A strong increase of the solution turbidity was observed at pH values exceeding 6, which corresponds to the formation of Ln(OH)3 nanoparticles, while no changes were observed near the isoelectric point of BSA (pH 4.7). The results of the dynamic light scattering and protein adsorption measurements clearly demonstrated that the observed turbidity enhancement was caused by albumin sorption on the surface of Ln(OH)3 and colloid particles bridging via adsorbed protein molecules. Upon pH increase from 4.5 to 6.5, albumin adsorption on lanthanide colloids was observed, while the following increase of pH from 6.5 to 9.5 led to protein desorption. The predominant role of the electrostatic interactions in the adsorption and desorption processes were revealed in the zeta-potential measurements. No reversibility was observed upon decreasing pH from 9.5 to 4.5 that was suggested to be due to the other interaction mechanisms present in the system. It was shown that while for all lanthanide ions the interaction mechanism with BSA was similar, its manifestation in the optical properties of the system was significantly different. This was interpreted as a consequence of the differences in lanthanides hydrolysis constants. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Topological defects in an unconfined nematic fluid induced by single and double spherical colloidal particles

    Science.gov (United States)

    Wang, Yiwei; Zhang, Pingwen; Chen, Jeff Z. Y.

    2017-10-01

    We present numerical solutions to the Landau-de Gennes free-energy model under the one-constant approximation for systems of single and double spherical colloidal particles immersed in an otherwise uniformly aligned nematic liquid crystal. A perfect homeotropic surface anchoring of liquid-crystal molecules on the spherical surface is considered. A large parameter space is carefully examined, including those in the free-energy model and those describing the dimer configurations and the background liquid-crystal orientation. The stability of the resulting liquid-crystal defects appearing in the neighborhood of the colloidal dimer pair is analyzed in light of the numerical results for their free energies. A number of scenarios are considered: a free dimer pair in a nematic fluid where the free-energy ground states are described in terms of a phase diagram, and a constrained dimer pair where the interparticle distance and the relative orientation of the distance vector to the nematic director can be manipulated. We pay particular attention to the nonsymmetric solutions, which yield several metastable defect states that can be observed in real systems. The high-precision numerical calculations are based on a spectral method, which is an enabling factor that allows us to compare the subtle difference in the free energies of different defect structures.

  6. Colloid Bound Transport of Contaminats In The Unsaturated Zone

    Science.gov (United States)

    Hofmann, T.; Christ, A.

    Colloids can play a major role in the relocation of contaminants in the unsaturated zone. The amount of colloid driven transport is defined by soil chemistry, soil water chemistry and water flow velocity as well as colloid composition and formation. In a current research project we investigate the filtration and mobilization of colloids in unsaturated column studies. We use different soil types, chosen by a wide range of mean grain size and heterogeneity. Particle tracers are polystyrene solids with a de- fined negative surface charge and defined size from 50 nm to 10 µm. In addition, we use natural colloids extracted from a wide range of contaminated and uncontaminated land. Experimental conditions are exactly controlled throughout all the time. We alter mainly flow velocity ionic strength in order to study the filtration behaviour of the soils. In addition, Pyrene and Lead are are used as model contaminants. First results show the colloids are not retarded in many coarse structured soil types. Preferential colloid flow shows a major impact in breakthrough behaviour. Colloid bound lead is relocated significant through the unsaturated zone, whereas non colloid bound lead species are strongly retarded. In the presentation we will show results of contami- nant processes and present new results on the filtration behaviour of colloids in the unsaturated zone depending on flow velocity, soil type and colloid size.

  7. Saturation behaviour of colloidal PbSe quantum dot exciton emission coupled into silicon photonic circuits.

    Science.gov (United States)

    Foell, Charles A; Schelew, Ellen; Qiao, Haijun; Abel, Keith A; Hughes, Stephen; van Veggel, Frank C J M; Young, Jeff F

    2012-05-07

    We report coupling of the excitonic photon emission from photoexcited PbSe colloidal quantum dots (QDs) into an optical circuit that was fabricated in a silicon-on-insulator wafer using a CMOS-compatible process. The coupling between excitons and sub-μm sized silicon channel waveguides was mediated by a photonic crystal microcavity. The intensity of the coupled light saturates rapidly with the optical excitation power. The saturation behaviour was quantitatively studied using an isolated photonic crystal cavity with PbSe QDs site-selectively located at the cavity mode antinode position. Saturation occurs when a few μW of continuous wave HeNe pump power excites the QDs with a Gaussian spot size of 2 μm. By comparing the results with a master equation analysis that rigorously accounts for the complex dielectric environment of the QD excitons, the saturation is attributed to ground state depletion due to a non-radiative exciton decay channel with a trap state lifetime ~ 3 μs.

  8. Structure and rheological behavior of highly charged colloidal particles in a cylindrical pore I. Effect of pore size.

    Science.gov (United States)

    Valdez, Miguel A; Gámez-Corrales, Rogelio

    2003-11-01

    In this work we performed nonequilibrium Brownian dynamics (NEBD) computer simulations of highly charged colloidal particles in diluted suspension under a parabolic flow in cylindrical pores. The influence of charged and neutral cylindrical pores on the structure and rheology of suspensions is analyzed. A shear-induced disorder-order-disorder-like transition was monitored for low shear rates and small pore diameters. We calculate the concentration profiles, axial distribution functions, and axial-angular pair correlation functions to determine the structural properties at steady state for a constant shear flow for different pore sizes and flow strengths. Similar behavior has been observed in a planar narrow channel in the case of charged interacting colloidal particles (M.A. Valdez, O. Manero, J. Colloid Interface Sci. 190 (1997) 81). The mobility of the particles in the radial direction decreases rapidly with the flow and becomes practically frozen. The flow exhibits non-Newtonian shear thinning behavior due to interparticle interactions and particle-wall interaction; the apparent viscosity is lower as the pore diameter decreases, giving rise to an apparent slip in the colloidal suspension. The calculated slip velocity was higher than that obtained in a rectangular slit under shear flow.

  9. Single-particle behaviour in circulating fluidized beds

    DEFF Research Database (Denmark)

    Erik Weinell, Claus; Dam-Johansen, Kim; Johnsson, Jan Erik

    1997-01-01

    This paper describes an experimental investigation of single-particle behaviour in a cold pilot-scale model of a circulating fluidized bed combustor (CFBC). In the system, sand is recirculated by means of air. Pressure measurements along the riser are used to determine the suspension density....... A radioactive tracking facility, which detects single radioactive particles, is developed and applied to determine the dynamic picture of the particle trajectories in the simulated boiler. The tracer particles are observed to move between the zone above and below the secondary air inlet with a mean frequency...... of about 1 Hz under the present operating conditions. This relatively high frequency is due to the fact that most of the particle trajectories take place just around the secondary air inlet. It is found that the upward particle velocity in the upper dilute transport zone decreases with the particle size...

  10. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater — Using humic acid and iron nano-sized colloids as test particles

    DEFF Research Database (Denmark)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret

    2015-01-01

    fraction was found in the sample with occurrence of small nano-sized particles (b10 nm). The results show the importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. © 2015 Elsevier B.V. All......The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution......, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples N50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found...

  11. Colloidal polypyrrole

    Science.gov (United States)

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  12. Solid-state nuclear magnetic resonance studies of vinyl polymer/silica colloidal nanocomposite particles.

    Science.gov (United States)

    Lee, Daniel; Balmer, Jennifer A; Schmid, Andreas; Tonnar, Jeff; Armes, Steven P; Titman, Jeremy J

    2010-10-05

    Solid-state nuclear magnetic resonance (NMR) has been used to characterize the interface between the organic and inorganic components of "core-shell" colloidal nanocomposite particles synthesized by in situ aqueous (co)polymerization of styrene and/or n-butyl acrylate in the presence of a glycerol-functionalized silica sol. Polymer protons are in close proximity (nanocomposites studied, indicating that either styrene or n-butyl side groups extend between the glycerol-functional silane molecules toward the surface of the silica particles. For the poly(styrene-co-n-butyl acrylate)/silica nanocomposite n-butyl acrylate residues are located closer to the surface of the silica particle than styrene residues, suggesting a specific interaction between the former and the glycerol-functionalized silica surface. The most likely explanation is a hydrogen bond between the ester carbonyl and the glycerol groups, although this cannot be observed directly. For the Bindzil CC40 glycerol-functionalized silica sol the relative intensities of (29)Si NMR lines corresponding to T and Q(3) environments imply that there are approximately twice as many unreacted silanol groups on the silica surface as attached silane molecules.

  13. Mobilization and transport of metal-rich colloidal particles from mine tailings into soil under transient chemical and physical conditions.

    Science.gov (United States)

    Lu, Cong; Wu, Yaoguo; Hu, Sihai; Raza, Muhammad Ali; Fu, Yilin

    2016-04-01

    Exposed mine tailing wastes with considerable heavy metals can release hazardous colloidal particles into soil under transient chemical and physical conditions. Two-layered packed columns with tailings above and soils below were established to investigate mobilization and transport of colloidal particles from metal-rich mine tailings into soil under transient infiltration ionic strength (IS: 100, 20, 2 mM) and flow rate (FR: 20.7, 41, and 62.3 mm h(-1)), with Cu and Pb as representatives of the heavy metals. Results show that the tailing particles within the colloidal size (below 2 μm) were released from the columns. A step-decrease in infiltration IS and FR enhanced, whereas a step-increase in the IS and FR restrained the release of tailing particles from the column. The effects of step-changing FR were unexpected due to the small size of the released tailing particles (220-342 nm, being not sensitive to hydrodynamic shear force), the diffusion-controlled particle release process and the relatively compact pore structure. The tailing particles present in the solution with tested IS were found negatively charged and more stable than soil particles, which provides favorable conditions for tailing particles to be transported over a long distance in the soil. The mobilization and transport of Cu and Pb from the tailings into soil were mediated by the tailing particles. Therefore, the inherent toxic tailing particles could be considerably introduced into soil under certain conditions (IS reduction or FR decrease), which may result in serious environmental pollution.

  14. Behaviour of Charged Spinning Massless Particles

    Directory of Open Access Journals (Sweden)

    Ivan Morales

    2017-12-01

    Full Text Available We revisit the classical theory of a relativistic massless charged point particle with spin and interacting with an external electromagnetic field. In particular, we give a proper definition of its kinetic energy and its total energy, the latter being conserved when the external field is stationary. We also write the conservation laws for the linear and angular momenta. Finally, we find that the particle’s velocity may differ from c as a result of the spin—electromagnetic field interaction, without jeopardizing Lorentz invariance.

  15. High-resolution of particle contacts via fluorophore exclusion in deep-imaging of jammed colloidal packings

    Science.gov (United States)

    Kyeyune-Nyombi, Eru; Morone, Flaviano; Liu, Wenwei; Li, Shuiqing; Gilchrist, M. Lane; Makse, Hernán A.

    2018-01-01

    Understanding the structural properties of random packings of jammed colloids requires an unprecedented high-resolution determination of the contact network providing mechanical stability to the packing. Here, we address the determination of the contact network by a novel strategy based on fluorophore signal exclusion of quantum dot nanoparticles from the contact points. We use fluorescence labeling schemes on particles inspired by biology and biointerface science in conjunction with fluorophore exclusion at the contact region. The method provides high-resolution contact network data that allows us to measure structural properties of the colloidal packing near marginal stability. We determine scaling laws of force distributions, soft modes, correlation functions, coordination number and free volume that define the universality class of jammed colloidal packings and can be compared with theoretical predictions. The contact detection method opens up further experimental testing at the interface of jamming and glass physics.

  16. Single particle behaviour in circulating fluidized bed combustors

    DEFF Research Database (Denmark)

    Erik Weinell, Claus

    1994-01-01

    An investigation of single particle behaviour in a circulating fluidized bed combustor is described, relating to sulphur capture reactions by limestone under alternate oxidizing and reducing conditions present in a circulating fluidized bed combustor, and to the devolatilization and burn out...

  17. Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Mary X.; Brodin, Jeffrey D.; Millan, Jaime A.; Seo, Soyoung E.; Girard, Martin; Olvera de la Cruz, Monica; Lee, Byeongdu [X-Ray; Mirkin, Chad A.

    2017-07-21

    Colloidal crystal engineering with DNA can be used to realize precise control over nanoparticle (NP) arrangement. Here, we investigate a case of DNA-based assembly where the properties of DNA as a polyelectrolyte brush are employed to alter a hybridization-driven NP crystallization pathway. Using the co-assembly of DNA-conjugated proteins and spherical gold 2 nanoparticles (AuNPs) as a model system, we explore how steric repulsion between non-complementary, neighboring DNA-NPs due to overlapping DNA shells can influence their ligand-directed behavior. Specifically, our experimental data coupled with coarse-grained molecular dynamics (MD) simulations reveal that by changing factors related to NP repulsion, two structurally distinct outcomes can be achieved. When steric repulsion between DNA-AuNPs is significantly greater than that between DNA-proteins, a lower packing density crystal lattice is favored over the structure that is predicted by design rules based on DNA-hybridization considerations alone. This is enabled by the large difference in DNA density on AuNPs versus proteins and can be tuned by modulating the flexibility, and thus conformational entropy, of the DNA on the constituent particles. At intermediate ligand flexibility, the crystallization pathways are energetically similar and the structural outcome can be adjusted using the density of DNA duplexes on DNA-AuNPs and by screening the Coulomb potential between them. Such lattices are shown to undergo dynamic reorganization upon changing salt concentration. These data help elucidate the structural considerations necessary for understanding repulsive forces in DNA-assembly and lay the groundwork for using them to increase architectural diversity in engineering colloidal crystals.

  18. Cholesterics of colloidal helices: predicting the macroscopic pitch from the particle shape and thermodynamic state.

    Science.gov (United States)

    Dussi, Simone; Belli, Simone; van Roij, René; Dijkstra, Marjolein

    2015-02-21

    Building a general theoretical framework to describe the microscopic origin of macroscopic chirality in (colloidal) liquid crystals is a long-standing challenge. Here, we combine classical density functional theory with Monte Carlo calculations of virial-type coefficients to obtain the equilibrium cholesteric pitch as a function of thermodynamic state and microscopic details. Applying the theory to hard helices, we observe both right- and left-handed cholesteric phases that depend on a subtle combination of particle geometry and system density. In particular, we find that entropy alone can even lead to a (double) inversion in the cholesteric sense of twist upon changing the packing fraction. We show how the competition between single-particle properties (shape) and thermodynamics (local alignment) dictates the macroscopic chiral behavior. Moreover, by expanding our free-energy functional, we are able to assess, quantitatively, Straley's theory of weak chirality, which is used in several earlier studies. Furthermore, by extending our theory to different lyotropic and thermotropic liquid-crystal models, we analyze the effect of an additional soft interaction on the chiral behavior of the helices. Finally, we provide some guidelines for the description of more complex chiral phases, like twist-bend nematics. Our results provide new insights into the role of entropy in the microscopic origin of this state of matter.

  19. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater--Using humic acid and iron nano-sized colloids as test particles.

    Science.gov (United States)

    Nielsen, Katrine; Kalmykova, Yuliya; Strömvall, Ann-Margret; Baun, Anders; Eriksson, Eva

    2015-11-01

    The distribution of polycyclic aromatic hydrocarbons (PAHs) in different particulate fractions in stormwater: Total, Particulate, Filtrated, Colloidal and Dissolved fractions, were examined and compared to synthetic suspensions of humic acid colloids and iron nano-sized particles. The distribution of low-molecular weight PAHs (LMW PAHs), middle-molecular weight PAHs (MMW PAHs) and high-molecular weight PAHs (HMW PAHs) among the fractions was also evaluated. The results from the synthetic suspensions showed that the highest concentrations of the PAHs were found in the Filtrated fractions and, surprisingly, high loads were found in the Dissolved fractions. The PAHs identified in stormwater in the Particulate fractions and Dissolved fractions follow their hydrophobic properties. In most samples >50% of the HMW PAHs were found in the Particulate fractions, while the LMW and MMW PAHs were found to a higher extent in the Filtrated fractions. The highest concentrations of PAHs were present in the stormwater with the highest total suspended solids (TSS); the relative amount of the HMW PAHs was highest in the Particulate fractions (particles>0.7 μm). The highest concentration of PAHs in the Colloidal fraction was found in the sample with occurrence of small nano-sized particles (importance of developing technologies that both can manage particulate matter and effectively remove PAHs present in the Colloidal and Dissolved fractions in stormwater. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Electrophoretic deposition of colloidal particles on Mg with cytocompatibility, antibacterial performance, and corrosion resistance.

    Science.gov (United States)

    Sun, Jiadi; Zhu, Ye; Meng, Long; Chen, Peng; Shi, Tiantian; Liu, Xiaoya; Zheng, Yufeng

    2016-11-01

    Magnesium (Mg) has recently received increasing attention due to its unique biological performance, including cytocompatibility, antibacterial and biodegradable properties. However, rapid corrosion in physiological environment and potential toxicity limits its clinical applications. To improve the corrosion resistance meanwhile not compromise other excellent performance, self-assembled colloidal particles were deposited onto magnesium surfaces in ethanol by a simple and effective electrophoretic deposition (EPD) method. The fabricated functional nanostructured coatings were investigated using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) analyses, and scanning electron microscopy (SEM). The electrochemical test, pH value, and Mg ion concentration data show that the corrosion resistance of Mg samples is enhanced appreciably after surface treatment. In vitro cellular response and antibacterial capability of the modified Mg substrates are performed. Significantly increased cell adhesion and viability are observed from the coated Mg samples, and the amounts of adherent bacteria on the treated Mg surfaces diminish remarkably compared to the bare Mg. Furthermore, the bare and coated Mg samples were implanted in New Zealand white rabbits for 12 weeks to examine the in vivo long-term corrosion performance and in situ inflammation behavior. The experiment results confirmed that compared with bare Mg substrate the corrosion and foreign-body reactions of the coated Mg samples were suppressed. The above results suggested that our coatings, which effectively enhance the biocompatibility, antimicrobial properties, and corrosion resistance of Mg substrate, provide a simple and practical strategy to expedite clinical acceptance of biodegradableMg and its alloys. Biomedical Mg metals have been considered as promising biodegradable implants because of their intended functions, such as cytocompatibility, antibacterial, and biodegradable properties. However

  1. Particle-size and radiochemical purity evaluations of filtered 99mTc-sulfur colloid prepared with different heating times.

    Science.gov (United States)

    Michenfelder, Maggie M; Bartlett, Lucas J; Mahoney, Douglas W; Herold, Thomas J; Hung, Joseph C

    2014-12-01

    Sentinel node lymphoscintigraphy using colloidal particles has become common practice at many institutions. The ideal particle size for colloids such as filtered (99m)Tc-sulfur colloid ((99m)Tc-FSC) in sentinel node studies is 15-100 nm. It is reported that the use of a reduced heating time during the reconstitution process results in an increased number of smaller particles (15 nm) would be of benefit in sentinel node studies. This study sought to better define particle size by using electron microscopy, as well as to evaluate the radiochemical purity (RCP) of (99m)Tc-FSC at various time points after filtration. One group of (99m)Tc-sulfur colloid ((99m)Tc-SC) preparations was reconstituted using the standard heating time of 5 min, and another group was prepared using a reduced heating time of 3 min. The (99m)Tc-SC preparations were passed through a 0.2-μm filter, and retained filter activity was measured. RCP values were collected at 0, 1, 3, and 6 h after filtration, and the particle sizes were measured at 0 and 6 h after filtration. Average RCP values (± SD) for (99m)Tc-FSC with 5-min heating were 98.4% ± 3.0% and 98.3% ± 1.8% for 0 h and 6 h, respectively (n = 6). Average RCP values for (99m)Tc-FSC with 3-min heating were 98.4% ± 4.1% and 96.9% ± 3.1% for 0 h and 6 h, respectively (n = 6). Electron microscopy data showed that median particle sizes for the 3-min heating at 0 and 6 h were 24 and 35 nm, respectively. Median particle sizes for the 5-min heating at 0 and 6 h were 29 and 27 nm, respectively. The proportion of particles within the ideal range for sentinel node lymphoscintigraphy was similar between the heating methods (91.1% for 3-min heating at 0 h and 88.8% for 5-min heating at 0 h, P = 0.1851). Our results indicate that although there are slight significant differences in RCP value, particle size, and particle number for (99m)Tc-FSC prepared using either a standard or a reduced heating time, both methods produce particles within the optimum

  2. Metal speciation dynamics in dispersions of soft colloidal ligand particles under steady-state laminar flow condition.

    Science.gov (United States)

    Duval, Jérôme F L; Qian, Shizhi

    2009-11-19

    A theory is presented for metal speciation dynamics in a swarm of soft, spherical core-hell colloidal ligand particles under steady-state laminar flow condition. Mass transfer and subsequent complexation of metal species within the reactive, permeable particle shell are governed by the interplay between (i) convective-diffusion of free metal ions M within and around the shell where ligands L are distributed, and (ii) kinetics of ML complex formation/dissociation in the shell. The local concentrations of metal M and complex ML are determined by the convective-diffusion equations with appropriate chemical source term and full account of radial and angular concentration polarization contributions. The steady-state flow field is determined from the solution of Navier-tokes equation including convective acceleration term for the fluid external to the particle, and from Brinkman equation for the internal fluid flow. The confined location of ligands within the particle shell leads to ML formation/dissociation rate constants (denoted as ka* and kd*, respectively) that differ significantly from their counterparts (ka and kd) defined for homogeneous ligand distribution throughout the solution. The relationship between ka,d* and ka,d is derived from the numerical evaluation of the spatial, time-dependent distributions of free and bound metal within and/or outside the particle. The dramatic dependence of ka,d* on hydrodynamic particle softness, Péclet number, soft surface layer thickness, and particle radius are analyzed in the steady-state nonequilibrium chemical regime within the context of dynamic features for colloidal complexes. The analysis covers the limiting cases of hydrodynamically impermeable, hard particles where binding sites are located at the very surface of the particle core (e.g., functionalized latex colloids) and free draining, polymeric ligand particles devoid of a hard core (e.g., porous gel particles). The formalism further applies to any values of the

  3. Synthesis and Photophysical Properties of ZnS Colloidal Particles Doped with Silver.

    Science.gov (United States)

    Hao; Sun; Yang; Zhang; Liu; Shen

    1998-08-15

    The synthesis and photophysical characterization of ZnS:Ag colloid are reported. The presence of mercaptoacetic acid has an important effect not only on the formation of doped and undoped ZnS but also on the photophysical properties. ZnS colloid doped with silver shows a strong green emission upon ultraviolet excitation, the intensity of which was enhanced significantly compared with that of the undoped colloid. The green emission was ascribed to a transition from a donor level such as anion vacancy to the levels of the Ag impurities. Copyright 1998 Academic Press.

  4. Deposition of colloidal particles in porous media; Depot de particules minerales de taille colloidale en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Coste, J.P.

    1998-12-09

    The aim of this study was to determine the deposition rates of colloidal particles in porous media in relation with particle stability. It combines experimental results and theoretical analysis and gives an original approach which allows to improve the predictions of particle deposition. The colloidal particles studied are several times smaller than the pore restrictions. Experimental results shows that the porous media surface is heterogeneous, whatever the preparation mean and the history of the porous media. The degree of surface heterogeneity depends both on salinity and porous media cleaning process. Heterogeneity is responsible for initial collection efficiency values higher that the theoretical predictions. When deposition occurs mainly on the less repulsive zones, the velocity dependence of the effective grain collection efficiency is close to the -2/3 value expected for the diffusion limited deposition regime. On the other hand, when these zones have been covered and thus behave as strongly repulsive, we obtain a collection efficiency on the more repulsive zones, with a slope close to -1, which is the value expected for the reaction limited deposition regime. The fraction of surface favorable for deposition can be assessed from attachment efficiency values. The attachment efficiency can be estimated from the measurement of particles stability. (author)

  5. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Poloski, Adam P.; Daniel, Richard C.; Rector, David R.; Bredt, Paul R.; Buck, Edgar C.; Berg, John C.; Saez, Avelino E.

    2006-09-29

    Hanford TRU tank sludges are complex mixtures of undissolved minerals and salt solids in an aqueous phase of high ionic strength. They show complex rheological behavior resulting from interactions at the macroscopic level, such as interparticle friction between grains in the coarse fraction, as well as from interactions at the nano-scale level, such as the agglomeration of colloidal particles. An understanding of how phenomena such as interparticle friction and aggregate stability under shear will allow better control of Hanford TRU tank sludges being processed for disposal. The project described in this report had two objectives. The first was to understand the physical properties and behavior of the Hanford transuranic (TRU) tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of sludge physical properties by correlating the macroscopic behavior with interactions occurring at the particle/colloidal scale. These objectives were accomplished by: 1) developing continuum models for coarse granular slurries and 2) studying the behavior of colloidal agglomerates under shear and under irradiation.

  6. Analytical Ultracentrifugation of Inorganic Colloids; Sedimentation Velocity of Interacting and Non-Interacting Particles

    NARCIS (Netherlands)

    Planken, K.L.

    2008-01-01

    Several case studies of the sedimentation velocity of non-interacting, attractive and repulsive colloids are discussed. After a brief introduction that highlights historical facts, basic analytical ultracentrifugation theory, some instrument issues and experiments are reviewed. The existence of

  7. Harnessing the advantages of hard and soft colloids by the use of core-shell particles as interfacial stabilizers.

    Science.gov (United States)

    Buchcic, C; Tromp, R H; Meinders, M B J; Cohen Stuart, M A

    2017-02-15

    The ability of colloidal particles to penetrate fluid interfaces is a crucial factor in the preparation of particle stabilized disperse systems such as foams and emulsions. For hard micron-sized particles the insertion into fluid interfaces requires substantial energy input, but soft particles are known to adsorb spontaneously. Particle hardness, however, may also affect foam and emulsion stability. The high compliance of soft particles may compromise their ability to withstand the lateral compression associated with disproportionation. Hence, particles which can spontaneously adsorb onto fluid interfaces, and yet depict low compliance may be ideal as interfacial stabilizers. In the present work, we prepared core-shell particles comprising a hard, polystyrene core and a soft poly(N-isopropylacrylamide) based shell. We found that such core-shell particles adsorb spontaneously onto various fluid interfaces. The absence of a pronounced energy barrier for interfacial adsorption allowed the facile preparation of particle-stabilized bubbles as well as emulsion droplets. For bubbles, the stability was better than that of bubbles stabilized by entirely soft particles, but disproportionation was not stopped completely. Emulsion droplets, in contrast, showed excellent stability against both coalescence and disproportionation. Lateral compression of core-shell particles due to disproportionation was clearly limited by the presence of the polystyrene core, leading to long-lasting stability. For emulsions, we even observed non-spherical droplets, indicating a negligible Laplace pressure. Our results indicate that core-shell particles comprising a hard core and a soft shell combine the advantageous properties of hard and soft particles, namely spontaneous adsorption and limited compliance, and can therefore be superior materials for the preparation of particle-stabilized dispersions.

  8. PHASE DIAGRAM OF GELATINE-POLYURONATE COLLOIDS: ITS APPLICATION FOR MICROENCAPSULATION AND NOT ONLY

    Directory of Open Access Journals (Sweden)

    Alexei Baerle

    2016-06-01

    Full Text Available Phase state and the charge of colloidal particles in the gelatine-polyuronate system were studied. A method for comparative evaluation of molecular weight of colloids by means of viscosimetric measurements and electrophoresis was developed. It is shown that the Diagram {Phase state = f (composition, pH} contains six well-defined regions. The diagram explains and predicts the behaviour of protein-polysaccharide colloids, which are included in beverages or forms the shells of oil-containing microcapsules.

  9. An adaptive extended finite element method for the analysis of agglomeration of colloidal particles in a flowing fluid

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Young Joon; Jorshari, Razzi Movassaghi; Djilali, Ned [Institute for Integrated Energy Systems, and Department of Mechanical Engineering, University of Victoria, Victoria, BC, V8W 3P6 (Canada)

    2015-03-10

    Direct numerical simulations of the flow-nanoparticle interaction in a colloidal suspension are presented using an extended finite element method (XFEM) in which the dynamics of the nanoparticles is solved in a fully-coupled manner with the flow. The method is capable of accurately describing solid-fluid interfaces without the need of boundary-fitted meshes to investigate the dynamics of particles in complex flows. In order to accurately compute the high interparticle shear stresses and pressures while minimizing computing costs, an adaptive meshing technique is incorporated with the fluid-structure interaction algorithm. The particle-particle interaction at the microscopic level is modeled using the Lennard-Jones (LJ) potential and the corresponding potential parameters are determined by a scaling procedure. The study is relevant to the preparation of inks used in the fabrication of catalyst layers for fuel cells. In this paper, we are particularly interested in investigating agglomeration of the nanoparticles under external shear flow in a sliding bi-periodic Lees-Edwards frame. The results indicate that the external shear has a crucial impact on the structure formation of colloidal particles in a suspension.

  10. Parameter identifiability in application of soft particle electrokinetic theory to determine polymer and polyelectrolyte coating thicknesses on colloids.

    Science.gov (United States)

    Louie, Stacey M; Phenrat, Tanapon; Small, Mitchell J; Tilton, Robert D; Lowry, Gregory V

    2012-07-17

    Soft particle electrokinetic models have been used to determine adsorbed nonionic polymer and polyelectrolyte layer properties on nanoparticles or colloids by fitting electrophoretic mobility data. Ohshima first established the formalism for these models and provided analytical approximations ( Ohshima, H. Adv. Colloid Interface Sci.1995, 62, 189 ). More recently, exact numerical solutions have been developed, which account for polarization and relaxation effects and require fewer assumptions on the particle and soft layer properties. This paper characterizes statistical uncertainty in the polyelectrolyte layer charge density, layer thickness, and permeability (Brinkman screening length) obtained from fitting data to either the analytical or numerical electrokinetic models. Various combinations of particle core and polymer layer properties are investigated to determine the range of systems for which this analysis can provide a solution with reasonably small uncertainty bounds, particularly for layer thickness. Identifiability of layer thickness in the analytical model ranges from poor confidence for cases with thick, highly charged coatings, to good confidence for cases with thin, low-charged coatings. Identifiability is similar for the numerical model, except that sensitivity is improved at very high charge and permeability, where polarization and relaxation effects are significant. For some poorly identifiable cases, parameter reduction can reduce collinearity to improve identifiability. Analysis of experimental data yielded results consistent with expectations from the simulated theoretical cases. Identifiability of layer charge density and permeability is also evaluated. Guidelines are suggested for evaluation of statistical confidence in polymer and polyelectrolyte layer parameters determined by application of the soft particle electrokinetic theory.

  11. Directed Self-Assembly of Colloidal Particles onto Nematic Liquid Crystalline Defects Engineered by Chemically Patterned Surfaces.

    Science.gov (United States)

    Li, Xiao; Armas-Pérez, Julio C; Hernández-Ortiz, Juan P; Arges, Christopher G; Liu, Xiaoying; Martínez-González, José A; Ocola, Leonidas E; Bishop, Camille; Xie, Helou; de Pablo, Juan J; Nealey, Paul F

    2017-06-27

    In exploiting topological defects of liquid crystals as the targeting sites for trapping colloidal objects, previous work has relied on topographic features with uniform anchoring to create defects, achieving limited density and spacing of particles. We report a generalizable strategy to create topological defects on chemically patterned surfaces to assemble particles in precisely defined locations with a tunable interparticle distance at nanoscale dimensions. Informed by experimental observations and numerical simulations that indicate that liquid crystals, confined between a homeotropic-anchoring surface and a surface with lithographically defined planar-anchoring stripes in a homeotropic-anchoring background, display splay-bend deformation, we successfully create pairs of defects and subsequently trap particles with controlled spacing by designing patterns of intersecting stripes aligned at 45° with homeotropic-anchoring gaps at the intersections. Application of electric fields allows for dynamic control of trapped particles. The tunability, responsiveness, and adaptability of this platform provide the opportunities for assembly of colloidal structures toward functional materials.

