WorldWideScience

Sample records for colloidal metal aerogel

  1. Surface Plasmon Resonance Evaluation of Colloidal Metal Aerogel Filters

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1997-01-01

    We have fabricated aerogels containing gold, silver, and platinum nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  2. Aerogel

    Indian Academy of Sciences (India)

    Aerogel, a material not much denser than air on a foggy morning ... between a liquid and a gas, leading to minimum effect on surface ... approached by the French Government to design a method to ... catalysts. • Aerogel dust in grain and seed stocks was found to kill insects by mere ... radiation detectors in nuclear reactors.

  3. Diffusion of gases in metal containing carbon aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M. [Evora Univ. (Portugal). Centro de Quimica de Evora

    2011-02-15

    Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO{sub 2}, CH{sub 4}, N{sub 2} and O{sub 2} were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)

  4. Diffusion of gases in metal containing carbon aerogels

    International Nuclear Information System (INIS)

    Marques, L.M.; Conceicao, F.L.; Carrott, M.M.L. Ribeiro; Carrott, P.J.M.

    2011-01-01

    Carbon aerogels containing Fe, Ni, Cu or no metal were prepared by carbonisation of polymer aerogels synthesised from 2,4-dihydroxybenzoic acid and formaldehyde and modified by CVD of benzene. Uptakes and diffusion coefficients of CO 2 , CH 4 , N 2 and O 2 were measured and the results compared with those obtained using a commercial carbon molecular sieve. The results indicated that the diffusion of light gas molecules in carbon aerogels cannot be interpreted solely on the basis of micropore diffusion, but that the very high mesopore volumes of the aerogel monoliths exert a strong influence on the kinetics of diffusion in these materials. The mesoporosity is decreased when the % solids used during synthesis of the polymer precursor increases and this resulted in kinetic behaviour which was more similar to that predicted by Fickian or LDF models. Increasing % solids was also accompanied by generally slower diffusion rates and generally lower uptakes. The single gas uptakes and diffusion coefficients could be altered by varying the % solids used during synthesis of the polymer precursor, by introducing different metals into the polymer hydrogel by ion exchange, or by CVD of benzene on the carbon aerogel. (author)

  5. Quantum-size colloid metal systems

    International Nuclear Information System (INIS)

    Roldugin, V.I.

    2000-01-01

    In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru

  6. Noble Metal Immersion Spectroscopy of Silica Alcogels and Aerogels

    Science.gov (United States)

    Smith, David D.; Sibille, Laurent; Cronise, Raymond J.; Noever, David A.

    1998-01-01

    We have fabricated aerogels containing gold and silver nanoparticles for gas catalysis applications. By applying the concept of an average or effective dielectric constant to the heterogeneous interlayer surrounding each particle, we extend the technique of immersion spectroscopy to porous or heterogeneous media. Specifically, we apply the predominant effective medium theories for the determination of the average fractional composition of each component in this inhomogeneous layer. Hence, the surface area of metal available for catalytic gas reaction is determined. The technique is satisfactory for statistically random metal particle distributions but needs further modification for aggregated or surfactant modified systems. Additionally, the kinetics suggest that collective particle interactions in coagulated clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  7. Kinetically controlled synthesis of AuPt bi-metallic aerogels and their enhanced electrocatalytic performances

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Qiurong [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Du, Dan [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Key Laboratory of Pesticides and Chemical Biology; Bi, Cuixia [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Xia, Haibing [Institute of Crystal Materials; Shandong University; Jinan 250100; P. R. China; Feng, Shuo [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory; Pacific Northwest National Laboratory; Richland; USA; Lin, Yuehe [School of Mechanical and Materials Engineering; Washington State University; Pullman; USA

    2017-01-01

    Kinetically controlled synthesis of AuPtxbi-metallic hydrogels/aerogels was efficiently achieved for the first timeviatuning the reaction temperature or adding a surfactant.

  8. Method for producing metal oxide aerogels having densities less than 0. 02 g/cc

    Science.gov (United States)

    Tillotson, T.M.; Poco, J.F.; Hrubesh, L.W.; Thomas, I.M.

    1994-01-04

    A two-step method is described for making transparent aerogels which have a density of less than 0.003 g/cm[sup 3] to those with a density of more than 0.8 g/cm[sup 3], by a sol/gel process and supercritical extraction. Condensed metal oxide intermediate made with purified reagents can be diluted to produce stable aerogels with a density of less than 0.02 g/cm[sup 3]. High temperature, direct supercritical extraction of the liquid phase of the gel produces hydrophobic aerogels which are stable at atmospheric moisture conditions. Monolithic, homogeneous silica aerogels with a density of less than 0.02 to higher than 0.8 g/cm[sup 3], with high thermal insulation capacity, improved mechanical strength and good optical transparency, are described. 7 figures.

  9. Formation mechanisms of metal colloids

    Science.gov (United States)

    Halaciuga, Ionel

    Highly dispersed uniform metallic particles are widely used in various areas of technology and medicine and are likely to be incorporated into many other applications in the future. It is commonly accepted that size, shape and composition of the particles represent critical factors in most applications. Thus, understanding the mechanisms of formation of metal particles and the ways to control the physical (e.g. shape, size) and chemical (e.g. composition) properties is of great importance. In the current research, the formation of uniform silver spheres is investigated experimentally. The parameters that influence the formation of silver particles when concentrated iso-ascorbic acid and silver-polyamine complex solutions are rapidly mixed were studied in the absence of dispersants. We found that by varying the nature of the amine, temperature, concentration of reactants, silver/amine molar ratio, and the nature of the silver salt, the size of the resulting silver particles can be varied in a wide range (0.08--1.5 microm). The silver particles were formed by aggregation of nanosize subunits as substantiated by both electron microscopy and X-ray diffraction techniques and by the vivid rapid color changes during the chemical precipitation process. From the practical standpoint, the goal of this research was to prepare well dispersed spherical silver particles having a relatively smooth surface and a diameter of about 1 microm to satisfy the demands of the current electronic materials market. A two stage particle growth model previously developed to explain the narrow size distribution occurring in synthesis of gold spheres was applied to the present experimental system, and the parameters that control the size distribution characteristics were identified. The kinetic parameter required to match the final particle size was found to be in agreement with the one used previously in modeling formation of gold spheres, suggesting that similar kinetics governs the

  10. Synthesis of nano-Au doped SiO2 aerogels by seeding method

    International Nuclear Information System (INIS)

    Ren Hongbo; Wan Xiaobo; Zhang Lin; Du Aiming; Xiu Peng

    2006-01-01

    A new approach to synthesize gold nano cluster doped aerogel on the basis of surface-catalyzed reduction of metal ions was described. Au nano particles were formed in a silica aerogel matrix by hydroxylamine seeding method of reducing gold ions on the silica colloidal surface. Subsequently, the pH value of system was adjusted to about 7-8, the gel formed within 2 h. After aging for 2 d, the gels were washed in aceton, and then dried supercritically (from CO 2 ) to yield aerogels. The reduction process was attributed to hydroxylamine-induced surface catalysis. Au clusters in the aerogel monoliths were characterized with optical adsorption, transmission electron microscopy. These techniques have shown the cluster size and weight content in the aerogels. Brunauer-emmett-teller surface area measurements show that the specific surface area of silica aerogels and doped aerogels are higher than 800 m 2 /g. (authors)

  11. Nitrogen and Fluorine-Codoped Carbon Nanowire Aerogels as Metal-Free Electrocatalysts for Oxygen Reduction Reaction

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Shaofang [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Zhu, Chengzhou [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Song, Junhua [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Engelhard, Mark H. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Xiao, Biwei [Energy and Environmental Directory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Du, Dan [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA; Lin, Yuehe [School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164 USA

    2017-07-11

    The development of active, durable, and low-cost catalysts to replace noble metal-based materials is highly desirable to promote the sluggish oxygen reduction reaction in fuel cells. Herein, nitrogen and fluorine-codoped three-dimensional carbon nanowire aerogels, composed of interconnected carbon nanowires, were synthesized for the first time by a hydrothermal carbonization process. Owing to their porous nanostructures and heteroatom-doping, the as-prepared carbon nanowire aerogels, with optimized composition, present excellent electrocatalytic activity that is comparable to commercial Pt/C. Remarkably, the aerogels also exhibit superior stability and methanol tolerance. This synthesis procedure paves a new way to design novel heteroatomdoped catalysts.

  12. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.

    Science.gov (United States)

    Vareda, João P; Valente, Artur J M; Durães, Luisa

    2016-11-01

    Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms. Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems. Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions. Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil

  13. Aerogels Handbook

    CERN Document Server

    Aegerter, Michel A; Koebel, Matthias M

    2011-01-01

    Aerogels are the lightest solids known. Up to 1000 times lighter than glass and with a density as low as only four times that of air, they show very high thermal, electrical and acoustic insulation values and hold many entries in Guinness World Records. Originally based on silica, R&D efforts have extended this class of materials to non-silicate inorganic oxides, natural and synthetic organic polymers, carbon, metal and ceramic materials, etc. Composite systems involving polymer-crosslinked aerogels and interpenetrating hybrid networks have been developed and exhibit remarkable mechanical strength and flexibility. Even more exotic aerogels based on clays, chalcogenides, phosphides, quantum dots, and biopolymers such as chitosan are opening new applications for the construction, transportation, energy, defense and healthcare industries. Applications in electronics, chemistry, mechanics, engineering, energy production and storage, sensors, medicine, nanotechnology, military and aerospace, oil and gas recove...

  14. Insights into the Controllable Chemical Composition of Metal Oxide Nanowires and Graphene Aerogels

    Science.gov (United States)

    Goldstein, Anna Patrice

    The design and synthesis of materials that absorb visible light and create fuel to store solar energy is a pursuit that has captivated chemists for decades. In order to take part in solar water splitting, i.e. the production of hydrogen and oxygen gas from water and sunlight, electrode materials must fit specific requirements in terms of their electronic structure. Zinc oxide (ZnO) and titanium dioxide (TiO2) are both of interest for their ability to produce oxygen from photogenerated holes, but their band gaps are too large to capture a significant portion of the solar spectrum. We address this challenge by modifying the crystal structures of ZnO and TiO 2 to make lower band gap materials. Furthermore, we use nanowires as the synthetic template for these materials because they provide a large semiconductor-liquid interfacial area. ZnO nanowires can be alloyed with In3+, Fe3+ and other trivalent metal ions to form a unique structure with the formula M2O3(ZnO)n, also known as MZO. We synthesize indium zinc oxide (IZO) and indium iron zinc oxide (IFZO) nanowires and study their crystal structure using atomically-resolved transmission electron microscopy (TEM), among other methods. We elucidate a structural model for MZO that resolves inconsistencies in the existing literature, based on the identification of the zigzag layer as an inversion domain boundary. These nanowires are shown to have a lower band gap than ZnO and produce photocurrent under visible light illumination. The solid-state diffusion reaction to form ternary titanates is also studied by TEM. TiO2 nanowires are coated with metal oxides by a variety of deposition methods, and then converted to MTiO3 at high temperatures, where M is a divalent transition metal ion such as Mn 2+, CO2+, or Ni2+. When Co3O 4 particles attached to TiO2 nanowires are annealed for a short time, we observe the formation of a CoO(111)/TiO2 (010) interface. If the nanowires are instead coated with Co(NO3)2 salt and then annealed

  15. Ambient Dried Aerogels

    Science.gov (United States)

    Jones, Steven M.; Paik, Jong-Ah

    2013-01-01

    A method has been developed for creating aerogel using normal pressure and ambient temperatures. All spacecraft, satellites, and landers require the use of thermal insulation due to the extreme environments encountered in space and on extraterrestrial bodies. Ambient dried aerogels introduce the possibility of using aerogel as thermal insulation in a wide variety of instances where supercritically dried aerogels cannot be used. More specifically, thermoelectric devices can use ambient dried aerogel, where the advantages are in situ production using the cast-in ability of an aerogel. Previously, aerogels required supercritical conditions (high temperature and high pressure) to be dried. Ambient dried aerogels can be dried at room temperature and pressure. This allows many materials, such as plastics and certain metal alloys that cannot survive supercritical conditions, to be directly immersed in liquid aerogel precursor and then encapsulated in the final, dried aerogel. Additionally, the metalized Mylar films that could not survive the previous methods of making aerogels can survive the ambient drying technique, thus making multilayer insulation (MLI) materials possible. This results in lighter insulation material as well. Because this innovation does not require high-temperature or high-pressure drying, ambient dried aerogels are much less expensive to produce. The equipment needed to conduct supercritical drying costs many tens of thousands of dollars, and has associated running expenses for power, pressurized gasses, and maintenance. The ambient drying process also expands the size of the pieces of aerogel that can be made because a high-temperature, high-pressure system typically has internal dimensions of up to 30 cm in diameter and 60 cm in height. In the case of this innovation, the only limitation on the size of the aerogels produced would be in the ability of the solvent in the wet gel to escape from the gel network.

  16. Metal-organic aerogel as a coating for solid-phase microextraction

    Energy Technology Data Exchange (ETDEWEB)

    Saraji, Mohammad, E-mail: saraji@cc.iut.ac.ir; Shahvar, Ali

    2017-06-22

    An iron-based metal-organic aerogel was synthesized using metal-organic framework nanoparticles and applied as a fiber coating for solid-phase microextraction (SPME). Chemical, thermal and morphological characteristics of the material were investigated. Headspace SPME followed by gas chromatography-electron capture detection was used for the determination of chlorobenzenes in the environmental samples. The key experimental factors affecting the extraction efficiency of the analytes, such as ionic strength, extraction and desorption temperature, and extraction time were investigated and optimized. The applicability of the coating for the extraction of chlorobenzenes from the environmental samples including river and tap water, sludge, and coastal soil was evaluated. The detection limits were in the range of 0.1–60 ng L{sup −1}. The relative standard deviations were between 2.0 and 5.0%. The extraction recovery of the analytes was in the range of 88–100%. Compared to the commercial PDMS fiber, the present fiber showed better extraction efficiency. - Highlights: • Metal-organic aerogel was synthesized and used as a novel fiber coating for SPME. • The new coating material showed high surface area and good thermal stability. • GC-ECD was used for determination of chlorobenzenes in environmental samples. • The method showed fast extraction and better efficiency than PDMS commercial fiber.

  17. Core-Shell Structuring of Pure Metallic Aerogels towards Highly Efficient Platinum Utilization for the Oxygen Reduction Reaction.

    Science.gov (United States)

    Cai, Bin; Hübner, René; Sasaki, Kotaro; Zhang, Yuanzhe; Su, Dong; Ziegler, Christoph; Vukmirovic, Miomir B; Rellinghaus, Bernd; Adzic, Radoslav R; Eychmüller, Alexander

    2018-03-05

    The development of core-shell structures remains a fundamental challenge for pure metallic aerogels. Here we report the synthesis of Pd x Au-Pt core-shell aerogels composed of an ultrathin Pt shell and a composition-tunable Pd x Au alloy core. The universality of this strategy ensures the extension of core compositions to Pd transition-metal alloys. The core-shell aerogels exhibited largely improved Pt utilization efficiencies for the oxygen reduction reaction and their activities show a volcano-type relationship as a function of the lattice parameter of the core substrate. The maximum mass and specific activities are 5.25 A mg Pt -1 and 2.53 mA cm -2 , which are 18.7 and 4.1 times higher than those of Pt/C, respectively, demonstrating the superiority of the core-shell metallic aerogels. The proposed core-based activity descriptor provides a new possible strategy for the design of future core-shell electrocatalysts. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Synthesis and studies of novel high metal content organic aerogels obtained from a polymerizable titanium complex

    International Nuclear Information System (INIS)

    Cadra, S.

    2010-01-01

    Inertial Confinement Fusion (ICF) is a technique widely studied by the French atomic commission (CEA). Experiments will be performed within the Laser Megajoule (LMJ). They require innovative materials like organic aerogels that constitute laser targets. Such polymeric material must provide both a high porosity and a significant titanium percentage (1 atom %). Moreover, the monomers developed must be compatible with the synthesis procedure already in use. According to these specifications, a new polymerizable titanium complex was synthesized and fully characterized. This air and moisture-stable monomer provides a high metal percentage. Its free-radical cross-linked copolymerization affords several titanium-containing polymers. These gels were dried under supercritical conditions and organic aerogels were obtained. The chemical compositions of these materials were investigated by NMR, IR and elemental analysis while their structure was characterized by MEB-EDS, MET, N 2 adsorption/desorption isotherms measurements and SAXS. The data collected fit the specification requirements. Moreover, the mechanisms responsible of the foam nano-structure formation were discussed. (author) [fr

  19. Electrochemical metal speciation in colloidal dispersions

    NARCIS (Netherlands)

    Wonders, J.H.A.M.

    1995-01-01

    The term "heavy metals" is connected with toxicity. They form strong complexes with enzymes, other proteins and DNA in living organisms, which causes dysfunctioning and hence poisoning. In combination with the uptake mechanism of the organism, speciation of heavy metal determines the

  20. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    Science.gov (United States)

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  1. Processes of conversion of a hot metal particle into aerogel through clusters

    Energy Technology Data Exchange (ETDEWEB)

    Smirnov, B. M., E-mail: bmsmirnov@gmail.com [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  2. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-11-01

    In this dissertation, the metathesis route of metal chalcogenide aerogel synthesis was expanded by conducting systematic studies between polysulfide building blocks and the 1st-row transition metal linkers. Resulting materials were screened as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated. The effect of the presence of different counter-ion within chalcogel frameworks on the adsorption capacity of the chalcogels was studied on AFe3Zn3S17 (A= K, Na, and Rb) chalcogels. The highest adsorption capacity toward hydrocarbons and gases was observed on Rb based chalcogels. Adopting a new building block [BiTe3]3- with the 1st-row transition metal ions results in the formation of three high BET surface area chalcogels, KCrBiTe3, KZnBiTe3, and KFeBiTe3. The resulting chalcogels showed preferential adsorption of toluene vapor, and remarkable selectivity of CO2, indicating the potential future use of chalcogels in adsorption-based gas or hydrocarbon separation processes. The synthesis and characterization of the rare earth chalcogels NaYSnS4, NaGdSnS4, and NaTbSnS4 are also reported. Rare earth metal ions react with the thiostannate clusters in formamide solution forming extended polymeric networks by gelation. Obtained chalcogels have high BET surface areas, and showed notable adsorption capacity toward CO2 and toluene vapor. These chalcogels have also been engaged in the absorption of different organic molecules. The results reveal the ability of the chalcogels to distinguish among organic molecules on their electronic structures; hence, they could be used as sensors. Furthermore, the synthesis of metal chalcogenide aerogels Co0.5Sb0.33MoS4 and Co0.5Y0.33MoS4 by the sol-gel method is reported. In this system, the building blocks [MoS4]2- chelated with Co2+ and (Sb3

  3. Living Colloidal Metal Particles from Solvated Metal Atoms. Clustering of Metal Atoms in Organic Media 15.

    Science.gov (United States)

    1986-09-23

    attributed to these solutions, especially toward heart disease. And in 1618 Antoni published Panacea Aurea : Auro Potabile 4 which centered on the...probably a slow process (discussed next under the electrophoresis section ). Electrophoresis: Electrophoresis, the movement of charged particles in...electrical properties. Experimental Section Preparation of a Typical Au-Acetone Colloid The metal atom reactor has been described previo sly. 3 9 ’ 5 9 ’ 6 0

  4. Radiation formation of colloidal metallic particles in aqueous systems

    International Nuclear Information System (INIS)

    Cuba, Vaclav; Nemec, Mojmir; Gbur, Tomas; John, Jan; Pospisil, Milan; Mucka, Viliam

    2008-01-01

    Full text: Radiation and photochemical methods have been successfully utilized in various steps of nanoparticles preparation. Presented study deals with formation of silver nanoparticles in various aqueous solutions initiated by UV and gamma radiation. Silver nitrate and silver cyanide were used as precursors for radiation and/or photochemical reduction of Ag + ions to the metallic form. Influence of various parameters (dose of radiation, dose rate, exposition time) on nucleation and formation of colloid particles was studied. Attention was also focused on composition of irradiated solution. Aliphatic alcohols were used as scavengers of OH radicals and other oxidizing species. Various organic stabilizers of formed nanoparticles were used, among others ethylenediaminetetraacetic acid, citric acid and polyvinyl alcohol. Irradiation effects were evaluated using UV/Vis absorption spectra in colloid solution, solid phase formed after long-term irradiation was analysed via X-ray structural analysis

  5. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    Science.gov (United States)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  6. Converting untreated waste office paper and chitosan into aerogel adsorbent for the removal of heavy metal ions.

    Science.gov (United States)

    Li, Zhanying; Shao, Lin; Ruan, Zehai; Hu, Wenbin; Lu, Lingbin; Chen, Yongjun

    2018-08-01

    The utilization of waste paper, an obsolete recyclable resource, helps to save resources and protect environment. In this paper, an aerogel was prepared to convert the waste paper into a useful material, which was used to adsorb heavy metal ions and handle water pollution. Combining waste office paper and chitosan, the aerogel obtained the enhanced mechanical strength, acid resistance and high adsorption capacity (up to 156.3 mg/g for Cu 2+ ). This adsorption process obeyed the pseudo-second order model and the Langmuir model. The research showed that a coordination compound was formed between amino group and Cu 2+ during the adsorption process. The adsorbent could be regenerated well in 0.1 M H 2 SO 4 with up to 98.3% desorption efficiency. The low cost, environmental friendliness, excellent adsorption capacity and regeneration ability made this novel aerogel a promising adsorbent for heavy metal ions. And this conversion is an effective reuse way of waste paper too. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Graphene aerogels

    Science.gov (United States)

    Pauzauskie, Peter J; Worsley, Marcus A; Baumann, Theodore F; Satcher, Jr., Joe H; Biener, Juergen

    2015-03-31

    Graphene aerogels with high conductivity and surface areas including a method for making a graphene aerogel, including the following steps: (1) preparing a reaction mixture comprising a graphene oxide suspension and at least one catalyst; (2) curing the reaction mixture to produce a wet gel; (3) drying the wet gel to produce a dry gel; and (4) pyrolyzing the dry gel to produce a graphene aerogel. Applications include electrical energy storage including batteries and supercapacitors.

  8. Carbon aerogels

    International Nuclear Information System (INIS)

    Berthon-Fabry, S.; Achard, P.

    2003-06-01

    The carbon aerogel is a nano-porous material at open porosity, electrical conductor. The aerogels morphology is variable in function of the different synthesis parameters. This characteristic offers to the aerogels a better adaptability to many applications: electrodes (super condensers, fuel cells). The author presents the materials elaboration and their applications. It provides also the research programs: fundamental research, realization of super-condenser electrodes, fuel cells electrodes, gas storage materials and opaque materials for thermal insulation. (A.L.B.)

  9. Radiation stability of colloidal metals in aqueous solutions: silver and other metals

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The effect of accelerated electrons and γ-rays of 60N i on the stability of aqueous solutions of colloidal silver was studied. The threshold of absorbed dose, at which the stability dramatically decreases and coagulation of the metal occurs, was found. This critical dose corresponds to the reduction of silver ions determining the electrical potential of the sols. Radiation neutralization was also found for cadmium was not observed in the case of thallium, copper and platinum. A mechanism of the effect of radiation, taking into account the electrostatic factor in the stability of metal sols, was considered. (author)

  10. Synthesis and Characterization of Colloidal Metal and Photovoltaic Semiconductor Nanocrystals

    KAUST Repository

    Abulikemu, Mutalifu

    2014-11-05

    Metal and semiconducting nanocrystals have received a great deal of attention from fundamental scientists and application-oriented researchers due to their physical and chemical properties, which differ from those of bulk materials. Nanocrystals are essential building blocks in the development of nanostructured devices for energy conversion. Colloidal metals and metal chalcogenides have been developed for use as nanocrystal inks to produce efficient solar cells with lower costs. All high-performing photovoltaic nanocrystals contain toxic elements, such as Pb, or scarce elements, such as In; thus, the production of solution-processable nanocrystals from earth-abundant materials using environmentally benign synthesis and processing methods has become a major challenge for the inorganic semiconductor-based solar field. This dissertation, divided into two parts, addresses several aspects of these emerging challenges. The first portion of the thesis describes the synthesis and characterization of nanocrystals of antimony sulfide, which is composed of non-scarce and non-toxic elements, and examines their performance in photovoltaic devices. The effect of various synthetic parameters on the final morphology is explored. The structural, optical and morphological properties of the nanocrystals were investigated, and Sb2S3 nanocrystal-based solid-state semiconductor-sensitized solar cells were fabricated using different deposition processes. We achieved promising power conversion efficiencies of 1.48%. The second part of the thesis demonstrates a novel method for the in situ synthesis and patterning of nanocrystals via reactive inkjet printing. The use of low-cost manufacturing approaches for the synthesis of nanocrystals is critical for many applications, including photonics and electronics. In this work, a simple, low-cost method for the synthesis of nanocrystals with minimum size variation and waste using reactive inkjet printing is introduced. As a proof of concept, the

  11. Aerogels of 1D Coordination Polymers: From a Non-Porous Metal-Organic Crystal Structure to a Highly Porous Material

    Directory of Open Access Journals (Sweden)

    Adrián Angulo-Ibáñez

    2016-01-01

    Full Text Available The processing of an originally non-porous 1D coordination polymer as monolithic gel, xerogel and aerogel is reported as an alternative method to obtain novel metal-organic porous materials, conceptually different to conventional crystalline porous coordination polymer (PCPs or metal-organic frameworks (MOFs. Although the work herein reported is focused upon a particular kind of coordination polymer ([M(μ-ox(4-apy2]n, M: Co(II, Ni(II, the results are of interest in the field of porous materials and of MOFs, as the employed synthetic approach implies that any coordination polymer could be processable as a mesoporous material. The polymerization conditions were fixed to obtain stiff gels at the synthesis stage. Gels were dried at ambient pressure and at supercritical conditions to render well shaped monolithic xerogels and aerogels, respectively. The monolithic shape of the synthesis product is another remarkable result, as it does not require a post-processing or the use of additives or binders. The aerogels of the 1D coordination polymers are featured by exhibiting high pore volumes and diameters ranging in the mesoporous/macroporous regions which endow to these materials the ability to deal with large-sized molecules. The aerogel monoliths present markedly low densities (0.082–0.311 g·cm−3, an aspect of interest for applications that persecute light materials.

  12. Colloid mobilization and heavy metal transport in the sampling of soil solution from Duckum soil in South Korea.

    Science.gov (United States)

    Lee, Seyong; Ko, Il-Won; Yoon, In-Ho; Kim, Dong-Wook; Kim, Kyoung-Woong

    2018-03-24

    Colloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea. We investigated the colloid mobilization in a variety of flow rates during sampling soil solutions in sand columns. The colloid concentrations were increased at low flow rates and in saturated regimes. Colloid concentrations increased 1000-fold higher at pH 9.2 than at pH 7.3 in the absence of 10 mM NaCl solution. In addition, those were fourfold higher in the absence than in the presence of the NaCl solution at pH 9.2. It was suggested that the mobility of colloids should be enhanced in porous media under the basic conditions and the low ionic strength. In real field soils, the concentrations of As, Cr, and Pb in soil solutions increased with the increase in colloid concentrations at initial momentarily changed soil water pressure, whereas the concentrations of Cd, Cu, Fe, Ni, Al, and Co lagged behind the colloid release. Therefore, physicochemical changes and heavy metal characteristics have important implications for colloid-facilitated transport during sampling soil solutions.

  13. Review of laser produced multi-keV X-ray sources from metallic foils, cylinders with liner, and low density aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Girard, Frédéric [CEA, DAM, DIF, F-91297 Arpajon (France)

    2016-04-15

    Experimental results obtained within the last fifteen years on multi-keV X-ray sources irradiated with nanosecond scale pulse duration 3ω laser light at TW power levels by CEA and collaborators are discussed in this review paper. Experiments were carried out on OMEGA and GEKKO XII laser facilities where emitting materials in the 5–10 keV multi-keV energy range are intermediate Z value metals from titanium to germanium. Results focused on conversion efficiency improvement by a factor of 2 when an underdense plasma is created using a laser pre-pulse on a metallic foil, which is then heated by a second laser pulse delayed in time. Metal coated inner surface walls of plastic cylindrical tube ablated by laser beam impacts showed that plasma confinement doubles X-ray emission duration as it gives adequate plasma conditions (electron temperature and density) over a long period of time. Low-density aerogels (doped with metal atoms uniformly distributed throughout their volume or metal oxides) contained in a plastic cylinder have been developed and their results are comparable to gas targets. A hybrid target concept consisting of a thin metal foil placed at the end of a cylinder filled with low density aerogel has emerged as it could collect benefits from pre-exploded thin foils, efficient laser absorption in aerogel, and confinement by cylinder walls. All target geometry performances are relatively close together at a given photon energy and mainly depend on laser irradiation condition optimizations. Results are compared with gas target performances from recent NIF experiments allowing high electron temperatures over large dimension low density plasmas, which are the principal parameters for efficient multi-keV X-ray production.

  14. Aerogel sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Begag, Redouane; Rhine, Wendell E.; Dong, Wenting

    2018-04-03

    The current invention describes methods and compositions of various sorbents based on aerogels of various silanes and their use as sorbent for carbon dioxide. Methods further provide for optimizing the compositions to increase the stability of the sorbents for prolonged use as carbon dioxide capture matrices.

  15. Production of crystalline refractory metal oxides containing colloidal metal precipitates and useful as solar-effective absorbers

    Science.gov (United States)

    Narayan, Jagdish; Chen, Yok

    1983-01-01

    This invention is a new process for producing refractory crystalline oxides having improved or unusual properties. The process comprises the steps of forming a doped-metal crystal of the oxide; exposing the doped crystal in a bomb to a reducing atmosphere at superatmospheric pressure and a temperature effecting precipitation of the dopant metal in the crystal lattice of the oxide but insufficient to effect net diffusion of the metal out of the lattice; and then cooling the crystal. Preferably, the cooling step is effected by quenching. The process forms colloidal precipitates of the metal in the oxide lattice. The process may be used, for example, to produce thermally stable black MgO crystalline bodies containing magnetic colloidal precipitates consisting of about 99% Ni. The Ni-containing bodies are solar-selective absorbers, having a room-temperature absorptivity of about 0.96 over virtually all of the solar-energy spectrum and exhibiting an absorption edge in the region of 2 .mu.m. The process parameters can be varied to control the average size of the precipitates. The process can produce a black MgO crystalline body containing colloidal Ni precipitates, some of which have the face-centered-cubic structure and others of which have the body-centered cubic structure. The products of the process are metal-precipitate-containing refractory crystalline oxides which have improved or unique optical, mechanical, magnetic, and/or electronic properties.

  16. Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid Supercapacitors.

    Science.gov (United States)

    Huang, Haijian; Wang, Xing; Tervoort, Elena; Zeng, Guobo; Liu, Tian; Chen, Xi; Sologubenko, Alla; Niederberger, Markus

    2018-03-27

    A general method for preparing nano-sized metal oxide nanoparticles with highly disordered crystal structure and their processing into stable aqueous dispersions is presented. With these nanoparticles as building blocks, a series of nanoparticles@reduced graphene oxide (rGO) composite aerogels are fabricated and directly used as high-power anodes for lithium-ion hybrid supercapacitors (Li-HSCs). To clarify the effect of the degree of disorder, control samples of crystalline nanoparticles with similar particle size are prepared. The results indicate that the structurally disordered samples show a significantly enhanced electrochemical performance compared to the crystalline counterparts. In particular, structurally disordered Ni x Fe y O z @rGO delivers a capacity of 388 mAh g -1 at 5 A g -1 , which is 6 times that of the crystalline sample. Disordered Ni x Fe y O z @rGO is taken as an example to study the reasons for the enhanced performance. Compared with the crystalline sample, density functional theory calculations reveal a smaller volume expansion during Li + insertion for the structurally disordered Ni x Fe y O z nanoparticles, and they are found to exhibit larger pseudocapacitive effects. Combined with an activated carbon (AC) cathode, full-cell tests of the lithium-ion hybrid supercapacitors are performed, demonstrating that the structurally disordered metal oxide nanoparticles@rGO||AC hybrid systems deliver high energy and power densities within the voltage range of 1.0-4.0 V. These results indicate that structurally disordered nanomaterials might be interesting candidates for exploring high-power anodes for Li-HSCs.

  17. A pilot test of methods for determination of trace metals bound to colloids in surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Kersti (Geosigma AB (Sweden))

    2011-01-15

    Two methods have been tested for the determination of trace metals associated with colloid species in surface waters, using test water from Eckarfjaerden (PFM000070) in Forsmark; 1) fractionation (ultra filtration) using special membrane filters with cut-offs of 1 kD and 5 kD and 2) filtration using a system of standard membrane filters with varying pore sizes connected in series. Both methods were somewhat modified compared to previous methods for colloid determination in groundwater within the site investigations at Forsmark and Laxemar (PLU). The results show that, in general, the largest amounts of metals associated with a colloid phase were recovered in the fraction between 1kD and 5 kD which indicates that the metal ions are associated with low molecular weight organic acids. Similar amounts were recovered on the filters in the filtration experiment. A minor part of the colloidal phase metals was recovered in the fraction larger than 5 kD i.e. metal ions associated with larger organic acids or colloidal size clay minerals. The metals present preferably as colloids in the fractionation experiment were: iron, thorium, cerium, uranium, neodymium, titanium, zirconium and yttrium. The filtering experiment showed larger parts of titanium and aluminum in the colloid phase than the fractionation experiment while the iron and cerium portions were equal and the uranium, yttrium and neodymium portions were lower. The results from the fractionation test showed that the dissolved parts were large for barium, manganese, strontium and rubidium. In the filtration test, uranium, yttrium and rubidium, were also present mainly as dissolved ions. The detection limit for filter analysis of thorium was high, and the part of thorium present as colloids was determined to <50%. Issues and methodological problems: - Severe contamination caused interpretation difficulties for several metal ions, especially chromium, nickel and zinc. - Both methods are time consuming and difficult to

  18. Fabrication of large area homogeneous metallic nanostructures for optical sensing using colloidal lithography

    DEFF Research Database (Denmark)

    Eriksen, René Lynge; Pors, Anders; Dreier, Jes

    2010-01-01

    We propose a simple and reproducible method for fabricating large area metal films with inter-connected nanostructures using a combination of colloidal lithography, metal deposition and a template stripping technique. The method is generic in the sense that it is possible to produce a variety...... to fabricate metal films with inter-connected nanostructures consisting of either partial spherical shells or the inverted structures: spherical cavities. The substrates are characterized by optical reflectance and transmittance spectroscopy. We demonstrate, in the case of partial spherical shells...

  19. Shape-Controlled Synthesis of Colloidal Metal Nanocrystals: Thermodynamic versus Kinetic Products.

    Science.gov (United States)

    Xia, Younan; Xia, Xiaohu; Peng, Hsin-Chieh

    2015-07-01

    This Perspective provides a contemporary understanding of the shape evolution of colloidal metal nanocrystals under thermodynamically and kinetically controlled conditions. It has been extremely challenging to investigate this subject in the setting of one-pot synthesis because both the type and number of seeds involved would be changed whenever the experimental conditions are altered, making it essentially impossible to draw conclusions when comparing the outcomes of two syntheses conducted under different conditions. Because of the uncertainty about seeds, most of the mechanistic insights reported in literature for one-pot syntheses of metal nanocrystals with different shapes are either incomplete or ambiguous, and some of them might be misleading or even wrong. Recently, with the use of well-defined seeds for such syntheses, it became possible to separate growth from nucleation and therefore investigate the explicit role(s) played by a specific thermodynamic or kinetic parameter in directing the evolution of colloidal metal nanocrystals into a specific shape. Starting from single-crystal seeds enclosed by a mix of {100}, {111}, and {110} facets, for example, one can obtain colloidal nanocrystals with diversified shapes by adjusting various thermodynamic or kinetic parameters. The mechanistic insights learnt from these studies can also be extended to account for the products of conventional one-pot syntheses that involve self-nucleation only. The knowledge can be further applied to many other types of seeds with twin defects or stacking faults, making it an exciting time to design and synthesize colloidal metal nanocrystals with the shapes sought for a variety of fundamental studies and technologically important applications.

  20. Evacuated aerogel glazings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev

    2008-01-01

    This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space ......) combined with a solar energy transmittance above 0.75.......This paper describes the main characteristics of monolithic silica aerogel and its application in evacuated superinsulating aerogel glazing including the evacuation and assembling process. Furthermore, the energetic benefit of aerogel glazing is quantified. In evacuated aerogel glazing the space...... between the glass panes is filled with monolithic silica aerogel evacuated to a rough vacuum of approximately 1-10 hPa. The aerogel glazing does not depend on use of low emissive coatings that have the drawback of absorbing a relatively large part of the solar radiation that otherwise could reduce...

  1. Synthesis and Characterization of Quaternary Metal Chalcogenide Aerogels for Gas Separation and Volatile Hydrocarbon Adsorption

    KAUST Repository

    Edhaim, Fatimah A.

    2017-01-01

    as sorbents for selective gas separation and volatile organic compounds adsorption. They showed preferential adsorption of polarizable gases (CO2) and organic compounds (toluene). Ion exchange and heavy metal remediation properties have also been demonstrated

  2. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials.

    Science.gov (United States)

    Vareda, João P; Durães, Luisa

    2017-11-10

    Recently developed tailored adsorbents for heavy metal uptake are studied in batch tests with Cu, Pb, Cd, Ni, Cr and Zn, in order to decontaminate polluted environments where these heavy metals are found in solution - water courses and groundwater. The adsorbents feature mercapto or amine-mercapto groups that are capable of complexating the cations. Through the use of equilibrium tests it is found that a remarkably high heavy metal uptake is obtained for all metals (ranging from 84 to 140 mg/g). These uptake values are quite impressive when compared to other adsorbents reported in the literature, which is also due to the double functionalization present in one of the adsorbents. For the best adsorbent, adsorption capacities followed the order Cu(II) > Pb(II) > Zn(II) > Cr(III) > Cd(II) > Ni(II). With these adsorbents, the removal process was fast with most of the metals being removed in less than 1 h. Competitive sorption tests were performed in tertiary mixtures that were based on real world polluted sites. It was found that although competitive sorption occurs, affecting the individual removal of each metal, all the cations in solution still interact with the adsorbent, achieving removal values that make this type of material very interesting for its proposed application.

  3. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    Science.gov (United States)

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (water column.

  4. Highly Efficient Light-Emitting Diodes of Colloidal Metal-Halide Perovskite Nanocrystals beyond Quantum Size.

    Science.gov (United States)

    Kim, Young-Hoon; Wolf, Christoph; Kim, Young-Tae; Cho, Himchan; Kwon, Woosung; Do, Sungan; Sadhanala, Aditya; Park, Chan Gyung; Rhee, Shi-Woo; Im, Sang Hyuk; Friend, Richard H; Lee, Tae-Woo

    2017-07-25

    Colloidal metal-halide perovskite quantum dots (QDs) with a dimension less than the exciton Bohr diameter D B (quantum size regime) emerged as promising light emitters due to their spectrally narrow light, facile color tuning, and high photoluminescence quantum efficiency (PLQE). However, their size-sensitive emission wavelength and color purity and low electroluminescence efficiency are still challenging aspects. Here, we demonstrate highly efficient light-emitting diodes (LEDs) based on the colloidal perovskite nanocrystals (NCs) in a dimension > D B (regime beyond quantum size) by using a multifunctional buffer hole injection layer (Buf-HIL). The perovskite NCs with a dimension greater than D B show a size-irrespective high color purity and PLQE by managing the recombination of excitons occurring at surface traps and inside the NCs. The Buf-HIL composed of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) (PEDOT:PSS) and perfluorinated ionomer induces uniform perovskite particle films with complete film coverage and prevents exciton quenching at the PEDOT:PSS/perovskite particle film interface. With these strategies, we achieved a very high PLQE (∼60.5%) in compact perovskite particle films without any complex post-treatments and multilayers and a high current efficiency of 15.5 cd/A in the LEDs of colloidal perovskite NCs, even in a simplified structure, which is the highest efficiency to date in green LEDs that use colloidal organic-inorganic metal-halide perovskite nanoparticles including perovskite QDs and NCs. These results can help to guide development of various light-emitting optoelectronic applications based on perovskite NCs.

  5. Carbon aerogels; Les aerogels de carbone

    Energy Technology Data Exchange (ETDEWEB)

    Berthon-Fabry, S.; Achard, P

    2003-06-15

    The carbon aerogel is a nano-porous material at open porosity, electrical conductor. The aerogels morphology is variable in function of the different synthesis parameters. This characteristic offers to the aerogels a better adaptability to many applications: electrodes (super condensers, fuel cells). The author presents the materials elaboration and their applications. It provides also the research programs: fundamental research, realization of super-condenser electrodes, fuel cells electrodes, gas storage materials and opaque materials for thermal insulation. (A.L.B.)

  6. Synthesis of colloidal metal nanocrystals in droplet reactors: the pros and cons of interfacial adsorption.

    Science.gov (United States)

    Zhang, Lei; Wang, Yi; Tong, Limin; Xia, Younan

    2014-07-09

    Droplet reactors have received considerable attention in recent years as an alternative route to the synthesis and potentially high-volume production of colloidal metal nanocrystals. Interfacial adsorption will immediately become an important issue to address when one seeks to translate a nanocrystal synthesis from batch reactors to droplet reactors due to the involvement of higher surface-to-volume ratios for the droplets and the fact that nanocrystals tend to be concentrated at the water-oil interface. Here we report a systematic study to compare the pros and cons of interfacial adsorption of metal nanocrystals during their synthesis in droplet reactors. On the one hand, interfacial adsorption can be used to generate nanocrystals with asymmetric shapes or structures, including one-sixth-truncated Ag octahedra and Au-Ag nanocups. On the other hand, interfacial adsorption has to be mitigated to obtain nanocrystals with uniform sizes and controlled shapes. We confirmed that Triton X-100, a nonionic surfactant, could effectively alleviate interfacial adsorption while imposing no impact on the capping agent typically needed for a shape-controlled synthesis. With the introduction of a proper surfactant, droplet reactors offer an attractive platform for the continuous production of colloidal metal nanocrystals.

  7. Hetero-Colloidal Metal Particle Multilayer Films Grown Using Electrostatic Interactions at the Air-water Interface

    International Nuclear Information System (INIS)

    Sastry, Murali; Mayya, K.S.

    2000-01-01

    The formation of nanoparticle multilayer films by electrostatic immobilization of surface-modified colloidal particles at the air-water interface has been recently demonstrated by us. In this paper, we extend our study to show that multilayer assemblies consisting of metal particles of different chemical nature (hetero-colloidal particle superlattices) and size can be deposited by the versatile Langmuir-Blodgett technique. Multilayer films consisting of a different number of bilayers of gold and silver colloidal particles have been deposited and characterized using quartz crystal microgravimetry and UV-visible spectroscopy measurements. It is observed that while layer-by-layer deposition of the different colloidal particle assemblies is possible by this technique without a detectable variation in the cluster density in the different layers, a degree of post-deposition reorganization of the clusters occurs in the film. In addition to this aging behavior, the effect of different organic solvents on the reorganization process has also been studied

  8. Impact of Metal Nanoform Colloidal Solution on the Adaptive Potential of Plants

    Science.gov (United States)

    Taran, Nataliya; Batsmanova, Ludmila; Kovalenko, Mariia; Okanenko, Alexander

    2016-02-01

    Nanoparticles are a known cause of oxidative stress and so induce antistress action. The latter property was the purpose of our study. The effect of two concentrations (120 and 240 mg/l) of nanoform biogenic metal (Ag, Cu, Fe, Zn, Mn) colloidal solution on antioxidant enzymes, superoxide dismutase and catalase; the level of the factor of the antioxidant state; and the content of thiobarbituric acid reactive substances (TBARSs) of soybean plant in terms of field experience were studied. It was found that the oxidative processes developed a metal nanoparticle pre-sowing seed treatment variant at a concentration of 120 mg/l, as evidenced by the increase in the content of TBARS in photosynthetic tissues by 12 %. Pre-sowing treatment in a double concentration (240 mg/l) resulted in a decrease in oxidative processes (19 %), and pre-sowing treatment combined with vegetative treatment also contributed to the reduction of TBARS (10 %). Increased activity of superoxide dismutase (SOD) was observed in a variant by increasing the content of TBARS; SOD activity was at the control level in two other variants. Catalase activity decreased in all variants. The factor of antioxidant activity was highest (0.3) in a variant with nanoparticle double treatment (pre-sowing and vegetative) at a concentration of 120 mg/l. Thus, the studied nanometal colloidal solution when used in small doses, in a certain time interval, can be considered as a low-level stress factor which according to hormesis principle promoted adaptive response reaction.

  9. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels

    Directory of Open Access Journals (Sweden)

    Mingze Sun

    2018-04-01

    Full Text Available A series of low density, highly porous clay/poly(vinyl alcohol composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

  10. Assessing colloid-bound metal export in response to short term changes in runoff from a forested catchment

    Science.gov (United States)

    Neubauer, E.; Kammer, F. v. d.; Knorr, K.-H.; Pfeiffer, S.; Reichert, M.; Hofmann, T.

    2012-04-01

    Soils can act as a source of metals and natural organic matter (NOM) in runoff from catchments. Amounts and intensity of rainfall may influence NOM export from catchments. The presence of NOM and other colloids in water may not only enhance metal export, but also significantly change metal speciation. In this study, we investigated the response of metal-colloid associations to short-term discharge variations in the runoff from a small forested catchment (Lehstenbach, Bavaria, Germany). Here, the discharge from the catchment outlet responds within hours to rain events. Near-surface flow in organic-rich layers and peat soils has been identified to increase dissolved organic carbon (DOC) concentrations during stormwater runoff. Flow Field-Flow Fractionation coupled to ICP-MS (FlowFFF-ICPMS) is a high-resolution size separation technique which was used for the detection and quantification of colloids and associated metals. Colloid-associated metals, dissolved metals and metals associated with low-molecular weight organic ligands were also separated by filtration (0.2 µm) and ultrafiltration (1000 g/mol MWCO). During baseflow DOC concentration was pH ranged between 4.6 and 5.0. The DOC concentration exported at a given discharge was subject to strong seasonal variation and depended on the water level before the discharge event. DOC concentrations were up to 8 fold higher during stormwater runoff compared to baseflow. The export of aluminum, arsenic, rare earth elements (REE) and uranium from the catchment increased during stormwater runoff showing a strong correlation with NOM concentrations. This result was supported by FlowFFF-ICPMS data revealing that NOM was the only colloid type available for metal complexation during all hydrological conditions. A clear temporal pattern in the association with the NOM was observed for most of the metals under study: During baseflow, 70-100% (Fe), 90% (Al), 60-100% (REE) and 80-85% (U) were associated with the NOM. During

  11. Aerogel nanocomposite materials

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, A.J.; Ayers, M.; Cao, W. [Lawrence Berkeley Laboratory, CA (United States)] [and others

    1995-05-01

    Aerogels are porous, low density, nanostructured solids with many unusual properties including very low thermal conductivity, good transparency, high surface area, catalytic activity, and low sound velocity. This research is directed toward developing new nanocomposite aerogel materials for improved thermal insulation and several other applications. A major focus of the research has been to further increase the thermal resistance of silica aerogel by introducing infrared opacification agents into the aerogel to produce a superinsulating composite material. Opacified superinsulating aerogel permit a number of industrial applications for aerogel-based insulation. The primary benefits from this recently developed superinsulating composite aerogel insulation are: to extend the range of applications to higher temperatures, to provide a more compact insulation for space sensitive-applications, and to lower costs of aerogel by as much as 30%. Superinsulating aerogels can replace existing CFC-containing polyurethane in low temperature applications to reduce heat losses in piping, improve the thermal efficiency of refrigeration systems, and reduce energy losses in a variety of industrial applications. Enhanced aerogel insulation can also replace steam and process pipe insulation in higher temperature applications to substantially reduce energy losses and provide much more compact insulation.

  12. Colloid stable sorbents for cesium removal: Preparation and application of latex particles functionalized with transition metals ferrocyanides

    Energy Technology Data Exchange (ETDEWEB)

    Avramenko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Bratskaya, Svetlana, E-mail: sbratska@ich.dvo.ru [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Zheleznov, Veniamin; Sheveleva, Irina [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation); Voitenko, Oleg [Far Eastern Federal University, Laboratory of Electron Microscopy and Image Processing, 27, Oktyabr' skaya Street, Vladivostok 690950 (Russian Federation); Sergienko, Valentin [Institute of Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159 ave 100-letiya Vladivostoka, Vladivostok 690022 (Russian Federation)

    2011-02-28

    In this paper we suggest a principally new approach to preparation of colloid stable selective sorbents for cesium uptake using immobilization of transition metals (cobalt, nickel, and copper) ferrocyanides in nanosized carboxylic latex emulsions. The effects of ferrocyanide composition, pH, and media salinity on the sorption properties of the colloid stable sorbents toward cesium ions were studied in solutions containing up to 200 g/L of sodium nitrate or potassium chloride. The sorption capacities of the colloid sorbents based on mixed potassium/transition metals ferrocyanides were in the range 1.3-1.5 mol Cs/mol ferrocyanide with the highest value found for the copper ferrocyanide. It was shown that the obtained colloid-stable sorbents were capable to penetrate through bulk materials without filtration that made them applicable for decontamination of solids, e.g. soils, zeolites, spent ion-exchange resins contaminated with cesium radionuclides. After decontamination of liquid or solid radioactive wastes the colloid-stable sorbents can be easily separated from solutions by precipitation with cationic flocculants providing localization of radionuclides in a small volume of the precipitates formed.

  13. Technical applications of aerogels

    International Nuclear Information System (INIS)

    Hrubesh, L.W.

    1997-01-01

    Aerogel materials posses such a wide variety of exceptional properties that a striking number of applications have developed for them. Many of the commercial applications of aerogels such as catalysts, thermal insulation, windows, and particle detectors are still under development and new application as have been publicized since the ISA4 Conference in 1994: e.g.; supercapacitors, insulation for heat storage in automobiles, electrodes for capacitive deionization, etc. More applications are evolving as the scientific and engineering community becomes familiar with the unusual and exceptional physical properties of aerogels, there are also scientific and technical application, as well. This paper discusses a variety of applications under development at Lawrence Livermore National Laboratory for which several types of aerogels are formed in custom sizes and shapes. Particular discussions will focus on the uses of aerogels for physics experiments which rely on the exceptional, sometimes unique, properties of aerogels

  14. Flexible Carbon Aerogels

    Directory of Open Access Journals (Sweden)

    Marina Schwan

    2016-09-01

    Full Text Available Carbon aerogels are highly porous materials with a large inner surface area. Due to their high electrical conductivity they are excellent electrode materials in supercapacitors. Their brittleness, however, imposes certain limitations in terms of applicability. In that context, novel carbon aerogels with varying degree of flexibility have been developed. These highly porous, light aerogels are characterized by a high surface area and possess pore structures in the micrometer range, allowing for a reversible deformation of the aerogel network. A high ratio of pore size to particle size was found to be crucial for high flexibility. For dynamic microstructural analysis, compression tests were performed in-situ within a scanning electron microscope allowing us to directly visualize the microstructural flexibility of an aerogel. The flexible carbon aerogels were found to withstand between 15% and 30% of uniaxial compression in a reversible fashion. These findings might stimulate further research and new application fields directed towards flexible supercapacitors and batteries.

  15. Polyolefin-Based Aerogels

    Science.gov (United States)

    Lee, Je Kyun; Gould, George

    2012-01-01

    An organic polybutadiene (PB) rubberbased aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection, exhibiting the flexibility, resiliency, toughness, and durability typical of the parent polymer, yet with the low density and superior insulation properties associated with the aerogels. The rubbery behaviors of the PB rubber-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogel insulation materials. Additionally, with higher content of hydrogen in their structure, the PB rubber aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. Since PB rubber aerogels also exhibit good hydrophobicity due to their hydrocarbon molecular structure, they will provide better performance reliability and durability as well as simpler, more economic, and environmentally friendly production over the conventional silica or other inorganic-based aerogels, which require chemical treatment to make them hydrophobic. Inorganic aerogels such as silica aerogels demonstrate many unusual and useful properties. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven one promising approach, providing a conveniently fielded form factor that is relatively robust toward handling in industrial environments compared to silica aerogel monoliths. However, the flexible silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain applications. Although the cross-linked organic aerogels such as resorcinol-formaldehyde (RF), polyisocyanurate, and cellulose aerogels show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient

  16. Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland–lowland land-use continuum, under low-flow conditions

    International Nuclear Information System (INIS)

    Jarvie, H.P.; Neal, C.; Rowland, A.P.; Neal, M.; Morris, P.N.; Lead, J.R.; Lawlor, A.J.; Woods, C.; Vincent, C.; Guyatt, H.; Hockenhull, K.

    2012-01-01

    An assessment is made of the role of riverine colloids in macronutrient (nitrogen, phosphorus and carbon), metal and trace element partitioning and transport, for five rivers in the Ribble and Wyre catchments in north-western England, under baseflow/near-baseflow conditions. Cross-flow ultrafiltration was used to separate colloidal ( 1 kDa) and truly dissolved ( 0.45 μm, suspended) fractions. Of these operationally-defined fractions measured, colloids were generally more important for both macronutrient and metal transport in the upland than in the lowland rivers. The results suggest that organic moieties in truly dissolved form from sewage effluent may have a greater capacity to chelate metals. Organic-rich colloids in the upland moorlands and metal oxide colloidal precipitates in the industrial rivers had a higher capacity for binding metals than the colloidal fractions in the urban and agricultural lowland rivers. Aggregation of these colloids may provide an important mechanism for formation of larger suspended particulates, accounting for a higher degree of metal enrichment in the acid-available particulate fractions of the upland moorland and lowland industrial rivers, than in the lowland agricultural and urban rivers. This mechanism of transfer of contaminants to larger aggregates via colloidal intermediates, known as ‘colloidal pumping’ may also provide a mechanism for particulate P formation and the high proportion of P being transported in the particulate fraction in the uplands. The cross-flow ultrafiltration data also allowed refinement of partition coefficients, by accounting for colloids within the solids phase and replacing the filtered (< 0.45 μm) fraction with the truly dissolved (< 1 kDa) concentrations. These provided a clearer description of the controls on metal and P partitioning along the upland-lowland continuum. -- Highlights: ► Using cross-flow ultrafiltration, we assess the role of colloids in macronutrient and metal partitioning

  17. Melamine-formaldehyde aerogels

    Science.gov (United States)

    Pekala, Richard Walter

    1992-01-01

    Organic aerogels that are transparent and essentially colorless are prepa from the aqueous, sol-gel polymerization of melamine with formaldehyde. The melamine-formaldehyde (MF) aerogels have low densities, high surface areas, continuous porsity, ultrafine cell/pore sizes, and optical clarity.

