WorldWideScience

Sample records for colloidal gold-based immunoassay

  1. Lateral flow colloidal gold-based immunoassay for pesticide.

    Science.gov (United States)

    Wang, Shuo; Zhang, Can; Zhang, Yan

    2009-01-01

    In recent years, immunochromatographic lateral flow test strips are used as a popular diagnostic tool. There are two formats (noncompetitive and competitive) in gold-based immunoassay. Noncompetitive gold-based immunoassay also called sandwich assay is applied for the detection of large molecular mass. For small molecular mass such as pesticide, competitive format of lateral flow colloidal gold-based immunoassay is described in this chapter. The preparation of gold colloidal and the conjugation between antibody and gold colloidal are described. Hi-flow plus nitrocellulose membranes are separately coated with goat anti-rabbit IgG (control line) and hapten-OVA conjugate (test line). Thus, the degree of intensity of color of the test line is the reverse of the concentration of pesticide in the sample and the visual result is immediately observable. Colloidal gold-based immunoassay can also be applied for multianalysis in one test strip if the detected targets show different physico-chemical properties and their haptens show great differences in chemical structure.

  2. Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay.

    Science.gov (United States)

    Liu, Yuan; Wu, Aihua; Hu, Jing; Lin, Manman; Wen, Mengtang; Zhang, Xiao; Xu, Chongxin; Hu, Xiaodan; Zhong, Jianfeng; Jiao, Lingxia; Xie, Yajing; Zhang, Cunzhen; Yu, Xiangyang; Liang, Ying; Liu, Xianjin

    2015-08-15

    3-Phenoxybenzoic acid (3-PBA) is a general metabolite of synthetic pyrethroids. It could be used as a generic biomarker for multiple pyrethroids exposure for human or pyrethroid residues in the environment. In this study, monoclonal antibodies (mAbs) against 3-PBA were developed by using PBA-bovine serum albumin (BSA) as an immunogen. In the competitive enzyme-linked immunosorbent assay (ELISA) format, the I50 and I10 values of purified mAbs were 0.63 and 0.13 μg/ml, respectively, with a dynamic range between 0.19 and 2.04 μg/ml. Then, the colloidal gold (CG)-based lateral flow immunoassay was established based on the mAbs. The working concentration of coating antigen and CG-labeled antibodies and the blocking effects were investigated to get optimal assay performance. The cutoff value for the assay was 1 μg/ml 3-PBA, and the detection time was within 10 min. A total of 40 river water samples were spiked with 3-PBA at different levels and determined by the lateral flow immunoassay without any sample pretreatments. The negative false rate was 2.5%, and no positive false results were observed at these levels. This lateral flow immunoassay has the potential to be an on-site screening method for monitoring 3-PBA or pyrethroid residues in environmental samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges

    Energy Technology Data Exchange (ETDEWEB)

    Kolosova, Anna Yu. [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)], E-mail: anna_kolosova@hotmail.com; Sibanda, Liberty [TOXI-TEST NV, Industrielaan 9a, 9990 Maldegem (Belgium); Dumoulin, Frederic [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium); Lewis, Janet; Duveiller, Etienne [International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F. (Mexico); Van Peteghem, Carlos; Saeger, Sarah de [Laboratory of Food Analysis, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000 Ghent (Belgium)

    2008-06-02

    A lateral-flow immunoassay using a colloidal gold-labelled monoclonal antibody was developed for the rapid detection of deoxynivalenol (DON). Different parameters, such as the amount of immunoreagents, type of the materials, composition of the blocking solution and of the detector reagent mixture, were investigated to provide the optimum assay performance. The experimental results demonstrated that such a visual test had an indicator range rather than a cut-off value. Thus, tests for DON determination with two different indicator ranges of 250-500 and 1000-2000 {mu}g kg{sup -1} were designed. The method allowed detection of DON at low and high concentration levels, which could be useful for research and practical purposes. The assay applied to spiked wheat and pig feed samples demonstrated accurate and reproducible results. The applicability of the developed lateral-flow test was also confirmed under real field conditions. The test strips prepared in Belgium were sent to Mexico, where they were used for the screening of DON contamination in different bread wheat entries from Fusarium Head Blight inoculated plots. The results were compared with those obtained by ELISA and LC-MS/MS. A poor correlation between ELISA and LC-MS/MS was observed. Visual results of the dipstick tests were in a good agreement with the results of the LC-MS/MS method. Coupled with a simple and fast sample preparation, this qualitative one-step test based on the visual evaluation of results did not require any equipment. Results could be obtained within 10 min. The described assay format can be used as a simple, rapid, cost-effective and robust on-site screening tool for mycotoxin contamination in different agricultural commodities.