  12. Thermoplastic behaviour and structural evolution of coke and char particles in a single particle reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vladimir Strezov; Jianglong Yu; Guisu Liu; John A. Lucas [University of Newcastle, Mayfield, NSW (Australia). Newbolds Applied Research

    2003-07-01

    Although coking and thermal coals have quite disparate properties and applications, both coal types undergo devolatilisation in their respective utilisation processes. The resultant carbonised materials, coke and char, show significant variations in the resulting physical structure. In both cases, particles ranging from highly porous cenospheres to very dense particles are produced. Previous studies have concluded that the physical structure affects highly significant process variables such as burnout efficiency of char, ash formation during combustion and the strength of lump coke in the blast furnace. It is therefore necessary to understand the evolution of physical structure during carbonisation of coals. In the present work a direct observation of particle swelling behaviour and bubbling phenomena during pyrolysis of coking and thermal coal particles was conducted using a single particle reactor. Coking and thermal coals were thermally treated under conditions pertinent to their thermoplastic development, e.g. coking coals were subjected to low heating rates while the thermal coals under high heating rates. Bubble growth and ruptures during the plastic stage were captured using a CCD video camera equipped with a long distance microscopic lens. There were similarities in bubble formation between both thermal and coking coals such as multi-bubble and single bubble development and rupture and consequent particle shrinkage. Comparative and quantitative analysis of the thermoplastic behaviour of the coking and thermal coals are here outlined in detail. 13 refs., 8 figs., 2 tabs.

  13. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  14. Deviation from the superparamagnetic behaviour of fine-particle systems

    CERN Document Server

    Malaescu, I

    2000-01-01

    Studies concerning superparamagnetic behaviour of fine magnetic particle systems were performed using static and radiofrequency measurements, in the range 1-60 MHz. The samples were: a ferrofluid with magnetite particles dispersed in kerosene (sample A), magnetite powder (sample B) and the same magnetite powder dispersed in a polymer (sample C). Radiofrequency measurements indicated a maximum in the imaginary part of the complex magnetic susceptibility, for each of the samples, at frequencies with the magnitude order of tens of MHz, the origin of which was assigned to Neel-type relaxation processes. The static measurements showed a Langevin-type dependence of magnetisation M and of susceptibility chi, on the magnetic field for sample A. For samples B and C deviations from this type of dependence were found. These deviations were analysed qualitatively and explained in terms of the interparticle interactions, dispersion medium influence and surface effects.

  15. Self-diffusion of colloidal particles in a two-dimensional suspension: Are deviations from Fick’s law experimentally observable?

    NARCIS (Netherlands)

    Hoef, M.A. van der; Frenkel, D.; Ladd, A.J.C.

    1991-01-01

    Simulations of a colloidal particle suspended in a two-dimensional fluid are reported. The dissipative and fluctuating hydrodynamic forces acting on the particle are modeled by a lattice gas. Our results indicate that large long-time tails are present in both the translational and the rotational

  16. Effect of barrier properties of zein colloidal particles and oil-in-water emulsions on oxidative stability of encapsulated bioactive compounds

    Science.gov (United States)

    Oxidation of encapsulated bioactive compounds is a key challenge that limits shelf-life of bioactive containing products. The objectives of this study were to compare differences between the oxidative barrier properties of biopolymer particle based encapsulation system (zein colloidal particles) and...

  17. Effect of Salt Concentration on the Motion of Particles near the Substrate in Drying Sessile Colloidal Droplets.

    Science.gov (United States)

    Xu, Guozhi; Hong, Wei; Sun, Weixiang; Wang, Tao; Tong, Zhen

    2017-01-24

    The motions of the particles on the substrate of a drying sessile colloidal droplet of water were measured using multiparticle tracking. Droplets with different concentrations (0-250 mM) of sodium chloride (NaCl) were compared. Several statistical quantities were proposed to characterize the heterogeneous behaviors of the particles and distinguish the effects of the flow field and the substrate interaction. For the salt-free droplet, most of the particles were nonadsorbed and mobile without friction. With the presence of salt, the fraction of the adsorbed particles increases with increasing evaporation time and the initial salt concentration, which was explained by Derjaguin-Landau-Verwey-Overbeek interaction. The fraction of mobile particles is mostly frictionless for all samples. At low salt concentrations, the velocity of mobile particles increases with the evaporation time to a peak and then decreases. The velocity is lower for higher salt concentrations. The effect of salt on the nonadsorbed particles was attributed to the electrokinetic effect.

  18. Liquid crystal phase transitions in dispersions of rod-like colloidal particles

    NARCIS (Netherlands)

    Bruggen, M.P.B. van; Kooij, F.M. van der; Lekkerkerker, H.N.W.

    1996-01-01

    The isotropic-nematic (I-N) phase transition in dispersions of sterically stabilized rod-like boehmite (A1OOH) colloids is studied. We have examined the influence of the steric stabilizer, the dispersion medium and the presence of non-adsorbing polymer on the phase transition process. Dispersions in

  19. Concentrated, polydisperse solutions of colloidal particles. Light scattering and sedimentation of hard-sphere mixture

    NARCIS (Netherlands)

    Vrij, A.

    1982-01-01

    The usefulness of the hard-sphere model in characterizing polydispersity in concentrated colloidal solutions is stressed. A recently derived equation for (∂ρi/∂μj)μ is used to give a simpler route for application to light scattering and sedimentation in multicomponent and polydisperse systems. Some

  20. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  1. Reactive magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles for specific antigen detection using microcontact printing technique.

    Science.gov (United States)

    Eissa, Mohamed M; Mahbubor Rahman, Md; Zine, Nadia; Jaffrezic, Nicole; Errachid, Abdelhamid; Fessi, Hatem; Elaissari, Abdelhamid

    2013-03-01

    Epoxy-functionalized magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles (mPDGs) were prepared by co-polymerization of 1,4-divinylbenzene and glycidyl methacrylate monomers. The reaction was conducted by batch emulsion polymerization in the presence of an oil in water magnetic emulsion as a seed. The chemical composition, morphology, iron oxide content, magnetic properties, particle size and colloidal stability of the prepared magnetic polymer particles were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetric analysis, vibrating sample magnetometry, dynamic light scattering, and zeta potential determination, respectively. The prepared mPDGs were immobilized on a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES)/octadecyltrichlorosilane (OTS), which were patterned on glass using microcontact printing technique, forming mPDGs-APTES/OTS reactive surface. This construction (mPDGs-APTES/OTS) was used as a solid support for immunoassay. The immobilized magnetic particles were bioconjugated with monoclonal anti-human IL-10 antibody to provide specific and selective recognition sites for the recombinant human IL-10 protein (antigen). Fluorescence microscopic examination was carried out to follow this immunoassay using fluorescently labeled anti-human IL-10 antibody. The results obtained proved the successful use of mPDGs-APTES/OTS microcontact printed surfaces in an immunoassay, which can be exploited and integrated into microsystems in order to elaborate medical devices (e.g. biosensors) which could provide rapid analysis at high sensitivity with low volumes of analyte. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Particle morphology as a control of permeation in polymer films obtained from MMA/nBA colloidal dispersions.

    Science.gov (United States)

    Lestage, David J; Urban, Marek W

    2004-07-20

    The combination of precision-controlled weight loss measurements and spectroscopic surface FT-IR analysis allowed us to identify unique behaviors of poly(methyl methacrylate) (p-MMA). When MMA and n-butyl acrylate (nBA) are polymerized into p-MMA and p-nBA homopolymer blends, MMA/nBA random copolymers, and p-MMA/p-nBA core-shell morphologies, a controlled mobility and stratification of low molecular weight components occurs in films formed from coalesced colloidal dispersions. Due to different affinities toward water, p-MMA and p-nBA are capable of releasing water at different rates, depending upon particle morphological features of initial dispersions. As coalescence progresses, water molecules are released from the high free volume p-nBA particles, whereas p-MMA retains water molecules for the longest time due to its hydrophilic nature. As a result, water losses at extended coalescence times are relatively small for p-MMA. MMA/nBA copolymer and p-MMA/p-nBA blends follow the same trends, although the magnitudes of changes are not as pronounced. The p-MMA/p-nBA core-shell behavior resembles that of p-nBA homopolymer, which is attributed to significantly lower content of the p-MMA component in particles. Annealing of coalesced colloidal films at elevated temperatures causes migration of SDOSS to the F-A interface, but for films containing primarily p-nBA, reverse diffusion back into the bulk is observed. These studies illustrate that the combination of different particle morphologies and temperatures leads to controllable permeation processes through polymeric films. Copyright 2004 American Chemical Society

  3. Aspect-ratio-dependent phase transitions and concentration fluctuations in aqueous colloidal dispersions of charged platelike particles.

    Science.gov (United States)

    Yamaguchi, Daisuke; Miyamoto, Nobuyoshi; Fujita, Takako; Nakato, Teruyuki; Koizumi, Satoshi; Ohta, Noboru; Yagi, Naoto; Hashimoto, Takeji

    2012-01-01

    Phase transitions of aqueous colloidal dispersions of charged platelike particles of niobate nanosheets were investigated as a function of the aspect ratio (r(asp)) and particle volume concentration (φ(p)) by means of small-angle neutron scattering and small-angle x-ray scattering. The results elucidated the following three pieces of evidence: (1) the macroscopic phase separation of the dispersions into an isotropic phase and a liquid crystalline (LC) phase under the conditions of (a) varying r(asp) (1.3×10(-4) ≤ r(asp) ≤ 2.5×10(-3)) at a constant φ(p) = 0.01 and (b) varying φ(p) (0.01 ≤ φ(p) ≤ 0.025) at a constant r(asp) = 2.5×10(-3), a mechanism of which is proposed in the text, where r(asp) ≡ d/ ̅L, with d and ̅L being thickness and the average lateral size of the plates, respectively; (2) the r(asp)-induced phase transition of the LC phase from a nematic phase to a highly periodic layered phase, the line shapes of the scattering peaks of which were examined by Caillé's analysis, upon increasing r(asp) under the condition (a); (3) the LC phase having remarkable concentration fluctuations of the particles which are totally unexpected for the conventional lyotropic molecular LC but which are anticipated to be general for the platelike colloidal particles. © 2012 American Physical Society

  4. Self-Assembled Colloidal Particle Clusters from In Situ Pickering-Like Emulsion Polymerization via Single Electron Transfer Mechanism.

    Science.gov (United States)

    Yuan, Jinfeng; Zhao, Weiting; Pan, Mingwang; Zhu, Lei

    2016-08-01

    A simple route is reported to synthesize colloidal particle clusters (CPCs) from self-assembly of in situ poly(vinylidene fluoride)/poly(styrene-co-tert-butyl acrylate) [PVDF/P(St-co-tBA)] Janus particles through one-pot seeded emulsion single electron transfer radical polymerization. In the in situ Pickering-like emulsion polymerization, the tBA/St/PVDF feed ratio and polymerization temperature are important for the formation of well-defined CPCs. When the tBA/St/PVDF feed ratio is 0.75 g/2.5 g/0.5 g and the reaction temperature is 35 °C, relatively uniform raspberry-like CPCs are obtained. The hydrophobicity of the P(St-co-tBA) domains and the affinity of PVDF to the aqueous environment are considered to be the driving force for the self-assembly of the in situ formed PVDF/P(St-co-tBA) Janus particles. The resultant raspberry-like CPCs with PVDF particles protruding outward may be promising for superhydrophobic smart coatings. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Effects of rigid or adaptive confinement on colloidal self-assembly. Fixed vs. fluctuating number of confined particles

    Energy Technology Data Exchange (ETDEWEB)

    Pȩkalski, J.; Ciach, A. [Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa (Poland); Almarza, N. G. [Instituto de Química Física Rocasolano, CSIC, Serrano 119, E-28006 Madrid (Spain)

    2015-05-28

    The effects of confinement on colloidal self-assembly in the case of fixed number of confined particles are studied in the one dimensional lattice model solved exactly in the grand canonical ensemble (GCE) in Pȩkalski et al. [J. Chem. Phys. 142, 014903 (2015)]. The model considers a pair interaction defined by a short-range attraction plus a longer-range repulsion. We consider thermodynamic states corresponding to self-assembly into clusters. Both fixed and adaptive boundaries are studied. For fixed boundaries, there are particular states in which, for equal average densities, the number of clusters in the GCE is larger than in the canonical ensemble. The dependence of pressure on density has a different form when the system size changes with fixed number of particles and when the number of particles changes with fixed size of the system. In the former case, the pressure has a nonmonotonic dependence on the system size. The anomalous increase of pressure for expanding system is accompanied by formation of a larger number of smaller clusters. In the case of elastic confining surfaces, we observe a bistability, i.e., two significantly different system sizes occur with almost the same probability. The mechanism of the bistability in the closed system is different to that of the case of permeable walls, where the two equilibrium system sizes correspond to a different number of particles.

  6. Colloidal stability of nano-sized particles in the peritoneal fluid: towards optimizing drug delivery systems for intraperitoneal therapy.

    Science.gov (United States)

    Dakwar, George R; Zagato, Elisa; Delanghe, Joris; Hobel, Sabrina; Aigner, Achim; Denys, Hannelore; Braeckmans, Kevin; Ceelen, Wim; De Smedt, Stefaan C; Remaut, Katrien

    2014-07-01

    Intraperitoneal (IP) administration of nano-sized delivery vehicles containing small interfering RNA (siRNA) has recently gained attention as an alternative route for the efficient treatment of peritoneal carcinomatosis. The colloidal stability of nanomatter following IP administration has, however, not been thoroughly investigated yet. Here, enabled by advanced microscopy methods such as single particle tracking and fluorescence correlation spectroscopy, we follow the aggregation and cargo release of nano-scaled systems directly in peritoneal fluids from healthy mice and ascites fluid from a patient diagnosed with peritoneal carcinomatosis. The colloidal stability in the peritoneal fluids was systematically studied as a function of the charge (positive or negative) and poly(ethylene glycol) (PEG) degree of liposomes and polystyrene nanoparticles, and compared to human serum. Our data demonstrate strong aggregation of cationic and anionic nanoparticles in the peritoneal fluids, while only slight aggregation was observed for the PEGylated ones. PEGylated liposomes, however, lead to a fast and premature release of siRNA cargo in the peritoneal fluids. Based on our observations, we reflect on how to tailor improved delivery systems for IP therapy. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Laser-induced particle size tuning and structural transformations in germanium nanoparticles prepared by stain etching and colloidal synthesis route

    Energy Technology Data Exchange (ETDEWEB)

    Karatutlu, Ali, E-mail: a.karatutlu@qmul.ac.uk, E-mail: ali.karatutlu@bou.edu.tr [Centre for Condensed Matter and Materials Physics, School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); Electrical and Electronics Engineering, Bursa Orhangazi University, 16310 Yıldırım/Bursa (Turkey); Little, William; Ersoy, Osman; Zhang, Yuanpeng; Sapelkin, Andrei [Centre for Condensed Matter and Materials Physics, School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS (United Kingdom); Seker, Isa [Bio-Nanotechnology Research and Development Centre, Fatih University, 34500 Buyukcekmece, Istanbul (Turkey)

    2015-12-28

    In this study, with the aid of Raman measurements, we have observed transformations in small (∼3 nm and ∼10 nm) free-standing Ge nanoparticles under laser light exposure. The nanoparticles were obtained by the chemical stain etching of a monocrystalline Ge wafer and of Ge powder and by colloidal synthesis route. We found that the transformation path depends on laser power and exposure time. At relatively low values of the laser power (2 mW) over a period of 100 min, the Raman signal indicates transformation of the sample from a nanocrystaline to bulk-like state, followed by partial oxidation and finally a conversion of the entire sample into alpha-quartz type GeO{sub 2}. However, when the laser power is set at 60 mW, we observed a heat release during an explosive crystallization of the nanocrystalline material into bulk Ge without noticeable signs of oxidation. Together with the transmission electron microscopy measurements, these results suggest that the chemical stain etching method for the preparation of porous Ge may not be a top-down process as has been widely considered, but a bottom up one. Systematic studies of the laser exposure on Ge nanoparticles prepared by colloidal synthesis results in the fact that the explosive crystallisation is common for H-terminated and partially disordered Ge nanoparticles regardless of its particle size. We suggest possible bio-medical applications for the observed phenomena.

  8. Control of particle morphology in the spray drying of colloidal suspensions.

    Science.gov (United States)

    Lintingre, E; Lequeux, F; Talini, L; Tsapis, N

    2016-09-28

    Powders of nanoparticles are volatile, i.e. easily disperse in air, which makes their handling difficult. Granulation of nanoparticle powders provides a solution to that issue, and it is generally performed by spray drying the nanoparticles that have been suspended in a liquid. Spray drying of a colloidal suspension consists of atomising the suspension into droplets by a fast flowing and hot gas. Once the droplets dried, the resulting dry grains/microparticles can be used in a wide range of applications - food, pharmaceutics, fillers, ceramics, etc. It is well known that the grains resulting from spray-drying may be spherical but may also exhibit other diverse morphologies. Although different influencing parameters have been identified, no clear overview can be found in the literature for the driving mechanisms of grain shaping. In the present work, we review the assumptions made in the literature to explain the different morphologies. We analyse the orders of magnitude of the different effects at stake and show that the grain shape does not result from a hydrodynamic instability but is determined by the drying stage. However, we emphasize that neither the drying time nor the associated Péclet number are critical parameters for the determination of shape morphology. In light of those results, we also review and discuss the single droplet experiments developed to mimic spray drying. Generalising our previous works, we further analyse how the control of morphology can be achieved by tuning the colloidal interactions in the suspension. We detail the model we have developed that relates the colloidal interaction potential to a critical pressure exerted by the solvent as it flows, and we provide a quantitative prediction of the grain shape. Finally, we offer perspectives with regard to spray drying of systems such as molecular solutions, widely performed in e.g. the pharmaceutical industry.

  9. Characterization and Correlation of Particle-Level Interactions to the Macroscopic Rheology of Powders, Granular Slurries, and Colloidal Suspensions

    Energy Technology Data Exchange (ETDEWEB)

    A.P. Poloski; R.C. Daniel; D.R. Rector; P.R. Bredt; E.C. Buck; Berg, J.C.; Saez, A.E.

    2006-09-29

    This project had two primary objectives. The first was to understand the physical properties and behavior of select Hanford tank sludges under conditions that might exist during retrieval, treatment, packaging, and transportation for disposal at the Waste Isolation Pilot Plant (WIPP). The second objective was to develop a fundamental understanding of these sludge suspensions by correlating the macroscopic properties with particle interactions occurring at the colloidal scale. The specific tank wastes considered herein are contained in thirteen Hanford tanks including three double-shell tanks (DSTs) (AW-103, AW-105, and SY-102) and ten single-shell tanks (SSTs) (B-201 through B-204, T-201 through T-204, T-110, and T-111). At the outset of the project, these tanks were designated as potentially containing transuranic (TRU) process wastes that would be treated and disposed of in a manner different from the majority of the tank wastes.

  10. Physics of Hard Sphere Experiment: Scattering, Rheology and Microscopy Study of Colloidal Particles

    Science.gov (United States)

    Cheng, Z.-D.; Zhu, J.; Phan, S.-E.; Russel, W. B.; Chaikin, P. M.; Meyer, W. V.

    2002-01-01

    The Physics of Hard Sphere Experiment has two incarnations: the first as a scattering and rheology experiment on STS-83 and STS-94 and the second as a microscopy experiment to be performed in the future on LMM on the space station. Here we describe some of the quantitative and qualitative results from previous flights on the dynamics of crystallization in microgravity and especially the observed interaction of growing crystallites in the coexistance regime. To clarify rheological measurements we also present ground based experiments on the low shear rate viscosity and diffusion coefficient of several hard sphere experiments at high volume fraction. We also show how these experiments will be performed with confocal microscopy and laser tweezers in our lab and as preparation for the phAse II experiments on LMM. One of the main aims of the microscopy study will be the control of colloidal samples using an array of applied fields with an eye toward colloidal architectures. Temperature gradients, electric field gradients, laser tweezers and a variety of switchable imposed surface patterns are used toward this control.

  11. Adsorption, Desorption, Surface Diffusion, Lattice Defect Formation, and Kink Incorporation Processes of Particles on Growth Interfaces of Colloidal Crystals with Attractive Interactions

    Directory of Open Access Journals (Sweden)

    Yoshihisa Suzuki

    2016-07-01

    Full Text Available Good model systems are required in order to understand crystal growth processes because, in many cases, precise incorporation processes of atoms or molecules cannot be visualized easily at the atomic or molecular level. Using a transmission-type optical microscope, we have successfully observed in situ adsorption, desorption, surface diffusion, lattice defect formation, and kink incorporation of particles on growth interfaces of colloidal crystals of polystyrene particles in aqueous sodium polyacrylate solutions. Precise surface transportation and kink incorporation processes of the particles into the colloidal crystals with attractive interactions were observed in situ at the particle level. In particular, contrary to the conventional expectations, the diffusion of particles along steps around a two-dimensional island of the growth interface was not the main route for kink incorporation. This is probably due to the number of bonds between adsorbed particles and particles in a crystal; the number exceeds the limit at which a particle easily exchanges its position to the adjacent one along the step. We also found novel desorption processes of particles from steps to terraces, attributing them to the assistance of attractive forces from additionally adsorbing particles to the particles on the steps.

  12. Nanostructured Colloidal Particles by Confined Self-Assembly of Block Copolymers in Evaporative Droplets

    Science.gov (United States)

    Kim, Minsoo; Yi, Gi-Ra

    2015-06-01

    Block copolymers (BCPs) can create various morphology by self-assembly in bulk or film. Recently, using BCPs in confined geometries such as thin film (one-dimension), cylindrical template (two-dimension), or emulsion droplet (three-dimension), nanostructured BCP particles have been prepared, in which unique nanostructures of the BCP are formed via solvent annealing process and can be controlled depending on molecular weight ratio and interaction parameter of the BCPs, and droplet size. Moreover, by tuning interfacial property of the BCP particles, anisotropic particles with unique nanostructures have been prepared. Furthermore, for practical application such as drug delivery system, sensor, self-healing, metamaterial, and optoelectronic device, functional nanoparticles can be incorporated inside BCP particles. In this article, we summarize recent progress on the production of structured BCP particles and composite particles with metallic nanoparticles.

  13. On the effects from the simultaneous occurrence of the critical Casimir and dispersion forces between conical colloid particle and a thick plate immersed in nonpolar critical fluid

    Directory of Open Access Journals (Sweden)

    Valchev Galin

    2018-01-01

    Full Text Available Here we study the interplay between the van der Waals (vdWF and critical Casimir forces (CCF, as well as the total force (TF between a conical colloid particle and a thick planar slab. We do that using general scaling arguments and mean-field type calculations utilizing the so-called “surface integration approach”, a generalization of the well known Derjaguin approximation. Its usage in the present research, requires knowledge on the forces between two parallel slabs, confining in between some fluctuating fluid medium characterized by its temperature T and chemical potential μ. The surfaces of the colloid particle and the slab are assumed coated by thin layers exerting strong preference to the liquid phase of a simple fluid, or one of the components of a binary mixture, modeled by strong adsorbing local surface potentials, ensuring the so-called (+,+ boundary conditions. On the other hand, the core region of the slab and the particle, influence the fluid by long-ranged competing dispersion potentials. We demonstrate that for a suitable set of colloid-fluid, slab-fluid, and fluid-fluid coupling parameters the competition between the effects due to the coatings and the core regions of the objects, result, when one changes T or μ, in sign change of the Casimir force (CF and the TF acting between the colloid and the slab. Such an effect can provide a strategy for solving problems with handling, feeding, trapping and fixing of microparts in nanotechnology.

  14. Experimental Studies to Evaluate the Role of Colloids on the Radionuclide Migration in a Crystalline Medium

    Energy Technology Data Exchange (ETDEWEB)

    Albarran, Nairoby; Missana, Tiziana; Alonso, Ursula; Garcia-Gutierrez, Miguel; Mingarro, Manuel; Lopez, Trinidad [CIEMAT, Departamento de Medioambiente, Avenida Complutense, 22 28040 Madrid (Spain)

    2008-07-01

    In a deep geological repository (DGR) of high level radioactive waste, all the possible phenomena affecting radionuclide migration have to be studied to assess its security over time. Colloids can play an important role for contaminant transport if the following conditions are fulfilled: colloids exist in a non negligible concentration, they are mobile and stable in the environment of interest, and they are able to adsorb radionuclides irreversibly. In this study, different transport experiments where performed to improve the knowledge on the main mechanisms affecting the radionuclide migration in the presence of colloids in a crystalline medium. Firstly, colloid stability was analysed and then transport experiments in an artificial granite longitudinal fracture were carried out. Synthetic colloids of different size and bentonite clay colloids were used to evaluate the effects of colloid size, charge, and water flow rate on their mobility. Results showed that both major importance of the water flow rate on the mobility of colloids and their recovery and a higher interaction of smaller particles with the surface. Finally, the migration behaviour of Sr, and Sr adsorbed onto bentonite colloids was compared. The elution curves of Sr adsorbed onto colloid were significantly different from the ones of Sr alone, pointing out that sorption/desorption mechanisms must be taken into account to understand the radionuclide migration in the fracture in the presence of colloids. (authors)

  15. Synthesis and characterization of novel functional electrosterically stabilized colloidal particles prepared by emulsion polymerization using a strongly ionized amphiphilic diblock copolymer.

    Science.gov (United States)

    Mohanty, P S; Dietsch, H; Rubatat, L; Stradner, A; Matsumoto, K; Matsuoka, H; Schurtenberger, P

    2009-02-17

    Amphiphilic diblock copolymers such as poly(styrene)-block-poly(styrene sulfonate) (PS-b-PSS) (Matsuoka, H.; Maeda, S.; Kaewsaiha, P.; Matsumoto, K. Langmuir 2004, 20, 7412), belong to a class of new polymeric surfactants that ionize strongly in aqueous media. We investigated their self-assembly behavior in aqueous solutions and used them as an emulsifier to prepare electrosterically stabilized colloidal particles of different diameters between 70 to 400 nm. We determined the size, size polydispersity, effective charge, total dissociable charge, structural ordering, and phase behavior using light scattering, transmission electron microscopy (TEM), small-angle neutron scattering (SANS), and potentiometric titration. These experiments clearly demonstrated that all of the synthesized particles were nearly monodisperse (polydispersity indexpolyelectrolyte brush shell. Finally, these monodisperse particles were found to self-assemble into 3D ordered colloidal crystalline arrays at a low volume fraction (=0.00074) that diffract light in the visible region.

  16. Colloidal amphiphile self-assembly particles composed of gadolinium oleate and myverol: evaluation as contrast agents for magnetic resonance imaging.

    Science.gov (United States)

    Liu, Guozhen; Conn, Charlotte E; Waddington, Lynne J; Mudie, Stephen T; Drummond, Calum J

    2010-02-16

    Gadolinium oleate has been added at various concentrations to a Myverol inverse bicontinuous cubic phase forming system, and the potential of these systems as magnetic resonance imaging (MRI) contrast agents has been investigated. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM) measurements on the Gd oleate/Myverol systems indicate that Gd oleate is at least partially incorporated within the cubic phase of Myverol. However, at Gd oleate concentrations greater than 1 wt %, partial phase separation of the system may occur with the formation of a Gd-oleate-rich lamellar phase as well as the cubic phase. Bulk Gd oleate/Myverol mixtures can be dispersed into stable colloidal dispersions. SAXS and cryo-TEM measurements on these dispersions indicate that the presence of Gd oleate in the Myverol system prevents the formation of cubosomes from the bulk cubic phase. Instead, the dispersion consists of putative Gd-oleate-rich nonswelling lamellar nanoparticles as well as colloidal particles lacking ordered internal structure. In vitro studies on these dispersions demonstrated that the relaxivity of select Gd oleate/Myverol systems is much higher than that of pure Gd oleate, exemplifying the promise of this system type for magnetic resonance imaging. The highest water proton relaxivities (r(1) = 34.2 mM(-1) s(-1) and r(2) = 27.3 mM(-1) s(-1) at 20 MHz and room temperature) were obtained at a Gd oleate loading concentration of 1 wt %, with a subsequent decrease in relaxivity with increasing Gd oleate concentration. These maximum relaxivities compare favorably with the relaxivities for the commercial contrast agent, Magnevist (r(1) = 4.91 mM(-1) s(-1) and r(2) = 6.26 mM(-1) s(-1) at 20 MHz and room temperature).

  17. Manipulation of colloidal crystallization

    NARCIS (Netherlands)

    Vermolen, E.C.M.

    2008-01-01

    Colloidal particles (approximately a micrometer in diameter) that are dispersed in a fluid, behave thermodynamically similar to atoms and molecules: at low concentrations they form a fluid, while at high concentrations they can crystallize into a colloidal crystal to gain entropy. The analogy with

  18. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  19. Structural basis of calcification inhibition by alpha 2-HS glycoprotein/fetuin-A. Formation of colloidal calciprotein particles.

    Science.gov (United States)

    Heiss, Alexander; DuChesne, Alexander; Denecke, Bernd; Grötzinger, Joachim; Yamamoto, Kazuhiko; Renné, Thomas; Jahnen-Dechent, Willi

    2003-04-11

    Genetic evidence from mutant mice suggests that alpha(2)-HS glycoprotein/fetuin-A (Ahsg) is a systemic inhibitor of precipitation of basic calcium phosphate preventing unwanted calcification. Using electron microscopy and dynamic light scattering, we demonstrate that precipitation inhibition by Ahsg is caused by the transient formation of soluble, colloidal spheres, containing Ahsg, calcium, and phosphate. These "calciprotein particles" of 30-150 nm in diameter are initially amorphous and soluble but turn progressively more crystalline and insoluble in a time- and temperature-dependent fashion. Solubilization in Ahsg-containing calciprotein particles provides a novel conceptual framework to explain how insoluble calcium precipitates may be transported and removed in the bodies of mammals. Mutational analysis showed that the basic calcium phosphate precipitation inhibition activity resides in the amino-terminal cystatin-like domain D1 of Ahsg. A structure-function analysis of wild type and mutant forms of cystatin-like domains from Ahsg, full-length fetuin-B, histidine-rich glycoprotein, and kininogen demonstrated that Ahsg domain D1 is most efficient in inhibiting basic calcium phosphate precipitation. The computer-modeled domain structures suggest that a dense array of acidic residues on an extended beta-sheet of the cystatin-like domain Ahsg-D1 mediates efficient inhibition.

  20. Lanthanide phytanates: liquid-crystalline phase behavior, colloidal particle dispersions, and potential as medical imaging agents.

    Science.gov (United States)

    Conn, Charlotte E; Panchagnula, Venkateswarlu; Weerawardena, Asoka; Waddington, Lynne J; Kennedy, Danielle F; Drummond, Calum J

    2010-05-04

    Lanthanide salts of phytanic acid, an isoprenoid-type amphiphile, have been synthesized and characterized. Elemental analysis and FTIR spectroscopy were used to confirm the formed product and showed that three phytanate anions are complexed with one lanthanide cation. The physicochemical properties of the lanthanide phytanates were investigated using DSC, XRD, SAXS, and cross-polarized optical microscopy. Several of the hydrated salts form a liquid-crystalline hexagonal columnar mesophase at room temperature, and samarium(III) phytanate forms this phase even in the absence of water. Select lanthanide phytanates were dispersed in water, and cryo-TEM images indicate that some structure has been retained in the dispersed phase. NMR relaxivity measurements were conducted on these systems. It has been shown that a particulate dispersion of gadolinium(III) phytanate displays proton relaxivity values comparable to those of a commercial contrast agent for magnetic resonance imaging and a colloidal dispersion of europium(III) phytanate exhibits the characteristics of a fluorescence imaging agent.

  1. Elastic and viscous bond components in the adhesion of colloidal particles and fibrillated streptococci to QCM-D crystal surfaces with different hydrophobicities using Kelvin-Voigt and Maxwell models

    NARCIS (Netherlands)

    van der Westen, Rebecca; Sharma, Prashant K; De Raedt, Hans; Vermue, Ijsbrand; van der Mei, Henny C; Busscher, Henk J

    2017-01-01

    A quartz-crystal-microbalance with dissipation (QCM-D) can measure molecular mass adsorption as well as register adhesion of colloidal particles. However, analysis of the QCM-D output to quantitatively analyze adhesion of (bio) colloids to obtain viscoelastic bond properties is still a subject of

  2. Ectomycorrhizal influence on particle size, surface structure, mineral crystallinity, functional groups, and elemental composition of soil colloids from different soil origins.

    Science.gov (United States)

    Li, Yanhong; Wang, Huimei; Wang, Wenjie; Yang, Lei; Zu, Yuangang

    2013-01-01

    Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and soil colloids from dark brown forest soil (a good loam) and saline-alkali soil (heavily degraded soil), we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P > 0.05). These increased the amount of variable functional groups (O-H stretching and bending, C-H stretching, C=O stretching, etc.) by 3-26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz) by 40-300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12-35% decreases in most functional groups, 15-55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P element ratios (C:O, C:N, and C:Si) in soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil.