  18. Aerogel / Polymer Composite Materials

    Science.gov (United States)

    Williams, Martha K. (Inventor); Smith, Trent M. (Inventor); Fesmire, James E. (Inventor); Roberson, Luke B. (Inventor); Clayton, LaNetra M. (Inventor)

    2017-01-01

    The invention provides new composite materials containing aerogels blended with thermoplastic polymer materials at a weight ratio of aerogel to thermoplastic polymer of less than 20:100. The composite materials have improved thermal insulation ability. The composite materials also have better flexibility and less brittleness at low temperatures than the parent thermoplastic polymer materials.

  19. Silica aerogel Cerenkov counter

    International Nuclear Information System (INIS)

    Yasumi, S.; Masaike, A.; Yamamoto, A.; Yoshimura, Y.; Kawai, H.

    1984-03-01

    In order to obtain silica aerogel radiators of good quality, the prescription used by Saclay group has been developed. We have done several experiments using beams from KEK.PS to test the performance of a Cerenkov counter with aerogel modules produced in KEK. It turned out that these modules had excellent quality. The production rate of silica aerogel in KEK is 15 -- 20 litres a week. Silica aerogel modules of 20 x 10 x 3 cm 3 having the refractive index of 1.058 are successfully being used by Kyoto University group in the KEK experiment E92 (Σ). Methodes to produce silica aerogel with higher refractive index than 1.06 has been investigated both by heating an module with the refractive index of 1.06 and by hydrolyzing tetraethyl silicate. (author)

  20. Epoxy Crosslinked Silica Aerogels (X-Aerogels)

    Science.gov (United States)

    fabrizio, Eve; Ilhan, Faysal; Meador, Mary Ann; Johnston, Chris; Leventis, Nicholas

    2004-01-01

    NASA is interested in the development of strong lightweight materials for the dual role of thermal insulator and structural component for space vehicles; freeing more weight for useful payloads. Aerogels are very-low density materials (0.010 to 0.5 g/cc) that, due to high porosity (meso- and microporosity), can be, depending on the chemical nature of the network, ideal thermal insulators (thermal conductivity approx. 15 mW/mK). However, aerogels are extremely fragile. For practical application of aerogels, one must increase strength without compromising the physical properties attributed to low density. This has been achieved by templated growth of an epoxy polymer layer that crosslinks the "pearl necklace" network of nanoparticles: the framework of a typical silica aerogel. The requirement for conformal accumulation of the epoxy crosslinker is reaction both with the surface of silica and with itself. After cross-linking, the strength of a typical aerogel monolith increases by a factor of 200, in the expense of only a 2-fold increase in density. Strength is increased further by coupling residual unreacted epoxides with diamine.

  1. Noble-metal nanoparticles produced with colloidal lithography: fabrication, optical properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Bocchio, Noelia Laura

    2008-08-15

    In this work, metal nanoparticles produced by nanosphere lithography were studied in terms of their optical properties (in connection to their plasmon resonances), their potential application in sensing platforms - for thin layer sensing and bio-recognition events -, and for a particular case (the nanocrescents), for enhanced spectroscopy studies. The general preparation procedures introduced early in 2005 by Shumaker-Parry et al. to produce metallic nanocrescents were extended to give rise to more complex (isolated) structures, and also, by combining colloidal monolayer fabrication and plasma etching techniques, to arrays of them. The fabrication methods presented in this work were extended not only to new shapes or arrangements of particles, but included also a targeted surface tailoring of the substrates and the structures, using different thiol and silane compounds as linkers for further attachment of, i.e. polyelectrolyte layers, which allow for a controlled tailoring of their nanoenvironment. The optical properties of the nanocrescents were studied with conventional transmission spectroscopy; a simple multipole model was adapted to explain their behaviour qualitatively. In terms of applications, the results on thin film sensing using these particles show that the crescents present an interesting mode-dependent sensitivity and spatial extension. Parallel to this, the penetrations depths were modeled with two simplified schemes, obtaining good agreement with theory. The multiple modes of the particles with their characteristic decay lengths and sensitivities represent a major improvement for particle-sensing platforms compared to previous single resonance systems. The nanocrescents were also used to alter the emission properties of fluorophores placed close to them. In this work, green emitting dyes were placed at controlled distances from the structures and excited using a pulsed laser emitting in the near infrared. The fluorescence signal obtained in this

  2. Growth of monodisperse mesoscopic metal-oxide colloids under constant monomer supply

    Science.gov (United States)

    Nozawa, Koh; Delville, Marie-Hélène; Ushiki, Hideharu; Panizza, Pascal; Delville, Jean-Pierre

    2005-07-01

    In closed systems, control over the size of monodisperse metal-oxide colloids is generally limited to submicrometric dimensions. To overcome this difficulty, we explore the formation and growth of silica particles under constant monomer supply. The monomer source is externally driven by the progressive addition into the system of one of the precursors. Monodisperse spherical particles are produced up to a mesoscopic size. We analyze their growth versus the monomer addition rate at different temperatures. Our results show that in the presence of a continuous monomer addition, growth is limited by diffusion over the investigated temporal window. Using the temperature variation of the growth rate, we prove that rescaling leads to a data reduction onto a single master curve. Contrary to the growth process, the final particle’s size reached after the end of the reagent supply strongly depends on the addition rate. The variation of the final particle size versus addition rate can be deduced from an analogy with crystal formation in jet precipitation. Within this framework, and using the temperature dependences of both the particle growth law and the final size, we determine the value of the molecular heat of dissolution associated to the silica solubility. These observations support the fact that classical theories of phase-ordering dynamics can be extended to the synthesis of inorganic particles. The emergence of a master behavior in the presence of continuous monomer addition also suggests the extension of these theories to open systems.

  3. Silver-Loaded Aluminosilicate Aerogels As Iodine Sorbents

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Brian J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Kroll, Jared O. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Peterson, Jacob A. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Matyáš, Josef [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Olszta, Matthew J. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Li, Xiaohong [Pacific Northwest National Laboratory, Richland, Washington 99354, United States; Vienna, John D. [Pacific Northwest National Laboratory, Richland, Washington 99354, United States

    2017-09-14

    This paper discusses the development of aluminosilicates aerogels as scaffolds for Ag0 nanoparticles used for chemisorption of I2(g). The starting materials for these scaffolds included both Na-Al-Si-O and Al-Si-O aerogels, both synthesized from metal alkoxides. The Ag0 particles are added by soaking the aerogels in AgNO3 followed by drying and flowing under H2/Ar to reduce Ag+ → Ag0. In some cases, samples were soaked in 3-(mercaptopropyl)trimethoxysilane under supercritical CO2 to add –SH tethers to the aerogel surfaces for more effective binding of Ag+. During the Ag+-impregnation steps, for the Na-Al-Si-O aerogels, Na was replaced with Ag, and for the Al-Si-O aerogel, Si was replaced with Ag. The Ag-loading of thiolated versus non-thiolated Na-Al-Si-O aerogels was comparable at ~35 at% whereas the Ag-loading in unthiolated Al-Si-O aerogels was significantly lower at ~ 7 at% after identical treatment. Iodine loadings in both thiolated and unthiolated Ag0-functionalized Na-Al-Si-O aerogels were > 0.5 g g-1 showing almost complete utilization of the Ag through chemisorption to form AgI. Iodine loading in the thiolated Al-Si-O aerogel was 0.31 g g-1. The control of Ag uptake over solution residence time and [AgNO3] demonstrates the ability to customize the Ag-loading in the base sorbent to regulate the capacity of iodine chemisorption. Consolidation experimental results are also presented.

  4. Highly stretchable carbon aerogels.

    Science.gov (United States)

    Guo, Fan; Jiang, Yanqiu; Xu, Zhen; Xiao, Youhua; Fang, Bo; Liu, Yingjun; Gao, Weiwei; Zhao, Pei; Wang, Hongtao; Gao, Chao

    2018-02-28

    Carbon aerogels demonstrate wide applications for their ultralow density, rich porosity, and multifunctionalities. Their compressive elasticity has been achieved by different carbons. However, reversibly high stretchability of neat carbon aerogels is still a great challenge owing to their extremely dilute brittle interconnections and poorly ductile cells. Here we report highly stretchable neat carbon aerogels with a retractable 200% elongation through hierarchical synergistic assembly. The hierarchical buckled structures and synergistic reinforcement between graphene and carbon nanotubes enable a temperature-invariable, recoverable stretching elasticity with small energy dissipation (~0.1, 100% strain) and high fatigue resistance more than 10 6 cycles. The ultralight carbon aerogels with both stretchability and compressibility were designed as strain sensors for logic identification of sophisticated shape conversions. Our methodology paves the way to highly stretchable carbon and neat inorganic materials with extensive applications in aerospace, smart robots, and wearable devices.

  5. B1 Aerogels

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1996-01-01

    , engineering and architectural basis which will support the appropriate use of aerogels in windows, solar collectors and passive solar applications, with the aim of saving or producing thermal energy for use in buildings".This objective is in very good agreement with the general scope of task 18 but where Task...... of aerogel as a material for window applications3. Construction of an aerogel DGU and measurement of key performance parameters. The goal for the aerogel DGU was to reach a Total Solar Energy Transmittance above 0.75 and a U-value below 0.5 W/m²K. These are values that can not be simultaneously reached......The report summarizes the work that has been carried out within the project "B1 AEROGELS" as a part of the IEA SH&CP Task 18 "Advanced Glazing and Associated Materials For Solar And Building Applications".By providing at the same time thermal insulation and transparency the silica aerogel is a very...

  6. Role of riverine colloids in macronutrient and metal partitioning and transport, along an upland-lowland land-use continuum, under low-flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Jarvie, H.P., E-mail: hpj@ceh.ac.uk [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB (United Kingdom); Neal, C. [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB (United Kingdom); Rowland, A.P. [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom); Neal, M.; Morris, P.N. [Centre for Ecology and Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, OX10 8BB (United Kingdom); Lead, J.R. [School of Geography, Earth and Environmental Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT (United Kingdom); Lawlor, A.J.; Woods, C.; Vincent, C.; Guyatt, H.; Hockenhull, K. [Centre for Ecology and Hydrology, Lancaster, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster LA1 4AP (United Kingdom)

    2012-09-15

    An assessment is made of the role of riverine colloids in macronutrient (nitrogen, phosphorus and carbon), metal and trace element partitioning and transport, for five rivers in the Ribble and Wyre catchments in north-western England, under baseflow/near-baseflow conditions. Cross-flow ultrafiltration was used to separate colloidal (< 0.45 Micro-Sign m > 1 kDa) and truly dissolved (< 1 kDa) fractions from river water. Clear patterns were observed, along the upland-lowland land use continuum, in the partitioning and transport of macronutrients and metals between the colloidal, truly dissolved and acid-available particulate (> 0.45 {mu}m, suspended) fractions. Of these operationally-defined fractions measured, colloids were generally more important for both macronutrient and metal transport in the upland than in the lowland rivers. The results suggest that organic moieties in truly dissolved form from sewage effluent may have a greater capacity to chelate metals. Organic-rich colloids in the upland moorlands and metal oxide colloidal precipitates in the industrial rivers had a higher capacity for binding metals than the colloidal fractions in the urban and agricultural lowland rivers. Aggregation of these colloids may provide an important mechanism for formation of larger suspended particulates, accounting for a higher degree of metal enrichment in the acid-available particulate fractions of the upland moorland and lowland industrial rivers, than in the lowland agricultural and urban rivers. This mechanism of transfer of contaminants to larger aggregates via colloidal intermediates, known as 'colloidal pumping' may also provide a mechanism for particulate P formation and the high proportion of P being transported in the particulate fraction in the uplands. The cross-flow ultrafiltration data also allowed refinement of partition coefficients, by accounting for colloids within the solids phase and replacing the filtered (< 0.45 {mu}m) fraction with the truly

  7. Synthesis of ZnO-CuO Nanocomposite Aerogels by the Sol-Gel Route

    Directory of Open Access Journals (Sweden)

    Rula M. Allaf

    2014-01-01

    Full Text Available The epoxide addition sol-gel method has been utilized to synthesize porous zinc-copper composite aerogels in the zinc-to-copper molar ratios of 50 : 50 to 90 : 10. A two-step mixing approach has been employed to produce aerogels composed of nano- to micrometer sized particles. The aerogels were characterized by ultrahigh resolution scanning electron microscopy, transmission electron microscopy, and powder X-ray diffraction. The as-synthesized aerogels had a thin flake- or petal-like microstructure comprised of clustered flakes on two size scales; they were identified as being crystalline with the crystalline species identified as copper nitrate hydroxide, zinc hydroxide chloride hydrate, and zinc hydroxide nitrate hydrate. Annealing of the aerogel materials at a relatively low temperature (400°C resulted in a complete phase transition of the material to give highly crystalline ZnO-CuO aerogels; the aerogels consisted of networked nanoparticles in the ~25–550 nm size range with an average crystallite size of ~3 nm and average crystallinity of 98%. ZnO-CuO aerogels are of particular interest due to their particular catalytic and sensing properties. This work emphasizes the versatility of this sol-gel route in synthesizing aerogels; this method offers a possible route for the fabrication of aerogels of different metal oxides and their composites.

  8. High reduction of interfacial charge recombination in colloidal quantum dot solar cells by metal oxide surface passivation.

    Science.gov (United States)

    Chang, Jin; Kuga, Yuki; Mora-Seró, Iván; Toyoda, Taro; Ogomi, Yuhei; Hayase, Shuzi; Bisquert, Juan; Shen, Qing

    2015-03-12

    Bulk heterojunction (BHJ) solar cells based on colloidal QDs and metal oxide nanowires (NWs) possess unique and outstanding advantages in enhancing light harvesting and charge collection in comparison to planar architectures. However, the high surface area of the NW structure often brings about a large amount of recombination (especially interfacial recombination) and limits the open-circuit voltage in BHJ solar cells. This problem is solved here by passivating the surface of the metal oxide component in PbS colloidal quantum dot solar cells (CQDSCs). By coating thin TiO2 layers onto ZnO-NW surfaces, the open-circuit voltage and power conversion efficiency have been improved by over 40% in PbS CQDSCs. Characterization by transient photovoltage decay and impedance spectroscopy indicated that the interfacial recombination was significantly reduced by the surface passivation strategy. An efficiency as high as 6.13% was achieved through the passivation approach and optimization for the length of the ZnO-NW arrays (device active area: 16 mm2). All solar cells were tested in air, and exhibited excellent air storage stability (without any performance decline over more than 130 days). This work highlights the significance of metal oxide passivation in achieving high performance BHJ solar cells. The charge recombination mechanism uncovered in this work could shed light on the further improvement of PbS CQDSCs and/or other types of solar cells.

  9. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  10. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2004-01-01

    form the weakest part of the thermal envelope with respect to heat loss coefficient, but on the other hand also play an important role for passive solar energy utilisation. For window orientations other than south, the net energy balance will be close to or below zero. However, the properties......Monolithic silica aerogel offers the possibility of combining super insulation and high solar energy transmittance, which has been the background for a previous and a current EU project on research and development of monolithic silica aerogel as transparent insulation in windows. Generally, windows...... of aerogel glazing will allow for a positive net energy gain even for north facing vertical windows in a Danish climate during the heating season. This means that high quality daylight can be obtained even with additional energy gain. On behalf of the partners of the two EU projects, results related...

  11. Aerogel for FARICH detector

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R.; Gulevich, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova 2, Novosibirsk 630090 (Russian Federation); Kuyanov, I.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Lopatin, S.A. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Ovtin, I.V.; Podgornov, N.A. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, Karl Marks 20, Novosibirsk 630073 (Russian Federation); Porosev, V.V. [Budker Institute of Nuclear Physics, Lavrentieva 11, Novosibirsk 630090 (Russian Federation); Predein, A.Yu.; Protsenko, R.S. [Boreskov Institute of Catalysis, Lavrentieva 5, Novosibirsk 630090 (Russian Federation)

    2014-12-01

    We present our current experience in preparation of focusing aerogels for the Focusing Aerogel RICH detector. Multilayer focusing aerogel tiles have been produced in Novosibirsk by a collaboration of the Budker Institute of Nuclear Physics and Boreskov Institute of Catalysis since 2004. We have obtained 2–3–4-layer blocks with the thickness of 30–45 mm. In 2012, the first samples of focusing blocks with continuous density (refractive index) gradient along thickness were produced. This technology can significantly reduce the contribution from the geometric factor of the radiator thickness to the resolution of the measured Cherenkov angle in the FARICH detector. The special installation was used for automatic control of reagents ratio during the synthesis process. The first samples were tested using the digital radiography method and on the electron beam with the FARICH prototype.

  12. Transparent aerogel Windows

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe

    the supercritical washing step included in the drying phase. At the same time the production plant have been modified to recycle most of the chemicals involved in the production process. A large number of aerogel glazing prototypes have been made with partly evacuated aerogel in between two layers of low iron...... and anti reflection treated glass panes with an airtight edge seal solution based on multi-layered plastic foil developed for vacuum insulation purposes. The edge seal solution shows only a very limited thermal bridge effect. The final glazing has a total solar energy transmittance about 87% and a U...

  13. Aerogels in Chemical Engineering: Strategies Toward Tailor-Made Aerogels.

    Science.gov (United States)

    Smirnova, Irina; Gurikov, Pavel

    2017-06-07

    The present review deals with recent advances in the rapidly growing field of aerogel research and technology. The major focus of the review lies in approaches that allow tailoring of aerogel properties to meet application-driven requirements. The decisive properties of aerogels are discussed with regard to existing and potential application areas. Various tailoring strategies, such as modulation of the pore structure, coating, surface modification, and post-treatment, are illustrated by results of the last decade. In view of commercialization of aerogel-based products, a panorama of current industrial aerogel suppliers is given, along with a discussion of possible alternative sources for raw materials and precursors. Finally, growing points and perspectives of the aerogel field are summarized.

  14. Super insulating aerogel glazing

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe; Jensen, Karsten Ingerslev; Kristiansen, Finn Harken

    2005-01-01

    of the glass and a heat-treatment of the aerogel increases the visible quality and the solar energy transmittance. A low-conductive rim seal solution with the required vacuum barrier properties has been developed along with a reliable assembly and evacuation process. The prototypes have a centre heat loss...

  15. Effects of Microgravity on the Formation of Aerogels

    Science.gov (United States)

    Hunt, A. J.; Ayers, M. R.; Sibille, L.; Cronise, R. J.; Noever, D. A.

    1999-01-01

    This paper describes research to investigate fundamental aspects of the effects of microgravity on the formation of the microstructure of metal oxide alcogels and aerogels. We are studying the role of gravity on pore structure and gel uniformity in collaboration with Marshall Space Flight Center (MSFC) on gelling systems under microgravity conditions. While this project was just initiated in May 1998, related research performed earlier is described along with the plans and rationale for the current microgravity investigation to provide background and describe newly developing techniques that should be useful for the current gellation studies. The role of gravity in materials processing must be investigated through the study of well-mastered systems. Sol-gel processed materials are near-perfect candidates to determine the effect of gravity on the formation and growth of random clusters from hierarchies of aggregated units. The processes of hydrolysis, condensation, aggregation and gellation in the formation of alcogels are affected by gravity and therefore provide a rich system to study under microgravity conditions. Supercritical drying of the otherwise unstable wet alcogel preserves the alcogel structure produced during sol-gel processing as aerogel. Supercritically dried aerogel provides for the study of material microstructures without interference from the effects of surface tension, evaporation, and solvent flow. Aerogels are microstructured, low density open-pore solids. They have many unusual properties including: transparency, excellent thermal resistance, high surface area, very low refractive index, a dielectric constant approaching that of air, and extremely low sound velocity. Aerogels are synthesized using sol-gel processing followed by supercritical solvent extraction that leaves the original gel structure virtually intact. These studies will elucidate the effects of microgravity on the homogeneity of the microstructure and porosity of aerogel. The

  16. Mechanically Strong, Polymer Cross-linked Aerogels (X-Aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2006-01-01

    Aerogels comprise a class of low-density, high porous solid objects consisting of dimensionally quasi-stable self-supported three-dimensional assemblies of nanoparticles. Aerogels are pursued because of properties above and beyond those of the individual nanoparticles, including low thermal conductivity, low dielectric constant and high acoustic impedance. Possible applications include thermal and vibration insulation, dielectrics for fast electronics, and hosting of functional guests for a wide variety of optical, chemical and electronic applications. Aerogels, however, are extremely fragile materials, hence they have found only limited application in some very specialized environments, for example as Cerenkov radiation detectors in certain types of nuclear reactors, aboard spacecraft as collectors of hypervelocity particles (refer to NASA's Stardust program) and as thermal insulators on planetary vehicles on Mars (refer to Sojourner Rover in 1997 and Spirit and Opportunity in 2004). Along these lines, the X-Aerogel is a new NASA-developed strong lightweight material that has resolved the fragility problem of traditional (native) aerogels. X-Aerogels are made by applying a conformal polymer coating on the surfaces of the skeletal nanoparticles of native aerogels (see Scanning Electron Micrographs). Since the relative amounts of the polymeric crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by the templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by remplated casting of polymer on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralighweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the the thermal conductivity of styrofoam. X-Aerogels

  17. Aerogels in Aerospace: An Overview

    Directory of Open Access Journals (Sweden)

    Nadiir Bheekhun

    2013-01-01

    Full Text Available Aerogels are highly porous structures prepared via a sol-gel process and supercritical drying technology. Among the classes of aerogels, silica aerogel exhibits the most remarkable physical properties, possessing lower density, thermal conductivity, refractive index, and dielectric constant than any solids. Its acoustical property is such that it can absorb the sound waves reducing speed to 100 m/s compared to 332 m/s for air. However, when it comes to commercialization, the result is not as expected. It seems that mass production, particularly in the aerospace industry, has dawdled behind. This paper highlights the evolution of aerogels in general and discusses the functions and significances of silica aerogel in previous astronautical applications. Future outer-space applications have been proposed as per the current research trend. Finally, the implementation of conventional silica aerogel in aeronautics is argued with an alternative known as Maerogel.

  18. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    International Nuclear Information System (INIS)

    Karasenkov, Y; Frolov, G; Gusev, A; Kuznetsov, D; Leont'ev, V; Pogorelsky, I; Latuta, N

    2015-01-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse – condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO 2 ), iron oxide (Fe 2 O 3 ), tantalum oxide (TaO), vanadium oxide (VO 2 ), cobalt oxide (CoO), tantalum dioxide TaO 2 , zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe 2 O 3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity. (paper)

  19. Colloidal metal oxide nanoparticle systems: the new promising way to prevent antibiotic resistance during treatment of local infectious processes

    Science.gov (United States)

    Karasenkov, Y.; Frolov, G.; Pogorelsky, I.; Latuta, N.; Gusev, A.; Kuznetsov, D.; Leont'ev, V.

    2015-11-01

    New bactericidal containing nanoparticles colloids for application in dentistry, maxillofacial surgery, urology, obstetrics, gynaecology, ENT, proctology have been developed. The various water colloidal nanodispersive systems of metals and oxides have been obtained by means of electric impulse - condensation (electroerosion) method. These systems are based pure elements and alloys of argentum (Ag), titanium dioxide (TiO2), iron oxide (Fe2O3), tantalum oxide (TaO), vanadium oxide (VO2), cobalt oxide (CoO), tantalum dioxide TaO2, zinc oxide (ZnO), copper oxide (CuO) and mixed suspensions of titanium, aluminium and molybdenum oxides. The research has been made on culture of dentobacterial plaque and mixed culture issued from gingival spaces. The composition of culture was identified with S.aureus, S.epidermidis and nonfermentable kinds of E.coli. The observation period lasted more than nineteen days. All solutions showed highly prolonged bactericidal activity in dilutions from the whole solution 1-20 mg/L. The bactericidal activity of powder specimen of silica containing Ag and Fe2O3 nanoparticles used as dental filling material and disintegrates of composite materials (produced by “StomaDent” CJSC) have been studied. Tested materials have long (up to 19 days and more) bactericidal activity.

  20. Contamination of the transformer oil of power transformers and shunting reactors by metal-containing colloidal particles

    International Nuclear Information System (INIS)

    L’vov, S. Yu.; Komarov, V. B.; Bondareva, V. N.; Seliverstov, A. F.; Lyut’ko, E. O.; L’vov, Yu. N.; Ershov, B. G.

    2011-01-01

    The results of a measurement of the contamination of the oil in 66 transformers by metal-containing colloidal particles, formed as a result of the interaction of the oil with the structural materials (the copper of the windings, the iron of the tank and core etc.), and also the results of measurements of the optical turbidity of the oil in 136 transformers when they were examined at the Power Engineering Research and Development Center Company are presented. Methods of determining the concentration of copper and iron in transformer oil are considered. The limiting values of the optical turbidity factors, the copper and iron content are determined. These can serve as a basis for taking decisions on whether to replace the silica gel of the filters for continuously purifying the oil of power transformers and the shunting reactors in addition to the standardized oil contamination factors, namely, the dielectric loss tangent and the acidity number of the oil.

  1. Probing the structural dependency of photoinduced properties of colloidal quantum dots using metal-oxide photo-active substrates

    International Nuclear Information System (INIS)

    Patty, Kira; Campbell, Quinn; Hamilton, Nathan; West, Robert G.; Sadeghi, Seyed M.; Mao, Chuanbin

    2014-01-01

    We used photoactive substrates consisting of about 1 nm coating of a metal oxide on glass substrates to investigate the impact of the structures of colloidal quantum dots on their photophysical and photochemical properties. We showed during irradiation these substrates can interact uniquely with such quantum dots, inducing distinct forms of photo-induced processes when they have different cores, shells, or ligands. In particular, our results showed that for certain types of core-shell quantum dot structures an ultrathin layer of a metal oxide can reduce suppression of quantum efficiency of the quantum dots happening when they undergo extensive photo-oxidation. This suggests the possibility of shrinking the sizes of quantum dots without significant enhancement of their non-radiative decay rates. We show that such quantum dots are not influenced significantly by Coulomb blockade or photoionization, while those without a shell can undergo a large amount of photo-induced fluorescence enhancement via such blockade when they are in touch with the metal oxide.

  2. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  3. A synthesis method for cobalt doped carbon aerogels with high surface area and their hydrogen storage properties

    Energy Technology Data Exchange (ETDEWEB)

    Tian, H.Y.; Buckley, C.E. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); CSIRO National Hydrogen Materials Alliance, CSIRO Energy Centre, 10 Murray Dwyer Circuit, Steel River Estate, Mayfield West, NSW 2304 (Australia); Sheppard, D.A.; Paskevicius, M. [Department of Imaging and Applied Physics, Curtin University of Technology, GPO Box U 1987, Perth 6845, WA (Australia); Hanna, N. [CSIRO Process Science and Engineering, Waterford, WA (Australia)

    2010-12-15

    Carbon aerogels doped with nanoscaled Co particles were prepared by first coating activated carbon aerogels using a wet-thin layer coating process. The resulting metal-doped carbon aerogels had a higher surface area ({proportional_to}1667 m{sup 2} g{sup -1}) and larger micropore volume ({proportional_to}0.6 cm{sup 3} g{sup -1}) than metal-doped carbon aerogels synthesised using other methods suggesting their usefulness in catalytic applications. The hydrogen adsorption behaviour of cobalt doped carbon aerogel was evaluated, displaying a high {proportional_to}4.38 wt.% H{sub 2} uptake under 4.6 MPa at -196 C. The hydrogen uptake capacity with respect to unit surface area was greater than for pure carbon aerogel and resulted in {proportional_to}1.3 H{sub 2} (wt. %) per 500 m{sup 2} g{sup -1}. However, the total hydrogen uptake was slightly reduced as compared to pure carbon aerogel due to a small reduction in surface area associated with cobalt doping. The improved adsorption per unit surface area suggests that there is a stronger interaction between the hydrogen molecules and the cobalt doped carbon aerogel than for pure carbon aerogel. (author)

  4. Assessment of Methods to Consolidate Iodine-Loaded Silver-Functionalized Silica Aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Josef; Engler, Robert K.

    2013-09-01

    The U.S. Department of Energy is currently investigating alternative sorbents for the removal and immobilization of radioiodine from the gas streams in a nuclear fuel reprocessing plant. One of these new sorbents, Ag0-functionalized silica aerogels, shows great promise as a potential replacement for Ag-bearing mordenites because of its high selectivity and sorption capacity for iodine. Moreover, a feasible consolidation of iodine-loaded Ag0-functionalized silica aerogels to a durable SiO2-based waste form makes this aerogel an attractive choice for sequestering radioiodine. This report provides a preliminary assessment of the methods that can be used to consolidate iodine-loaded Ag0-functionalized silica aerogels into a final waste form. In particular, it focuses on experimental investigation of densification of as prepared Ag0-functionalized silica aerogels powders, with or without organic moiety and with or without sintering additive (colloidal silica), with three commercially available techniques: 1) hot uniaxial pressing (HUP), 2) hot isostatic pressing (HIP), and 3) spark plasma sintering (SPS). The densified products were evaluated with helium gas pycnometer for apparent density, with the Archimedes method for apparent density and open porosity, and with high-resolution scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS) for the extent of densification and distribution of individual elements. The preliminary investigation of HUP, HIP, and SPS showed that these sintering methods can effectively consolidate powders of Ag0-functionalized silica aerogel into products of near-theoretical density. Also, removal of organic moiety and adding 5.6 mass% of colloidal silica to Ag0-functionalized silica aerogel powders before processing provided denser products. Furthermore, the ram travel data for SPS indicated that rapid consolidation of powders can be performed at temperatures below 950°C.

  5. Cotransport of microorganisms and metallic colloids in quartz sand or iron oxide-coated sand under real site hydrogeological conditions

    Science.gov (United States)

    Yu, Tong; Wen, Yujuan; Yang, Xinyao; Yang, Yuesuo

    2017-04-01

    The need for studying the fate and transport of engineered and naturally-occurring nanoparticles is of great concern in the past decade. Wudalianchi scenic spot as a famous International Geological Park has the biggest cold spring in China, which is also one of the three biggest cold spring in the world, with a history of over 200 years using in drinking and medical purpose. Thousands of tourists all over the world travelling here each year to enjoy the high quality mineral water and take a bath in the cold spring and "mud-bath" with special medication purposes. Recreation activities gave rise to the engineered nanomaterials (ENMs) releasing into the water environment and increase the risk of contamination. Therefore, it is necessary to evaluate the effect of ENMs-exposure in natural environment and how it influences the transport of microorganisms of Wudalianchi in/without the presence of natural colloids (humic acid) under a series of ion strength. A thorough critical literature review of both work in the study site and the bio/nano-particle transport in porous media was a kick-off of the study. With support of the site investigations and sampling of groundwater, surface water and surface mud/soils, further numerical modelling of the hydrogeochemical speciation of the groundwater was carried out, indicating comprehensive water-rock interactions of this particular region. Metallic nanoparticles (MNPs), including metals, metal oxides and other metal-containing nanoparticles, are produced and ubiquitously applied to medical, cosmetic, photonics and catalysis industries, etc. TiO2, a widely used raw material for cosmetic industries (e.g., sunscreens), was used in this study to represent MNPs. The microorganisms used in this study were extracted from the soil in Wudalianchi. Humic acid (HA), a key component of dissolved organic matter (DOM) chosen as the natural colloids in this study, are ubiquitous and significant constituents in soils and water environment that

  6. Protective Skins for Aerogel Monoliths

    Science.gov (United States)

    Leventis, Nicholas; Johnston, James C.; Kuczmarski, Maria A.; Meador, Ann B.

    2007-01-01

    A method of imparting relatively hard protective outer skins to aerogel monoliths has been developed. Even more than aerogel beads, aerogel monoliths are attractive as thermal-insulation materials, but the commercial utilization of aerogel monoliths in thermal-insulation panels has been inhibited by their fragility and the consequent difficulty of handling them. Therefore, there is a need to afford sufficient protection to aerogel monoliths to facilitate handling, without compromising the attractive bulk properties (low density, high porosity, low thermal conductivity, high surface area, and low permittivity) of aerogel materials. The present method was devised to satisfy this need. The essence of the present method is to coat an aerogel monolith with an outer polymeric skin, by painting or spraying. Apparently, the reason spraying and painting were not attempted until now is that it is well known in the aerogel industry that aerogels collapse in contact with liquids. In the present method, one prevents such collapse through the proper choice of coating liquid and process conditions: In particular, one uses a viscous polymer precursor liquid and (a) carefully controls the amount of liquid applied and/or (b) causes the liquid to become cured to the desired hard polymeric layer rapidly enough that there is not sufficient time for the liquid to percolate into the aerogel bulk. The method has been demonstrated by use of isocyanates, which, upon exposure to atmospheric moisture, become cured to polyurethane/polyurea-type coats. The method has also been demonstrated by use of commercial epoxy resins. The method could also be implemented by use of a variety of other resins, including polyimide precursors (for forming high-temperature-resistant protective skins) or perfluorinated monomers (for forming coats that impart hydrophobicity and some increase in strength).

  7. Kinetic features of metal complexes with polysaccharide colloids: Impact of ionic strength

    NARCIS (Netherlands)

    Roturea, E.; Leeuwen, van H.P.

    2009-01-01

    The dynamic features of metal binding by a gel-like polysaccharide, carboxymethyldextran (CMD), are investigated by stripping chronopotentiometry (SCP). This technique measures the diffusive flux properties of the metallic species in the ligand dispersion as defined by their concentration, mobility,

  8. Transparent Ethenylene-Bridged Polymethylsiloxane Aerogels: Mechanical Flexibility and Strength and Availability for Addition Reaction.

    Science.gov (United States)

    Shimizu, Taiyo; Kanamori, Kazuyoshi; Maeno, Ayaka; Kaji, Hironori; Doherty, Cara M; Nakanishi, Kazuki

    2017-05-09

    Transparent, low-density ethenylene-bridged polymethylsiloxane [Ethe-BPMS, O 2/2 (CH 3 )Si-CH═CH-Si(CH 3 )O 2/2 ] aerogels from 1,2-bis(methyldiethoxysilyl)ethene have successfully been synthesized via a sol-gel process. A two-step sol-gel process composed of hydrolysis under acidic conditions and polycondensation under basic conditions in a liquid surfactant produces a homogeneous pore structure based on cross-linked nanosized colloidal particles. Visible-light transmittance of the aerogels varies with the concentration of the base catalyst and reaches as high as 87% (at a wavelength of 550 nm for a 10 mm thick sample). Gelation and aging temperature strongly affect the deformation behavior of the resultant aerogels against uniaxial compression, and the obtained aerogels prepared at 80 °C show high elasticity after being unloaded. This highly resilient behavior is primarily derived from the rigidity of ethenylene groups, which is confirmed by a comparison with other aerogels with similar molecular structures, ethylene-bridged polymethylsiloxane and polymethylsilsesquioxane. Applicability of the addition reaction using a Diels-Alder reaction of benzocyclobutene has also been investigated, revealing that a successful addition takes place on the ethenylene linkings, which is verified using Raman and solid-state NMR spectroscopies. Insights into the effect of molecular structure on mechanical properties and the availability of surface functionalization provided in this study are important for realizing transparent aerogels with the desired functionality.

  9. A review on radiation-induced nucleation and growth of colloidal metallic nanoparticles

    OpenAIRE

    Abedini, Alam; Daud, Abdul Razak; Abdul Hamid, Muhammad Azmi; Kamil Othman, Norinsan; Saion, Elias

    2013-01-01

    This review presents an introduction to the synthesis of metallic nanoparticles by radiation-induced method, especially gamma irradiation. This method offers some benefits over the conventional methods because it provides fully reduced and highly pure nanoparticles free from by-products or chemical reducing agents, and is capable of controlling the particle size and structure. The nucleation and growth mechanism of metallic nanoparticles are also discussed. The competition between nucleation ...

  10. Evaluation of Colloidal Stability and Ecotoxicity of Metal-based Nanoparticles in the Aquatic and Terrestrial Systems

    Science.gov (United States)

    Pokhrel, Lok Raj

    Intrinsic to the many nano-enabled products are atomic-size multifunctional engineered nanomaterials, which upon release contaminate the environments, raising considerable health and safety concerns. This Ph.D. dissertation is designed to investigate (i) whether metals or oxide nanoparticles are more toxic than ions, and if MetPLATE(TM) bioassay is applicable as a rapid nanotoxicity screening tool; (ii) how variable water chemistry (dissolved organic carbon (DOC), pH, and hardness) and organic compounds (cysteine, humic acid, and trolox) modulate colloidal stability, ion release, and aquatic toxicity of silver nanoparticles (AgNP); and (iii) the developmental responses of crop plants exposed to Ag- or ZnO- (zinc oxide) nanoparticles. Results suggest that the MetPLATE can be considered a high-throughput screening tool for rapid nanotoxicity evaluation. Detectable changes in the colloidal diameter, surface charge, and plasmonic resonance revealed modulating effects of variable water chemistry and organic ligands on the particle stability, dissolution, and toxicity of AgNPs against Escherichia coli or Daphnia magna. Silver dissolution increased as a function of DOC concentrations but decreased with increasing hardness, pH, cysteine, or trolox levels. Notably, the dissociated Ag+ was inadequate to explain AgNP toxicity, and that the combined effect of AgNPs and dissolved Ag+ under each ligand treatment was lower than of AgNO 3. Significant attenuation by trolox signifies an oxidative stress-mediated AgNP toxicity; its inability to attenuate AgNO3 toxicity, however, negates oxidative stress as Ag+ toxicity mechanism, and that cysteine could effectively quench free Ag+ to alleviate AgNO 3 toxicity in D. magna. Surprisingly, DOC-AgNPs complex that apparently formed at higher DOC levels might have led daphnids filter-feed on aggregates, potentially elevating internal dose, and thus higher mortality. Maize root anatomy showed differential alterations upon exposure to Ag

  11. Plasmonic Aerogels as a Three-Dimensional Nanoscale Platform for Solar Fuel Photocatalysis.

    Science.gov (United States)

    DeSario, Paul A; Pietron, Jeremy J; Dunkelberger, Adam; Brintlinger, Todd H; Baturina, Olga; Stroud, Rhonda M; Owrutsky, Jeffrey C; Rolison, Debra R

    2017-09-19

    We use plasmonic Au-TiO 2 aerogels as a platform in which to marry synthetically thickened particle-particle junctions in TiO 2 aerogel networks to Au∥TiO 2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H 2 ) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au-TiO 2 /Pt arrangement in three dimensions effectively utilizes conduction-band electrons injected into the TiO 2 aerogel network upon exciting the Au SPR at the Au∥TiO 2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanoparticle catalysts, further enhancing solar-fuels photochemistry. We compare the photocatalytic rates of H 2 generation with and without Pt cocatalysts added to Au-TiO 2 aerogels and demonstrate electrochemical linkage of the SPR-generated carriers at the Au∥TiO 2 interfaces to downfield Pt nanoparticle cocatalysts. Finally, we investigate visible light-stimulated generation of conduction band electrons in Au-TiO 2 and TiO 2 aerogels using ultrafast visible pump/IR probe spectroscopy. Substantially more electrons are produced at Au-TiO 2 aerogels due to the incorporated SPR-active Au nanoparticle, whereas the smaller population of electrons generated at Au-free TiO 2 aerogels likely originate at shallow traps in the high surface-area mesoporous aerogel.

  12. Aerogels: II. Applications in catalysis

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2002-01-01

    Full Text Available Sol-gel synthesis, and the resulting materials (xerogels and aerogels are finding increasing application in the synthesis of catalysts, due to their unique characteristics. The most important features of the sol-gel process are: the ability to achieve homogeneity at the molecular level, the introduction of several species in only one step and the ability to stabilize metastable phases. The supercritical drying process produces aerogels with structural features quite different to conventional materials. Some of these characteristics of aerogels can make them very effective catalysts.

  13. Dynamics of capillary condensation in aerogels.

    Science.gov (United States)

    Nomura, R; Miyashita, W; Yoneyama, K; Okuda, Y

    2006-03-01

    Dynamics of capillary condensation of liquid 4He in various density silica aerogels was investigated systematically. Interfaces were clearly visible when bulk liquid was rapidly sucked into the aerogel. Time evolution of the interface positions was consistent with the Washburn model and their effective pore radii were obtained. Condensation was a single step in a dense aerogel and two steps in a low density aerogel. Crossover between the two types of condensation was observed in an intermediate density aerogel. Variety of the dynamics may be the manifestation of the fractal nature of aerogels which had a wide range of distribution of pore radii.

  14. Effect of some colloid surfactants on spectrophotometric characteristics of metal chelates with chromophore organic reagents

    International Nuclear Information System (INIS)

    Chernova, R.K.

    1977-01-01

    Theoretical regularities and prospects of using surface active substances (SAS) in spectrophotometric determination of metal ions (including ions of rare-earth elements, transition metals, Be(3)) with chromophore chelating reagents were investigated. The chromophore reagents investigated were pyrocatechol violet, phenolcarboxylic acids of the triarylmethane series, fluorones, phthalexones and azo-compounds. As SAS certain long-chain quaternary ammonium and pyridinium salts (LQAS) were employed. From the results reported it follows that the introduction of LQAS in the system of Mesup(n+)-chromophore reagent is a rather effective method of enhancing the contrast rendition and, in some cases, the sensitivity and selectivity of the reagents. Explanations are suggested as to the factors which cause the changes observed in the contrast of the reactions in the presence of SAS; the underlying phenomena are the ligand-ligand interactions between the organic reagents and SAS and solubilization processes of the reaction products by the micelles of SAS

  15. Reactivity of surface of metal oxide particles: from adsorption of ions to deposition of colloidal particles

    International Nuclear Information System (INIS)

    Lefevre, Gregory

    2010-01-01

    In this Accreditation to supervise research (HDR), the author proposes an overview of his research works in the field of chemistry. These works more particularly addressed the understanding of the surface reactivity of metal oxide particles and its implication on sorption and adherence processes. In a first part, he addresses the study of surface acidity-alkalinity: measurement of surface reactivity by acid-base titration, stability of metal oxides in suspension, effect of morphology on oxide-hydroxide reactivity. The second part addresses the study of sorption: reactivity of iron oxides with selenium species, sorption of sulphate ions on magnetite, attenuated total reflection infrared spectroscopy (ATR-IR). Adherence effects are addressed in the third part: development of an experimental device to study adherence in massive substrates, deposition of particles under turbulent flow. The last part presents a research project on the effect of temperature on ion sorption at solids/solutions interfaces, and on the adherence of metal oxide particles. The author gives his detailed curriculum, and indicates his various publications, teaching activities, research and administrative responsibilities

  16. Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography

    International Nuclear Information System (INIS)

    Tian, Yaolan; Isotalo, Tero J; Konttinen, Mikko P; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari J

    2017-01-01

    We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional (3D) colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 °C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write 3D laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned. (paper)

  17. Colloidal nanoparticle size control: experimental and kinetic modeling investigation of the ligand-metal binding role in controlling the nucleation and growth kinetics.

    Science.gov (United States)

    Mozaffari, Saeed; Li, Wenhui; Thompson, Coogan; Ivanov, Sergei; Seifert, Soenke; Lee, Byeongdu; Kovarik, Libor; Karim, Ayman M

    2017-09-21

    Despite the major advancements in colloidal metal nanoparticles synthesis, a quantitative mechanistic treatment of the ligand's role in controlling their size remains elusive. We report a methodology that combines in situ small angle X-ray scattering (SAXS) and kinetic modeling to quantitatively capture the role of ligand-metal binding (with the metal precursor and the nanoparticle surface) in controlling the synthesis kinetics. We demonstrate that accurate extraction of the kinetic rate constants requires using both, the size and number of particles obtained from in situ SAXS to decouple the contributions of particle nucleation and growth to the total metal reduction. Using Pd acetate and trioctylphosphine in different solvents, our results reveal that the binding of ligands with both the metal precursor and nanoparticle surface play a key role in controlling the rates of nucleation and growth and consequently the final size. We show that the solvent can affect the metal-ligand binding and consequently ligand coverage on the nanoparticles surface which has a strong effect on the growth rate and final size (1.4 nm in toluene and 4.3 nm in pyridine). The proposed kinetic model quantitatively predicts the effects of varying the metal concentration and ligand/metal ratio on nanoparticle size for our work and literature reports. More importantly, we demonstrate that the final size is exclusively determined by the nucleation and growth kinetics at early times and not how they change with time. Specifically, the nanoparticle size in this work and many literature reports can be predicted using a single, model independent kinetic descriptor, (growth-to-nucleation rate ratio) 1/3 , despite the different metals and synthetic conditions. The proposed model and kinetic descriptor could serve as powerful tools for the design of colloidal nanoparticles with specific sizes.

  18. Refractive index dispersion law of silica aerogel

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Perego, D.L.; Storaci, B.

    2007-01-01

    This paper presents measurements of the refractive index of a hygroscopic silica aerogel block at several wavelengths. The measurements, performed with a monochromator, have been compared with different parameterisations for n(λ), in order to determine the best chromaticity law for the aerogel. This is an important input for design and operation of RICH detectors with silica aerogel radiator. (orig.)

  19. Constructing three-dimensional porous graphene-carbon quantum dots/g-C3N4 nanosheet aerogel metal-free photocatalyst with enhanced photocatalytic activity

    Science.gov (United States)

    He, Huijuan; Huang, Langhuan; Zhong, Zijun; Tan, Shaozao

    2018-05-01

    Photocatalysis has been widely considered to be an effective way for solving the worldwide environmental pollution issues. Herein, a new type of three-dimensional (3D) ternary graphene-carbon quantum dots/g-C3N4 nanosheet (GA-CQDs/CNN) aerogel visible-light-driven photocatalyst was synthesized via a two-step hydrothermal method. In this unique ternary photocatalyst, both carbon quantum dots (CQDs) and reduced graphene oxide (rGO) could improve the visible light absorption and promote the charge separation. Furthermore, reduced graphene oxide (rGO) could act as a supportor for the 3D framework. Such a ternary system overcame the drawbacks of bulk g-C3N4 (BCN) and achieved the enhanced photocatalytic activity and long-term stability. As a result, the methyl orange (MO) removal ratio of GA-CQDs/CNN-24% was up to 91.1%, which was about 7.6 times higher than that of bulk g-C3N4 (BCN) under the identical conditions. Moreover that GA-CQDs/CNN-24% exhibited inappreciable loss of photocatalytic activity after four-cycle degradation processes. Finally, the photocatalytic mechanism of GA-CQDs/CNN-24% was interpreted both theoretically and experimentally.

  20. A facile route for 3D aerogels from nanostructured 1D and 2D materials

    Science.gov (United States)

    Jung, Sung Mi; Jung, Hyun Young; Dresselhaus, Mildred S.; Jung, Yung Joon; Kong, Jing

    2012-01-01

    Aerogels have numerous applications due to their high surface area and low densities. However, creating aerogels from a large variety of materials has remained an outstanding challenge. Here, we report a new methodology to enable aerogel production with a wide range of materials. The method is based on the assembly of anisotropic nano-objects (one-dimensional (1D) nanotubes, nanowires, or two-dimensional (2D) nanosheets) into a cross-linking network from their colloidal suspensions at the transition from the semi-dilute to the isotropic concentrated regime. The resultant aerogels have highly porous and ultrafine three-dimensional (3D) networks consisting of 1D (Ag, Si, MnO2, single-walled carbon nanotubes (SWNTs)) and 2D materials (MoS2, graphene, h-BN) with high surface areas, low densities, and high electrical conductivities. This method opens up a facile route for aerogel production with a wide variety of materials and tremendous opportunities for bio-scaffold, energy storage, thermoelectric, catalysis, and hydrogen storage applications. PMID:23152940

  1. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  2. Polyurea-Based Aerogel Monoliths and Composites

    Science.gov (United States)

    Lee, Je Kyun

    2012-01-01

    aerogel insulation material was developed that will provide superior thermal insulation and inherent radiation protection for government and commercial applications. The rubbery polyureabased aerogel exhibits little dustiness, good flexibility and toughness, and durability typical of the parent polyurea polymer, yet with the low density and superior insulation properties associated with aerogels. The thermal conductivity values of polyurea-based aerogels at lower temperature under vacuum pressures are very low and better than that of silica aerogels. Flexible, rubbery polyurea-based aerogels are able to overcome the weak and brittle nature of conventional inorganic and organic aerogels, including polyisocyanurate aerogels, which are generally prepared with the one similar component to polyurethane rubber aerogels. Additionally, with higher content of hydrogen in their structures, the polyurea rubber-based aerogels will also provide inherently better radiation protection than those of inorganic and carbon aerogels. The aerogel materials also demonstrate good hydrophobicity due to their hydrocarbon molecular structure. There are several strategies to overcoming the drawbacks associated with the weakness and brittleness of silica aerogels. Development of the flexible fiber-reinforced silica aerogel composite blanket has proven to be one promising approach, providing a conveniently fielded form factor that is relatively robust in industrial environments compared to silica aerogel monoliths. However, the flexible, silica aerogel composites still have a brittle, dusty character that may be undesirable, or even intolerable, in certain application environments. Although the cross - linked organic aerogels, such as resorcinol- formaldehyde (RF), polyisocyanurate, and cellulose aerogels, show very high impact strength, they are also very brittle with little elongation (i.e., less rubbery). Also, silica and carbon aerogels are less efficient radiation shielding materials due

  3. Broadband enhancement of photoluminance from colloidal metal halide perovskite nanocrystals on plasmonic nanostructured surfaces.

    Science.gov (United States)

    Zhang, Si; Liang, Yuzhang; Jing, Qiang; Lu, Zhenda; Lu, Yanqing; Xu, Ting

    2017-11-07

    Metal halide perovskite nanocrystals (NCs) as a new kind of promising optoelectronic material have attracted wide attention due to their high photoluminescence (PL) quantum yield, narrow emission linewidth and wideband color tunability. Since the PL intensity always has a direct influence on the performance of optoelectronic devices, it is of vital importance to improve the perovskite NCs' fluorescence emission efficiency. Here, we synthesize three inorganic perovskite NCs and experimentally demonstrate a broadband fluorescence enhancement of perovskite NCs by exploiting plasmonic nanostructured surface consisting of nanogrooves array. The strong near-field optical localization associated with surface plasmon polariton-coupled emission effect generated by the nanogrooves array can significantly boost the absorption of perovskite NCs and tailor the fluorescence emissions. As a result, the PL intensities of perovskite NCs are broadband enhanced with a maximum factor higher than 8-fold achieved in experimental demonstration. Moreover, the high efficiency PL of perovskite NCs embedded in the polymer matrix layer on the top of plasmonic nanostructured surface can be maintained for more than three weeks. These results imply that plasmonic nanostructured surface is a good candidate to stably broadband enhance the PL intensity of perovskite NCs and further promote their potentials in the application of visible-light-emitting devices.

  4. Few-layer MoS2-anchored graphene aerogel paper for free-standing electrode materials.

    Science.gov (United States)

    Lee, Wee Siang Vincent; Peng, Erwin; Loh, Tamie Ai Jia; Huang, Xiaolei; Xue, Jun Min

    2016-04-21

    To reduce the reliance on polymeric binders, conductive additives, and metallic current collectors during the electrode preparation process, as well as to assess the true performance of lithium ion battery (LIB) anodes, a free-standing electrode has to be meticulously designed. Graphene aerogel is a popular scaffolding material that has been widely used with embedded nanoparticles for application in LIB anodes. However, the current graphene aerogel/nanoparticle composite systems still involve decomposition into powder and the addition of additives during electrode preparation because of the thick aerogel structure. To further enhance the capacity of the system, MoS2 was anchored onto a graphene aerogel paper and the composite was used directly as an LIB anode. The resultant additive-free MoS2/graphene aerogel paper composite exhibited long cyclic performance with 101.1% retention after 700 cycles, which demonstrates the importance of free-standing electrodes in enhancing cyclic stability.

  5. Active colloids

    International Nuclear Information System (INIS)

    Aranson, Igor S

    2013-01-01

    A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior. (physics of our days)

  6. Cobalt sulfide aerogel prepared by anion exchange method with enhanced pseudocapacitive and water oxidation performances

    Science.gov (United States)

    Gao, Qiuyue; Shi, Zhenyu; Xue, Kaiming; Ye, Ziran; Hong, Zhanglian; Yu, Xinyao; Zhi, Mingjia

    2018-05-01

    This work introduces the anion exchange method into the sol-gel process for the first time to prepare a metal sulfide aerogel. A porous Co9S8 aerogel with a high surface area (274.2 m2 g‑1) and large pore volume (0.87 cm3 g‑1) has been successfully prepared by exchanging cobalt citrate wet gel in thioacetamide and subsequently drying in supercritical ethanol. Such a Co9S8 aerogel shows enhanced supercapacitive performance and catalytic activity toward oxygen evolution reaction (OER) compared to its oxide aerogel counterpart. High specific capacitance (950 F g‑1 at 1 A g‑1), good rate capability (74.3% capacitance retention from 1 to 20 A g‑1) and low onset overpotential for OER (220 mV) were observed. The results demonstrated here have implications in preparing various sulfide chalcogels.

  7. Dilated cardiomyopathy and left bundle branch block associated with ingestion of colloidal gold and silver is reversed by British antiLewisite and vitamin E: The potential toxicity of metals used as health supplements

    Science.gov (United States)

    Archer, Stephen Lawrence

    2008-01-01

    A case of left bundle branch block and a dilated, nonhypertrophic cardiomyopathy associated with ingestion of colloidal gold and silver as an ‘energy tonic’ is described. The cardiac disease was reversed within two months by a course of dimercaprol (Akorn Inc, USA) (British antiLewisite) and vitamin E. This is the first case of gold and silver cardiomyopathy in humans, and highlights the risks of these colloidal metal ‘health supplements’. PMID:18464946

  8. Barrierless growth of precursor-free, ultrafast laser-fragmented noble metal nanoparticles by colloidal atom clusters - A kinetic in situ study.

    Science.gov (United States)

    Jendrzej, Sandra; Gökce, Bilal; Amendola, Vincenzo; Barcikowski, Stephan

    2016-02-01

    Unintended post-synthesis growth of noble metal colloids caused by excess amounts of reactants or highly reactive atom clusters represents a fundamental problem in colloidal chemistry, affecting product stability or purity. Hence, quantified kinetics could allow defining nanoparticle size determination in dependence of the time. Here, we investigate in situ the growth kinetics of ps pulsed laser-fragmented platinum nanoparticles in presence of naked atom clusters in water without any influence of reducing agents or surfactants. The nanoparticle growth is investigated for platinum covering a time scale of minutes to 50days after nanoparticle generation, it is also supplemented by results obtained from gold and palladium. Since a minimum atom cluster concentration is exceeded, a significant growth is determined by time resolved UV/Vis spectroscopy, analytical disc centrifugation, zeta potential measurement and transmission electron microscopy. We suggest a decrease of atom cluster concentration over time, since nanoparticles grow at the expense of atom clusters. The growth mechanism during early phase (<1day) of laser-synthesized colloid is kinetically modeled by rapid barrierless coalescence. The prolonged slow nanoparticle growth is kinetically modeled by a combination of coalescence and Lifshitz-Slyozov-Wagner kinetic for Ostwald ripening, validated experimentally by the temperature dependence of Pt nanoparticle size and growth quenching by Iodide anions. Copyright © 2015. Published by Elsevier Inc.