  4. Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges.

    Science.gov (United States)

    Kolosova, Anna Yu; Sibanda, Liberty; Dumoulin, Frédéric; Lewis, Janet; Duveiller, Etienne; Van Peteghem, Carlos; De Saeger, Sarah

    2008-06-02

    A lateral-flow immunoassay using a colloidal gold-labelled monoclonal antibody was developed for the rapid detection of deoxynivalenol (DON). Different parameters, such as the amount of immunoreagents, type of the materials, composition of the blocking solution and of the detector reagent mixture, were investigated to provide the optimum assay performance. The experimental results demonstrated that such a visual test had an indicator range rather than a cut-off value. Thus, tests for DON determination with two different indicator ranges of 250-500 and 1000-2000 microg kg(-1) were designed. The method allowed detection of DON at low and high concentration levels, which could be useful for research and practical purposes. The assay applied to spiked wheat and pig feed samples demonstrated accurate and reproducible results. The applicability of the developed lateral-flow test was also confirmed under real field conditions. The test strips prepared in Belgium were sent to Mexico, where they were used for the screening of DON contamination in different bread wheat entries from Fusarium Head Blight inoculated plots. The results were compared with those obtained by ELISA and LC-MS/MS. A poor correlation between ELISA and LC-MS/MS was observed. Visual results of the dipstick tests were in a good agreement with the results of the LC-MS/MS method. Coupled with a simple and fast sample preparation, this qualitative one-step test based on the visual evaluation of results did not require any equipment. Results could be obtained within 10 min. The described assay format can be used as a simple, rapid, cost-effective and robust on-site screening tool for mycotoxin contamination in different agricultural commodities.

  5. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of zearalenone and deoxynivalenol.

    Science.gov (United States)

    Kolosova, Anna Yu; De Saeger, Sarah; Sibanda, Liberty; Verheijen, Ron; Van Peteghem, Carlos

    2007-12-01

    A multianalyte lateral-flow technique using colloidal gold-labeled monoclonal antibodies was developed for the rapid simultaneous detection of deoxynivalenol (DON) and zearalenone (ZEA). The results of this qualitative one-step test were interpreted visually. A very simple and fast sample preparation was used, and the assay procedure could be accomplished within 10 min. When applied to spiked wheat samples, the technique gave accurate and reproducible results. Cut-off levels of 1500 and 100 microg kg(-1) for DON and ZEA, respectively, were observed. The described multianalyte format can be used as a reliable, rapid and cost-effective on-site screening technique for the simultaneous determination of mycotoxins in grain samples.

  6. A lateral flow colloidal gold-based immunoassay for rapid detection of miroestrol in samples of White Kwao Krua, a phytoestrogen-rich plant.

    Science.gov (United States)

    Kitisripanya, Tharita; Inyai, Chadathorn; Komaikul, Jukrapun; Krittanai, Supaluk; Juengwatanatrakul, Thaweesak; Sakamoto, Seiichi; Tanaka, Hiroyuki; Morimoto, Satoshi; Putalun, Waraporn

    2017-10-01

    White Kwao Krua (WKK)-derived products have been used worldwide as dietary supplements to relieve climacteric symptoms in menopausal women. Miroestrol is a unique chromene found in WKK tuberous roots that corresponds to the estrogenic activity of WKK. However, miroestrol naturally accumulates at low levels in WKK samples, which are difficult to detect. The development of a rapid and sensitive assay to detect miroestrol in numerous products derived from this plant would be a practical and useful method to guarantee the quality of raw materials. To allow rapid and easy qualitative detection of miroestrol, a lateral flow immunoassay (LFIA) using a colloidal gold-labeled monoclonal antibody (mAb) against miroestrol was developed. The qualitative LFIA was based on the competition of free miroestrol in the sample and immobilized miroestrol-conjugated proteins on the strip for a limited number of antibodies in the detection reagent. Anti-miroestrol mAb was colored by colloidal gold labels and used as the detection reagent in LFIA. Anti-mouse immunoglobulin G was used to indicate the functioning of the LFIA system. The detection limit of the LFIA was 0.156 μg of miroestrol. The LFIA was applied to determine the miroestrol content in WKK samples and products. The result was compared with the validated enzyme-linked immunosorbent assay (ELISA) and demonstrated a correlative outcome. This study shows that the developed LFIA is practical and suitable for detecting small amounts of miroestrol in WKK samples. This qualitative assay is more rapid in screening miroestrol in WKK samples (within 10 min) than conventional methods (ELISA and HPLC).