  3. Ectomycorrhizal Influence on Particle Size, Surface Structure, Mineral Crystallinity, Functional Groups, and Elemental Composition of Soil Colloids from Different Soil Origins

    Directory of Open Access Journals (Sweden)

    Yanhong Li

    2013-01-01

    Full Text Available Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus and soil colloids from dark brown forest soil (a good loam and saline-alkali soil (heavily degraded soil, we tried to approach the changes here. For the good loam either from the surface or deep soils, the fungus treatment induced physical absorption of covering materials on colloid surface with nonsignificant increases in soil particle size (P>0.05. These increased the amount of variable functional groups (O–H stretching and bending, C–H stretching, C=O stretching, etc. by 3–26% and the crystallinity of variable soil minerals (kaolinite, hydromica, and quartz by 40–300%. However, the fungus treatment of saline-alkali soil obviously differed from the dark brown forest soil. There were 12–35% decreases in most functional groups, 15–55% decreases in crystallinity of most soil minerals but general increases in their grain size, and significant increases in soil particle size (P<0.05. These different responses sharply decreased element ratios (C : O, C : N, and C : Si in soil colloids from saline-alkali soil, moving them close to those of the good loam of dark brown forest soil.

  4. Ultrafine particles derived from mineral processing: A case study of the Pb-Zn sulfide ore with emphasis on lead-bearing colloids.

    Science.gov (United States)

    Mikhlin, Yuri; Vorobyev, Sergey; Romanchenko, Alexander; Karasev, Sergey; Karacharov, Anton; Zharkov, Sergey

    2016-03-01

    Although mining and mineral processing industry is a vast source of heavy metal pollutants, the formation and behavior of micrometer- and nanometer-sized particles and their aqueous colloids entered the environment from the technological media has received insufficient attention to date. Here, the yield and characteristics of ultrafine mineral entities produced by routine grinding of the Pb-Zn sulfide ore (Gorevskoe ore deposit, Russia) were studied using laser diffraction analysis (LDA), dynamic light scattering (DLS) and zeta potential measurement, microscopy, X-ray photoelectron spectroscopy, with most attention given to toxic lead species. It was revealed, in particular, that the fraction of particles less that 1 μm in the ground ore typical reaches 0.4 vol. %. The aquatic particles in supernatants were micrometer size aggregates with increased content of zinc, sulfur, calcium as compared with the bulk ore concentrations. The hydrodynamic diameter of the colloidal species decreased with time, with their zeta potentials remaining about -12 mV. The colloids produced from galena were composed of 20-50 nm PbS nanoparticles associated with lead sulfate and thiosulfate, while the surface oxidation products at precipitated galena were largely lead oxyhydroxides. The size and zeta potential of the lead-bearing colloids decreased with time down to about 100 nm and from -15 mV to -30 mV, respectively. And, conversely, lead sulfide nanoparticles were mobilized before the aggregates during redispersion of the precipitates in fresh portions of water. The potential environmental impact of the metal-bearing colloids, which is due to the large-scale production and relative stability, is discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. The Role of Colloidal Interactions on the Formation of Particle Stabilized Capsules

    Science.gov (United States)

    Anna, Shelley; Sharkey, Charles; Kotula, Anthony

    2016-11-01

    Nanoparticles can adsorb to fluid-fluid interfaces to make stable foams and emulsions. Surfactants adsorbed to the nanoparticle surface modulate both particle wettability and interparticle interactions, altering the nanoparticle adsorption. We have shown that bubbles generated in a nanoparticle-surfactant mixture collect particles as they travel through a long microchannel. The particle stabilized region of the bubble grows in a manner consistent with convection and diffusion of particles in the fluid surrounding the bubble. If the bubble residence time is long enough compared with the adsorption timescales, a stable, non-spherical, gas-filled capsule emerges from the microchannel and retains its shape for tens of hours. We find that the nanoparticle-surfactant mixture composition can be used to tune the degree of capsule stabilization. Greater stabilization occurs with larger surfactant concentrations for a fixed nanoparticle volume fraction. These observations can be rationalized in terms of the particle wettability and electrostatic interactions as well as interfacial elasticity and bulk nanoparticle transport and adsorption. National Science Foundation Grant No. 1511016.

  6. Analytical theory of effective interactions in binary colloidal systems of soft particles.

    Science.gov (United States)

    Majka, M; Góra, P F

    2014-09-01

    While density functional theory with integral equations techniques are very efficient tools in the numerical analysis of complex fluids, analytical insight into the phenomenon of effective interactions is still limited. In this paper, we propose a theory of binary systems that results in a relatively simple analytical expression combining arbitrary microscopic potentials into effective interaction. The derivation is based on translating a many-particle Hamiltonian including particle-depletant and depletant-depletant interactions into the occupation field language, which turns the partition function into multiple Gaussian integrals, regardless of what microscopic potentials are chosen. As a result, we calculate the effective Hamiltonian and discuss when our formula is a dominant contribution to the effective interactions. Our theory allows us to analytically reproduce several important characteristics of systems under scrutiny. In particular, we analyze the following: the effective attraction as a demixing factor in the binary systems of Gaussian particles, the screening of charged spheres by ions, which proves equivalent to Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, effective interactions in the binary mixtures of Yukawa particles, and the system of particles consisting of both a repulsive core and an attractive/repulsive Yukawa interaction tail. For this last case, we reproduce the "attraction-through-repulsion" and "repulsion-through-attraction" effects previously observed in simulations.

  7. Electrokinetics of charged spherical colloidal particles taking into account the effect of ion size constraints.

    Science.gov (United States)

    López-García, J J; Aranda-Rascón, M J; Grosse, C; Horno, J

    2011-04-01

    The electrokinetic properties of suspended spherical particles are examined using a modified standard electrokinetic model, which takes into account the finite ion size and considers that the minimum approach distance of ions to the particle surface need not be equal to their effective radius in the bulk solution. We calculate the conductivity increment and the electrophoretic mobility and present a detailed interpretation of the obtained results, based on the analysis of the equilibrium and field-induced ion concentrations, as well as the convective fluid flow in the neighborhood of the particle surface. We show that when charge reversal takes place, the sign of the concentration polarization remains unchanged while the sign of the electrophoretic mobility only changes under favorable circumstances. Copyright © 2010 Elsevier Inc. All rights reserved.

  8. Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions.

    Science.gov (United States)

    Comtet, Jean; Chatté, Guillaume; Niguès, Antoine; Bocquet, Lydéric; Siria, Alessandro; Colin, Annie

    2017-05-31

    The process by which sheared suspensions go through a dramatic change in viscosity is known as discontinuous shear thickening. Although well-characterized on the macroscale, the microscopic mechanisms at play in this transition are still poorly understood. Here, by developing new experimental procedures based on quartz-tuning fork atomic force microscopy, we measure the pairwise frictional profile between approaching pairs of polyvinyl chloride and cornstarch particles in solvent. We report a clear transition from a low-friction regime, where pairs of particles support a finite normal load, while interacting purely hydrodynamically, to a high-friction regime characterized by hard repulsive contact between the particles and sliding friction. Critically, we show that the normal stress needed to enter the frictional regime at nanoscale matches the critical stress at which shear thickening occurs for macroscopic suspensions. Our experiments bridge nano and macroscales and provide long needed demonstration of the role of frictional forces in discontinuous shear thickening.

  9. Metastable and unstable cellular solidification of colloidal suspensions.

    Science.gov (United States)

    Deville, Sylvain; Maire, Eric; Bernard-Granger, Guillaume; Lasalle, Audrey; Bogner, Agnès; Gauthier, Catherine; Leloup, Jérôme; Guizard, Christian

    2009-12-01

    Colloidal particles are often seen as big atoms that can be directly observed in real space. They are therefore becoming increasingly important as model systems to study processes of interest in condensed-matter physics such as melting, freezing and glass transitions. The solidification of colloidal suspensions has long been a puzzling phenomenon with many unexplained features. Here, we demonstrate and rationalize the existence of instability and metastability domains in cellular solidification of colloidal suspensions, by direct in situ high-resolution X-ray radiography and tomography observations. We explain such interface instabilities by a partial Brownian diffusion of the particles leading to constitutional supercooling situations. Processing under unstable conditions leads to localized and global kinetic instabilities of the solid/liquid interface, affecting the crystal morphology and particle redistribution behaviour.

  10. Aggregation and Breakup of Colloidal Particle Aggregates in Shear Flow, Studied with Video Microscopy

    NARCIS (Netherlands)

    Tolpekin, V.A.; Duits, Michael H.G.; van den Ende, Henricus T.M.; Mellema, J.

    2004-01-01

    We used video microscopy to study the behavior of aggregating suspensions in shear flow. Suspensions consisted of 920 nm diameter silica spheres, dispersed in a methanol/bromoform solvent, to which poly(ethylene glycol) (M = 35.000 g) was added to effect weak particle aggregation. With our solvent

  11. Colloids: A microscopic army

    Science.gov (United States)

    Tierno, Pietro

    2017-04-01

    Ensembles of magnetic colloids can undergo an instability triggering the formation of clusters that move faster than the particles themselves. The many-body process relies on hydrodynamics alone and may prove useful for load delivery in fluidics.

  12. Comprehensive analysis of alternating current electrokinetics induced motion of colloidal particles in a three-dimensional microfluidic chip

    Science.gov (United States)

    Honegger, Thibault; Peyrade, David

    2013-05-01

    AC electrokinetics is becoming a strategic tool for lab-on-a-chip systems due to its versatility and its high level of integration. The ability to foreseen the behaviour of fluids and particles under non-uniform AC electric fields is important to allow new generations of devices. Though most of studies predicted motion of particles in co-planar electrodes configurations, we explore a pure 3-D AC electrokinetic effect that can open the way to enhance contact-less handling throughout the microchannel. By fabricating 3D microfluidic chips with a bi-layer electrodes configuration where electrodes are patterned on both sides of the microfluidic channel, we present a detailed study of the AC electrokinetic regimes that govern particles motion suspended in different host media subjected to a non-uniform AC electric field that spreads through the cross-section of the microchannel. We simulate and observe the motion of 1, 5, and 10 μm polystyrene particles relative to the electrodes and provide an insight on the competition between electro-hydrodynamical forces and dielectrophoresis. We demonstrate that using relevant electrode designs combined with the appropriate applied AC potential, particles can be handled in 3-D in the micro-channel at a single or a collective level in several medium conductivities. Both numerical simulations and experimental results provide a useful basis for future biological applications.

  13. Behaviour of molten pools and fuel particle beds during severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Barleon, L.; Feuerstein, H.; Perinic, D.; Kuhn, D.; Werle, H.

    1983-01-01

    The recent work on core meltdown discussed herein concentrates on cooling within the tank and the retention of molten fuel masses, regarding in particular large LMFBR-type reactors. The article presents studies on the following problem complexes: transfer of fuel from the core area, behaviour of spent-fuel pools and particle beds, and material interaction and fission product behaviour.

  14. Effect of the liquid layer on the impact behaviour of particles

    NARCIS (Netherlands)

    Antonyuk, S.; Heinrich, S.; Dosta, M.; van Buijtenen, M.S.; Deen, N.G.; Kuipers, J.A.M.

    2009-01-01

    During a spray granulation process the moisture loading in fluidized beds has a great influence on the inter-particle collision properties and hence on the flow behaviour. To study the influence of the liquid layer as well as granule impact velocity on the impact behaviour free-fall experiments were

  15. Hydrodynamically Induced Collective Motion of Optically Driven Colloidal Particles on a Circular Path

    Science.gov (United States)

    Kimura, Yasuyuki

    2017-10-01

    Among typical active matter such as self-propelled micro-objects, the characteristic collective motion originating from the hydrodynamic interaction between constituents has been observed in both biological and artificial systems. In illustrating such motion of micrometer-size particles in a one-dimensional optically driven system with a low Reynolds number, we highlight the importance of the hydrodynamic interaction. We show the appearance of regular stationary and dynamic arrangements resembling "crystals" or "clusters" observed in the equilibrium state. A transition in the collective motion has been observed by varying the hydrodynamic interaction in a system of two particle sizes and in a spatially confined system. An optical manipulation technique and the related hydrodynamic equations are also discussed. These are useful tools for elucidating the complex collective behavior of the hydrodynamically coupled micro-objects.

  16. Rhodium colloidal suspension deposition on porous silica particles by dry impregnation: Study of the influence of the reaction conditions on nanoparticles location and dispersion and catalytic reactivity

    OpenAIRE

    Barthe, Laurie; Hemati, Mehrdji; Philippot, Karine; Chaudret, Bruno; Denicourt-Nowicki, Audrey; Roucoux, Alain

    2009-01-01

    Rhodium composite nanomaterials were synthesized by an innovating process called dry impregnation in a fluidized bed. It consists in spraying an aqueous colloidal suspension of rhodium on silica porous particles. The use of this precursor solution containing preformed nanoparticles avoids calcination/activation step. Different composite nanomaterials were prepared displaying various metal loadings. The operating conditions were tuned to modify τs, the solvent vapour saturation rate value, in ...

  17. Synthesis and characterization of novel functional electrosterically stabilized colloidal particles prepared by emulsion polymerization using a strongly ionized amphiphilic diblock copolymer

    OpenAIRE

    Priti S. Mohanty; Dietsch, Hervé; Rubatat, Laurent; Stradner, Anna; Matsumoto, K.; Matsuoka, H; Schurtenberger, Peter

    2009-01-01

    Amphiphilic diblock copolymers such as poly(styrene)-block-poly(styrene sulfonate) (PS-b-PSS) (Matsuoka, H.; Maeda, S.; Kaewsaiha, P.; Matsumoto, K. Langmuir 2004, 20, 7412), belong to a class of new polymeric surfactants that ionize strongly in aqueous media. We investigated their self-assembly behavior in aqueous solutions and used them as an emulsifier to prepare electrosterically stabilized colloidal particles of different diameters between 70 to 400 nm. We determined the size, size polyd...

  18. Colloids in inhomogeneous external magnetic fields: particle tweezing, trapping and void formation

    Science.gov (United States)

    Froltsov, V. A.; Likos, C. N.; Löwen, H.

    2004-09-01

    Two-dimensional super-paramagnetic suspensions that are confined to a planar liquid-gas interface and exposed to an inhomogeneous external magnetic field directed perpendicular to the interface are studied by extensive Monte Carlo computer simulations. The external field is a superposition of a homogeneous field and a localized inhomogeneity, modelled by a Gaussian function. The inhomogeneity causes two combined effects that compete against each other: it provides an external potential, modifying at the same time the mutual interparticle repulsion. If the inhomogeneity enhances the strength of the homogeneous profile, the inhomogeneous field is a 'magnetic tweezer' for low particle densities. At higher densities, on the other hand, there is a small accumulation in the centre of the inhomogeneous field, which leads to a depletion zone outside the inhomogeneity due to the mutual interparticle repulsion. Very large inhomogeneities produce local crystallites surrounded by a depletion ring. If the inhomogeneity reduces the total field strength, particles are repelled from the inhomogeneity and voids are generated in the suspension. Our predictions are of relevance to the direct transport of magnetic particles and can be verified in real-space experiments of super-paramagnetic suspensions.

  19. Size and shape effects on diffusion and absorption of colloidal particles near a partially absorbing sphere: Implications for uptake of nanoparticles in animal cells

    Science.gov (United States)

    Shi, Wendong; Wang, Jizeng; Fan, Xiaojun; Gao, Huajian

    2008-12-01

    A mechanics model describing how a cell membrane with diffusive mobile receptors wraps around a ligand-coated cylindrical or spherical particle has been recently developed to model the role of particle size in receptor-mediated endocytosis. The results show that particles in the size range of tens to hundreds of nanometers can enter cells even in the absence of clathrin or caveolin coats. Here we report further progress on modeling the effects of size and shape in diffusion, interaction, and absorption of finite-sized colloidal particles near a partially absorbing sphere. Our analysis indicates that, from the diffusion and interaction point of view, there exists an optimal hydrodynamic size of particles, typically in the nanometer regime, for the maximum rate of particle absorption. Such optimal size arises as a result of balance between the diffusion constant of the particles and the interaction energy between the particles and the absorbing sphere relative to the thermal energy. Particles with a smaller hydrodynamic radius have larger diffusion constant but weaker interaction with the sphere while larger particles have smaller diffusion constant but stronger interaction with the sphere. Since the hydrodynamic radius is also determined by the particle shape, an optimal hydrodynamic radius implies an optimal size as well as an optimal aspect ratio for a nonspherical particle. These results show broad agreement with experimental observations and may have general implications on interaction between nanoparticles and animal cells.

  20. A study on the synthesis of polystyrene-silica nanocomposite particles by soap-free emulsion polymerization using cationic initiator in company with colloidal silica sol solution.

    Science.gov (United States)

    Lee, Sangkug; An, You Sun; Kim, Jae Gu; Park, In; Chun, Hyunaee; Kim, Gyungsoo; Choi, Kyung Ho

    2009-12-01

    Nano-sized polystyrene (PS)-silica nanocomposite particles have been prepared by soap-free emulsion polymerization using a cationic initiator, 2,2'-azobis(isobutyramidine) hydrochloride (AIBA) with a colloidal silica (Ludox SM30, 7 nm diameter). The cationic initiator leads to the formation of the PS-silica nanocomposite particles by electrostatic interaction with negatively charged silica particles. Morphology, particle size distribution, reactivity and silica content of the particles were monitored on different reaction conditions such as pH, the addition time of silica sol and the amount of the silica sol. It is found that the nucleation of styrene monomer depends on the pH of water medium, the addition time of silica, the presence of silica in polymerization system. The reaction whose styrene monomer didn't react in water medium with pH 10 was progressed in the presence of silica sol to give nanocomposite particles. In the condition of constant pH 10 in the polymerization system, the increase of the amount of silica gave little influence to the changes in the particle size and particle size distribution of nanocomposite particles. The changes in the pH of medium gave much influence on the particle size and particle size distribution due to the changes in ionic interaction of silica and initiator. The silica content absorbed on the nanocomposite particles decreases with decreasing the pH values in the polymerization media.

  1. Particle Deposition Kinetics of Colloidal Suspensions in Microchannels at High Ionic Strength.

    Science.gov (United States)

    Cejas, Cesare M; Monti, Fabrice; Truchet, Marine; Burnouf, Jean-Pierre; Tabeling, Patrick

    2017-07-05

    Despite its considerable practical importance, the deposition of real Brownian particles transported in a channel by a liquid, at small Reynolds numbers, has never been described at a comprehensive level. Here, by coupling microfluidic experiments, theory, and numerics, we succeed in unravelling the problem for the case of straight channels at high salinity. We discover a broad regime of deposition (the van der Waals regime) in which particle-wall van der Waals interactions govern the deposition mechanism. We determine the range of existence of the regime, for which we calculate the concentration profiles, retention profiles, and deposition kinetics analytically. The retention profiles decay as the inverse of the square root of the distance from the entry, and the deposition kinetics are given by the expression [Formula: see text], where S is a dimensionless deposition function, A is the Hamaker constant, and ξL is a dimensionless parameter characterizing fluid flow properties. These findings are well supported by numerics. Experimentally, we find that the retention profiles behave as x-0.5±0.1 (where x is the distance from the channel entry) over three decades in scale, as predicted theoretically. By varying the flow conditions (speed, geometry, surface properties, and concentration) so as to cover four decades in ξL and taking the Hamaker constant as a free parameter, we accurately confirm the theoretical expression for the deposition kinetics. Operating in the van der Waals regime enables control of the deposition rates via surface chemistry. From a surface science perspective, working in the van der Waals regime enables us to measure the Hamaker constants of thousands of particles in a few minutes, a task that would take a much longer time to perform with standard AFM.

  2. Self-assembly in a model colloidal mixture of dimers and spherical particles.

    Science.gov (United States)

    Prestipino, Santi; Munaò, Gianmarco; Costa, Dino; Caccamo, Carlo

    2017-02-28

    We investigate the structure of a dilute mixture of amphiphilic dimers and spherical particles, a model relevant to the problem of encapsulating globular "guest" molecules in a dispersion. Dimers and spheres are taken to be hard particles, with an additional attraction between spheres and the smaller monomers in a dimer. Using the Monte Carlo simulation, we document the low-temperature formation of aggregates of guests (clusters) held together by dimers, whose typical size and shape depend on the guest concentration χ. For low χ (less than 10%), most guests are isolated and coated with a layer of dimers. As χ progressively increases, clusters grow in size becoming more and more elongated and polydisperse; after reaching a shallow maximum for χ≈50%, the size of clusters again reduces upon increasing χ further. In one case only (χ=50% and moderately low temperature) the mixture relaxed to a fluid of lamellae, suggesting that in this case clusters are metastable with respect to crystal-vapor separation. On heating, clusters shrink until eventually the system becomes homogeneous on all scales. On the other hand, as the mixture is made denser and denser at low temperature, clusters get increasingly larger until a percolating network is formed.

  3. Melting behaviour of lead and bismuth nano-particles in ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Abstract. Nanomaterials are playing an increasingly important role in mod- ern technologies. Interfaces are crucial in nanotechnology. In this study, we have examined the stability of nanoparticles. Major emphasis is on understanding the effect of interfaces on melting. Melting behaviour of nanocrystalline interfaces,.

  4. Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis

    Science.gov (United States)

    Nouguier-Lehon, C.; Cambou, B.; Vincens, E.

    2003-12-01

    This paper analyses the influence of grain shape and angularity on the behaviour of granular materials from a two-dimensional analysis by means of a discrete element method (Contact Dynamics). Different shapes of grains have been studied (circular, isotropic polygonal and elongated polygonal shapes) as well as different initial states (density) and directions of loading with respect to the initial fabric. Simulations of biaxial tests clearly show that the behaviour of samples with isotropic particles can be dissociated from that of samples with anisotropic particles. Indeed, for isotropic particles, angularity just tends to strengthen the behaviour of samples and slow down either local or global phenomena. One of the main results concerns the existence of a critical state for isotropic grains characterized by an angle of friction at the critical state, a critical void ratio and also a critical anisotropy. This critical state seems meaningless for elongated grains and the behaviour of samples generated with such particles is highly dependent on the direction of loading with respect to the initial fabric. The study of local variables related to fabric and particle orientation gives more information. In particular, the coincidence of the principal axes of the fabric tensor with those of the stress tensor is sudden for isotropic particles. On the contrary, this process is gradually initiated for elongated particles. Copyright

  5. Behaviour of fluidised particles explained by a new theory

    Energy Technology Data Exchange (ETDEWEB)

    Rowe, P.N.; Furusawa, Takehiko

    1988-10-05

    The fine particles, less than 70 microns, to be used for the fluid catalytic cracker, are different from the coarse particles and expand the bed without generating bubbles at a higher fluid speed than the solid-gas fluid starting speed, because both the fluidization and bubble generating speeds are different from each other. Geldart classified, by using the particle diameter and gas density as indexes, the difference of particles in the fluid condition, which however is to be under the ordinary temperature and pressure, without the applicability to the high temperature and pressure fluid. Foscolo and Gibiraro submitted the theory to test clearly established it. Both the elastic wave and void factor propagation speeds, in the all Reynolds numbers' range where the bubble fluid appears, were conducted and derived. By that theory, the classification of high temperature and pressure particles is possible. As the fluid catalytic cracker is strongly influenced by the solid-gas catalytic condition in the bed, the movement of bubbles is important. By that theory together with formulas, the group of particles is clearly understandable in behavior, which also enables the prediction of important properties for practical use. (9 figs, 8 refs)

  6. Internal structure and swelling behaviour of in silico microgel particles

    Science.gov (United States)

    Rovigatti, Lorenzo; Gnan, Nicoletta; Zaccarelli, Emanuela

    2018-01-01

    Microgels are soft colloids that, by virtue of their polymeric nature, can react to external stimuli such as temperature or pH by changing their size. The resulting swelling/deswelling transition can be exploited in fundamental research as well as for many diverse practical applications, ranging from art restoration to medicine. Such an extraordinary versatility stems from the complex internal structure of the individual microgels, each of which is a crosslinked polymer network. Here we employ a recently-introduced computational method to generate realistic microgel configurations and look at their structural properties, both in real and Fourier space, for several temperatures across the volume phase transition as a function of the crosslinker concentration and of the confining radius employed during the ‘in-silico’ synthesis. We find that the chain-length distribution of the resulting networks can be analytically predicted by a simple theoretical argument. In addition, we find that our results are well-fitted to the fuzzy-sphere model, which correctly reproduces the density profile of the microgels under study.

  7. Computation of shear viscosity of colloidal suspensions by SRD-MD

    Energy Technology Data Exchange (ETDEWEB)

    Laganapan, A. M. K.; Videcoq, A., E-mail: arnaud.videcoq@unilim.fr; Bienia, M. [SPCTS, UMR 7315, ENSCI, CNRS, Centre Européen de la Céramique, 12 rue Atlantis, 87068 Limoges Cedex (France); Ala-Nissila, T. [COMP CoE at the Department of Applied Physics, Aalto University School of Science, P.O. Box 11000, FIN-00076 Aalto, Espoo (Finland); Department of Physics, Brown University, Providence, Rhode Island 02912-1843 (United States); Bochicchio, D.; Ferrando, R. [Dipartimento di Fisica and CNR-IMEM, via Dodecaneso 33, Genova I-16146 (Italy)

    2015-04-14

    The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.

  8. Computation of shear viscosity of colloidal suspensions by SRD-MD

    Science.gov (United States)

    Laganapan, A. M. K.; Videcoq, A.; Bienia, M.; Ala-Nissila, T.; Bochicchio, D.; Ferrando, R.

    2015-04-01

    The behaviour of sheared colloidal suspensions with full hydrodynamic interactions (HIs) is numerically studied. To this end, we use the hybrid stochastic rotation dynamics-molecular dynamics (SRD-MD) method. The shear viscosity of colloidal suspensions is computed for different volume fractions, both for dilute and concentrated cases. We verify that HIs help in the collisions and the streaming of colloidal particles, thereby increasing the overall shear viscosity of the suspension. Our results show a good agreement with known experimental, theoretical, and numerical studies. This work demonstrates the ability of SRD-MD to successfully simulate transport coefficients that require correct modelling of HIs.

  9. Aggregation and deposition of in situ formed colloidal particles in the presence of polyelectrolytes.

    Science.gov (United States)

    Li, Feng; Sun, Dejun; Wu, Tao; Li, Yujiang

    2017-02-22

    In this work, aggregation and deposition of in situ formed magnesium hydroxide (IFM) in the presence of hydrolyzed polyacrylamide (HPAM) were investigated. Relative concentrations of interactants, as well as other experimental conditions, were changed to elucidate the interaction mechanisms from microscopic to macroscopic levels. Light scattering measurements were used to investigate the aggregation kinetics, fractal dimension, and collision efficiency of the aggregates on a microscopic level. Electrophoretic mobility and TEM were utilized to measure the charging properties and morphologies of aggregates, respectively. Adsorption and rheology experiments were performed to determine the deposition mechanism at higher concentrations of interactants on a macroscopic level. The results demonstrate that the initial rapid aggregation of IFM in the presence of HPAM is due to an electrostatic patch mechanism. In addition, the deposition was accelerated by flocculation with different mechanisms. When more IFM is involved, bridging flocculation dominates; when more HPAM is added, depletion flocculation plays a leading role. The results of this work may provide further insight into understanding the aggregation and deposition of in situ formed natural/engineered particles in the presence of oppositely charged polyelectrolytes, as well as provide new possibilities for produced water treatment, biomedical applications, biomineralization, etc.

  10. Structural deformations in liquid crystals with dispersed magnetic nano-colloids

    Directory of Open Access Journals (Sweden)

    S Shoarinejad

    2012-06-01

    Full Text Available  The stable colloidal dispersions of magnetic nano-particles in nematic liquid crystals are called ferronematics. Their behaviour in magnetic fields depends on various parameters such as anchoring energy, magnetic anisotropy, and shape and volume fraction of the particles. In the present paper, the threshold field is obtained for these colloidal nematics. Then, the influence of magnetic anisotropy, cell thickness, magnetic moment, and volume fraction of the particles are discussed . It is found that due to the influence of some effective parameters, the threshold field changes when compared to pure nematic liquid crystals. The obtained results are consistent with the reported experimental results.

  11. Single-Particle Ratiometric Pressure Sensing Based on "Double-Sensor" Colloidal Nanocrystals.

    Science.gov (United States)

    Lorenzon, Monica; Pinchetti, Valerio; Bruni, Francesco; Bae, Wan Ki; Meinardi, Francesco; Klimov, Victor I; Brovelli, Sergio

    2017-02-08

    Ratiometric pressure sensitive paints (r-PSPs) are all-optical probes for monitoring oxygen flows in the vicinity of complex or miniaturized surfaces. They typically consist of a porous binder embedding mixtures of a reference and a sensor chromophore exhibiting oxygen-insensitive and oxygen-responsive luminescence, respectively. Here, we demonstrate the first example of an r-PSP based on a single two-color emitter that removes limitations of r-PSPs based on chromophore mixtures such as different temperature dependencies of the two chromophores, cross-readout between the reference and sensor signals and phase segregation. In our approach, we utilize a novel "double-sensor" r-PSP that features two spectrally separated emission bands with opposite responses to the O2 pressure, which boosts the sensitivity with respect to traditional reference-sensor pairs. Specifically, we use two-color-emitting dot-in-bulk CdSe/CdS core/shell nanocrystals, exhibiting red and green emission bands from their core and shell states, whose intensities are respectively enhanced and quenched in response to the increased oxygen partial pressure that effectively tunes the position of the nanocrystal's Fermi energy. This leads to a strong and reversible ratiometric response at the single particle level and an over 100% enhancement in the pressure sensitivity. Our proof-of-concept r-PSPs further exhibit suppressed cross-readout thanks to zero spectral overlap between the core and shell luminescence bands and a temperature-independent ratiometric response between 0 and 70 °C.

  12. Colloidal Instability Fosters Agglomeration of Subvisible Particles Created by Rupture of Gels of a Monoclonal Antibody Formed at Silicone Oil-Water Interfaces.

    Science.gov (United States)

    Mehta, Shyam B; Carpenter, John F; Randolph, Theodore W

    2016-08-01

    In this study, we investigated the effect of ionic strength (1.25-231 mM) on viscoelastic interfacial gels formed by a monoclonal antibody at silicone oil-water interfaces, and the formation of subvisible particles due to rupture of these gels. Rates of gel formation and their elastic moduli did not vary significantly with ionic strength. Likewise, during gel rupture no significant effects of ionic strength were observed on particle formation and aggregation as detected by microflow imaging, resonance mass measurement, and size exclusion chromatography. Subvisible particles formed by mechanical rupturing of the gels agglomerated over time, even during quiescent incubation, due to the colloidal instability of the particles. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose

    Science.gov (United States)

    Dickens, Colin; McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John

    2009-02-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of diameter 150 -- 250 nm CMD. Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, it was noted that particle deposition increased with increasing inhalation depth, and that smoke inhalation volumes were generally greater than normal tidal breathing volumes. A weak association was observed between particle diameter and puff flow, but no strong association between particle diameter and retention efficiency.

  14. Puffing and inhalation behaviour in cigarette smoking: Implications for particle diameter and dose

    Energy Technology Data Exchange (ETDEWEB)

    Dickens, Colin; McGrath, Conor; Warren, Nigel; Biggs, Philip; McAughey, John, E-mail: colin_dickens@bat.co [British American Tobacco, Group R and D Centre, Southampton, SO15 8TL (United Kingdom)

    2009-02-01

    Inhalation of tobacco smoke aerosol is a two-step process involving puffing followed by inhalation. Measured smoke deposition efficiencies in the lung (20-70%) are greater than expected for smoke particles of diameter 150 - 250 nm CMD. Various mechanisms have been put forward to explain this enhanced deposition pattern, including coagulation, hygroscopic growth, condensation and evaporation, changes in composition, or changes in inhalation behaviour. This paper represents one of a series of studies seeking to better quantify smoke chemistry, inhalation behaviour and cumulative particle growth. The studies have been conducted to better understand smoke dosimetry and links to disease as part of a wider programme defining risk and potential harm reduction. In this study, it was noted that particle deposition increased with increasing inhalation depth, and that smoke inhalation volumes were generally greater than normal tidal breathing volumes. A weak association was observed between particle diameter and puff flow, but no strong association between particle diameter and retention efficiency.