  9. Aerogels made of chitosan and chondroitin sulfate at high degree of neutralization: Biological properties toward wound healing.

    Science.gov (United States)

    Concha, Miguel; Vidal, Alejandra; Giacaman, Annesi; Ojeda, Javier; Pavicic, Francisca; Oyarzun-Ampuero, Felipe A; Torres, César; Cabrera, Marcela; Moreno-Villoslada, Ignacio; Orellana, Sandra L

    2018-02-09

    In this study, highly neutralized, highly porous, and ultralight polymeric aerogels prepared from aqueous colloidal suspensions of chitosan (CS) and chondroitin sulfate (ChS) nanocomplexes, formulated as quasi-equimolar amounts of both, are described. These aerogels were designed as healing agents under the inspiration of minimizing the amount of matter applied to wounds, reducing the electrostatic potential of the material and avoiding covalent cross-linkers in order to decrease metabolic stress over wounds. Aerogels synthesized under these criteria are biocompatible and provide specific properties for the induction of wound healing. They do not affect neither the metabolic activity of cultured 3T3 fibroblasts nor the biochemical parameters of experimental animals, open wounds close significantly faster and, unlike control wounds, complete reepithelialization and scarring can be attained 14 days after surgery. Because of its hydration abilities, rapid adaptation to the wound bed and the early accelerator effect of wound closure, the CS/ChS aerogels appear to be functional inducers of the healing. Previous information show that CS/ChS aerogels improve wound bed quality, increase granulation tissue and have pain suppressive effect. CS/ChS aerogels are useful as safe, inexpensive and easy to handle materials for topical applications, such as skin chronic wounds. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc.

  10. Silica aerogel and space astrophysics

    International Nuclear Information System (INIS)

    Koch-Miramond, L.

    1985-09-01

    Silica aerogels have been produced in large and transparent blocks for space astrophysics experiments since the beginning of the 1970's. They were used in cosmic ray experiments on board balloons by the Saclay group. A new space venture where aerogel Cerenkov radiators will play a decisive role is currently being prepared by a large collaboration of European and US Institutes. It will be part of the so-called International Solar Polar Mission (ISPM) which will explore the heliosphere over the full range of solar latitudes from the ecliptic (equatorial) plane to the magnetic poles of the sun. Comments on properties and long term behaviour of silica aerogel cerenkov radiators in space environment are given

  11. Polyimide Cellulose Nanocrystal Composite Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  12. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  13. Thermal Protection Performance of Carbon Aerogels Filled with Magnesium Chloride Hexahydrate as a Phase Change Material

    Directory of Open Access Journals (Sweden)

    Ali Kazemi

    2014-02-01

    Full Text Available Carbon aerogels are comprised of a class of low density open-cell foams with large void space, nanometer pore size and composed of sparsely semi-colloidal nanometer sized particles forming an open porous structure. Phase change materials are those with high heat of fusion that could absorb and release a large amount of energy at the time of phase transition. These materials are mostly used as thermal energy storage materials but in addition they could serve as an obstacle for passage of heat during phase changes and this has led to their use in thermal protection systems. In this study, the effect of magnesium chloride hexahydrate, as a phase change material (melting point 115°C, on thermal properties of carbon aerogels is investigated. Thermal performance tests are designed and used for comparing the temperature-time behavior of the samples. DSC is applied to obtain the latent heat of melting of the phase change materials and the SEM tests are used to analyze the microstructure and morphology of carbon aerogels. The results show that the low percentage of phase change materials in carbon aerogels does not have any significant positive effect on carbon aerogels thermal properties. However, these properties are improved by increasing the percentage of phase change materials. With high percentage of phase change materials, a sample surface at 300°C would display an opposite surface with a significant drop in temperature increases, while at 115-200°C, with carbon aerogels, having no phase change materials, there is a severe reduction in the rate of temperature increase of the sample.

  14. Characterization of colloids in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.

    1987-07-01

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am 3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe 3+ , REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  15. Sorption Properties of Aerogel in Liquid Nitrogen

    Science.gov (United States)

    Johnson, Wesley L.

    2006-01-01

    Aerogel products are now available as insulation materials of the future. The Cryogenics Test Laboratory at the NASA Kennedy Space Center is developing aerogel-based thermal insulation systems for space launch applications. Aerogel beads (Cabot Nanogel ) and aerogel blankets (Aspen Aerogels Spaceloft ) have outstanding ambient pressure thermal performance that makes them useful for applications where sealing is not possible. Aerogel beads are open-celled silicone dioxide and have tiny pores that run throughout the body of the bead. It has also recently been discovered that aerogel beads can be used as a filtering device for aqueous compounds at room temperature. With their hydrophobic covering, the beads absorb any non-polar substance and they can be chemically altered to absorb hot gases. The combination of the absorption and cryogenic insulating properties of aerogel beads have never been studied together. For future cryogenic insulation applications, it is crucial to know how the beads react while immersed in cryogenic liquids, most notably liquid nitrogen. Aerogel beads in loose-fill situation and aerogel blankets with composite fiber structure have been tested for absorption properties. Depending on the type of aerogel used and the preparation, preliminary results show the material can absorb up to seven times its own weight of liquid nitrogen, corresponding to a volumetric ratio of 0.70 (unit volume nitrogen per unit volume aerogel). These tests allow for an estimate on how much insulation is needed in certain situations. The theory behind the different processes of sorption is necessary for a better understanding of the preparation of the beads before they are used in an insulation system.

  16. Efficient Synthesis of MCu (M = Pd, Pt, and Au) Aerogels with Accelerated Gelation Kinetics and their High Electrocatalytic Activity.

    Science.gov (United States)

    Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang; Song, Junhua; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-10-01

    To accelerate hydrogel formation and further simplify the synthetic procedure, a series of MCu (M = Pd, Pt, and Au) bimetallic aerogels is synthesized from the in situ reduction of metal precursors through enhancement of the gelation kinetics at elevated temperature. Moreover, the resultant PdCu aerogel with ultrathin nanowire networks exhibits excellent electrocatalytic performance toward ethanol oxidation, holding promise in fuel-cell applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Basic science of new aerogels. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    Feasibility of making monolithic composite aerogels containing silica and natural clay minerals, synthetic clay minerals or zeolites has been demonstrated, using two different processes; up to 30 wt% of the mineral phase has been successfully added. Addition of natural and synthetic clay minerals or zeolites to silica aerosols was shown to retard densification. Composite silica aerogels showed significant surface area still present after sintering at 800 or 1000 C. For most samples, 1 wt% of the second phase is equally effective in retarding densification as 10 wt%. Composite aerogels, in general, had lower hardness values than pure silica. Hardness values were inversely proportional to aerogel pore radius.

  18. Evacuation and assembly of aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev

    1999-01-01

    The application of monolithic silica aerogel as transparent insulation material for windows has been investigated for some years. It has been realised that a major problem of an industrial production of aerogel glazings will be the time for evacuation of the aerogel material. However, in a previous...... process, it can be considered as semi-online, and especially the capital cost is significantly lower for this method in comparison with a true online process. So hereby, a major obstacle is overcome with respect to a first industrial production of aerogel glazings.The apparatus has been constructed...

  19. Hydrogen storage property of nanoporous carbon aerogels

    International Nuclear Information System (INIS)

    Shen Jun; Liu Nianping; Ouyang Ling; Zhou Bin; Wu Guangming; Ni Xingyuan; Zhang Zhihua

    2011-01-01

    Carbon aerogels were prepared from resorcinol and formaldehyde via sol-gel process, high temperature carbonization and atmospheric pressure drying technology with solvent replacement. By changing the resorcinol-sodium carbonate molar ratio and the mass fraction of the reactants,resorcinol and formaldehyde, the pore structure of carbon aerogels can be controlled and the palladium-doped carbon aerogels were prepared.By transmission electron microscopy (TEM), X-ray diffraction (XRD) spectra, it is confirmed that the Pd exists in the skeleton structure of carbon aerogels as a form of nano simple substance pellet. The specific surface area is successfully raised by 2 times, and palladium-doped carbon aerogels with a specific surface area of 1 273 m 2 /g have been obtained by carrying out the activation process as the post-processing to the doped carbon aerogels. The hydrogen adsorption results show that the saturated hydrogen storage mass fraction of the carbon aerogels with the specific surface area of 3 212 m 2 /g is 3% in the condition of 92 K, 3.5 MPa, and 0.84% in the condition of 303 K, 3.2 MPa. In addition, the hydrogen adsorption test of palladium-doped carbon aerogels at room temperature (303 K) shows that the total hydrogen storage capacity of doped carbon aerogels is declined due to the relative small specific surface, but the hydrogen storage of unit specific surface area is enhanced. (authors)

  20. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  1. The monolithic carbon aerogels and aerogel composites for electronics and thermal protection applications

    Science.gov (United States)

    Lu, Sheng; Guo, Hui; Zhou, Yugui; Liu, Yuanyuan; Jin, Zhaoguo; Liu, Bin; Zhao, Yingmin

    2017-09-01

    Monolithic carbon aerogels have been prepared by condensation polymerization and high temperature pyrolysis. The morphology of carbon aerogels are characterized by SEM. The pore structure is characterized by N2 adsorption-desorption technique. Monolithic carbon aerogels are mesoporous nanomaterials. Carbon fiber reinforced carbon aerogel composites are prepared by in-situ sol-gel process. Fiber reinforced carbon aerogel composites are of high mechanical strength. The thermal response of the fiber reinforced aerogel composite samples are tested in an arc plasma wind tunnel. Carbon aerogel composites show good thermal insulation capability and high temperature resistance in inert atmosphere even at ultrahigh temperature up to 1800 °C. The results show that they are suitable for applications in electrodes for supercapacitors/ Lithium-ion batteries and aerospace thermal protection area.

  2. Design and Development of Aerogel-Based Antennas for Aerospace Applications: A Final Report to the NARI Seedling

    Science.gov (United States)

    Meador, Mary Ann B.; Miranda, Felix A.

    2014-01-01

    As highly porous solids possessing low density and low dielectric permittivity combined with good mechanical properties, polyimide (PI) aerogels offer great promise as an enabling technology for lightweight aircraft antenna systems. While they have been aggressively explored for thermal insulation, barely any effort has been made to leverage these materials for antennas or other applications that take advantage of their aforementioned attributes. In Phase I of the NARI Seedling Project, we fabricated PI aerogels with properties tailored to enable new antenna concepts with performance characteristics (wide bandwidth and high gain) and material properties (low density, environmental stability, and robustness) superior to the state of practice (SOP). We characterized electromagnetic properties, including permittivity, reflectivity, and propagation losses for the aerogels. Simple, prototype planar printed circuit patch antennas from down-selected aerogel formulations were fabricated by molding the aerogels to net shapes and by gold-metalizing the pattern onto the templates via electron beam evaporation in a clean room environment. These aerogel based antennas were benchmarked against current antenna SOP, and exhibited both broader bandwidth and comparable or higher gain performance at appreciably lower mass. Phase II focused on the success of the Phase I results pushing the PI aerogel based antenna technology further by exploring alternative antenna design (i.e., slot coupled antennas) and by examining other techniques for fabricating the antennas including ink jet printing with the goal of optimizing antenna performance and simplifying production. We also examined new aerogel formulations with better moisture and solvent resistance to survive processing conditions. In addition, we investigated more complex antenna designs including passive phased arrays such as 2x4 and 4x8 element arrays to assess the scalability of the aerogel antenna concept. Furthermore, we

  3. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  4. Radioactive colloids

    International Nuclear Information System (INIS)

    Bergqvist, L.

    1987-01-01

    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  5. Monolithic Silica aerogel in superinsulating glazings

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1988-01-01

    . This phenomenon is considered being the main obstacle to incorporate the material in clear glazings but a significant improvement of the optical quality of aerogel has been observed during the last five years. A number of prototypical evacuated 500x500x28 mm aerogel double glazed units employing a new edge seal...... competetion in heating dominated climates....

  6. Electrospinning of polymer-aerogel composite fibres

    DEFF Research Database (Denmark)

    Christiansen, Lasse; Fojan, Peter

    En poster om produktion af polymer-aerogel kompositfibre ved hjælp af elektrospinning. Fiberne er produceret fra en opløsning af aerogel og polyethylene oxide i vand, som er elektrospundet gennem en enkeltnålsprocess....

  7. Development of aerogel Cherenkov detectors at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2005-01-01

    The development of aerogel Cherenkov counters with the light collection using a wavelength shifter is described. 80 counters of this type are working in the KEDR detector. A project of similar counters for the SND detector based on 'heavy' aerogel with n=1.13 has been developed. Aerogel with a refractive index of 1.006-1.13 and dimensions of blocks up to 200x200x50mm 3 is produced by the Novosibirsk group for use in Cherenkov counters of different types. The Novosibirsk group is participating in the development of LHCb RICH as well as a beam diagnostics for a photo-injector test facility at DESY-Zeuthen. Recently we started development of RICH based on focusing aerogel (FARICH) for the endcap of the SuperBaBar. For the first time in the world the focusing aerogel with layers of different refractive indices has been produced

  8. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and

  9. Aerogel Projects Ongoing in MSFC's Engineering Directorate

    Science.gov (United States)

    Shular, David A.; Smithers, Gweneth A.; Plawsky, Joel L.; Whitaker, Ann F. (Technical Monitor)

    2000-01-01

    When we speak of an aerogel material, we are referring more to process and structure am to a specific substance. Aerogel, considered the lightest solid material, has been made from silica for seventy years. Resorcinol-formaldehyde, organic aerogels have been developed more recently. However, aerogel can be made from almost any type of substance, even lead. Because an aerogel is mostly air (about 99 %), the solid substance used will affect the weight very little. The term "aerogel" connotes the sol-gel process used to manufacture the material. The aerogel begins as a liquid "sol," becomes a solid "alcogel," and is then dried to become an "aerogel." The final product has a unique structure, useful for exploitation. It is an "open pore" system with nano-sized particles and pores, has very high surface area, and is highly interconnected. Besides low weight, aerogels have ultimate (lowest) values in other properties: thermal conductivity, refractive index, sound speed, and dielectric constant. Aerogels were first prepared in 1931 by Steven Kistler, who used a supercritical drying step to replace the liquid in a gel with air, preserving the structure (1). Kistler's procedure involved a water-to-alcohol exchange step; in the 1970's, this step was eliminated when a French investigator introduced the use of tetramethylorthosilicate. Still, alcohol drying involved dangerously high temperatures and pressures. In the 1980's, the Microstructured Materials Group at Berkeley Laboratory found that the alcohol in the gel could be replaced with liquid carbon dioxide before supercritical drying, which greatly improved safety (2). 'Me most recent major contribution has been that of Deshpande, Smith and Brinker in New Mexico, who are working to eliminate the supercritical drying step (3). When aerogels were first being developed, they were evaporatively dried. However, the wet gel, when dried, underwent severe shrinkage and cracking; this product was termed "xerogel." When the

  10. Aerogels from Chitosan Solutions in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Gonzalo Santos-López

    2017-12-01

    Full Text Available Chitosan aerogels conjugates the characteristics of nanostructured porous materials, i.e., extended specific surface area and nano scale porosity, with the remarkable functional properties of chitosan. Aerogels were obtained from solutions of chitosan in ionic liquids (ILs, 1-butyl-3-methylimidazolium acetate (BMIMAc, and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc, in order to observe the effect of the solvent in the structural characteristics of this type of materials. The process of elaboration of aerogels comprised the formation of physical gels through anti-solvent vapor diffusion, liquid phase exchange, and supercritical CO2 drying. The aerogels maintained the chemical identity of chitosan according to Fourier transform infrared spectrophotometer (FT-IR spectroscopy, indicating the presence of their characteristic functional groups. The internal structure of the obtained aerogels appears as porous aggregated networks in microscopy images. The obtained materials have specific surface areas over 350 m2/g and can be considered mesoporous. According to swelling experiments, the chitosan aerogels could absorb between three and six times their weight of water. However, the swelling and diffusion coefficient decreased at higher temperatures. The structural characteristics of chitosan aerogels that are obtained from ionic liquids are distinctive and could be related to solvation dynamic at the initial state.

  11. Development of aerogel Cherenkov counters at Novosibirsk

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Baehr, J.; Bellunato, T.; Beloborodov, K.I.; Bobrovnikov, V.S.; Buzykaev, A.R.; Calvi, M.; Danilyuk, A.F.; Djordjadze, V.; Golubev, V.B.; Kononov, S.A.; Kravchenko, E.A.; Lipka, D.; Matteuzzi, C.; Musy, M.; Onuchin, A.P.; Perego, D.; Rodiakin, V.A.; Savinov, G.A.; Serednyakov, S.I.; Shamov, A.G.; Stephan, F.; Tayursky, V.A.; Vorobiov, A.I.

    2006-01-01

    The work on aerogel Cherenkov counters was started in Novosibirsk in 1986. Production of aerogels with refractive indices of 1.006-1.13 and thicknesses of blocks up to 50mm was developed. The light absorption length at 400nm is 5-7m, the scattering length is 4-5cm. By these parameters, the Novosibirsk aerogel is one of the best in the world. The ASHIPH Cherenkov counters with light collection on wavelength shifters have been developed. The ASHIPH system of the KEDR detector contains 1000l of aerogel. The π/K separation is 4.5σ. A project of ASHIPH counters for the SND detector has been developed. Aerogel RICH for LHCb gives a possibility to identify hadrons in the momentum range of 2-10GeV/c. The Novosibirsk group is developing an aerogel RICH for the endcap for the SuperBaBar project. Calculations performed by a group of physicists from Novosibirsk and DESY-Zeuthen have shown that aerogel radiators enable to achieve time resolution up to 20fs

  12. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  13. Carbon aerogel electrodes for direct energy conversion

    Science.gov (United States)

    Mayer, Steven T.; Kaschmitter, James L.; Pekala, Richard W.

    1997-01-01

    A direct energy conversion device, such as a fuel cell, using carbon aerogel electrodes, wherein the carbon aerogel is loaded with a noble catalyst, such as platinum or rhodium and soaked with phosphoric acid, for example. A separator is located between the electrodes, which are placed in a cylinder having plate current collectors positioned adjacent the electrodes and connected to a power supply, and a pair of gas manifolds, containing hydrogen and oxygen positioned adjacent the current collectors. Due to the high surface area and excellent electrical conductivity of carbon aerogels, the problems relative to high polarization resistance of carbon composite electrodes conventionally used in fuel cells are overcome.

  14. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    Science.gov (United States)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at

  15. A saxs study of silica aerogels

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1986-01-01

    Aerogels produced by hypercritical drying of gels from hydrolysis of TMOS (Tetramethoxysilane) in various pH conditions and subjected to a densification process were studied by SAXS using LURE synchrotron facility. The evaluation of scattering data combined with BET measurements leads to a model of aerogels consisting of a light density matrix in which meso-and macro-pores are embedded. (Author) [pt

  16. Study of ageing effects in aerogel

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Coluzza, C.; Longo, G.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.L.

    2004-01-01

    Ageing effects on aerogel due to irradiation and absorption of humidity have been investigated. Aerogel tiles have been exposed to γ radiation from a 60 Co source and to proton and neutron high intensity beams. The transmittance has been monitored in the wavelength range between 200 and 800 nm, determining the clarity factor C as a function of the increasing dose of irradiation. The index of refraction n was also measured

  17. Study of ageing effects in aerogel

    CERN Document Server

    Bellunato, T F; Coluzza, C; Longo, G; Matteuzzi, C; Musy, M; Negri, P; Perego, D L

    2004-01-01

    Ageing effects on aerogel due to irradiation and absorption of humidity have been investigated. Aerogel tiles have been exposed to gamma radiation from a 60-Co source and to proton and neutron high intensity beams. The transmittance has been monitored in the wavelength range between 200 nm and 800 nm, determining the clarity factor C as a function of the increasing dose of irradiation. The index of refraction n was also measured.

  18. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    OpenAIRE

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, St?phane; Ohashi, Naoki

    2016-01-01

    Abstract The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth ...

  19. Aerogels Materials as Space Debris Collectors

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2013-01-01

    Full Text Available Material degradation due to the specific space environment becomes a key parameter for space missions. The use of large surface of brittle materials on satellites can produce, if impacted by hypervelocity particles, ejected volumes of mater 100 times higher than the impacting one. The presented work is devoted to the use of silica aerogels as passive detectors. Aerogels have been exposed to the low earth orbit of the ISS for 18 months. The study describes the aerogels process and the choice of synthesis parameters in such a way to get expected features in terms of porosity, mechanical properties, internal stresses, and transparency. Low-density aerogels (0.09 g·cm−3 have been prepared. The control of transparency necessary to see and identify particles and fragments collected is obtained using a base catalysis during gel synthesis. After return to earth, the aerogels samples have been observed using optical microscopy to detect and quantify craters on the exposed surface. First results obtained on a small part of the aerogels indicate a large number of debris collected in the materials.

  20. Influence of Aerogel Morphology and Reinforcement Architecture on Gas Convection in Aerogel Composites

    Science.gov (United States)

    Hurwitz, Frances I.; Meyer, Matthew; Guo, Haiquan; Rogers, Richard B.; DeMange, Jeffrey J.; Richardson, Hayley

    2016-01-01

    A variety of thermal protection applications require lightweight insulation capable of withstanding temperatures well above 900 C. Aerogels offer extremely low-density thermal insulation due to their mesoporous structure, which inhibits both gas convection and solid conduction. Silica aerogel systems are limited to use temperatures of 600-700 C, above which they sinter. Alumina aerogels maintain a porous structure to higher temperatures than silica, before transforming to -alumina and densifying. We have synthesized aluminosilicate aerogels capable of maintaining higher surface areas at temperatures above 1100 C than an all-alumina aerogel using -Boehmite as the aluminum source and tetraethoxysilane (TEOS) as the silicon source. The pore structure of these aerogels varies with thermal exposure temperature and time, as the aluminosilicate undergoes a variety of phase changes to form transition aluminas. Transformation to -alumina is inhibited by incorporation of silica into the alumina lattice. The aerogels are fragile, but can be reinforced using a large variety of ceramic papers, felts or fabrics. The objective of the current study is to characterize the influence of choice of reinforcement and architecture on gas permeability of the aerogel composites in both the as fabricated condition and following thermal exposure, as well as understand the effects of incorporating hydrophobic treatments in the composites.

  1. 1D Ni-Co oxide and sulfide nanoarray/carbon aerogel hybrid nanostructures for asymmetric supercapacitors with high energy density and excellent cycling stability.

    Science.gov (United States)

    Hao, Pin; Tian, Jian; Sang, Yuanhua; Tuan, Chia-Chi; Cui, Guanwei; Shi, Xifeng; Wong, C P; Tang, Bo; Liu, Hong

    2016-09-15

    The fabrication of supercapacitor electrodes with high energy density and excellent cycling stability is still a great challenge. A carbon aerogel, possessing a hierarchical porous structure, high specific surface area and electrical conductivity, is an ideal backbone to support transition metal oxides and bring hope to prepare electrodes with high energy density and excellent cycling stability. Therefore, NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid supercapacitor electrode materials were synthesized by assembling Ni-Co precursor needle arrays on the surface of the channel walls of hierarchical porous carbon aerogels derived from chitosan in this study. The 1D nanostructures grow on the channel surface of the carbon aerogel vertically and tightly, contributing to the enhanced electrochemical performance with ultrahigh energy density. The energy density of NiCo 2 S 4 nanotube array/carbon aerogel and NiCo 2 O 4 nanoneedle array/carbon aerogel hybrid asymmetric supercapacitors can reach up to 55.3 Wh kg -1 and 47.5 Wh kg -1 at a power density of 400 W kg -1 , respectively. These asymmetric devices also displayed excellent cycling stability with a capacitance retention of about 96.6% and 92% over 5000 cycles.

  2. Synthesis and characterization of a nanocrystalline diamond aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Pauzauskie, Peter J.; Crowhurst, Jonathan C.; Worsley, Marcus A.; Laurence, Ted A.; Kilcoyne, A. L. David; Wang, Yinmin; Willey, Trevor M.; Visbeck, Kenneth S.; Fakra, Sirine C.; Evans, William J.; Zaug, Joseph M.; Satcher, Jr., Joe H.

    2011-07-06

    Aerogel materials have myriad scientific and technological applications due to their large intrinsic surface areas and ultralow densities. However, creating a nanodiamond aerogel matrix has remained an outstanding and intriguing challenge. Here we report the high-pressure, high-temperature synthesis of a diamond aerogel from an amorphous carbon aerogel precursor using a laser-heated diamond anvil cell. Neon is used as a chemically inert, near-hydrostatic pressure medium that prevents collapse of the aerogel under pressure by conformally filling the aerogel's void volume. Electron and X-ray spectromicroscopy confirm the aerogel morphology and composition of the nanodiamond matrix. Time-resolved photoluminescence measurements of recovered material reveal the formation of both nitrogen- and silicon- vacancy point-defects, suggesting a broad range of applications for this nanocrystalline diamond aerogel.

  3. Durable polymer-aerogel based superhydrophobic coatings, a composite material

    Science.gov (United States)

    Kissel, David J; Brinker, Charles Jeffrey

    2014-03-04

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  4. Durable polymer-aerogel based superhydrophobic coatings: a composite material

    Science.gov (United States)

    Kissel, David J.; Brinker, Charles Jeffrey

    2016-02-02

    Provided are polymer-aerogel composite coatings, devices and articles including polymer-aerogel composite coatings, and methods for preparing the polymer-aerogel composite. The exemplary article can include a surface, wherein the surface includes at least one region and a polymer-aerogel composite coating disposed over the at least one region, wherein the polymer-aerogel composite coating has a water contact angle of at least about 140.degree. and a contact angle hysteresis of less than about 1.degree.. The polymer-aerogel composite coating can include a polymer and an ultra high water content catalyzed polysilicate aerogel, the polysilicate aerogel including a three dimensional network of silica particles having surface functional groups derivatized with a silylating agent and a plurality of pores.

  5. Aerogels: transparent and super-insulating materials; Les aerogels: isolants transparent-super isolants

    Energy Technology Data Exchange (ETDEWEB)

    Melka, S.; Rigacci, A.; Achard, P.; Bezian, J.J. [Ecole des Mines de Paris, 06 - Sophia-Antipolis (France); Sallee, H.; Chevalier, B. [Centre des Sciences et Techniques du Batiment, 38 - Saint-Martin-d`Heres (France)

    1996-12-31

    Recent studies have demonstrated the super-insulating properties of silica aerogel in its monolithic or finely divided state. In its monolithic state, this material conciliates excellent thermal insulation performances, a good transmission of visible light and interesting acoustic properties. Also its amazing structural characteristics (lightness, high global porosity, small diameter of pores) are particularly interesting for its use in double glazing windows as transparent insulating spacer. The aim of the work carried out by the Energetic Centre of the Ecole des Mines of Paris is to understand the thermal transfer phenomena in all forms of silica aerogel. In this paper, the main steps of the synthesis process of monolithic silica aerogel is presented with the thermal conductivities obtained. Then, a model is built to describe the thermal transfer mechanisms in finely divided aerogel beds. Finally, the hot wire thermal characterization method is presented and the results obtained on silica aerogels are discussed. (J.S.) 16 refs.

  6. Properties of aerogels in glazings

    DEFF Research Database (Denmark)

    Schultz, Jørgen Munthe

    1998-01-01

    This report describes the final tests carried out on an advanced apparatus for measurement of thermal conductivity of materials at atmospheric pressure and different levels of evacuation. The apparatus was designed and constructed in the phase 1 of the project. Difficulties with the control system...... have been solved and measurements have been carried out on common polystyrene foam insulation at atmospheric pressure. The measurements have been compared with results from reference measurements and a difference of only 0.3% was found in measured thermal conductivity. Measurements on monolithic silica...... aerogel were performed at 5 different pressure levels in the range 0.2 - 1000 hPa. The measured equivalent thermal conductivity is in the range 8.9 - 16.4 mW/(m K) which corresponds very well with results obtained by institutes in Germany and France....

  7. Anisotropic Model Colloids

    NARCIS (Netherlands)

    van Kats, C.M.

    2008-01-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  8. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    related to historical prospective, synthesis, characterization, theoretical modeling and application of unique class of colloidal materials starting from colloidal gold to coated silica colloid and platinum, titania colloids. This book is unique in its design, content, providing depth of science about...

  9. Bluedec in product design : Isolatiemateriaal op basis van aerogel

    NARCIS (Netherlands)

    Beurden, van K.M.M. (Karin); Goselink, E.A. (Erik)

    2014-01-01

    Aerogel is een zeer kostbaar voor de ruimtevaart ontwikkeld basismateriaal. Bluedec is een isolatiemateriaal bestaande uit een non woven kunststof dat met deze aerogel geïmpregneerd is. Hierdoor ontstaat een zeer goed isolerend materiaal dat goedkoper is dan aerogel. De

  10. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  11. Visible tunable lighting system based on polymer composites embedding ZnO and metallic clusters: from colloids to thin films

    Science.gov (United States)

    Truong, Thai Giang; Dierre, Benjamin; Grasset, Fabien; Saito, Noriko; Saito, Norio; Nguyen, Thi Kim Ngan; Takahashi, Kohsei; Uchikoshi, Tetsuo; Amela-Cortes, Marian; Molard, Yann; Cordier, Stéphane; Ohashi, Naoki

    2016-01-01

    The development of phosphor devices free of heavy metal or rare earth elements is an important issue for environmental reasons and energy efficiency. Different mixtures of ZnO nanocrystals with Cs2Mo6I8(OOC2F5)6 cluster compound (CMIF) dispersed into polyvinylpyrrolidone matrix have been prepared by very simple and low cost solution chemistry. The resulting solutions have been used to fabricate highly transparent and luminescent films by dip coating free of heavy metal or rare earth elements. The luminescence properties of solution and dip-coated films were investigated. The luminescence of such a system is strongly dependent on the ratios between ZnO and CMIF amounts, the excitation wavelength and the nature of the system. By varying these two parameters (ratio and wavelength), a large variety of colors, from blue to red as well as white, can be achieved. In addition, differences in the luminescence properties have been observed between solutions and thin films as well as changes of CMIF emission band maximum wavelength. This may suggest some possible interactions between the different luminophore centers, such as energy transfer or ligands exchange on the Mo6 clusters.

  12. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity.

    Science.gov (United States)

    Si, Yang; Wang, Xueqin; Dou, Lvye; Yu, Jianyong; Ding, Bin

    2018-04-01

    Ultralight aerogels that are both highly resilient and compressible have been fabricated from various materials including polymer, carbon, and metal. However, it has remained a great challenge to realize high elasticity in aerogels solely based on ceramic components. We report a scalable strategy to create superelastic lamellar-structured ceramic nanofibrous aerogels (CNFAs) by combining SiO 2 nanofibers with aluminoborosilicate matrices. This approach causes the random-deposited SiO 2 nanofibers to assemble into elastic ceramic aerogels with tunable densities and desired shapes on a large scale. The resulting CNFAs exhibit the integrated properties of flyweight densities of >0.15 mg cm -3 , rapid recovery from 80% strain, zero Poisson's ratio, and temperature-invariant superelasticity to 1100°C. The integral ceramic nature also provided the CNFAs with robust fire resistance and thermal insulation performance. The successful synthesis of these fascinating materials may provide new insights into the development of ceramics in a lightweight, resilient, and structurally adaptive form.

  13. Preparation and characterization of phloroglucinol-formaldehyde aerogel

    International Nuclear Information System (INIS)

    Huang Changgang; China Academy of Engineering Physics, Mianyang; Tang Yongjian; Wang Chaoyang; Yan Hongmei

    2006-01-01

    Phloroglucinol-formaldehyde (PF) aerogels and carbonized PF (CPF) aerogels were prepared from Phloroglucinol (P) and Formaldehyde (F) by sol-gel, solvent exchanging, supercritical drying and carbonization processes. The aerogel has a large specific surface area, continuous nano-network and porous structure. The density and mean porosity radius will enlarge after being carbonized, while the specific surface area will be influenced little. The micro-structure and density of aerogel are controlled by concentration of total reactants and catalyzer, respectively. Aerogels with different micro-structure and different density fit for ICF targets can be prepared by optimizing synthesis conditions. (authors)

  14. Low-temperature synthesis of hexagonal transition metal ion doped ZnS nanoparticles by a simple colloidal method

    International Nuclear Information System (INIS)

    Wang, Liping; Huang, Shungang; Sun, Yujie

    2013-01-01

    A general route to synthesize transition metal ions doped ZnS nanoparticles with hexagonal phase by means of a conventional reverse micelle at a low temperature is developed. The synthesis involves N,N-dimethylformamide, Zn(AC) 2 solution, thiourea, ammonia, mercaptoacetic acid, as oil phase, water phase, sulfide source, pH regulator, and surfactant, respectively. Thiourea, ammonia and mercaptoacetic acid are demonstrated crucial factors, whose effects have been studied in detail. In addition, the FT-IR spectra suggest that mercaptoacetic acid may form complex chelates with Zn 2+ in the preparation. In the case of Cu 2+ as a doped ion, hexagonal ZnS:Cu 2+ nanoparticles were synthesized at 95 °C for the first time. The X-ray diffraction (XRD) and transmission electron microscope (TEM) measurements show that the ZnS:Cu 2+ nanoparticles are polycrystalline and possess uniform particle size. The possible formation mechanism of the hexagonal doped ZnS is discussed.

  15. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  16. Aerogel Cerenkov counters at DESY

    International Nuclear Information System (INIS)

    Poelz, G.

    1984-11-01

    In high energy physics it is common to identify a charged particle and its kinematical parameters by the measurement of its momentum and its velocity. Cerenkov detectors have developed into a standard tool because they operate in the γ = (1-β 2 )sup(-1/2) range from about 1 to 100 which is not easily accessible by other devices. Pions, kaons and protons in present high energy experiments reach energies of several GeV. Threshold Cerenkov detectors for these particles need indices of refraction below 1.1 which are often produced with gases under high pressure. The design for chambers operating in this region was drasticly simplified when porous materials serving as Cerenkov radiators were invented. These chambers complement the time-of-flight counters, which cover the low energy region. Aerogel of silica is up to now the only porous substance with sufficient optical transparency. Its quality has been improved substantially in recent times so that large size detectors can be constructed. (orig.)

  17. Refractive index inhomogeneity within an aerogel block

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Da Silva Costa, C.F.; Matteuzzi, C.; Musy, M.; Perego, D.L.

    2006-01-01

    Evaluating local inhomogeneities of the refractive index inside aerogel blocks to be used as Cherenkov radiator is important for a high energy physics experiment where angular resolution is crucial. Two approaches are described and compared. The first one is based on the bending of a laser beam induced by refractive index gradients along directions normal to the unperturbed optical path. The second method exploits the Cherenkov effect itself by shooting an ultra-relativistic collimated electron beam through different points of the aerogel surface. Local refractive index variations result in sizable differences in the Cherenkov photons distribution

  18. Performance of aerogel as Cherenkov radiator

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Negri, P.; Braem, A.; Chesi, E.; Hansen, C.; Liko, D.; Joram, C.; Neufeld, N.; Seguinot, J.; Weilhammer, P.; Buzykaev, A.R.; Kravchenko, E.A.; Onuchin, A.P.; Danilyuk, A.F.; Easo, S.; Wotton, S.; Jolly, S.

    2004-01-01

    Aerogel with index of refraction around 1.03 has been studied as Cherenkov radiator in a test at CERN PS using a π - and a mixed π + /p beam of momenta between 6 and 10 GeV/c. The Cherenkov photons were detected by means of four large HPD tubes designed and constructed at CERN. Results on the photoelectron yield, the Cherenkov angle and its resolution, and the π/p separation are obtained. The performances measured demonstrate that a RICH with aerogel is a viable detector for experiments with high multiplicity of particles in the final state

  19. Test of aerogel as Cherenkov radiator

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Negri, P; Paganoni, M; Liko, D; Neufeld, N; Chesi, Enrico Guido; Joram, C; Séguinot, Jacques; Ypsilantis, Thomas

    2001-01-01

    Two different stacks of aerogel were tested in a pion/proton beam of momentum between 3 and 10 GeV/c. The optical characteristics of the aerogel samples were different: one sample was hygroscopic while the other was hydrophobic. Two HPD tubes were used as photodetectors, and different thicknesses of the stacks were used, in order to determine the photoelectron yield, the Cherenkov angle and its precision. Pion/proton separation has been demonstrated at momenta up to 10 GeV/c.

  20. Flexible and porous cellulose aerogels/zeolitic imidazolate framework (ZIF-8) hybrids for adsorption removal of Cr(IV) from water

    Science.gov (United States)

    Bo, Shaoguo; Ren, Wenjing; Lei, Chao; Xie, Yuanbo; Cai, Yurong; Wang, Shunli; Gao, Junkuo; Ni, Qingqing; Yao, Juming

    2018-06-01

    The low cost of adsorption treatment of heavy metal ions in water has been extensively studied. In this paper, we have demonstrated a facile method of combining two emerging materials cellulose aerogels (CA) and metal-organic frameworks (MOFs) into one highly functional aerogel to adsorption removal of heavy metal ions from water, by entrapping MOF particles into a flexible and porous CA. The resultant hybrid cellulose aerogels had a highly porous structure with zeolitic imidazolate framework-8 (ZIF-8) loadings can reach 30 wt%. The hybrid cellulose aerogels (named as ZIF-8@CA) show good adsorption capacity for Cr(Ⅵ). The adsorption process of ZIF-8@CA is better described by pseudo-second-order kinetic model and Langmuir isotherm, with maximum monolayer adsorption capacity of 41.8 mg g-1 for Cr(Ⅵ), whose adsorption capacity has greatly improved when compared with a single CA or ZIF-8. Thus, such a flexible and durable hybrid cellulose aerogel is a very prospective material for metal ions cleanup and industrial wastewater purification.

  1. Boosting Bifunctional Oxygen Electrocatalysis with 3D Graphene Aerogel-Supported Ni/MnO Particles.

    Science.gov (United States)

    Fu, Gengtao; Yan, Xiaoxiao; Chen, Yifan; Xu, Lin; Sun, Dongmei; Lee, Jong-Min; Tang, Yawen

    2018-02-01

    Electrocatalysts for oxygen-reduction and oxygen-evolution reactions (ORR and OER) are crucial for metal-air batteries, where more costly Pt- and Ir/Ru-based materials are the benchmark catalysts for ORR and OER, respectively. Herein, for the first time Ni is combined with MnO species, and a 3D porous graphene aerogel-supported Ni/MnO (Ni-MnO/rGO aerogel) bifunctional catalyst is prepared via a facile and scalable hydrogel route. The synthetic strategy depends on the formation of a graphene oxide (GO) crosslinked poly(vinyl alcohol) hydrogel that allows for the efficient capture of highly active Ni/MnO particles after pyrolysis. Remarkably, the resulting Ni-MnO/rGO aerogels exhibit superior bifunctional catalytic performance for both ORR and OER in an alkaline electrolyte, which can compete with the previously reported bifunctional electrocatalysts. The MnO mainly contributes to the high activity for the ORR, while metallic Ni is responsible for the excellent OER activity. Moreover, such bifunctional catalyst can endow the homemade Zn-air battery with better power density, specific capacity, and cycling stability than mixed Pt/C + RuO 2 catalysts, demonstrating its potential feasibility in practical application of rechargeable metal-air batteries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An emerging platform for drug delivery: aerogel based systems.

    Science.gov (United States)

    Ulker, Zeynep; Erkey, Can

    2014-03-10

    Over the past few decades, advances in "aerogel science" have provoked an increasing interest for these materials in pharmaceutical sciences for drug delivery applications. Because of their high surface areas, high porosities and open pore structures which can be tuned and controlled by manipulation of synthesis conditions, nanostructured aerogels represent a promising class of materials for delivery of various drugs as well as enzymes and proteins. Along with biocompatible inorganic aerogels and biodegradable organic aerogels, more complex systems such as surface functionalized aerogels, composite aerogels and layered aerogels have also been under development and possess huge potential. Emphasis is given to the details of the aerogel synthesis and drug loading methods as well as the influence of synthesis parameters and loading methods on the adsorption and release of the drugs. Owing to their ability to increase the bioavailability of low solubility drugs, to improve both their stability and their release kinetics, there are an increasing number of research articles concerning aerogels in different drug delivery applications. This review presents an up to date overview of the advances in all kinds of aerogel based drug delivery systems which are currently under investigation. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Colloids from the aqueous corrosion of uranium nuclear fuel

    Science.gov (United States)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  4. Enhancement in CO2 Adsorption Capacity and Selectivity in the Chalcogenide Aerogel CuSb2S4 by Post-synthetic Modification with LiCl

    KAUST Repository

    Ahmed, Ejaz

    2015-09-11

    The new chalcogel CuSb2S4 was obtained by reacting Cu(OAc)2·H2O with KSbS2 in a water/formamide mixture at room temperature. In order to modify the gas adsorption capacity the synthesized CuSb2S4 aerogel was loaded with different amounts of LiCl. CO2 adsorption measurements on the CuSb2S4 aerogel before and after treatment with LiCl showed more than three times increased uptake of the LiCl-modified chalcogel. The selectivities of the gas pairs CO2/H2 and CO2/CH4 in the LiCl-treated chalcogel are 235 and 105 respectively and amongst the highest reported for chalcogenide-based aerogels. In comparison with other porous materials like zeolites, activated carbon and most of the Metal Organic Frameworks (MOFs) or Porous Organic Frameworks (POFs), our synthesized aerogels show good air and moisture stability. Although, the CO2 storage capacity of our aerogels is relatively low, however the selectivity of CO2 over H2 or CH4 in LiCl-loaded aerogels are higher than in zeolites, activated carbon as well as some MOFs like Cu-BTC and MOF-5 etc.

  5. Microbial effects on colloidal agglomeration

    International Nuclear Information System (INIS)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs

  6. Aerogel as Cherenkov radiator for RICH detectors

    International Nuclear Information System (INIS)

    Bellunato, T.; Braem, A.; Buzykaev, A.R.; Calvi, M.; Chesi, E.; Danilyuk, A.F.; Easo, S.; Hansen, C.; Jolly, S.; Joram, C.; Kravchenko, E.A.; Liko, D.; Matteuzzi, C.; Musy, M.; Negri, P.; Neufeld, N.; Onuchin, A.P.; Seguinot, J.; Weilhammer, P.; Wotton, S.

    2003-01-01

    We present here the results obtained using silica aerogel as Cherenkov radiator for the separation and identification of particles in the momentum range from 6 to 10 GeV/c. Photoelectron yield and Cherenkov ring resolution were studied under different experimental conditions and compared to the simulation

  7. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  8. Novel bioactive materials: silica aerogel and hybrid silica aerogel/pseudowollastonite

    Directory of Open Access Journals (Sweden)

    Reséndiz-Hernández, P. J.

    2014-10-01

    Full Text Available Silica aerogel and hybrid silica aerogel/pseudowollastonite materials were synthesized by controlled hydrolysis of tetraethoxysilane (TEOS using also methanol (MeOH and pseudowollastonite particles. The gels obtained were dried using a novel process based on an ambient pressure drying. Hexane and hexamethyl-disilazane (HMDZ were the solvents used to chemically modify the surface. In order to assess bioactivity, aerogels, without and with pseudowollastonite particles, were immersed in simulated body fluid (SBF for 7 and 14 days. The hybrid silica aerogel/pseudowollastonite showed a higher bioactivity than that observed for the single silica aerogel. However, as in both cases a lower bioactivity was observed, a biomimetic method was also used to improve it. In this particular method, samples of both materials were immersed in SBF for 7 days followed by their immersion in a more concentrated solution (1.5 SBF for 14 days. A thick and homogeneous bonelike apatite layer was formed on the biomimetically treated materials. Thus, bioactivity was successfully improved even on the aerogel with no pseudowollastonite particles. As expected, the hybrid silica aerogel/pseudowollastonite particles showed a higher bioactivity.Se sintetizaron aerogel de sílice y aerogel híbrido de sílice/partículas de pseudowollastonita por hidrólisis controlada de tetraetoxisilano (TEOS usando metanol (MeOH y partículas de pseudowollastonita. Los geles obtenidos se secaron utilizando un novedoso proceso basado en una presión de secado ambiental. Hexano y hexametil-disilazano fueron los solventes usados para modificar químicamente la superficie. Para evaluar la bioactividad, los aerogeles con y sin partículas de pseudowollastonita se sumergieron en un fluido fisiológico simulado (SBF por 7 y 14 días. El aerogel híbrido de sílice/partículas de pseudowollastonita mostró más alta bioactividad que la observada por el aerogel solo. Sin embargo, en ambos casos, se

  9. Impact of polishing on the light scattering at aerogel surface

    International Nuclear Information System (INIS)

    Barnyakov, A.Yu.; Barnyakov, M.Yu.; Bobrovnikov, V.S.; Buzykaev, A.R.; Danilyuk, A.F.; Katcin, A.A.; Kononov, S.A.; Kirilenko, P.S.; Kravchenko, E.A.; Kuyanov, I.A.; Onuchin, A.P.; Ovtin, I.V.; Predein, A.Yu.; Protsenko, R.S.

    2016-01-01

    Particle identification power of modern aerogel RICH detectors strongly depends on optical quality of radiators. It was shown that wavelength dependence of aerogel tile transparency after polishing cannot be described by the standard Hunt formula. The Hunt formula has been modified to describe scattering in a thin layer of silica dust on the surface of aerogel tile. Several procedures of polishing of aerogel tile have been tested. The best result has been achieved while using natural silk tissue. The resulting block has optical smooth surfaces. The measured decrease of aerogel transparency due to surface scattering is about few percent. This result could be used for production of radiators for the Focusing Aerogel RICH detectors.

  10. Flexible aerogel composite for mechanical stability and process of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, P.R.; Poco, J.F.

    1999-10-26

    A flexible aerogel and process of fabrication are disclosed. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4--5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  11. Flexible aerogel composite for mechanical stability and process of fabrication

    Science.gov (United States)

    Coronado, Paul R.; Poco, John F.

    1999-01-01

    A flexible aerogel and process of fabrication. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4-5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  12. Flexible aerogel composite for mechanical stability and process of fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Coronado, P.R.; Poco, J.F.

    2000-07-11

    A flexible aerogel and process of fabrication are disclosed. An aerogel solution is mixed with fibers in a mold and allowed to gel. The gel is then processed by supercritical extraction, or by air drying, to produce a flexible aerogel formed to the shape of the mold. The flexible aerogel has excellent thermal and acoustic properties, and can be utilized in numerous applications, such as for energy absorption, insulation (temperature and acoustic), to meet the contours of aircraft shapes, and where space is limited since an inch of aerogel is a 4--5 times better insulator than an inch of fiberglass. The flexible aerogel may be of an inorganic (silica) type or an organic (carbon) type, but containing fibers, such as glass or carbon fibers.

  13. Pd nanoparticles supported on three-dimensional graphene aerogels as highly efficient catalysts for methanol electrooxidation

    International Nuclear Information System (INIS)

    Liu, Mingrui; Peng, Cheng; Yang, Wenke; Guo, Jiaojiao; Zheng, Yixiong; Chen, Peiqin; Huang, Tingting; Xu, Jing

    2015-01-01

    Well-dispersed Pd nanoparticles supported on three-dimensional graphene aerogels (Pd/3DGA) were successfully prepared via a facile and efficient hydrothermal method without surfactant and template. The morphology and structure of the as-prepared Pd/3DGA nanocomposites were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). SEM showed that the Pd nanoparticles with a small average diameter and narrow size distribution were uniformly deposited on the surface of the self-assembled three-dimensional graphene aerogels. Raman spectra revealed the surface properties of 3DGA and its interaction with metallic nanoparticles. Cyclic voltammetric (CV) and chronoamperometric (CA) experiments further exhibited its superior catalytic activity and stability for the electro-oxidation of methanol in alkaline media, making it a promising anodic catalyst for direct alkaline alcohol fuel cells (DAAFCs).

  14. Bluedec in product design: Isolatiemateriaal op basis van aerogel

    OpenAIRE

    Beurden, van, K.M.M. (Karin); Goselink, E.A. (Erik)

    2014-01-01

    Aerogel is een zeer kostbaar voor de ruimtevaart ontwikkeld basismateriaal. Bluedec is een isolatiemateriaal bestaande uit een non woven kunststof dat met deze aerogel geïmpregneerd is. Hierdoor ontstaat een zeer goed isolerend materiaal dat goedkoper is dan aerogel. De warmtegeleidingscoëfficiënt van Bluedec in de basisuitvoering is 0,0135 W/m*K . Dat is lager dan conventionele isolatiematerialen, zie ook pagina 4. Voordeel hiervan is dat vergelijkbare of betere warmte-isolati...

  15. Synthesis of aerogel tiles with high light scattering length

    CERN Document Server

    Danilyuk, A F; Okunev, A G; Onuchin, A P; Shaurman, S A

    1999-01-01

    The possibility of aerogel tiles production for RICH detectors is described. Monolithic blocks of silica aerogel were synthesized by two-step sol-gel processing of tetraethoxysilane Si(OEt) sub 4 followed by high temperature supercritical drying with organic solvent. The important characteristic of aerogel is the light scattering length. In the wide range of refraction indexes the light scattering length exceeds 4 cm at 400 nm.

  16. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui, E-mail: hgxydyh@sdut.edu.cn; Zhuo, Shuping, E-mail: zhuosp_academic@yahoo.com

    2015-10-15

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.

  17. Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2005-01-01

    The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.

  18. Nitrogen-doped carbon aerogels for electrical energy storage

    Science.gov (United States)

    Campbell, Patrick; Montalvo, Elizabeth; Baumann, Theodore F.; Biener, Juergen; Merrill, Matthew; Reed, Eric W.; Worsley, Marcus A.

    2017-10-03

    Disclosed here is a method for making a nitrogen-doped carbon aerogel, comprising: preparing a reaction mixture comprising formaldehyde, at least one nitrogen-containing resorcinol analog, at least one catalyst, and at least one solvent; curing the reaction mixture to produce a wet gel; drying the wet gel to produce a dry gel; and thermally annealing the dry gel to produce the nitrogen-doped carbon aerogel. Also disclosed is a nitrogen-doped carbon aerogel obtained according to the method and a supercapacitor comprising the nitrogen-doped carbon aerogel.

  19. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  20. Highly transparent, flexible, and thermally stable superhydrophobic ORMOSIL aerogel thin films.

    Science.gov (United States)

    Budunoglu, Hulya; Yildirim, Adem; Guler, Mustafa O; Bayindir, Mehmet

    2011-02-01

    We report preparation of highly transparent, flexible, and thermally stable superhydrophobic organically modified silica (ORMOSIL) aerogel thin films from colloidal dispersions at ambient conditions. The prepared dispersions are suitable for large area processing with ease of coating and being directly applicable without requiring any pre- or post-treatment on a variety of surfaces including glass, wood, and plastics. ORMOSIL films exhibit and retain superhydrophobic behavior up to 500 °C and even on bent flexible substrates. The surface of the films can be converted from superhydrophobic (contact angle of 179.9°) to superhydrophilic (contact angle of <5°) by calcination at high temperatures. The wettability of the coatings can be changed by tuning the calcination temperature and duration. The prepared films also exhibit low refractive index and high porosity making them suitable as multifunctional coatings for many application fields including solar cells, flexible electronics, and lab on papers.

  1. Aerogel-Based Multilayer Insulation with Micrometeoroid Protection

    Science.gov (United States)

    Begag, Redouane; White, Shannon

    2013-01-01

    Ultra-low-density, highly hydrophobic, fiber-reinforced aerogel material integrated with MLI (aluminized Mylar reflectors and B4A Dacron separators) offers a highly effective insulation package by providing unsurpassed thermal performance and significant robustness, delivering substantial MMOD protection via the addition of a novel, durable, external aerogel layer. The hydrophobic nature of the aerogel is an important property for maintaining thermal performance if the material is exposed to the environment (i.e. rain, snow, etc.) during ground installations. The hybrid aerogel/MLI/MMOD solution affords an attractive alternative because it will perform thermally in the same range as MLI at all vacuum levels (including high vacuum), and offers significant protection from micrometeoroid damage. During this effort, the required low-density and resilient aerogel materials have been developed that are needed to optimize the thermal performance for space (high vacuum) cryotank applications. The proposed insulation/MMOD package is composed of two sections: a stack of interleaved aerogel layers and MLI intended for cryotank thermal insulation, and a 1.5- to 1-in. (.2.5- to 3.8- cm) thick aerogel layer (on top of the insulation portion) for MMOD protection. Learning that low-density aerogel cannot withstand the hypervelocity impact test conditions, the innovators decided during the course of the program to fabricate a high-density and strong material based on a cross-linked aerogel (X-aerogel; developed elsewhere by the innovators) for MMOD protection. This system has shown a very high compressive strength that is capable of withstanding high-impact tests if a proper configuration of the MMOD aerogel layer is used. It was learned that by stacking two X-aerogel layers [1.5-in. (.3.8-cm) thick] separated by an air gap, the system would be able to hold the threat at a speed of 5 km/s and gpass h the test. The first aerogel panel stopped the projectile from damaging the second

  2. Preparation of silica aerogel for Cerenkov counters

    International Nuclear Information System (INIS)

    Poelz, G.; Riethmueller, R.