  15. Colour particle states behaviour in the QCD vacuum

    Directory of Open Access Journals (Sweden)

    Kuvshinov V.I.

    2016-01-01

    The behaviour of squeezed and entangled quantum states, the interaction of colour superpositions and multiparticle states with stochastic QCD vacuum is described. It is shown that it leads to a fully mixed quantum state with equal probabilities for different colours. Decoherence rate is found to be proportional to the product of the distance between colour charges and the time during which this interaction has taken place. I.e. such an interaction seems to lead naturally to confinement of quarks.

  16. Forces acting on dielectric colloidal spheres at a water/nonpolar fluid interface in an external electric field. 2. Charged particles.

    Science.gov (United States)

    Danov, Krassimir D; Kralchevsky, Peter A

    2013-09-01

    Here, we calculate the electric forces acting on charged dielectric colloidal particles, which are attached to the interface between a nonpolar fluid (air and oil) and water in the presence of applied uniform external electric field, E0, directed normal to the interface. Electric charges are present on the particle-nonpolar fluid interface. The solution to the problem represents a superposition of the solutions of two simpler problems: (i) charged particle in the absence of external field and (ii) uncharged particle in the presence of external field. Because the external field can be directed upward or downward, it enhances or opposes the effect of the particle surface charges. As a result, the vertical (electrodipping) force vs. E0 may have a maximum or minimum and can be positive or negative depending on the particle contact angle and dielectric constant. In contrast, the lateral electric force between two identical charged floating particles is always positive (repulsive), but it can vary by many orders of magnitude with E0. This is because at a certain value of E0, the net dipolar moment of the particle becomes zero. Then, the interparticle force is governed by the octupolar moment, which leads to a much weaker and short-range repulsion. In the vicinity of this special value of E0, the interparticle repulsion is very sensitive to the variations in the external field. These effects can be used for a fine control of the lattice spacing in non-densely packed interfacial colloidal crystals of regular hexagonal packing for producing lithographic masks with various applications in nanotechnology. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Tribological and mechanical behaviour of dual-particle (nanoclay ...

    Indian Academy of Sciences (India)

    The morphologies of wear surface and fracture surface were examined with the aid of a scanning electron microscope (SEM) to identify the wear and fracture mechanisms. It was found that the wear loss increases with increasing nanoclay amount due to the particle agglomeration effects. Statistical analysis determines that ...

  18. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  19. Role of the anisotropy in the interactions between nano- and micro-sized particles

    OpenAIRE

    Rovigatti, Lorenzo

    2012-01-01

    The present Thesis focuses on the thermodynamic and dynamic behaviour of anisotropically interacting colloids by means of theoretical and numerical techniques. Colloidal suspensions, i.e. micro-- and nano--sized particles dispersed in a continuous phase, are a topic of great interest in several fields, including material science, soft matter and biophysics. Common in everyday life in the form of soap, milk, cream, etc., colloids have been used for decades as models for atomic and molecula...

  20. Inhomogeneous and anisotropic particles in optical traps: Physical behaviour and applications

    Science.gov (United States)

    Simpson, S. H.

    2014-10-01

    Beyond the ubiquitous colloidal sphere, optical tweezers are capable of trapping myriad exotic particles with wildly varying geometries and compositions. This simple fact opens up numerous opportunities for micro-manipulation, directed assembly and characterization of novel nanostructures. Furthermore, the mechanical properties of optical tweezers are transformed by their contents. For example, traps capable of measuring, or applying, femto-Newton scale forces with nanometric spatial resolution can be designed. Analogous, if not superior, angular sensitivity can be achieved, enabling the creation of exquisitely sensitive torque wrenches. These capacities, and others, lead to a multitude of novel applications in the meso- and nanosciences. In this article we review experimental and theoretical work on the relationship between particle geometry, composition and trap properties. A range of associated metrological techniques are discussed.

  1. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon

    2008-01-01

    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  2. Dry deposition of pollutant and marker particles onto live mouse airway surfaces enhances monitoring of individual particle mucociliary transit behaviour.

    Science.gov (United States)

    Donnelley, Martin; Morgan, Kaye S; Siu, Karen K W; Parsons, David W

    2012-07-01

    Particles suspended in the air are inhaled during normal respiration and unless cleared by airway defences, such as the mucociliary transit (MCT) system, they can remain and affect lung and airway health. Synchrotron phase-contrast X-ray imaging (PCXI) methods have been developed to non-invasively monitor the behaviour of individual particles in live mouse airways and in previous studies the MCT behaviour of particles and fibres in the airways of live mice after deposition in a saline carrier fluid have been examined. In this study a range of common respirable pollutant particles (lead dust, quarry dust and fibreglass fibres) as well as marker particles (hollow glass micro-spheres) were delivered into the trachea of live mice using a dry powder insufflator to more accurately mimic normal environmental particulate exposure and deposition via inhalation. The behaviour of the particles once delivered onto the airway surface was tracked over a five minute period via PCXI. All particles were visible after deposition. Fibreglass fibres remained stationary throughout while all other particle types transited the tracheal surface throughout the imaging period. In all cases the majority of the particle deposition and any airway surface activity was located close to the dorsal tracheal wall. Both the individual and bulk motions of the glass bead marker particles were visible and their behaviour enabled otherwise hidden MCT patterns to be revealed. This study verified the value of PCXI for examining the post-deposition particulate MCT behaviour in the mouse trachea and highlighted that MCT is not a uniform process as suggested by radiolabel studies. It also directly revealed the advantages of dry particle delivery for establishing adequate particulate presence for visualizing MCT behaviour. The MCT behaviour and rate seen after dry particle delivery was different from that in previous carrier-fluid studies. It is proposed that dry particle delivery is essential for producing

  3. Colloidal Plasmas: Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various ...

  4. Behaviour of advanced materials impacted by high energy particle beams

    Science.gov (United States)

    Bertarelli, A.; Carra, F.; Cerutti, F.; Dallocchio, A.; Garlasché, M.; Guinchard, M.; Mariani, N.; Marques dos Santos, S. D.; Peroni, L.; Scapin, M.; Boccone, V.

    2013-07-01

    Beam Intercepting Devices (BID) are designed to operate in a harsh radioactive environment and are highly loaded from a thermo-structural point of view. Moreover, modern particle accelerators, storing unprecedented energy, may be exposed to severe accidental events triggered by direct beam impacts. In this context, impulse has been given to the development of novel materials for advanced thermal management with high thermal shock resistance like metal-diamond and metal-graphite composites on top of refractory metals such as molybdenum, tungsten and copper alloys. This paper presents the results of a first-of-its-kind experiment which exploited 440 GeV proton beams at different intensities to impact samples of the aforementioned materials. Effects of thermally induced shockwaves were acquired via high speed acquisition system including strain gauges, laser Doppler vibrometer and high speed camera. Preliminary information of beam induced damages on materials were also collected. State-of-the-art hydrodynamic codes (like Autodyn®), relying on complex material models including equation of state (EOS), strength and failure models, have been used for the simulation of the experiment. Preliminary results confirm the effectiveness and reliability of these numerical methods when material constitutive models are completely available (W and Cu alloys). For novel composite materials a reverse engineering approach will be used to build appropriate constitutive models, thus allowing a realistic representation of these complex phenomena. These results are of paramount importance for understanding and predicting the response of novel advanced composites to beam impacts in modern particle accelerators.

  5. A finite velocity simulation of sedimentation behaviour of flocculating ...

    African Journals Online (AJOL)

    A mechanistic velocity model is developed to simulate the behaviour of flocculating colloidal particles in turbid water. The current model is ... The results contribute towards the ultimate goal of achieving full automation of the design of gravitational particle separation devices for water and wastewater treatment. Keywords: ...

  6. Nanoparticle dispersions: A colloid and polymer solution perspective

    Science.gov (United States)

    van der Schoot, Paul

    For most solid nanoparticles there are no true solvents in the sense that a powder or crystal of these nanoparticles would spontaneously dissolve when immersed in them. There are exceptions but these typically involve unusual solvents such as super acids or chemical modification of the particles to make particles and solvent compatible. Conventional fluids, including water, are generally poor solvents or dispersants and in them the nanoparticles need to be stabilised against aggregation. Indeed, nanoparticles dispersed or dissolved in a liquid behave very much like polymers and colloidal particles do. The properties of such dispersions can thus be understood in terms of what is known about the behaviour of colloids and polymer solutions. Important aspects are Van der Waals and Coulomb interactions, steric interactions, the impact of depletion agents, phase separation and the tendency of elongated colloidal particles and stiff polymers to form nematic and other types of liquid-crystalline phase. For this book a question of particular interest is how the nanoparticles behave if they are present in a liquid crystalline host fluid, and what kind of medium-induced interaction operates between these particles. However, most types of interaction are also present in isotropic host uids, so the attention of this chapter will primarily be directed towards conventional dispersions. I shall give an overview of the physico-chemical principles most relevant to understanding the behaviour of fluid dispersions and solutions of nanoparticles, using spherical, cylindrical and at, plate-like nanoparticles as illustrative examples.

  7. Analytical model for erosion behaviour of impacted fly-ash particles ...

    Indian Academy of Sciences (India)

    Fly ash particles entrained in the flue gas from boiler furnaces in coal-fired power stations can cause serious erosive wear on steel surfaces along the flow path. Such erosion can significantly reduce the operational life of the boiler components. A mathematical model embodying the mechanisms of erosion on behaviour, ...

  8. Collective behaviour of self-propelling particles with conservative kinematic constraints

    NARCIS (Netherlands)

    Ratushna, Valeriya Igorivna

    2007-01-01

    In this thesis I considered the dynamics of self-propelling particles (SPP). Flocking of living organisms like birds, fishes, ants, bacteria etc. is an area where the theory of the collective behaviour of SPP can be applied. One can often see how these animals develop coherent motion, amazing the

  9. Non-Gaussian behaviour of a self-propelled particle on a substrate

    Directory of Open Access Journals (Sweden)

    B. ten Hagen

    2009-01-01

    Full Text Available The overdamped Brownian motion of a self-propelled particle which is driven by a projected internal force is studied by solving the Langevin equation analytically. The "active" particle under study is restricted to move along a linear channel. The direction of its internal force is orientationally diffusing on a unit circle in a plane perpendicular to the substrate. An additional time-dependent torque is acting on the internal force orientation. The model is relevant for active particles like catalytically driven Janus particles and bacteria moving on a substrate. Analytical results for the first four time-dependent displacement moments are presented and analysed for several special situations. For a vanishing torque, there is a significant dynamical non-Gaussian behaviour at finite times t as signalled by a non-vanishing normalized kurtosis in the particle displacement which approaches zero for long time with a 1/t long-time tail.

  10. Influence of the finite size and effective permittivity of ions on the equilibrium double layer around colloidal particles in aqueous electrolyte solution.

    Science.gov (United States)

    López-García, José Juan; Horno, José; Grosse, Constantino

    2014-08-15

    The equilibrium properties of the electrical double layer surrounding a charged spherical colloidal particle immersed in an aqueous electrolyte solution are examined taking into account the finite ion size. This study includes the representation of the steric interactions among ions using both the Bikerman and the Carnahan-Starling models, an account of all the effects related to the representation of hydrated ions as dielectric spheres (dependence of the electrolyte solution permittivity, on the local ion concentration, and appearance of the Born and the dielectrophoretic forces acting on the ions), and solution of the problem for both high and low surface charge values. We find that the Carnahan-Starling model together with effective ion permittivity related effects appears to be able to provide an interpretation to the electrokinetic potential vs. surface charge dependence in the case of colloidal particles suspended in aqueous electrolyte solutions. On the contrary, for electrode-electrolyte systems, both the Bikerman and the Carnahan-Starling models might be able to explain this dependence. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  12. Colloidal friction: Kinks in motion

    Science.gov (United States)

    Vanossi, Andrea; Tosatti, Erio

    2012-02-01

    The ability of laser interference potentials to trap and control colloidal particles opens up a new potential area of 'toy systems' displaying real physics. A beautiful example is the study of friction between colloidal crystals and a variety of artificially created surface potentials.

  13. Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids

    Science.gov (United States)

    Dalodière, Elodie; Virot, Matthieu; Morosini, Vincent; Chave, Tony; Dumas, Thomas; Hennig, Christoph; Wiss, Thierry; Dieste Blanco, Oliver; Shuh, David K.; Tyliszcak, Tolek; Venault, Laurent; Moisy, Philippe; Nikitenko, Sergey I.

    2017-03-01

    Fundamental knowledge on intrinsic plutonium colloids is important for the prediction of plutonium behaviour in the geosphere and in engineered systems. The first synthetic route to obtain salt-free intrinsic plutonium colloids by ultrasonic treatment of PuO2 suspensions in pure water is reported. Kinetics showed that both chemical and mechanical effects of ultrasound contribute to the mechanism of Pu colloid formation. In the first stage, fragmentation of initial PuO2 particles provides larger surface contact between cavitation bubbles and solids. Furthermore, hydrogen formed during sonochemical water splitting enables reduction of Pu(IV) to more soluble Pu(III), which then re-oxidizes yielding Pu(IV) colloid. A comparative study of nanostructured PuO2 and Pu colloids produced by sonochemical and hydrolytic methods, has been conducted using HRTEM, Pu LIII-edge XAS, and O K-edge NEXAFS/STXM. Characterization of Pu colloids revealed a correlation between the number of Pu-O and Pu-Pu contacts and the atomic surface-to-volume ratio of the PuO2 nanoparticles. NEXAFS indicated that oxygen state in hydrolytic Pu colloid is influenced by hydrolysed Pu(IV) species to a greater extent than in sonochemical PuO2 nanoparticles. In general, hydrolytic and sonochemical Pu colloids can be described as core-shell nanoparticles composed of quasi-stoichiometric PuO2 cores and hydrolyzed Pu(IV) moieties at the surface shell.

  14. Colloids near phase transition lines under shear

    NARCIS (Netherlands)

    Lenstra, T.A.J.

    2001-01-01

    The aim of this thesis is to investigate the structure formation and deformation in colloidal systems due to an externally applied shear flow. The focus is on two different kind of colloidal systems: suspensions of attractive spherical colloidal particles in the neighbourhood of a gas-liquid

  15. From multi-ring to spider web and radial spoke: competition between the receding contact line and particle deposition in a drying colloidal drop.

    Science.gov (United States)

    Yang, Xin; Li, Christopher Y; Sun, Ying

    2014-07-07

    Deposition morphologies of inkjet-printed colloidal drops are examined under various drying conditions, particle volume fractions, and particle sizes. Concentric multi-rings, radial spokes, spider web, foam, and island-like depositions are observed as a result of the competition between the receding contact line and particle deposition during drop drying. Experimentally measured multi-ring spacing, δR, shows good agreement with the model predicted linear correlation with the local ring radius R. The results also show that the instability near the contact line leads to the radial spoke and saw-toothed structures. The resulting wavelength of the radial structures, λ, satisfies λ ~ (3)√R and λ ~ 1/(3)√[1-RH], where RH is the relative humidity. A dimensionless parameter ξ, defined as the radial deposition growth rate to contact line velocity ratio, has been identified to determine the conditions under which the entire contact line can be pinned to leave a continuous ring deposit. Increasing the particle size while keeping the volume fraction the same is found to suppress the formation of the multi-ring deposition, due to a smaller number of particles available to pin the receding contact line.

  16. Dynamics of colloidal suspensions of ferromagnetic particles in plane Couette flow: comparison of approximate solutions with Brownian dynamics simulations.

    Science.gov (United States)

    Ilg, Patrick; Kröger, Martin; Hess, Siegfried; Zubarev, Andrey Yu

    2003-06-01

    The stationary and oscillatory properties of dilute ferromagnetic colloidal suspensions in plane Couette flow are studied. Analytical expressions for the off-equilibrium magnetization and the shear viscosity are obtained within the so-called effective field approximation. We also investigate the predictions of a different approximation based on the linearized moment expansion. Direct numerical simulation of the kinetic model are performed in order to test the range of validity of these approximations.

  17. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  18. Crack formation and prevention in colloidal drops.

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A; Kim, So Youn; Weon, Byung Mook

    2015-08-17

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  19. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  20. Stable colloids in molten inorganic salts.

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  1. Colloidal Dispersions

    Science.gov (United States)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  2. Late-time behaviour of Israel particles in a FLRW spacetime with Λ > 0

    Science.gov (United States)

    Lee, Ho; Nungesser, Ernesto

    2017-07-01

    In this paper we study the space-homogeneous Boltzmann equation in a spatially flat FLRW spacetime. We consider Israel particles, which are the relativistic counterpart of the Maxwellian particles, and obtain global-in-time existence and the asymptotic behaviour of solutions. The main argument of the paper is to use the energy method of Guo, and we observe that the method can be applied to study small solutions in a cosmological case. It is the first result of this type where a physically well-motivated scattering kernel is considered for the general relativistic Boltzmann equation.

  3. Colloidal heat engines: a review.

    Science.gov (United States)

    Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Rica, Raúl A

    2016-12-21

    Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.

  4. Investigation of transient flow behaviour in dual-scale porous media with micro particle image velocimetry

    OpenAIRE

    Lundström, Staffan; Nordlund, Markus

    2006-01-01

    Injection processing of composite materials most often includes infiltration of a thermoset resin into a multi-scale porous fabric. Controlling the fluid flow within the multiscale fabric is essential for the quality of the final composite material, since the transport of fluid between regions with different scales plays an important role in phenomena such as void formation and filtration of particle doped resins. In this work, the transient flow behaviour in dual scale porous media is invest...

  5. Flow Cytometry for rapid characterization of colloidal particles of various types in process waters; Floedescytometri foer snabb karaktaerisering av kolloidala partiklar av olika typ i bakvatten - MPKT 05

    Energy Technology Data Exchange (ETDEWEB)

    Degerth, R.; Holmbom, B. [Aabo Akademi, Turku (Finland)

    1998-12-31

    Since more than ten years Flow Cytometry (FCM) has been used for characterization of blood cells and bacteria and has become indispensable for medical and biological use. FCM is able to count thousands of particles per second and simultaneously determine their the type and size ending up in a statistically significant report within less than a minute. The principle of FCM is based on a light excitation of a `lined up` particle stream and a multi-channel determination of scatter and fluorescence. This rapid technology has so far not been used in a greater extent within process industry, except for counting bacteria in milk and beer. BASF of Germany has developed and patented a single-channel fluorescence counter for determination of resin droplets in the process waters of paper making. The FCM, however, is a far more effective and reliable method, being able not only to detect resin droplets but also bacteria, live or dead, as well as other occurring particles. We know we are able to determine bacteria, we have seen resin and we aim to show that FCM is able to give a comprehensive view of the colloidal contents of process waters in paper mills by exploring means to selectively stain the different types of particles. (orig.) 3 refs. CACTUS Research Programme

  6. Alignment of plate-like particles in a colloidal dispersion under flow in a uniform pipe studied by high-energy X-ray diffraction.

    Science.gov (United States)

    Qazi, S Junaid S; Rennie, Adrian R; Wright, Jonathan P; Cockcroft, Jeremy K

    2010-12-21

    High-energy angle-dispersive X-ray diffraction has been used to study the alignment of colloidal suspension of kaolinite particles in water as they flow along a pipe. X-rays with energies above 25 keV have a major advantage, as they can penetrate through thick samples and walls of containers and permit investigation of samples under realistic flow conditions. As an example of the method, flow through a circular cross-section pipe with an internal diameter of 5 mm has been studied: this is typical of industrial applications. The angular distribution of intensities of peaks in the diffraction pattern as a function of the location of the pipe in the X-ray beam provides information about the alignment of particles under flow. Order parameters have been calculated to describe the alignment and direction of orientation. It is observed that the particles align in the direction of flow with their flat faces parallel to the flow. The experimental results are compared with the calculations of the local strain rate that help to explain the onset of alignment of the particles.

  7. Colloidal Thermal Fluids

    Science.gov (United States)

    Lotzadeh, Saba

    In this dissertation, a reversible system with a well controlled degree of particle aggregation was developed. By surface modification of colloidal silica with aminosilanes, interactions among the particles were tuned in a controlled way to produce stable sized clusters at different pH values ranges from well-disposed to a colloidal gel. N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMPE) monolayer on particle surface not only removes all the reactive sites to prevent chemical aggregation, also provides steric stabilization in the absence of any repulsion. After surface modification, electrokinetic behavior of silica particles were changed to that of amino groups, positive in acidic pH and neutral at basic pH values. By tuning the pH, the balance between electrostatic repulsion and hydrophobic interactions was reversibly controlled. As a result, clusters with different sizes were developed. The effect of clustering on the thermal conductivity of colloidal dispersions was quantified using silane-treated silica, a system engineered to exhibit reversible clustering under well-controlled conditions. Thermal conductivity of this system was measured by transient hot wire, the standard method of thermal conductivity measurements in liquids. We show that the thermal conductivity increases monotonically with cluster size and spans the entire range between the two limits of Maxwell's theory. The results, corroborated by numerical simulation, demonstrate that large increases of the thermal conductivity of colloidal dispersions are possible, yet fully within the predictions of classical theory. Numerical calculations were performed to evaluate the importance of structural properties of particles/aggregates on thermal conduction in colloidal particles. Thermal conductivity of non-spherical particles including hollow particles, cubic particles and rods was studied using a Monte Carlo algorithm. We show that anisotropic shapes, increase conductivity above that of isotropic

  8. Effects of vertical confinement on gelation and sedimentation of colloids.

    Science.gov (United States)

    Razali, Azaima; Fullerton, Christopher J; Turci, Francesco; Hallett, James E; Jack, Robert L; Royall, C Patrick

    2017-05-03

    We consider the sedimentation of a colloidal gel under confinement in the direction of gravity. The confinement allows us to compare directly experiments and computer simulations, for the same system size in the vertical direction. The confinement also leads to qualitatively different behaviour compared to bulk systems: in large systems gelation suppresses sedimentation, but for small systems sedimentation is enhanced relative to non-gelling suspensions, although the rate of sedimentation is reduced when the strength of the attraction between the colloids is strong. We map interaction parameters between a model experimental system (observed in real space) and computer simulations. Remarkably, we find that when simulating the system using Brownian dynamics in which hydrodynamic interactions between the particles are neglected, we find that sedimentation occurs on the same timescale as the experiments. An analysis of local structure in the simulations showed similar behaviour to gelation in the absence of gravity.

  9. Effect of iron-containing intermetallic particles on the corrosion behaviour of aluminium

    Energy Technology Data Exchange (ETDEWEB)

    Ambat, Rajan [Department of Manufacturing and Management, Technical University of Denmark, DK 2800 Kgs. Lyngby (Denmark)]. E-mail: ambat@ipl.dtu.dk; Davenport, Alison J. [Metallurgy and Materials, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Scamans, Geoff M. [Innoval Technology Limited, Banbury, Oxfordshire (United Kingdom); Afseth, Andreas [Alcan Technology and Management, CH-8212 Neuhausen (Switzerland)

    2006-11-15

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples that had been subsequently annealed to promote precipitation of Al{sub 3}Fe intermetallic particles, it was found that annealing increases both the cathodic and anodic reactivity. The increased cathodic reactivity is believed to be directly related to the increased available surface area of the iron-containing intermetallic particles acting as preferential sites for oxygen reduction and hydrogen evolution. These particles also act as pit initiation sites. Heat treatment also causes depletion in the solute content of the matrix, increasing its anodic reactivity. When breakdown occurs, crystallographic pits are formed with {l_brace}1 0 0{r_brace} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of aluminium is thus influenced by the presence of low levels of iron, which is one of the main impurities, and its electrochemical behaviour can be controlled by heat treatment.

  10. Contrasting impact of organic and inorganic nanoparticles and colloids on the behavior of particle-reactive elements in tropical estuaries: An experimental study

    Science.gov (United States)

    Merschel, Gila; Bau, Michael; Dantas, Elton Luiz

    2017-01-01

    Estuarine processes may affect the flux of dissolved organic carbon (DOC), iron and other particle-reactive elements such as the rare earth elements and yttrium (REY), into the ocean via salt-induced coagulation and subsequent removal of river-borne (nano-)particles and colloids. We experimentally assessed the impact of the admixture of seawater on DOC, Fe and REY associated with inorganic and organic nanoparticles and colloids (NPCs) present in tropical rivers, using Rio Solimões and Rio Negro, which are particularly rich in inorganic and organic NPCs, respectively, as river water endmembers. Similar to the conservative elements Sr, Rb and U, DOC behaves conservatively in all mixing experiments, whereas strong removal of Fe and REY (and preferential removal of light over heavy REY and of Ce relative to La and Pr) is confined to experiments with inorganic NPC-rich Rio Solimões water. This removal already occurs at very low salinity and is due to the aggregation of the inorganic NPCs. However, REY removal efficiency increases gradually with increasing salinity, which is in marked contrast to DOC-poor Arctic river waters from which REY removal at lowest salinity is significantly stronger. This suggests that the DOC concentrations in the water have a profound impact on the estuarine mixing behavior of particle-reactive elements. In marked contrast to the Rio Solimões mixing experiment, Fe and the REY in experiments with Rio Negro water behave similarly to DOC and mix conservatively with seawater, indicating that the organic NPCs, most of which are humic and fulvic acids, and their associated trace elements are much less susceptible to coagulation and estuarine removal than inorganic ones. Even at higher salinities, estuarine REY removal from inorganic NPC-rich Rio Solimões water significantly exceeds REY removal from organic NPC-rich Rio Negro water. Hence, the combination of higher element concentrations in and of less estuarine removal from organic NPC

  11. Colloid characterization and quantification in groundwater samples

    Energy Technology Data Exchange (ETDEWEB)

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  12. Flocking ferromagnetic colloids.

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  13. Does colloid shape affect detachment of colloids by a moving air-water interface?

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  14. Different behaviour of molecules in dark SERS state on colloidal Ag nanoparticles estimated by truncated power law analysis of blinking SERS.

    Science.gov (United States)

    Kitahama, Yasutaka; Araki, Daichi; Yamamoto, Yuko S; Itoh, Tamitake; Ozaki, Yukihiro

    2015-09-07

    For single colloidal Ag nanoaggregates, covered with either large or small amounts of citrate anions, blinking surface-enhanced Raman scattering (SERS) of anionic thiacyanine was measured and analyzed by a truncated power law. The power law without and with an exponential function reproduces a probability distribution for bright and dark SERS events versus their duration times, respectively. On the Ag surface, except for junctions of the nanoaggregate with a large or small amount of the citrate anions, two-dimensional fast or one-dimensional slow random walk of the anionic thiacyanine, respectively, was estimated by the exponents and the truncation times in the power law for the dark SERS events. In addition, the power law exponents for the bright SERS events were derived to be of similar values, indicating a similar molecular random walk near the junction, which may be dominated evenly by a surface-plasmon-enhanced electromagnetic field on the same-sized Ag nanoaggregate. Thus, not only the bright SERS, but also the dark SERS molecular behaviour on the Ag surface was investigated by the truncated power law analysis.

  15. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.

    Science.gov (United States)

    Pi, Mengwei; Yang, Tingting; Yuan, Jianjun; Fujii, Syuji; Kakigi, Yuichi; Nakamura, Yoshinobu; Cheng, Shiyuan

    2010-07-01

    The nanoparticles composed of polystyrene core and poly[2-(diethylamino)ethyl methacrylate] (PDEA) hairy shell were used as colloidal templates for in situ silica mineralization, allowing the well-controlled synthesis of hybrid silica core-shell nanoparticles with raspberry-like morphology and hollow silica nanoparticles by subsequent calcination. Silica deposition was performed by simply stirring a mixture of the polymeric core-shell particles in isopropanol, tetramethyl orthosilicate (TMOS) and water at 25 degrees C for 2.5h. No experimental evidence was found for nontemplated silica formation, which indicated that silica deposition occurred exclusively in the PDEA shell and formed PDEA-silica hybrid shell. The resulting hybrid silica core-shell particles were characterized by transmission electron microscopy (TEM), thermogravimetry, aqueous electrophoresis, and X-ray photoelectron spectroscopy. TEM studies indicated that the hybrid particles have well-defined core-shell structure with raspberry morphology after silica deposition. We found that the surface nanostructure of hybrid nanoparticles and the composition distribution of PDEA-silica hybrid shell could be well controlled by adjusting the silicification conditions. These new hybrid core-shell nanoparticles and hollow silica nanoparticles would have potential applications for high-performance coatings, encapsulation and delivery of active organic molecules. 2010 Elsevier B.V. All rights reserved.

  16. Photosensitive polyaniline colloidal particles prepared by enzymatic polymerization using the azopolymer DMA-co-AZAAm as stabilizer

    Energy Technology Data Exchange (ETDEWEB)

    Gueizado-Rodriguez, M., E-mail: marisolguizado@uaem.mx [Centro de Investigacion en Ingenieria y Ciencias Aplicadas (CIICAp), Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad No. 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico); Lopez-Tejeda, M. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas (CIICAp), Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad No. 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico); Escalante, J.; Guerrero-Alvarez, J.A. [Centro de Investigaciones Quimicas (CIQ), Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad No. 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico); Nicho, M.E. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas (CIICAp), Universidad Autonoma del Estado de Morelos (UAEM), Av. Universidad No. 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos (Mexico)

    2010-11-01

    Water-dispersible polyaniline colloids with photosensitivity were prepared by enzymatic polymerization using the photo- and temperature-responsive azopolymer: N,N-dimethylacrilamide (DMA)-co-N-4-phenylazo-phenylacrylamide (AZAAm) copolymer, poly(DMA-co-AZAAm), as steric stabilizer. The resulting polyaniline nanoparticles showed an interesting photoisomerization behavior in water solution, as indicated by {sup 1}H NMR and UV-vis spectra obtained after irradiation with UV light at 365 nm. Its comparative analysis with poly(DMA-co-AZAAm) was realized. The effect of the steric stabilizer on the morphology of the polyaniline was studied by AFM and SEM analysis of the polyaniline synthesized with and without azopolymer. Additional characterization such as molecular weight and infrared spectra were performed.

  17. The effect of particle size on the dehydration/rehydration behaviour of lactose.

    Science.gov (United States)

    Crisp, J L; Dann, S E; Edgar, M; Blatchford, C G

    2010-05-31

    Ethanolic suspensions of spray dried and micronized alpha lactose monohydrate (L(alpha)xH(2)O) with average particle size between 3 and 200 microm, have been prepared and their dehydration behaviour was investigated by (13)C CP-MASNMR spectroscopy. Sub-micron lactose suspension prepared by a novel high pressure homogenisation method has been compared with the standard ethanolic suspensions of (L(alpha).H(2)O prepared by reflux or static room temperature methods. In all cases, suspensions were shown to contain the stable anhydrous form of lactose ((L(alpha)(S)). Several approaches were employed to remove ethanol from these suspensions and the resulting dry lactose powders were then analysed by FT-IR, PXRD and SEM to evaluate the effect of drying procedure on type and distribution of lactose polymorphs and particle size. For samples with mean particle size greater than 1 microm, the stable anhydrous polymorphic form of lactose was retained on removal of the ethanol, although differences in the morphology and particle size of the crystals were apparent depending on method of suspension formation. Sub-micron (L(alpha)(S), while stable in dry conditions, has been shown to be less stable to atmospheric water vapour than (L(alpha)(S) with particle size between 3 and 200 microm. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. Fabrication of metal half-shells using colloidal particle monolayer and their application in surface-enhanced Raman scattering.

    Science.gov (United States)

    Taniguchi, Yuichi; Endo, Hiroshi; Kawai, Takeshi

    2012-01-01

    Three types of Au shells, an isolated half-shell, one-dimensional strings of shells, and two-dimensional films, were fabricated by using a monolayer of polystyrene (PS) particles with diameters of 213, 560, and 1360 nm. The three types of Au shells that were removed from the PS particle monolayer and the as-deposited Au shells that adhered to PS particles were modified with 4-mercaptopyridine for use as platforms for surface-enhanced Raman scattering (SERS). We examined the effects of the shapes and sizes of Au shells on their SERS efficiency and found that the Au shells exhibited strong SERS signals and that Au shells prepared by using 560-nm PS particles were the most suitable platform for SERS at both 632.8- and 785-nm excitations. Further, we found that SERS enhancements depended on the shape of Au shells and on whether Au shells adhered to PS particles or not.

  19. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  20. 1,4-Benzodiazepine drugs adsorption on the Ag colloidal surface

    Science.gov (United States)

    Cîntã, S.; Iliescu, T.; Astilean, S.; David, L.; Cozar, O.; Kiefer, W.

    1999-05-01

    The adsorption behaviour in the SERS complex of diazepam (7-chloro-1-methyl-5-phenyl-3-dihydro-1,4-benzodiazepin-2-one) and nitrazepam (1,3-dihydro-7-nitro-5-phenyl-1,4-benzodiazepin-2-one) with the Ag colloidal particles is reported and discussed. In both cases, the CN bond vibration of the 1,4-benzodiazepine is strongly affected by adsorption and enhanced. The SERS system of Ag colloid with diazepam or nitrazepam allow the recognition of the drug sample at concentration of 10 -7 mol l -1.

  1. Waterborne, all-polymeric, colloidal ‘raspberry’ particles with controllable hydrophobicity and water droplet adhesion properties

    Energy Technology Data Exchange (ETDEWEB)

    Telford, Andrew M. [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Easton, Christopher D. [CSIRO Manufacturing Flagship, Clayton South, VIC 3169 (Australia); Hawkett, Brian S. [School of Chemistry, The University of Sydney, NSW 2006 (Australia); Neto, Chiara, E-mail: Chiara.neto@sydney.edu.au [School of Chemistry, The University of Sydney, NSW 2006 (Australia)

    2016-03-31

    We present a superhydrophobic coating made from waterborne, all-polymeric ‘raspberry’ particles, composed of a micrometric spherical core decorated with a corona of nanometric spherical particles. As-cast particles produced hydrophobic coatings that were highly adhesive to almost-spherical droplets of water, resembling the properties of some types of rose petals. The coatings could be made slippery to spherical water droplets, like the lotus leaf, by surface activation with air plasma followed by reaction with an alkyl-trichlorosilane. The silanisation of films of latex particles was investigated on two model surfaces (a flat polystyrene film and a monolayer of polystyrene waterborne microparticles) by X-ray photoelectron spectroscopy and water contact angle measurements, and applied to our recently-developed ‘raspberry’ particles to produce a superhydrophobic coating. - Highlights: • We have prepared superhydrophobic films using all-polymeric ‘raspberry’ particles. • We have prepared both ‘rose petal’ and ‘lotus leaf’ surfaces. • We have investigated the silanisation of complex latex particles.

  2. Effect of Iron-Containing Intermetallic Particles on the Corrosion Behaviour of Aluminium

    DEFF Research Database (Denmark)

    Ambat, Rajan

    2006-01-01

    The effect of heat treatment on the corrosion behaviour of binary Al-Fe alloys containing iron at levels between 0.04 and 0.42 wt.% was investigated by electrochemical measurements in both acidic and alkaline chloride solutions. Comparing solution heat-treated and quenched materials with samples...... with {100} facets, and are observed to contain numerous intermetallic particles. Fine facetted filaments also radiate out from the periphery of pits. The results demonstrate that the corrosion of "pure" 99.96% Al is thus dominated by the role of iron, which is the main impurity, and its electrochemical...

  3. Reductant Control on Particle Size, Size Distribution and Morphology in the Process of Surface Enhanced Raman Spectroscopy Active Silver Colloid Synthesis.

    Science.gov (United States)

    Roy, Chandra Nath; Ghosh, Debasmita; Mondal, Somrita; Saha, Abhijit

    2015-02-01

    The present study demonstrates how reducing agents play an important role in synthesis of silver nanoparticles (AgNPs) in colloidal phase. It is apparent from the observed results that borohydride, one of the most widely used reductants, induces reduction leading to the formation of spherical particles with narrowest size distribution. In contrast, ascorbic or citrate mediated reduction leads to formation of anisotropic silver nanoparticles, indicating the role of anionic carboxylate in template driving process. In view of recent green chemistry approach for synthesizing silver nanoparticles involving glucose as reductant and starch as capping groups, we have followed in detail the dependence of glucose-induced reduction process on different synthesis parameters, such as concentration, temperature and time of reactions. The phase of the synthesized particles was found to be face centred cubic (fcc), which was independent of the reductants employed. Further, we have endeavored to look into the Surface enhanced Raman spectroscopy (SERS) of crystal violet and rhodamine 6G in the presence of AgNPs substrate synthesized by using the reducing agents in question without involving any other structural modulating additive, such as ionic salt, etc. Here, the observed results provide a guideline on the selection of reducing agents and appropriate conditions for application specific synthesis of silver nanoparticles.

  4. Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle-substrate chemistry and morphology, and of operating conditions.

    Science.gov (United States)

    Darwich, Samer; Mougin, Karine; Rao, Akshata; Gnecco, Enrico; Jayaraman, Shrisudersan; Haidara, Hamidou

    2011-01-01

    One key component in the assembly of nanoparticles is their precise positioning to enable the creation of new complex nano-objects. Controlling the nanoscale interactions is crucial for the prediction and understanding of the behaviour of nanoparticles (NPs) during their assembly. In the present work, we have manipulated bare and functionalized gold nanoparticles on flat and patterned silicon and silicon coated substrates with dynamic atomic force microscopy (AFM). Under ambient conditions, the particles adhere to silicon until a critical drive amplitude is reached by oscillations of the probing tip. Beyond that threshold, the particles start to follow different directions, depending on their geometry, size and adhesion to the substrate. Higher and respectively, lower mobility was observed when the gold particles were coated with methyl (-CH(3)) and hydroxyl (-OH) terminated thiol groups. This major result suggests that the adhesion of the particles to the substrate is strongly reduced by the presence of hydrophobic interfaces. The influence of critical parameters on the manipulation was investigated and discussed viz. the shape, size and grafting of the NPs, as well as the surface chemistry and the patterning of the substrate, and finally the operating conditions (temperature, humidity and scan velocity). Whereas the operating conditions and substrate structure are shown to have a strong effect on the mobility of the particles, we did not find any differences when manipulating ordered vs random distributed particles.

  5. Emergent behavior in active colloids

    OpenAIRE

    Zöttl, Andreas; Stark, Holger

    2016-01-01

    Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how articial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk and in confinement, as well as in the presence of gravity, field gradients, and fluid flow. In the thi...

  6. Influence of pH, particle size and crystal form on dissolution behaviour of engineered nanomaterials.

    Science.gov (United States)

    Avramescu, M-L; Rasmussen, P E; Chénier, M; Gardner, H D

    2017-01-01

    Solubility is a critical component of physicochemical characterisation of engineered nanomaterials (ENMs) and an important parameter in their risk assessments. Standard testing methodologies are needed to estimate the dissolution behaviour and biodurability (half-life) of ENMs in biological fluids. The effect of pH, particle size and crystal form on dissolution behaviour of zinc metal, ZnO and TiO2 was investigated using a simple 2 h solubility assay at body temperature (37 °C) and two pH conditions (1.5 and 7) to approximately frame the pH range found in human body fluids. Time series dissolution experiments were then conducted to determine rate constants and half-lives. Dissolution characteristics of investigated ENMs were compared with those of their bulk analogues for both pH conditions. Two crystal forms of TiO2 were considered: anatase and rutile. For all compounds studied, and at both pH conditions, the short solubility assays and the time series experiments consistently showed that biodurability of the bulk analogues was equal to or greater than biodurability of the corresponding nanomaterials. The results showed that particle size and crystal form of inorganic ENMs were important properties that influenced dissolution behaviour and biodurability. All ENMs and bulk analogues displayed significantly higher solubility at low pH than at neutral pH. In the context of classification and read-across approaches, the pH of the dissolution medium was the key parameter. The main implication is that pH and temperature should be specified in solubility testing when evaluating ENM dissolution in human body fluids, even for preliminary (tier 1) screening.

  7. Controllable generation and manipulation of micro-bubbles in water with absorptive colloid particles by CW laser radiation

    DEFF Research Database (Denmark)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.

    2017-01-01

    Micrometer-sized vapor-gas bubbles are formed due to local heating of a water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by CW near-infrared (980 nm) laser radiation with controllable power, focused into a 100 mu m spot within a 2 mm suspension...

  8. Pair distribution functions of colloidal particles on a quartz collector in a parallel plate and stagnation point flow chamber

    NARCIS (Netherlands)

    Yang, JL; Busscher, HJ; Bos, R.R.M.

    2000-01-01

    Pair distribution functions of polystyrene particles adhering on a quartz collector surface are compared for a parallel plate (PP) and stagnation point (SP) flow chamber at a common Peclet number and identical surface coverage. Radial pair distribution functions of deposition patterns around the

  9. Bulk and interfacial stresses in suspensions of soft and hard colloids

    Science.gov (United States)

    Truzzolillo, D.; Roger, V.; Dupas, C.; Mora, S.; Cipelletti, L.

    2015-05-01

    We explore the influence of particle softness and internal structure on both the bulk and interfacial rheological properties of colloidal suspensions. We probe bulk stresses by conventional rheology, by measuring the flow curves, shear stress versus strain rate, for suspensions of soft, deformable microgel particles and suspensions of near hard-sphere-like silica particles. A similar behaviour is seen for both kinds of particles in suspensions at concentrations up to the random close packing volume fraction, in agreement with recent theoretical predictions for sub-micron colloids. Transient interfacial stresses are measured by analyzing the patterns formed by the interface between the suspensions and their solvent, due to a generalized Saffman-Taylor hydrodynamic instability. At odds with the bulk behaviour, we find that microgels and hard particle suspensions exhibit vastly different interfacial stress properties. We propose that this surprising behaviour results mainly from the difference in particle internal structure (polymeric network for microgels versus compact solid for the silica particles), rather than softness alone.

  10. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    Science.gov (United States)

    Löwen, Hartmut

    2012-11-01

    Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the

  11. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  12. Crystallization of DNA-coated colloids.

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  13. THE INFLUENCE OF ELECTROLYTES ON THE CATAPHORETIC CHARGE OF COLLOIDAL PARTICLES AND THE STABILITY OF THEIR SUSPENSIONS : II. EXPERIMENTS WITH PARTICLES OF GELATIN, CASEIN, AND DENATURED EGG ALBUMIN.

    Science.gov (United States)

    Loeb, J

    1923-01-20

    1. This paper gives measurements of the influence of various electrolytes on the cataphoretic P.D. of particles of collodion coated with gelatin, of particles of casein, and of particles of boiled egg albumin in water at different pH. The influence of the same electrolyte was about the same in all three proteins. 2. It was found that the salts can be divided into two groups according to their effect on the P.D. at the isoelectric point. The salts of the first group including salts of the type of NaCl, CaCl(2), and Na(2)SO(4) affect the P.D. of proteins at the isoelectric point but little; the second group includes salts with a trivalent or tetravalent ion such as LaCl(3) or Na(4)Fe(CN)(6). These latter salts produce a high P.D. on the isoelectric particles, LaCl(3) making them positively and Na(4)Fe(CN)(6) making them negatively charged. This difference in the action of the two groups of salts agrees with the observations on the effect of the same salts on the anomalous osmosis through collodion membranes coated with gelatin. 3. At pH 4.0 the three proteins have a positive cataphoretic charge which is increased by LaCl(3) but not by NaCl or CaCl(2), and which is reversed by Na(4)Fe(CN)(6), the latter salt making the cataphoretic charge of the particles strongly negative. 4. At pH 5.8 the protein particles have a negative cataphoretic charge which is strongly increased by Na(4)Fe(CN)(6) but practically not at all by Na(2)SO(4) or NaCl, and which is reversed by LaCl(3). the latter salt making the cataphoretic charge of the particles strongly positive. 5. The fact that electrolytes affect the cataphoretic P.D. of protein particles in the same way, no matter whether the protein is denatured egg albumin or a genuine protein like gelatin, furnishes proof that the solutions of genuine proteins such as crystalline egg albumin or gelatin are not diaphasic systems, since we shall show in a subsequent paper that proteins insoluble in water, e.g. denatured egg albumin, are

  14. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Science.gov (United States)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh

    2017-01-01

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  15. Influence of particle size on the low and high strain rate behavior of dense colloidal dispersions of nanosilica

    Energy Technology Data Exchange (ETDEWEB)

    Asija, Neelanchali; Chouhan, Hemant; Gebremeskel, Shishay Amare; Bhatnagar, Naresh, E-mail: nareshb@mech.iitd.ac.in [Indian Institute of Technology Delhi, Mechanical Engineering Department (India)

    2017-01-15

    Shear thickening is a non-Newtonian flow behavior characterized by the increase in apparent viscosity with the increase in applied shear rate, particularly when the shear rate exceeds a critical value termed as the critical shear rate (CSR). Due to this remarkable property of shear-thickening fluids (STFs), they are extensively used in hip protection pads, protective gear for athletes, and more recently in body armor. The use of STFs in body armor has led to the development of the concept of liquid body armor. In this study, the effect of particle size is explored on the low and high strain rate behavior of nanosilica dispersions, so as to predict the efficacy of STF-aided personal protection systems (PPS), specifically for ballistic applications. The low strain rate study was conducted on cone and plate rheometer, whereas the high strain rate characterization of STF was conducted on in-house fabricated split Hopkinson pressure bar (SHPB) system. Spherical nanosilica particles of three different sizes (100, 300, and 500 nm) as well as fumed silica particles of four different specific surface areas (Aerosil A-90, A-130, A-150, and A-200), respectively, were used in this study. The test samples were prepared by dispersing nanosilica particles in polypropylene glycol (PPG) using ultrasonic homogenization method. The low strain rate studies aided in determining the CSR of the synthesized STF dispersions, whereas the high strain rate studies explored the impact-resisting ability of STFs in terms of the impact toughness and the peak stress attained during the impact loading of STF in SHPB testing.

  16. Americium and plutonium association with magnesium hydroxide colloids in alkaline nuclear industry process environments

    Science.gov (United States)

    Maher, Zoe; Ivanov, Peter; O'Brien, Luke; Sims, Howard; Taylor, Robin J.; Heath, Sarah L.; Livens, Francis R.; Goddard, David; Kellet, Simon; Rand, Peter; Bryan, Nick D.

    2016-01-01

    The behaviours of Pu, Am and colloids in feed solutions to the Site Ion-exchange Effluent Plant (SIXEP) at the Sellafield nuclear reprocessing site in the U.K. have been studied. For both Pu and Am, fractions were found to be associated with material in the colloidal size range, with ˜50% of the Pu in the range 1-200 nm. The concentration of soluble Pu (americium hydroxide. The size, morphology and elemental composition of the particulates and colloids in the feed solutions were investigated. Magnesium is homogeneously distributed throughout the particles, whereas U, Si, Fe, and Ca were present in localised areas only. Amongst some heterogeneous material, particles were identified that were consistent with hydrotalcite. The distribution of 241Am(III) on brucite (magnesium hydroxide) colloids of different sizes was studied under alkaline conditions representative of nuclear fuel storage pond and effluent feed solution conditions. The morphology of the brucite particles in the bulk material observed by ESEM was predominantly hexagonal, while that of the carbonated brucite consisted of hexagonal species mixed with platelets. The association of 241Am(III) with the brucite colloids was studied by ultrafiltration coupled with gamma ray-spectrometry. For carbonate concentrations up to 10-3 M, the 241Am(III) was mainly associated with larger colloids (>300 kDa), and there was a shift from the smaller size fractions to the larger over a period of 6 months. At higher carbonate concentrations (10-2 M), the Am was predominantly detected in the true solution fraction (<3 kDa) and in smaller size colloidal fractions, in the range 3-100 kDa.

  17. Biocompatibility of core@shell particles: cytotoxicity and genotoxicity in human osteosarcoma cells of colloidal silica spheres coated with crystalline or amorphous zirconia.

    Science.gov (United States)

    Di Virgilio, A L; Arnal, P M; Maisuls, I

    2014-08-01

    The cytotoxicity and genotoxicity of novel colloidal silica spheres coated with crystalline or amorphous zirconia (SiO2@ZrO2(cryst) or SiO2@ZrO2(am)) have been studied in a human osteosarcoma cell line (MG-63), after 24 h exposure. SiO2@ZrO2(cryst) and SiO2@ZrO2(am) had mean diameters of 782±19 and 891±34 nm, respectively. SiO2@ZrO2(cryst) exposure reduced cell viability, with an increase in reactive oxygen species (ROS) and a decrease of the GSH/GSSG ratio. The comet and micronucleus (MN) assays detected DNA damage at 5 and 25 μg/mL, respectively. SiO2@ZrO2(am) induced genotoxic action only at 10 and 50 μg/mL (comet and MN assays), along with a decrease of the GSH/GSSG ratio at 50 μg/mL. Both particles were found inside the cells, forming vesicles; however, none of them entered the nucleus. Our findings show that crystallization of the shell of the amorphous ZrO2 increases both cytotoxicity and genotoxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Design and fabrication of colloidal polymer nanocomposites

    OpenAIRE

    Wang, T.; Keddie, JL

    2009-01-01

    It is well established that colloidal polymer particles can be used to create organised structures by methods of horizontal deposition, vertical deposition, spin-casting, and surface pattern-assisted deposition. Each particle acts as a building block in the structure. This paper reviews how two-phase (or hybrid) polymer colloids can offer an attractive method to create nanocomposites. Structure in the composite can be controlled at the nanoscale by using such particles. Methods to create armo...

  19. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  20. Stable colloids in molten inorganic salts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  1. Effect of particle size on the dynamic mechanical behaviour and deformed microstructure of SiCp/Al composites

    Energy Technology Data Exchange (ETDEWEB)

    Cao, D F; She, W C [Department of Engineering Structure and Mechanics, Wuhan University of Technology, 430070, Wuhan (China); Liu, L S; Zhai, P C; Zhang, Q J, E-mail: Liulish@whut.edu.cn [State Key Laboratory of Materials Synthesis and Processing, Wuhan University of Technology, 430070 Wuhan (China)

    2011-10-29

    In this paper, the effect of particle size on the dynamic behaviour and deformed microstructure in pure Al matrix composites reinforced with 30% ansd 40% volume fraction of 6, 13.5 and 50 {mu}m SiC particles was investigated by using split Hopkinson pressure bar (SHPB). Firstly, the dynamic compressive stress-strain curves of SiCp/Al composites with 3 different particle sizes were obtained and the effect of the particle size on the stress-strain relationship was studied by a comparison analysis. Furthermore, the microstructure characteristics after the impact were observed by the scanning electron microscopy(SEM). The microstructure of SiCp/Al composites with 3 different particle sizes after the impact was compared. The results have demonstrated that the dynamic mechanical behaviour and the microstructure after the impact strongly depends on the particle size. The cracked particles and debonding are more readily observed in the composites reinforced with large particles than those in the composites with small particles.

  2. Particle Shape Effect on Macroscopic Behaviour of Underground Structures: Numerical and Experimental Study

    Directory of Open Access Journals (Sweden)

    Szarf Krzysztof

    2015-02-01

    Full Text Available The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also on the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain-grain and grain-structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed, being affected by a number of factors such as particle shape, pipe friction and pipe stiffness.

  3. Chancellor Water Colloids: Characterization and Radionuclide Association

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Amr I. [Los Alamos National Laboratory

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  4. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and

  5. Colloidal glasses

    Indian Academy of Sciences (India)

    ... state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the concentration of the jamming entity above random loose packing threshold leading to a disordered state. Common examples: toothpaste, hair gel, shaving foam, concentrated suspensions, emulsions, etc.

  6. Manipulating colloids with charges and electric fields

    NARCIS (Netherlands)

    Leunissen, M.E.

    2007-01-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their

  7. Dynamics of colloidal crystals in shear flow

    NARCIS (Netherlands)

    Derks, D.; Wu, Y.L.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole are studied by using a home-built counter rotating shear cell in combination with confocal

  8. Structure and Dynamics at Colloidal Boundaries

    NARCIS (Netherlands)

    de Villeneuve, V.W.A.

    2008-01-01

    This thesis is made up of several studies of boundaries occurring in colloidal hard sphere crystals and phase separated colloid-polymer mixtures. These boundaries can be studied on the particle level, in real space and in real time by confocal microscopy. A general introduction on the experimental

  9. Binary Colloidal Alloy Test Conducted on Mir

    Science.gov (United States)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and

  10. Particles in water properties and processes

    CERN Document Server

    Gregory, John

    2005-01-01

    INTRODUCTION Particles in the Aquatic Environment Colloidal Aspects PARTICLE SIZE AND RELATED PROPERTIES Particle Size and Shape Particle Size Distributions Particle Transport Light Scattering and Turbidity Measurement of Particle Size SURFACE CHARGE Origin of Surface Charge The Electrical Double Layer Electrokinetic Phenomena COLLOID INTERACTIONS AND COLLOID STABILITY Colloid Interactions - General Concepts van der Waals Interaction Electrical Double Layer Interaction Combined Interaction - DLVO Theory Non-DLVO Interactions AGGREGATION KINETICS Collision Frequency - Smoluchow

  11. Colloidal rods and spheres in partially miscible binary liquids

    OpenAIRE

    Hijnen, Niek

    2013-01-01

    Different scenarios for assembling rod-like and spherical colloidal particles using binary mixtures of partially miscible liquids were investigated experimentally. Suitable rod-like colloids were developed first. The subsequent studies of colloids in binary liquids consisted, on one hand, of systems where particles were partially wetted by both phases and, on the other hand, of systems where particles were completely wetted by the minority phase. A simple method to prepare l...

  12. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  13. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  14. Ectomycorrhizal Influence on Particle Size, Surface Structure, Mineral Crystallinity, Functional Groups, and Elemental Composition of Soil Colloids from Different Soil Origins

    OpenAIRE

    Li, Yanhong; Wang, Huimei; Wang, Wenjie; Yang, Lei; Zu, Yuangang

    2013-01-01

    Limited data are available on the ectomycorrhizae-induced changes in surface structure and composition of soil colloids, the most active portion in soil matrix, although such data may benefit the understanding of mycorrhizal-aided soil improvements. By using ectomycorrhizae (Gomphidius viscidus) and soil colloids from dark brown forest soil (a good loam) and saline-alkali soil (heavily degraded soil), we tried to approach the changes here. For the good loam either from the surface or deep soi...

  15. Colloid dispersion on the pore scale.

    Science.gov (United States)

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard

    2010-02-01

    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale. Copyright 2009 Elsevier Ltd. All rights reserved.

  16. Polypropylene-rubber blends 4: the effect of the rubber particle size on the fracture behaviour at low and high test speed

    NARCIS (Netherlands)

    van der Wal, A.; Wal, A.; Verheul, A.J.J.; Gaymans, R.J.

    1999-01-01

    The effect of the rubber particle size and rubber content on the fracture behaviour of polypropylene–EPR blends was studied at low and high test speeds. The particle size was varied by changing the molecular weight of the EPR phase, and ranged from about 0.5 to around 4.0 μm. The fracture behaviour

  17. Liquid crystalline nanosheet colloids with controlled particle size obtained by exfoliating single crystal of layered niobate k(4)nb(6)o(17).

    Science.gov (United States)

    Miyamoto, Nobuyoshi; Nakato, Teruyuki

    2004-05-20

    Colloidally dispersed niobate nanosheets with the thickness of 1.8 nm and controlled mean lateral sizes of 0.15-7.8 mum were prepared and their liquid crystallinity was examined. The nanosheet colloids with different lateral sizes were obtained by exfoliation of single crystals of layered niobate K4Nb6O17 and subsequent ultrasonication. Naked-eye and microscope observations of the nanosheet colloids between crossed polarizers revealed liquid crystallinity of the sols characterized by birefringence as functions of the lateral sizes and concentration of the nanosheets. The nanosheet colloids with smaller lateral sizes (0.15-1.9 mum) varied from isotropic to biphasic (isotropic + liquid crystalline), and finally to fully liquid crystalline states as the colloid concentration increased. The phase transition concentrations (from isotropic to biphasic and biphasic to liquid crystalline) decreased with increasing aspect ratio (lateral-to-thickness ratio) of the nanosheets, almost in accordance with the prediction by Onsager theory, indicating that the liquid crystallinity is explained basically by excluded-volume effect between the nanosheets. On the other hand, the colloids with larger lateral sizes (6.2 and 7.8 mum) stably kept liquid crystalline state even at very low concentration (5.1 x 10-6 in volume fraction), which was much lower than that expected from the theory.

  18. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    Science.gov (United States)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  19. Mechanical Failure in Colloidal Gels

    Science.gov (United States)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  20. Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    Abstract. Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic com- position. The distinction lies in the phase distribution of the impurity-ion species. ... near the driven electrode by use of video laser scanning. Moreover, many workers for solid particles termed as the dust grains or grains reported ...

  1. Effects of small particle numbers on long-term behaviour in discrete biochemical systems.

    Science.gov (United States)

    Kreyssig, Peter; Wozar, Christian; Peter, Stephan; Veloz, Tomás; Ibrahim, Bashar; Dittrich, Peter

    2014-09-01

    The functioning of many biological processes depends on the appearance of only a small number of a single molecular species. Additionally, the observation of molecular crowding leads to the insight that even a high number of copies of species do not guarantee their interaction. How single particles contribute to stabilizing biological systems is not well understood yet. Hence, we aim at determining the influence of single molecules on the long-term behaviour of biological systems, i.e. whether they can reach a steady state. We provide theoretical considerations and a tool to analyse Systems Biology Markup Language models for the possibility to stabilize because of the described effects. The theory is an extension of chemical organization theory, which we called discrete chemical organization theory. Furthermore we scanned the BioModels Database for the occurrence of discrete chemical organizations. To exemplify our method, we describe an application to the Template model of the mitotic spindle assembly checkpoint mechanism. http://www.biosys.uni-jena.de/Services.html. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  2. Light driven assembly of active colloids

    Science.gov (United States)

    Aubret, Antoine; Mena, Youssef; Ramananarivo, Sophie; Sacanna, Stefano; Palacci, Jeremie

    Self-propelled particles (SPP) are a key tool since they are of relative simplicity as compared to biological micro-entities and provide a higher level of control. They can convert an energy source into motion and work, and exhibit surprising non-equilibrium behavior. In our work, we focus on the manipulation of colloids using light. We exploit osmotic and phoretic effects to act on single and ensemble of colloids. The key mechanism relies on the photocatalytic decomposition of hydrogen peroxide using hematite, which triggers the motion of colloids around it when illuminated. We use hematite particles and particles with photocatalytic inclusions (i.e. SPP). We first show that the interactions between hematite and colloidal tracers can be tuned by adjusting the chemical environment. Furthermore, we report a phototaxic behavior (migration in light gradient) of the particles. From this, we explore the effect of spatio-temporal modulation of the light to control the motion of colloids at the single particle level, and to generate self-assembled colloidal structures through time and space. The so-formed structures are maintained by phoretic and hydrodynamic forces resulting from the motion of each particles. Ultimately, a dynamic light modulation may be a route for the creation of act

  3. Flow of colloidal solids and fluids through constrictions: dynamical density functional theory versus simulation.

    Science.gov (United States)

    Zimmermann, Urs; Smallenburg, Frank; Löwen, Hartmut

    2016-06-22

    Using both dynamical density functional theory and particle-resolved Brownian dynamics simulations, we explore the flow of two-dimensional colloidal solids and fluids driven through a linear channel with a constriction. The flow is generated by a constant external force acting on all colloids. The initial configuration is equilibrated in the absence of flow and then the external force is switched on instantaneously. Upon starting the flow, we observe four different scenarios: a complete blockade, a monotonic decay to a constant particle flux (typical for a fluid), a damped oscillatory behaviour in the particle flux, and a long-lived stop-and-go behaviour in the flow (typical for a solid). The dynamical density functional theory describes all four situations but predicts infinitely long undamped oscillations in the flow which are always damped in the simulations. We attribute the mechanisms of the underlying stop-and-go flow to symmetry conditions on the flowing solid. Our predictions are verifiable in real-space experiments on magnetic colloidal monolayers which are driven through structured microchannels and can be exploited to steer the flow throughput in microfluidics.

  4. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  5. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  6. Measuring colloidal osmotic compressibility of a polymer-crowded colloidal suspension by optical trapping

    Science.gov (United States)

    Fu, Jinxin; Kara, Vural; Ou-Yang, H. Daniel

    2013-03-01

    Particle interactions determine the stability of nanoparticle suspensions and the phase separation of particle-polymer mixtures. However, due to the small sizes of the dispersed nanoparticles, it is not easy to directly measure interaction forces between particles in a colloidal suspension. In this paper, we propose an ``Optical Bottle'' approach to quantify these particle interactions in a suspension by measuring the colloidal osmotic compressibility of the nanoparticles. Virial expansion of the colloidal osmotic compressibility yields virial coefficients of different orders. The second order virial coefficient of aqueous suspensions of colloidal polystyrene nanospheres in the presence of high-salt (KCl) and polyethylene glycol (PEG) is found to decrease with increasing PEG concentration, suggesting an attractive depletion interaction between the PEG-crowed polystyrene particles.

  7. Rotational averaging-out gravitational sedimentation of colloidal dispersions and phenomena

    OpenAIRE

    Masri, Djamel El; Vissers, Teun; Badaire, Stephane; Stiefelhagen, Johan C. P.; Vutukuri, Hanumantha Rao; Helfferich, Peter; Zhang, Tian Hui; Kegel, Willem K; Imhof, Arnout; van Blaaderen, Alfons

    2011-01-01

    We report on the differences between colloidal systems left to evolve in the earth's gravitational field and the same systems for which a slow continuous rotation averaged out the effects of particle sedimentation on a distance scale small compared to the particle size. Several systems of micron-sized colloidal particles were studied: a hard sphere fluid, colloids interacting via long-range electrostatic repulsions above the freezing volume fraction, an oppositely charged colloidal system clo...

  8. Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries

    Science.gov (United States)

    Lee, Jung-Ran; Won, Ji-Hye; Kim, Jong Hun; Kim, Ki Jae; Lee, Sang-Young

    2012-10-01

    A facile approach to the fabrication of nanoporous structure-tuned nonwoven composite separators is demonstrated for application in high-safety/high-rate lithium-ion batteries. This strategy is based on the construction of silica (SiO2) colloidal particle-assisted nanoporous structure in a poly(ethylene terephthalate) (PET) nonwoven substrate. The nanoparticle arrangement arising from evaporation-induced self-assembly of SiO2 colloidal particles allows the evolution of the unusual nanoporous structure, i.e. well-connected interstitial voids formed between close-packed SiO2 particles adhered by styrene-butadiene rubber (SBR) binders. Meanwhile, the PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The aforementioned structural novelty of the nonwoven composite separator plays a key role in providing the separator with advantageous characteristics (specifically, good electrolyte wettability, high ionic conductivity, and benign compatibility with electrodes), which leads to the better cell performance than a commercialized polyethylene (PE) separator.

  9. Colloidal spirals in nematic liquid crystals.

    Science.gov (United States)

    Senyuk, Bohdan; Pandey, Manoj B; Liu, Qingkun; Tasinkevych, Mykola; Smalyukh, Ivan I

    2015-12-07

    One of the central experimental efforts in nematic colloids research aims to explore how the interplay between the geometry of particles along with the accompanying nematic director deformations and defects around them can provide a means of guiding particle self-assembly and controlling the structure of particle-induced defects. In this work, we design, fabricate, and disperse low-symmetry colloidal particles with shapes of spirals, double spirals, and triple spirals in a nematic fluid. These spiral-shaped particles, which are controlled by varying their surface functionalization to provide tangential or perpendicular boundary conditions of the nematic molecular alignment, are found inducing director distortions and defect configurations with non-chiral or chiral symmetry. Colloidal particles also exhibit both stable and metastable multiple orientational states in the nematic host, with a large number of director configurations featuring both singular and solitonic nonsingular topological defects accompanying them, which can result in unusual forms of colloidal self-assembly. Our findings directly demonstrate how the symmetry of particle-generated director configurations can be further lowered, or not, as compared to the low point group symmetry of solid micro-inclusions, depending on the nature of induced defects while satisfying topological constraints. We show that achiral colloidal particles can cause chiral symmetry breaking of elastic distortions, which is driven by complex three-dimensional winding of induced topological line defects and solitons.