    1981-09-01

    Aerogel of silica was produced with an index of refraction of n = 1.024 to equip the TASSO Cerenkov detector with 1700 litres of this radiator medium. In the production process, which is described in detail, different parameters were varied to determine their influence on the shape and the optical quality of the aerogel samples. With the present equipment samples with a size of 17 x 17 x 2.3 cm 3 were manufactured at a rate of 144 pieces per week. A production efficiency of about 90% was obtained. The index of refraction for all samples around n = 1.024 is distributed with sigmasub(n) = 1.3 x 10 -3 . They have an optical transmission length of Λ = 2.64 cm at a wavelength lambda = 438 nm with sigmasub(Λ) = 0.22 cm. For samples with n = 1.017, Λ is found to be about 30% higher. (orig.) [de

  3. Bioinspired Synthesis of Monolithic and Layered Aerogels.

    Science.gov (United States)

    Han, Xiao; Hassan, Khalil T; Harvey, Alan; Kulijer, Dejan; Oila, Adrian; Hunt, Michael R C; Šiller, Lidija

    2018-04-25

    Aerogels are the least dense and most porous materials known to man, with potential applications from lightweight superinsulators to smart energy materials. To date their use has been seriously hampered by their synthesis methods, which are laborious and expensive. Taking inspiration from the life cycle of the damselfly, a novel ambient pressure-drying approach is demonstrated in which instead of employing low-surface-tension organic solvents to prevent pore collapse during drying, sodium bicarbonate solution is used to generate pore-supporting carbon dioxide in situ, significantly reducing energy, time, and cost in aerogel production. The generic applicability of this readily scalable new approach is demonstrated through the production of granules, monoliths, and layered solids with a number of precursor materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Particle identification system based on dense aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Barnyakov, A.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Barnyakov, M.Yu. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Beloborodov, K.I., E-mail: K.I.Beloborodov@inp.nsk.su [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Bobrovnikov, V.S.; Buzykaev, A.R. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Danilyuk, A.F. [Boreskov Institute of Catalysis, 5, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Golubev, V.B. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Gulevich, V.V. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Kononov, S.A.; Kravchenko, E.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); Onuchin, A.P.; Martin, K.A. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20, Karl Marx prospect, Novosibirsk, 630092 (Russian Federation); Serednyakov, S.I. [Budker Institute of Nuclear Physics, 11, akademika Lavrentieva prospect, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2, Pirogova Street, Novosibirsk 630090 (Russian Federation); and others

    2013-12-21

    A threshold Cherenkov counter based on dense aerogel with refraction index n=1.13 is described. This counter is used for kaon identification at momenta below 1 GeV/c in the SND detector, which takes data at the VEPP-2000 e{sup +}e{sup −} collider. The results of measurements of the counter efficiency using electrons, muons, pions, and kaons produced in e{sup +}e{sup −} annihilation are presented.

  5. Analysis of colloid transport

    International Nuclear Information System (INIS)

    Travis, B.J.; Nuttall, H.E.

    1985-01-01

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab

  6. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  7. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  8. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    Science.gov (United States)

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  9. Co-Fe-Si Aerogel Catalytic Honeycombs for Low Temperature Ethanol Steam Reforming

    Directory of Open Access Journals (Sweden)

    Montserrat Domínguez

    2012-09-01

    Full Text Available Cobalt talc doped with iron (Fe/Co~0.1 and dispersed in SiO2 aerogel was prepared from silica alcogel impregnated with metal nitrates by supercritical drying. Catalytic honeycombs were prepared following the same procedure, with the alcogel synthesized directly over cordierite honeycomb pieces. The composite aerogel catalyst was characterized by X-ray diffraction, scanning electron microscopy, focus ion beam, specific surface area and X-ray photoelectron spectroscopy. The catalytic layer is about 8 µm thick and adheres well to the cordierite support. It is constituted of talc layers of about 1.5 µm × 300 nm × 50 nm which are well dispersed and anchored in a SiO2 aerogel matrix with excellent mass-transfer properties. The catalyst was tested in the ethanol steam reforming reaction, aimed at producing hydrogen for on-board, on-demand applications at moderate temperature (573–673 K and pressure (1–7 bar. Compared to non-promoted cobalt talc, the catalyst doped with iron produces less methane as byproduct, which can only be reformed at high temperature, thereby resulting in higher hydrogen yields. At 673 K and 2 bar, 1.04 NLH2·mLEtOH(l−1·min−1 are obtained at S/C = 3 and W/F = 390 g·min·molEtOH−1.

  10. Unsupported Pt-Ni Aerogels with Enhanced High Current Performance and Durability in Fuel Cell Cathodes.

    Science.gov (United States)

    Henning, Sebastian; Ishikawa, Hiroshi; Kühn, Laura; Herranz, Juan; Müller, Elisabeth; Eychmüller, Alexander; Schmidt, Thomas J

    2017-08-28

    Highly active and durable oxygen reduction catalysts are needed to reduce the costs and enhance the service life of polymer electrolyte fuel cells (PEFCs). This can be accomplished by alloying Pt with a transition metal (for example Ni) and by eliminating the corrodible, carbon-based catalyst support. However, materials combining both approaches have seldom been implemented in PEFC cathodes. In this work, an unsupported Pt-Ni alloy nanochain ensemble (aerogel) demonstrates high current PEFC performance commensurate with that of a carbon-supported benchmark (Pt/C) following optimization of the aerogel's catalyst layer (CL) structure. The latter is accomplished using a soluble filler to shift the CL's pore size distribution towards larger pores which improves reactant and product transport. Chiefly, the optimized PEFC aerogel cathodes display a circa 2.5-fold larger surface-specific ORR activity than Pt/C and maintain 90 % of the initial activity after an accelerated stress test (vs. 40 % for Pt/C). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Carbon aerogels by pyrolysis of TEMPO-oxidized cellulose

    Science.gov (United States)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang; Ding, Feng

    2018-05-01

    Although carbon aerogels derived from naturally occurring materials have been developed extensively, a reasonable synthetic approach using cellulose-resource remains unclear. Here, we report a strategy to prepare carbon aerogels originated from cellulose position-selectively oxidized by TEMPO-oxidized process. Contrary to non-TEMPO-oxidized cellulose-derived carbon aerogels (NCCA) with relative loose structure, TEMPO-oxidized cellulose-derived carbon aerogels (TCCA) with tight fibrillar-continuous network are monitored, suggesting the importance of TEMPO-oxidized modification towards creating the architecture of subsequently produced carbon aerogels. TCCA endows a higher BET area despite owning slightly dense bulk density comparing with that of NCCA. The structural texture of TCCA could be maintained in a way in comparison to TEMPO-oxidized cellulose-derived aerogel, due to the integration and aggregation effect by losing the electric double layer repulsion via ionization of the surface carboxyl groups. FTIR and XPS analyses signify the evidence of non-functionalized carbon-skeleton network formation in terms of TCCA. Further, the mechanism concerning the creation of carbon aerogels is also established. These findings not only provide new insights into the production of carbon aerogels but also open up a new opportunity in the field of functional carbon materials.

  12. Aerogel and xerogel composites for use as carbon anodes

    Science.gov (United States)

    Cooper, John F [Oakland, CA; Tillotson, Thomas M [Tracy, CA; Hrubesh, Lawrence W [Pleasanton, CA

    2008-08-12

    Disclosed herein are aerogel and xerogel composite materials suitable for use as anodes in fuel cells and batteries. Precursors to the aerogel and xerogel compounds are infused with inorganic polymeric materials or carbon particles and then gelled. The gels are then pyrolyzed to form composites with internal structural support.

  13. The RICH with Aerogel for the LHCb Experiment

    CERN Document Server

    Bellunato, T; Matteuzzi, C; Musy, M; Negri, P; Perego, D L

    2006-01-01

    We report on the status of the art of the aerogel project for LHCb, from the production, in terms of specifications and achieved quality, to the optical and beam tests performed to qualify the material as a Cherenkov radiator. A brief summary of the ageing and radiation tolerance tests performed on some aerogel tiles is also given.

  14. The RICH with Aerogel for the LHCb Experiment

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Negri, P.; Perego, D.L.

    2006-01-01

    We report on the status of the art of the aerogel project for LHCb, from the production, in terms of specifications and achieved quality, to the optical and beam tests performed to qualify the material as a Cherenkov radiator. A brief summary of the ageing and radiation tolerance tests performed on some aerogel tiles is also given

  15. Highly porous ceramic oxide aerogels having improved flexibility

    Science.gov (United States)

    Meador, Mary Ann B. (Inventor); Nguyen, Baochau N. (Inventor); Guo, Haiquan (Inventor)

    2012-01-01

    Ceramic oxide aerogels having improved flexibility are disclosed. Preferred embodiments exhibit high modulus and other strength properties despite their improved flexibility. The gels may be polymer cross-linked via organic polymer chains to further improve strength properties, without substantially detracting from the improved flexibility. Methods of making such aerogels are also disclosed.

  16. Chemical modification of graphene aerogels for electrochemical capacitor applications.

    Science.gov (United States)

    Hong, Jin-Yong; Wie, Jeong Jae; Xu, Yu; Park, Ho Seok

    2015-12-14

    Graphene aerogel is a relatively new type of aerogel that is ideal for energy storage applications because of its large surface area, high electrical conductivity and good chemical stability. Also, three dimensional interconnected macropores offer many advantages such as low density, fast ion and mass transfer, and easy access to storage sites. Such features allow graphene aerogels to be intensively applied for electrochemical capacitor applications. Despite the growing interest in graphene aerogel-based electrochemical capacitors, however, the graphene aerogels still suffer from their low capacitive performances and high fragility. Both relatively low capacitance and brittleness of physically crosslinked graphene aerogels remain a critical challenge. Until now, a number of alternative attempts have been devoted to overcome these shortcomings. In this perspective, we summarize the recent research progress towards the development of advanced graphene aerogel-based electrochemical capacitors according to the different approaches (e.g. porosity, composition and structure controls). Then, the recently proposed chemical strategies to improve the capacitive performances and mechanical durability of graphene aerogels for practical applications are highlighted. Finally, the current challenges and perspectives in this emerging material are also discussed.

  17. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Science.gov (United States)

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  18. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, S A; Baumann, T F; Kong, J; Satcher, J H; Dresselhaus, M S

    2007-02-15

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  19. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  20. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    International Nuclear Information System (INIS)

    Baia, M; Melinte, G; Iancu, V; Baia, L; Barbu-Tudoran, L; Diamandescu, L; Cosoveanu, V; Danciu, V

    2011-01-01

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10 -1 -10 -4 M for acrylamide and around 10 -5 M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  1. Highly porous nanocomposites based on TiO2-noble metal particles for sensitive detection of water pollutants by SERS

    Energy Technology Data Exchange (ETDEWEB)

    Baia, M; Melinte, G; Iancu, V; Baia, L [Faculty of Physics, Babes-Bolyai University, 400084, Cluj-Napoca (Romania); Barbu-Tudoran, L [Faculty of Biology and Geology, Babes-Bolyai University, 400015, Cluj-Napoca (Romania); Diamandescu, L [National Institute of Materials Physics, PO Box MG-7, 77125, Bucharest-Magurele (Romania); Cosoveanu, V; Danciu, V, E-mail: lucian.baia@phys.ubbcluj.ro [Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028, Cluj-Napoca (Romania)

    2011-07-06

    Highly porous nanocomposites based on TiO2 aerogel and silver colloidal particles were prepared by different methods in order to study their capacity to detect pollutant species adsorbed on metallic nanoparticles surface from aqueous solution. The efficiency of the obtained composites to detect contaminants from water by means of SERS was evaluated using acrylamide and crystal violet as test molecules. It was found that the detection limits depend both on pollutant and composite type, and were determined to be in the range of 10{sup -1}-10{sup -4} M for acrylamide and around 10{sup -5} M for the dye molecule. These results prove the potential of the prepared porous composites for further use in the development of new SERS-based sensors devices.

  2. Quantitative analysis of silica aerogel-based thermal insulation coatings

    DEFF Research Database (Denmark)

    Kiil, Søren

    2015-01-01

    containing intact hollow glass or polymer spheres showed that silica aerogel particles are more efficient in an insulation coating than hollow spheres. In a practical (non-ideal) comparison, the ranking most likely cannot be generalized. A parameter study demonstrates how the model can be used, qualitatively......A mathematical heat transfer model for a silica aerogel-based thermal insulation coating was developed. The model can estimate the thermal conductivity of a two-component (binder-aerogel) coating with potential binder intrusion into the nano-porous aerogel structure. The latter is modelled using...... a so-called core–shell structure representation. Data from several previous experimental investigations with silica aerogels in various binder matrices were used for model validation. For some relevant cases with binder intrusion, it was possible to obtain a very good agreement between simulations...

  3. Monolithic silica aerogel - material design on the nano-scale

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    structure of aerogel could be used for gas filters in the 20 to 100 nm region. - The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of lowest for an inorganic material. Due to the low density, low acoustic impedance of aerogel could help boost the efficiency...... of piezoelectric transducers. - Other applications could be; waste encapsulation, spacers for vacuum insulation panels, membranes, etc. Department of Civil Engineering is co-ordinator of a current EU FP5 research project1, which deals with the application of aerogel as transparent insulation materials in windows....... Due to the excellent optical and thermal properties of aerogel, it is possible to develop windows with both high insulation and high transmittance, which is impossible applying the conventional window techniques, i.e. extra layers of glass, low-e coatings and gas fillings. It can be shown...

  4. Hybrid colloidal plasmonic-photonic crystals.

    Science.gov (United States)

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  6. Thermal and Mechanical Properties of Novolac-Silica Hybrid Aerogels Prepared by Sol-Gel Polymerization in Solvent-Saturated Vapor Atmosphere

    Directory of Open Access Journals (Sweden)

    Mohamad Mehdi Seraji1, Seraji

    2015-05-01

    Full Text Available Nowadays organic–inorganic hybrid aerogel materials have attracted increasing interests due to improved thermal and mechanical properties. In the present research, initially, novolac type phenolic resin-silica hybrid gels with different solid concentrations were synthesized using sol-gel polymerization in solvent-saturatedvapor atmosphere. The hybrid gels were dried at air atmosphere through ambient drying process. This method removed the need for costly and risky supercritical drying process. The yields of the obtained hybrid aerogels increased with less shrinkage in comparison with conventional sol-gel process. The precursor of silica phase in this study was tetraethoxysilane and inexpensive novolac resin was used as a reinforcing phase. The results of FTIR analysis confirmed the simultaneous formation of silica and novolac gels in the hybrid systems. The resultant hybrid aerogels showed a nanostructure hybrid network with high porosity (above 80% and low density (below 0.25 g/cm3. Nonetheless, higher content of silica resulted in more shrinkage in the hybrid aerogel structure due to the tendency of the silica network to shrink more during gelation and drying process. The SEM images of samples exhibited a continuous network of interconnected colloidal particles formed during sol-gel polymerization with mean particle size of less than 100 nanometers. Si mapping analysis showed good distribution of silica phase throughout the hybrid structure. The results demonstrated improvements in insulation properties and thermal stability of novolac-silica aerogel with increasing the silica content. The results of compressive strength showed that the mechanical properties of samples declined with increasing the silica content.

  7. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    International Nuclear Information System (INIS)

    Kim, J.J.; Longworth, G.; Hasler, S.E.; Gardiner, M.; Fritz, P.; Klotz, D.; Lazik, D.; Wolf, M.; Geyer, S.; Alexander, J.L.; Read, D.; Thomas, J.B.

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ( 2 H, 3 H, 13 C, 14 C, 18 O, 34 S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  8. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.J. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Zeh, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Probst, T. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Lin, X. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Schauer, C. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ivanovich, M. [AEA Environment and Energy, Harwell (United Kingdom); Longworth, G. [AEA Environment and Energy, Harwell (United Kingdom); Hasler, S.E. [AEA Environment and Energy, Harwell (United Kingdom); Gardiner, M. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Fritz, P. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Klotz, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Lazik, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Wolf, M. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Geyer, S. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ({sup 2}H, {sup 3}H, {sup 13}C, {sup 14}C, {sup 18}O, {sup 34}S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  9. CoFe2O4/carbon nanotube aerogels as high performance anodes for lithium ion batteries

    Directory of Open Access Journals (Sweden)

    Xin Sun

    2017-04-01

    Full Text Available High-performance lithium ion batteries (LIBs require electrode material to have an ideal electrode construction which provides fast ion transport, short solid-state ion diffusion, large surface area, and high electric conductivity. Herein, highly porous three-dimensional (3D aerogels composed of cobalt ferrite (CoFe2O4, CFO nanoparticles (NPs and carbon nanotubes (CNTs are prepared using sustainable alginate as the precursor. The key feature of this work is that by using the characteristic egg-box structure of the alginate, metal cations such as Co2+ and Fe3+ can be easily chelated via an ion-exchange process, thus binary CFO are expected to be prepared. In the hybrid aerogels, CFO NPs interconnected by the CNTs are embedded in carbon aerogel matrix, forming the 3D network which can provide high surface area, buffer the volume expansion and offer efficient ion and electron transport pathways for achieving high performance LIBs. The as-prepared hybrid aerogels with the optimum CNT content (20 wt% delivers excellent electrochemical properties, i.e., reversible capacity of 1033 mAh g−1 at 0.1 A g−1 and a high specific capacity of 874 mAh g−1 after 160 cycles at 1 A g−1. This work provides a facile and low cost route to fabricate high performance anodes for LIBs. Keywords: Alginate, Aerogels, Cobalt ferrite, Anode, Lithium-ion battery

  10. Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Katanyoota, Porawee [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thayanlak, E-mail: thanyalak.c@hotmail.co [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand); Wongchaisuwat, Atchana [Department of Chemistry, Kasetsart University, Bangkok 10900 (Thailand); Wongkasemjit, Sujitra, E-mail: dsujitra@chula.ac.t [Petroleum and Petrochemical College and National Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, Bangkok 10330 (Thailand)

    2010-02-25

    In this study, polybenzoxazine, a new high performance thermosetting resin, was used to prepare carbon aerogels used as an electrode for supercapacitors. Two types of polybenzoxazines, derived from two different amines, aniline and triethylenetetramine, and denoted as BA-a and BA-teta, respectively, were chosen as the reactants for the organic precursor preparation. The surface area of carbon aerogels from both BA-a and BA-teta was 391 and 368 m{sup 2}/g, respectively. The pore size of each carbon aerogel was in the range of 2-5 nm, which is a suitable pore size for use as electrodes in electrochemical applications. The electrochemical properties of the obtained carbon aerogels showed good performance for supercapacitor applications with a specific capacitance of 55.78 and 20.53 F/g for BA-teta and BA-a, respectively. At low voltage scanning, 1 and 5 mV/s, the cyclic voltammogram of the carbon aerogel derived from BA-teta gave a better rectangular shape than that of the other carbon aerogel. The impedance spectra of both carbon aerogels confirmed the results of the capacitance and the cyclic voltammogram analyses.

  11. Novel polybenzoxazine-based carbon aerogel electrode for supercapacitors

    International Nuclear Information System (INIS)

    Katanyoota, Porawee; Chaisuwan, Thayanlak; Wongchaisuwat, Atchana; Wongkasemjit, Sujitra

    2010-01-01

    In this study, polybenzoxazine, a new high performance thermosetting resin, was used to prepare carbon aerogels used as an electrode for supercapacitors. Two types of polybenzoxazines, derived from two different amines, aniline and triethylenetetramine, and denoted as BA-a and BA-teta, respectively, were chosen as the reactants for the organic precursor preparation. The surface area of carbon aerogels from both BA-a and BA-teta was 391 and 368 m 2 /g, respectively. The pore size of each carbon aerogel was in the range of 2-5 nm, which is a suitable pore size for use as electrodes in electrochemical applications. The electrochemical properties of the obtained carbon aerogels showed good performance for supercapacitor applications with a specific capacitance of 55.78 and 20.53 F/g for BA-teta and BA-a, respectively. At low voltage scanning, 1 and 5 mV/s, the cyclic voltammogram of the carbon aerogel derived from BA-teta gave a better rectangular shape than that of the other carbon aerogel. The impedance spectra of both carbon aerogels confirmed the results of the capacitance and the cyclic voltammogram analyses.

  12. MOLECULAR DESCRIPTION OF ELECTROLYTE SOLUTION IN A CARBON AEROGEL ELECTRODE

    Directory of Open Access Journals (Sweden)

    A.Kovalenko

    2003-01-01

    Full Text Available We develop a molecular theory of aqueous electrolyte solution sorbed in a nanoporous carbon aerogel electrode, based on the replica reference interaction site model (replica RISM for realistic molecular quenched-annealed systems. We also briefly review applications of carbon aerogels for supercapacitor and electrochemical separation devices, as well as theoretical and computer modelling of disordered porous materials. The replica RISM integral equation theory yields the microscopic properties of the electrochemical double layer formed at the surface of carbon aerogel nanopores, with due account of chemical specificities of both sorbed electrolyte and carbon aerogel material. The theory allows for spatial disorder of aerogel pores in the range from micro- to macroscopic size scale. We considered ambient aqueous solution of 1 M sodium chloride sorbed in two model nanoporous carbon aerogels with carbon nanoparticles either arranged into branched chains or randomly distributed. The long-range correlations of the carbon aerogel nanostructure substantially affect the properties of the electrochemical double layer formed by the solution sorbed in nanopores.

  13. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  14. Grimsel colloid exercise

    International Nuclear Information System (INIS)

    Degueldre, C.; Longworth, G.; Vilks, P.

    1989-11-01

    The Grimsel Colloid Exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterisation step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterisation techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel Test Site between February 1 and 13, 1988 and the participating groups produced colloid samples using the following methods: 1. Cross-flow ultrafiltration with production of membranes loaded with colloids. 2. Tangential diaultrafiltration and production of colloid concentrates. 3. Filtrates produced by each group. 4. Unfiltered water was also collected by PSI in glass bottles, under controlled anaerobic conditions, and by the other sampling groups in various plastic bottles. In addition, on-line monitoring of pH, χ, [O-2] and T of the water and of [O-2] in the atmosphere of the sampling units was carried out routinely. All samples were shipped according to the CoCo Club scheme for characterisation, with emphasis on the size distribution. The exercise differentiates the colloid samples produced on site from those obtained after transfer of the fluid samples to the laboratories. The colloid concentration and size distribution can be determined by scanning electron microscopy (SEM), gravimetry (GRAV), chemical analysis of fluid samples after micro/ultrafiltration (MF/UF) and by transmission single particle counting (PC). The colloid concentration can also be evaluated by transmission electron microscopy (TEM), static and dynamic light scattering (SLS,DLS) and by laser-induced photoacoustic spectroscopy (LPAS). The results are discussed on the basis of the detection limit, lateral resolution and counting conditions of the technique (precision) as well as sample preparation, artefact production and measurement optimisation (accuracy). A good agreement between size distribution results was

  15. Clusters in attractive colloids

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Arcangelis, L de [Dipartimento di Ingegneria dell' Informazione and CNISM II Universita di Napoli, Aversa (CE) (Italy); Candia, A de [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Gado, E Del [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Fierro, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Sator, N [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie-Paris6, UMR (CNRS) 7600 Case 121, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2006-09-13

    We discuss how the anomalous increase of the viscosity in colloidal systems with short-range attraction can be related to the formation of long-living clusters. Based on molecular dynamics and Monte Carlo numerical simulations of different models, we propose a similar picture for colloidal gelation at low and intermediate volume fractions. On this basis, we analyze the distinct role played by the formation of long-living bonds and the crowding of the particles in the slow dynamics of attractive colloidal systems.

  16. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  17. Synthesis and Characterization Carbon Nanotubes Doped Carbon Aerogels

    Science.gov (United States)

    Xu, Yuelong; Yan, Meifang; Liu, Zhenfa

    2017-12-01

    Polycondensation of phloroglucinol, resorcinol and formaldehyde with carbon nanotube (CNT) as the additives, using sodium carbonate as the catalyst, leads to the formation of CNT - doped carbon aerogels. The structure of carbon aerogels (CAs) with carbon nanotubes (CNTs) were characterized by X-ray diffraction and scanning electron microscopy. The specific surface area, pore size distribution and pore volume were measured by surface area analyzer. The results show that when the optimum doping dosage is 5%, the specific surface area of CNT - doped carbon aerogel is up to 665 m2 g-1 and exhibit plentiful mesoporous.

  18. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  19. Liquid Crystal Colloids

    Science.gov (United States)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  20. Molecular Recognition in the Colloidal World.

    Science.gov (United States)

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-11-21

    ) and can engage in tunable high-fidelity interactions. Examples include metal coordination and host-guest interactions as well as hydrogen bonding and DNA hybridization. On the colloidal scale, these interactions can be used to drive the reversible formation of open structures. Key to the design is the ability to covalently conjugate supramolecular motifs onto the particle surface and/or noncovalently associate with small molecules that can mediate and direct assembly. Efforts exploiting the binding strength inherent to DNA hybridization for the preparation of reversible open-packed structures are then detailed. We describe strategies that led to the introduction of dual-responsive DNA-mediated orthogonal assembly as well as colloidal clusters that afford distinct DNA-ligated close-packed lattices. Further focus is placed on two essential and related efforts: the engineering of complex superstructures that undergo phase transitions and colloidal crystals featuring a high density of functional anchors that aid in crystallization. The design principles discussed in this Account highlight the synergy stemming from coupling well-established noncovalent interactions common on the molecular and polymeric length scales with colloidal platforms to engineer reconfigurable functional architectures by design. Directional strategies and methods such as those illustrated herein feature molecular control and dynamic assembly that afford both open-packed 1D and 2D lattices and are amenable to 3D colloidal frameworks. Multiple methods to direct colloidal assembly have been reported, yet few are capable of crystallizing 2D and 3D architectures of interest for optical data storage, electronics, and photonics. Indeed, early implications are that [supra]molecular control over colloidal assembly can fabricate rationally structured designer materials from simple fundamental building blocks.

  1. Filtration of polydispersed colloids

    International Nuclear Information System (INIS)

    Nuttall, H.E.

    1988-01-01

    In this study, the dynamic microscopic form of the population balance model is applied to the problem of polydispersed particle capture in one spatial diffusion. This mathematical modeling approach can be applied to the difficult and potentially important problem of particulate (radiocolloid) transport in the groundwater surrounding a nuclear waste disposal site. To demonstrate the population balance methodology, the equations were developed and used to investigate transport and capture of polydispersed colloids in packed columns. Modeling simulations were compared to experimental column data. The multidimensional form of the population balance equation was used to analyze the transport and capture of polydispersed colloids. A numerical model was developed to describe transport of polydispersed colloids through a one-dimensional porous region. The effects of various size distributions were investigated in terms of capture efficiency. For simulating the column data, it was found by trial and error that as part of the population balance model a linear size dependent filtration function gave a good fit to the measured colloid concentration profile. The effects of constant versus size dependent filtration coefficients were compared and the differences illustrated by the calculated colloid profile within the column. Also observed from the model calculations was the dramatically changing liquid-phase colloid-size distribution which was plotted as a function of position down the column. This modeling approach was excellent for describing and understanding microscopic filtration in porous media

  2. Capacitive, deionization with carbon aerogel electrodes: Carbonate, sulfate, and phosphate

    International Nuclear Information System (INIS)

    Farmer, J.C.; Fix, D.V.; Mack, G.V.; Pekala, R.W.; Poco, J.F.

    1995-01-01

    A process for the capacitive deionization (CDI) of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory. Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. Water with various anions and cations is pumped through the electrochemical cell. After polarization, ions are electrostatically removed from the water and held in the electric double layers formed at the surfaces of electrodes. The water leaving the cell is purified, as desired. The effects of cell voltage on the electrosorption capacities for Na 2 SO 4 , Na 3 PO 4 , and Na 2 CO 3 have been investigated and are reported here. Results for NaCl and NaNO 3 have been reported previously. Possible applications for CDI are as a replacement for ion exchange processes which remove heavy metals and radioisotopes from process and waste water in various industries, as well as to remove inorganic ions from feedwater for fossil and nuclear power plants

  3. Nonlinear hydrodynamic equations for superfluid helium in aerogel

    International Nuclear Information System (INIS)

    Brusov, Peter N.; Brusov, Paul P.

    2003-01-01

    Aerogel in superfluids is studied very intensively during last decade. The importance of these systems is connected to the fact that this allows to investigate the influence of impurities on superfluidity. We have derived for the first time nonlinear hydrodynamic equations for superfluid helium in aerogel. These equations are generalization of McKenna et al. equations for nonlinear hydrodynamics case and could be used to study sound propagation phenomena in aerogel-superfluid system, in particular--to study sound conversion phenomena. We have obtained two alternative sets of equations, one of which is a generalization of a traditional set of nonlinear hydrodynamics equations for the case of an aerogel-superfluid system and, the other one represents a la Putterman equations (equation for v→ s is replaced by equation for A→=((ρ n )/(ρσ))w→, where w→=v→ n -v→ s )

  4. Hexadecane trapped in nano-pores of silica-aerogel

    International Nuclear Information System (INIS)

    Slavikova, B.; Jesenak, K.; Iskrova, M.; Majernik, V.; Sausa, O.; Kristiak, J.

    2009-01-01

    Ways of filling of the high-porous silica-aerogel with hydrocarbon C 16 H 34 and its efficient removal from the pores by physical method of the Positron Annihilation Spectroscopy were studied. As the most effective way to fill the SiO 2 aerogel appears through the implementation of a liquid phase, while the most appropriate way of removing of hexadecane is firing at an elevated temperature. Molecular system of hexadecane closed in nano-pores of silica-aerogel behaves otherwise than volume system of the same molecules. In the case of pure hexadecane phase transition was observed at 291 K, while solidification process is gradual with decrease of temperature in cetane trapped in pores of silica-aerogel. The results of the periods of life of o-Ps indicate greater turbidity in the pores of the molecular system compared to the volume sample of hexadecane.

  5. Refractive index of silica aerogel: Uniformity and dispersion law

    International Nuclear Information System (INIS)

    Bellunato, T.; Calvi, M.; Matteuzzi, C.; Musy, M.; Perego, D.L.; Storaci, B.

    2008-01-01

    Two methods for the measurement of the uniformity of the refractive index n within a single block of silica aerogel are described. One is based on the deflection of a laser beam induced by transverse index gradients. The second exploits the Cherenkov effect, measuring the emission angle of photons radiated by 500 MeV electrons traversing the aerogel. The beam can scan the full aerogel surface providing information on point to point variations of n. The measurement of the dispersion law n(λ) is also reported. An Xe lamp coupled to a diffraction grating provides the monochromatic source. The index for each λ is measured by the prism method at a corner of an aerogel sample. A Sellmeier functional form for n(λ) is assumed, and the parameters best fitting the experimental data are given

  6. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This presentation discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 2x4 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and 4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to- ground communication links with enough channel capacity to support voice, data and video links from CubeSats, unmanned air vehicles (UAV), and commercial aircraft.

  7. Multifunctional Aerogel Thermal Protection Systems for Hypersonic Vehicles, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of the Phase II project is to develop lightweight reinforced aerogel materials for use as the core structural insulation material in...

  8. Aerogel Antennas Communications Study Using Error Vector Magnitude Measurements

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; Meador, Mary Ann B.

    2014-01-01

    This paper discusses an aerogel antennas communication study using error vector magnitude (EVM) measurements. The study was performed using 4x2 element polyimide (PI) aerogel-based phased arrays designed for operation at 5 GHz as transmit (Tx) and receive (Rx) antennas separated by a line of sight (LOS) distance of 8.5 meters. The results of the EVM measurements demonstrate that polyimide aerogel antennas work appropriately to support digital communication links with typically used modulation schemes such as QPSK and pi/4 DQPSK. As such, PI aerogel antennas with higher gain, larger bandwidth and lower mass than typically used microwave laminates could be suitable to enable aerospace-to-ground communication links with enough channel capacity to support voice, data and video links from cubesats, unmanned air vehicles (UAV), and commercial aircraft.

  9. Extraction and characterisation of colloids in waste repository leachate

    International Nuclear Information System (INIS)

    Verrall, K.E.

    1998-10-01

    Inorganic colloids are ubiquitous in environmental waters and are thought to be potential transporters of radionuclides and other toxic metals. Colloids present large surface areas to pollutants and contaminants present in waters and are therefore capable of sorbing and transporting them via groundwater and surface water movement. Much research has been and is currently being undertaken to understand more fully the stability of colloids in different water chemistries, factors which affect metal sorption onto colloids, and the processes which affect metal-colloid transport. This thesis first investigates groundwater and surface water sampling and characterisation techniques for the investigation of the colloids present in and around a low-level waste repository. Samples were collected anaerobically using micro-purge low-flow methodology (MPLF) and then subjected to sequential ultrafiltration, again anaerobically. After separation into size fractions the solids were analysed for radiochemical content, colloid population and morphology. It was found that colloids were present in large numbers in the groundwaters extracted from the trench waste burial area (anaerobic environment), but in the surface drain waters (aerobic environment) colloid population was comparable to levels found in waters extracted from above the trenches. There was evidence that the non-tritium activity was associated with the colloids and particulates in the trenches, but outside of the trenches the evidence was not conclusive because the activity and colloid concentrations were low. Secondly this thesis investigates the stability of inorganic colloids, mainly haematite, in the presence of humic acid, varying pH and electrolyte concentrations. The applicability of the SchuIze-Hardy rule to haematite and haematite/humic acid mixtures was investigated using photon correlation spectroscopy to measure the rate of fast and slow coagulation after the addition of mono, di and trivalent ions. It was

  10. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    Science.gov (United States)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui; Zhuo, Shuping

    2015-10-01

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g-1 at 0.2 A g-1, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb2+, Cu2+ and Cd2+. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents.

  11. A RICH with aerogel: a study of refractive index uniformity

    CERN Document Server

    Alemi, M; Calvi, M; Matteuzzi, C; Musy, M; Perego, D L; Easo, S

    2004-01-01

    The use of aerogel as a radiator in the RICH detectors of LHCb is a challenge due to the hot environment of the hadron collider LHC. Large size tiles of silica aerogel were recently produced with unprecedented optical quality for such dimensions. Results of laboratory measurements and beam tests are briefly reported. A description of a method to measure the uniformity of the index of refraction within the tile is given.

  12. Polyimide-Foam/Aerogel Composites for Thermal Insulation

    Science.gov (United States)

    Williams, Martha; Fesmire, James; Sass, Jared; Smith, Trent; Weoser. Erol

    2009-01-01

    Composites of specific types of polymer foams and aerogel particles or blankets have been proposed to obtain thermal insulation performance superior to those of the neat polyimide foams. These composites have potential to also provide enhanced properties for vibration dampening or acoustic attenuation. The specific type of polymer foam is denoted "TEEK-H", signifying a series, denoted H, within a family of polyimide foams that were developed at NASA s Langley Research Center and are collectively denoted TEEK (an acronym of the inventors names). The specific types of aerogels include Nanogel aerogel particles from Cabot Corporation in Billerica, MA. and of Spaceloft aerogel blanket from Aspen Aerogels in Northborough, MA. The composites are inherently flame-retardant and exceptionally thermally stable. There are numerous potential uses for these composites, at temperatures from cryogenic to high temperatures, in diverse applications that include aerospace vehicles, aircraft, ocean vessels, buildings, and industrial process equipment. Some low-temperature applications, for example, include cryogenic storage and transfer or the transport of foods, medicines, and chemicals. Because of thermal cycling, aging, and weathering most polymer foams do not perform well at cryogenic temperatures and will undergo further cracking over time. The TEEK polyimides are among the few exceptions to this pattern, and the proposed composites are intended to have all the desirable properties of TEEK-H foams, plus improved thermal performance along with enhanced vibration or acoustic-attenuation performance. A composite panel as proposed would be fabricated by adding an appropriate amount of TEEK friable balloons into a mold to form a bottom layer. A piece of flexible aerogel blanket material, cut to the desired size and shape, would then be placed on the bottom TEEK layer and sandwiched between another top layer of polyimide friable balloons so that the aerogel blanket would become

  13. Selective removal mercury (Ⅱ) from aqueous solution using silica aerogel modified with 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion

    Energy Technology Data Exchange (ETDEWEB)

    Tadayon, Fariba; Saber-Tehrani, Mohammad; Motahar, Shiva [Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Silica aerogel surface modifications with chelating agents for adsorption/removal of metal ions have been reported in recent years. This investigation reported the preparation of silica aerogel (SA) adsorbent coupled with metal chelating ligands of 4-amino-5-methyl-1,2,4-triazole-3(4H)-thion (AMTT) and its application for selective adsorption of Hg(Ⅱ) ion. The adsorbent was characterized by Fourier transform infrared spectra (FTIR) and thermo gravimetric analysis (TGA) measurements, nitrogen physisorption and scanning electron microscope (SEM). Optimal experimental conditions including pH, temperature, adsorbent dosage and contact time have been established. Langmuir and Freundlich isotherm models were applied to analyze the experimental data. The best interpretation for the experimental data given by the Langmuir isotherm equation and the maximum adsorption capacity of the modified silica gel and silica aerogel was 142.85 and 17.24mgg⌃(-1), respectively. Thermodynamic parameters such as Gibbs free energy (ΔG{sup o}), standard enthalpy (ΔH{sup o}) and entropy change (ΔS{sup o}) were investigated. The adsorbed Hg(Ⅱ) on the SA-AMTT adsorbents could be completely eluted by 1.0M KBr solution and recycled at least four times without the loss of adsorption capacity. The results of the present investigation illustrate that modified silica aerogel with AMTT could be used as an adsorbent for the effective removal of Hg(Ⅱ) ions from aqueous solution.

  14. Optical sensing of triethylamine using CdSe aerogels

    International Nuclear Information System (INIS)

    Yao Qinghong; Brock, Stephanie L

    2010-01-01

    The photoluminescence (PL) response of highly porous CdSe aerogels to triethylamine (TEA) is investigated and compared to results from prior studies on single crystals and nanoparticle-polymer composites. As-prepared CdSe aerogels show significant and reversible enhancement of luminescence intensity upon exposure to TEA relative to the intensity in pure argon carrier gas. The enhancement in the PL response is dependent on the concentration and linear over the range of TEA concentration studied (4.7 x 10 3 -75 x 10 3 ppm). The sensing response of previously tested samples exhibits saturation behavior that is modeled using Langmuir adsorption isotherms, yielding adsorption equilibrium constants in the range 300-380 atm -1 . The response is sensitively affected by the surface characteristics of the aerogel; when the wet gels are treated with pyridine prior to aerogel formation, the response to TEA is diminished, and when as-prepared aerogels are heated in a vacuum, no subsequent response is observed. Deactivation is attributed to an increase in surface oxide (SeO 2 ) and decrease in surface Cd 2+ Lewis acid sites. Sensing runs of approximately one hour have little impact on the morphology or crystallinity of the aerogels, but do result in partial removal of residual thiolate ligands left over from the gelation process.

  15. Modeling silica aerogel optical performance by determining its radiative properties

    Science.gov (United States)

    Zhao, Lin; Yang, Sungwoo; Bhatia, Bikram; Strobach, Elise; Wang, Evelyn N.

    2016-02-01

    Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM). Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation). To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm) of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE). The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel's microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  16. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  17. Assembly of phosphide nanocrystals into porous networks: formation of InP gels and aerogels.

    Science.gov (United States)

    Hitihami-Mudiyanselage, Asha; Senevirathne, Keerthi; Brock, Stephanie L

    2013-02-26

    The applicability of sol-gel nanoparticle assembly routes, previously employed for metal chalcogenides, to phosphides is reported for the case of InP. Two different sizes (3.5 and 6.0 nm) of InP nanoparticles were synthesized by solution-phase arrested precipitation, capped with thiolate ligands, and oxidized with H₂O₂ or O₂/light to induce gel formation. The gels were aged, solvent-exchanged, and then supercritically dried to obtain aerogels with both meso- (2-50 nm) and macropores (>50 nm) and accessible surface areas of ∼200 m²/g. Aerogels showed higher band gap values relative to precursor nanoparticles, suggesting that during the process of assembling nanoparticles into 3D architectures, particle size reduction may have taken place. In contrast to metal chalcogenide gelation, InP gels did not form using tetranitromethane, a non-oxygen-transferring oxidant. The requirement of an oxygen-transferring oxidant, combined with X-ray photoelectron spectroscopy data showing oxidized phosphorus, suggests gelation is occurring due to condensation of phosphorus oxoanionic moieties generated at the interfaces. The ability to link discrete InP nanoparticles into a 3D porous network while maintaining quantum confinement is expected to facilitate exploitation of nanostructured InP in solid-state devices.

  18. Hybrid aerogels and bioactive aerogels under uniaxial compression: an in situ SAXS study

    Directory of Open Access Journals (Sweden)

    Esquivias, L.

    2010-12-01

    Full Text Available The complex structure of hybrid organic/inorganic aerogels is composed by an inorganic phase covalently bonded to an organic chain forming a copolymer. Conventional hybrid aerogels were studied as well as bioactive hybrid aerogels, that is, aerogels with a calcium active phase added. In this work, the relationship between mechanical response and nanostructure was studied, using a specifically designed sample-holder for in situ uniaxial compression obtaining at the same time the small-angle X-ray pattern from synchrotron radiation (SAXS. Structural elements can be described as a particulated silica core surrounded by the organic chains. These chains are compressed on the direction parallel to the load, and a relationship between macroscopic uniaxial compression and particle and pore deformations can be established.

    La compleja estructura de los aerogeles híbridos orgánico/inorgánicos está compuesta por una fase inorgánica de sílice, unida mediante enlaces covalentes a una red de cadenas orgánicas. Se han estudiado composites híbridos convencionales y bioactivos, esto es, con una fase activa de calcio añadida. En este trabajo se ha investigado la relación entre la respuesta mecánica y la nanoestructura, con ayuda de un portamuestras específicamente diseñado para el estudio in situ de muestras bajo compresión uniaxial, a la vez que se obtiene el espectro de rayos-X a bajo-ángulo de radiación sincrotrón (SAXS. Los elementos estructurales se pueden describir como núcleos particulados de sílice rodeados de las cadenas orgánicas. Estas, se comprimen en la dirección paralela a la carga pudiéndose establecer una relación entre la compresión uniaxial macroscópica y la deformación de las partículas y poros que forman la estructura.

  19. Monolithic three-dimensional electrochemical energy storage system on aerogel or nanotube scaffold

    Science.gov (United States)

    Farmer, Joseph C; Stadermann, Michael

    2013-11-12

    A monolithic three-dimensional electrochemical energy storage system is provided on an aerogel or nanotube scaffold. An anode, separator, cathode, and cathodic current collector are deposited on the aerogel or nanotube scaffold.

  20. Evaluation of supercritical CO2 dried cellulose aerogels as nano-biomaterials

    Science.gov (United States)

    Lee, Sinah; Kang, Kyu-Young; Jeong, Myung-Joon; Potthast, Antje; Liebner, Falk

    2017-10-01

    Cellulose is the renewable, biodegradable and abundant resource and is suggested as an alternative material to silica due to the high price and environmental load of silica. The first step for cellulose aerogel production is to dissolve cellulose, and hydrated calcium thiocyanate molten salt is one of the most effective solvents for preparing porous material. Cellulose aerogels were prepared from dissolved cellulose samples of different degree of polymerization (DP) and drying methods, and tested with shrinkage, density and mechanical strength. Supercritical CO2 dried cellulose aerogels shrank less compared to freeze-dried cellulose aerogels, whereas the densities were increased according to the DP increases in both cellulose aerogels. Furthermore, scanning electron microscope (SEM) images showed that the higher DP cellulose aerogels were more uniform with micro-porous structure. Regarding the mechanical strength of cellulose aerogels, supercritical CO2 dried cellulose aerogels with higher molecular weight were much more solid.

  1. Aerogel Cherenkov Counters of the KEDR Detector

    CERN Document Server

    Ovtin, I V; Barnyakov, M Y; Bobrovnikov, V S; Buzykaev, A R; Danilyuk, A F; Katcin, A A; Kononov, S A; Kravchenko, E A; Kuyanov, I A; Onuchin, A P; Rodiakin, V A

    2017-01-01

    The particle identification system of the KEDR detector is based on aerogel threshold Cherenkov counters called ASHIPH counters. The system consists of 160 counters arranged in two layers. An event reconstruction program for the ASHIPH system was developed. The position of each counter relative to the tracking system was determined using cosmic muons and Bhabha events. The geometric efficiency of the ASHIPH system was verified with Bhabha events. The efficiency of relativistic particle detection was measured with cosmic muons. A π/K separation of 4δ in the momentum range 0.95 −1.45 GeV/c was confirmed. A simulation program for the ASHIPH counters has been developed.

  2. Reinforced plastics and aerogels by nanocrystalline cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Leung, Alfred C. W.; Lam, Edmond; Chong, Jonathan; Hrapovic, Sabahudin; Luong, John H. T., E-mail: john.luong@cnrc-nrc.gc.ca [National Research Council Canada (Canada)

    2013-05-15

    Nanocrystalline cellulose (NCC), a rigid rod-like nanoscale material, can be produced from cellulosic biomass in powder, liquid, or gel forms by acid and chemical hydrolysis. Owing to its unique and exceptional physicochemical properties, the incorporation of a small amount of NCC into plastic enhances the mechanical strength of the latter by several orders of magnitudes. Carbohydrate-based NCC poses no serious environmental concerns, providing further impetus for the development and applications of this green and renewable biomaterial to fabricate lightweight and biodegradable composites and aerogels. Surface functionalization of NCC remains the main focus of NCC research to tailor its properties for dispersion in hydrophilic or hydrophobic media. It is of uttermost importance to develop tools and protocols for imaging of NCC in a complex matrix and quantify its reinforcement effect.

  3. H51E-1535: Biogeochemical factors influencing the transport and fate of colloids and colloid-associated contaminants in the vadose zone

    Science.gov (United States)

    The vadose zone exhibits large spatial and temporal variability in many physical, chemical, and biological factors that strongly influence the transport and fate of colloids (e.g., microbes, nanoparticles, clays, and dissolved organic matter) and colloid-associated contaminants (e.g., heavy metals, ...

  4. Optimizing colloidal nanocrystals for applications

    International Nuclear Information System (INIS)

    Sytnyk, M.

    2015-01-01

    In the scientific literature colloidal nanocrystals are presented as promising materials for multiple applications, in areas covering optoelectronics, photovoltaics, spintronics, catalysis, and bio-medicine. On the marked are, however, only a very limited number of examples found, indeed implementing colloidal nanocrystals. Thus the scope of this thesis was to modify nanocrystals and to tune their properties to fulfill specific demands. While some modifications could be achieved by post synthetic treatments, one key problem of colloidal nanocrystals, hampering there widespread application is the toxicity of their constituents. To develop nanocrystals from non-toxic materials has been a major goal of this thesis as well. Roughly, the results in this thesis could be subdivided into three parts: (i) the development of ion exchange methods to tailor the properties of metallic and metal-oxide based nanocrystal heterostructures, (ii), the synthesis of semiconductor nanocrystals from non-toxic materials, and (iii) the characterization of the nanocrystals by measurements of their morphology, chemical composition, magnetic-, optical-, and electronic properties. In detail, the thesis is subdivided into an introductory chapter, 4 chapters reporting on scientific results, a chapter reporting the used methods, and the conclusions. The 4 chapters devoted to the scientific results correspond to manuscripts, which are either currently in preparation, or have been published in highly ranked scientific journals such as NanoLetters (chapter 2), ACS Nano (chapter 4), or JACS (chapter 5). Thus, these chapters provide also an extra introduction and conclusion section, as well as separate reference lists. Chapter 2 describes a cation exchange process which is used to tune and improve the magnetic properties of different iron-oxide based colloidal nanocrystal-heterostructures. The superparamagnetic blocking temperature, magnetic remanence, and coercivity is tuned by replacing Fe2+ by Co2

  5. Aerogel as a Sample Collector and Sample Mount for Transmission XRD Analysis

    Science.gov (United States)

    Bish, D. L.; Vaniman, D. T.; Chipera, S. J.; Yen, A. S.; Jones, S. M.

    2001-01-01

    Silica aerogel can be used for dust collection and in situ X-ray analysis. Aerogels can be less absorbing than Be, and it is feasible to obtain X-ray transmission factors >50% using typical aerogels together with a 100-micrometer Be backing foil. Additional information is contained in the original extended abstract.

  6. Optically Transparent Thermally Insulating Silica Aerogels for Solar Thermal Insulation.

    Science.gov (United States)

    Günay, A Alperen; Kim, Hannah; Nagarajan, Naveen; Lopez, Mateusz; Kantharaj, Rajath; Alsaati, Albraa; Marconnet, Amy; Lenert, Andrej; Miljkovic, Nenad

    2018-04-18

    Rooftop solar thermal collectors have the potential to meet residential heating demands if deployed efficiently at low solar irradiance (i.e., 1 sun). The efficiency of solar thermal collectors depends on their ability to absorb incoming solar energy and minimize thermal losses. Most techniques utilize a vacuum gap between the solar absorber and the surroundings to eliminate conduction and convection losses, in combination with surface coatings to minimize reradiation losses. Here, we present an alternative approach that operates at atmospheric pressure with simple, black, absorbing surfaces. Silica based aerogels coated on black surfaces have the potential to act as simple and inexpensive solar thermal collectors because of their high transmission to solar radiation and low transmission to thermal radiation. To demonstrate their heat-trapping properties, we fabricated tetramethyl orthosilicate-based silica aerogels. A hydrophilic aerogel with a thickness of 1 cm exhibited a solar-averaged transmission of 76% and thermally averaged transmission of ≈1% (at 100 °C). To minimize unwanted solar absorption by O-H groups, we functionalized the aerogel to be hydrophobic, resulting in a solar-averaged transmission of 88%. To provide a deeper understanding of the link between aerogel properties and overall efficiency, we developed a coupled radiative-conductive heat transfer model and used it to predict solar thermal performance. Instantaneous solar thermal efficiencies approaching 55% at 1 sun and 80 °C were predicted. This study sheds light on the applicability of silica aerogels on black coatings for solar thermal collectors and offers design priorities for next-generation solar thermal aerogels.

  7. A binder-free sulfur/reduced graphene oxide aerogel as high performance electrode materials for lithium sulfur batteries

    Science.gov (United States)

    Nitze, Florian; Agostini, Marco; Lundin, Filippa; Palmqvist, Anders E. C.; Matic, Aleksandar

    2016-12-01

    Societies’ increasing need for energy storage makes it necessary to explore new concepts beyond the traditional lithium ion battery. A promising candidate is the lithium-sulfur technology with the potential to increase the energy density of the battery by a factor of 3-5. However, so far the many problems with the lithium-sulfur system have not been solved satisfactory. Here we report on a new approach utilizing a self-standing reduced graphene oxide based aerogel directly as electrodes, i.e. without further processing and without the addition of binder or conducting agents. We can thereby disrupt the common paradigm of “no battery without binder” and can pave the way to a lithium-sulfur battery with a high practical energy density. The aerogels are synthesized via a one-pot method and consist of more than 2/3 sulfur, contained inside a porous few-layered reduced graphene oxide matrix. By combining the graphene-based aerogel cathode with an electrolyte and a lithium metal anode, we demonstrate a lithium-sulfur cell with high areal capacity (more than 3 mAh/cm2 after 75 cycles), excellent capacity retention over 200 cycles and good sulfur utilization. Based on this performance we estimate that the energy density of this concept-cell can significantly exceed the Department of Energy (DEO) 2020-target set for transport applications.

  8. Cation colloidal particles in alkaline-earth halides

    Energy Technology Data Exchange (ETDEWEB)

    Alcala, R; Orera, V M [Zaragoza Univ. (Spain). Facultad da Ciencias

    1976-01-01

    The formation of calcium, strontium and barium colloids both in heavily electron irradiated samples and in additively colored crystals of CaF/sub 2/, SrF/sub 2/ and BaF/sub 2/ has been investigated. Detailed data on the temperature dependence of the efficiency of colloid formation by irradiation have been obained. The growth of metallic particles in additively colored samples containing F and M centers has been studied for different color center concentrations and annealing temperatures. The optical absorption bands due to metallic colloids have been calculated using the theory of Mie. To take account of the pressure exerted by the matrix on the metallic particles several corrections to the optical constants of the metals have been introduced. A good agreement between theoretical calculations and experimental results has been obtained. The evolution of colloids along several thermal annealing experiments has also been investigated. A diffusion-limited model has been used which accounts for the dependence of the colloid radii with the annealing time.

  9. Use of Pd-Pt loaded graphene aerogel on nickel foam in direct ethanol fuel cell

    Science.gov (United States)

    Tsang, Chi Him A.; Leung, D. Y. C.

    2018-01-01

    A size customized binder-free bimetallic Pd-Pt loaded graphene aerogel deposited on nickel foam plate (Pd-Pt/GA/NFP) was prepared and used as an electrode for an alkaline direct ethanol fuel cell (DEFC) under room temperature. The effect of fuel concentration and metal composition on the output power density of the DEFC was systematically investigated. Under the optimum fuel concentration, the cell could achieve a value of 3.6 mW cm-2 at room temperature for the graphene electrode with Pd/Pt ratio approaching 1:1. Such results demonstrated the possibility of producing a size customized metal loaded GA/NFP electrode for fuel cell with high performance.

  10. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  11. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon

    2008-01-01

    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  12. Simulation of dense colloids

    NARCIS (Netherlands)

    Herrmann, H.J.; Harting, J.D.R.; Hecht, M.; Ben-Naim, E.

    2008-01-01

    We present in this proceeding recent large scale simulations of dense colloids. On one hand we simulate model clay consisting of nanometric aluminum oxide spheres in water using realistic DLVO potentials and a combination of MD and SRD. We find pronounced cluster formation and retrieve the shear

  13. Efficiently dense hierarchical graphene based aerogel electrode for supercapacitors

    Science.gov (United States)

    Wang, Xin; Lu, Chengxing; Peng, Huifen; Zhang, Xin; Wang, Zhenkun; Wang, Gongkai

    2016-08-01

    Boosting gravimetric and volumetric capacitances simultaneously at a high rate is still a discrepancy in development of graphene based supercapacitors. We report the preparation of dense hierarchical graphene/activated carbon composite aerogels via a reduction induced self-assembly process coupled with a drying post treatment. The compact and porous structures of composite aerogels could be maintained. The drying post treatment has significant effects on increasing the packing density of aerogels. The introduced activated carbons play the key roles of spacers and bridges, mitigating the restacking of adjacent graphene nanosheets and connecting lateral and vertical graphene nanosheets, respectively. The optimized aerogel with a packing density of 0.67 g cm-3 could deliver maximum gravimetric and volumetric capacitances of 128.2 F g-1 and 85.9 F cm-3, respectively, at a current density of 1 A g-1 in aqueous electrolyte, showing no apparent degradation to the specific capacitance at a current density of 10 A g-1 after 20000 cycles. The corresponding gravimetric and volumetric capacitances of 116.6 F g-1 and 78.1 cm-3 with an acceptable cyclic stability are also achieved in ionic liquid electrolyte. The results show a feasible strategy of designing dense hierarchical graphene based aerogels for supercapacitors.

  14. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  15. Van der Waal Interactions in Ultrafine Nanocellulose Aerogels

    Science.gov (United States)

    Fritch, Byron; Bradley, Derek; Kidd, Tim

    Nanocellulose aerogels have shown an ability to be used in many different applications ranging from oil sponges to conductive materials to possibly a low calorie food substitute. Not much is known about the structural and physical property changes that occur when the composition of the aerogel changes. We studied what properties change when the aerogel amounts change, as well as how sticky the aerogels are and how strong they are. The higher concentrations appeared to have more plate-like structures while the lower concentrations had a more fibrous material. These fibers in the low concentrations had a smaller diameter than a human hair. Only the low concentration aerogels were able to stick to a glass surface in the adhesion test, but were able to support a mass much larger than their own. These low concentrations also would stick to your finger when lightly touched. Preliminary tests show that a concentration that is not too low, but not too high, is best for tensile strength. All concentrations were able to hold many times their own mass. Cellulose should be studied more because it is a renewable material and is easily accessed. Nanocellulose is also not environmentally dangerous allowing it to be used in applications involving humans and the environment like noted above. National Science Foundation Grant DMR-1410496.