  10. Sub-micron particle behaviour and capture at an immuno-sensor surface in an ultrasonic standing wave.

    Science.gov (United States)

    Kuznetsova, Larisa A; Martin, Stacey P; Coakley, W Terence

    2005-12-15

    The capture of 200 nm biotinylated latex beads from suspensions of concentration 10(7) to 2.5 x 10(8) particle/ml on an immuno-coated surface of the acoustic reflector in an ultrasound standing wave (USW) resonator has been studied while the acoustic pathlength was less than one half wavelength (lambda/2). The particles were delivered to the reflector's surface by acoustically induced flow. The capture dependencies on suspension concentration, duration of experiments and acoustic pressure have been established at 1.09, 1.46 and 1.75 MHz. Five-fold capture increase has been obtained at 1.75 MHz in comparison to the control (no ultrasound) situation. The contrasting behaviours of 1, 0.5 and 0.2 mum fluorescent latex beads in a lambda/4 USW resonator at 1.46 MHz have been characterized. The particle movements were observed with an epi-fluorescent microscope and the velocities of the particles were measured by particle image velocimetry (PIV). The experiments showed that whereas the trajectories of 1 mum particles were mainly affected by the direct radiation force, 0.5 mum particles were influenced both by the radiation force and acoustic streaming. The 0.2 mum latex beads followed acoustic streaming in the chamber and were not detectably affected by the radiation force. The streaming-associated behaviour of the 200 nm particles has implications for enhanced immunocapture of viruses and macromolecules (both of which are also too small to experience significant acoustic radiation force).

  11. Microbial effects on colloidal agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  12. The effect of rock particles and D2O replacement on the flow behaviour of ice.

    Science.gov (United States)

    Middleton, Ceri A; Grindrod, Peter M; Sammonds, Peter R

    2017-02-13

    Ice-rock mixtures are found in a range of natural terrestrial and planetary environments. To understand how flow processes occur in these environments, laboratory-derived properties can be extrapolated to natural conditions through flow laws. Here, deformation experiments have been carried out on polycrystalline samples of pure ice, ice-rock and D2O-ice-rock mixtures at temperatures of 263, 253 and 233 K, confining pressure of 0 and 48 MPa, rock fraction of 0-50 vol.% and strain-rates of 5 × 10-7 to 5 × 10-5 s-1 Both the presence of rock particles and replacement of H2O by D2O increase bulk strength. Calculated flow law parameters for ice and H2O-ice-rock are similar to literature values at equivalent conditions, except for the value of the rock fraction exponent, here found to be 1. D2O samples are 1.8 times stronger than H2O samples, probably due to the higher mass of deuterons when compared with protons. A gradual transition between dislocation creep and grain-size-sensitive deformation at the lowest strain-rates in ice and ice-rock samples is suggested. These results demonstrate that flow laws can be found to describe ice-rock behaviour, and should be used in modelling of natural processes, but that further work is required to constrain parameters and mechanisms for the observed strength enhancement.This article is part of the themed issue 'Microdynamics of ice'. © 2016 The Author(s).

  13. Experimental determination of particle size distributions in colloidal systems by dynamic light scattering. Application to polystyrene latex spheres and to nonionic microemulsions

    NARCIS (Netherlands)

    Eshuis, A.; Harbers, G.; Doornink, D.J.; Mijnlieff, P.F.

    1985-01-01

    Information about polydisperse colloidal systems was obtained by dynamic light scattering. The correlation functions obtained were analyzed by the histogram method and the method of cumulants. The former was, as a test, applied to a nearly monodispere polystyrene latex. The agreement between the

  14. Anisotropic Model Colloids

    NARCIS (Netherlands)

    van Kats, C.M.

    2008-01-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  15. Colloidal liquid crystal reinforced nanocomposites

    OpenAIRE

    Ozdilek, C.

    2006-01-01

    The main objective of this research is to investigate the use of colloidal Boehmite rods as reinforcement filler for polymer nanocomposites and to introduce them as an alternative to the well-known clay systems. Since Boehmite rods have been studied for many years as a model nematic system, the motivation was to explore some additional properties which could arise from their nematic behaviour in a polymer matrix. The Boehmite system was expected to retain the nematic behavior in the polymer m...

  16. Stability and aggregation of nanoscale titanium dioxide particle (nTiO2): Effect of cation valence, humic acid, and clay colloids.

    Science.gov (United States)

    Tang, Zhong; Cheng, Tao

    2018-02-01

    Fate and transport of engineered nanoscale titanium dioxide (nTiO 2 ) have received much attention during the past decade. The aggregation and stability of nTiO 2 in water with complicated components, however, have not been fully examined. The objective of this paper is to determine the individual and synergistic effect of cation valence, humic acid, and clay colloids on nTiO 2 stability and aggregation, and elucidate the related mechanisms. We conducted systematic laboratory experiments to determine nTiO 2 stability and aggregation in NaCl and MgCl 2 solutions, both in the absence and presence of humic acid and illite colloids. Results showed that Mg 2+ , in comparison to Na + , could make the zeta potential of nTiO 2 more positive, and shift the point of zero charge of nTiO 2 (pH pzc,TiO2 ) towards higher pH. We also found that nTiO 2 are destabilized by illite colloids at pH colloids at higher pH. HA was found to make nTiO 2 stable via electrostatic and steric effects, both in the absence and presence of illite colloids. Calculated interaction energy based on DLVO theory revealed that instability of the nTiO 2 suspensions is mainly caused by primary minima, and that secondary minima normally do not destabilize the suspension, even though they are found to promote aggregation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Colloids in Flatland: a perspective on 2D phase-separated systems, characterisation methods, and lineactant design.

    Science.gov (United States)

    Bernardini, C; Stoyanov, S D; Arnaudov, L N; Cohen Stuart, M A

    2013-03-07

    In 1861 Thomas Graham gave birth to a new field of science, today known as colloid science. Nowadays, the notion "colloid" is often used referring to systems consisting of two immiscible phases, one of which is finely dispersed into the other. Research on colloids deals mostly with sols (solids dispersed in a liquid), emulsions (liquids dispersed in liquid), and foams (gas dispersed in a liquid). Because the dispersed particles are small, there is a lot of interface per unit mass. Not surprisingly, therefore, the properties of the interface have often a decisive effect on the behaviour of colloids. Water-air interfaces have a special relevance in this field: many water-insoluble molecules can be spread on water and, given the right spreading conditions and enough available surface area, their spreading proceeds until a monolayer (a one-molecule thick layer) eventually remains. Several 2D phases have been identified for such monolayers, like "gas", "liquid expanded", "liquid condensed", and "solid". The central question of this review is whether these 2D phases can also exist as colloidal systems, and what stabilizes the dispersed state in such systems. We shall present several systems capable of yielding 2D phase separation, from those based on either natural or fluorinated amphiphiles, to polymer-based ones. We shall seek for analogies in 3D and we shall try to clarify if the lines between these 2D objects play a similar role as the interfaces between 3D colloidal systems. In particular, we shall consider the special role of molecules that tend to accumulate at the phase boundaries, that is, at the contact lines, which will therefore be denoted "line-actants" (molecules that adsorb at a 1D interface, separating two 2D colloidal entities), by analogy to the term "surfactant" (which indicates a molecule that adsorbs at a 2D interface separating two 3D colloidal entities).

  18. SURFACE CHEMICAL EFFECTS ON COLLOID STABILITY AND TRANSPORT THROUGH NATURAL POROUS MEDIA

    Science.gov (United States)

    Surface chemical effects on colloidal stability and transport through porous media were investigated using laboratory column techniques. Approximately 100 nm diameter, spherical, iron oxide particles were synthesized as the mobile colloidal phase. The column packing material was ...

  19. Self-assembly of colloidal spheres and rods in external fields

    NARCIS (Netherlands)

    Besseling, T.H.|info:eu-repo/dai/nl/35218602X

    2014-01-01

    Colloidal particles are applied throughout industry, for example in paints, food, personal care products, ceramics and pharmaceutics. The characterization of the structure and dynamics of colloidal suspensions is therefore important for many industrial applications. Besides their industrial

  20. Equilibrium gels of limited valence colloids

    OpenAIRE

    Sciortino, Francesco; Zaccarelli, Emanuela

    2017-01-01

    Gels are low-packing arrested states of matter which are able to support stress. On cooling, limited valence colloidal particles form open networks stabilized by the progressive increase of the interparticle bond lifetime. These gels, named equilibrium gels, are the focus of this review article. Differently from other types of colloidal gels, equilibrium gels do not require an underlying phase separation to form. Oppositely, they form in a region of densities deprived of thermodynamic instabi...

  1. Coarse-graining polymers as soft colloids

    OpenAIRE

    Louis, A.A.; Bolhuis, P. G.; Finken, R.; Krakoviack, V.; de Meijer, E. J.; Hansen, J. P.

    2001-01-01

    We show how to coarse grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid-points or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.

  2. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  3. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  4. Morphology of colloidal metal pyrophosphate salts

    NARCIS (Netherlands)

    van Leeuwen, Y.M.; Velikov, K.; Kegel, W.K.

    2012-01-01

    We report the preparation and characterization of colloidal particles of several pyrophosphate metal salts, including, for the first time, salts containing multiple metals. These materials are compared in order to determine the influence of the composition and experimental conditions on particle

  5. Non-Fickian diffusion in colloidal glasses

    NARCIS (Netherlands)

    Hagen, M.H.J.; Frenkel, D.; Lowe, C.P.

    1998-01-01

    We have studied numerically the decay of the self-dynamic structure factor (SDSF) for a small particle diffusing in a colloidal glass. We show that, in line with theoretical predictions, the super-Burnett coefficient (characterizing the deviation of the fourth moment of the single particle

  6. Hydrodynamic flow induced anisotropy in colloid adsorption

    NARCIS (Netherlands)

    Loenhout, Marijn T.J.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2009-01-01

    The possibility to induce structure in layers of colloid particles by using the hydrodynamic blocking effect is investigated both experimentally and by using Monte Carlo simulations. Latex particles with diameters of 1.1 m and 0.46 m are deposited on 3-amino-propyltriethoxysilane (APTES)

  7. Challenges associated with the behaviour of radioactive particles in the environment

    DEFF Research Database (Denmark)

    Salbu, Brit; Kashparov, Valery; Lind, Ole Christian

    2017-01-01

    A series of different nuclear sources associated with the nuclear weapon and fuel cycles have contributed to the release of radioactive particles to the environment. Following nuclear weapon tests, safety tests, conventional destruction of weapons, reactor explosions and fires, a major fraction...... sites. Thus, whenever refractory radionuclides are released to the environment following nuclear events, radioactive particles should be expected. Results from many years of research have shown that particle characteristics such as elemental composition depend on the source, while characteristics...

  8. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  9. Electrokinetic properties of polymer colloids

    Science.gov (United States)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  10. Nonlinear machine learning and design of reconfigurable digital colloids.

    Science.gov (United States)

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  11. Assessment of the effect of kinetics on colloid facilitated radionuclide transport in porous media.

    NARCIS (Netherlands)

    Weerd, van de H.; Leijnse, A.

    1997-01-01

    Binding of radionuclides to natural colloids can significantly alter their transport behaviour in porous media. Dependent on the interaction between radionuclides, colloids and the solid matrix, radionuclide transport may be enhanced or retarded as a result of the presence of colloids. Often,

  12. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    Science.gov (United States)

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  13. Emergence of macroscopic directed motion in populations of motile colloids

    Science.gov (United States)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-01

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic `flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our

  14. Emergence of macroscopic directed motion in populations of motile colloids.

    Science.gov (United States)

    Bricard, Antoine; Caussin, Jean-Baptiste; Desreumaux, Nicolas; Dauchot, Olivier; Bartolo, Denis

    2013-11-07

    From the formation of animal flocks to the emergence of coordinated motion in bacterial swarms, populations of motile organisms at all scales display coherent collective motion. This consistent behaviour strongly contrasts with the difference in communication abilities between the individuals. On the basis of this universal feature, it has been proposed that alignment rules at the individual level could solely account for the emergence of unidirectional motion at the group level. This hypothesis has been supported by agent-based simulations. However, more complex collective behaviours have been systematically found in experiments, including the formation of vortices, fluctuating swarms, clustering and swirling. All these (living and man-made) model systems (bacteria, biofilaments and molecular motors, shaken grains and reactive colloids) predominantly rely on actual collisions to generate collective motion. As a result, the potential local alignment rules are entangled with more complex, and often unknown, interactions. The large-scale behaviour of the populations therefore strongly depends on these uncontrolled microscopic couplings, which are extremely challenging to measure and describe theoretically. Here we report that dilute populations of millions of colloidal rolling particles self-organize to achieve coherent motion in a unique direction, with very few density and velocity fluctuations. Quantitatively identifying the microscopic interactions between the rollers allows a theoretical description of this polar-liquid state. Comparison of the theory with experiment suggests that hydrodynamic interactions promote the emergence of collective motion either in the form of a single macroscopic 'flock', at low densities, or in that of a homogenous polar phase, at higher densities. Furthermore, hydrodynamics protects the polar-liquid state from the giant density fluctuations that were hitherto considered the hallmark of populations of self-propelled particles. Our

  15. Investigating the influence of sand particle properties on abrasive wear behaviour

    NARCIS (Netherlands)

    Woldman, M.; van der Heide, Emile; Schipper, Dirk J.; Tinga, Tiedo; Masen, Marc Arthur

    2012-01-01

    Abrasion by sand particles is an important factor causing excessive wear in machines operating in sandy environments. To prevent such machines from failing, knowledge about the abrasive wear process is required. This work focuses on the relation between abrasive particle properties and the wear they

  16. Design and elaboration of colloidal molecules: an overview.

    Science.gov (United States)

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge

    2011-02-01

    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references).

  17. Shear Driven Aggregation in Latex Colloids

    Science.gov (United States)

    Ahuja, Suresh

    2013-03-01

    Reynolds number is small in colloidal flow and therefore, colloidal volume fraction and Peclet number are important. AS the volume fraction and attractive coupling between particles increase, relaxation time and Weisenberg number become significant. Shear-induced aggregation of latex colloids is due to the interplay between the shear-induced formation and breakage of latex.particles. While particle size is limited by breakage, their number density increases with the shearing-time. Upon cessation of shear, the particles interconnect into an assembly held by grainy bonds. It results in increase in yield stress and dynamic modulus. A contact model enables aggregates maintaining their structures under low stress while being restructured under high stress. Modeling involves solution of Navier- Stokes equation with moving particles as boundary condition for the flow like using the Lattice Boltzmann approach or by using (accelerated) Stokesian Dynamics. Alternate approach is to model the fluid phase by soft repulsive particles with pair-wise noise and friction, known as dissipative particle dynamics (DPD). This method by construction produces full inertial hydrodynamics, but applying the correct fluid-particle boundary condition is non-trivial. Both particle to particle and particle to wall collisions can be considered using Johnson-Kendall- Roberts (JKR) analysis of collision dynamics of dissipative forces using a soft-sphere modeling technique. Our experimental work used emulsion polymerized latex that was subjected to steady and dynamic shear. Yield stress, dynamic modulus and relaxation time increased on shearing in conjunction with changes in aggregate size.

  18. Design and fabrication of colloidal polymer nanocomposites.

    Science.gov (United States)

    Wang, Tao; Keddie, Joseph L

    2009-01-01

    It is well established that colloidal polymer particles can be used to create organised structures by methods of horizontal deposition, vertical deposition, spin-casting, and surface pattern-assisted deposition. Each particle acts as a building block in the structure. This paper reviews how two-phase (or hybrid) polymer colloids can offer an attractive method to create nanocomposites. Structure in the composite can be controlled at the nanoscale by using such particles. Methods to create armored particles, such as via methods of hetero-flocculation and Pickering polymerization, are of particular interest here. Polymer colloids can also be blended with other types of nanoparticles, e.g. nanotubes and clay platelets, to create nanocomposites. Structure can be controlled over length scales approaching the macroscopic through the assembly of hybrid particles or particle blends via any of the various deposition methods. Colloidal nanocomposites can offer unprecedented long-range 2D or 3D order that provides a periodic modulation of physical properties. They can also be employed as porous templates for further nanomaterial fabrication. Challenges in the design and control of the macroscopic properties, especially mechanical, are considered. The importance of the internal interfacial structure (e.g. between inorganic and polymer particles) is highlighted.

  19. Experimental verification of morphological instability in freezing aqueous colloidal suspensions.

    Science.gov (United States)

    Peppin, S S L; Wettlaufer, J S; Worster, M G

    2008-06-13

    We describe an experimental test of a new theory of the unidirectional freezing of aqueous colloidal suspensions. At low freezing speeds a planar ice lens completely rejects the particles, forming a steady-state compacted boundary layer in the liquid region. At higher speeds the planar interface becomes thermodynamically unstable and breaks down geometrically to trap bulk regions of colloid within. The theoretical stability threshold is determined experimentally, thereby demonstrating that colloidal suspensions can be treated analogously to atomic or molecular alloys.

  20. Effect of abrasive particle size on friction and wear behaviour of various microstructures of 25CD4 steel

    Science.gov (United States)

    Trevisiol, C.; Jourani, A.; Bouvier, S.

    2017-05-01

    Many parameters, such as normal load and material bulk hardness, control the wear and friction behaviours of materials. Nonetheless, the investigation of the coupled contributions of microstructure and abrasive particle size are still lacking. A contribution is proposed by using steel pins with various microstructures with a similar macro-hardness (around 410HV) and chemical composition. A quenched martensitic microstructure, a tempered martensitic microstructure and three ferrite-martensite dual-phase microstructures, with a similar martensite volume fraction (around 67%) and different martensite colony morphologies, are established. Friction tests are performed between these pins and abrasive papers with different sizes ranging from 15μm to 200μm. Compared to single-phase microstructures (quenched and tempered martensitic microstructures) and whatever the abrasive particle size, ferrite-martensite dual-phase microstructures reduce the friction coefficient and provide better wear resistance. For the ferrite-martensite dual-phase microstructures and unlike fine and fibrous martensite colonies, coarse and granular martensite colonies minimize the friction coefficient. In addition, characterized by a change of wear mechanisms between abrasion and adhesion, an intermediate abrasive particle around 35 μm minimizes the friction coefficient. This study also reveals that the wear rate increases with the abrasive particle size which is associated to an increase of the attack angle of abrasive grains.

  1. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  2. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  3. Colloids with continuously tunable surface charge.

    Science.gov (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K

    2014-09-09

    In this paper, we present a robust way to tune the surface potential of polystyrene colloids without changing the pH, ionic strength, etc. The colloids are composed of a cross-linked polystyrene core and a cross-linked vinylbenzyl chloride layer. Besides the chlorine groups, the particle surface contains sulfate/sulfonate groups (arising from the polymerization initiators) that provide a negative surface potential. Performing a Menschutkin reaction on the surface chlorine groups with tertiary amines allows us to introduce quaternary, positively charged amines. The overall charge on the particles is then determined by the ratio between the sulfate/sulfonate moieties and the quaternary amines. Using this process, we were able to invert the charge in a continuous manner without losing colloidal stability upon passing the isoelectric point. The straightforward reaction mechanism together with the fact that the reaction could be quenched rapidly resulted in a colloidal system in which the ζ potential can be tuned between -80 and 45 mV. As proof of principle, the positively charged particles were used in heterocoagulation experiments with nanometer- and micrometer-sized negatively charged silica particles to create geometrically well-defined colloidal (nano) clusters.

  4. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  5. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  6. Characterization of Particle Motion and Deposition Behaviour in Electro-Static Fields

    Directory of Open Access Journals (Sweden)

    G Boiger

    2016-06-01

    Full Text Available As a prerequisite for studying and ultimately improving the powder coating process, particle motion and deposition effects within flow- and electro-static fields need to be thoroughly understood and thus characterized. In this context, a range of dimensionless groups is proposed and new means of characterization are presented. Considering the impact of electro-static, fluid-dynamic and gravity forces on coating particle motion, a triangle chart notation to characterize the state of varying particle size classes, is introduced. Furthermore a derivation of the dimensionless particle momentum equation is shown to lead to a dimensionless chart, representing all possible process states of coating. In combination with a Eulerian-LaGrangian, numerical model, the new means of characterization have led to a far better, over all perspective of occurring phenomena and their causes. Some examples are demonstrated here.

  7. Hygroscopic behaviour of aerosol particles emitted from biomass fired grate boilers

    Energy Technology Data Exchange (ETDEWEB)

    Rissler, Jenny; Swietlicki, Erik [Lund Univ. (Sweden). Div. of Nuclear Physics; Pagels, Joakim; Wierzbicka, Aneta; Bohgard, Mats [Lund Univ. (Sweden). Div. of Ergonomics and Aerosol Technology; Strand, Michael; Lillieblad, Lena; Sanati, Mehri [Vaexjoe Univ. (Sweden). Bioenergy Technology

    2005-02-01

    This study focuses on the hygroscopic properties of sub-micrometer aerosol particles emitted from two small-scale district heating combustion plants (1 and 1.5 MW) burning two types of biomass fuels (moist forest residue and pellets). The hygroscopic particle diameter growth was measured when taken from a dehydrated to a humidified state for particle diameters between 30-350 nm (dry size) using a Hygroscopic Tandem Differential Mobility Analyzer (H-TDMA). Particles of a certain dry size all showed similar hygroscopic growth and the average diameter growth at RH=90% for 110/100 nm particles was 1.68 in the 1 MW boiler, and 1.52 in the 1.5 MW boiler. These growth factors are considerably higher in comparison to other combustion aerosol particles such as diesel exhaust, and are the result of the efficient combustion and the high concentration of alkali species in the fuel. The observed water uptake could be explained using the Zdanovskii-Stokes-Robinson (ZSR) mixing rule and a chemical composition of only potassium salts, taken from an Ion Chromatography analysis of filter sample (KCl, K{sub 2}SO{sub 4}, and K{sub 2}CO{sub 3}). Agglomerated particles collapsed and became more spherical when initially exposed to a moderately high relative humidity. When diluting with hot particle-free air, the fractal-like structures remained intact until humidified in the HTDMA. A method is presented to by which to estimate the fractal dimension of the agglomerated combustion aerosol and correct the measured mobility diameter hygroscopic growth to the more useful property volume growth. The fractal dimension was estimated to be {approx}2.5.

  8. What Is a Colloid?

    Science.gov (United States)

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  9. Colloid suspension stability and transport through unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  10. Study of the stability coated and uncoated nanosilver colloid

    Science.gov (United States)

    Harsojo, Respitaningrum, Afrianto, Toto; Sosiati, Harini

    2013-09-01

    The stability of nanosilver colloids made using electrochemical process and chemical process were investigated. In the process using a DC generator cell, two silver electrodes under a DC voltage were used to generate the colloid. In the chemical process the colloid was made using the dilution of AgNO3 in deionized water with the addition of sodium citrate. To increase the stability to this colloid was added polyvinyl alcohol. The stability In those three colloids were investigated using UV-Vis spectrometer. The size of the nano Ag was measured using transmission electron microscope (TEM). The study reveals that within period of two weeks the trend toward a stable colloid is shown by colloid using DC generator. The addition of PVA may stabilize the unstable colloid made using the chemichal process and reduce the size particle to significantly smaller particle compared to the one made using DC generator cell. The condition of obtaining the stable nano colloid silver with smaller particle size was discussed.

  11. Tunable Time-Dependent Colloidal Interactions

    Science.gov (United States)

    Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.

    Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.

  12. Colloids with high-definition surface structures

    Science.gov (United States)

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  13. INTRODUCTION: New trends in simulating colloids and self-assembling systems New trends in simulating colloids and self-assembling systems

    Science.gov (United States)

    Foffi, Giuseppe; Kahl, Gerhard

    2010-03-01

    Interest in colloidal physics has grown at an incredible pace over the past few decades. To a great extent this remarkable development is due to the fact that colloidal systems are highly relevant in everyday applications as well as in basic research. On the one hand, colloids are ubiquitous in our daily lives and a deeper understanding of their physical properties is therefore highly relevant in applied areas ranging from biomedicine over food sciences to technology. On the other hand, a seemingly unlimited freedom in designing colloidal particles with desired properties in combination with new, low-cost experimental techniques, make them—compared to hard matter systems—considerably more attractive for a wide range of basic investigations. All these investigations are carried out with close cooperation between experimentalists, theoreticians and simulators, reuniting thereby, on a highly interdisciplinary level, physicists, chemists, and biologists. In an effort to give credit to some of these new developments in colloidal physics, two proposals for workshops were submitted independently to CECAM in the fall of 2008; both of them were approved and organized as consecutive events. This decision undoubtedly had many practical and organizational advantages. Furthermore, and from the scientific point of view more relevant, the organizers could welcome in total 69 participants, presenting 42 oral and 21 poster contributions. We are proud to say that nearly all the colleagues that we contacted at submission time accepted our invitation, and we are happy to say that the number of additional participants was rather high. Due to the fact that both workshops took place within one week, quite a few participants, registered originally for one of these meetings, extended their participation to the other event also. In total, 23 contributions have been submitted to this special issue, which cover the main scientific topics addressed in these workshops. We consider this

  14. Binary Colloidal Superlattices Assembled by Magnetic Fields

    Science.gov (United States)

    Yellen, Benjamin

    2013-03-01

    Colloidal particle superlattices represent a fascinating class of complex materials which in many cases have corollary structures at the atomic scale. These complex systems thus not only help elucidate the principles of materials assembly in nature, but further provide design criteria for fabrication of novel materials at the macroscopic scale. Methods for assembling colloidal particle superlattices include controlled drying, ionic interactions, and dipolar interactions. However, a general pathway for producing a wider variety of colloidal crystals remains a fundamental challenge. Here we demonstrate a versatile colloidal assembly system in which the design rules can be tuned to yield over 20 different pre-programmed lattice structures, including kagome, honeycomb, square tiles, as well as a variety of chain and ring configurations. We tune the crystal type by controlling the relative concentrations and interaction strengths between spherical superparamagnetic and diamagnetic particles. An external magnetic field causes like particles to repel and unlike particles to attract. The combination of our experimental observations with potential energy calculations of various lattice structures suggest that the lowest energy lattice configuration is determined by two parameters, namely the dipole moment and relative concentration of each particle type. Triangle MRSEC DMR-1121107, NSFC 51150110161

  15. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  16. Solid colloids with surface-mobile linkers.

    Science.gov (United States)

    van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-06-17

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.

  17. Photoelectrochemical studies on colloidal copper (I) oxide/modified ...

    Indian Academy of Sciences (India)

    ... of the organic monomer such as ionization potential (IP), electron affinity (EA) and energy bandgap (Eg), and the barrier height at the IOI interface. Stability of the colloidal system is attributed to the physical dimensions of the photoactive system. The nano-colloidal particle offers a condition where its size is less than √.

  18. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes

    Science.gov (United States)

    McLaughlin, Christopher K.; Duan, Da; Ganesh, Ahil N.; Torosyan, Hayarpi

    2016-01-01

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the co-aggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, co-formulating them with bis-azo dyes. The co-formulation reduced colloid sizes to colloid formulations are more stable than previous aggregator particles. Specifically, co-aggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT) or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase and trypsin. Unlike traditional aggregates, the co-formulated colloid-protein particles could be centrifuged and re-suspended multiple times, and from re-suspended particles, active trypsin could be released up to 72 hours after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension and release. PMID:26741163

  19. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  20. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    Abstract. We review theoretical and experimental work on colloidal interactions in two- dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions ...

  1. Erosion Behaviour of API X100 Pipeline Steel at Various Impact Angles and Particle Speeds

    Directory of Open Access Journals (Sweden)

    Paul C. Okonkwo

    2016-09-01

    Full Text Available Erosion is the gradual removal of material due to solid particle impingement and results in a failure of pipeline materials. In this study, a series of erosion tests were carried out to investigate the influence of particle speed and impact angle on the erosion mechanism of API X100 pipeline steel. A dry erosion machine was used as the test equipment, while the particle speed ranged from 20 to 80 m/s and impact angles of 30° and 90° were used as test parameters. The eroded API X100 steel surface was characterized using scanning electron microscope (SEM and X-ray photoelectron spectroscopy (XPS. The weight loss and erosion rate were also investigated. The results showed that at a 90° impact angle, a ploughing mechanism was occurring on the tested specimens, while material removal through low-angle cutting was the dominant mechanism at lower impact angles. Embedment of alumina particles on the target steel surface, micro-cutting, and low-angle cutting were observed at low impact angles. Therefore, the scratches, cuttings, and severe ploughings observed on some failed oil and gas pipelines could be attributed to the erosion mechanism.

  2. Formation and behaviour of dust particle clouds in a radio-frequency discharge: results in the laboratory and under microgravity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mikikian, M [Groupe de Recherches sur l' Energetique des Milieux Ionises, Universite d' Orleans, 45067 Orleans Cedex 2 (France); Boufendi, L [Groupe de Recherches sur l' Energetique des Milieux Ionises, Universite d' Orleans, 45067 Orleans Cedex 2 (France); Bouchoule, A [Groupe de Recherches sur l' Energetique des Milieux Ionises, Universite d' Orleans, 45067 Orleans Cedex 2 (France); Thomas, H M [Max-Planck-Institut fuer Extraterrestrische Physik, 85741 Garching (Germany); Morfill, G E [Max-Planck-Institut fuer Extraterrestrische Physik, 85741 Garching (Germany); Nefedov, A P [Institute for High Energy Densities, Izhorskaya 13/19, Moscow, 127412 (Russian Federation); Fortov, V E [Institute for High Energy Densities, Izhorskaya 13/19, Moscow, 127412 (Russian Federation)

    2003-03-01

    In this paper we report the first observation on submicron dust particle clouds grown in a radio-frequency sputtering discharge under microgravity conditions. These results have been obtained in the PKE-Nefedov (Plasma Kristall Experiment) chamber in the framework of a French-German-Russian programme. A dust-free region, usually called the 'void', is observed in the laboratory and under microgravity conditions even with submicron particles. In this region, successive generations of particles can be grown, leading to the coexistence of particles with various sizes. Each generation of particles constitutes a cloud separated from the others by a definite sheath. Dynamics of these clouds have been investigated showing vortex-like motions or independent behaviour of small heaps of particles, emphasizing both attractive and repulsive effects between dust clouds. As these particles drastically influence the plasma properties, the growth kinetics is followed through the evolution of the discharge current.

  3. Does size matter? Elasticity of compressed suspensions of colloidal- and granular-scale

    NARCIS (Netherlands)

    Menut, P.; Seiffert, S.; Sprakel, J.H.B.; Weitz, D.A.

    2012-01-01

    We investigate the mechanics of dense packing of very small, colloidal-scale, and larger, granular-scale microgel particles. At low particle concentration, thermally induced Brownian motion of the particles is important for the colloidal-scale systems; in contrast, such Brownian motion is irrelevant

  4. When shape is enough: from colloidal spheres to twisted polyhedra, from icosahedral to chiral order

    NARCIS (Netherlands)

    Dussi, S.

    2016-01-01

    In this thesis, we study entropy-driven phase transitions in suspensions of colloidal particles. Colloids are small particles, with typical sizes ranging from the nanometer to the micron, dispersed in a medium that is composed of much smaller particles (atoms or molecules). Because of this size

  5. Molecular Recognition in the Colloidal World.

    Science.gov (United States)

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-11-21

    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  6. Particle Surface Softening as Universal Behaviour during Flash Sintering of Oxide Nano-Powders

    Directory of Open Access Journals (Sweden)

    Rachman Chaim

    2017-02-01

    Full Text Available The dissipated electric power in oxide powder compacts, subjected to flash sintering, is several hundreds of W·cm−3. This power is analyzed considering local softening/melting and transient plasma/liquid formation at the particle contacts due to thermal runaway. The sudden increase in compact electric conductivity and dissipated power referred to current percolation through the softening/liquid formed at the particle contacts, at the percolation threshold. The energy-balance and heat transfer considerations during the transient flash event are consistent with the local heating of the nanoparticle contacts to the ceramic melting temperature, or above it. The formation of the plasma by field emission of electrons is also considered.

  7. Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples

    Science.gov (United States)

    Kurk, Michael A. (Andy)

    2015-01-01

    Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.

  8. Local elastic response measured near the colloidal glass transition

    Science.gov (United States)

    Anderson, D.; Schaar, D.; Hentschel, H. G. E.; Hay, J.; Habdas, Piotr; Weeks, Eric R.

    2013-03-01

    We examine the response of a dense colloidal suspension to a local force applied by a small magnetic bead. For small forces, we find a linear relationship between the force and the displacement, suggesting the medium is elastic, even though our colloidal samples macroscopically behave as fluids. We interpret this as a measure of the strength of colloidal caging, reflecting the proximity of the samples' volume fractions to the colloidal glass transition. The strain field of the colloidal particles surrounding the magnetic probe appears similar to that of an isotropic homogeneous elastic medium. When the applied force is removed, the strain relaxes as a stretched exponential in time. We introduce a model that suggests this behavior is due to the diffusive relaxation of strain in the colloidal sample.

  9. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    Science.gov (United States)

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  10. Magnetic behaviour of nano-particles of Fe2. 9Zn0. 1O4

    Indian Academy of Sciences (India)

    DC magnetization measurements are reported in the temperature range 20–300 K on a poly-disperse nano-particle sample of the spinel ferrite Fe2.9Zn0.1O4 with a log-normal size distribution of median diameter 43.6 Å and standard deviation 0.58. Outside a core of ordered spins, moments in surface layer are disordered.

  11. Colloid mobilization and seasonal variability in a semiarid headwater stream

    Science.gov (United States)

    Mills, Taylor J.; Suzanne P. Ancerson,; Bern, Carleton; Aguirre, Arnulfo; Derry, Louis A.

    2017-01-01

    Colloids can be important vectors for the transport of contaminants in the environment, but little is known about colloid mobilization at the watershed scale. We present colloid concentration, composition, and flux data over a large range of hydrologic conditions from a small watershed (Gordon Gulch) in the foothills of the Colorado Front Range. Colloids, consisting predominantly of Si, Fe, and Al, were present in most stream samples but were not detected in groundwater samples. Mineralogical and morphological analysis indicated that the colloids were composed of kaolinite and illite clays with lesser amounts of amorphous Fe-hydroxides. Although colloid composition remained relatively constant over the sampled flow conditions, colloid concentrations varied considerably and increased as ionic strength of stream water decreased. The highest concentrations occurred during precipitation events after extended dry periods. These observations are consistent with laboratory studies that have shown colloids can be mobilized by decreases in pore-water ionic strength, which likely occurs during precipitation events. Colloidal particles constituted 30 to 35% of the Si mass flux and 93 to 97% of the Fe and Al mass fluxes in the Colloids are therefore a significant and often overlooked component of mass fluxes whose temporal variations may yield insight into hydrologic flowpaths in this semiarid catchment.

  12. Mobile linkers on DNA-coated colloids: valency without patches.

    Science.gov (United States)

    Angioletti-Uberti, Stefano; Varilly, Patrick; Mognetti, Bortolo M; Frenkel, Daan

    2014-09-19

    Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal "molecules." However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e., the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the nonspecific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.

  13. Wear Behaviour of Iron Matrix Composite Reinforced by ZTA Particles in Impact Abrasion

    Science.gov (United States)

    Qiu, B.; Xing, S. M.; Dong, Q.

    2017-11-01

    Zirconia toughened alumina (ZTA) particles reinforced high chromium cast iron composites (ZTA/Iron composites) were prepared by a two-step processing method, i.e. mixing particles by the molten metal and cohering by high pressure, which based on the squeeze casting process. The impact wear resistance under different impact energies were investigated using dynamically loaded abrasive wear tester at room temperature. For comparison, the wear tests of high chromium cast iron were also carried out under the same conditions. Worn surfaces of the samples were observed under scanning electron microscopy equipped with an energy dispersive detector. The results showed that the composites have better impact wear resistance than that of high Cr cast iron regardless of impact energy level, and the wear resistance of the two materials all decrease with the increase of the impact energy. The main wear mechanisms of the high Cr cast iron were micro-cutting and fatigue peeling, while the wear of composites occurred through micro-cutting of the matrix (lower impact energy) and breaking and shedding of the reinforced particles (higher impact energy).

  14. Resistance of Type 5 chemical protective clothing against nanometric airborne particles: behaviour of seams and zipper.

    Science.gov (United States)

    Vinches, Ludwig; Hallé, Stéphane

    2017-08-21

    In the field of dermal protection, the use of chemical protective clothing (CPC) (including coveralls) are considered as the last barrier against airborne engineered nanomaterials (ENM). In the majority of cases, type 5 CPC, used against solid particles (ISO 13982-1), perform well against ENM. But in a recent study, a penetration level (PL) of up to 8.5% of polydisperse sodium chloride airborne nanoparticles has been measured. Moreover, in all the previous studies, tests were performed on a sample of protective clothing material without seams or zippers. Thus, the potential for permeation through a zipper or seams has not yet been determined, even though these areas would be privileged entry points for airborne ENM. This work was designed to evaluate the PL of airborne ENM through coveralls and specifically the PL through the seams on different parts of the CPC and the zipper. Eight current models of CPC (type 5) were selected. The samples were taken from places with and without seams and with a zipper. In some cases, a cover strip can be added to the zipper to enhance its sealing. Polydisperse nanoparticles were generated by nebulization of a sodium chloride solution. A penetration cell was developed to expose the sample to airborne nanometric particles. The NaCl particle concentration in number was measured with an ultrafine particle counter and the PL was defined as the downstream concentration divided by the upstream concentration. The results obtained show that the PL increased significantly in the presence of seams and could reach up to 90% depending on the seam's design. Moreover, this study classifies the different types of seams by their resistance against airborne ENM. As for the penetration of airborne NaCl particles through the zipper, the PL was greatly attenuated by the presence of a cover strip, but only for certain models of coveralls. Finally, the values of the pressure drop were directly linked to the type of seam. All of these conclusions provide

  15. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    Science.gov (United States)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  16. Self-replication with magnetic dipolar colloids

    Science.gov (United States)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  17. Self-replication with magnetic dipolar colloids.

    Science.gov (United States)

    Dempster, Joshua M; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  18. Magnetic local time, substorm, and particle precipitation-related variations in the behaviour of SuperDARN Doppler spectral widths

    Directory of Open Access Journals (Sweden)

    M. L. Parkinson

    2004-12-01

    Full Text Available Super Dual Auroral Radar Network (DARN radars often detect a distinct transition in line-of-sight Doppler velocity spread, or spectral width, from <50ms–1 at lower latitude to >200ms–1 at higher latitude. They also detect a similar boundary, namely the range at which ionospheric scatter with large spectral width suddenly commences (i.e. without preceding scatter with low spectral width. The location and behaviour of the spectral width boundary (SWB (and scatter boundary and the open-closed magnetic field line boundary (OCB are thought to be closely related. The location of the nightside OCB can be inferred from the poleward edge of the auroral oval determined using energy spectra of precipitating particles measured on board Defence Meteorology Satellite Program (DMSP satellites. Observations made with the Halley SuperDARN radar (75.5° S, 26.6° W, geographic; –62.0°Λ and the Tasman International Geospace Environment Radar (TIGER (43.4° S, 147.2° E; –54.5°Λ are used to compare the location of the SWB with the DMSP-inferred OCB during 08:00 to 22:00 UT on 1 April 2000. This study interval was chosen because it includes several moderate substorms, whilst the Halley radar provided almost continuous high-time resolution measurements of the dayside SWB location and shape, and TIGER provided the same in the nightside ionosphere. The behaviour of the day- and nightside SWB can be understood in terms of the expanding/contracting polar cap model of high-latitude convection change, and the behaviour of the nightside SWB can also be organised according to substorm phase. Previous comparisons with DMSP OCBs have proven that the radar SWB is often a reasonable proxy for the OCB from dusk to just past midnight (Chisham et al., 2004. However, the present case study actually suggests that the nightside SWB is often a better proxy for the poleward edge of Pedersen conductance enhanced by hot particle precipitation in the auroral zone. Simple

  19. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.J. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Zeh, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Probst, T. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Lin, X. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Schauer, C. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ivanovich, M. [AEA Environment and Energy, Harwell (United Kingdom); Longworth, G. [AEA Environment and Energy, Harwell (United Kingdom); Hasler, S.E. [AEA Environment and Energy, Harwell (United Kingdom); Gardiner, M. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Fritz, P. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Klotz, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Lazik, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Wolf, M. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Geyer, S. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ({sup 2}H, {sup 3}H, {sup 13}C, {sup 14}C, {sup 18}O, {sup 34}S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  20. Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics

    Science.gov (United States)

    Zhao, J.; Papadopoulos, P.; Roth, M.; Dobbrow, C.; Roeben, E.; Schmidt, A.; But, H.-J. t.; Auernhammer, G. K.; Vollmer, D.

    2013-11-01

    The motion of dilute and concentrated dispersions of colloids by external electric or magnetic fields is discussed. Electrokinetics is studied for colloids in confinement, where the confining walls can be flat or rough. As an example for a rough wall superhydrophobic surfaces are chosen. It is shown that the reduced friction at the water-air interface is insufficient to enhance electro-osmosis. Magnetic particles are pulled through a crystalline matrix formed by nonmagnetic colloids to investigate local melting and recrystallization of a crystalline matrix. The average strain field is calculated and the reorganization processes are compared to those induced by shear fields. Using single domain, magnetically blocked particles of different shape and surface characteristics, the interplay between particles, their environment and an external field is investigated.

  1. Patchy polymer colloids with tunable anisotropy dimensions.

    Science.gov (United States)

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K

    2011-06-09

    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  2. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  3. Designing Zirconium Coated Polystyrene Colloids and Application

    Directory of Open Access Journals (Sweden)

    Diana Chira

    2009-01-01

    Full Text Available A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine (PEI and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

  4. Dipolar structures in colloidal magnetite dispersions

    NARCIS (Netherlands)

    Klokkenburg, Mark

    2007-01-01

    Dipolar structures in liquid colloidal dispersions comprising well-defined magnetite (Fe3O4) nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). Compared to conventional ferrofluids, these

  5. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  6. Fabrication of anisotropic multifunctional colloidal carriers

    Science.gov (United States)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  7. Colloid-in-Liquid Crystal Gels Formed via Spinodal Decomposition

    Science.gov (United States)

    Pal, Santanu Kumar; de Pablo, Juan J.

    2014-01-01

    We report that colloid-in-liquid crystal (CLC) gels can be formed via a two-step process that involves spinodal decomposition of a dispersion of colloidal particles in an isotropic phase of mesogens followed by nucleation of nematic domains within the colloidal network defined by the spinodal process. This pathway contrasts to previously reported routes leading to the formation of CLC gels, which have involved entanglement of defects or exclusion of particles from growing nematic domains. The new route provides the basis of simple design rules that enable control of the microstructure and dynamic mechanical properties of the gels. PMID:24651134

  8. Degassing of lava lakes: bubble behaviour in particle-rich suspensions

    Science.gov (United States)

    Woitischek, Julia; Edmonds, Marie; Woods, Andy

    2017-04-01

    Understanding how gases escape from the magma columns of basaltic open vent volcanoes has importance because the mobility of gas bubbles influences magma dynamics and eruptions and because this style of persistent outgassing is largely responsible for shaping our atmosphere. Previous analogue experiments to understand outgassing have focussed mainly on two phase flow and have not accounted for the crystal phase; these have led to an understanding of some of the modes of eruption and gas release. Here we report on a series of new three phase analogue laboratory experiments in which we have investigated the influence of analogue crystals on the flow of gas through a liquid. A mixture of glycerol and particles where inserted into a cylinder with a diameter of 5 cm and a length of 100 cm, which was connected with a pump to regulate the injection rate of air. By increasing the particle content in the liquid we explore how the crystals change the effective rheology and thereby influence the formation and dynamics of gas bubbles rising through the system. In particular, we report on the dependence of gas phase geometry and frequency in the conduit on crystal content e.g. as crystal contents increase (with constant gas flux and viscosity of the fluid), bubble regime changes from high frequency of small bubbles through a regime of bubble growth but a decrease in bubble number; and finally to a regime of gas slugs with a low rise rate at the highest crystal fraction. Building from these results, we examine the influence of crystals on the fluctuations in the depth of magma and the causes of persistent outgassing of basaltic open vent volcanoes.

  9. Engineering Entropy for Colloidal Design

    Science.gov (United States)

    Geng, Yina; Anders, Greg Van; Dodd, Paul M.; Glotzer, Sharon C.; Glotzer group Collaboration

    The inverse design of target material structures is a fundamental challenge. Here, we demonstrate the direct inverse design of soft materials for target crystal structures using entropy alone. Our approach does not require any geometric ansatz. Instead, it efficiently samples 92- or 188-dimensional building-block parameter spaces to determine thermodynamically optimal shapes. We present detailed data for optimal particle characteristics and parameter tolerances for six target structures. Our results demonstrate a general, rational, and precise method for engineering new colloidal materials, and will guide nanoparticle synthesis to realize these materials.

  10. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  11. Generation of colloidal granules and capsules from double emulsion drops

    Science.gov (United States)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  12. Rheological studies of stability of colloidal silica particles dispersed in monoethylene glycol (MEG) stabilized by dodecyl hexa ethylene glycol monoether (C12E6).

    Science.gov (United States)

    Thwala, Justice M; Goodwin, Jim W; Mills, Paul D

    2009-11-17

    The steady shear viscosity, dynamic viscoelasticity, and high shear wave rigidity modulus were measured for silica dispersions stabilized by a nonionic surfactant, dodecyl hexa ethylene glycol monoether (C(12)E(6)). Electrokinetic measurements were also obtained to help understand the role of charge on the stability of the silica particles in nonaqueous media. The dispersions were found to be stable at low levels of C(12)E(6) concentrations due to electrostatic repulsions as deduced from zeta potential data. Zeta potentials of silica particles in mono ethylene glycol (MEG) were of the order of (-)20-(-)70 mV, signifying the importance of electrostatic stabilization normally reported in aqueous media. Instability on further addition of C(12)E(6) to silica particles in MEG, a phenomenon normally obtained with high molecular weight polymers, is explained in terms of micellar bridging and hydrophobic interactions. The extended Derjaguin-Landau-Verwey-Overbeek (DLVO) theory is used to model the effect of C(12)E(6) on particle stability. Viscoelasticity of silica in MEG in the presence of C(12)E(6) is also reported. Viscoelasticity was found to be due to weak flocculation resulting in a free energy increase and a decrease in configurational entropy as the dispersion was weakly strained. Viscoelastic measurements are modeled using a mode-coupling model.

  13. Design and synthesis of model transparent aqueous colloids with optimal scattering properties.

    Science.gov (United States)

    Perro, Adeline; Meng, Guangnan; Fung, Jerome; Manoharan, Vinothan N

    2009-10-06

    We demonstrate the synthesis and self-assembly of colloidal particles with independently controlled diameter and scattering cross section. We show that it is possible to prepare bulk colloidal suspensions that are nearly transparent in water, while the particles themselves can be individually resolved using optical microscopy. These particles may be ideal model colloids for real-space studies of self-assembly in aqueous media. Moreover, they illustrate the degree to which the optical properties of colloids can be engineered through straightforward chemistry.

  14. Separation of plutonium oxide nanoparticles and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; Skanthakumar, S.; Soderholm, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2011-11-18

    Oil and vinegar: Colloidal plutonium is an important component of Pu aqueous speciation. Pu colloids are problematic in nuclear separations and are a potential transport vector in the environment. Using a mixture of n-octanol and trichloroacetic acid a selective and reversible separation of these particles can be achieved by exploiting their surface reactivity (Li{sub 2}[Pu{sub 38}O{sub 56}Cl{sub 42}(H{sub 2}O){sub 20}].15H{sub 2}O). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    Book Description: Colloidal science and technology is one of the fastest growing research and technology areas. This book explores the cutting edge research in colloidal science and technology that will be usefull in almost every aspect of modern society. This book has a depth of information rela...

  16. Bulk synthesis of polymer-inorganic colloidal clusters.

    Science.gov (United States)

    Perro, Adeline; Manoharan, Vinothan N

    2010-12-21

    We describe a procedure to synthesize colloidal clusters with polyhedral morphologies in high yield (liter quantities at up to 70% purity) using a combination of emulsion polymerization and inorganic surface chemistry. We show that the synthesis initially used for silica-polystyrene hybrid clusters can be generalized to create clusters from other inorganic and polymer particles. We also show that high yields of particular morphologies can be obtained by precise control of the inorganic seed particle size, a finding that can be explained using a hard-sphere packing model. These clusters can be further chemically modified for a variety of applications. Introducing a cross-linker leads to colloidal clusters that can be index matched in an appropriate solvent, allowing them to be used for particle tracking or optical studies of colloidal self-assembly. Also, depositing a thin silica layer on these colloids allows the surface properties to be controlled using silane chemistry.

  17. Colloidal Dancers: Designing networks of DNA-functionalized colloids for non-random walks

    Science.gov (United States)

    Gehrels, Emily W.; Rogers, W. Benjamin; Zeravcic, Zorana; Manoharan, Vinothan N.

    2014-03-01

    We present experimental developments of a system of DNA-functionalized colloidal particles with the goal of creating directed motion (`dancing') along patterned substrates in response to temperature cycling. We take advantage of toehold exchange in the design of the DNA sequences that mediate the colloidal interactions to produce broadened, flat, or even re-entrant binding and unbinding transitions between the particles and substrate. Using this new freedom of design, we devise systems where, by thermal ratcheting, we can externally control the direction of motion and sequence of steps of the colloidal dancer. In comparison to DNA-based walkers, which move autonomously and whose motion is controlled by the substrate, our colloidal dancers respond to external driving, and their motion can be controlled in situ. Our use of DNA-functionalized colloidal particles instead of pure DNA systems also enables walking on the mesoscale in contrast to the molecular length scales previously demonstrated, allowing for the future prospect of directed transport over larger distances.

  18. Key-lock colloids in a nematic liquid crystal

    Science.gov (United States)

    Silvestre, Nuno M.; Tasinkevych, M.

    2017-01-01

    The Landau-de Gennes free energy is used to study theoretically the effective interaction of spherical "key" and anisotropic "lock" colloidal particles. We assume identical anchoring properties of the surfaces of the key and of the lock particles, and we consider planar degenerate and perpendicular anchoring conditions separately. The lock particle is modeled as a spherical particle with a spherical dimple. When such a particle is introduced into a nematic liquid crystal, it orients its dimple at an oblique angle θeq with respect to the far field director n∞. This angle depends on the depth of the dimple. Minimization results show that the free energy of a pair of key and lock particles exhibits a global minimum for the configuration when the key particle is facing the dimple of the lock colloidal particle. The preferred orientation ϕeq of the key-lock composite doublet relative to n∞ is robust against thermal fluctuations. The preferred orientation θeq(2 ) of the dimple particle in the doublet is different from the isolated situation. This is related to the "direct" interaction of defects accompanying the key particle with the edge of the dimple. We propose that this nematic-amplified key-lock interaction can play an important role in self-organization and clustering of mixtures of colloidal particles with dimple colloids present.

  19. Polyion complex (PIC) particles: Preparation and biomedical applications.

    Science.gov (United States)

    Insua, Ignacio; Wilkinson, Andrew; Fernandez-Trillo, Francisco

    2016-08-01

    Oppositely charged polyions can self-assemble in solution to form colloidal polyion complex (PIC) particles. Such nanomaterials can be loaded with charged therapeutics such as DNA, drugs or probes for application as novel nanomedicines and chemical sensors to detect disease markers. A comprehensive discussion of the factors affecting PIC particle self-assembly and their response to physical and chemical stimuli in solution is described herein. Finally, a collection of key examples of polyionic nanoparticles for biomedical applications is discussed to illustrate their behaviour and demonstrate the potential of PIC nanoparticles in medicine.

  20. Structure and Stability of Colloid-Nanoparticle Mixtures

    Science.gov (United States)

    Weight, Braden M.; Denton, Alan R.

    Colloidal particles can acquire charge through dissociation of counterions in a polar solvent. The resulting electrostatic interactions between particles stabilize the suspension against aggregation due to van der Waals forces and can affect physical properties. We explore the influence of added nanoparticles on structure and phase behavior of charge-stabilized colloidal suspensions. To reduce complexity, we model electrostatic interparticle interactions via effective Yukawa (screened-Coulomb) pair potentials, which implicitly include counterions and salt ions in the Debye screening constant. Within this coarse-grained model, we perform molecular dynamics simulations of mixtures of charged colloids and nanoparticles. Over ranges of parameters (charges, sizes, and concentrations of the two species), we analyze particle configurations to compute radial distribution functions and static structure factors. These structural properties reveal that nanoparticles tend to weaken correlations between colloids, thus destabilizing colloidal crystals. We further show that nanoparticles may be implicitly incorporated into an effective colloid-colloid pair potential to facilitate modeling of complex multicomponent systems and to guide experiments and applications to nanocomposite materials. This research was supported by the National Science Foundation (Grant No. DMR-1106331).

  1. Shape-shifting colloids via stimulated dewetting

    Science.gov (United States)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  2. MOBILIZATION AND CHARACTERIZATION OF COLLOIDS GENERATED FROM CEMENT LEACHATES MOVING THROUGH A SRS SANDY SEDIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Li, D.; Roberts, K.; Kaplan, D.; Seaman, J.

    2011-09-20

    Naturally occurring mobile colloids are ubiquitous and are involved in many important processes in the subsurface zone. For example, colloid generation and subsequent mobilization represent a possible mechanism for the transport of contaminants including radionuclides in the subsurface environments. For colloid-facilitated transport to be significant, three criteria must be met: (1) colloids must be generated; (2) contaminants must associate with the colloids preferentially to the immobile solid phase (aquifer); and (3) colloids must be transported through the groundwater or in subsurface environments - once these colloids start moving they become 'mobile colloids'. Although some experimental investigations of particle release in natural porous media have been conducted, the detailed mechanisms of release and re-deposition of colloidal particles within natural porous media are poorly understood. Even though this vector of transport is known, the extent of its importance is not known yet. Colloid-facilitated transport of trace radionuclides has been observed in the field, thus demonstrating a possible radiological risk associated with the colloids. The objective of this study was to determine if cementitious leachate would promote the in situ mobilization of natural colloidal particles from a SRS sandy sediment. The intent was to determine whether cementitious surface or subsurface structure would create plumes that could produce conditions conducive to sediment dispersion and mobile colloid generation. Column studies were conducted and the cation chemistries of influents and effluents were analyzed by ICP-OES, while the mobilized colloids were characterized using XRD, SEM, EDX, PSD and Zeta potential. The mobilization mechanisms of colloids in a SRS sandy sediment by cement leachates were studied.

  3. Van der Waals-like instability in suspensions of mutually repelling charged colloids

    OpenAIRE

    van Roij, R.; Hansen, J. -P.

    1997-01-01

    We show theoretically that the purely repulsive screened-Coulomb (or Derjaguin-Landau-Verwey- Overbeek) interaction between charged colloidal particles is compatible with gas-liquid, gas-solid, and solid-solid coexistence in colloidal suspensions of low ionic strength of about 1026 molyliter. This finding may partially resolve the ongoing debate on attractions between like-charged particles.

  4. Magnetic colloids as drug vehicles.

    Science.gov (United States)

    Durán, J D G; Arias, J L; Gallardo, V; Delgado, A V

    2008-08-01

    This review article is a description of the present status of magnetic drug delivery systems (DDS). These are colloidal dispersions of composite nanoparticles consisting of a (polymeric or inorganic) biocompatible matrix and magnetic units, and designed to load and release therapeutic drugs. The matrix, together perhaps with adsorbed polymers or polyelectrolytes, provides the DDS with additional colloidal stability and eventually control of the immune response, and the magnetic inclusions have the goal of providing magnetic guidance. The techniques used in the production of the particles are described. The large surface/volume ratio of the particles brings about a superlative importance of the interface aspects, which are depicted in some detail. Attention is also paid to the possibilities that magnetic DDS offer to be guided by magnetic fields, and to their fate upon entering in contact with the blood proteins and the tumor cells. A description of in vitro and in vivo biodistribution experiments helps in this description. The number of animal experiments performed using magnetic DDS is rather large, but results in humans are far from being sufficient in number, something easily understood. The hopes for improvement and the challenges that must be overcome are described in the closing section.

  5. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  6. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  7. Scattering of Light by Colloidal Aluminosilicate Particles Produces the Unusual Sky-Blue Color of Río Celeste (Tenorio Volcano Complex, Costa Rica)

    Science.gov (United States)

    Castellón, Erick; Martínez, María; Madrigal-Carballo, Sergio; Arias, María Laura; Vargas, William E.; Chavarría, Max

    2013-01-01

    Río Celeste (Sky-Blue River) in Tenorio National Park (Costa Rica), a river that derives from the confluence and mixing of two colorless streams—Río Buenavista (Buenavista River) and Quebrada Agria (Sour Creek)—is renowned in Costa Rica because it presents an atypical intense sky-blue color. Although various explanations have been proposed for this unusual hue of Río Celeste, no exhaustive tests have been undertaken; the reasons hence remain unclear. To understand this color phenomenon, we examined the physico-chemical properties of Río Celeste and of the two streams from which it is derived. Chemical analysis of those streams with ion-exchange chromatography (IC) and inductively coupled plasma atomic emission spectroscopy (ICP-OES) made us discard the hypothesis that the origin of the hue is due to colored chemical species. Our tests revealed that the origin of this coloration phenomenon is physical, due to suspended aluminosilicate particles (with diameters distributed around 566 nm according to a lognormal distribution) that produce Mie scattering. The color originates after mixing of two colorless streams because of the enlargement (by aggregation) of suspended aluminosilicate particles in the Río Buenavista stream due to a decrease of pH on mixing with the acidic Quebrada Agria. We postulate a chemical mechanism for this process, supported by experimental evidence of dynamic light scattering (DLS), zeta potential measurements, X-ray diffraction and scanning electron microscopy (SEM) with energy-dispersive spectra (EDS). Theoretical modeling of the Mie scattering yielded a strong coincidence between the observed color and the simulated one. PMID:24058661

  8. Unilateral palpebral colloid milia

    Directory of Open Access Journals (Sweden)

    Kachhawa Dilip

    1992-01-01

    Full Text Available A 55-year old male presented with innumerable lesions of colloid millium unilaterally over eyelids of left eye. This case is reported because of unilateral distribution of lesions on sun protected area.

  9. Effect of primary particle size on spray formation, morphology and internal structure of alumina granules and elucidation of flowability and compaction behaviour

    Directory of Open Access Journals (Sweden)

    Pandu Ramavath

    2014-06-01

    Full Text Available Three different alumina powders with varying particle sizes were subjected to spray drying under identical conditions and effect of particle size on heat transfer efficiency and mechanism of formation of granules was elucidated. Morphology, internal structure and size distribution of granules were studied and evaluated with respect to their flow behaviour. In order to estimate the elastic interaction of granules, the granules were subjected to compaction under progressive loading followed by periodic unloading. Compaction curves were plotted and compressibility factor was estimated and correlated with predicted and measured green density values.

  10. On the Absence of Red Structural Color in Colloidal Glasses

    Science.gov (United States)

    Magkiriadou, Sofia; Park, Jin-Gyu; Kim, Young-Seok; Yi, Gi-Ra; Manoharan, Vinothan N.

    2013-03-01

    When a colloidal glass is illuminated, the short-ranged spatial correlations between neighboring particles can give rise to constructive interference for a particular wavelength. Unlike the structural colors arising from Bragg diffraction in colloidal crystals, the colors of these colloidal glasses are independent of angle due to the disordered, isotropic microstructure. We therefore call them ``photonic glasses.'' A similar coloration mechanism is found in the feathers of certain birds. However, there are few examples of red photonic glasses either in nature or in colloidal systems. Using scattering theory, we show that the absence of red photonic glasses can be explained by the wavelength-dependence of the single-particle scattering cross-section, which can override the interference condition set by the structure. We propose ways to overcome this obstacle, and we report on experimental methods to make non-iridescent, structural red color.

  11. Phase coexistence in polydisperse athermal polymer-colloidal mixture.

    Science.gov (United States)

    Hlushak, S P; Kalyuzhnyi, Yu V; Cummings, P T

    2008-04-21

    A theoretical scheme developed earlier [Y. V. Kalyuzhnyi et al., Chem. Phys. Lett. 443, 243 (2007)] is used to calculate the full phase diagram of polydisperse athermal polymer-colloidal mixture with polydispersity in both colloidal and polymeric components. In the limiting case of bidisperse polymer-colloidal mixture, theoretical results are compared against computer simulation results. We present the cloud and shadow curves, critical binodals, and distribution functions of the coexisting phases and discuss the effects of polydispersity on their behavior. According to our analysis polydispersity extends the region of the phase instability, shifting the critical point to the lower values of the pressure and density. For the high values of the pressure polydispersity causes strong fractionation effects, with the large size colloidal particles preferring the low-density shadow phase and long chain length polymeric particles preferring the high-density shadow phase.

  12. Flow of colloidal suspensions through small orifices

    Science.gov (United States)

    Hidalgo, R. C.; Goñi-Arana, A.; Hernández-Puerta, A.; Pagonabarraga, I.

    2018-01-01

    In this work, we numerically study a dense colloidal suspension flowing through a small outlet driven by a pressure drop using lattice-Boltzmann methods. This system shows intermittent flow regimes that precede clogging events. Several pieces of evidence suggest that the temperature controls the dynamic state of the system when the driving force and the aperture size are fixed. When the temperature is low, the suspension's flow can be interrupted during long time periods, which can be even two orders of magnitude larger than the system's characteristic time (Stokes). We also find that strong thermal noise does not allow the formation of stable aggregate structures avoiding extreme clogging events, but, at the same time, it randomizes the particle trajectories and disturbs the advective particle flow through the aperture. Moreover, examining the particle velocity statistics, we obtain that in the plane normal to the pressure drop the colloids always move as free particles regardless of the temperature value. In the pressure drop direction, at high temperature the colloids experience a simple balance between advective and diffusive transport, but at low temperature the nature of the flow is much more complex, correlating with the occurrence of very long clogging events.

  13. Double layer relaxation in colloids

    NARCIS (Netherlands)

    Kijlstra, J.

    1992-01-01

    The purpose of the present study is to improve our insight into the relaxation of the electrical double layer around particles in hydrophobic sols. A detailed knowledge of the relaxation mechanisms is required to explain the behaviour of sols under conditions where the double layer is

  14. Eletroquímica das partículas coloidais e sua relação com a mineralogia de solos altamente intemperizados Electrochemistry of colloidal particles and its relationship with the mineralogy of highly weathered soils

    Directory of Open Access Journals (Sweden)

    Maurício Paulo F. Fontes

    2001-09-01

    improvement of the predictive capability of several phenomena, such as, floculation and dispersion of colloids, cations exchange, anion adsorption, specially phosphates, heavy metals adsorption, etc. Therefore, this literature review aims at to make a scientific approach of the topic "Electrochemistry of colloidal particles and its relationship with the mineralogy of highly weathered soils", in which, the historical evolution of the knowledge in this field is covered and the challenges to the development of the research in this area are raised. Different tendencies and views existing in the literature about Zero Points of Charge (ZPC, Charge Characterization and Measurement, ZPCs Terminology and Simbology and Relationship between Charge and Minerals of the highly weathered soils are also presented. Basic concepts are revisited and new or seldom used concepts in Soil Science are presented and discussed with the objective of improving the understanding and refining the interpretation of such important branch of the Soil Chemistry and Mineralogy field.

  15. Advanced Colloids Experiment (ACE) Science Overview

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; hide

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  16. Charge renormalization and phase separation in colloidal suspensions

    OpenAIRE

    Diehl, Alexandre; BARBOSA, Marcia C.; Levin, Yan

    2000-01-01

    We explore the effects of counterion condensation on fluid-fluid phase separation in charged colloidal suspensions. It is found that formation of double layers around the colloidal particles stabilizes suspensions against phase separation. Addition of salt, however, produces an instability which, in principle, can lead to a fluid-fluid separation. The instability, however, is so weak that it should be impossible to observe a fully equilibrated coexistence experimentally.

  17. Universal hydrodynamic mechanisms for crystallization in active colloidal suspensions

    Science.gov (United States)

    Singh, Rajesh; Adhikari, R.

    We derive, using the boundary integral formulation of Stokes flow, exact expressions for forces and torques between active colloidal particles near a plane wall. From the leading terms of these expressions we identify universal mechanisms for the crystallization of active colloids. Through detailed simulations, we find that active crystallization is not an activated process, as in equilibrium, but proceeds through a spinodal-like instability.

  18. Phase diagram of inverse patchy colloids assembling into an equilibrium laminar phase.

    Science.gov (United States)

    Noya, Eva G; Kolovos, Ismene; Doppelbauer, Günther; Kahl, Gerhard; Bianchi, Emanuela

    2014-11-14

    We numerically study the phase behavior of colloidal particles with two charged patches at the poles and an oppositely charged equatorial belt. Interactions between particles are described using the inverse patchy colloid model, where the term inverse emphasizes the difference with respect to conventional patchy particles: as a consequence of the heterogeneous charge distribution, the patches on the particle surface repel each other, whereas the patches and non-patch regions mutually attract. For the model parameters considered in this work, the system exhibits an unusual equilibrium phase diagram characterized by a broad region where a novel structure composed of parallel colloidal monolayers is stable.