  16. Measurements of scattering, transmittance/reflectance, IR-transmittance and thermal conductivity of small aerogel samples

    DEFF Research Database (Denmark)

    Duer, Karsten; Svendsen, Sv Aa Højgaard

    1997-01-01

    By providing at the same time thermal insulation and transparency the silica aerogel is a very attractive material for the purpose of improving the thermal performance of windows. Nevertheless a lot of problems have to be solved on the way from concept to the developed product. The B1 Aerogels...... project deals with some of these problems.This report summarizes the work that has been carried out on the subject of characterizing the optical and thermal performance of different types of aerogels and aerogel-like materials for the purpose of using aerogel in clear glazings.All measurements presented...

  17. Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors.

    Science.gov (United States)

    Ren, Yumei; Xu, Qun; Zhang, Jianmin; Yang, Hongxia; Wang, Bo; Yang, Daoyuan; Hu, Junhua; Liu, Zhimin

    2014-06-25

    Functionalized porous carbon materials with hierarchical structure and developed porosity coming from natural and renewable biomass have been attracting tremendous attention recently. In this work, we present a facile and scalable method to synthesize MnO2 loaded carbonaceous aerogel (MnO2@CA) composites via the hydrothermal carbonaceous (HTC) process. We employ two reaction systems of the mixed metal ion precursors to study the optimal selective adsorption and further reaction of MnO2 precursor on CA. Our experimental results show that the system containing KMnO4 and Na2S2O3·5H2O exhibits better electrochemical properties compared with the reaction system of MnSO4·H2O and (NH4)2S2O8. For the former, the obtained MnO2@CA displays the specific capacitance of 123.5 F·g(-1). The enhanced supercapacitance of MnO2@CA nanocomposites could be ascribed to both electrochemical contributions of the loaded MnO2 nanoparticles and the porous structure of three-dimensional carbonaceous aerogels. This study not only indicates that it is vital for the reaction systems to match with porous carbonaceous materials, but also offers a new fabrication strategy to prepare lightweight and high-performance materials that can be used in energy storage devices.

  18. Preparation of sponge-reinforced silica aerogels from tetraethoxysilane and methyltrimethoxysilane for oil/water separation

    Science.gov (United States)

    Li, Ming; Jiang, Hongyi; Xu, Dong

    2018-04-01

    Polyurethane sponge-reinforced silica aerogels based on tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) were fabricated by a facile method through sol-gel reaction followed by ambient pressure drying. In sponge-reinforced silica aerogels, nanoporous aerogel aggregates fill in the pores of polyurethane sponge. The sponge-reinforced aerogels are hydrophobic and oleophilic and show extremely high absorption for machine oil (10.6 g g‑1 for TEOS-based aerogel and 9.2 g g‑1 for MTMS-based aerogel). In addition, the sponge-reinforced aerogel composites exhibit notable improvements with regards to mechanical properties. The compressive strength was enhanced obviously up to about 349 KPa for TEOS-based aerogel and 60 KPa for MTMS-based aerogel. Specially, sponge-reinforced silica aerogels based on MTMS drastically shrank upon loading and then recovered to the original size when unloaded. The property differences of the sponge-reinforced silica aerogels caused by the two precursors were discussed in terms of morphologies, pore size distributions and chemical structure.

  19. A Special Material or a New State of Matter: A Review and Reconsideration of the Aerogel

    Directory of Open Access Journals (Sweden)

    Jun Shen

    2013-03-01

    Full Text Available The ultrahighly nanoporous aerogel is recognized as a state of matter rather than as a functional material, because of its qualitative differences in bulk properties, transitional density and enthalpy between liquid and gas, and diverse chemical compositions. In this review, the characteristics, classification, history and preparation of the aerogel were introduced. More attention was paid to the sol-gel method for preparing different kinds of aerogels, given its important role on bridging the synthetic parameters with the properties. At last, preparation of a novel single-component aerogel, design of a composite aerogel and industrial application of the aerogel were regarded as the research tendency of the aerogel state in the near future.

  20. Effect of catalyst on melamine-formaldehyde organic aerogel

    International Nuclear Information System (INIS)

    Sun Zhipeng; Yang Xi; Fu Zhibing; Zhong Minglong; Wang Chaoyang; Ma Kangfu; Huang Xiaoli; Chang Lijuan

    2013-01-01

    A series of melamine-formaldehyde(MF) organic aerogel templates were prepared with different categories and concentration of catalyst. Their molecular structure, thermal stability and pore structure were tested by Fourier transform infrared spectroscopy, thermogravimetric analysis and nitrogen adsorption. It is indicated that the type and concentration of catalyst do not affect molecular structure and thermal stability of the MF organic aerogel template. The specific surface area and pore volume of the MF organic aerogel template using Na 2 CO 3 as catalyst are higher than those using NaOH, NaHCO 3 as catalyst. When the ratio of the concentration of melamine to that of catalyst is 500, the specific surface area is maximized. (authors)

  1. Development of windows based on highly insulating aerogel glazings

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Schultz, Jørgen Munthe; Kristiansen, Finn Harken

    2004-01-01

    of buildings, the window area is the weakest part with respect to the heat loss, but at the same time, it also provides e.g. solar energy gain. Glazing prototypes have been made of aerogel tiles of about 55 cm sq. (elaborated within the projects). Those tiles are quickly evacuated and easily sealed between two...... glass panes and a specific rim seal. A heat treatment phase (after the supercritical CO2 drying) of the aerogel is currently being developed in order to improve its optical quality. This step increases the solar transmittance about 6 percent points. For glazing prototypes with an aerogel thickness...... of approx. 15 mm, a centre heat loss coefficient of below 0.7 W/m² K and a solar transmittance of 76% have been obtained. The research is funded in part by the European Commission within the frameworks of the Non-Nuclear Energy Programme – JOULE III and the Energy, Environment and Sustainable Development...

  2. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    International Nuclear Information System (INIS)

    Chakrabarty, Rajan K.; Novosselov, Igor V.; Beres, Nicholas D.; Moosmüller, Hans; Sorensen, Christopher M.; Stipe, Christopher B.

    2014-01-01

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10 6  s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  3. Trapping and aerogelation of nanoparticles in negative gravity hydrocarbon flames

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Rajan K., E-mail: rajan.chakrabarty@gmail.com [Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130 (United States); Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Novosselov, Igor V. [Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195 (United States); Enertechnix Inc., Maple Valley, Washington 98068 (United States); Beres, Nicholas D.; Moosmüller, Hans [Laboratory for Aerosol Science, Spectroscopy, and Optics, Desert Research Institute, Nevada System of Higher Education, Reno, Nevada 89512 (United States); Sorensen, Christopher M. [Condensed Matter Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506 (United States); Stipe, Christopher B. [TSI Incorporated, 500 Cardigan Rd, Shoreview, Minnesota 55126 (United States)

    2014-06-16

    We report the experimental realization of continuous carbon aerogel production using a flame aerosol reactor by operating it in negative gravity (−g; up-side-down configuration). Buoyancy opposes the fuel and air flow forces in −g, which eliminates convectional outflow of nanoparticles from the flame and traps them in a distinctive non-tipping, flicker-free, cylindrical flame body, where they grow to millimeter-size aerogel particles and gravitationally fall out. Computational fluid dynamics simulations show that a closed-loop recirculation zone is set up in −g flames, which reduces the time to gel for nanoparticles by ≈10{sup 6} s, compared to positive gravity (upward rising) flames. Our results open up new possibilities of one-step gas-phase synthesis of a wide variety of aerogels on an industrial scale.

  4. Aerogel Hybrid Composite Materials: Designs and Testing for Multifunctional Applications

    Science.gov (United States)

    Williams, Martha K.; Fesmire, James E.

    2016-01-01

    This webinar will introduce the broad spectrum of aerogel composites and their diverse performance properties such as reduced heat transfer to energy storage, and expands specifically on the aerogel/fiber laminate systems and testing methodologies. The multi-functional laminate composite system, AeroFiber, and its construction is designed by varying the type of fiber (e.g. polyester, carbon, Kevlar®, Spectra® or Innegral(TradeMark) and combinations thereof), the aerogel panel type and thickness, and overall layup configuration. The combination and design of materials may be customized and tailored to achieve a range of desired properties in the resulting laminate system. Multi-functional properties include structural strength, impact resistance, reduction in heat transfer, increased fire resistance, mechanical energy absorption, and acoustic energy dampening. Applications include aerospace, aircraft, automotive, boating, building and construction, lightweight portable structures, liquefied natural gas, cryogenics, transportation and energy, sporting equipment, and military protective gear industries.

  5. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  6. The hybrid nanostructure of MnCo2O4.5 nanoneedle/carbon aerogel for symmetric supercapacitors with high energy density

    Science.gov (United States)

    Hao, Pin; Zhao, Zhenhuan; Li, Liyi; Tuan, Chia-Chi; Li, Haidong; Sang, Yuanhua; Jiang, Huaidong; Wong, C. P.; Liu, Hong

    2015-08-01

    Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by calcination. The carbon aerogel exhibits a high electrical conductivity, high specific surface area and porous structure, ensuring high electrochemical performance of the hybrid nanostructure when coupled with the porous MnCo2O4.5 nanoneedles. The symmetric supercapacitor using the MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure as the active electrode material exhibits a high energy density of about 84.3 Wh kg-1 at a power density of 600 W kg-1. The voltage window is as high as 1.5 V in neutral aqueous electrolytes. Due to the unique nanostructure of the electrodes, the capacitance retention reaches 86% over 5000 cycles.Current applications of carbon-based supercapacitors are limited by their low energy density. One promising strategy to enhance the energy density is to couple metal oxides with carbon materials. In this study, a porous MnCo2O4.5 nanoneedle/carbon aerogel hybrid nanostructure was synthesized by assembling MnCo2O4.5 nanoneedle arrays on the surface of channel walls of hierarchical porous carbon aerogels derived from chitosan for the supercapacitor application. The synthetic process of the hybrid nanostructure involves two steps, i.e. the growth of Mn-Co precursors on carbon aerogel by a hydrothermal process and the conversion of the precursor into MnCo2O4.5 nanoneedles by

  7. Introduced materials and colloid formation: A report on the current state of knowledge

    International Nuclear Information System (INIS)

    Meike, A.; Wittwer, C.

    1993-11-01

    This paper reviews potential sources of colloids and enhanced adsorption of radionuclides that may stem from materials introduced into a repository setting. Three major sources of colloids are examined: metals, cements, and organics. The sensitivity of colloids to chemical species, pH, time, temperature, radiolysis, redox state, gradients of the aforementioned variables, and microbial activity is shown. The authors consider these influences on colloid formation and sorption with respect to introduced materials. They also discuss areas that have not been addressed but may have consequences in a repository setting

  8. System and method for 3D printing of aerogels

    Science.gov (United States)

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  9. Ultrasound propagation in dense aerogels filled with liquid 4He

    International Nuclear Information System (INIS)

    Matsumoto, K; Ohmori, K; Abe, S; Kanamori, K; Nakanishi, K

    2012-01-01

    Longitudinal ultrasound propagation was studied in dense aerogels filled with liquid 4 He. Sound velocity and attenuation were measured at the frequency of 6 MHz in both normal and superfluid phases. Pressure dependence of velocity and attenuation were also studied. Studied aerogels had porosities about 85%. They had two different types of structure, tangled strand structure and aggregated particles structure. The pore size distributions were narrow. Reduction of superfluid transition temperature mainly depended on not porosity but mean pore size. The structure of gel played an important role in sound velocity and attenuation.

  10. Formation and pore structure of boron nitride aerogels

    International Nuclear Information System (INIS)

    Lindquist, D.H.; Borek, T.T.; Kramer, S.J.; Kramer, S.J.; Naruta, C.K.; Johnson, G.; Schaeffer, R.; Smith, D.M.; Paine, R.T.

    1990-01-01

    This paper reports gels containing a poly(borazinyl amine) and tetrahydrofuran processed by CO 2 supercritical drying techniques followed by pyrolysis. The resulting BN ceramic aerogels are highly porous, and the microstructure, porosity, and surface area characteristics have been examined. The aerogels show excellent thermal stability exhibiting surface areas in excess of 350 m 2 /g and porosities greater than 0.8 even when heated in argon at 1500 degrees C for 8 h. By removing solvent via evaporation before supercritical drying, the mean pore radius can be varied between 3.6 and 10 nm

  11. Using of Aerogel to Improve Thermal Insulating Properties of Windows

    Science.gov (United States)

    Valachova, Denisa; Zdrazilova, Nada; Panovec, Vladan; Skotnicova, Iveta

    2018-06-01

    For the best possible thermal-technical properties of building structures it is necessary to use materials with very low thermal conductivity. Due to the increasing thermal-technical requirements for building structures, the insulating materials are developed. One of the modern thermal insulating materials is so-called aerogel. Unfortunately, this material is not used in the field of external thermal insulation composite systems because of its price and its properties. The aim of this paper is to present possibilities of using this insulating material in the civil engineering - specifically a usage of aerogel in the production of windows.

  12. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu; Zhou, Jian; Nagaraju, Doddahalli H.; Jiang, Long; Marinov, Val R.; Lubineau, Gilles; Alshareef, Husam N.; Oh, Myungkeun

    2015-01-01

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high

  13. Patterned Colloidal Photonic Crystals.

    Science.gov (United States)

    Hou, Jue; Li, Mingzhu; Song, Yanlin

    2018-03-01

    Colloidal photonic crystals (PCs) have been well developed because they are easy to prepare, cost-effective, and versatile with regards to modification and functionalization. Patterned colloidal PCs contribute a novel approach to constructing high-performance PC devices with unique structures and specific functions. In this review, an overview of the strategies for fabricating patterned colloidal PCs, including patterned substrate-induced assembly, inkjet printing, and selective immobilization and modification, is presented. The advantages of patterned PC devices are also discussed in detail, for example, improved detection sensitivity and response speed of the sensors, control over the flow direction and wicking rate of microfluidic channels, recognition of cross-reactive molecules through an array-patterned microchip, fabrication of display devices with tunable patterns, well-arranged RGB units, and wide viewing-angles, and the ability to construct anti-counterfeiting devices with different security strategies. Finally, the perspective of future developments and challenges is presented. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Flocking ferromagnetic colloids.

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  15. Colloid migration in fractured media

    International Nuclear Information System (INIS)

    Hunt, J.R.

    1989-01-01

    Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs

  16. Ultralight metallic microlattices.

    Science.gov (United States)

    Schaedler, T A; Jacobsen, A J; Torrents, A; Sorensen, A E; Lian, J; Greer, J R; Valdevit, L; Carter, W B

    2011-11-18

    Ultralight (nickel plating, and subsequently etching away the template. The resulting metallic microlattices exhibit densities ρ ≥ 0.9 milligram per cubic centimeter, complete recovery after compression exceeding 50% strain, and energy absorption similar to elastomers. Young's modulus E scales with density as E ~ ρ(2), in contrast to the E ~ ρ(3) scaling observed for ultralight aerogels and carbon nanotube foams with stochastic architecture. We attribute these properties to structural hierarchy at the nanometer, micrometer, and millimeter scales.

  17. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents

    International Nuclear Information System (INIS)

    Wei, Xiao; Huang, Ting; Yang, Jing-hui; Zhang, Nan; Wang, Yong; Zhou, Zuo-wan

    2017-01-01

    Highlights: • Hybrid GO/MCC aerogels were prepared using LiBr aqueous solution as the solvent. • GO was exfoliated by MCC through the strong interaction between them. • The adsorption ability of GO per unit mass in the hybrid aerogels was greatly enhanced. - Abstract: In this work, we developed a green synthesis method to prepare the hybrid aerogels containing graphene oxide (GO) and microcrystalline cellulose (MCC) using lithium bromide (LiBr) aqueous solution as the solvent, which insured the complete dissolution of MCC. The interaction between GO and MCC was investigated through different methods The results demonstrate that there is a strong interaction between GO and MCC molecules, which promotes the exfoliation of GO in the hybrid aerogels. The hybrid GO/MCC aerogels exhibit typical three dimensional porous structure and the pore morphology can be well adjusted by changing the content of GO. The adsorption ability of the hybrid aerogels was measured using methylene blue (MB) as an adsorbate. The results show that the adsorption ability of GO per unit mass is greatly enhanced compared with the pure GO aerogel, especially at relatively low GO content the adsorption amount of GO per unit mass is enhanced up to 2630 mg/g. Further results demonstrate that the hybrid GO/MCC aerogels still obey the pseudo-second-order adsorption model, which is similar to that of the pure GO aerogel. The mechanism for the amplified adsorption ability of GO in the hybrid GO/MCC aerogels is then analyzed.

  18. Green synthesis of hybrid graphene oxide/microcrystalline cellulose aerogels and their use as superabsorbents

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Xiao; Huang, Ting; Yang, Jing-hui; Zhang, Nan; Wang, Yong, E-mail: yongwang1976@163.com; Zhou, Zuo-wan

    2017-08-05

    Highlights: • Hybrid GO/MCC aerogels were prepared using LiBr aqueous solution as the solvent. • GO was exfoliated by MCC through the strong interaction between them. • The adsorption ability of GO per unit mass in the hybrid aerogels was greatly enhanced. - Abstract: In this work, we developed a green synthesis method to prepare the hybrid aerogels containing graphene oxide (GO) and microcrystalline cellulose (MCC) using lithium bromide (LiBr) aqueous solution as the solvent, which insured the complete dissolution of MCC. The interaction between GO and MCC was investigated through different methods The results demonstrate that there is a strong interaction between GO and MCC molecules, which promotes the exfoliation of GO in the hybrid aerogels. The hybrid GO/MCC aerogels exhibit typical three dimensional porous structure and the pore morphology can be well adjusted by changing the content of GO. The adsorption ability of the hybrid aerogels was measured using methylene blue (MB) as an adsorbate. The results show that the adsorption ability of GO per unit mass is greatly enhanced compared with the pure GO aerogel, especially at relatively low GO content the adsorption amount of GO per unit mass is enhanced up to 2630 mg/g. Further results demonstrate that the hybrid GO/MCC aerogels still obey the pseudo-second-order adsorption model, which is similar to that of the pure GO aerogel. The mechanism for the amplified adsorption ability of GO in the hybrid GO/MCC aerogels is then analyzed.

  19. Fabrication and characterization of Aerogel-Polydimethyl siloxane (PDMS) Insulation Film

    Science.gov (United States)

    Noh, Yeoung ah; Song, Sinae; Taik Kim, Hee

    2018-03-01

    The building has a large impact on the space heating demand and the indoor environment is affected by climate or daylight. Hence, silica aerogel has generally used as a film to reduce the coefficient of the window in the building. Silica aerogel is a suitable material to apply for insulation material with lower thermal conductivity than that of air to save interior energy. However expensive precursor and drying process were the main issue of the silica aerogel synthesis and practical usage. We attempt to fabricate aerogel insulation film for energy saving through the economic process under ambient pressure. Silica aerogel was synthesized from rice husk ash, which was an agricultural waste to be able to recycle. Taguchi design was used to optimize the parameters (amount of rice husk ash, pH, aging time) controlling the surface area of silica aerogel. The silica aerogel is prepared by sol-gel processing through acidic treatment and aging. The silica aerogel was obtained by modification of silica hydrogel surface and dry at ambient pressure. Finally, aerogel film was respectively fabricated by the different content of aerogel in polydimethylsiloxane (PDMS). Silica aerogel obtained 21 – 24nm average particle size was analyzed by SEM and silica aerogel with high surface area (832.26 m2/g), pore size ( 3.30nm ) was characterized by BET. Then silica Aerogel – PDMS insulation film with thermal conductivity (0.002 W/mK) was analyzed by thermal wave system. The study demonstrates an eco-friendly and low-cost route toward silica – PDMS insulation film with low thermal conductivity (0.002 W/mK).

  20. Aerogel-Based Insulation for High-Temperature Industrial Processes

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Owen Evans

    2011-10-13

    Under this program, Aspen Aerogels has developed an industrial insulation called Pyrogel HT, which is 4-5 times more thermally efficient than current non-aerogel technology. Derived from nanoporous silica aerogels, Pyrogel HT was specifically developed to address a high temperature capability gap not currently met with Aspen Aerogels{trademark} flagship product, Pyrogel XT. Pyrogel XT, which was originally developed on a separate DOE contract (DE-FG36-06GO16056), was primarily optimized for use in industrial steam processing systems, where application temperatures typically do not exceed 400 C. At the time, further improvements in thermal performance above 400 C could not be reasonably achieved for Pyrogel XT without significantly affecting other key material properties using the current technology. Cumulative sales of Pyrogel HT into domestic power plants should reach $125MM through 2030, eventually reaching about 10% of the total insulation market share in that space. Global energy savings would be expected to scale similarly. Over the same period, these sales would reduce domestic energy consumption by more than 65 TBtu. Upon branching out into all industrial processes in the 400 C-650 C regime, Pyrogel HT would reach annual sales levels of $150MM, with two-thirds of that being exported.

  1. Titania aerogel prepared by low temperature supercritical drying

    Czech Academy of Sciences Publication Activity Database

    Štengl, Václav; Bakardjieva, Snejana; Šubrt, Jan; Szatmáry, Lórant

    2006-01-01

    Roč. 91, 1-3 (2006), s. 1-6 ISSN 1387-1811 R&D Projects: GA MŠk(CZ) 1M0577 Institutional research plan: CEZ:AV0Z40320502 Keywords : aerogels * titanium oxide * supercritical drying Subject RIV: CA - Inorganic Chemistry Impact factor: 2.796, year: 2006

  2. Flexible Supercapacitors Based on Polyaniline Arrays Coated Graphene Aerogel Electrodes.

    Science.gov (United States)

    Yang, Yu; Xi, Yunlong; Li, Junzhi; Wei, Guodong; Klyui, N I; Han, Wei

    2017-12-01

    Flexible supercapacitors(SCs) made by reduced graphene oxide (rGO)-based aerogel usually suffer from the low energy density, short cycle life and bad flexibility. In this study, a new, synthetic strategy was developed for enhancing the electrochemical performances of rGO aerogel-based supercapacitor via electrodeposition polyaniline arrays on the prepared ultralight rGO aerogel. The novel hybrid composites with coated polyaniline (PANI) arrays growing on the rGO surface can take full advantage of the rich open-pore and excellent conductivity of the crosslinking framework structure of 3D rGO aerogel and high capacitance contribution from the PANI. The obtained hybrid composites exhibit excellent electrochemical performance with a specific capacitance of 432 F g -1 at the current density of 1 A g -1 , robust cycling stability to maintain 85% after 10,000 charge/discharge cycles and high energy density of 25 W h kg -1 . Furthermore, the flexible all-solid-state supercapacitor have superior flexibility and outstanding stability under different bending states from the straight state to the 90° status. The high-performance flexible all-solid-state SCs together with the lighting tests demonstrate it possible for applications in portable electronics.

  3. Aerogel-Based Antennas for Aerospace and Terrestrial Applications

    Science.gov (United States)

    Meador, Mary Ann (Inventor); Miranda, Felix (Inventor); Van Keuls, Frederick (Inventor)

    2016-01-01

    Systems and methods for lightweight, customizable antenna with improved performance and mechanical properties are disclosed. In some aspects, aerogels can be used, for example, as a substrate for antenna fabrication. The reduced weight and expense, as well as the increased ability to adapt antenna designs, permits a systems to mitigate a variety of burdens associated with antennas while providing added benefits.

  4. Synthesis and Properties of Cross-Linked Polyamide Aerogels

    Science.gov (United States)

    Williams, Jarrod C.; Meador, Mary Ann; McCorkle, Linda

    2015-01-01

    We report the first synthesis of cross-linked polyamide aerogels through step growth polymerization using a combination of diamines, diacid chloride and triacid chloride. Polyamide oligomers endcapped with amines are prepared as stable solutions in N-methylpyrrolidinone from several different diamine precursors and 1,3-benzenedicarbonyl dichloride. Addition of 1,3,5-benzenetricarbonyl trichloride yields gels which form in under five minutes according to the scheme shown. Solvent exchange of the gels into ethanol, followed by drying using supercritical CO2 extraction gives colorless aerogels with densities around 0.1 to 0.2 gcm3. Thicker monolithes of the polyamide aerogels are stiff and strong, while thin films of certain formulations are highly flexible, durable, and even translucent. These materials may have use as insulation for deployable space structures, rovers, habitats or extravehicular activity suits as well as in many terrestrial applications. Strucure property relationships of the aerogels, including surface area, mechanical properties, and thermal conductivity will be discussed.

  5. Thin Aerogel as a Spacer in Multilayer Insulation

    Science.gov (United States)

    Moroz, Nancy

    2015-01-01

    Cryogenic fluid management is a critical technical area that is needed for future space exploration. A key challenge is the storability of liquid hydrogen (LH2), liquid methane (LCH4), and liquid oxygen (LOX) propellants for long-duration missions. The storage tanks must be well-insulated to prevent over-pressurization and venting, which can lead to unacceptable propellant losses for long-duration missions to Mars and beyond. Aspen Aerogels had validated the key process step to enable the fabrication of thin, low-density aerogel materials. The multilayer aerogel insulation (MLAI) system prototypes were prepared using sheets of aerogel materials with superior thermal performance exceeding current state-of-the-art insulation for space applications. The exceptional properties of this system include a new breakthrough in high-vacuum cryogenic thermal insulation, providing a durable material with excellent thermal performance at a reduced cost when compared to longstanding state-of-the-art multilayer insulation systems. During the Phase II project, further refinement and qualification/system-level testing of the MLAI system will be performed for use in cryogenic storage applications. Aspen has been in discussions with United Launch Alliance, LLC; NASA's Kennedy Space Center; and Yetispace, Inc., to test the MLAI system on rea-lworld tanks such as Vibro-Acoustic Test Article (VATA) or the Cryogenic Orbital Testbed (CRYOTE).

  6. Generation of colloidal granules and capsules from double emulsion drops

    Science.gov (United States)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  7. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols.

    Science.gov (United States)

    Zhang, Yuqing; Yu, Jiulong; Niu, Haijun; Liu, Hanfan

    2007-09-15

    A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.

  8. On the improvement of mechanical properties of monolithic silica aerogels (for transparent insulating material); Silica aerogel (tomei dannetsu zairyo) kyodo no kaizen ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Tajiri, K; Igarashi, K; Tanemura, S [National Industrial Research Institute of Nagoya, Nagoya (Japan)

    1997-11-25

    Study was made on improvement of the strength of silica aerogel as transparent insulating material. Silica aerogel is a low-density porous material with high heat insulation and transparency. To develop a insulating material with high transparency, monolithic silica aerogel was studied. For direct use of it for windows, its strength improvement was attempted. The aerogel was prepared by supercritical drying (alcohol or CO2) of silica wet gel obtained by hydrolysis and condensation of silicon alkoxide solution. To prepare the aerogel bonded on plate glass for strength improvement, the aerogel was bonded to alkoxide by exposing active silanol radical through F-etching of plate glass surface. However, to obtain the practical large-area bonded aerogel, shrinkage control of the aerogel in supercritical drying was necessary. Addition of Laponite into a silica network for strength improvement by polymer increased the bending strength by 50%. Although some reduction of its transparency was observed because of clouding, its heat insulation was stable. Further strength improvement is necessary for its practical use. 5 figs., 1 tab.

  9. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruiyi; Yang, Tingting [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Li, Zaijun, E-mail: zaijunli@jiangnan.edu.cn [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China); Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, Wuxi 214122 (China); Gu, Zhiguo; Wang, Guangli; Liu, Junkang [School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-02-15

    Integration of noble metal nanomaterials on graphene nanosheets potentially paves one way to improve their electronic, chemical and electrochemical properties. The study reported synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel composite (Pd@Au/N,S-MGA). The as-prepared composite offers a well-defined three-dimensional architecture with rich of mesopores. The Pd@Au nanoalloys were dispersed on the graphene framework networks and their active sites were fully exposed. The unique structure achieves to ultra high electron/ion conductivity, electrocatalytic activity and structural stability. The sensor based on the Pd@Au/N,S-MGA creates ultrasensitive electrochemical response towards dopamine due to significantly electrochemical synergy between Pd, Au and N,S-MGA. Its differential pulse voltammetric signal linearly increases with the increase of dopamine concentration in the range from 1.0 × 10{sup −9} M to 4.0 × 10{sup −5} M with the detection limit of 3.6 × 10{sup −10} M (S/N = 3). The analytical method provides the advantage of sensitivity, reproducibility, rapidity and long-term stability. It has been successfully applied in the detection of trace dopamine in biological samples. The study also opens a window on the electronic properties of graphene aerogel and metal nanomaterials as well their nanohybrids to meet needs of further applications as nanoelectronics in diagnosis, bioanalysis and catalysis. - Graphical abstract: We reported a new palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel. The sensor based on the nanohybrid exhibits ultrahigh sensitivity, reproducibility and stability to electrochemical detection of dopamine. - Highlights: • We reported Pd@A/nitrogen and sulphur-functionalized multiple graphene aerogel. • The nanohybrid offers unique three-dimensional architecture with rich of mesopores. • The architecture achieve to ultrahigh

  10. Synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel for electrochemical detection of dopamine

    International Nuclear Information System (INIS)

    Li, Ruiyi; Yang, Tingting; Li, Zaijun; Gu, Zhiguo; Wang, Guangli; Liu, Junkang

    2017-01-01

    Integration of noble metal nanomaterials on graphene nanosheets potentially paves one way to improve their electronic, chemical and electrochemical properties. The study reported synthesis of palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel composite (Pd@Au/N,S-MGA). The as-prepared composite offers a well-defined three-dimensional architecture with rich of mesopores. The Pd@Au nanoalloys were dispersed on the graphene framework networks and their active sites were fully exposed. The unique structure achieves to ultra high electron/ion conductivity, electrocatalytic activity and structural stability. The sensor based on the Pd@Au/N,S-MGA creates ultrasensitive electrochemical response towards dopamine due to significantly electrochemical synergy between Pd, Au and N,S-MGA. Its differential pulse voltammetric signal linearly increases with the increase of dopamine concentration in the range from 1.0 × 10"−"9 M to 4.0 × 10"−"5 M with the detection limit of 3.6 × 10"−"1"0 M (S/N = 3). The analytical method provides the advantage of sensitivity, reproducibility, rapidity and long-term stability. It has been successfully applied in the detection of trace dopamine in biological samples. The study also opens a window on the electronic properties of graphene aerogel and metal nanomaterials as well their nanohybrids to meet needs of further applications as nanoelectronics in diagnosis, bioanalysis and catalysis. - Graphical abstract: We reported a new palladium@gold nanoalloys/nitrogen and sulphur-functionalized multiple graphene aerogel. The sensor based on the nanohybrid exhibits ultrahigh sensitivity, reproducibility and stability to electrochemical detection of dopamine. - Highlights: • We reported Pd@A/nitrogen and sulphur-functionalized multiple graphene aerogel. • The nanohybrid offers unique three-dimensional architecture with rich of mesopores. • The architecture achieve to ultrahigh electron

  11. Electron-transfer reactions of extremely small AgI colloids

    International Nuclear Information System (INIS)

    Vucemilovic, M.I.; Micic, O.I.

    1988-01-01

    Small colloidal AgI particles (particle diameter 20-50 A) have been prepared in water and acetonitrile, and optical effects due to size quantization have been observed. Electron transfer reactions involving electron donors and electron acceptors with AgI have been studied by pulse radiolysis techniques. Both reduction and oxidation of the colloids led to transient bleaching of semiconductor absorption. The recovery of the bleaching has been attributed to corrosion processes. Electrons injected into AgI colloids produce metallic silver and hydrogen. Hydrogen evolution is catalyzed by metallic silver formation. (author)

  12. Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications.

    Science.gov (United States)

    Wang, Zhen; Wang, Dong; Qian, Zhenchao; Guo, Jing; Dong, Haixia; Zhao, Ning; Xu, Jian

    2015-01-28

    Aerogels are a family of highly porous materials whose applications are commonly restricted by poor mechanical properties. Herein, thiol-ene chemistry is employed to synthesize a series of novel bridged silsesquioxane (BSQ) precursors with various alkoxy groups. On the basis of the different hydrolyzing rates of the methoxy and ethoxy groups, robust superhydrophobic BSQ aerogels with tailorable morphology and mechanical performances have been prepared. The flexible thioether bridge contributes to the robustness of the as-formed aerogels, and the property can be tuned on the basis of the distinct combinations of alkoxy groups with the density of the aerogels almost unchanged. To the best of our knowledge, the lowest density among the ambient pressure dried aerogels is obtained. Further, potential application of the aerogels for oil/water separation and acoustic materials has also been presented.

  13. Methods for controlling pore morphology in aerogels using electric fields and products thereof

    Science.gov (United States)

    Worsley, Marcus A.; Baumann, Theodore F.; Satcher, Jr., Joe H.; Olson, Tammy Y.; Kuntz, Joshua D.; Rose, Klint A.

    2017-12-16

    In one embodiment, an aerogel or xerogel includes column structures of a material having minor pores therein and major pores devoid of the material positioned between the column structures, where longitudinal axes of the major pores are substantially parallel to one another. In another embodiment, a method includes heating a sol including aerogel or xerogel precursor materials to cause gelation thereof to form an aerogel or xerogel and exposing the heated sol to an electric field, wherein the electric field causes orientation of a microstructure of the sol during gelation, which is retained by the aerogel or xerogel. In one approach, an aerogel has elongated pores extending between a material arranged in column structures having structural characteristics of being formed from a sol exposed to an electric field that causes orientation of a microstructure of the sol during gelation which is retained by the elongated pores of the aerogel.

  14. Spray freeze-dried nanofibrillated cellulose aerogels with thermal superinsulating properties.

    Science.gov (United States)

    Jiménez-Saelices, Clara; Seantier, Bastien; Cathala, Bernard; Grohens, Yves

    2017-02-10

    Nanofibrillated cellulose (NFC) aerogels were prepared by spray freeze-drying (SFD). Their structural, mechanical and thermal insulation properties were compared to those of NFC aerogels prepared by conventional freeze-drying (CFD). The purpose of this investigation is to develop superinsulating bioaerogels by reducing their pore size. Severe reduction of the aerogel pore size and skeleton architecture were observed by SEM, aerogels prepared by SFD method show a fibril skeleton morphology, which defines a mesoporous structure. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, the thermal insulation properties were significantly improved for SFD materials compared to CFD aerogel, reaching values of thermal conductivity as low as 0.018W/(mK). Moreover, NFC aerogels have a thermal conductivity below that of air in ambient conditions, making them one of the best cellulose based thermal superinsulating material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Polymers and colloids

    International Nuclear Information System (INIS)

    Schurtenberger, P.

    1996-01-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs

  16. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  17. Thermal Failure Analysis of Fiber-Reinforced Silica Aerogels under Liquid Nitrogen Thermal Shock

    Directory of Open Access Journals (Sweden)

    Ai Du

    2018-06-01

    Full Text Available Aerogel materials are recognized as promising candidates for the thermal insulator and have achieved great successes for the aerospace applications. However, the harsh environment on the exoplanet, especially for the tremendous temperature difference, tends to affect the tenuous skeleton and performances of the aerogels. In this paper, an evaluation method was proposed to simulate the environment of exoplanet and study the influence on the fiber-reinforced silica aerogels with different supercritical point drying (SPD technology. Thermal conductivity, mechanical property and the microstructure were characterized for understanding the thermal failure mechanism. It was found that structure and thermal property were significantly influenced by the adsorbed water in the aerogels under the thermal shocks. The thermal conductivity of CO2-SPD aerogel increased 35.5% after the first shock and kept in a high value, while that of the ethanol-SPD aerogel increased only 19.5% and kept in a relatively low value. Pore size distribution results showed that after the first shock the peak pore size of the CO2-SPD aerogel increased from 18 nm to 25 nm due to the shrinkage of the skeleton, while the peak pore size of the ethanol-SPD aerogel kept at ~9 nm probably induced by the spring-back effect. An 80 °C treatment under vacuum was demonstrated to be an effective way for retaining the good performance of ethanol-SPD aerogels under the thermal shock. The thermal conductivity increases of the ethanol-SPD aerogels after 5 shocks decreased from ~30 to ~0% via vacuum drying, while the increase of the CO2-SPD aerogels via the same treatments remains ~28%. The high-strain hardening and low-strain soften behaviors further demonstrated the skeleton shrinkage of the CO2-SPD aerogel.

  18. SINTESIS SILIKA AEROGEL DENGAN BAHAN DASAR ABU BAGASSE

    Directory of Open Access Journals (Sweden)

    Nazriati Nazriati

    2012-05-01

    Full Text Available SYNTHESIS OF SILICA AEROGEL FROM BAGASSE ASH. Synthesis of silica aerogel from bagasse ash was done by alkaline extraction followed by sol-gel. Bagasse ash was extracted with NaOH at its boiling temperature for one hour with continue stirring, to produce sodium silicate. Subsequently, sodium silicate was pass through ionic exchanger resin, to produces silicic acid (SA. Silicic acid solution was then added with TMCS and HMDS as surface modifier agent. In order to form gel pH must be adjusted to final pH of 8-9 by addition of NH4OH solution. The resulting gel then was aged and dried at ambient pressure and at a certain time and temperature. Characterization of products was done by measuring its pore volume, surface area, and hydrophobisity (contact angle. TMCS serves as water expeller from the pores and subsequently surface was modified by HMDS and TMCS. HMDS content will linearly increase surface area, pore volume, and the contact angle of the resulting silica aerogel. Characteristics of silica aerogel was generated by varying the composition of the SA:TMCS:HMDS resulting has a surface area of 50-488 m2/g, pore volume from 0.2 to 0.9 m3 /g, the contact angle of 48-119 and pore diameter ranging from 5.7-22.56 nm. Based on the resulting pore diameter, the synthesized of silica aerogel categorized as mesoporous.      Abstrak   Sintesis silika aerogel dari bahan dasar abu bagasse dilakukan dengan ekstraksi basa dan diikuti dengan sol-gel. Abu bagasse diekstrak dengan NaOH pada suhu didihnya sambil diaduk selama satu jam, menghasilkan sodium silikat. Selanjutnya, sodium silikat dilewatkan resin penukar ion, menghasilkan asam silicic (SA. Larutan asam silicic kemudian ditambahkan trimethy­l­chlorosilane (TMCS dan hexamethyldisilazane (HMDS sebagai agen pemodifikasi permukaan. Untuk terjadinya gel pH diatur hingga mencapai 8-9 dengan penambahan larutan NH4OH. Gel yang dihasilkan kemudian di-aging dan dikeringkan pada tekanan ambien pada suhu dan

  19. Magnetic and Mössbauer spectroscopy studies of nanocrystalline iron oxide aerogels

    DEFF Research Database (Denmark)

    Carpenter, E.E.; Long, J.W.; Rolison, D.R.

    2006-01-01

    A sol-gel synthesis was used to produce iron oxide aerogels. These nanocrystalline aerogels have a pore-solid structure similar to silica aerogels but are composed entirely of iron oxides. Mössbauer experiments and x-ray diffraction showed that the as-prepared aerogel is an amorphous or poorly...... crystalline iron oxide, which crystallized as a partially oxidized magnetite during heating in argon. After further heat treatment in air, the nanocrystallites are fully converted to maghemite. The particles are superparamagnetic at high temperatures, but the magnetic properties are strongly influenced...

  20. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon [Dongguk University, Seoul (Korea, Republic of)

    2014-05-15

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  1. Structural properties and adsorption capacity of holocellulose aerogels synthesized from an alkali hydroxide-urea solution

    International Nuclear Information System (INIS)

    Kwon, Gu-Joong; Kim, Dae-Young; Hwang, Jae-Hyun; Kang, Joo-Hyon

    2014-01-01

    A tulip tree was used to synthesize a holocellulose aerogel from an aqueous alkali hydroxide-urea solution with the substitution of an organic solvent followed by freeze-drying. For comparison, the synthesized holocellulose aerogels were divided into two groups according to the source of the hydrogel, an upper suspended layer and a bottom concentrated layer of the centrifuged solution of cellulose and NaOH/urea solvents. We investigated the effects of the temperature of the pre-cooled NaOH/urea solution (i.e., dissolution temperature) on the pore structure and the adsorption capacity of the holocellulose aerogel. A nano-fibrillar network structure of the holocellulose aerogel was observed, with little morphological difference in pore structure for different dissolution temperatures. Both micropores and mesopores were observed in the holocellulose aerogel. The specific surface area of the holocellulose aerogel was generally greater at lower dissolution temperatures. In a series of adsorption tests using methylene blue, the holocellulose aerogel showed the greatest adsorption capacity at the lowest dissolution temperature tested ( -2 .deg. C). However, the dissolution temperature generally had little effect on the adsorption capacity. The holocellulose aerogel produced from the upper suspended layer of the centrifuged hydrogel solution showed a greater porosity and adsorption capacity than the one produced from the bottom concentrated layer. Overall, the aerogel made by utilizing a delignified tulip tree display a high surface area and a high adsorption property, indicating its possible application in eco-friendly adsorption materials.

  2. Reductive and oxidative reactions with inorganic colloids in aqueous solution initiated by ultrasound

    International Nuclear Information System (INIS)

    Mulvaney, P.C.; Sostaric, J.Z.; Ashokkumar, M.; Grieser, F.

    1998-01-01

    Full text: The absorption of ultrasound in an aqueous solution can lead to the formation of H and OH radicals which can act as redox species or react with solutes to produce secondary radicals which themselves may participate in electron transfer reactions. The radical formation occurs through the growth then rapid collapse of microbubbles a process that produces localised hot spots with an internal temperature of the order of 5000 K. We have examined two colloidal systems one involving the reductive dissolution of MnO 2 colloids and the other the oxidative dissolution of CdS colloids. In the case of MnO 2 dissolution we found that the reduction of the colloidal metal oxide was considerably enhanced in the presence of aliphatic alcohols in solution and the longer the alkyl chain length on the alcohol the greater its effect. The dissolution of CdS colloids which we ascribe to the reaction of H 2 O 2 and O 2 - with the metal sulfide lo yield Cd 2+ and S could be significantly retarded by the presence of excess S 2- in solution. The mechanisms involved in these two dissolution processes will he presented. Our results clearly show that sonochemical reactions are quite efficient in colloidal solutions and this fact needs to be considered when using sonication to disperse colloidal material in solution, a common practice among colloid chemists

  3. Microrheology of colloidal systems

    International Nuclear Information System (INIS)

    Puertas, A M; Voigtmann, T

    2014-01-01

    Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes–Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The

  4. Liquid crystal boojum-colloids

    International Nuclear Information System (INIS)

    Tasinkevych, M; Silvestre, N M; Telo da Gama, M M

    2012-01-01

    Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau-de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole-quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D

  5. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  6. Pharmacology of colloids and crystalloids.

    Science.gov (United States)

    Griffel, M I; Kaufman, B S

    1992-04-01

    We have attempted to review body fluid distribution by compartments so that the reader understands the physiology of ICF and ECF, and the relationship between interstitial and intravascular fluids. Crystalloids such as NS and RL are distributed to the ECF, whereas colloids primarily remain intravascular for longer periods. Although effective, crystalloids tend to require larger volumes for infusion, and edema remains a problem. Colloids as a group are extremely effective volume expanders, but none is ideal. Albumin, hetastarch, dextran, and the less commonly used colloids each have significant toxicities that must be considered when using them. Intelligent choices can be made to optimize use of these fluids.

  7. Low dielectric constant and moisture-resistant polyimide aerogels containing trifluoromethyl pendent groups

    Science.gov (United States)

    Wu, Tingting; Dong, Jie; Gan, Feng; Fang, Yuting; Zhao, Xin; Zhang, Qinghua

    2018-05-01

    Conventional polyimide aerogels made from biphenyl-3,3‧,4,4‧-tetracarboxylic dianydride (BPDA) and 4,4‧-oxidianiline (ODA) exhibit poor resistance to moisture and mechanical properties. In this work, a versatile diamine, 2,2‧-bis-(trifluoromethyl)-4,4‧-diaminobiphenyl (TFMB), is introduced to BPDA/ODA backbone to modify the comprehensive performance of this aerogel. Among all formulations, the resulted polyimide aerogels exhibit the lowest shrinkage and density as well as highest porosity, at the ODA/TFMB molar ratio of 5/5. Dielectric constants and loss tangents of the aerogels fall in the range of 1.29-1.33 and 0.001-0.004, respectively, and more TFMB fractions results in a slightly decrease of dielectric constant and loss tangent. In addition, moisture-resistance of the aerogels are dramatically enhanced as the water absorption decreasing from 415% for BPDA/ODA to 13% for the polyimide aerogel at the ODA/TFMB molar ratio of 7/3, and even to 4% for the homo-BPDA/TFMB polyimide aerogel, showing a superhydrophobic characteristic, which is a great advantage for polyimide aerogels used as low dielectric materials. Meanwhile, all of formulations of aerogels exhibit high absorption capacities for oils and common organic solvents, indicating that these fluorinated polyimide aerogels are good candidates for the separation of oils/organic solvents and water. Mechanical properties and thermal stability of the polyimide aerogels are also raised to varying degrees due to the rigid-rod biphenyl structure introduced by TFMB.

  8. Strong-coupling effects in superfluid 3He in aerogel

    International Nuclear Information System (INIS)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2007-01-01

    Effects of impurity scatterings on the strong-coupling (SC) contribution, stabilizing the ABM (axial) pairing state, to the quartic term of the Ginzburg-Landau free energy of superfluid 3 He are theoretically studied to examine recent observations suggestive of an anomalously small SC effect in superfluid 3 He in aerogels. To study the SC corrections, two approaches are used. One is based on a perturbation in the short-range repulsive interaction, and the other is a phenomenological approach used previously for the bulk liquid by Sauls and Serene [Phys. Rev. B 24, 183 (1981)]. It is found that the impurity scattering favors the BW pairing state and shrinks the region of the ABM pairing state in the T-P phase diagram. In the phenomenological approach, the resulting shrinkage of the ABM region is especially substantial and, if assuming an anisotropy over a large scale in aerogel, leads to justifying the phase diagrams determined experimentally

  9. Driving dynamic colloidal assembly using eccentric self-propelled colloids

    OpenAIRE

    Ma, Zhan; Lei, Qun-li; Ni, Ran

    2017-01-01

    Designing protocols to dynamically direct the self-assembly of colloidal particles has become an important direction in soft matter physics because of the promising applications in fabrication of dynamic responsive functional materials. Here using computer simulations, we found that in the mixture of passive colloids and eccentric self-propelled active particles, when the eccentricity and self-propulsion of active particles are high enough, the eccentric active particles can push passive coll...

  10. Nonlinear optical properties of colloidal silver nanoparticles produced by laser ablation in liquids

    International Nuclear Information System (INIS)

    Karavanskii, V A; Krasovskii, V I; Ivanchenko, P V; Simakin, Aleksandr V

    2004-01-01

    The optical and nonlinear optical properties of colloidal solutions of silver obtained by laser ablation in water and ethanol are studied. It is shown that freshly prepared colloids experience a full or partial sedimentation by changing their nonlinear optical properties. Aqueous colloids undergo a partial sedimentation and their nonlinear optical absorption changes to nonlinear optical transmission. The obtained results are interpreted using the Drude model for metal particles taking the particle size into account and can be explained by the sedimentation of larger silver particles accompanied by the formation of a stable colloid containing silver nanoparticles with a tentatively silver oxide shell. The characteristic size of particles forming such a stable colloid is determined and its optical nonlinearity is estimated. (nonlinear optical phenomena)

  11. Theoretical and experimental investigation of REB interaction with aerogel targets

    Energy Technology Data Exchange (ETDEWEB)

    Efremov, V P; Fortov, V E [Russian Academy of scinces, Moscow (Russian Federation). High Energy Density Research Center; Demidov, B A; Ivonin, I A [Kurchatov Institute, Moscow (Russian Federation); Vorobev, O Yu [Institute of Chemical Physics, Chernogolovka (Russian Federation); Keeler, N

    1997-12-31

    Recent results of luminosity measurements of aerogel targets (with a density about 0.36 g/cc) irradiated with `KALMAR` beam are reported. The beam current was varied within the range of 10-20 kA, the pulse duration was 80-120 ns and the electron energy was from 200 keV to 290 keV. Absorbed energy distribution in the deposition zone was compared with the results of calculations. (author). 4 figs., 4 refs.

  12. Novel retrofit technologies incorporating silica aerogel for lower energy buildings

    OpenAIRE

    Dowson, Mark

    2012-01-01

    This thesis was submitted for the degree of Doctor of Engineering and was awarded by Brunel University. The aim of this Engineering Doctorate is to design, build and test novel environmental retrofit technologies to reduce energy consumption in existing buildings. Three contributions to knowledge are documented. The first contribution is the technical verification of a novel proof-of-principle prototype incorporating translucent silica aerogel granules to improve the thermal performance of...

  13. Particle detection and identification through Cerenkov effect in silica aerogels

    International Nuclear Information System (INIS)

    Engelmann, J.J.; Cantin, M.

    1978-01-01

    Cerenkov counters are largely used in high energy physics and in nuclear astrophysics to identify the charge of high energy particles and to measure their velocity. Good velocity resolution is obtained only near the Cerenkov threshold, which is directly dependent on the refractive index of the radiator. It is therefore very important to dispose of materials of various refractive indices. The silica aerogel allows to cover a range of indices between 1.015 and 1.2 which is intermediate between the indices given by gas and liquids. The samples most often built until now are hexagonal blocks of 1.06 refractive index and 0.24 g/cm 3 density. Blocks of one liter in volume have been assembled to form a mosaic of large dimension. For lower refractive indices, 1.015 for instance, the material becomes too brittle. So we have been led to use an aerogel sand made of aerogel grains of controlled granulometry. Radiators of both types blocks and sand are used in the franco-danish experiment to be launched aboard the NASA satellite HEAO-C in July 1979 [fr

  14. Wet-Spun Superelastic Graphene Aerogel Millispheres with Group Effect.

    Science.gov (United States)

    Zhao, Xiaoli; Yao, Weiquan; Gao, Weiwei; Chen, Hao; Gao, Chao

    2017-09-01

    Graphene aerogel has attracted great attention due to its unique properties, such as ultralow density, superelasticity, and high specific surface area. It shows huge potential in energy devices, high-performance pressure sensors, contaminates adsorbents, and electromagnetic wave absorbing materials. However, there still remain some challenges to further promote the development and real application of graphene aerogel including cost-effective scalable fabrication and miniaturization with group effect. This study shows millimeter-scale superelastic graphene aerogel spheres (GSs) with group effect and multifunctionality. The GSs are continuously fabricated on a large scale by wet spinning of graphene oxide liquid crystals followed by facile drying and thermal annealing. Such GS has an unusual core-shell structure with excellent elasticity and specific strength. Significantly, both horizontally and vertically grouped spheres exhibit superelasticity comparable to individual spheres, enabling it to fully recover at 95% strain, and even after 1000 compressive cycles at 70% strain, paving the way to wide applications such as pressure-elastic and adsorbing materials. The GS shows a press-fly behavior with an extremely high jump velocity up to 1.2 m s -1 . For the first time, both free and oil-adsorbed GSs are remotely manipulated on water by electrostatic charge due to their ultralow density and hydrophobic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Aerogel RICH for the Belle II forward PID

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, S., E-mail: shohei.nishida@kek.jp [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Adachi, I. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, N. [Toho University, Funabashi (Japan); Hara, K. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, T. [Nagoya University, Nagoya (Japan); Iwata, S.; Kakuno, H. [Tokyo Metropolitan University, Hachioji (Japan); Kawai, H. [Chiba University, Chiba (Japan); Korpar, S.; Krizan, P. [Jozef Stefan Institute, Ljubljana (Slovenia); Ogawa, S. [Toho University, Funabashi (Japan); Pestotnik, R.; Ŝantelj, L.; Seljak, A. [Jozef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, T. [Tokyo Metropolitan University, Hachioji (Japan); Tabata, M. [Japan Aerospace Exploration Agency (JAXA), Sagamihara (Japan); Tahirovic, E. [Jozef Stefan Institute, Ljubljana (Slovenia); Yoshida, K. [Tokyo Metropolitan University, Hachioji (Japan); Yusa, Y. [Niigata University, Niigata (Japan)

    2014-12-01

    The Belle II spectrometer, a follow up of the very successful Belle experiment, is under construction at the SuperKEKB electron–positron collider at KEK in Japan. For the PID system in the forward region of the spectrometer, a proximity focusing ring-imaging Cherenkov (RICH) counter with an aerogel radiator is being developed. The counter will provide a 4σ separation of pions and kaons up to momenta of 4 GeV/c. For the position sensitive photon sensor, a 144-channel Hybrid Avalanche Photo-Detector (HAPD) has been developed with Hamamatsu Photonics K.K. The readout electronics is based on the custom developed ASIC. The design of the components is currently being finalized and part of their mass production have already started. Herein, we report the final design of the counter and a prototype test conducted with test beams at DESY. - Highlights: • We are constructing a RICH counter with aerogel radiator for Belle II. • Beam test for the prototype Aerogel RICH shows its good performance. • The effect of the neutron irradiation of the photodetector is examined.

  16. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen; Majumdar, Apala; Style, Robert; Sander, Graham

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates

  17. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    Science.gov (United States)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  18. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    Science.gov (United States)

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  19. Property control of graphene aerogels by in situ growth of silicone polymer

    Science.gov (United States)

    Zhou, Shuai; Zhou, Xiang; Hao, Gazi; Jiang, Wei; Wang, Tianhe

    2018-05-01

    Modulation of the density (from 3.5 to 64 mg cm-3), hydrophobicity and oil-uptake capability of graphene aerogels in extensive ranges were achieved by reacting (3-Mercaptopropyl)trimethoxysilane (MPS) with graphene oxide solutions under heating. The reaction allowed a characteristic silicone substructure to be formed on graphene and joint the graphene layers firmly together. With the increase of MPS concentrations (≤ca. 0.2 vol%), the nano silicone polymer grown on graphene functioned as a "linker" and "spacer", leading to a substantial decrease of the aerogel density. Because of the formation of silicone polymer and the characteristic nano-micro substructures on the backbones of graphene aerogels, the graphene aerogels exhibited a high hydrophobicity with the water contact angle consistently exceeding 142 degrees. Functionalized graphene aerogels with a density of 3.5 mg cm-3 were conveniently fabricated that displayed an extraordinary oil absorption capacity, 182 times for lubricating oil and 143 times for n-hexane of its own weight. Furthermore, the aerogels maintained their ultra-high absorption capability even after 20 absorption-distillation cycles, due to structural integrity held by the strong interfacial adhesion between graphene sheets and polymer chains of aerogels. This study offers a promising graphene aerogels and also provides a strategy for fabricating extra low dense functional materials.