  19. Defects in Colloidal Crystals. Identification, Characterization, and Manipulation

    NARCIS (Netherlands)

    Hilhorst, J.|info:eu-repo/dai/nl/31413106X

    2012-01-01

    Colloids are particles with a size roughly between 1 nm and 1 μm in size. Such particles are small enough to exhibit Brownian motion, like molecules and atoms, but move much slower and are directly observable using visible light. This makes them ideal for studying processes related to

  20. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils...... not associated with organic C (r > 0.89, P colloid release rates were highly correlated with the total clay content (r > 0.84, P ... content measured using a more classical end-over-end method (r > 0.89, P 0.89, P colloids and colloid-facilitated transport...

  1. Investigation of a colloidal damper.

    Science.gov (United States)

    Suciu, C V; Iwatsubo, T; Deki, S

    2003-03-01

    A novel application of nanotechnology in the field of mechanical engineering, called colloidal damper (CD), is investigated. This device is complementary to the hydraulic damper (HD), having a cylinder-piston construction. Particularly for CD, the hydraulic oil is replaced by a colloidal suspension, which consists of a mesoporous matrix and a lyophobic fluid. In this work, the porous matrix is from silica gel modified by linear chains of n-alkylchlorosilanes and water is considered as an associated working fluid. A design solution from a practical point of view of the CD test rig and the measuring technique of the hysteresis are described. A brief review of the water physical properties relative to the CD concept is presented. Influence of the bonding density, length of the grafted molecule, pore diameter, and particle diameter on the CD hysteresis is investigated for distinctive types and mixtures of silica gels. Temperature variation during functioning is recorded and the CD cycle is interpreted from a thermodynamic standpoint. Variation of the CD dissipated energy and efficiency with pressure, water quantity, and relaxation time is illustrated. Experimental results are justified by the analysis of the water flow into the porous matrix, CD thermodynamics, and the mechanism of the energy dissipation. Our findings agree with the previously published data.

  2. A brief perspective on the diverging theories of lymphatic targeting with colloids

    Science.gov (United States)

    Siram, Karthik; Marslin, Gregory; Raghavan, Chellan Vijaya; Balakumar, Krishnamoorthy; Rahman, Habibur; Franklin, Gregory

    2016-01-01

    For targeted delivery of colloids to the lymphatic system, the colloids should efficiently reach and remain in the lymphatics for a considerable period of time. As per the current knowledge, diffusion and phagocytosis are the two mechanisms through which colloids reach the lymphatic system. Several parameters including particle size and charge have been shown to affect the direct uptake of colloids by the lymphatic system. Although many researchers attached ligands on the surface of colloids to promote phagocytosis-mediated lymphatic delivery, another school of thought suggests avoidance of phagocytosis by use of carriers like polyethylene glycol (PEG)ylated colloids to impart stealth attributes and evade phagocytosis. In this perspective, we weigh up the paradoxical theories and approaches available in the literature to draw conclusions on the conditions favorable for achieving efficient lymphatic targeting of colloids. PMID:27366065

  3. Centimeter-scale colloidal crystal belts via robust self-assembly strategy.

    Science.gov (United States)

    Lu, Xianyong; Zhu, Ying; Cen, Tianzhou; Jiang, Lei

    2012-06-26

    Centimeter-scale poly(acrylic acid-co-DVB80) (PAA) 3D colloidal crystal belts were prepared via a novel robust vertical deposition technique based on negative pressure and curvature substrate of the glass vial. The formation of PAA colloidal crystal belts was investigated. The results indicated that curvature could control the dimension of PAA colloidal crystal belts. Well-controlled negative pressure resulted in rapid fabrication of well-defined PAA colloidal crystal belts. Curvature substrate of glass vial could distribute shrinking stress in the process of drying of colloidal films. Strong hydrogen bonding interactions among carboxyl groups on the surface of PAA colloidal particles was responsible for PAA colloidal crystal belts with closed-packing characteristics.

  4. A brief perspective on the diverging theories of lymphatic targeting with colloids.

    Science.gov (United States)

    Siram, Karthik; Marslin, Gregory; Raghavan, Chellan Vijaya; Balakumar, Krishnamoorthy; Rahman, Habibur; Franklin, Gregory

    2016-01-01

    For targeted delivery of colloids to the lymphatic system, the colloids should efficiently reach and remain in the lymphatics for a considerable period of time. As per the current knowledge, diffusion and phagocytosis are the two mechanisms through which colloids reach the lymphatic system. Several parameters including particle size and charge have been shown to affect the direct uptake of colloids by the lymphatic system. Although many researchers attached ligands on the surface of colloids to promote phagocytosis-mediated lymphatic delivery, another school of thought suggests avoidance of phagocytosis by use of carriers like polyethylene glycol (PEG)ylated colloids to impart stealth attributes and evade phagocytosis. In this perspective, we weigh up the paradoxical theories and approaches available in the literature to draw conclusions on the conditions favorable for achieving efficient lymphatic targeting of colloids.

  5. Colloid and Phosphorus Leaching From Undisturbed Soil Cores Sampled Along a Natural Clay Gradient

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Heckrath, Goswin Johann

    2011-01-01

    The presence of strongly sorbing compounds in groundwater and tile drains can be a result of colloid-facilitated transport. Colloid and phosphorus leaching from macropores in undisturbed soil cores sampled across a natural clay gradient at Aarup, Denmark, were studied. The aim of the study...... was to correlate easily measurable soil properties, such as clay content and water-dispersible colloids, to colloid and phosphorus leaching. The clay contents across the gradient ranged from 0.11 to 0.23 kg kgj1. Irrigating with artificial rainwater, all samples showed a high first flush of colloids and phosphorus...... followed by lower and stable colloid and phosphorus concentrations. The mass of particles leached at first flush was independent of clay content and was attributed to the instant release of particles associated with the macropore walls and released upon contact with flowing water. Below a clay content of È...

  6. Electrophoretic ``Equilibrium'' Profile of Charged Colloids

    Science.gov (United States)

    Planques, Romain; Chaikin, Paul

    2008-03-01

    We perform an electrophoresis experiment of a concentrated colloid against a semipermeable membrane. The electric field forces the charged particles against the membrane and sets up a concentration profile similar to that of a colloid in gravitational sedimentation equilibrium where gravitational forces compete against the osmotic pressure gradient. In the present case there is a current which flows through the electrolyte so the system reaches a steady state profile rather than equilibrium. The electric field, colloid and ionic concentrations adjust self consistently to produce the profile. We use 91 nm polystyrene spheres with sufficient charge that they crystallize and observe their Bragg scattering as a function of height to determine the lattice spacing and particle concentration. We also use 700nm spheres and obtain their concentration profile with X-ray absorption. The fluid flow is zero for a capped system. Connecting a return tube from the supernatant side above the electrophoretic sediment to below the filter yields an electroosmotic flow and circulation. The profile changes substantially and allows us to study the hydrodynamic interactions as a function of concentration for the electrophoresing particles.

  7. Effects of particle fracturing and moisture content on fire behaviour in masticated fuelbeds burned in a laboratory

    Science.gov (United States)

    Jesse K. Kreye; J. Morgan Varner; Eric E. Knapp

    2011-01-01

    Mechanical mastication is a fuels treatment that converts shrubs and small trees into dense fuelbeds composed of fractured woody particles. Although compaction is thought to reduce fireline intensity, the added particle surface area due to fracturing could also influence fire behavior. We evaluated effects of particle fracturing and moisture content (ranging from 2.5...

  8. Predicting colloid transport through saturated porous media: A critical review

    Science.gov (United States)

    Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.

    2015-09-01

    include improving mechanistic descriptions, and subsequent correlation equations, for nanoparticle (i.e., Brownian particle) transport through soil, developing mechanistic descriptions of colloid retention in so-called "unfavorable" conditions via methods such as the "discrete heterogeneity" approach, and employing imaging techniques such as X-ray tomography to develop realistic expressions for grain topology and mineral distribution that can aid the development of these mechanistic approaches.

  9. Magnetically actuated and controlled colloidal sphere-pair swimmer

    Science.gov (United States)

    Ran, Sijie; Guez, Allon; Friedman, Gary

    2016-12-01

    Magnetically actuated swimming of microscopic objects has been attracting attention partly due to its promising applications in the bio-medical field and partly due to interesting physics of swimming in general. While colloidal particles that are free to move in fluid can be an attractive swimming system due it its simplicity and ability to assemble in situ, stability of their dynamics and the possibility of stable swimming behavior in periodically varying magnetic fields has not been considered. Dynamic behavior of two magnetically interacting colloidal particles subjected to rotating magnetic field of switching frequency is analyzed here and is shown to result in stable swimming without any stabilizing feedback. A new mechanism of swimming that relies only on rotations of the particles themselves and of the particle pair axis is found to dominate the swimming dynamics of the colloidal particle pair. Simulation results and analytical arguments demonstrate that this swimming strategy compares favorably to dragging the particles with an external magnetic force when colloidal particle sizes are reduced.

  10. Diffusional Nucleation of Nanocrystals and Their Self-Assembly into Uniform Colloids

    OpenAIRE

    Privman, Vladimir

    2008-01-01

    We review theoretical explanation of mechanisms of control of uniformity in growth of nanosize particles and colloids. The nanoparticles are synthesized as nanocrystals, by burst nucleation from solution. The colloids are self-assembled by aggregation of these nanocrystals. The two kinetic processes are coupled, and both are driven by diffusional transport. The interrelation of the two processes allows for formation of narrow-size-distribution colloid dispersions which are of importance in ma...

  11. Colloidal photonic crystals: from lasing to microfluidics

    Science.gov (United States)

    Clays, Koen; Zhong, Kuo; Song, Kai

    2017-08-01

    Colloidal photonic crystals are photonic crystals made by bottom-up physical chemistry strategies from monodisperse colloidal particles. The self-assembly process is automatically leading to inherently three-dimensional structures with their optical properties determined by the periodicity, induced by this ordering process, in the dielectric properties of the colloidal material. The best-known optical effect is the photonic band gap, the range of energies, or wavelengths, that is forbidden for photons to exist in the structure. This photonic band gap is similar to the electronic band gap of electronic semiconductor crystals. We have previously shown how with the proper photonic band gap engineering, we can insert allowed pass band defect modes and use the suppressing band gap in combination with the transmitting pass band to induce spectral narrowing of emission. We show now how with a high-quality narrow pass band in a broad stop band, it is possible to achieve photonic crystal lasing in self-assembled colloidal photonic crystals with a planar defect. In addition, with proper surface treatment in combination with patterning, we prepare for addressable integrated photonics. Finally, by incorporating a water in- and outlet, we can create optomicrofluidic structures on a photonic crystal allowing the optical probing of microreactors or micro-stopped-flow in the lab-on-an-optical-chip.

  12. Self-assembly of colloids with liquid protrusions.

    Science.gov (United States)

    Kraft, Daniela J; Vlug, Wessel S; van Kats, Carlos M; van Blaaderen, Alfons; Imhof, Arnout; Kegel, Willem K

    2009-01-28

    A facile and flexible synthesis for colloidal molecules with well-controlled shape and tunable patchiness is presented. Cross-linked polystyrene spheres with a liquid protrusion were found to assemble into colloidal molecules by coalescence of the liquid protrusions. Similarly, cross-linked poly(methyl methacrylate) particles carrying a wetting layer assembled into colloidal molecules by coalescence of the wetting layer. Driven by surface energy, a liquid droplet on which the solid spheres are attached is formed. Subsequent polymerization of the liquid yields a wide variety of colloidal molecules as well as colloidosomes with tunable patchiness. Precise control over the topology of the particles has been achieved by changing the amount and nature of the swelling monomer as well as the wetting angle between the liquid and the seed particles. The overall cluster size can be controlled by the seed size as well as the swelling ratio. Use of different swelling monomers and/or particles allows for chemical diversity of the patches and the center. For low swelling ratios assemblies of small numbers of seeds resemble clusters that minimize the second moment of the mass distribution. Assemblies comprised of a large number of colloids are similar to colloidosomes exhibiting elastic strain relief by scar formation.

  13. Software for fitting and simulating fate and transport of dense colloids and biocolloids in one-dimensional porous media: Re-introducing ColloidFit.

    Science.gov (United States)

    Katzourakis, Vasileios; Chrysikopoulos, Constantinos

    2016-04-01

    The present work re-introduces ColloidFit, which is an autonomous, modular, multipurpose fitting software for dense colloid and biocolloid transport phenomena in porous media. The initial version of ColloidFit, introduced by Sim and Chrysikopoulos (1995), was substantially improved and combined with a relatively intuitive and easy to use graphical user interface. The re-introduced ColloidFit can simulate the migration of suspended colloid or biocolloid particles in one-dimensional, water saturated, homogeneous porous media with uniform flow, accounting for non-equilibrium attachment onto the solid matrix, as well as gravitational effects. Furthermore, the improved ColloidFit software employs a variety of non-equilibrium, linear and nonlinear models for the simulation of colloid attachment onto a solid matrix under batch experimental conditions. The re-introduced ColloidFit uses the state of the art fitting software "Pest" to estimate unknown model parameter values, together with their 95% confidence intervals. Pest is a model-independent parameter estimation software capable of adjusting model parameters, so that discrepancies between model-generated data and the corresponding experimental measurements are reduced to a user preselected minimum. The fitting process is graphed and displayed in real time. The user is allowed to overview every step of the fitting progress, and if needed to change the initial parameter values. The re-introduced ColloidFit software is expected to make the fitting process of colloid and biocolloid transport data, just a simple task.

  14. Impact of Redox Reactions on Colloid Transport in Saturated Porous Media: An Example of Ferrihydrite Colloids Transport in the Presence of Sulfide.

    Science.gov (United States)

    Liao, Peng; Yuan, Songhu; Wang, Dengjun

    2016-10-18

    Transport of colloids in the subsurface is an important environmental process with most research interests centered on the transport in chemically stable conditions. While colloids can be formed under dynamic redox conditions, the impact of redox reactions on their transport is largely overlooked. Taking the redox reactions between ferrihydrite colloids and sulfide as an example, we investigated how and to what extent the redox reactions modulated the transport of ferrihydrite colloids in anoxic sand columns over a range of environmentally relevant conditions. Our results reveal that the presence of sulfide (7.8-46.9 μM) significantly decreased the breakthrough of ferrihydrite colloids in the sand column. The estimated travel distance of ferrihydrite colloids in the absence of sulfide was nearly 7-fold larger than that in the presence of 46.9 μM sulfide. The reduced breakthrough was primarily attributed to the reductive dissolution of ferrihydrite colloids by sulfide in parallel with formation of elemental sulfur (S(0)) particles from sulfide oxidation. Reductive dissolution decreased the total mass of ferrihydrite colloids, while the negatively charged S(0) decreased the overall zeta potential of ferrihydrite colloids by attaching onto their surfaces and thus enhanced their retention in the sand. Our findings provide novel insights into the critical role of redox reactions on the transport of redox-sensitive colloids in saturated porous media.

  15. Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients.

    Science.gov (United States)

    Cheng, Tao; Saiers, James E

    2010-10-01

    Colloid-sized particles are commonly detected in vadose-zone pore waters and are capable of binding chemicals with sorptive affinities for geologic materials. Published research demonstrates that colloids are capable of facilitating the transport of sorptive contaminants under conditions of steady pore water flow, when volumetric moisture content and pore water velocity are constant. Less is known about the role of colloids in governing contaminant mobility under transient-flow conditions, which are characteristic of natural vadose-zone environments. The objective of this study is to elucidate the influences of flow transients on the mobilization and transport of in situ colloids and colloid-associated contaminants. We conducted column experiments in which the mobilization of in situ colloids and (137)Cs was induced by transients associated with the drainage and imbibition of (137)Cs contaminated-sediments. Our results demonstrate that substantial quantities of in situ colloids and colloid-associated (137)Cs are mobilized as volumetric moisture content declines during porous-medium drainage and as volumetric moisture content increases during porous-medium imbibition. We also find that the colloid-effect on (137)Cs transport is sensitive to changes in pore water ionic strength. That is, the quantities of colloids mobilized and the capacity of the these colloids to bind (137)Cs decrease with increasing ionic strength, leading to a decrease of the mass of (137)Cs eluted from the columns during porous-medium drainage and imbibition.

  16. Active Colloids in Isotropic and Anisotropic Electrolytes

    Science.gov (United States)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  17. Electric field mediated colloidal assembly and control

    Science.gov (United States)

    Juarez, Jaime Javier

    2011-12-01

    This dissertation presents video microscopy measurements and computer simulations of colloidal particle interactions in inhomogeneous, high-frequency AC electric fields. The interactions of particles with each other and inhomogeneous electric fields are quantified as a function of concentration, field amplitude, and frequency. Visual state diagrams show that these interactions in concentrated systems produce quasi-two dimensional microstructures including confined hard disk fluids, oriented dipolar chains, and oriented hexagonal close packed crystals. The interaction of a particle interacting with an electric field is directly measured with analyses of a single diffusing colloid within electric fields in the absence of many body effects. Concentrated systems are characterized in terms of density profiles across the electrode gap and angular pair distribution functions. An inverse Monte Carlo analysis extracted the induced dipole-induced dipole interaction from concentrated measurements. A single adjustable parameter consistently modified the induced dipole-field potential and the induced dipole-induced dipole potential to account for modification of the local electric field as the result of the local particle concentration, frequency and configuration. Confocal laser scanning microscopy (CLSM) perform sensitive measurements of internal three dimensional structure of crystals assembled in an interfacial quadrupole electrode device. Radial distributions as functions of elevation are used to characterize the equilibrium structure. A single adjustable parameter modified known potentials to match Monte Carlo simulations with experiment. The local density from experiment and simulation matched the expected density calculated from a balance of osmotic pressure and dielectrophoretic compression. Simulations qualitatively matched experimental observations of microstructure as a function of field amplitude. Programmable assembly for colloidal crystals is implemented in the

  18. Rheology, microstructure and migration in brownian colloidal suspensions.

    Science.gov (United States)

    Pan, Wenxiao; Caswell, Bruce; Karniadakis, George Em

    2010-01-05

    We demonstrate that suspended spherical colloidal particles can be effectively modeled as single dissipative particle dynamics (DPD) particles provided that the conservative repulsive force is appropriately chosen. The suspension model is further improved with a new formulation, which augments standard DPD with noncentral dissipative shear forces between particles while preserving angular momentum. Using the new DPD formulation we investigate the rheology, microstructure and shear-induced migration of a monodisperse suspension of colloidal particles in plane shear flows (Couette and Poiseuille). Specifically, to achieve a well-dispersed suspension we employ exponential conservative forces for the colloid-colloid and colloid-solvent interactions but keep the conventional linear force for the solvent-solvent interactions. Our simulations yield relative viscosity versus volume fraction predictions in good agreement with both experimental data and empirical correlations. We also compute the shear-dependent viscosity and the first and second normal-stress differences and coefficients in both Couette and Poiseuille flow. Simulations near the close packingvolume-fraction (64%) at low shear rates demonstrate a transition to flow-induced string-like structures of colloidal particles simultaneously with a transition to a nonlinear Couette velocity profile in agreement with experimental observations. After a sufficient increase ofthe shear rate the ordered structure melts into disorder with restoration of the linear velocity profile. Migration effects simulated in Poiseuille flow compare well with experiments and model predictions. The important role of angular momentum and torque in nondilute suspensions is also demonstrated when compared with simulations by the standard DPD, which omits the angular degrees of freedom. Overall, the new method agrees very well with the Stokesian Dynamics method but it seems to have lower computational complexity and is applicable to general

  19. Liquid bridging of cylindrical colloids in near-critical solvents

    Science.gov (United States)

    Labbé-Laurent, M.; Law, A. D.; Dietrich, S.

    2017-09-01

    Within mean field theory, we investigate the bridging transition between a pair of parallel cylindrical colloids immersed in a binary liquid mixture as a solvent that is close to its critical consolute point Tc. We determine the universal scaling functions of the effective potential and of the force between the colloids. For a solvent that is at the critical concentration and close to Tc, we find that the critical Casimir force is the dominant interaction at close separations. This agrees very well with the corresponding Derjaguin approximation for the effective interaction between the two cylinders, while capillary forces originating from the extension of the liquid bridge turn out to be more important at large separations. In addition, we are able to infer from the wetting characteristics of the individual colloids the first-order transition of the liquid bridge connecting two colloidal particles to the ruptured state. While specific to cylindrical colloids, the results presented here also provide an outline for identifying critical Casimir forces acting on bridged colloidal particles as such and for analyzing the bridging transition between them.

  20. Rheology modification in mixed shape colloidal dispersions. Part II: mixtures

    NARCIS (Netherlands)

    ten Brinke, A.J.W.; Bailey, L.; Lekkerkerker, H.N.W.|info:eu-repo/dai/nl/159054885; Matiland, G.C.

    2008-01-01

    We report the results of a comprehensive study of the rheological properties of a series of mixed colloid systems where the shape of one of the components has been varied systematically. Specifically we have measured the oscillatory, transient (creep) and continuous steady shear flow behaviour of a

  1. Tuning colloidal interactions in subcritical solvents by solvophobicity: explicit versus implicit modeling.

    Science.gov (United States)

    Dzubiella, J; Chakrabarti, J; Löwen, H

    2009-07-28

    The distance-resolved effective interaction between two colloidal particles in a subcritical solvent is explored both by an explicit and implicit modeling. An implicit solvent approach based on a simple thermodynamic interface model is tested against grand-canonical Monte Carlo computer simulations using explicit Lennard-Jones solvent molecules. Close to liquid-gas coexistence, a joint gas bubble surrounding the colloidal particle pair yields an effective attraction between the colloidal particles, the strength of which can be vastly tuned by the solvophobicity of the colloids. The implicit model is in good agreement with our explicit computer simulations, thus enabling an efficient modeling and evaluation of colloidal interactions and self-assembly in subcritical solvent environments.

  2. Colloids in the River Inn

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau from 2008 to 2014. Samples were collected after each tributary from a sub-catchment and filtered on site using a new filtration device for gentle filtration. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analysis provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of individual particles. As presented at EGU 2014, particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition. This general setting was validated in last year's sampling campaigns. An interesting change in on site parameters and hydrochemical composition was seen during all sampling campaigns at an inflow from the valley Kaunertal, Austria. Therefore

  3. Interfacial colloidal rod dynamics: Coefficients, simulations, and analysis

    Science.gov (United States)

    Yang, Yuguang; Bevan, Michael A.

    2017-08-01

    Colloidal rod diffusion near a wall is modeled and simulated based on a constrained Stokesian dynamic model of chains-of-spheres. By modeling colloidal rods as chains-of-spheres, complete diffusion tensors are computed for colloidal rods in bulk media and near interfaces, including hydrodynamic interactions, translation-rotation coupling, and all diffusion modes in the particle and lab frames. Simulated trajectories based on the chain-of-spheres diffusion tensor are quantified in terms of typical experimental quantities such as mean squared positional and angular displacements as well as autocorrelation functions. Theoretical expressions are reported to predict measured average diffusivities as well as the crossover from short-time anisotropic translational diffusion along the rod's major axis to isotropic diffusion. Diffusion modes are quantified in terms of closed form empirical fits to model results to aid their use in interpretation and prediction of experiments involving colloidal rod diffusion in interfacial and confined systems.

  4. Electrolyte-induced Instability of Colloidal Dispersions in Nonpolar Solvents.

    Science.gov (United States)

    Smith, Gregory N; Finlayson, Samuel D; Rogers, Sarah E; Bartlett, Paul; Eastoe, Julian

    2017-10-05

    Dispersions of poly(methyl methacrylate) (PMMA) latexes were prepared in a low dielectric, nonpolar solvent (dodecane) both with and without the oil-soluble electrolyte, tetradodecylammonium-tetrakis(3,5-bis(trifluoromethyl)phenyl)borate. For dispersions with a high concentration of background electrolyte, the latexes become colloidally unstable and sediment in a short period of time (Instability of the dispersions is due to an apparent attraction between the colloids, directly observed using optical tweezers by bringing optically trapped particles into close proximity. Simple explanations generally used by colloid scientists to explain loss of stability (charge screening or stabilizer collapse) are insufficient to explain this observation. This unexpected interaction seems, therefore, to be a consequence of the materials that can be dispersed in low dielectric media and is expected to have ramifications for studying colloids in such solvents.

  5. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  6. Colloidal motion under the action of a thermophoretic force

    Science.gov (United States)

    Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika

    2017-09-01

    We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.

  7. Note: Production of stable colloidal probes for high-temperature atomic force microscopy applications.

    Science.gov (United States)

    Ditscherlein, L; Peuker, U A

    2017-04-01

    For the application of colloidal probe atomic force microscopy at high temperatures (>500 K), stable colloidal probe cantilevers are essential. In this study, two new methods for gluing alumina particles onto temperature stable cantilevers are presented and compared with an existing method for borosilicate particles at elevated temperatures as well as with cp-cantilevers prepared with epoxy resin at room temperature. The durability of the fixing of the particle is quantified with a test method applying high shear forces. The force is calculated with a mechanical model considering both the bending as well as the torsion on the colloidal probe.

  8. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  9. Nucleation in food colloids

    Science.gov (United States)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  10. Van der Waals-like instability in suspensions of mutually repelling charged colloids

    NARCIS (Netherlands)

    Roij, R. van; Hansen, J.-P.

    1997-01-01

    We show theoretically that the purely repulsive screened-Coulomb (or Derjaguin-Landau-Verwey- Overbeek) interaction between charged colloidal particles is compatible with gas-liquid, gas-solid, and solid-solid coexistence in colloidal suspensions of low ionic strength of about 1026

  11. Symmetry breaking in suspensions of anisotropic colloids : phase transitions, diffusion and effective interactions

    NARCIS (Netherlands)

    Belli, S

    2013-01-01

    Colloids are particles with dimensions in between the nanometer and the micrometer suspended in a solvent. Similarly to the much smaller atoms and molecules, colloids appear in extremely different thermodynamic phases, such as gas, liquid, crystals and liquid crystals. Our interest focuses on the

  12. Liquid Crystal Phases of Colloidal Platelets and their Use as Nanocomposite Templates

    NARCIS (Netherlands)

    Mourad, M.C.D.|info:eu-repo/dai/nl/304837563

    2009-01-01

    This thesis explores the gelation and liquid crystal phase behavior of colloidal dispersions of platelike particles as well as the use of such dispersions for the generation of nanocomposites. We report on the sol-gel, sol-glass and liquid crystal phase transitions of positively charged colloidal

  13. In situ X-ray crystallographic study of the structural evolution of colloidal crystals upon heating

    NARCIS (Netherlands)

    Zozulya, A.V.; Meijer, J.M.; Shabalin, A.; Ricci, A.; Westermeier, F.; Kurta, R.P.; Lorenz, U.; Singer, A.; Yefanow, O.; Petukhov, A.V.; Sprung, M.; Vartanyants, I. A.

    2013-01-01

    The structural evolution of colloidal crystals made of polystyrene hard spheres has been studied in situ upon incremental heating of a crystal in a temperature range below and above the glass transition temperature of polystyrene. Thin films of colloidal crystals having different particle sizes were

  14. Dense colloidal fluids form denser amorphous sediments.

    Science.gov (United States)

    Liber, Shir R; Borohovich, Shai; Butenko, Alexander V; Schofield, Andrew B; Sloutskin, Eli

    2013-04-09

    We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, ϕRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, ϕRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed.

  15. Surface molecular view of colloidal gelation

    Science.gov (United States)

    Roke, Sylvie; Berg, Otto; Buitenhuis, Johan; van Blaaderen, Alfons; Bonn, Mischa

    2006-01-01

    We investigate the phase behavior of surface-functionalized silica colloids at both the molecular and macroscopic levels. This investigation allows us to relate collective properties such as aggregation, gelation, and aging directly to molecular interfacial behavior. By using surface-specific vibrational spectroscopy, we reveal dramatic changes in the conformation of alkyl chains terminating submicrometer silica particles. In fluid suspension at high temperatures, the interfacial molecules are in a liquid-like state of conformational disorder. As the temperature is lowered, the onset of gelation is identified by macroscopic phenomena, including changes in turbidity, heat release, and diverging viscosity. At the molecular level, the onset of this transition coincides with straightening of the carbon–carbon backbones of the interfacial molecules. In later stages, their intermolecular crystalline packing improves. It is the increased density of this ordered boundary layer that increases the van der Waals attraction between particles, causing the colloidal gas to aggregate. The approach presented here can provide insights into phase transitions that occur through surface modifications in a variety of colloidal systems. PMID:16938857

  16. Application of colloidal chemistry in aqueous phase to the preparation of supported metallic catalysts: particles size and aggregation control; Application de la chimie colloidale en phase aqueuse a la preparation de catalyseurs metalliques supportes: controle de la taille et de l`etat d`agregation des particules

    Energy Technology Data Exchange (ETDEWEB)

    Pages, T.

    1998-09-16

    This work is an application of colloidal chemistry in aqueous phase on supported metal catalyst preparation. The objective is the control of particle size and aggregation. The preparation of the materials was achieved in two steps: - the synthesis of PdO hydrosols was obtained by two ways: neutralisation of the solution containing metallic salt by adding alkaline solution or by thermo-hydrolysis; the sols were then deposited on carriers (Al{sub 2}O{sub 3}, SIO{sub 2}). The use of partial charge model allowed us to determine the complexes that were able to generate PdO. The preparation of PdO from Pd(H{sub 2}O){sub 4}{sup 2+} was studied and a mechanism of oxide formation was elaborated. The neutralisation of Pd(H{sub 2}O){sub 4}{sup 2+} obtained by adding alkaline solution led to particles with an average size of 1.8 nm and a narrow particle size distribution. Only the thermo-hydrolysis of Pd(H{sub 2}O){sub 4}{sup 2+} led to particles which size is higher than 3.0 nm. In the last case, particle size is controlled by the precursor concentration (Pd(H{sub 2}O){sub 2}(OH){sub 2}) generated in the medium. We have demonstrated that particle aggregation in the sol depends on the Ph and the way of preparation. It can be controlled by adding complexing anions (Cl{sup -}, NO{sub 2}{sup -}). Concerning the deposition of sols on carriers, it led to isolated or aggregated particles according to experimental conditions. Particle size was not modified during the deposition. Moreover, in our experimental conditions, reduction of particles did not modify particle size and aggregation. An application of this original way of preparation on catalysis allowed us to demonstrate the interest of controlling particle size and aggregation. (author) 186 refs.

  17. CLASSICAL AREAS OF PHENOMENOLOGY: Lattice Boltzmann simulation of behaviour of particles moving in blood vessels under the rolling massage

    Science.gov (United States)

    Yi, Hou-Hui; Yang, Xiao-Feng; Wang, Cai-Feng; Li, Hua-Bing

    2009-07-01

    The rolling massage is one of the most important manipulations in Chinese massage, which is expected to eliminate many diseases. Here, the effect of the rolling massage on a pair of particles moving in blood vessels under rolling massage manipulation is studied by the lattice Boltzmann simulation. The simulated results show that the motion of each particle is considerably modified by the rolling massage, and it depends on the relative rolling velocity, the rolling depth, and the distance between particle position and rolling position. Both particles' translational average velocities increase almost linearly as the rolling velocity increases, and obey the same law. The increment of the average relative angular velocity for the leading particle is smaller than that of the trailing one. The result is helpful for understanding the mechanism of the massage and to further develop the rolling techniques.

  18. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  19. Anisotropic hydrodynamic function of dense confined colloids

    Science.gov (United States)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2017-06-01

    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  20. Numerical Simulation and Experimental Investigation of Multi-function Micro-plasma Jet and Alumina Particle Behaviour

    Directory of Open Access Journals (Sweden)

    Liu Gu

    2016-01-01

    Full Text Available Turbulent flow in multi-function micro-plasma spray, as well as the trajectories and state-changing course of alumina particles in the plasma jet were simulated. The distribution of temperature and velocity of the plasma jet and in-flight alumina particles is discussed. Calculations show that particles are heated and accelerated sufficiently by the plasma flame due to a longer travel time than that of external injection system, therefore, possess higher temperature and velocity. Alumina particles temperature and velocity increase rapidly along the jet axis at the initial stage, but then decrease gradually. The velocity and surface temperature of in-flight alumina particles are measured by Spray Watch-2i system. The velocity and surface temperature of alumina particles measured agree well with the simulation results, confirming that the simulation model is suitable for the prediction of the turbulent flow and the particle characteristics, which also reveals the superiority of the plasma spray gun in this multi-function micro-plasma spraying system.