  20. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    Directory of Open Access Journals (Sweden)

    Hao Ma

    2018-01-01

    Full Text Available Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  1. Alumina/silica aerogel with zinc chloride as an alkylation catalyst

    Directory of Open Access Journals (Sweden)

    DEJAN U. SKALA

    2001-10-01

    Full Text Available The alumina/silica with zinc chloride aerogel alkylation catalyst was obtained using a one step sol-gel synthesis, and subsequent drying with supercritical carbon dioxide. The aerogel catalyst activity was found to be higher compared to the corresponding xerogel catalyst, as a result of the higher aerogel surface area, total pore volume and favourable pore size distribution. Mixed Al–O–Si bonds were present in both gel catalyst types. Activation by thermal treatment in air was needed prior to catalytic alkylation, due to the presence of residual organic groups on the aerogel surface. The optimal activation temperature was found to be in the range 185–225°C, while higher temperatures resulted in the removal of zinc chloride from the surface of the aerogel catalyst with a consequential decrease in the catalytic activity. On varying the zinc chloride content, the catalytic activity of the aerogel catalyst exhibited a maximum. High zinc chloride contents decreased the catalytic activity of the aerogel catalyst as the result of the pores of the catalyst being plugged with this compound, and the separation of the alumina/silica support into Al-rich and Si-rich phases. The surface area, total pore volume, pore size distribution and zinc chloride content had a similar influence on the activity of the aerogel catalyst as was the case of xerogel catalyst and supported zinc chloride catalysts.

  2. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    Science.gov (United States)

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  3. Optimization of an aerogel cerenkov detector having a mirror light collection system

    International Nuclear Information System (INIS)

    Johansson, K.E.; Aakesson, T.; Norrby, J.

    1979-01-01

    Cerenkov detectors with silica aerogel of refractive indec 1.03 as the radiator have been tested in a particle beam at the CERN Proton Synchrotron. With a detector surface of 22 x 50 cm 2 and 9 cm thickness of aerogel, the number of photoelectrons was found to be 6.5 for β = 1 particles. (author)

  4. Preparation and characterization of silica aerogels from diatomite via ambient pressure drying

    Science.gov (United States)

    Wang, Baomin; Ma, Hainan; Song, Kai

    2014-07-01

    The silica aerogels were successfully fabricated under ambient pressure from diatomite. The influence of different dilution ratios of diatomite filtrate on physical properties of aerogels were studied. The microstructure, surface functional groups, thermal stability, morphology and mechanical properties of silica aerogels based on diatomite were investigated by BET adsorption, FT-IR, DTA-TG, FESEM, TEM, and nanoindentation methods. The results indicate that the filtrate diluted with distilled water in a proportion of 1: 2 could give silica aerogels in the largest size with highest transparency. The obtained aerogels with density of 0.122-0.203 g/m3 and specific surface area of 655.5-790.7 m2/g are crack free amorphous solids and exhibited a sponge-like structure. Moreover, the peak pore size resided at 9 nm. The initial aerogels were hydrophobic, when being heat-treated around 400°C, the aerogels were transformed into hydrophilic ones. The obtained aerogel has good mechanical properties.

  5. Functionalized silica aerogels for gas-phase purification, sensing, and catalysis: A review

    Energy Technology Data Exchange (ETDEWEB)

    Amonette, James E.; Matyáš, Josef

    2017-09-01

    Silica aerogels have a rich history and a unique, fascinating gas-phase chemistry that has lent them to many diverse applications. This review starts with a brief discussion of the fundamental issues driving the movement of gases in silica aerogels and then proceeds to provide an overview of the work that has been done with respect to the purification of gases, sensing of individual gases, and uses of silica aerogels as catalysts for gas-phase reactions. Salient features of the research behind these different applications are presented, and, where appropriate, critical aspects that affect the practical use of the aerogels are noted. Specific sections under the gas-purification category focus on the removal of airborne nanoparticles, carbon dioxide, volatile organic compounds, sulfur gases and radioactive iodine from gas streams. The use of silica aerogels as sensors for humidity, oxygen, hydrocarbons, volatile acids and bases, various non-ammoniacal nitrogen gases, and viral particles is discussed. With respect to catalysis, the demonstrated use of silica aerogels as supports for oxidation, Fischer-Tropsch, alkane isomerization, and hydrogenation reactions is reviewed, along with a section on untested catalytic formulations involving silica aerogels. A short section focuses on recent developments in thermomolecular Knudsen compressor pumps using silica aerogel membranes. The review continues with an overview of the production methods, locations of manufacturing facilities globally, and a brief discussion of the economics before concluding with a few remarks about the present and future trends revealed by the work presented.

  6. Low-temperature specific-heat and thermal-conductivity of silica aerogels

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    Specific heat, C(p), and thermal conductivity, lambda, have been measured on a series of base-catalyzed silica aerogels at temperatures between 0.05 and 20 K. Results for both C(p)(T) and lambda(T) confirm that the different length-scale regions observed in the aerogel structure are reflected...

  7. Colloid migration in porous media

    International Nuclear Information System (INIS)

    Hunt, J.R.; McDowell-Boyer; Sitar, N.

    1985-01-01

    Retention of radionuclides for long periods near waste repositories depends upon multiple barriers, one of which is adsorption to immobile solid surfaces. Since small particles and colloidal matter have high adsorption capacities per unit mass and can be mobile in subsurface flows, colloidal transport of waste components requires analysis. Theories for predicting colloid migration through porous media have been developed in the filtration literature. The applicability of filtration theories for predicting particle and colloid transport. Emphasis is on suspended matter much smaller than pore sizes, where physical and chemical forces control migration rather than size dependent physical straining. In general, experimentally verifiable theories exist for particle filtration by clean media, and a sensitivity analysis is possible on particle and media properties and fluid flow rate. When particle aggregates accumulate within pores, media permeability decreases, resulting in flow field alteration and possible radionuclide isolation. An analysis of the limited experimental data available indicates that present theories cannot predict long-term colloid transport when permeability reduction occurs. The coupling of colloid attachment processes and the hydrologic flow processes requires more extensive laboratory field research than has currently been carried out. An emphasis on the fundamental mechanisms is necessary to enhance long-term predictability

  8. Highly Porous, Rigid-Rod Polyamide Aerogels with Superior Mechanical Properties and Unusually High Thermal Conductivity.

    Science.gov (United States)

    Williams, Jarrod C; Nguyen, Baochau N; McCorkle, Linda; Scheiman, Daniel; Griffin, Justin S; Steiner, Stephen A; Meador, Mary Ann B

    2017-01-18

    We report here the fabrication of polyamide aerogels composed of poly-p-phenylene-terephthalamide, the same backbone chemistry as DuPont's Kevlar. The all-para-substituted polymers gel without the use of cross-linker and maintain their shape during processing-an improvement over the meta-substituted cross-linked polyamide aerogels reported previously. Solutions containing calcium chloride (CaCl 2 ) and para-phenylenediamine (pPDA) in N-methylpyrrolidinone (NMP) at low temperature are reacted with terephthaloyl chloride (TPC). Polymerization proceeds over the course of 5 min resulting in gelation. Removal of the reaction solvent via solvent exchange followed by extraction with supercritical carbon dioxide provides aerogels with densities ranging from 0.1 to 0.3 g/cm 3 , depending on the concentration of calcium chloride, the formulated number of repeat units, n, and the concentration of polymer in the reaction mixture. These variables were assessed in a statistical experimental study to understand their effects on the properties of the aerogels. Aerogels made using at least 30 wt % CaCl 2 had the best strength when compared to aerogels of similar density. Furthermore, aerogels made using 30 wt % CaCl 2 exhibited the lowest shrinkage when aged at elevated temperatures. Notably, whereas most aerogel materials are highly insulating (thermal conductivities of 10-30 mW/m K), the polyamide aerogels produced here exhibit remarkably high thermal conductivities (50-80 mW/(m K)) at the same densities as other inorganic and polymer aerogels. These high thermal conductivities are attributed to efficient phonon transport by the rigid-rod polymer backbone. In conjunction with their low cost, ease of fabrication with respect to other polymer aerogels, low densities, and high mass-normalized strength and stiffness properties, these aerogels are uniquely valuable for applications such as lightweighting in consumer electronics, automobiles, and aerospace where weight reduction is

  9. X-ray radiographic technique for measuring density uniformity of silica aerogel

    International Nuclear Information System (INIS)

    Tabata, Makoto; Hatakeyama, Yoshikiyo; Adachi, Ichiro; Morita, Takeshi; Nishikawa, Keiko

    2013-01-01

    This paper proposes a new X-ray radiographic technique for measuring density uniformity of silica aerogels used as radiator in proximity-focusing ring-imaging Cherenkov detectors. To obtain high performance in a large-area detector, a key characteristic of radiator is the density (i.e. refractive index) uniformity of an individual aerogel monolith. At a refractive index of n=1.05, our requirement for the refractive index uniformity in the transverse plane direction of an aerogel tile is |δ(n−1)/(n−1)|<4% in a focusing dual layer radiator (with different refractive indices) scheme. We applied the radiographic technique to evaluate the density uniformity of our original aerogels from a trial production and that of Panasonic products (SP-50) as a reference, and to confirm they have sufficient density uniformity within ±1% along the transverse plane direction. The measurement results show that the proposed technique can quantitatively estimate the density uniformity of aerogels.

  10. Supercritical methanol drying as a convenient route to phenolic-furfural aerogels

    Energy Technology Data Exchange (ETDEWEB)

    Albert, Donald F.; Bruno, Joseph W. [Department of Chemistry, Wesleyan University, 06459 Middletown, CT (United States); Andrews, Greg R.; Mendenhall, Robert S. [American Aerogel Corporation, 1000 Corporate Row, 06416 Cromwell, CT (United States)

    2001-12-01

    Organic aerogels are prepared by the acid catalyzed cross-linking of phenolic-furfural (PF) precursors in methanol solution, and the solvent is subsequently removed at high temperature as the supercritical fluid. The resulting aerogel is a brown opaque solid and has been prepared as 30 ml cylindrical monoliths exhibiting little or no shrinkage during formation. These solids, which are routinely available with a density as low as ca. 125mg/cm{sup 3}, have been characterized by chemical methods (infrared spectroscopy and CP-MAS 13C NMR spectrometry) and physical techniques (Brunauer-Emmet-Teller surface area, transmission and scanning electron microscopy). In addition, thermal conductivities have been determined, and show that the PF aerogels are excellent thermal insulators. These studies establish that the materials described herein exhibit chemical and physical properties very similar to those seen for organic aerogels prepared with low temperature processing techniques. The current method constitutes a convenient and rapid route to organic aerogels.

  11. Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives

    Directory of Open Access Journals (Sweden)

    Carlos Macias

    2016-01-01

    Full Text Available We report the synthesis of conductive and mechanically compliant monolithic carbon aerogels prepared by sol-gel polycondensation of melamine-resorcinol-formaldehyde (MRF mixtures by incorporating diatomite and carbon black additives. The resulting aerogels composites displayed a well-developed porous structure, confirming that the polymerization of the precursors is not impeded in the presence of either additive. The aerogels retained the porous structure after etching off the siliceous additive, indicating adequate cross-linking of the MRF reactants. However, the presence of diatomite caused a significant fall in the pore volumes, accompanied by coarsening of the average pore size (predominance of large mesopores and macropores. The diatomite also prevented structural shrinkage and deformation of the as-prepared monoliths upon densification by carbonization, even after removal of the siliceous framework. The rigid pristine aerogels became more flexible upon incorporation of the diatomite, favoring implementation of binderless monolithic aerogel electrodes.

  12. Reduced graphene oxide aerogel networks with soft interfacial template for applications in bone tissue regeneration

    Science.gov (United States)

    Asha, S.; Ananth, A. Nimrodh; Jose, Sujin P.; Rajan, M. A. Jothi

    2018-05-01

    Reduced Graphene Oxide aerogels (A-RGO), functionalized with chitosan, were found to induce and/or accelerate the mineralization of hydroxyapatite. The functionalized chitosan acts as a soft interfacial template on the surface of A-RGO assisting the growth of hydroxyapatite particles. The mineralization on these soft aerogel networks was performed by soaking the aerogels in simulated body fluid, relative to time. Polymer-induced mineralization exhibited an ordered arrangement of hydroxyapatite particles on reduced graphene oxide aerogel networks with a higher crystalline index (IC) of 1.7, which mimics the natural bone formation indicating the importance of the polymeric interfacial template. These mineralized aerogels which mimic the structure and composition of natural bone exhibit relatively higher rate of cell proliferation, osteogenic differentiation and osteoid matrix formation proving it to be a potential scaffold for bone tissue regeneration.

  13. Silica aerogel Cherenkov counter for the KEK B-factory experiment

    CERN Document Server

    Sumiyoshi, T; Enomoto, R; Iijima, T; Suda, R; Leonidopoulos, C; Marlow, D R; Prebys, E; Kawabata, R; Kawai, H; Ooba, T; Nanao, M; Suzuki, K; Ogawa, S; Murakami, A; Khan, M H R

    1999-01-01

    Low-refractive-index silica aerogel is a convenient radiator for threshold-type Cherenkov counters, which are used for particle identification in high-energy physics experiments. For the BELLE detector at the KEK B-Factory we have produced about 2 m sup 3 of hydrophobic silica aerogels of n=1.01-1.03 using a new production method. The particle identification capability of the aerogel Cherenkov counters was tested and 3 sigma pion/proton separation has been achieved at 3.5 GeV/c. Radiation hardness of the aerogels was confirmed up to 9.8 Mrad. The Aerogel Cherenkov counter system (ACC) was successfully installed in the BELLE just before this conference.

  14. Effect of synthetic iron colloids on the microbiological NH(4)(+) removal process during groundwater purification.

    Science.gov (United States)

    Wolthoorn, Anke; Temminghoff, Erwin J M; van Riemsdijk, Willem H

    2004-04-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater that is used to make drinking water potable. In a groundwater system with pH>7 subsurface aeration results in non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove iron in situ, the formation of non-mobile iron precipitate, which facilitates the metal's removal, is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of ammonium (NH(4)(+)) in the purification station. Mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process. Therefore, the objective of this study was to assess whether synthetic iron colloids could improve the NH(4)(+) removal process. The effect of synthetic iron colloids on the NH(4)(+) removal process was studied using an artificial purification set-up on a laboratory scale. Columns that purified groundwater with or without added synthetic iron colloids were set up in duplicate. The results showed that the NH(4)(+) removal was significantly ( alpha = 0.05 ) increased in columns treated with the synthetic iron colloids. Cumulative after 4 months about 10% more NH(4)(+) was nitrified in the columns that was treated with the groundwater containing synthetic iron colloids. The results support the hypothesis that mobile iron colloids could be the link between subsurface aeration and the positive effect on the NH(4)(+) removal process.

  15. The colloid hematite particle migration through the unsaturated porous bed at the presence of biosurfactants.

    Science.gov (United States)

    Pawlowska, Agnieszka; Sznajder, Izabela; Sadowski, Zygmunt

    2017-07-01

    Colloidal particles have an ability to sorb heavy metals, metalloids, and organic compounds (e.g. biosurfactants) present in soil and groundwater. The pH and ionic strength changes may promote release of such particles causing potential contaminant transport. Therefore, it is very important to know how a colloid particle-mineral particle and colloid-mineral-biosurfactant system behaves in the natural environment. They can have negative impact on the environment and human health. This study highlighted the influence of biosurfactants produced by Pseudomonas aeruginosa on the transport of colloidal hematite (α-Fe 2 O 3 ) through porous bed (materials collected from the Szklary and Zloty Stok solid waste heaps from Lower Silesia, Poland). Experiments were conducted using column set in two variants: colloid solution with porous bed and porous bed with adsorbed biosurfactants, in the ionic strengths of 5 × 10 -4 and 5 × 10 -3  M KCl. The zeta potential of mineral materials and colloidal hematite, before and after adsorption of biosurfactant, was determined. Obtained results showed that reduction in ionic strength facilitates colloidal hematite transport through the porous bed. The mobility of colloidal hematite was higher when the rhamnolipid adsorbed on the surface of mineral grain.

  16. Dissociation behavior of Np(IV) from humic acid colloid

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, K.; Tobitsuka, S. [Japan Nuclear Cycle Development Institute, 4-33 Muramatsu, Tokai, Naka-gun, Ibaraki 319-1194 (Japan); Kohara, Y. [Inspection Development Corporation, 4-33, Muramatsu, Tokai, Nakagun, Ibaraki 319-1112 (Japan)

    2005-07-01

    PAHA, while only 10% is dissociated in the presence of 500 mg L{sup -1} of PAHA. On the other hand, the size of humic colloid up-taking Np increases to larger range than 50 kD in case of 50 and 100 mg L{sup -1}, while only the slight increases can be seen in the case of 500 mg L{sup -1}. Such a complexation and dissociation behavior of Np(IV) with humic colloid seems to be explained by the processes proposed as metal ion / humic colloid interaction as follows [1][2]. i) After a rapid initial sorption, the metal ion migrates to stronger binding sites or structural rearrangement of humic colloid occurs so that the metal ion binds in the interior of humic colloid, where steric shielding of the metal ion against the solution is caused. ii) The metal ion sorbed on the humic colloid bridges several humic molecules and coiling or agglomeration occurs. This behavior increases with increasing PAHA concentration, while no significant rearrangement can be observed in the lower concentration range of PAHA than 5 mg L{sup -1}. [1] Geckeis H., et al. Environ. Sci. Technol., 36, pp.2946-2952(2002) [2] Artinger R., et al. Environ. Sci. Technol., 36, pp.4358-4363(2002). (authors)

  17. Colloid remediation in groundwater by polyelectrolyte capture

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Rao, S.; Jain, R.

    1992-01-01

    This paper describes an ongoing study to characterize groundwater colloids, to understand the geochemical factors affecting colloid transport in groundwater, and to develop an in-situ colloid remediation process. The colloids and suspended particulate matter used in this study were collected from a perched aquifer site that has radiation levels several hundred times the natural background and where previous researchers have measured and reported the presence of radiocolloids containing plutonium and americium. At this site, radionuclides have spread over several kilometers. Inorganic colloids collected from water samples are characterized with respect to concentration, mineralogy, size distribution, electrophoretic mobility (zeta potential), and radioactivity levels. Presented are the methods used to investigate the physiochemical factors affecting colloid transport and the preliminary analytical results. Included below are a description of a colloid transport model and the corresponding computational code, water analyses, characterization of the inorganic colloids, and a conceptual description of a process for in-situ colloid remediation using the phenomenon of polyelectrolyte capture

  18. Tunable Optical Properties of Metal Nanoparticle Sol-Gel Composites

    Science.gov (United States)

    Smith, David D.; Snow, Lanee A.; Sibille, Laurent; Ignont, Erica

    2001-01-01

    We demonstrate that the linear and non-linear optical properties of sol-gels containing metal nanoparticles are highly tunable with porosity. Moreover, we extend the technique of immersion spectroscopy to inhomogeneous hosts, such as aerogels, and determine rigorous bounds for the average fractional composition of each component, i.e., the porosity of the aerogel, or equivalently, for these materials, the catalytic dispersion. Sol-gels containing noble metal nanoparticles were fabricated and a significant blue-shift in the surface plasmon resonance (SPR) was observed upon formation of an aerogel, as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping and aggregation this blue-shift does not strictly obey standard effective medium theories. Mitigation of these complications is achieved by avoiding the use of alcohol and by annealing the samples in a reducing atmosphere.

  19. Synthesis, Processing, and Characterization of Inorganic-Organic Hybrid Cross-Linked Silica, Organic Polyimide, and Inorganic Aluminosilicate Aerogels

    Science.gov (United States)

    Nguyen, Baochau N.; Guo, Haiquan N.; McCorkle, Linda S.

    2014-01-01

    As aerospace applications become ever more demanding, novel insulation materials with lower thermal conductivity, lighter weight and higher use temperature are required to fit the aerospace application needs. Having nanopores and high porosity, aerogels are superior thermal insulators, among other things. The use of silica aerogels in general is quite restricted due to their inherent fragility, hygroscopic nature, and poor mechanical properties, especially in extereme aerospace environments. Our research goal is to develop aerogels with better mechanical and environmental stability for a variety of aeronautic and space applications including space suit insulation for planetary surface missions, insulation for inflatable structures for habitats, inflatable aerodynamic decelerators for entry, descent and landing (EDL) operations, and cryotank insulation for advance space propulsion systems. Different type of aerogels including organic-inorganic polymer reinforced (hybrid) silica-based aerogels, polyimide aerogels and inorganic aluminosilicate aerogels have been developed and examined.

  20. Green synthesis of amphipathic graphene aerogel constructed by using the framework of polymer-surfactant complex for water remediation

    Science.gov (United States)

    Cao, Jingjing; Wang, Ziyuan; Yang, Xianhou; Tu, Jing; Wu, Ronglan; Wang, Wei

    2018-06-01

    Graphene aerogels have been extensively studied in water treatment and oil remediation. We report a mild and green method to prepare a 3D-columnar graphene aerogel. The aerogel was synthesized by using polyvinyl alcohol (PVA) and stearic acid (SA) as crosslinking agents to construct a framework of reduced graphene oxide (RGO). The interaction between PVA, SA, and stacked RGO sheets created a mechanically very robust aerogel. The aerogel possesses ultra-light performance with the destiny ranging from 4.9 to 10 mg cm-3. The aerogel also demonstrated ultrafast oil absorption, good fire-resistance, and excellent mechanical properties. The adsorptive capacities are in the range of 105-250 times of its original weight for various organic liquids after the absorption. The aerogel also exhibited a strong durability and reusability, and after ten cycles of absorbing-squeezing, the adsorptive capacity is nearly unchanged, indicating potential application in practical oil remediation.

  1. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, K. [ed.

    1996-02-01

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO{sub 3} type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A K{sub p} value of 2* 10{sup 6} ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs.

  2. Bacteria, colloids and organic carbon in groundwater at the Bangombe site in the Oklo area

    International Nuclear Information System (INIS)

    Pedersen, K.

    1996-02-01

    This report describes how microorganisms, colloids and organic matter were sampled from groundwater from six boreholes at the Bangombe site in the Oklo region and subsequently analyzed. For analysis of microorganisms, DNA was extracted from groundwater, amplified and cloned and information available in the ribosomal 16S rRNA gene was used for mapping diversity and distribution of bacteria. Each borehole was dominated by species that did not dominate in any of the other boreholes, a result that probably reflects documented differences in the geochemical environment. Analyses of sampled colloids included SEM and ICP-MS analysis of colloids on membrane and single particle analysis of samples in bottles. The colloid concentration was rather low in these Na-Mg-Ca-HCO 3 type waters. Trace element results show that transition metals and some heavy metals are associated with the colloid phase. Distribution coefficients of trace elements between the water and colloid phases were estimated. For example for uranium, an average of 200 pg/ml was detected in the water, and 40 pg/ml was detected in the colloid phase. A K p value of 2* 10 6 ml/g was calculated, considering (colloid) = 100 ng/ml. Groundwater samples were collected for analysis of the concentration of organic carbon (TOC), humic substances and metals associated with the humic substances. TOC varied in the range 4-14 mg/l in three boreholes, one borehole had a TOC<1.5 mg/l. The metal speciation study indicated that a large fraction, 8-67% of uranium was bound to the humic matter compared to the fractions of Ca and Fe (<0.4% and 0.02-10%, resp.). 60 refs, 8 figs, 16 tabs

  3. In Situ Generated Colloid Transport of Cu and Zn in Reclaimed Mine Soil Profiles Associated with Bio solids Application

    International Nuclear Information System (INIS)

    Miller, J.O.; Karathanasis, A.D.; Matocha, C.J.

    2011-01-01

    Areas reclaimed for agricultural uses following coal mining often receive bio solids applications to increase organic matter and fertility. Transport of heavy metals within these soils may be enhanced by the additional presence of bio solids colloids. Intact monoliths from reclaimed and undisturbed soils in Virginia and Kentucky were leached to observe Cu and Zn mobility with and without bio solids application. Transport of Cu and Zn was observed in both solution and colloid associated phases in reclaimed and undisturbed forest soils, where the presence of unweathered spoil material and bio solids amendments contributed to higher metal release in solution fractions. Up to 81% of mobile Cu was associated with the colloid fraction, particularly when gabbiest was present, while only up to 18% of mobile Zn was associated with the colloid fraction. The colloid bound Cu was exchangeable by ammonium acetate, suggesting that it will release into groundwater resources.

  4. In Situ Generated Colloid Transport of Cu and Zn in Reclaimed Mine Soil Profiles Associated with Bio solids Application

    International Nuclear Information System (INIS)

    Miller, J.O.; Karathanasis, A.D.; Matocha, C.J.

    2011-01-01

    Areas reclaimed for agricultural uses following coal mining often receive bio solids applications to increase organic matter and fertility. Transport of heavy metals within these soils may be enhanced by the additional presence of bio solids colloids. Intact monoliths from reclaimed and undisturbed soils in Virginia and Kentucky were leached to observe Cu and Zn mobility with and without bio solids application. Transport of Cu and Zn was observed in both solution and colloid associated phases in reclaimed and undisturbed forest soils, where the presence of unweathered spoil material and bio solids amendments contributed to higher metal release in solution fractions. Up to 81% of mobile Cu was associated with the colloid fraction, particularly when gibbsite was present, while only up to 18% of mobile Zn was associated with the colloid fraction. The colloid bound Cu was exchangeable by ammonium acetate, suggesting that it will release into groundwater resources.

  5. Chalcogen-based aerogels as a multifunctional platform for remediation of radioactive iodine

    International Nuclear Information System (INIS)

    Riley, Brian J.; Chun, Jaehun; Ryan, Joseph V.; Matyas, Josef; Li, Xiaohong S.; Matson, Dean W.; Sundaram, S.K.; Strachan, Denis M.; Vienna, John D.

    2011-01-01

    Aerogels employing chalcogen-based (i.e., S, Se, and/or Te) structural units and interlinking metals are termed chalcogels and have many emerging applications. Here, chalcogels are discussed in the context of nuclear fuel reprocessing and radioactive waste remediation. Motivated by previous work on removal of heavy metals in aqueous solution, we explored the application of germanium sulfide chalcogels as a sorbent for gas-phase I2 based on Pearson's Hard/Soft Acid-Base (HSAB) principle. This work was driven by a significant need for high-efficiency sorbents for I-129, a long-lived isotope evolved during irradiated UO2 nuclear fuel reprocessing. These chalcogel compositions are shown to possess an affinity for iodine gas, I2(g), at various concentrations in air and the affinity is attributed to a strong chemical attraction between the chalcogen and I2(g), according to the HSAB principle. The high sorption efficiency is facilitated by the high porosity as well as the exceptionally large surface area of the chalcogels.

  6. Adsorption of iodide and iodate on colloidal silver surface

    International Nuclear Information System (INIS)

    Zhang Aiping; Tie Xiaoyun; Zhang Jinzhi; An Yanwei; Li Lingjie

    2008-01-01

    'Chemically pure' silver colloids were prepared by laser ablated method to investigate their adsorption-induced spectral and morphologic changes, using UV-visible absorption, Raman and transmission electron microscopy (TEM) techniques, when nucleophilic different anions (IO 3 - and I - ) were added into sols. It reveals that the adsorption of nucleophiles on silver surfaces leads to an excess negative charge in the metal interior and modifies both surface charge density and the Fermi levels of metal, which is responsible for the colloidal aggregation, reconstruction and appearance of new resonance absorption bands or with wavelength shift. In addition, two models regarding different adsorption effects of these two anions on silver surfaces were proposed to explain their variant spectral and TEM phenomena.

  7. Size-fractionation of groundwater arsenic in alluvial aquifers of West Bengal, India: the role of organic and inorganic colloids.

    Science.gov (United States)

    Majumder, Santanu; Nath, Bibhash; Sarkar, Simita; Chatterjee, Debashis; Roman-Ross, Gabriela; Hidalgo, Manuela

    2014-01-15

    Dissolved organic carbon (DOC) and Fe mineral phases are known to influence the mobility of arsenic (As) in groundwater. Arsenic can be associated with colloidal particles containing organic matter and Fe. Currently, no data is available on the dissolved phase/colloidal association of As in groundwater of alluvial aquifers in West Bengal, India. This study investigated the fractional distribution of As (and other metals/metalloids) among the particulate, colloidal and dissolved phases in groundwater to decipher controlling behavior of organic and inorganic colloids on As mobility. The result shows that 83-94% of As remained in the 'truly dissolved' phases (i.e., 0.05 μm size) colloidal particles, which indicates the close association of As with larger Fe-rich inorganic colloids. In smaller (i.e., <0.05 μm size) colloidal particles strong positive correlation is observed between As and DOC (r(2)=0.85), which highlights the close association of As with smaller organic colloids. As(III) is mainly associated with larger inorganic colloids, whereas, As(V) is associated with smaller organic/organometallic colloids. Scanning Electron Microscopy and Energy Dispersive X-ray spectroscopy confirm the association of As with DOC and Fe mineral phases suggesting the formation of dissolved organo-Fe complexes and colloidal organo-Fe oxide phases. Attenuated total reflectance-Fourier transform infrared spectroscopy further confirms the formation of As-Fe-NOM organometallic colloids, however, a detailed study of these types of colloids in natural waters is necessary to underpin their controlling behavior. © 2013 Elsevier B.V. All rights reserved.

  8. Supported Pd Catalysts Prepared via Colloidal Method: The Effect of Acids

    NARCIS (Netherlands)

    Zhao, Yingnan; Jia, L.; Medrano Catalan, J.A.; Ross, J.R.H.; Ross, J.R.H.; Lefferts, Leonardus

    2013-01-01

    Organic capping agents are necessary for metallic nanoparticle preparation via colloidal method; however, complete removal of the capping agent and cleaning the metal surface is a well-known challenge in application. In this Article, we show that polyvinyl alcohol (PVA)-stabilized palladium

  9. Sorption of nuclides on organic colloids and their migration through porous media. 3

    International Nuclear Information System (INIS)

    Nagasaki, Shinya

    2004-03-01

    The environmental behaviors of actinide and heavy metal ions depend on their speciation. Especially, the binding of these ions to natural colloids such as natural organic materials (NOMs) and metal (hydr)oxides (OXs) are of great importance in soil and aquatic systems. Therefore, for the reliable risk assessment and the remediation of the contaminated environment it is necessary to develop chemical thermodynamical models that ca predict the speciation of metal ions in the presence of natural colloids. The binding behavior of metal ions to natural colloids is complicated because of their heterogeneous nature and the interaction between different natural colloids (ex. the adsorption of NOM on OXs) which change the site density available for metal ions and the electrostatic potential in solid/water interfacial region. In the previous report, we explained how the metal binding to heterogeneous surfaces can be modeled and showed the modeling results of the copper binding to humic acid by the NICA-Donnan model. This report concentrates on two topic: (1) the modeling of the copper binding to goethite, one of representative metal (hydr)oxides, by the CD-MUSIC model and (2) the influence of the adsorption of humic acid on goethite upon the proton binding to their mixture. The recent progress in the modeling of the ternary system (metal ions/NOMs/OXs) is also introduced at the end of the report. (author)

  10. Wave oscillations in colloid oxyhydrates wave oscillations in colloid oxyhydrates

    CERN Document Server

    Sucharev, Yuri I

    2010-01-01

    The importance of coherent chemistry, that is, the chemistry of periodic oscillatory processes, is increasing at a rapid rate in specific chemical disciplines. While being perfectly understood and highly developed in the fields of physical chemistry, chemical physics and biological chemistry, the periodic developmental paradigm of processes and phenomena still remains poorly developed and misunderstood in classical inorganic chemistry and related branches, such as colloid chemistry. The probability is that we miss subtle colloid chemical phenomena that could be of utmost importance if taken into consideration when catalysis or adsorption is involved. The author here reveals all of the astonishing vistas that periodic wave paradigms open up to researchers in certain colloid chemical systems, and will doubtless stimulate researchers to look at them in a new light.Review from Book News Inc.: Coherent chemistry, the chemistry of periodical oscillatory processes, is well established in physical chemistry, chemical...

  11. The radiation chemistry of colloids

    International Nuclear Information System (INIS)

    Sellers, R.M.

    1976-08-01

    One of the most important problems associated with water cooled reactors is the accumulation on the pipework of radio-active deposits. These are formed from corrosion products which become activated during their passage through the reactor core. The first step of the activation process involves the deposition of the corrosion products, which are present as either colloidal or particulate matter, onto surfaces in the reactor core, i.e. within the radiation zone. A review of the literature on the effect of radiation on colloids is presented. Particular emphasis is given to the dependence of colloidal parameters such as particle size, turbidity and electrophoretic mobility on radiation dose. Most of the data available is of a qualitative nature only. Evidence is presented that colloids of iron are affected (in some cases precipitated) by radiation, and it is suggested that this process plays a part in the deposition of corrosion products in nuclear reactor cores. The bulk of the information available can be rationalized in terms of the radiation chemistry of aqueous solutions, and the interaction of the radicals produced with the atoms or molecules at the surface of the colloidal particles. This approach is very successful in explaining the variation of the mean particle size of monodisperse sulphur hydrosols with dose, for which quantitative experimental data are available. (author)

  12. Electron Acceptor Materials Engineering in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Liu, Huan

    2011-07-15

    Lead sulfide colloidal quantum dot (CQD) solar cells with a solar power conversion efficiency of 5.6% are reported. The result is achieved through careful optimization of the titanium dioxide electrode that serves as the electron acceptor. Metal-ion-doped sol-gel-derived titanium dioxide electrodes produce a tunable-bandedge, well-passivated materials platform for CQD solar cell optimization. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Polymer-mediated synthesis of a nitrogen-doped carbon aerogel with highly dispersed Pt nanoparticles for enhanced electrocatalytic activity

    International Nuclear Information System (INIS)

    2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Kim, Gil-Pyo; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Lee, Minzae; Lee, Yoon Jae; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Bae, Seongjun; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Song, Hyeon Dong; Song, In Kyu; 2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" data-affiliation=" (World Class University (WCU) Program of Chemical Convergence for Energy & Environment C2E2, School of Chemical and Biological Engineering, College of Engineering, Seoul National University (SNU), Seoul 151-742 (Korea, Republic of))" >Yi, Jongheop

    2016-01-01

    Highlights: • Highly dispersed Pt nanoparticles on N-doped carbon aerogel were synthesized for ORR. • Poly(ethyleneimine) was used as nitrogen source and as nucleation sites for Pt. • Precise discussion were conducted to clarify the effect of poly(ethyleneimine). • High Pt dispersion and N-doping results in superior electrocatalytic activity. - Abstract: A simple chemical process for the direct synthesis of a nitrogen (N)-doped carbon aerogel (NCA) with highly dispersed Pt nanoparticles via a poly(ethyleneimine) (PEI)-assisted strategy is described. A resorcinol-formaldehyde (RF) gel was treated with water soluble cationic PEI, which mainly functions as an anchoring site for metal ions. The functionalized PEI chains on the surface of the RF gel resulted in the unique formation of chemical complexes, with PtCl 6 2− anchored to the RF gel, and subsequent homogeneous metal nanoparticle growth. The abundant amino groups containing PEI grafted to the RF gel also allowed the nitrogen atoms to be incorporated into the carbon framework, which can directly be converted into a NCA. The spherical Pt nanoparticles in the resulting material (Pt/NCA) were highly dispersed on the surface of the NCA without any evidenced of agglomeration, even after a thermal annealing at 900 °C. Compared with a Pt/CA synthesized by a conventional reduction method, the Pt/NCA showed enhanced electrochemical performance with a high electrochemically active surface area (191.1 cm 2 g −1 ) and electrocatalytic activity (V onset = 0.95 V vs. RHE) with respect to oxygen reduction. The superior electrocatalytic activities of the Pt/NCA can be attributed to the synergistic effect of the highly dispersed Pt nanoparticles and the N-doped carbon supports that were prepared using the PEI-assisted strategy. The findings reported herein suggest that the use of PEI can be effectively extended to broad applications that require the homogeneous deposition of metal nanoparticles.

  14. Influence of iron solubility and charged surface-active compounds on lipid oxidation in fatty acid ethyl esters containing association colloids.

    Science.gov (United States)

    Homma, Rika; Johnson, David R; McClements, D Julian; Decker, Eric A

    2016-05-15

    The impact of iron compounds with different solubilities on lipid oxidation was studied in the presence and absence of association colloids. Iron (III) sulfate only accelerated lipid oxidation in the presence of association colloids while iron (III) oleate accelerated oxidation in the presence and absence of association colloids. Further, iron (III) oxide retarded lipid oxidation both with and without association colloids. The impact of charged association colloids on lipid oxidation in ethyl oleate was also investigated. Association colloids consisting of the anionic surface-active compound dodecyl sulphosuccinate sodium salt (AOT), cationic surface-active compound hexadecyltrimethylammonium bromide (CTAB), and nonionic surface-active compound 4-(1,1,3,3-tetramethylbutyl)phenyl-polyethylene glycol (Triton X-100) retarded, promoted, and had no effect on lipid oxidation rates, respectively. These results indicate that the polarity of metal compounds and the charge of association colloids play a big role in lipid oxidation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Larnite powders and larnite/silica aerogel composites as effective agents for CO{sub 2} sequestration by carbonation

    Energy Technology Data Exchange (ETDEWEB)

    Santos, A., E-mail: alberto.santos@uca.es [Departamento de Ciencias de la Tierra, Universidad de Cadiz, Puerto Real, 11510 Cadiz (Spain); Ajbary, M.; Morales-Florez, V. [Departamento de Fisica de la Materia Condensada, Universidad de Cadiz, Puerto Real, 11510 Cadiz (Spain); Kherbeche, A. [Universite Sidi Mohamed Ben Abdellah, Ecole Superieure de Technologie, Fes (Morocco); Pinero, M. [Departamento de Fisica Aplicada, Universidad de Cadiz, Puerto Real, 11510 Cadiz (Spain); Esquivias, L. [Departamento de Fisica de la Materia Condensada, Facultad de Fisica, Instituto de Ciencias de Materiales de Sevilla (CSIC), Universidad de Sevilla, 41012 Sevilla (Spain)

    2009-09-15

    This paper presents the results of the carbonation reaction of two sample types: larnite (Ca{sub 2}SiO{sub 4}) powders and larnite/silica aerogel composites, the larnite acting as an active phase in a process of direct mineral carbonation. First, larnite powders were synthesized by the reaction of colloidal silica and calcium nitrate in the presence of ethylene glycol. Then, to synthesize the composites, the surface of the larnite powders was chemically modified with 3-aminopropyltriethoxysilane (APTES), and later this mixture was added to a silica sol previously prepared from tetraethylorthosilicate (TEOS). The resulting humid gel was dried in an autoclave under supercritical conditions for the ethanol. The textures and chemical compositions of the powders and composites were characterized.The carbonation reaction of both types of samples was evaluated by means of X-ray diffraction and thermogravimetric analysis. Both techniques confirm the high efficiency of the reaction at room temperature and atmospheric pressure. A complete transformation of the silicate into carbonate resulted after submitting the samples to a flow of pure CO{sub 2} for 15 min. This indicates that for this reaction time, 1 t of larnite could eliminate about 550 kg of CO{sub 2}. The grain size, porosity, and specific surface area are the factors controlling the reaction.

  16. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  17. Colloid Thrusters, Physics, Fabrication and Performance

    National Research Council Canada - National Science Library

    Martinez-Sanchez, Manuel; Akinwande, Akintunde I

    2005-01-01

    ... discovered pure ionic mode, the microfabrication in Silicon of two types of arrays of colloid or electrospray emitters, and the development of a quantitative theory for the colloidal regime (no ions...

  18. Ambient pressure dried tetrapropoxysilane-based silica aerogels with high specific surface area

    Science.gov (United States)

    Parale, Vinayak G.; Han, Wooje; Jung, Hae-Noo-Ree; Lee, Kyu-Yeon; Park, Hyung-Ho

    2018-01-01

    In the present paper, we report the synthesis of tetrapropoxysilane (TPOS)-based silica aerogels with high surface area and large pore volume. The silica aerogels were prepared by a two-step sol-gel process followed by surface modification via a simple ambient pressure drying approach. In order to minimize drying shrinkage and obtain hydrophobic aerogels, the surface of the alcogels was modified using trichloromethylsilane as a silylating agent. The effect of the sol-gel compositional parameters on the polymerization of aerogels prepared by TPOS, one of the precursors belonging to the Si(OR)4 family, was reported for the first time. The oxalic acid and NH4OH concentrations were adjusted to achieve good-quality aerogels with high surface area, low density, and high transparency. Controlling the hydrolysis and condensation reactions of the TPOS precursor turned out to be the most important factor to determine the pore characteristics of the aerogel. Highly transparent aerogels with high specific surface area (938 m2/g) and low density (0.047 g/cm3) could be obtained using an optimized TPOS/MeOH molar ratio with appropriate concentrations of oxalic acid and NH4OH.

  19. Entropy favours open colloidal lattices

    Science.gov (United States)

    Mao, Xiaoming; Chen, Qian; Granick, Steve

    2013-03-01

    Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed. Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches. The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters.

  20. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils......, using laser diffraction, by agitating the samples using a wet-dispersion unit. This approach eliminated the need for long sedimentation times required by the more classical end-over-end shaking approach and provided information about the time-dependent release of WDC. The total clay content of the soils...... ranged from 0.1 to 0.44 kg kg−1. The WDC content was measured on air-dry and moist 1- to 2-mm aggregates. The WDC content at a reference time was highly correlated to the total clay content (r > 0.91, P soils. Only for two sites was the WDC content correlated to the content of clay...

  1. Impact Verification of Aerogel Insulation Paint on Historic Brick Facades

    Science.gov (United States)

    Ganobjak, Michal; Kralova, Eva

    2017-10-01

    Increasing the sustainability of existing buildings is being motivated by reduction of their energy demands. It is the above all the building envelope and its refurbishment by substitution or addition of new materials that makes the opportunity for reduction of energy consumption. A special type of refurbishment is conservation of historical buildings. Preservation of historic buildings permits also application of innovative methods and materials in addition to the original materials if their effects are known and the gained experience ensures their beneficial effect. On the market, there are new materials with addition of silica aerogel in various forms of products. They are also potentially useful in conservation of monuments. However, the effects of aerogel application in these cases are not known. For refurbishment is commercially available additional transparent insulation paint - Nansulate Clear Coat which is containing aerogel and can be used for structured surfaces such as bricks. A series of experiments examined the thermo-physical manifestation of an ultra-thin insulation coating of Nansulate Clear Coat containing silica aerogel on a brick facade. The experiments of active and passive thermography have observed effects of application on the small-scale samples of the brick façade of a protected historical building. Through a series of experiments were measured thermal insulation effect and influence on the aesthetic characteristics such as change in colour and gloss. The treated samples were compared to a reference. Results have shown no thermal-insulating manifestation of the recommended three layers of insulation paint. The three layers recommended by the manufacturer did not significantly affect the appearance of the brick facade. Color and gloss were not significantly changed. Experiments showed the absence of thermal insulation effect of Nansulate transparent triple coating. The thermal insulation effect could likely be reached by more layers of

  2. Preparation and Characterization of a Calcium Carbonate Aerogel

    Directory of Open Access Journals (Sweden)

    Johann Plank

    2009-01-01

    Full Text Available We report on a facile method for the preparation of a calcium carbonate aerogel consisting of aggregated secondary vaterite particles with an approximate average diameter of 50 nm. It was synthesized via a sol-gel process by reacting calcium oxide with carbon dioxide in methanol and subsequent supercritical drying of the alcogel with carbon dioxide. The resulting monolith was opaque, brittle and had overall dimensions of 6×2×1 cm. It was characterized by X-ray powder diffraction, nitrogen adsorption method (BET, and scanning electron microscopy.

  3. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    International Nuclear Information System (INIS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-01-01

    Highlights: • Tungsten oxide nanoparticles were prepared by pulsed laser ablation (PLA). • A very fine metallic Au particles or coating are decorated on the surface of tungsten oxide nanoparticles. • UV–Vis spectroscopy shows an absorption peak at ∼530 nm which is due to SPR effect of gold. • After exposing to hydrogen gas, Au/WO_3 colloidal nanoparticles show excellent gasochromic coloring. - Abstract: In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl_4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au"3"+ ions were reduced to decorate gold metallic state (Au"0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV–Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions’ reduction happens after adding HAuCl_4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO_3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H_2 and O_2 gases bubbling into the produced colloidal Au/WO_3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  4. Self-assembled 3D ZnSnO3 hollow cubes@reduced graphene oxide aerogels as high capacity anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang, Yankun; Li, Dan; Liu, Yushan; Zhang, Jianmin

    2016-01-01

    Highlights: • 3D ZnSnO 3 hollow cubes@reducedgrapheneoxideaerogels(ZGAs) were fabricated. • The electrochemical properties of ZGAs were investigated for LIBs. • ZGAs demonstrated superior lithium storage performance. - Abstract: 3D ZnSnO 3 hollow cubes@reduced graphene oxide aerogels (ZGAs) were fabricated via a colloid electrostatic self-assembly method between the graphene oxide (GO) nanosheets and poly(diallyldimethylammonium chloride) (PDDA) modified ZnSnO 3 hollow cubes colloid, followed by hydrothermal and freeze-drying treatments. The unique porous architecture of ZnSnO 3 hollow cubes encapsulated by flexible reduced graphene oxide (rGO) sheets not only effectively retarded the huge volume expansion during repeated charge-discharge cycles, but also facilitated fast lithium ion and electron transport through 3D networks. The ZGAs exhibited significantly enhanced cycling stability (745.4 mAh g −1 after 100 cycles at a current of 100 mA g −1 ) and superior rate capability (as high as 552.6 mAh g −1 at 1200 mA g −1 ). The results indicate that the ZGAs are promising anode materials for high-performance lithium-ion batteries.

  5. Colloidal phytosterols: synthesis, characterization and bioaccessibility

    NARCIS (Netherlands)

    Rossi, L.; Seijen ten Hoorn, J.W.M.; Melnikov, S.M.; Velikov, K.P.

    2010-01-01

    We demonstrate the synthesis of phytosterol colloidal particles using a simple food grade method based on antisolvent precipitation in the presence of a non-ionic surfactant. The resulting colloidal particles have a rod-like shape with some degree of crystallinity. The colloidal dispersions display

  6. Self-Assembly of Faceted Colloidal Particles

    NARCIS (Netherlands)

    Gantapara, A.P.

    2015-01-01

    A colloidal dispersion consists of insoluble microscopic particles that are suspended in a solvent. Typically, a colloid is a particle for which at least one of its dimension is within the size range of a nanometer to a micron. Due to collisions with much smaller solvent molecules, colloids perform

  7. Colloid formation during waste glass corrosion

    International Nuclear Information System (INIS)

    Mertz, C.J.; Buck, E.C.; Fortner, J.A.; Bates, J.K.

    1996-01-01

    The long-term behavior of nuclear waste glass in a geologic repository may require a technical consideration of the role of colloids in the release and transport of radionuclides. The neglect of colloidal properties in assessing the near- and far-field migration behavior of actinides may lead to significant underestimates and poor predictions of biosphere exposure from high-level waste (HLW) disposal. Existing data on colloid-facilitated transport suggests that radionuclide migration may be enhanced, but the importance of colloids is not adequately assessed. Indeed, the occurrence of radionuclide transport, attributed to colloidal species, has been reported at Mortandad Canyon, Los Alamos and at the Nevada Test Site; both unsaturated regions are similar to the proposed HLW repository at Yucca Mountain. Although some developments have been made on understanding the transport characteristics of colloids, the characterization of colloids generated from the corrosion of the waste form has been limited. Colloids are known to incorporate radionuclides either from hydrolysis of dissolved species (real colloids) or from adsorption of dissolved species onto existing groundwater colloids (pseudocolloids); however, these colloids may be considered secondary and solubility limited when compared to the colloids generated during glass alteration

  8. Three-dimensional multichannel aerogel of carbon quantum dots for high-performance supercapacitors

    Science.gov (United States)

    Lv, Lingxiao; Fan, Yueqiong; Chen, Qing; Zhao, Yang; Hu, Yue; Zhang, Zhipan; Chen, Nan; Qu, Liangti

    2014-06-01

    A three-dimensional (3D) carbon quantum dot (CQD) aerogel has been prepared by in situ assembling CQDs in the sol-gel polymerization of resorcinol (R) and formaldehyde (F) and subsequently pyrolyzing the formed CQD gel. Compared to the supercapacitor based on the CQD-free aerogel, the supercapacitor fabricated with the CQD aerogel showed 20-fold higher specific capacitance (294.7 F g-1 at the current density of 0.5 A g-1) and an excellent stability over 1000 consecutive charge-discharge cycles.

  9. Dynamic properties of silica aerogels as deduced from specific-heat and thermal-conductivity measurements

    DEFF Research Database (Denmark)

    Bernasconi, A.; Sleator, T.; Posselt, D.

    1992-01-01

    The specific heat C(p) and the thermal conductivity lambda of a series of base-catalyzed silica aerogels have been measured at temperatures between 0.05 and 20 K. The results confirm that the different length-scale regions observed in the aerogel structure are reflected in the dynamic behavior of...... SiO2 are most likely not due to fractal behavior....... the possibility of two spectral dimensions characterizing the fracton modes. Our data imply important differences between the physical mechanisms dominating the low-temperature behavior of aerogels and dense glasses, respectively. From our analysis we also conclude that the low-temperature properties of amorphous...

  10. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Bonding assembled colloids without loss of colloidal stability

    NARCIS (Netherlands)

    Vutukuri, H.R.; Stiefelhagen, J.C.P.; Vissers, T; Imhof, A.; van Blaaderen, A.

    2012-01-01

    In recent years the diversity of self-assembled colloidal structures has strongly increased, as it is fueled by a wide range of applications in materials science and also in soft condensed-matter physics.[1–4] Some potential applications include photonic bandgap (PBG) crystals, materials for

  12. Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation

    International Nuclear Information System (INIS)

    Penninkhof, J.J.; Dillen, T. van; Roorda, S.; Graf, C.; Blaaderen, A. van; Vredenberg, A.M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO 2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks

  13. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    Science.gov (United States)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  14. Stabilized super-thermite colloids: A new generation of advanced highly energetic materials

    Science.gov (United States)

    Elbasuney, Sherif; Gaber Zaky, M.; Radwan, Mostafa; Mostafa, Sherif F.

    2017-10-01

    One of the great impetus of nanotechnology on energetic materials is the achievement of nanothermites (metal-oxide/metal) which are characterized by massive heat output. Yet, full exploitation of super-thermites in highly energetic systems has not been achieved. This manuscript reports on the sustainable fabrication of colloidal Fe2O3 and CuO nanoparticles for thermite applications. TEM micrographs demonstrated mono-dispersed Fe2O3 and CuO with an average particle size of 3 and 15 nm respectively. XRD diffractograms demonstrated highly crystalline materials. SEM micrographs demonstrated a great tendency of the developed oxides to aggregate over drying process. The effective integration and dispersion of mono-dispersed colloidal thermite particles into energetic systems are vital for enhanced performance. Aluminum is of interest as highly energetic metal fuel. In this paper, synthesized Fe2O3 and CuO nanoparticles were re-dispersed in isopropyl alcohol (IPA) with aluminum nanoparticles using ultrasonic prope homogenizer. The colloidal thermite peraticles can be intgegrated into highly energetic system for subsequent nanocomposite development. Thanks to stabilization of colloidal CuO nanoparticles in IPA which could offer intimate mixing between oxidizer and metal fuel. The stabilization mechanism of CuO in IPA was correlated to steric stabilization with solvent molecules. This approach eliminated nanoparticle drying and the re-dispersion of dry aggregates into energetic materials. This manuscript shaded the light on the real development of colloidal thermite mixtures and their integration into highly energetic systems.

  15. Photochemical Synthesis and Properties of Colloidal Copper, Silver and Gold Adsorbed on Quartz

    International Nuclear Information System (INIS)

    Loginov, Anatoliy V.; Gorbunova, Valentina V.; Boitsova, Tatiana B.

    2002-01-01

    Original methods for the photochemical production of stable copper, silver and gold colloids in the form of films on quartz, and dispersion in liquids were devised. It is shown that photochemical synthesis of colloidal metals is a difficult multiphase process, and includes the formation of low-valence forms of Cu(I), Au(I) and nonmetal clusters, colloidal particles and their agglomerates. Cluster stabilization and further growth to colloidal particles are achieved by adsorption onto the solid surface (quartz) or by increasing the viscosity of photolyte. In the absence of these methods of stabilization, the processes of intermediate reoxidation to Cu(II) and Au(III) and agglomeration of Ag and Au colloids proceed in a photolyte. Adsorption and the rate of cluster growth on a quartz surface are speeded up by the action of monochromatic UV light. Experimental models of the mechanism of colloidal formation are suggested. The dependence of the growth rate and the properties of the colloids on conditions of the photochemical procedure (energy and light intensity, concentration of initial complex) has been established

  16. Single-particle colloid tracking in four dimensions.

    Science.gov (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve

    2006-11-21

    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  17. Colloid properties in groundwaters from crystalline formations

    International Nuclear Information System (INIS)

    Degueldre, C.A.

    1994-09-01

    Colloids are present in all groundwaters. The role they may play in the migration of safety-relevant radionuclides in the geosphere therefore must be studied. Colloid sampling and characterisation campaigns have been carried out in Switzerland. On the bases of the results from studies in the Grimsel area, Northern Switzerland and the Black Forest, as well as those obtained by other groups concerned with crystalline waters, a consistent picture is emerging. The groundwater colloids in crystalline formations are predominantly comprised of phyllosilicates and silica originating from the aquifer rock. Under constant hydrogeochemical conditions, the colloid concentration is not expected to exceed 100 ng.ml -1 when the calcium concentration is greater than 10 -4 . However, under transient chemical or physical conditions, such as geothermal or tectonic activity, colloid generation may be enhanced and the colloid concentration may reach 10 μg.ml -1 or more, if both the calcium and sodium concentrations are low. In the Nagra Crystalline Reference Water the expected colloid concentration is -1 . This can be compared, for example, to a colloid concentration of about 10 ng.ml -1 found in Zurzach water. The small colloid concentration in the reference water is a consequence of an attachment factor for clay colloids (monmorillonite) close to 1. A model indicates that at pH 8, the nuclide partition coefficients between water and colloid (K p ) must be smaller than 10 7 ml.g -1 if sorption takes place by surface complexation on colloids, = AIOH active groups forming the dominant sorption sites. This pragmatic model is based on the competition between the formation of nuclide hydroxo complexes in solution and their sorption on colloids. Experimental nuclide sorption data on colloids are compared with those obtained by applying this model. For a low colloid concentration, a sorption capacity of the order of 10 -9 M and reversible surface complexation, their presence in the

  18. Inelastic scattering from liquid 4He in aerogel glass

    International Nuclear Information System (INIS)

    Snow, W.M.; Sokol, P.E.

    1988-01-01

    The physics of liquid and solid 4 He in restricted geometries has motivated a number of interesting experiments. Recent experiments include detailed measurements of the phase diagram for bulk liquid in vycor, showing a suppression of the superfluid transition and elevation of the melting pressure, and measurements of the superfluid fraction in vycor, aerogel, and zerogel glasses near the lambda point, in which critical exponents differ from the pure 4 He values have been observed. Many striking features in several of the experiments on helium in restricted geometries are poorly understood. We have performed inelastic neutron scattering measurements of liquid helium in aerogel glass above and below the superfluid transition for two samples of different porosities. The kinetic energy (KE) of the confined liquid is the same as that of the bulk liquid in the normal phase, but is clearly higher than the bulk values in the superfluid phase. The observed scattering in the superfluid phase is more peaked than in the normal phase: consistent with the presence of a Bose condensate. An estimate of the condensate fraction using a modification of a method due to Sears yields values consistent with those estimated for the bulk liquid. 7 refs., 2 figs., 1 tab

  19. The LHCb RICH silica aerogel performance with LHC data

    CERN Multimedia

    Perego, D L

    2010-01-01

    In the LHCb detector at the Large Hadron Collider, powerful charged particle identification is performed by Ring Imaging Cherenkov (RICH) technology. In order to cover the full geometric acceptance and the wide momentum range (1-100 GeV/c), two detectors with three Cherenkov radiators have been designed and installed. In the medium (10-40 GeV/c) and high (30-100 GeV/c) momentum range, gas radiators are used (C4F10 and CF4 respectively). In the low momentum range (1 to a few GeV/c) pion/kaon/proton separation will be done with photons produced in solid silica aerogel. A set of 16 tiles, with the large transverse dimensions ever (20x20 cm$^2$) and nominal refractive index 1.03 have been produced. The tiles have excellent optical properties and homogeneity of refractive index within the tile of ~1%. The first data collected at LHC are used to understand the behaviour of the RICH: preliminary results will be presented and discussed on the performance of silica aerogel and of the gas radiators C4F10 and CF4.

  20. Mechanical Properties and Brittle Behavior of Silica Aerogels

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2015-12-01

    Full Text Available Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. The magnitude of the elastic and rupture modulus is several orders of magnitude lower compared to dense glass. The mechanical behaviours (elastic and brittle are related to the same kinds of gel characteristics: pore volume, silanol content and pore size. Elastic modulus depends strongly on the volume fraction of pores and on the condensation reaction between silanols. Concerning the brittleness features: rupture modulus and toughness, it is shown that pores size plays an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size is related to the pore size. Weibull’s theory is used to show the statistical nature of flaw. Moreover, stress corrosion behaviour is studied as a function of environmental conditions (water and alcoholic atmosphere and temperature.

  1. Characterization of Complex Colloidal Suspensions

    Science.gov (United States)

    Seaman, J. C.; Guerin, M.; Jackson, B. P.; Ranville, J. M.

    2003-04-01

    Surface chemical reactions play a major role in controlling contaminant fate and transport in the subsurface environment. Recent field and laboratory evidence suggests that mobile soil and groundwater colloids may facilitate the migration of sparingly soluble groundwater contaminants. Colloidal suspensions collected in the field or generated in laboratory column experiments tend to be fairly dilute in nature and comprised of relatively small particulates (reserved for studying ideal systems to the characterization of mobile colloids. However, many of these analytical techniques, including total/selective dissolution methods, dynamic light scattering, micro-electrophoresis, streaming potential, and even scanning electron microscopy (SEM), can be biased in of larger size fractions, and therefore, extremely sensitive to sampling, storage, and fractionation artifacts. In addition, surface modifiers such as sorbed oxides or organics can alter particulate appearance, composition, and behavior when compared to synthetic analogues or mineral standards. The current presentation will discuss the limitations and inherent biases associated with a number of analytical characterization techniques that are commonly applied to the study of mobile soil and groundwater colloids, including field flow fractionation (FFF) and acoustic based methods that have only recently become available.

  2. Interaction of Eu, Th and U with bentonite colloids in presence of humic acid: a flow-field flow fractionation study

    International Nuclear Information System (INIS)

    Bouby, M.; Geckeis, H.; Schaefer, Th.; Mihai, S.; Fanghaenell, Th.

    2005-01-01

    Full text of publication follows: The actinide mobility in the far-field of a repository site can be strongly influenced by the presence of colloidal species. Field migration experiments at the Grimsel Test Site under low ionic strength (I=10 -3 mol/L) and high pH (∼9.6) conditions have demonstrated a considerable clay colloid-mediated actinide(III/IV) migration [1]. However, those studies rendered it necessary to take the kinetics of notably the actinide-colloid interaction and colloid stability into account [2]. In the present study, we examine the stability of bentonite clay colloids in natural Grimsel groundwater and their interaction with Cs(I), Eu(III), Th(IV) and U(VI) (conc. ∼ 10 -8 mol/L). Experiments cover 12 months contact times and are performed under anoxic conditions. Humic acid (Gohy-573) is added after different contact times as a competing ligand and the time dependent metal ion desorption is followed. Dedicated experiments and thermodynamic speciation calculations are performed to estimate the metal ion speciation within the colloid system. As the experimental metal ion speciation (i.e. differentiation of clay-colloid bound, humic colloid bound and dissolved metal ion species) at the given low concentration conditions is hardly possible by spectroscopic methods, we use Asymmetric Flow-Field Flow Fractionation coupled to UV-Vis spectrophotometry and ICP-MS detection. Unexpectedly, it is found that small-sized bentonite colloids ( d -values, Cs and U do not interact significantly with bentonite colloids, while Th and Eu do. Eu desorption from clay colloids by humic acid is delayed significantly upon increasing the clay colloid-Eu contact time up to several months. Nevertheless, estimated equilibrium conditions are attained after 7 months desorption time. However, it appears that significant fractions of clay colloid borne Th(IV) do not desorb in presence of humic acid and equilibrium conditions estimated from calculation and experiments are not

  3. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  4. Colloid-Facilitated Transport of Cations in an Unsaturated Fractured Soil Under Transient Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, Joseph [Univ. of Colorado, Boulder, CO (United States)

    2015-01-31

    Rainfall experiments were conducted using intact soil cores and an instrumented soil pedon to examine the effect of physical heterogeneity and rainfall characteristics on the mobilization of colloids, organic matter, cesium, and strontium in a fractured soil. To measure the spatial variability of infiltration of colloids and contaminants, samples were collected through a 19-port grid placed below the soil core in laboratory study and in 27 samplers at multiple depths in the soil pedon in the field study. Cesium and strontium were applied to the soil cores and the soil pedon prior to mobilization experiments. Rainwater solutions of multiple ionic strengths and organic matter concentrations were applied to the soil cores and soil pedon to mobilize in situ colloids, cesium, and strontium. The mobilization of colloids and metal cations occurred through preferential flow paths in the soil cores. Compared to steady rainfall, greater amounts of colloids were mobilized during rainfall interrupted by pauses, which indicates that the supply of colloids to be mobilized was replenished during the pauses. A maximum in the amount of mobilized colloids were mobilized during a rainfall following a pause of 2.5 d. Pauses of shorter or longer duration resulted in less colloid mobilization. Freeze-thaw cycles, a transient condition in winter, enhanced colloid mobilization and colloid-facilitated transport of cesium and strontium in the soil cores. The exchange of solutes between the soil matrix and macropores caused a hysteretic mobilization of colloids, cesium, and strontium during changes in ionic strength. Colloid-facilitated mobilization of cesium and strontium was important at low ionic strength in fractures where slow flow allowed greater exchange of flow between the fractures and the surrounding matrix. The release of cesium and strontium by cation exchange occurred at high ionic strength in fractures where there is a little exchange of pore water with the surrounding matrix

  5. Pressure resistance of copper benzene-1,3,5-tricarboxylate - carbon aerogel composites

    Science.gov (United States)

    Domán, Andrea; Nagy, Balázs; Nichele, Laura P.; Srankó, Dávid; Madarász, János; László, Krisztina

    2018-03-01

    The protective effect of a resorcinol - formaldehyde based carbon aerogel (CA) support was compared in two different forms of the hybrid made of copper benzene-1,3,5-tricarboxilate (HKUST-1) and CA. HKUST-1:CA with identical mass ratio (1:1). HKUST-1+CAis a physical mixture while in HKUST-1@CA the metal organic framework (MOF) crystals were grown on CA under solvothermal conditions. The effect of water vapour and the external pressure (25-200 bar) was investigated. TG/DTG data show that the prehistory of the samples has a strong influence on their thermal behaviour and nitrogen data suggest that part of the MOF grows in the wider pores of the HKUST-1@CA sample. Although there are no dramatic differences in the water adsorption isotherms, the physical mixture is slightly more proficient. In dry samples under compression the crystalline structure of the free HKUST-1 is well conserved. The nanoscale structure of the hybrids is sensitive to applied pressure and formation of mesopores of wide size distribution occurs. No significant difference was found between the corresponding CH4 adsorption isotherms of the composite samples, either in the as-prepared samples or after compression at 100 bar. After being exposed to high external pressure the CH4 uptake seems to be governed by the MOF.

  6. Glass/Jamming Transition in Colloidal Aggregation

    Science.gov (United States)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  7. Methanol oxidation at carbon paste electrodes modified with (Pt–Ru)/carbon aerogels nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fort, Carmen I., E-mail: iladiu@chem.ubbcluj.ro [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Cotet, Liviu C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania); Vasiliu, Florin [The National Institute of Materials Physics, Atomistilor str. 105 bis, PO Box MG. 7, Magurele, RO 077125, Bucharest (Romania); Marginean, Petre [National Institute for Research and Development of Isotopic and Molecular Technologies, RO 400293, Cluj-Napoca (Romania); Danciu, Virginia; Popescu, Ionel C. [Laboratory of Electrochemical Research and Nonconventional Materials, Babes-Bolyai University, Arany Janos 11, RO-400028, Cluj-Napoca (Romania)

    2016-04-01

    Mesoporous carbon aerogels (CAs) impregnated with (Pt–Ru) nanoparticles were prepared, incorporated into carbon paste electrodes (CPEs) and investigated as electrocatalysts for CH{sub 3}OH electro-oxidation. The sol–gel method, followed by supercritical drying with liquid CO{sub 2} and thermal pyrolysis in an inert atmosphere, was used to obtain high mesoporous CAs. (Pt–Ru)/CAs nanocomposites with various (Pt–Ru) loading were prepared by using Ru(AcAc){sub 3} and H{sub 2}PtCl{sub 6} as metal precursors and the impregnation method. The morpho-structural peculiarities of the so prepared (Pt–Ru)/CAs electrocatalysts were examined by using elemental analysis, N{sub 2} adsorption-desorption isotherms, transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (EDX) and selected area electron diffraction (SAED). Cyclic voltammetry measurements, carried out at (Pt–Ru)/CA-CPEs incorporating nanocomposites with various Pt–Ru loading and different specific surface areas, showed that CA with the highest specific surface area (843 m{sup 2}/g) and impregnated with 6% (w/w) (Pt–Ru) nanoparticles exhibit the best CH{sub 3}OH electro-oxidation efficiency. The Michaelis–Menten formalism was used to describe the dependence of the oxidation peak current on the CH{sub 3}OH concentration, allowing the estimation of the modified electrodes sensitivities. Thus, for (Pt–Ru, 10%)/CA{sub 535}-CPE was observed the highest sensitivity (12.5 ± 0.8 mA/M) and, at the same time, the highest maximum current density ever reported (153.1 mA/cm{sup 2} for 2 M CH{sub 3}OH and an applied potential of 600 mV vs. SHE). - Highlights: • (Pt–Ru) nanoparticles were deposited on high mesoporous carbon aerogels (CAs). • (Pt–Ru)/CAs were characterized by TEM, EDX, SAED and N{sub 2} adsorption-desorption. • Carbon paste electrodes modified with (Pt–Ru)/CA were used for CH{sub 3}OH oxidation. • (Pt–Ru, 10

  8. Flexible transparent aerogels as window retrofitting films and optical elements with tunable birefringence

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qingkun; Frazier, Allister W.; Zhao, Xinpeng; De La Cruz, Joshua A.; Hess, Andrew J.; Yang, Ronggui; Smalyukh, Ivan I.

    2018-06-01

    Experimental realization of optically transparent, mechanically robust and flexible aerogels has been a longstanding challenge, which limits their practical applications in energy-saving devices, such as thermally insulating films for enhancing energy efficiency of windows. The poor transparency precluded even hypothetical consideration of the possibility of birefringent aerogels. We develop birefringent and optically isotropic aerogels that combine properties of thermal super-insulation, mechanical robustness and flexibility, and transparency to visible-spectrum light. This unusual combination of physical properties is achieved by combining liquid crystalline self-organization of cellulose nanofibers with polysiloxane cross-linking and control of the nanoscale porosity to form hybrid organic-inorganic mesostructured aerogels. Potential applications of these inexpensive materials range from single pane window retrofitting to smart fabrics.

  9. Preparation and Characterization of Highly Spherical Silica-titania Aerogel Beads with High Surface Area

    Directory of Open Access Journals (Sweden)

    YU Yu-xi

    2017-02-01

    Full Text Available The silica-titania aerogel beads were synthesized through sol-gel reaction followed by supercritical drying, in which TEOS and TBT as co-precursors, EtOH as solvents, HAC and NH3·H2O as catalysts. The as-prepared aerogel beads were characterized by SEM,TEM,XRD,FT-IR,TG-DTA and nitrogen adsorption-desorption. The results indicate that the diameter distribution of beads are between 1-8mm, the average diameter of beads is 3.5mm. The aerogel beads have nanoporous network structure with high specific surface area of 914.5m2/g, and the TiO2 particles are distributed in the aerogel uniformly, which keep the anatase crystal under high temperature.

  10. Structural Modifications of Continuous Aerogel Films for Low-power, High Performance Sensing Capabilities

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent work has found that TiO2 nanorods and nanowires can be grown from a high-surface area, highly porous TiO2 ambiently-dried aerogel structure through varying...

  11. Ultralight Graphene/Carbon Nanotubes Aerogels with Compressibility and Oil Absorption Properties

    Directory of Open Access Journals (Sweden)

    Da Zhao

    2018-04-01

    Full Text Available Graphene aerogels have many advantages, such as low density, high elasticity and strong adsorption. They are considered to be widely applicable in many fields. At present, the most valuable research area aims to find a convenient and effective way to prepare graphene aerogels with excellent properties. In this work graphene/carbon nanotube aerogels are prepared through hydrothermal reduction, freeze-drying and high temperature heat treatment with the blending of graphene oxide and carbon nanotubes. A new reducing agent-ascorbic acid is selected to explore the best preparation process. The prepared aerogels have compression and resilience and oil absorption properties due to the addition of carbon nanotubes as designed.

  12. Ignition capsules with aerogel-supported liquid DT fuel for the National Ignition Facility

    Directory of Open Access Journals (Sweden)

    Ho D.D.-M.

    2013-11-01

    Full Text Available For high repetition-rate fusion power plant applications, capsules with aerogel-supported liquid DT fuel can have much reduced fill time compared to β-layering a solid DT fuel layer. The melting point of liquid DT can be lowered once liquid DT is embedded in an aerogel matrix, and the DT vapor density is consequently closer to the desired density for optimal capsule design requirement. We present design for NIF-scale aerogel-filled capsules based on 1-D and 2-D simulations. An optimal configuration is obtained when the outer radius is increased until the clean fuel fraction is within 65 – 75% at peak velocity. A scan (in ablator and fuel thickness parameter space is used to optimize the capsule configurations. The optimized aerogel-filled capsule has good low-mode robustness and acceptable high-mode mix.

  13. Coupling between Solid 3He on Aerogel and Superfluid 3He in the Low Temperature Limit

    International Nuclear Information System (INIS)

    Bradley, D. I.; Fisher, S. N.; Guenault, A. M.; Haley, R. P.; Pickett, G. R.; Tsepelin, V.; Whitehead, R. C. V.; Skyba, P.

    2006-01-01

    We have cooled liquid 3He contained in a 98% open aerogel sample surrounded by bulk superfluid 3He-B at zero pressure to below 120 μK. The aerogel sample is placed in a quasiparticle blackbody radiator cooled by a Lancaster-style nuclear cooling stage to ∼200 μK. We monitor the temperature of the 3He inside the blackbody radiator using a vibrating wire resonator. We find that reducing the magnetic field on the aerogel sample causes substantial cooling of all the superfluid inside the blackbody radiator. We believe this is due to the demagnetization of the solid 3He layers on the aerogel strands. This system has potential for achieving extremely low temperatures in the confined fluid

  14. Readout ASICs and Electronics for the 144-channel HAPDs for the Aerogel RICH at Belle II

    Science.gov (United States)

    Nishida, S.; Adachi, I.; Ikeda, H.; Hara, K.; Iijima, T.; Iwata, S.; Korpar, S.; Križan, P.; Kuroda, E.; Pestotnik, R.; Seljak, A.; Sumiyoshi, T.; Takagaki, H.

    The particle identification (PID) device in the endcap of the Belle detector will be upgraded to a ring imaging Cherenkov counter (RICH) using aerogel as a radiator at the Belle II experiment. We develop the electronics to read out the 70,000 channels of hit information from the 144-channel hybrid avalanche photodetectors (HAPD), of the aerogel RICH detector. A readout ASIC is developed to digitize the HAPD signals, and was used in a beam test with the prototype detector. The performance and plan of the ASIC is reported in this study. We have also designed the readout electronics for the aerogel RICH, which consist of front-end boards with the ASICs merger boards to collect data from the front-end boards. A front-end board that fits in the actual available space for the aerogel RICH electronics was produced.

  15. Organic carbon aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    Science.gov (United States)

    Pekala, R.W.

    1998-04-28

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes {<=}1000 {angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  16. Organic aerogels from the sol-gel polymerization of phenolic-furfural mixtures

    Science.gov (United States)

    Pekala, R.W.

    1995-12-19

    The sol-gel polymerization of a phenolic-furfural mixture in dilute solution leads to a highly cross-linked network that can be supercritically dried to form a high surface area foam. These porous materials have cell/pore sizes{<=}1000{angstrom}, and although they are dark brown in color, they can be classified as a new type of aerogel. The phenolic-furfural aerogel can be pyrolyzed in an inert atmosphere at 1050 C to produce carbon aerogels. This new aerogel may be used for thermal insulation, chromatographic packing, water filtration, ion-exchange, and carbon electrodes for energy storage devices, such as batteries and double-layer capacitors. 8 figs.

  17. SYNTHESIS AND CHARACTERIZATION OF CELLULOSE BASED BIO-POLYMER AEROGEL ISOLATED FROM WASTE OF BLUEBERRY TREE (VACCINIUM MYRTILLUS

    Directory of Open Access Journals (Sweden)

    Mehmet KAYA

    2016-09-01

    Full Text Available Cellulose aerogel (CA has highly porous structure, environmentally friendly, thermally stable and flame retardant properties. These properties in material worlds have attracted large interest as a potentially industrial material. In this paper, cellulose aerogel with flame retardant was produced from pruned branches and bushes of blueberries wastes (PBBW. Firstly, cellulose raw material these wastes was obtained and then, cellulose aerogel via freeze-drying, followed by cellulose hydrogel production. Our reports showed that three dimensionally network aerogel structure prepared from NaOH/Urea as scaffold solution. The present cellulose aerogel has excellent flame retardancy, which can extinguish within 140 s. By the way, it was inferred thermal stability performance of cellulose aerogel could be efficient potential thermal insulating material. Besides, this process are sustainable, easily available at low cost and suitable for industrial applications.

  18. From Green Aerogels to Porous Graphite by Emulsion Gelation of Acrylonitrile

    Science.gov (United States)

    2012-01-01

    interparticle covalent bridging in the mechanical properties of aerogels,30 we have opted for a bottom-up process, whereas PAN aerogels are...series that employs the hanging pendant drop method, and data were analyzed using the Young−Laplace equation through the instrument software. Elemental...that the layer of the surfactant prevents intimate contact and efficient covalent bridging between the skeletal nanoparticles. Overall, our ability to

  19. Adsorption and desorption of cationic malachite green dye on cellulose nanofibril aerogels.

    Science.gov (United States)

    Jiang, Feng; Dinh, Darren M; Hsieh, You-Lo

    2017-10-01

    Ultra-light aerogels have been assembled from cellulose nanofibrils into hierarchically macroporous (several hundred μm) honeycomb cellular structure surrounded with mesoporous (8-60nm) thin walls. The high specific surface (193m 2 /g) and surface carboxyl content (1.29mmol/g) of these aerogels were demonstrated to be highly capable of removing cationic malachite green (MG) dye from aqueous media. The rapid MG adsorption was driven by electrostatic interactions and followed a pseudo-second-order adsorption kinetic and monolayer Langmuir adsorption isotherm. At a low 1:5mg/mL aerogel/MG ratio, both initial MG adsorption rate (2.3-59.8mgg -1 min -1 ) and equilibrium adsorption capacity (53.0-203.7mgg -1 ) increased with increasing initial MG concentrations from 10 to 200mg/L, reaching a maximum adsorption of 212.7mgg -1 . The excellent dye removal efficiency was demonstrated by complete MG removal through four repetitive adsorptions at a low 1:5mg/mL aerogel/MG ratio and 10mg/L dye concentration as well as 92% MG adsorption in a single batch at one order of magnitude higher10:5mg/mL aerogel/MG ratio and 100mg/L dye concentration. The adsorbed MG in aerogels could be desorbed in aqueous media by increasing ionic strength, demonstrating facile recovery of both dye and aerogel as well as the robust capability of this aerogel for repetitive applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Combining aerogels with honeycombs – a new stiff and flexible superinsulation

    OpenAIRE

    Schwan, Marina; Ratke, Lorenz; Milow, Barbara

    2014-01-01

    Saving energy is the most important issue in the 21st century. New high qualitative thermal insulation materials are of critical importance to energy-efficient building design, transportation and aircraft industry. We propose to combine aramid honeycombs with aerogels to manufacture such new types of advanced insulation materials. Aramid honeycombs produced from aramid fibers by the expansion method possess extremely high stiffness-to-weight ratio and are heat-resisting up to 550°C. Aerogels ...

  1. Preliminary study of silica aerogel as a gas-equivalent material in ionization chambers

    Science.gov (United States)

    Caresana, M.; Zorloni, G.

    2017-12-01

    Since about two decades, a renewed interest on aerogels has risen. These peculiar materials show fairly unique properties. Thus, they are under investigation for both scientific and commercial purposes and new optimized production processes are studied. In this work, the possibility of using aerogel in the field of radiation detection is explored. The idea is to substitute the gas filling in a ionization chamber with the aerogel. The material possesses a density about 100 times greater than ambient pressure air. Where as the open-pore structure should allow the charge carriers to move freely. Small hydrophobic silica aerogel samples were studied. A custom ionization chamber, capable of working both with aerogel or in the classic gas set up, was built. The response of the chamber in current mode was investigated using an X-ray tube. The results obtained showed, under proper conditions, an enhancement of about 60 times of the current signal in the aerogel configuration with respect to the classic gas one. Moreover, some unusual behaviours were observed, i.e. time inertia of the signal and super-/sub-linear current response with respect to the dose rate. While testing high electric fields, aerogel configuration seemed to enhance the Townsend's effects. In order to represent the observed trends, a trapping-detrapping model is proposed, which is capable to predict semi-empirically the steady state currents measured. The time evolution of the signal is semi-quantitatively represented by the same model. The coefficients estimated by the fits are in agreement with similar trapping problems in the literature. In particular, a direct comparison between the benchmark of the FET silica gates and aerogel case endorses the idea that the same type of phenomenon occurs in the studied case.

  2. Sprayable Aerogel Bead Compositions With High Shear Flow Resistance and High Thermal Insulation Value

    Science.gov (United States)

    Ou, Danny; Trifu, Roxana; Caggiano, Gregory

    2013-01-01

    A sprayable aerogel insulation has been developed that has good mechanical integrity and lower thermal conductivity than incumbent polyurethane spray-on foam insulation, at similar or lower areal densities, to prevent insulation cracking and debonding in an effort to eliminate the generation of inflight debris. This new, lightweight aerogel under bead form can be used as insulation in various thermal management systems that require low mass and volume, such as cryogenic storage tanks, pipelines, space platforms, and launch vehicles.

  3. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    International Nuclear Information System (INIS)

    Zhang, Sizhao; Feng, Jian; Feng, Junzong; Jiang, Yonggang

    2017-01-01

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  4. Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Sizhao, E-mail: bule-soul@hotmail.com; Feng, Jian, E-mail: fengj@nudt.edu.cn; Feng, Junzong; Jiang, Yonggang

    2017-02-28

    Highlights: • A new synthetic method for controlling morphology of chitosan aerogels is proposed. • Chitosan aerogels with nanoflake-like and nanofiber-like were prepared. • Textures of chitosan aerogels are strongly dependent upon the oxidation pattern. - Abstract: Naturally occurring polymer-based aerogels have myriad practical utilizations due to environmentally benign and fruitful resources. However, engineering morphology-controllable biomass aerogels still represents a great challenge. Here we present a facile solution to synthesize chitosan aerogels having distinguished textures by reacting oxidized chitosan with formaldehyde and chitosan sol. In more detail, chitosan was chemically oxidized using two types of oxidation agents such as ammonium persulphate (SPD) and sodium periodate (APS) to obtain corresponding oxidized chitosan, subsequently cross-linked with chitosan solution containing formaldehyde to harvest SPD-oxidized chitosan aerogels (SCAs) and APS-SPD-oxidized ones (ASCAs) after aging, solvent exchange and supercritical drying processes. We found that the morphologies of as-prepared chitosan aerogels are strongly dependent upon the oxidation pattern towards chitosan. The structural textures of SCAs and ASCAs appear nanoflake-like and nanofiber-like structures, which may be related to spatial freedom of active groups located in chitosan. Selected area electron diffraction analysis reveals that the crystalline properties of chitosan aerogels generally appear the serious deterioration comparing to raw chitosan owing to their interconnected skeletal structure formation. The occurrence of characteristic groups displays cross-linked chain construction by using chemical state measurements such as FT-IR and XPS. Further, a plausible mechanism for controlling morphology of chitosan aerogels is also established. This new family of method for creation of chitosan aerogels may open up a perspective for biomass aerogels with controllable textures.

  5. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  6. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  7. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  8. Aerogel Cherenkov detector for characterizing the intense flash x-ray source, Cygnus, spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y., E-mail: yhkim@lanl.gov; Herrmann, H. W.; McEvoy, A. M.; Young, C. S.; Hamilton, C. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Schwellenbach, D. D.; Malone, R. M.; Kaufman, M. I.; Smith, A. S. [National Security Technologies, LLC, Los Alamos, New Mexico 87544 (United States)

    2016-11-15

    An aerogel Cherenkov detector is proposed to measure the X-ray energy spectrum from the Cygnus—intense flash X-ray source operated at the Nevada National Security Site. An array of aerogels set at a variety of thresholds between 1 and 3 MeV will be adequate to map out the bremsstrahlung X-ray production of the Cygnus, where the maximum energy of the spectrum is normally around 2.5 MeV. In addition to the Cherenkov radiation from aerogels, one possible competing light-production mechanism is optical transition radiation (OTR), which may be significant in aerogels due to the large number of transitions from SiO{sub 2} clusters to vacuum voids. To examine whether OTR is a problem, four aerogel samples were tested using a mono-energetic electron beam (varied in the range of 1–3 MeV) at NSTec Los Alamos Operations. It was demonstrated that aerogels can be used as a Cherenkov medium, where the rate of the light production is about two orders magnitude higher when the electron beam energy is above threshold.

  9. Freeze-Casting Produces a Graphene Oxide Aerogel with a Radial and Centrosymmetric Structure.

    Science.gov (United States)

    Wang, Chunhui; Chen, Xiong; Wang, Bin; Huang, Ming; Wang, Bo; Jiang, Yi; Ruoff, Rodney S

    2018-05-14

    We report the assembly of graphene oxide (G-O) building blocks into a vertical and radially aligned structure by a bidirectional freeze-casting approach. The crystallization of water to ice assembles the G-O sheets into a structure, a G-O aerogel whose local structure mimics turbine blades. The centimeter-scale radiating structure in this aerogel has many channels whose width increases with distance from the center. This was achieved by controlling the formation of the ice crystals in the aqueous G-O dispersion that grew radially in the shape of lamellae during freezing. Because the shape and size of ice crystals is influenced by the G-O sheets, different additives (ethanol, cellulose nanofibers, and chitosan) that can form hydrogen bonds with H 2 O were tested and found to affect the interaction between the G-O and formation of ice crystals, producing ice crystals with different shapes. A G-O/chitosan aerogel with a spiral pattern was also obtained. After chemical reduction of G-O, our aerogel exhibited elasticity and absorption capacity superior to that of graphene aerogels with "traditional" pore structures made by conventional freeze-casting. This methodology can be expanded to many other configurations and should widen the use of G-O (and reduced G-O and "graphenic") aerogels.

  10. Synthesis and Characterization of Fibre Reinforced Silica Aerogel Blankets for Thermal Protection

    Directory of Open Access Journals (Sweden)

    S. Chakraborty

    2016-01-01

    Full Text Available Using tetraethoxysilane (TEOS as the source of silica, fibre reinforced silica aerogels were synthesized via fast ambient pressure drying using methanol (MeOH, trimethylchlorosilane (TMCS, ammonium fluoride (NH4F, and hexane. The molar ratio of TEOS/MeOH/(COOH2/NH4F was kept constant at 1 : 38 : 3.73 × 10−5 : 0.023 and the gel was allowed to form inside the highly porous meta-aramid fibrous batting. The wet gel surface was chemically modified (silylation process using various concentrations of TMCS in hexane in the range of 1 to 20% by volume. The fibre reinforced silica aerogel blanket was obtained subsequently through atmospheric pressure drying. The aerogel blanket samples were characterized by density, thermal conductivity, hydrophobicity (contact angle, and Scanning Electron Microscopy. The radiant heat resistance of the aerogel blankets was examined and compared with nonaerogel blankets. It has been observed that, compared to the ordinary nonaerogel blankets, the aerogel blankets showed a 58% increase in the estimated burn injury time and thus ensure a much better protection from heat and fire hazards. The effect of varying the concentration of TMCS on the estimated protection time has been examined. The improved thermal stability and the superior thermal insulation of the flexible aerogel blankets lead to applications being used for occupations that involve exposure to hazards of thermal radiation.

  11. Preparation of lignin-based carbon aerogels as biomaterials for nano-supercapacitor

    Science.gov (United States)

    Yang, Bong Suk; Kang, Kyu-Young; Jeong, Myung-Joon

    2017-10-01

    Kraft and organosolv lignins, generally produced in chemical pulping and bio-refinery processes of lignocellulosic biomass, were used to prepare lignin-based carbon aerogels for supercapacitors as raw materials. The difference between lignins and lignin-based aerogels were compared by analyzing physical and chemical properties, including molecular weight, polydispersity, and reactivity with formaldehyde. Also, density, shrinkage, Brunauer-Emmett-Teller (BET) surface area and scanning electron microscope (SEM) images of the lignin-based aerogel were investigated. Kraft lignin consisting of coniferyl alcohol (G) and p-coumaryl alcohol (H) increased the reactivity of formaldehyde, formed a hydrogel well (porosity > 0.45), and specific surface area higher than organosolv lignin. In the case of kraft lignin, there were irregular changes such as oxidation and condensation in the pulping process. However, reaction sites with aromatic rings in lignin impacted the production of aerogel and required a long gelation period. The molecular weight of lignin influences the gelation time in producing lignin-based aerogel, and lignin composition affects the BET surface area and pore structures of the lignin-based carbon aerogels.

  12. Transparent, Superflexible Doubly Cross-Linked Polyvinylpolymethylsiloxane Aerogel Superinsulators via Ambient Pressure Drying.

    Science.gov (United States)

    Zu, Guoqing; Shimizu, Taiyo; Kanamori, Kazuyoshi; Zhu, Yang; Maeno, Ayaka; Kaji, Hironori; Shen, Jun; Nakanishi, Kazuki

    2018-01-23

    Aerogels have many attractive properties but are usually costly and mechanically brittle, which always limit their practical applications. While many efforts have been made to reinforce the aerogels, most of the reinforcement efforts sacrifice the transparency or superinsulating properties. Here we report superflexible polyvinylpolymethylsiloxane, (CH 2 CH(Si(CH 3 )O 2/2 )) n , aerogels that are facilely prepared from a single precursor vinylmethyldimethoxysilane or vinylmethyldiethoxysilane without organic cross-linkers. The method is based on consecutive processes involving radical polymerization and hydrolytic polycondensation, followed by ultralow-cost, highly scalable, ambient-pressure drying directly from alcohol as a drying medium without any modification or additional solvent exchange. The resulting aerogels and xerogels show a homogeneous, tunable, highly porous, doubly cross-linked nanostructure with the elastic polymethylsiloxane network cross-linked with flexible hydrocarbon chains. An outstanding combination of ultralow cost, high scalability, uniform pore size, high surface area, high transparency, high hydrophobicity, excellent machinability, superflexibility in compression, superflexibility in bending, and superinsulating properties has been achieved in a single aerogel or xerogel. This study represents a significant progress of porous materials and makes the practical applications of transparent flexible aerogel-based superinsulators realistic.

  13. Capillary Condensation of Liquid 4He in Aerogel on Cooling Through λ Point

    International Nuclear Information System (INIS)

    Miyashita, W.; Yoneyama, K.; Kato, H.; Nomura, R.; Okuda, Y.

    2006-01-01

    Capillary condensation of liquid 4He in silica aerogel with a 90% porosity was investigated visually. The initial condition of the experiment was such that liquid 4He was present in the sample cell but not in the aerogel. This situation was realized by introducing the liquid into the cell at a fast rate to avoid liquefaction in the aerogel. The free surface of the liquid rose up in the cell with filling and eventually reached the bottom of the aerogel. Then, the aerogel absorbed the liquid by capillary condensation. The height of the liquid in the aerogel rose with time t roughly as t1/2 in the normal fluid phase. This behavior was consistent with the Washburn model. When the system was cooled through the λ point during the condensation, the liquid height started to rise faster in the superfluid phase with a constant velocity of about 0.3 mm/sec. The dynamics of capillary condensation was strongly dependent on whether the liquid 4He was in the normal or the superfluid phase

  14. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  15. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex; Thon, Susanna; Hoogland, Sjoerd H.; Voznyy, Oleksandr; Zhitomirsky, David; Debnath, Ratan K.; Levina, Larissa; Rollny, Lisa R.; Carey, Graham H.; Fischer, Armin H.; Kemp, Kyle W.; Kramer, Illan J.; Ning, Zhijun; Labelle, André J.; Chou, Kang Wei; Amassian, Aram; Sargent, E. H.

    2012-01-01

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  16. Statistical Physics of Colloidal Dispersions.

    Science.gov (United States)

    Canessa, E.

    Available from UMI in association with The British Library. Requires signed TDF. This thesis is concerned with the equilibrium statistical mechanics of colloidal dispersions which represent useful model systems for the study of condensed matter physics; namely, charge stabilized colloidal dispersions and polymer stabilized colloidal dispersions. A one-component macroparticle approach is adopted in order to treat the macroscopic and microscopic properties of these systems in a simple and comprehensive manner. The thesis opens with the description of the nature of the colloidal state before reviewing some basic definitions and theory in Chapter II. In Chapter III a variational theory of phase equilibria based on the Gibbs-Bogolyobov inequality is applied to sterically stabilized colloidal dispersions. Hard spheres are chosen as the reference system for the disordered phases while an Einstein model is used for the ordered phases. The new choice of pair potential, taken for mathematical convenience, is a superposition of two Yukawa functions. By matching a double Yukawa potential to the van der Waals attractive potential at different temperatures and introducing a purely temperature dependent coefficient to the repulsive part, a rich variety of observed phase separation phenomena is qualitatively described. The behaviour of the potential is found to be consistent with a small decrease of the polymer layer thickness with increasing temperature. Using the same concept of a collapse transition the non-monotonic second virial coefficient is also explained and quantified. It is shown that a reduction of the effective macroparticle diameter with increasing temperature can only be partially examined from the point of view of a (binary-) polymer solution theory. This chapter concludes with the description of the observed, reversible, depletion flocculation behaviour. This is accomplished by using the variational formalism and by invoking the double Yukawa potential to allow

  17. Simulation of bentonite colloid migration through granite

    International Nuclear Information System (INIS)

    Rosicka, Dana; Hokr, Milan

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Colloidal bentonite particles generate at the interface of buffer and host rock in spent nuclear fuel repository due to an erosion process and migrate through granite by the water flow. Stability of these colloids and their migration possibilities have been studied on account of radionuclide transport possibility as colloid could carry adsorbed radionuclides in groundwater through granite. That is why a simulation of bentonite colloid migration in the surrounding of a repository might be requested. According to chemical condition as ionic strength and pH, the colloidal particles coagulate into clusters and that influence the migration of particles. The coagulation kinetics of natural bentonite colloids were experimentally studied in many articles, for example by light scattering techniques. We created a model of coagulation of bentonite colloids and simulation of a chosen experiment with use of the multicomponent reactive transport equation. The coagulation model describes clustering of particles due to attractive van der Waals forces as result of collision of particles due to heat fluctuation and different velocity of particles during sedimentation and velocity gradient of water flow. Next, the model includes influence of repulsive electrostatic forces among colloidal particles leading to stability of particles provided high surface charge of colloids. In the model, each group of clusters is transported as one solution component and the kinetics of coagulation are implemented as reactions between the components: a shift of particles among groups of particles with similar migration properties, according to size of the clusters of colloids. The simulation of migration of bentonite colloid through granite using the coagulation model was calibrated according to experiment results. On the basis of the simulation, one can estimate the basic processes that occur during bentonite colloid

  18. CTCN: Colloid transport code -- nuclear

    International Nuclear Information System (INIS)

    Jain, R.

    1993-01-01

    This report describes the CTCN computer code, designed to solve the equations of transient colloidal transport of radionuclides in porous and fractured media. This Fortran 77 package solves systems of coupled nonlinear differential-algebraic equations with a wide range of boundary conditions. The package uses the Method of Lines technique with a special section which forms finite-difference discretizations in up to four spatial dimensions to automatically convert the system into a set of ordinary differential equations. The CTCN code then solves these equations using a robust, efficient ODE solver. Thus CTCN can be used to solve population balance equations along with the usual transport equations to model colloid transport processes or as a general problem solver to treat up to four-dimensional differential-algebraic systems

  19. THE COLLOIDAL BEHAVIOR OF EDESTIN

    Science.gov (United States)

    Hitchcock, David I.

    1922-01-01

    1. It has been shown by titration experiments that the globulin edestin behaves like an amphoteric electrolyte, reacting stoichiometrically with acids and bases. 2. The potential difference developed between a solution of edestin chloride or acetate separated by a collodion membrane from an acid solution free from protein was found to be influenced by salt concentration and hydrogen ion concentration in the way predicted by Donnan's theory of membrane equilibrium. 3. The osmotic pressure of such edestin-acid salt solutions was found to be influenced by salt concentration and by hydrogen ion concentration in the same way as is the potential difference. 4. The colloidal behavior of edestin is thus completely analogous to that observed by Loeb with gelatin, casein, and egg albumin, and may be explained by Loeb's theory of colloidal behavior, which is based on the idea that proteins react stoichiometrically as amphoteric electrolytes and on Donnan's theory of membrane equilibrium. PMID:19871959

  20. Kinetically guided colloidal structure formation

    OpenAIRE

    Hecht, Fabian M.; Bausch, Andreas R.

    2016-01-01

    The well-studied self-organization of colloidal particles is predicted to result in a variety of fascinating applications. Yet, whereas self-assembly techniques are extensively explored, designing and producing mesoscale-sized objects remains a major challenge, as equilibration times and thus structure formation timescales become prohibitively long. Asymmetric mesoscopic objects, without prior introduction of asymmetric particles with all its complications, are out of reach––due to the underl...

  1. Faraday rotation measurements in maghemite-silica aerogels

    International Nuclear Information System (INIS)

    Taboada, E.; Real, R.P. del; Gich, M.; Roig, A.; Molins, E.

    2006-01-01

    Faraday rotation measurements have been performed on γ-Fe 2 O 3 /SiO 2 nanocomposite aerogels which are light, porous and transparent magnetic materials. The materials have been prepared by sol-gel polymerization of a silicon alkoxide, impregnation of the intermediate silica gel with a ferrous salt and supercritical drying of the gels. During supercritical evacuation of the solvent, spherical nanoparticles of iron oxide, with a mean particle diameter of 8.1±2.0 nm, are formed and are found to be homogenously distributed within the silica matrix. The specific Faraday rotation of the composite was measured at 0.6 T using polarized light of 810 nm, being 29.6 deg./cm. The changes in the plane of polarization of the transmitted light and the magnetization of the material present similar magnetic field dependencies and are characteristic of a superparamagnetic system

  2. Glass transition of soft colloids

    Science.gov (United States)

    Philippe, Adrian-Marie; Truzzolillo, Domenico; Galvan-Myoshi, Julian; Dieudonné-George, Philippe; Trappe, Véronique; Berthier, Ludovic; Cipelletti, Luca

    2018-04-01

    We explore the glassy dynamics of soft colloids using microgels and charged particles interacting by steric and screened Coulomb interactions, respectively. In the supercooled regime, the structural relaxation time τα of both systems grows steeply with volume fraction, reminiscent of the behavior of colloidal hard spheres. Computer simulations confirm that the growth of τα on approaching the glass transition is independent of particle softness. By contrast, softness becomes relevant at very large packing fractions when the system falls out of equilibrium. In this nonequilibrium regime, τα depends surprisingly weakly on packing fraction, and time correlation functions exhibit a compressed exponential decay consistent with stress-driven relaxation. The transition to this novel regime coincides with the onset of an anomalous decrease in local order with increasing density typical of ultrasoft systems. We propose that these peculiar dynamics results from the combination of the nonequilibrium aging dynamics expected in the glassy state and the tendency of colloids interacting through soft potentials to refluidize at high packing fractions.

  3. In Situ Integration of Anisotropic SnO₂ Heterostructures inside Three-Dimensional Graphene Aerogel for Enhanced Lithium Storage.

    Science.gov (United States)

    Yao, Xin; Guo, Guilue; Ma, Xing; Zhao, Yang; Ang, Chung Yen; Luo, Zhong; Nguyen, Kim Truc; Li, Pei-Zhou; Yan, Qingyu; Zhao, Yanli

    2015-12-02

    Three-dimensional (3D) graphene aerogel (GA) has emerged as an outstanding support for metal oxides to enhance the overall energy-storage performance of the resulting hybrid materials. In the current stage of the studies, metals/metal oxides inside GA are in uncrafted geometries. Introducing structure-controlled metal oxides into GA may further push electrochemical properties of metal oxide-GA hybrids. Using rutile SnO2 as an example, we demonstrated here a facile hydrothermal strategy combined with a preconditioning technique named vacuum-assisted impregnation for in situ construction of controlled anisotropic SnO2 heterostructures inside GA. The obtained hybrid material was fully characterized in detail, and its formation mechanism was investigated by monitoring the phase-transformation process. Rational integration of the two advanced structures, anisotropic SnO2 and 3D GA, synergistically led to enhanced lithium-storage properties (1176 mAh/g for the first cycle and 872 mAh/g for the 50th cycle at 100 mA/g) as compared with its two counterparts, namely, rough nanoparticles@3D GA and anisotropic SnO2@2D graphene sheets (618 and 751 mAh/g for the 50th cycle at 100 mA/g, respectively). It was also well-demonstrated that this hybrid material was capable of delivering high specific capacity at rapid charge/discharge cycles (1044 mAh/g at 100 mA/g, 847 mAh/g at 200 mA/g, 698 mAh/g at 500 mA/g, and 584 mAh/g at 1000 mA/g). The in situ integration strategy along with vacuum-assisted impregnation technique presented here shows great potential as a versatile tool for accessing a variety of sophisticated smart structures in the form of anisotropic metals/metal oxides within 3D GA toward useful applications.

  4. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  5. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  6. Formation of colloids from introduced materials in the post-emplacement environment: A report on the state of understanding

    International Nuclear Information System (INIS)

    Meike, A.; Wittwer, C.

    1993-09-01

    This literature review examines potential sources of colloids and enhanced adsorption that may stem from materials introduced into a repository setting, with a view towards prioritizing future studies. Three major sources of colloids are reviewed: metals, cements, and organics. Know chemical influences on colloid formation and mechanisms by which introduced materials may become involved are considered with respect to gradients, chemical species, pH, time, temperature, radiolysis, redox state, and microbial activity. Areas that have not been addressed but may have significant consequences in a repository setting are identified

  7. Multi-scale cellulose based new bio-aerogel composites with thermal super-insulating and tunable mechanical properties.

    Science.gov (United States)

    Seantier, Bastien; Bendahou, Dounia; Bendahou, Abdelkader; Grohens, Yves; Kaddami, Hamid

    2016-03-15

    Bio-composite aerogels based on bleached cellulose fibers (BCF) and cellulose nanoparticles having various morphological and physico-chemical characteristics are prepared by a freeze-drying technique and characterized. The various composite aerogels obtained were compared to a BCF aerogel used as the reference. Severe changes in the material morphology were observed by SEM and AFM due to a variation of the cellulose nanoparticle properties such as the aspect ratio, the crystalline index and the surface charge density. BCF fibers form a 3D network and they are surrounded by the cellulose nanoparticle thin films inducing a significant reduction of the size of the pores in comparison with a neat BCF based aerogel. BET analyses confirm the appearance of a new organization structure with pores of nanometric sizes. As a consequence, a decrease of the thermal conductivities is observed from 28mWm(-1)K(-1) (BCF aerogel) to 23mWm(-1)K(-1) (bio-composite aerogel), which is below the air conductivity (25mWm(-1)K(-1)). This improvement of the insulation properties for composite materials is more pronounced for aerogels based on cellulose nanoparticles having a low crystalline index and high surface charge (NFC-2h). The significant improvement of their insulation properties allows the bio-composite aerogels to enter the super-insulating materials family. The characteristics of cellulose nanoparticles also influence the mechanical properties of the bio-composite aerogels. A significant improvement of the mechanical properties under compression is obtained by self-organization, yielding a multi-scale architecture of the cellulose nanoparticles in the bio-composite aerogels. In this case, the mechanical property is more dependent on the morphology of the composite aerogel rather than the intrinsic characteristics of the cellulose nanoparticles. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Silica aerogel radiator for use in the A-RICH system utilized in the Belle II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tabata, Makoto, E-mail: makoto@hepburn.s.chiba-u.ac.jp [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara (Japan); Department of Physics, Chiba University, Chiba (Japan); Adachi, Ichiro [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Hamada, Nao [Department of Physics, Toho University, Funabashi (Japan); Hara, Koji [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Iijima, Toru [Kobayashi–Maskawa Institute for the Origin of Particles and the Universe, Nagoya University, Nagoya (Japan); Iwata, Shuichi; Kakuno, Hidekazu [Department of Physics, Tokyo Metropolitan University, Hachioji (Japan); Kawai, Hideyuki [Department of Physics, Chiba University, Chiba (Japan); Korpar, Samo [Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor (Slovenia); Experimental High Energy Physics Department, Jožef Stefan Institute, Ljubljana (Slovenia); Križan, Peter [Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana (Slovenia); Experimental High Energy Physics Department, Jožef Stefan Institute, Ljubljana (Slovenia); Kumita, Tetsuro [Department of Physics, Tokyo Metropolitan University, Hachioji (Japan); Nishida, Shohei [Institute of Particle and Nuclear Studies (IPNS), High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); Ogawa, Satoru [Department of Physics, Toho University, Funabashi (Japan); Pestotnik, Rok; Šantelj, Luka; Seljak, Andrej [Experimental High Energy Physics Department, Jožef Stefan Institute, Ljubljana (Slovenia); Sumiyoshi, Takayuki [Department of Physics, Tokyo Metropolitan University, Hachioji (Japan); and others

    2014-12-01

    This paper presents recent progress in the development and mass production of large-area hydrophobic silica aerogels for use as radiators in the aerogel-based ring-imaging Cherenkov (A-RICH) counter, which will be installed in the forward end cap of the Belle II detector. The proximity-focusing A-RICH system is especially designed to identify charged kaons and pions. The refractive index of the installed aerogel Cherenkov radiators is approximately 1.05, and we aim for a separation capability exceeding 4σ at momenta up to 4 GeV/c. Large-area aerogel tiles (over 18×18×2 cm{sup 3}) were first fabricated in test productions by pin drying in addition to conventional methods. We proposed to fill the large end-cap region (area 3.5 m{sup 2}) with 124 water-jet-trimmed fan-shaped dual-layer-focusing aerogel combinations of different refractive indices (1.045 and 1.055). Guided by the test production results, we decided to manufacture aerogels by the conventional method and are currently proceeding with mass production. In an electron beam test undertaken at the DESY, we confirmed that the K/π separation capability of a prototype A-RICH counter exceeded 4σ at 4 GeV/c. - Highlights: • Aerogel tiling as a RICH radiator in the end cap of Belle II detector is proposed. • Conventional method for producing real-size aerogels is established. • No crack-free, real-size aerogels attained in the test production by pin drying. • Beam test confirms the utility of real-size aerogels made by conventional method. • Mass aerogel production for an actual RICH system started by conventional method.

  9. Simulating colloid hydrodynamics with lattice Boltzmann methods

    International Nuclear Information System (INIS)

    Cates, M E; Stratford, K; Adhikari, R; Stansell, P; Desplat, J-C; Pagonabarraga, I; Wagner, A J

    2004-01-01

    We present a progress report on our work on lattice Boltzmann methods for colloidal suspensions. We focus on the treatment of colloidal particles in binary solvents and on the inclusion of thermal noise. For a benchmark problem of colloids sedimenting and becoming trapped by capillary forces at a horizontal interface between two fluids, we discuss the criteria for parameter selection, and address the inevitable compromise between computational resources and simulation accuracy

  10. Hydrodynamic interactions in active colloidal crystal microrheology

    OpenAIRE

    Weeber, R; Harting, JDR Jens

    2012-01-01

    In dense colloids it is commonly assumed that hydrodynamic interactions do not play a role. However, a found theoretical quantification is often missing. We present computer simulations that are motivated by experiments where a large colloidal particle is dragged through a colloidal crystal. To qualify the influence of long-ranged hydrodynamics, we model the setup by conventional Langevin dynamics simulations and by an improved scheme with limited hydrodynamic interactions. This scheme signif...

  11. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate

    International Nuclear Information System (INIS)

    Rousselet, J.

    1966-06-01

    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [fr

  12. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  13. Colloidal paradigm in supercapattery electrode systems

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2018-01-01

    Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.

  14. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    Science.gov (United States)

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  15. Superinsulating Polyisocyanate Based Aerogels: A Targeted Search for the Optimum Solvent System.

    Science.gov (United States)

    Zhu, Zhiyuan; Snellings, Geert M B F; Koebel, Matthias M; Malfait, Wim J

    2017-05-31

    Polyisocyanate based aerogels combine ultralow thermal conductivities with better mechanical properties than silica aerogel, but these properties critically depend on the nature of the gelation solvent, perhaps more so than on any other parameter. Here, we present a systematic study of the relationship between the polyurethane-polyisocyanurate (PUR-PIR) aerogel microstructure, surface area, thermal conductivity, and density and the gelation solvent's Hansen solubility parameters for an industrially relevant PUR-PIR rigid foam formulation. We first investigated aerogels prepared in acetone-dimethyl sulfoxide (DMSO) blends and observed a minimum in thermal conductivity (λ) and maximum in specific surface area for an acetone:DMSO ratio of 85:15 v/v. We then prepared PUR-PIR aerogels in 32 different solvent blends, divided into three series with δ Dispersion , δ Polarity , and δ H-bonding fixed at 15.94, 11.30, and 7.48 MPa 1/2 , respectively, corresponding to the optimum parameters for the acetone:DMSO series. The aerogel properties display distinct dependencies on the various solubility parameters: aerogels with low thermal conductivity can be synthesized in solvents with a high δ H-bonding parameter (above 7.2) and δ Dispersion around 16.3 MPa 1/2 . In contrast, the δ Polarity parameter is of lesser importance. Our study highlights the importance of the gelation solvent, clarifies the influence of the different solvent properties, and provides a methodology for a targeted search across the solvent chemical space based on the Hansen solubility parameters.

  16. One-step Synthesis of Pt Nanoparticles Highly Loaded on Graphene Aerogel as Durable Oxygen Reduction Electrocatalyst

    International Nuclear Information System (INIS)

    Huang, Qinghong; Tao, Feifei; Zou, Liangliang; Yuan, Ting; Zou, Zhiqing; Zhang, Haifeng; Zhang, Xiaogang; Yang, Hui

    2015-01-01

    Synthesis of highly active and durable Pt based catalysts with a high metal loading for fuel cells’ applications still remains a big challenge. The three-dimensional (3D) graphene aerogel (GA) not only possess the intrinsic property of graphene, but also have abundant pore architecture for anchoring metal nanoparticles, thus would be suitable as metal catalysts’ support. This work reports a simple and mild one-step co-reduction synthesis of Pt nanoparticles highly loaded on 3D GA and the use as durable oxygen reduction catalyst. Both X-ray diffraction and TEM measurements confirm that Pt nanoparticles (ca. 60 wt.% Pt loading) with an average diameter of ca. 3.2 nm are uniformly decorated on the homogeneously interconnected pores of 3D GA even after a heat treatment at 300 °C. Such a Pt/GA catalyst exhibits significantly enhanced electrocatalytic activity and improved durability for the oxygen reduction reaction. The enhancement in both catalytic activity and durability may result from the unique 3-D architecture structure of GA, the uniform dispersion of Pt nanoparticles, and the interaction between the Pt nanoparticles and GA. The GA-supported Pt can serve as a highly active catalyst for fuel cell applications

  17. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  18. Eco-friendly synthesis of colloidal silver nanospheres, nanorings and nanonetworks

    NARCIS (Netherlands)

    Singh, A.K.; Rai, A.K.; Bicanic, D.D.

    2009-01-01

    Colloidal silver nanospheres, nanorings, and nanonetworks were synthesized by the nanosecond pulsed laser ablation of a silver metal plate in a pure distilled water (at room temperature) using the fundamental (1064 nm), second harmonic (532 nm), and third harmonic (355 nm) wavelengths of the Nd:YAG

  19. SERS and DFT study of p-hydroxybenzoic acid adsorbed on colloidal silver particles.

    Science.gov (United States)

    Chen, Y; Chen, S J; Li, S; Wei, J J

    2015-10-16

    In this study, normal Raman spectra of p—hydroxybenzoic acid (PHBA) powder and its surface—enhanced Raman scattering (SERS) spectra in silver colloidal solutions were measured under near infrared excitation conditions. In theoretical calculation, two models of PHBA adsorbed on the surfaces of silver nanoparticles were established. The Raman frequencies of these two models using density functional theory (DFT) method were calculated, and compared with the experimental results. It was found that the calculated Raman frequencies were in good agreement with experimental values, which indicates that there are two enhanced mechanism physical (electromagnetic, EM) enhancement and chemical (charge—transfer, CT) enhancement, in silver colloidal solutions regarding SERS effect. Furthermore, from high—quality SERS spectrum of PHBA obtained in silver colloids, we inferred that PHBA molecules in silver colloids adsorb onto the metal surfaces through carboxyl at a perpendicular orientation. The combination of SERS spectra and DFT calculation is thus useful for studies of the adsorption—orientation of a molecule on a metal colloid.

  20. Poly(vinyl alcohol)/cellulose nanofibril hybrid aerogels with an aligned microtubular porous structure and their composites with polydimethylsiloxane

    Science.gov (United States)

    Tianliang Zhai; Qifeng Zheng; Zhiyong Cai; Lih-Sheng Turng; Hesheng Xia; Shaoqin Gong

    2015-01-01

    Superhydrophobic poly(vinyl alcohol) (PVA)/ cellulose nanofibril (CNF) aerogels with a unidirectionally aligned microtubular porous structure were prepared using a unidirectional freeze-drying process, followed by the thermal chemical vapor deposition of methyltrichlorosilane. The silanized aerogels were characterized using various techniques including scanning...

  1. KFeSbTe3: A quaternary chalcogenide aerogel for preferential adsorption of polarizable hydrocarbons and gases

    KAUST Repository

    Ahmed, Ejaz; Rothenberger, Alexander

    2015-01-01

    The first telluride-based quaternary aerogel KFeSbTe3 is synthesized by a sol-gel metathesis reaction between Fe(OAc)2 and K3SbTe3 in dimethyl formamide. The aerogel has an exceptionally large surface area 652 m2 g-1 which is amongst the highest

  2. Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors

    NARCIS (Netherlands)

    Oschatz, M.; Boukhalfa, S.; Nickel, W.; Hofmann, J.P.; Fischer, C.; Yushin, G.; Kaskel, S.

    2017-01-01

    Carbide-derived carbon (CDC) aerogels with hierarchical porosity are prepared from cross-linked polycarbosilane aerogels by pyrolysis and chlorine treatment at 700 and 1000 °C. The low-temperature sample is further activated with carbon dioxide to introduce additional micropores. The influence of

  3. Colloid transport in dual-permeability media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  4. Fabricating colloidal crystals and construction of ordered nanostructures

    Directory of Open Access Journals (Sweden)

    Sun Zhiqiang

    2006-01-01

    Full Text Available AbstractColloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous colloidal crystals of different building blocks, colloidal crystals composed of non-spherical polyhedrons, and colloidal crystals of non-close-packed colloidal microspheres in particular. The use of these colloidal crystals as templates for different microstructures range from nanoscale to micron-scale is also summarized.

  5. Aerogel to simulate delamination and porosity defects in carbon-fiber reinforced polymer composites

    Science.gov (United States)

    Juarez, Peter; Leckey, Cara A. C.

    2018-04-01

    Representative defect standards are essential for the validation and calibration of new and existing inspection techniques. However, commonly used methods of simulating delaminations in carbon-fiber reinforced polymer (CFRP) composites do not accurately represent the behavior of the real-world defects for several widely-used NDE techniques. For instance, it is common practice to create a delamination standard by inserting Polytetrafluoroethylene (PTFE) in between ply layers. However, PTFE can transmit more ultrasonic energy than actual delaminations, leading to an unrealistic representation of the defect inspection. PTFE can also deform/wrinkle during the curing process and has a thermal effusivity two orders of magnitude higher than air (almost equal to that of a CFRP). It is therefore not effective in simulating a delamination for thermography. Currently there is also no standard practice for producing or representing a known porosity in composites. This paper presents a novel method of creating delamination and porosity standards using aerogel. Insertion of thin sheets of solid aerogel between ply layers during layup is shown to produce air-gap-like delaminations creating realistic ultrasonic and thermographic inspection responses. Furthermore, it is shown that depositing controlled amounts of aerogel powder can represent porosity. Micrograph data verifies the structural integrity of the aerogel through the composite curing process. This paper presents data from multiple NDE methods, including X-ray computed tomography, immersion ultrasound, and flash thermography to the effectiveness of aerogel as a delamination and porosity simulant.

  6. Sol-gel derived flexible silica aerogel as selective adsorbent for water decontamination from crude oil.

    Science.gov (United States)

    Abolghasemi Mahani, A; Motahari, S; Mohebbi, A

    2018-04-01

    Oil spills are the most important threat to the sea ecosystem. The present study is an attempt to investigate the effects of sol-gel parameters on seawater decontamination from crude oil by use of flexible silica aerogel. To this goal, methyltrimethoxysilane (MTMS) based silica aerogels were prepared by two-step acid-base catalyzed sol-gel process, involving ambient pressure drying (APD) method. To investigate the effects of sol-gel parameters, the aerogels were prepared under two different acidic and basic pH values (i.e. 4 and 8) and varied ethanol/MTMS molar ratios from 5 to 15. The adsorption capacity of the prepared aerogels was evaluated for two heavy and light commercial crude oils under multiple adsorption-desorption cycles. To reduce process time, desorption cycles were carried out by using roll milling for the first time. At optimum condition, silica aerogels are able to uptake heavy and light crude oils with the order of 16.7 and 13.7, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Evaluations of Silica Aerogel-Based Flexible Blanket as Passive Thermal Control Element for Spacecraft Applications

    Science.gov (United States)

    Hasan, Mohammed Adnan; Rashmi, S.; Esther, A. Carmel Mary; Bhavanisankar, Prudhivi Yashwantkumar; Sherikar, Baburao N.; Sridhara, N.; Dey, Arjun

    2018-03-01

    The feasibility of utilizing commercially available silica aerogel-based flexible composite blankets as passive thermal control element in applications such as extraterrestrial environments is investigated. Differential scanning calorimetry showed that aerogel blanket was thermally stable over - 150 to 126 °C. The outgassing behavior, e.g., total mass loss, collected volatile condensable materials, water vapor regained and recovered mass loss, was within acceptable range recommended for the space applications. ASTM tension and tear tests confirmed the material's mechanical integrity. The thermo-optical properties remained nearly unaltered in simulated space environmental tests such as relative humidity, thermal cycling and thermo-vacuum tests and confirmed the space worthiness of the aerogel. Aluminized Kapton stitched or anchored to the blanket could be used to control the optical transparency of the aerogel. These outcomes highlight the potential of commercial aerogel composite blankets as passive thermal control element in spacecraft. Structural and chemical characterization of the material was also done using scanning electron microscopy, Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy.

  8. Superior microwave absorption properties of ultralight reduced graphene oxide/black phosphorus aerogel

    Science.gov (United States)

    Hao, Chunxue; Wang, Bochong; Wen, Fusheng; Mu, Congpu; Xiang, Jianyong; Li, Lei; Liu, Zhongyuan

    2018-06-01

    Through a facile self-assembled process, an ultralight reduced graphene oxide/black phosphorus (rGO/BP) composite aerogel was successfully fabricated. The BP nanosheets were homogeneously distributed throughout the rGO 3D framework, and the interfaces between rGO and BP possessed four kinds of interconnections, such as wrapping, wearing, bridging and weak linking. As an ultralight composite, the rGO/BP aerogel could easily stand on the stamen of a flower. Compared with pure rGO aerogel, the rGO/BP composite aerogel exhibited enhanced microwave absorption ability. The minimum reflection loss value of ‑46.9 dB with a thickness of 2.53 mm was obtained, and a wide absorption band of 6.1 GHz (RL < ‑10 dB) was achieved. The superior microwave absorption property was demonstrated to stem from the interfacial polarization loss mechanism in which the multiform interface interactions between the rGO skeleton and BP nanosheets played critical roles. The rGO/BP aerogel has great potential to be used as an ultralight microwave absorber.

  9. Highly Insulating and Light Transmitting Aerogel Glazing for Super Insulating Windows (HILIT+)

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Kristiansen, Finn Harken; Schultz, Jørgen Munthe

    2005-01-01

    to 1000 m²/g), the material is proposed to serve as substrate for catalytic materials. • The special pore structure of aerogel could be used for gas filters in the 20 to 100 nm region. • The sound velocity within aerogel is in the range of 100 to 300 m/s, which should be one of the lowest for an inorganic......-free nano-structured aerogel materials through a reasonably fast and reproducible process. The applicative part of this project aimed at elaborating, studying and optimising “state-of-the-art” (0.5 W/m2 K) aerogel glazings for windows. An important issue was the risk of outside condensation and rime and its....... No other known glazing exhibits such an excellent combination of solar transmittance and heat loss coefficient. The annual energy savings compared to triple low energy glazing is in the range of 10 – 20% depending on type of building. Beside the application in glazing production the HILIT+ aerogel material...

  10. Nanocellulose-assisted low-temperature synthesis and supercapacitor performance of reduced graphene oxide aerogels

    Science.gov (United States)

    Wang, Jie; Ran, Ran; Sunarso, Jaka; Yin, Chao; Zou, Honggang; Feng, Yi; Li, Xiaobao; Zheng, Xu; Yao, Jianfeng

    2017-04-01

    Here, we have synthesized reduced graphene oxide (rGO) aerogels using a nanocellulose-assisted low temperature (less than 500 °C) thermal treatment route where nanocelluloses promote the gelation of graphene oxide (GO) solution that benefits the fabrication of GO aerogels from low concentration dispersion (2.85 mg mL-1), and after their thermal decomposition the residual nanofibers act as spacer both prevent the re-stacking of graphene sheets and integrate with rGO sheets to give a particular kind of carbon-based aerogel along with numerous defects (holes). Thermal decomposition of nanocellulose appears to be complete beyond 350 °C thus its presence in form of amorphous carbon nanofibers in rGO sheets. The rGO aerogels synthesized at 350 °C provide the best balance in terms of wide interlayer spacing, high content of CO-type functional groups, and high defects content. This translates into a high discharge capacitance of 270 F g-1 at a current rate of 1 A g-1 for compressed rGO aerogels without any binder or conductive additive. Detailed electrochemical tests using 6 M KOH electrolyte establish the fact that pseudocapacitance component has substantial contribution towards the overall capacitance; closely approaching the contribution of the double layer capacitance that is the most dominant capacitance component.

  11. Lithium-Catalyzed Carbon Aerogel and Its Possible Application in Energy Storage Materials

    Science.gov (United States)

    Ciszewski, Mateusz; Szatkowska, Elżbieta; Koszorek, Andrzej

    2017-07-01

    A lithium-based catalyst for carbon aerogel compounds and carbon nanotubes synthesis was used. Lithium hydroxide-catalyzed and CNT-modified carbon aerogel was compared to traditionally synthesized sodium carbonate-catalyzed carbon aerogel, as well as to the same material modified with CNT to evaluate the real effect of lithium hydroxide addition. Enhancement in the specific surface area from 498 m2/g to 786 m2/g and significant change in pore size distribution were observed. Low temperature, supercritical drying in carbon dioxide was used to prepare an organic aerogel with subsequent pyrolysis in an inert gas flow to convert it into carbon aerogel. The as-obtained material was examined with respect to energy storage applications, i.e. symmetric hybrid supercapacitors. It was shown that lithium hydroxide was responsible for shorter gelation time, increased specific surface area, and a greater number of micropores within the structure. For both reference materials prepared using sodium carbonate, quite different data were recorded. It was presented that the proper choice of carbon matrix should combine both high specific surface area and appropriate pore size distribution. High surface area and a relatively large number of micropores were responsible for specific capacity loss.

  12. Clay exfoliation and polymer/clay aerogels by supercritical carbon dioxide

    Directory of Open Access Journals (Sweden)

    Simona eLongo

    2013-11-01

    Full Text Available Supercritical carbon dioxide (scCO2 treatments of a montmorillonite (MMT intercalated with ammonium cations bearing two long hydrocarbon tails (organo-modified MMT, OMMT led to OMMT exfoliation, with loss of the long-range order in the packing of the hydrocarbon tails and maintenance of the long-range order in the clay layers. The intercalated and the derived exfoliated OMMT have been deeply characterized, mainly by X-ray diffraction analyses. Monolithic composite aerogels, with large amounts of both intercalated and exfoliated OMMT and including the nanoporous-crystalline δ form of syndiotactic polystyrene (s-PS, have been prepared, by scCO2 extractions of s-PS-based gels. Also for high OMMT content, the gel and aerogel preparation procedures occur without re-aggregation of the exfoliated clay, which is instead observed for other kinds of polymer processing. Aerogels with the exfoliated OMMT have more even dispersion of the clay layers, higher elastic modulus and larger surface area than aerogels with the intercalated OMMT. Extremely light materials with relevant transport properties could be prepared. Moreover, s-PS-based aerogels with exfoliated OMMT could be helpful for the handling of exfoliated clay minerals.

  13. Electrochemical investigation of functionalized graphene aerogel with different amount of p-phenylenediamine as an advanced electrode material for supercapacitors

    Science.gov (United States)

    Gholipour-Ranjbar, Habib; Ganjali, Mohammad Reza; Norouzi, Parviz; Naderi, Hamid Reza

    2016-07-01

    Graphene aerogel has attracted great attention as a new and efficient electrode material for supercapacitors. It can be expected that functionalization of graphene aerogels can further improve their capability. In this study, graphene aerogel functionalized with different amount of p-phenylenediamine (PPD) and the effect of PPD amount on the supercapacitive performance of functionalized graphene aerogel (FGA) was investigated. Structural characterizations showed that PPD molecules initiated graphene aerogel sheets assembly into three-dimensional structures and also increasing PPD amount led to increase in surface area. Electrochemical investigations proved that the FGA with larger pore size showed enhanced supercapacitive performance compared with the FGA with smaller pore size. The optimized FGA-based electrode exhibited outstanding specific capacitance (SC) of 385 F g-1 at a discharge current density of 1 A g-1, good rate capability (215 F g-1 at 20 A g-1), and exceptionally high cyclic stability by displaying 25% increase in SC after 5000 cycle.

  14. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  15. Colloid cysts of the third ventricle

    International Nuclear Information System (INIS)

    Pina, J.I.; Medrano, J.; Benito, J.L. de; Lasierra, R.; Lopez, S.; Fernandez, J.A.; Villavieja, J.L.

    1994-01-01

    Colloid cysts (CC) are uncommon cystic endo dermal tumors located in the roof of the third ventricle. The clinical features depend on their capacity for obstructing the foramen of Monro, which results in univentricular or biventricular hydrocephalus. We present three cases of colloid cysts of the third ventricle, diagnosed by CT, reviewing their diagnostic, clinical and pathological features

  16. Colloidal assemblies modified by ion irradiation

    NARCIS (Netherlands)

    Snoeks, E.; Blaaderen, A. van; Dillen, T. van; Kats, C.M. van; Velikov, K.P.; Brongersma, M.L.; Polman, A.

    2001-01-01

    Spherical SiO2 and ZnS colloidal particles show a dramatic anisotropic plastic deformation under 4 MeV Xe ion irradiation, that changes their shape into oblate into oblate ellipsional, with an aspect ratio that can be precisely controlled by the ion fluence. The 290 nm and 1.1 um diameter colloids

  17. The electrostatic interaction between interfacial colloidal particles

    Science.gov (United States)

    Hurd, A. J.

    1985-11-01

    The electrostatic interaction between charged, colloidal particles trapped at an air-water interface is considered using linearised Poisson-Boltzmann results for point particles. In addition to the expected screened-Coulomb contribution, which decays exponentially, an algebraic dipole-dipole interaction occurs that may account for long-range interactions in interfacial colloidal systems.

  18. Manipulating colloids with charges and electric fields

    NARCIS (Netherlands)

    Leunissen, M.E.

    2007-01-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their

  19. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    International Nuclear Information System (INIS)

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH 4 in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH 4 . The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH 4 in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO 4 and Mn. Also in the synthetic Fe colloids PO 4 , Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO 4 , SiO 4 and dissolved organic matter best match the Fe colloids from the field

  20. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-09-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH{sub 4} in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH{sub 4}. The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH{sub 4} in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO{sub 4} and Mn. Also in the synthetic Fe colloids PO{sub 4}, Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO{sub 4}, SiO{sub 4} and dissolved organic matter best match the Fe colloids from the field.

  1. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    Science.gov (United States)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  2. Recommendations for plutonium colloid size determination

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1984-02-01

    This report presents recommendations for plutonium colloid size determination and summarizes a literature review, discussions with other researchers, and comments from equipment manufacturers. Four techniques suitable for plutonium colloid size characterization are filtration and ultrafiltration, gel permeation chromatography, diffusion methods, and high-pressure liquid chromatography (conditionally). Our findings include the following: (1) Filtration and ultrafiltration should be the first methods used for plutonium colloid size determination because they can provide the most rapid results with the least complicated experimental arrangement. (2) After expertise has been obtained with filtering, gel permeation chromatography should be incorporated into the colloid size determination program. (3) Diffusion methods can be used next. (4) High-pressure liquid chromatography will be suitable after appropriate columns are available. A plutonium colloid size characterization program with filtration/ultrafiltration and gel permeation chromatography has been initiated

  3. Flexible, highly graphitized carbon aerogels based on bacterial cellulose/lignin: Catalyst-free synthesis and its application in energy storage devices

    KAUST Repository

    Xu, Xuezhu

    2015-04-15

    Currently, most carbon aerogels are based on carbon nanotubes (CNTs) or graphene, which are produced through a catalyst-assisted chemical vapor deposition method. Biomass based organic aerogels and carbon aerogels, featuring low cost, high scalability, and small environmental footprint, represent an important new research direction in (carbon) aerogel development. Cellulose and lignin are the two most abundant natural polymers in the world, and the aerogels based on them are very promising. Classic silicon aerogels and available organic resorcinol-formaldehyde (RF) or lignin-resorcinol-formaldehyde (LRF) aerogels are brittle and fragile; toughening of the aerogels is highly desired to expand their applications. This study reports the first attempt to toughen the intrinsically brittle LRF aerogel and carbon aerogel using bacterial cellulose. The facile process is catalyst-free and cost-effective. The toughened carbon aerogels, consisting of blackberry-like, core-shell structured, and highly graphitized carbon nanofibers, are able to undergo at least 20% reversible compressive deformation. Due to their unique nanostructure and large mesopore population, the carbon materials exhibit an areal capacitance higher than most of the reported values in the literature. This property makes them suitable candidates for flexible solid-state energy storage devices. Besides energy storage, the conductive interconnected nanoporous structure can also find applications in oil/water separation, catalyst supports, sensors, and so forth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Colloid-Associated Radionuclide Concentration Limits: ANL

    International Nuclear Information System (INIS)

    Mertz, C.

    2000-01-01

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M and O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types

  5. Silica aerogel threshold Cherenkov counters for the JLab Hall A spectrometers: improvements and proposed modifications

    CERN Document Server

    Lagamba, L; Colilli, S; Crateri, R; De Leo, R; Frullani, S; Garibaldi, F; Giuliani, F; Gricia, M; Iodice, M; Iommi, R; Leone, A; Lucentini, M; Mostarda, A; Nappi, E; Perrino, R; Pierangeli, L; Santavenere, F; Urciuoli, G M

    2001-01-01

    Recently approved experiments at Jefferson Lab Hall A require a clean kaon identification in a large electron, pion, and proton background environment. To this end, improved performance is required of the silica aerogel threshold Cherenkov counters installed in the focal plane of the two Hall A spectrometers. In this paper we propose two strategies to improve the performance of the Cherenkov counters which presently use a hydrophilic aerogel radiator, and convey Cherenkov photons towards the photomultipliers by means of mirrors with a parabolic shape in one direction and flat in the other. The first strategy is aerogel baking. In the second strategy we propose a modification of the counter geometry by replacing the mirrors with a planar diffusing surface and by displacing in a different way the photomultipliers. Tests at CERN with a 5 GeV/c multiparticle beam revealed that both the strategies are able to increase significantly the number of the detected Cherenkov photons and, therefore, the detector performan...

  6. Correlating Lithium Hydroxyl Accumulation with Capacity Retention in V2O5 Aerogel Cathodes.

    Science.gov (United States)

    Wangoh, Linda W; Huang, Yiqing; Jezorek, Ryan L; Kehoe, Aoife B; Watson, Graeme W; Omenya, Fredrick; Quackenbush, Nicholas F; Chernova, Natasha A; Whittingham, M Stanley; Piper, Louis F J

    2016-05-11

    V2O5 aerogels are capable of reversibly intercalating more than 5 Li(+)/V2O5 but suffer from lifetime issues due to their poor capacity retention upon cycling. We employed a range of material characterization and electrochemical techniques along with atomic pair distribution function, X-ray photoelectron spectroscopy, and density functional theory to determine the origin of the capacity fading in V2O5 aerogel cathodes. In addition to the expected vanadium redox due to intercalation, we observed LiOH species that formed upon discharge and were only partially removed after charging, resulting in an accumulation of electrochemically inactive LiOH over each cycle. Our results indicate that the tightly bound water that is necessary for maintaining the aerogel structure is also inherently responsible for the capacity fade.

  7. Carbon aerogels as electrode material for electrical double layer supercapacitors-Synthesis and properties

    Energy Technology Data Exchange (ETDEWEB)

    Halama, Agnieszka [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland); Szubzda, Bronislaw, E-mail: szubzda@iel.wroc.p [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland); Pasciak, Grzegorz [Electrotechnical Institute, Division of Electrotechnology and Materials Science, Wroclaw (Poland)

    2010-10-30

    This paper constitutes a description of technological research the aim of which was to design a symmetric supercapacitor dedicated for the system of quality of electrical energy improvement (supply interruption, voltage dip). The main task was to use the carbon aerogel technology as the efficient method for production of electrode material with desirable properties. Carbon aerogels were prepared by carbonization of resorcinol-formaldehyde (RF) polymer gels. RF-gels were synthesized by curing polycondensation and by the inverse emulsion polymerization of resorcinol with formaldehyde, followed by microwave drying. The morphostructural characteristics of the carbon aerogels were investigated by atomic force microscopy (AFM) and the N{sub 2} adsorption (BET method). The electrochemical properties were characterized by means of cycle voltammetry, galvanostatic charging/discharging, and self-discharge.

  8. Effects of magnetic impurity scattering on superfluid 3He in aerogel

    Science.gov (United States)

    Aoyama, Kazushi; Ikeda, Ryusuke

    2009-02-01

    We investigate impurity effects on superfluid 3He in aerogel whose surface is not coated with 4He, different from most experimental situations. In systems with no 4He coating, spins of solid 3He absorbed on the aerogel surface are active and interact with spins of quasiparticles relevant to superfluidity and, for this reason, such an aerogel is treated as magnetic scatterers. It is found that, in the ABM pairing state affected by magnetic scatterings, not only the l-vector but also the d-vector has no long-ranged orientational order, and that the strong-coupling correction due to impurity scatterings is less suppressed than that in the nonmagnetic case, implying an expansion of the A-like phase region.

  9. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  10. Random textures of the order parameter of superfluid sup 3 He-B in aerogel

    CERN Document Server

    Fomin, Yu A

    2002-01-01

    The scheme for describing the properties of the superfluid sup 3 He in the aerogel is proposed in accordance with the Ginzburg and Landau theory. The aerogel effect on the order parameter is described by the random tensor field. This field exerts desorientation effect on the order parameter in the sup 3 He A-phase, but it does not influence the order parameter orientation in the B-phase, if there is no magnetic field. The change in the order parameter texture, originating in the B-phase in the aerogel in the magnetic field, is considered. Fluctuations of the sup 3 He-B anisotropy axis direction are correlated on the length, inversely proportional to the field intensity and having the macroscopic scale

  11. Evaluation of new 5 inch photomultiplier for use in threshold Cherenkov detectors with aerogel radiator

    International Nuclear Information System (INIS)

    Wojtsekhowski, B.; Zorn, C.; Flyckt, S.O.

    2000-01-01

    A cost effective alternative to UV-sensitive 5 inch PMTs often used with threshold Aerogel Cherenkov detectors has been developed and tested. The photomultiplier -XP4572-is a variation of the Photonis XP4512 glass window tube with improved electron collection efficiency. Fast timing and high gain were only moderately compromised. The effective quantum efficiency has been measured as twice that of a Burle 8854 Quantacon when exposed to a Cherenkov spectrum generated by Ru-106 electrons (les;3.54 MeV) through 1 cm of high index, high transparency Matsushita Electric aerogel (n=1.05). This new phototube is being installed in an aerogel-based Cherenkov detector for Hall A at Jefferson Lab

  12. Development of aerogel-lined targets for inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Tom [Technical Univ. Munchen (Germany)

    2013-03-28

    This thesis explores the formation of ICF compatible foam layers inside of an ablator shell used for inertial confinement fusion experiments at the National Ignition Facility. In particular, the capability of p- DCPD polymer aerogels to serve as a scaffold for the deuterium-tritium mix was analyzed. Four different factors were evaluated: the dependency of different factors such as thickness or composition of a precursor solution on the uniformity of the aerogel layer, how to bring the optimal composition inside of the ablator shell, the mechanical stability of ultra-low density p-DCPD aerogel bulk pieces during wetting and freezing with hydrogen, and the wetting behavior of thin polymer foam layers in HDC carbon ablator shells with liquid deuterium. The research for thesis was done at Lawrence Livermore National Laboratory in cooperation with the Technical University Munich.

  13. Application of colloidal chemistry in aqueous phase to the preparation of supported metallic catalysts: particles size and aggregation control; Application de la chimie colloidale en phase aqueuse a la preparation de catalyseurs metalliques supportes: controle de la taille et de l`etat d`agregation des particules

    Energy Technology Data Exchange (ETDEWEB)

    Pages, T.

    1998-09-16

    This work is an application of colloidal chemistry in aqueous phase on supported metal catalyst preparation. The objective is the control of particle size and aggregation. The preparation of the materials was achieved in two steps: - the synthesis of PdO hydrosols was obtained by two ways: neutralisation of the solution containing metallic salt by adding alkaline solution or by thermo-hydrolysis; the sols were then deposited on carriers (Al{sub 2}O{sub 3}, SIO{sub 2}). The use of partial charge model allowed us to determine the complexes that were able to generate PdO. The preparation of PdO from Pd(H{sub 2}O){sub 4}{sup 2+} was studied and a mechanism of oxide formation was elaborated. The neutralisation of Pd(H{sub 2}O){sub 4}{sup 2+} obtained by adding alkaline solution led to particles with an average size of 1.8 nm and a narrow particle size distribution. Only the thermo-hydrolysis of Pd(H{sub 2}O){sub 4}{sup 2+} led to particles which size is higher than 3.0 nm. In the last case, particle size is controlled by the precursor concentration (Pd(H{sub 2}O){sub 2}(OH){sub 2}) generated in the medium. We have demonstrated that particle aggregation in the sol depends on the Ph and the way of preparation. It can be controlled by adding complexing anions (Cl{sup -}, NO{sub 2}{sup -}). Concerning the deposition of sols on carriers, it led to isolated or aggregated particles according to experimental conditions. Particle size was not modified during the deposition. Moreover, in our experimental conditions, reduction of particles did not modify particle size and aggregation. An application of this original way of preparation on catalysis allowed us to demonstrate the interest of controlling particle size and aggregation. (author) 186 refs.

  14. Preparation, Characterization and Activity of a Peptide-Cellulosic Aerogel Protease Sensor from Cotton

    Directory of Open Access Journals (Sweden)

    J. Vincent Edwards

    2016-10-01

    Full Text Available Nanocellulosic aerogels (NA provide a lightweight biocompatible material with structural properties, like interconnected high porosity and specific surface area, suitable for biosensor design. We report here the preparation, characterization and activity of peptide-nanocellulose aerogels (PepNA made from unprocessed cotton and designed with protease detection activity. Low-density cellulosic aerogels were prepared from greige cotton by employing calcium thiocyanate octahydrate/lithium chloride as a direct cellulose dissolving medium. Subsequent casting, coagulation, solvent exchange and supercritical carbon dioxide drying afforded homogeneous cellulose II aerogels of fibrous morphology. The cotton-based aerogel had a porosity of 99% largely dominated by mesopores (2–50 nm and an internal surface of 163 m2·g−1. A fluorescent tripeptide-substrate (succinyl-alanine-proline-alanine-4-amino-7-methyl-coumarin was tethered to NA by (1 esterification of cellulose C6 surface hydroxyl groups with glycidyl-fluorenylmethyloxycarbonyl (FMOC, (2 deprotection and (3 coupling of the immobilized glycine with the tripeptide. Characterization of the NA and PepNA included techniques, such as elemental analysis, mass spectral analysis, attenuated total reflectance infrared imaging, nitrogen adsorption, scanning electron microscopy and bioactivity studies. The degree of substitution of the peptide analog attached to the anhydroglucose units of PepNA was 0.015. The findings from mass spectral analysis and attenuated total reflectance infrared imaging indicated that the peptide substrate was immobilized on to the surface of the NA. Nitrogen adsorption revealed a high specific surface area and a highly porous system, which supports the open porous structure observed from scanning electron microscopy images. Bioactivity studies of PepNA revealed a detection sensitivity of 0.13 units/milliliter for human neutrophil elastase, a diagnostic biomarker for inflammatory

  15. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Science.gov (United States)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  16. Synthesis of graphene aerogel for adsorption of bisphenol A

    Science.gov (United States)

    Trinh, Truong Thi Phuong Nguyet Xuan; Long, Nguyen Huynh Bach Son; Quang, Dong Thanh; Hieu, Nguyen Huu

    2018-04-01

    In this research, graphene aerogel (GA) was synthesized by chemical reduction method using ethylene diamine as a reducing agent. The morphology and properties of GA were characterized by calculating apparent density, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, field emission scanning electron microscopy, and Brunauer-Emmett-Teller (BET) specific surface area. High-performance liquid chromatography (HPLC) was used to quantify the amount of the residual bisphenol A (BPA) concentration. The analysis results showed that GA exhibited low density ranging from 4-8 mg/cm3, hydrophobicity, high porosity, and specific surface area of 1883 m2/g according to BET. The obtained GA was used as an adsorbent for BPA. The effects of pH, contact time, and initial BPA concentration on the adsorption were investigated. The adsorption equilibrium time could be reached within 240 minutes. The adsorption data were well-fitted to pseudo-second-order kinetic equation and Langmuir isotherm model. The maximum adsorption capacity of GA for BPA calculated by the Langmuir model was 185.185 mg/g at pH 7. Accordingly, GA could be considered as promising adsorbents for BPA in water.

  17. KOH catalysed preparation of activated carbon aerogels for dye adsorption.

    Science.gov (United States)

    Ling, Sie King; Tian, H Y; Wang, Shaobin; Rufford, Thomas; Zhu, Z H; Buckley, C E

    2011-05-01

    Organic carbon aerogels (CAs) were prepared by a sol-gel method from polymerisation of resorcinol, furfural, and hexamethylenetetramine catalysed by KOH at around pH 9 using ambient pressure drying. The effect of KOH in the sol-gel on CA synthesis was studied. It was found that addition of KOH prior to the sol-gel polymerisation process improved thermal stability of the gel, prevented the crystallinity of the gel to graphite, increased the microporosity of CA and promoted activation of CA. The CAs prepared using the KOH catalyst exhibited higher porosity than uncatalysed prepared samples. Activation in CO(2) at higher temperature also enhanced the porosity of CAs. Adsorption tests indicated that the CAs were effective for both basic and acid dye adsorption and the adsorption increased with increasing surface area and pore volume. The kinetic adsorption of dyes was diffusion control and could be described by the second-order kinetic model. The equilibrium adsorption of dyes was higher than activated carbon. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Modeling of phonon heat transfer in spherical segment of silica aerogel grains

    Energy Technology Data Exchange (ETDEWEB)

    Han, Ya-Fen; Xia, Xin-Lin, E-mail: xiaxl@hit.edu.cn; Tan, He-Ping, E-mail: tanheping@hit.edu.cn; Liu, Hai-Dong

    2013-07-01

    Phonon heat transfer in spherical segment of nano silica aerogel grains is investigated by the lattice Boltzmann method (LBM). For various sizes of grains, the temperature distribution and the thermal conductivity are obtained by the numerical simulation, in which the size effects of the gap surface are also considered. The results indicate that the temperature distribution in the silica aerogel grain depends strongly on the size. Both the decreases in the diameter of spherical segment and the ratio of the diameter of gap surface to the diameter of spherical segment reduce its effective thermal conductivity obviously. In addition, the phonon scattering at the boundary surfaces becomes more prominent when grain size decreases.

  19. Densification and Strengthening of Aerogels by Sintering Heat Treatments or Plastic Compression

    Directory of Open Access Journals (Sweden)

    Thierry Woignier

    2018-01-01

    Full Text Available Due to their broad range of porosity, aerogels are suited to various applications. The advantages of a broad range of porosity are used directly, for example, in thermal and acoustic insulation, as materials for space applications or in catalysers. However, an overly high pore volume can also be a drawback, for example, in a glass precursor and host matrix. Fortunately, aerogel porosity can be tailored using sintering or isostatic compression. Sets of silica aerogels—sintered and compressed aerogels—have been studied with the objective of comparing these different densification mechanisms. We focus on the mechanical changes during the two processes of densification.

  20. Propiedades mecánicas de aerogeles híbridos de sílice

    Directory of Open Access Journals (Sweden)

    Piñero, M.

    2005-10-01

    Full Text Available Hybrids silica aerogels have been obtained by means the high power ultrasounds application in the precursor liquid and the drying of the wet gel under the supercritical condition of ethanol. The organic chains don’t degrade thermally and accelerate the network shrinkage process by thermal activation. The ultrasounds induce an organic chain crosslinking bonding to the porous silica clusters and avoid its cyclidation. The failure tests by uniaxial compression show an increase of the rupture modulus, passing from 8 MPa for a pure silica aerogel to 24 MPa for an aerogel with a 50 weight % of polymer content. It is also noted a continuous decrease of the Young’s modulus with the polymer content (from 100 to 56 MPa. These hybrid aerogels behave as elastomers with up to a 50% strain, showing a decrease in the relaxation viscoelastic modulus.

    Se han obtenido aerogeles híbridos de sílice orgánico-inorgánico por aplicación de ultrasonidos de alta potencia en los precursores líquidos y posterior secado del gel húmedo en condiciones supercríticas en etanol. Las cadenas orgánicas no se degradan térmicamente y aceleran el proceso de contracción de la red por activación térmica. Los ultrasonidos inducen un entrecruzamiento de cadenas orgánicas que unen los cúmulos de sílice porosa y evitan su ciclidación. Los ensayos de ruptura en compresión uniaxial indicaron un aumento del módulo de ruptura, pasando de 8 MPa para el aerogel de sílice pura hasta 24 MPa para un aerogel de 50% en peso de contenido de polímero. Se observa asimismo una disminución continua en el módulo de Young con el contenido de polímero (de 100 a 56 MPa. Estos aerogeles híbridos se comportan como elastómeros con deformaciones de hasta el 50%, mostrando una disminución del módulo de relajación viscoelástica.

  1. Observation of a second-sound-like mode in superfluid-filled aerogel

    International Nuclear Information System (INIS)

    McKenna, M.J.; Slawecki, T.; Maynard, J.D.

    1991-01-01

    Superfluid 4 He is interesting acoustically because it can support more than one mode of sound propagation, and these can be used to study critical properties. Recently, there has been interest in superfluid-filled aerogels, but for such compressible materials one does not observe the ordinary (fourth) sound; instead there is a mode intermediate between first and fourth sound and a second-sound-like mode. We present a theory for the modes and the first observation of the aerogel second-sound-like mode, which is important because it propagates near the critical temperature

  2. Modeling of phonon heat transfer in spherical segment of silica aerogel grains

    International Nuclear Information System (INIS)

    Han, Ya-Fen; Xia, Xin-Lin; Tan, He-Ping; Liu, Hai-Dong

    2013-01-01

    Phonon heat transfer in spherical segment of nano silica aerogel grains is investigated by the lattice Boltzmann method (LBM). For various sizes of grains, the temperature distribution and the thermal conductivity are obtained by the numerical simulation, in which the size effects of the gap surface are also considered. The results indicate that the temperature distribution in the silica aerogel grain depends strongly on the size. Both the decreases in the diameter of spherical segment and the ratio of the diameter of gap surface to the diameter of spherical segment reduce its effective thermal conductivity obviously. In addition, the phonon scattering at the boundary surfaces becomes more prominent when grain size decreases

  3. Monolithic lithium-based aerogels via dispersed inorganic sol-gel method

    International Nuclear Information System (INIS)

    Xiao Shufang; Zhou Bin; Du Ai; Xu Xiang; Yang Xiaoyun; Shen Jun; Wu Guangming; Zhang Zhihua; Wan Huijun

    2008-01-01

    Monolithic lithium-based aerogels were prepared by poly acrylic acid (PAA) and propylene oxide (PO) via the dispersed inorganic sol-gel method and drying with CO 2 supercritical fluid dry process. The density of the prepared sample is about 150 g/m 3 . The microstructure of the lithium-based aerogels was characterized by TEM, IR, XPS and BET. The results show that the material mainly contains Li, C and O element s. BET surface area is up to 18.9 m 2 /g. (authors)

  4. Stardust: An overview of the tracks in the aerogel (calibration, classification and particle size distribution)

    Science.gov (United States)

    Burchell, M. J.; Fairey, S. J.; Hörz, F.; Wozniakiewicz, P. J.; Kearsley, A. T.; Brownlee, D. E.; See, T. H.; Westphal, A.; Green, S. F.; Trigo-Rodríguez, J. M.

    2007-08-01

    The NASA Stardust mission (1) to comet P/Wild-2 returned to Earth in January 2006 carrying a cargo of dust captured in aerogel and residue rich craters in aluminium foils (2). Aerogel is a low density, highly porous material (3, 4). The aerogel that was carried by Stardust in the cometary dust collector trays was a SiO2 aerogel, arranged in blocks 4 cm x 2 cm (front face) and 3 cm deep, with density which varied smoothly from 5 mg/cc at the front surface to 50 mg/cc at the rear surface (5). A first look at the whole cometary dust tray at NASA showed that there were many impact features in the aerogel. During the Preliminary Examination period about 15% of the aerogel blocks were removed and studied in detail. The tracks observed in these blocks were classified into three groups: Type A were long relatively narrow tracks of "carrot shape", Type B tracks were again fairly long but had a large bulbous region at the top and appear like the bowl and stem of a flute champagne glass, Type C were purely bulbous tracks with no stem emerging beneath them. Data on the sizes and relative populations of these tracks will be given (also see (6)) along with a discussion of their implications for impactor composition. Laboratory calibrations of the impacts in aerogel have been carried out using glass beads and these permit an estimate of the size of the impactor based on the measured track properties (6). When applied to the tracks measured in the Stardust aerogel, a cumulative particle size distribution was obtained (7) which will be discussed. References (1) Brownlee D.E. et al., J. Geophys. Res. 108, E10, 8111, 2003. (2) Brownlee D.E. et al., Science 314, 1711 - 1716. 2006. (3) Kistler S.S., Nature 127, 741, 1931. (4) Burchell M.J. et al., Ann. Rev. Earth. Planet. Sci. 34, 385 - 418, 2006. (5) Tsou P. et al., J. Geophys. Res. 108(E10), 8113, 2003. (6) Burchell et al., submitted to MAPS, 2006. (7) Hörz F. et al., Science 314, 1716 - 1719, 2006.

  5. Aerogel Use as a Skin Protective Liner In Space Suits and Prosthetic Limbs Project

    Science.gov (United States)

    Roberson, Luke Bennett

    2014-01-01

    Existing materials for prosthetic liners tend to be thick and airtight, causing perspiration to accumulate inside the liner and potentially causing infection and injury. The purpose of this project was to examine the suitability of aerogel for prosthetic liner applications for use in space suits and orthopedics. Three tests were performed on several types of aerogel to assess the properties of each material, and our initial findings demonstrated that these materrials would be excellent candidates for liner applications for prosthetics and space suits. The project is currently on hold until additional funding is obtained for application testing at the VH Hospitals in Tampa

  6. Construction of silica aerogel radiator system for Belle II RICH Counter

    Science.gov (United States)

    Adachi, I.; Dolenec, R.; Hataya, K.; Iori, S.; Iwata, S.; Kakuno, H.; Kataura, R.; Kawai, H.; Kindo, H.; Kobayashi, T.; Korpar, S.; Križan, P.; Kumita, T.; Mrvar, M.; Nishida, S.; Ogawa, K.; Ogawa, S.; Pestotnik, R.; Šantelj, L.; Sumiyoshi, T.; Tabata, M.; Yonenaga, M.; Yusa, Y.

    2017-12-01

    We have developed a RICH counter as a new forward particle identification device for the Belle II experiment. As a Cherenkov radiator in this counter, a dual aerogel layer combination consisting of two refractive indicies, n=1.045 and 1.055, is employed. Mass production of these aerogel tiles has been done during 2013-2014 with new method improved by Chiba group. Optical qualities for them have been examined. The refractive indices of the obtained tiles were found to be in good agreement with our expectations, and the transparencies were high enough to be used for the RICH radiator.

  7. Aqueous suspensions of carbon nanotubes: surface oxidation, colloidal stability and uranium sorption.

    Science.gov (United States)

    Schierz, A; Zänker, H

    2009-04-01

    The objective of this study is to obtain information on the behaviour of carbon nanotubes (CNTs) as potential carriers of pollutants in the case of accidental CNT release to the environment and on the properties of CNTs as a potential adsorbent material in water purification. The effects of acid treatment of CNTs on (i) the surface properties, (ii) the colloidal stability and (iii) heavy metal sorption are investigated, the latter being exemplified by uranium(VI) sorption. There is a pronounced influence of surface treatment on the behaviour of the CNTs in aqueous suspension. Results showed that acid treatment increases the amount of acidic surface groups on the CNTs. Therefore, acid treatment has an increasing effect on the colloidal stability of the CNTs and on their adsorption capacity for U(VI). Another way to stabilise colloids of pristine CNTs in aqueous suspension is the addition of humic acid.

  8. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review.

    Science.gov (United States)

    Champagne, Pierre-Olivier; Westwick, Harrison; Bouthillier, Alain; Sawan, Mohamad

    2018-06-01

    Superparamagnetic iron oxide nanoparticles (SPIONs) consist of nanosized metallic-based particles with unique magnetic properties. Their potential in both diagnostic and therapeutic applications in the CNS is at the source of an expanding body of the literature in recent years. Colloidal stability of nanoparticles represents their ability to resist aggregation and is a central aspect for the use of SPION in biological environment such as the CNS. This review gives a comprehensive update of the recent developments and knowledge on the determinants of colloidal stability of SPIONs in the CNS. Factors leading to aggregate formation and the repercussions of colloidal instability of SPION are reviewed in detail pertaining to their use in the CNS.

  9. The physics of the colloidal glass transition.

    Science.gov (United States)

    Hunter, Gary L; Weeks, Eric R

    2012-06-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.

  10. The physics of the colloidal glass transition

    International Nuclear Information System (INIS)

    Hunter, Gary L; Weeks, Eric R

    2012-01-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come. (review article)

  11. Influences on physicians' choices of intravenous colloids.

    Science.gov (United States)

    Miletin, Michael S; Stewart, Thomas E; Norton, Peter G

    2002-07-01

    Controversy over the optimal intravenous fluid for volume resuscitation continues unabated. Our objectives were to characterize the demographics of physicians who prescribe intravenous colloids and determine factors that enter into their decision to choose a colloid. Questionnaire with 61 items. Ten percent ( n = 364) of frequent intravenous fluid prescribers in the province of Ontario, Canada. The response rate was 74%. Colloid use in the past year was reported by 79% of the responding physicians. Important reasons for choosing a colloid included blood loss and manipulation of oncotic pressure. Physicians tended to prefer either albumin or pentastarch, but no important reasons were found for choosing between the two. Albumin with or without crystalloid was preferred in 5/13 scenarios by more than 50% of the respondents, whereas pentastarch was not favored by more than 50% of respondents in any scenario. Physicians practising in critical care areas and teaching hospitals generally preferred pentastarch to albumin. Physicians reporting pentastarch as representing greater than 90% of total colloid use were more likely to have been visited by a drug detailer for pentastarch than those who used less synthetic colloid (54 vs 22%, p distribution. Although albumin appeared to be preferred in more clinical niches, most physicians did not state reasons for choosing between products. Marketing, specialty, location of practice and clinical scenario appear to play significant roles in the utilization of colloid products.

  12. Phosphate binding by natural iron-rich colloids in streams

    NARCIS (Netherlands)

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the

  13. Silver nanoparticle colloids with γ-cyclodextrin: enhanced stability and Gibbs–Marangoni flow

    Energy Technology Data Exchange (ETDEWEB)

    Amiri, Setareh; Duroux, Laurent; Larsen, Kim Lambertsen, E-mail: kll@bio.aau.dk [Aalborg University, Department of Chemistry and Bioscience (Denmark)

    2015-01-15

    Although cyclodextrins (CD) are effective stabilizers for metal nanoparticle colloids, differences between α-, β- and γ-CD in stabilizing such colloids have not been previously reported. In this study, silver nanoparticles (AgNP) were synthesized using NaBH{sub 4} as reducing agent and cyclodextrins as stabilizers. Long-term stability of AgNP colloids in equilibrium conditions showed no marked differences between CD types. Transmission electron microscopy and quantitative image analysis revealed only marginal differences in particle sizes for CD-AgNP, although statistically significant. CD-AgNP colloids showed dispersed particles with average diameters of 7.3 ± 2.2, 6.3 ± 2.9 and 4.9 ± 1.9 nm for α-, β- and γ-CD, respectively, and with similar ζ-potentials about −25 to −30 mV. AgNP without CD showed bigger and aggregated particles of 15.0 ± 2.0 nm with lower ζ-potentials of about −40 mV. When subjected to centrifugal forces, i.e. non-equilibrium conditions, γ-CD was markedly more efficient than α- and β-CD in stabilizing the colloids. Drying patterns of colloid droplets showed a typical self-pinned coffee ring for all but the colloid stabilized by γ-CD, which showed a pattern resulting from a dominant Gibbs–Marangoni flow inside the drying droplet. Calculations using the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory supported the stabilizing effect of CD in equilibrium conditions; it however did not provide clues for the superior stabilization by γ-CD in conditions of hydrodynamic stress.

  14. Silver nanoparticle colloids with γ-cyclodextrin: enhanced stability and Gibbs–Marangoni flow

    International Nuclear Information System (INIS)

    Amiri, Setareh; Duroux, Laurent; Larsen, Kim Lambertsen

    2015-01-01

    Although cyclodextrins (CD) are effective stabilizers for metal nanoparticle colloids, differences between α-, β- and γ-CD in stabilizing such colloids have not been previously reported. In this study, silver nanoparticles (AgNP) were synthesized using NaBH 4 as reducing agent and cyclodextrins as stabilizers. Long-term stability of AgNP colloids in equilibrium conditions showed no marked differences between CD types. Transmission electron microscopy and quantitative image analysis revealed only marginal differences in particle sizes for CD-AgNP, although statistically significant. CD-AgNP colloids showed dispersed particles with average diameters of 7.3 ± 2.2, 6.3 ± 2.9 and 4.9 ± 1.9 nm for α-, β- and γ-CD, respectively, and with similar ζ-potentials about −25 to −30 mV. AgNP without CD showed bigger and aggregated particles of 15.0 ± 2.0 nm with lower ζ-potentials of about −40 mV. When subjected to centrifugal forces, i.e. non-equilibrium conditions, γ-CD was markedly more efficient than α- and β-CD in stabilizing the colloids. Drying patterns of colloid droplets showed a typical self-pinned coffee ring for all but the colloid stabilized by γ-CD, which showed a pattern resulting from a dominant Gibbs–Marangoni flow inside the drying droplet. Calculations using the Derjaguin, Landau, Verwey and Overbeek (DLVO) theory supported the stabilizing effect of CD in equilibrium conditions; it however did not provide clues for the superior stabilization by γ-CD in conditions of hydrodynamic stress

  15. Three-dimensional barium-sulfate-impregnated reduced graphene oxide aerogel for removal of strontium from aqueous solutions

    Science.gov (United States)

    Jang, Jiseon; Lee, Dae Sung

    2018-06-01

    A three-dimensional barium-sulfate-impregnated reduced graphene oxide (BaSO4-rGO) aerogel was successfully synthesized by a facile one-step hydrothermal method and was used as an adsorbent to remove strontium from aqueous solutions. The characterized elemental composition, crystal structure, and morphology of the prepared aerogel confirmed that barium sulfate particles were firmly anchored on the surface of the rGO sheets and exhibited a porous 3D structure with a high surface area of 129.37 m2/g. The mass ratio of BaSO4 in the BaSO4-rGO aerogel substantially affected strontium adsorption, and the optimal BaSO4/rGO ratio was found to be 1:1. The synthesized BaSO4-rGO aerogel not only reached adsorption equilibrium within 1 h, but also showed much higher adsorption capacity than an rGO aerogel. The experimental data were well fitted to a pseudo-second-order kinetic model and the adsorption behavior followed the Langmuir isotherm. The adsorption capacity of strontium on BaSO4-rGO aerogels remained relatively high even under ionic competition in simulated seawater. These results showed that the BaSO4-rGO aerogel is an efficient and promising adsorbent for the treatment of strontium in aqueous solutions.

  16. Facile Synthesis of Flexible Methylsilsesquioxane Aerogels with Surface Modifications for Sound- Absorbance, Fast Dye Adsorption and Oil/Water Separation

    Directory of Open Access Journals (Sweden)

    Xingzhong Guo

    2018-04-01

    Full Text Available New flexible methylsilsesquioxane (MSQ aerogels have been facilely prepared by a sol–gel process with methyltrimethoxysilane (MTMS and dimethyldimethoxysilane (DMDMS as co-precursors, followed by surface modification and ambient pressure drying. The microstructure, mechanical properties and hydrophobicity of these MSQ aerogels after surface modifications of hexamethyldisiloxane (HMDSO and/or hexamethyldisilazane (HMDS were investigated in detail, and the applications of surface-modified MSQ aerogels in sound-absorbance, fast dye adsorption and oil/water separation were evaluated, respectively. The MSQ aerogels surface-modified by HMDS possess flexibility, elasticity and superhydrophobicity, and demonstrate good performance in the mentioned applications. The resultant MSQ aerogel used in sound-absorbance has high frequency (about 6 kHz acoustic absorptivity of up to 80%, benefiting from its macroporous structure and porosity of 94%, and it also possesses intermediate frequency acoustic absorptivity (about 1 kHz up to 80% owing to its elasticity. This MSQ aerogel can selectively separate oil from oil/water mixtures with high efficiency due to its superhydrophobicity and superlipophilicity, resulting from a lot of methyl groups, density as low as 0.12 cm3·g−1 and a water contact angle as high as 157°. This MSQ aerogel can be assembled to be a monolithic column applied for fast dye adsorption, and shows selective adsorption for anionic dyes and removal efficiency of methyl orange of up to 95%.

  17. A Co-Precursor Approach Coupled with a Supercritical Modification Method for Constructing Highly Transparent and Superhydrophobic Polymethylsilsesquioxane Aerogels.

    Science.gov (United States)

    Lei, Chaoshuai; Li, Junning; Sun, Chencheng; Yang, Hailong; Xia, Tao; Hu, Zijun; Zhang, Yue

    2018-03-30

    Polymethylsilsesquioxane (PMSQ) aerogels obtained from methyltrimethoxysilane (MTMS) are well-known high-performance porous materials. Highly transparent and hydrophobic PMSQ aerogel would play an important role in transparent vacuum insulation panels. Herein, the co-precursor approach and supercritical modification method were developed to prepare the PMSQ aerogels with high transparency and superhydrophobicity. Firstly, benefiting from the introduction of tetramethoxysilane (TMOS) in the precursor, the pore structure became more uniform and the particle size was decreased. As the TMOS content increased, the light transmittance increased gradually from 54.0% to 81.2%, whereas the contact angle of water droplet decreased from 141° to 99.9°, ascribed to the increase of hydroxyl groups on the skeleton surface. Hence, the supercritical modification method utilizing hexamethyldisilazane was also introduced to enhance the hydrophobic methyl groups on the aerogel's surface. As a result, the obtained aerogels revealed superhydrophobicity with a contact angle of 155°. Meanwhile, the developed surface modification method did not lead to any significant changes in the pore structure resulting in the superhydrophobic aerogel with a high transparency of 77.2%. The proposed co-precursor approach and supercritical modification method provide a new horizon in the fabrication of highly transparent and superhydrophobic PMSQ aerogels.

  18. Shape-Selection of Thermodynamically Stabilized Colloidal Pd and Pt Nanoparticles Controlled via Support Effects

    DEFF Research Database (Denmark)

    Ahmadi, M.; Behafarid, F.; Holse, Christian

    2015-01-01

    Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2(110) was i......Colloidal chemistry, in combination with nanoparticle (NP)/support epitaxial interactions is used here to synthesize shape-selected and thermodynamically stable metallic NPs over a broad range of NP sizes. The morphology of three-dimensional palladium and platinum NPs supported on TiO2...... rows and was found to be responsible for the shape control. The ability of synthesizing thermally stable shape-selected metal NPs demonstrated here is expected to be of relevance for applications in the field of catalysis, since the activity and selectivity of NP catalysts has been shown to strongly...

  19. Cracking in Drying Colloidal Films

    Science.gov (United States)

    Singh, Karnail B.; Tirumkudulu, Mahesh S.

    2007-05-01

    It has long been known that thick films of colloidal dispersions such as wet clays, paints, and coatings crack under drying. Although capillary stresses generated during drying have been recently identified as the cause for cracking, the existence of a maximum crack-free film thickness that depends on particle size, rigidity, and packing has not been understood. Here, we identify two distinct regimes for crack-free films based on the magnitude of compressive strain at the maximum attainable capillary pressure and show remarkable agreement of measurements with our theory. We anticipate our results to not only form the basis for design of coating formulations for the paints, coatings, and ceramics industry but also assist in the production of crack-free photonic band gap crystals.

  20. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.