  7. Development of Colloidal Gold-Based Lateral Flow Immunoassay for Rapid Qualitative and Semi-Quantitative Analysis of Ustiloxins A and B in Rice Samples

    OpenAIRE

    Xiaoxiang Fu; Rushan Xie; Jian Wang; Xiaojiao Chen; Xiaohan Wang; Weibo Sun; Jiajia Meng; Daowan Lai; Ligang Zhou; Baomin Wang

    2017-01-01

    Rice false smut is a worldwide devastating rice disease infected by the fungal pathogen Villosiclava virens. Ustiloxin A (UA) and ustiloxin B (UB), cyclopeptide mycotoxins, were the major ustiloxins isolated from the rice false smut balls (FSBs) that formed in the pathogen‐infected rice spikelets. Based on the specific monoclonal antibodies (mAbs) 2D3G5 and 1B5A10, respectively, against UA and UB, the lateral flow immunoassays (LFIAs) were developed, and the indicator ranges for UA and UB bot...

  8. Development of a colloidal gold-based lateral flow dipstick immunoassay for rapid qualitative and semi-quantitative analysis of artesunate and dihydroartemisinin.

    Science.gov (United States)

    He, Lishan; Nan, Tiegui; Cui, Yongliang; Guo, Suqin; Zhang, Wei; Zhang, Rui; Tan, Guiyu; Wang, Baomin; Cui, Liwang

    2014-03-31

    Artemisinin-based combination therapy (ACT) plays an indispensable role in malaria control and elimination. However, the circulation of counterfeit, substandard drugs has greatly threatened malaria elimination campaigns. Most methods for the analysis of artemisinin and its derivatives require expensive equipment and sophisticated instrumentation. A convenient, easy-to-use diagnostic device for rapid evaluation of the quality of artemisinin drugs at the point-of-care is still lacking. In this study a lateral flow dipstick immunoassay was developed for qualitative and semi-quantitative analysis of artesunate (ATS) and dihydroartemisinin (DHA) in anti-malarial drugs. This assay was based on a monoclonal antibody (mAb) raised against ATS. ATS-bovine serum albumin and goat anti-mouse IgG, used as the test capture reagent and the control capture reagent, were coated on the nitrocellulose membrane to form the test line and control line, respectively. The conjugate pad was saturated with the gold-labelled anti-ATS mAb. The indicator range of the dipsticks, defined as lowest concentration of the target analytes between which the test line was not visible, were 100-200 and 200-500 ng mL(-1) for ATS and DHA, respectively. No competitive inhibition was observed up to 5,000 ng mL(-1) of quinine, chloroquine diphosphate salt, primaquine phosphate, pyrimethamine, lumefantrine, amodiaquine, piperaquine tetraphosphate tetrahydrate or pyronaridine tetraphosphate. Semi-quantitative analysis of ATS and DHA in commercial drugs and raw drug materials with the dipsticks produced result agreeable with those determined by high performance liquid chromatography (HPLC). Storage test showed that the indicator range for artemisinins remained unchanged after a week at 37 °C and increased four-folds after six months of storage at 4 °C or ambient temperature. The new selected mAb 3D82G7 with high avidity and broad cross reactivity for artemisinins was used to develop and optimize a dipstick

  9. A novel colloidal gold-based lateral flow immunoassay for rapid simultaneous detection of cyromazine and melamine in foods of animal origin.

    Science.gov (United States)

    Le, Tao; Yan, Peifeng; Xu, Jian; Hao, Youjing

    2013-06-01

    A rapid and sensitive lateral flow immunoassay (LFIA) based on competitive format was developed and validated for simultaneous detection of cyromazine (CA) and melamine (MA) in foods of animal origin. With this method, the cut-off value for the two test lines were achieved at 25 ng/g, which was lower than the maximum residue levels (MRLs) established for CA and MA. At three fortified levels (50, 100, and 150 ng/g), the recoveries for CA and MA ranged from 73.9% to 104.2% with the relative standard deviation (RSD) less than 11.9%, based on within day and interday analysis. The lower detection limit for CA and MA in matrix sample were 0.22 ng/ml and 0.26 ng/ml, respectively, which were lower than those of published literatures. A parallel analysis of CA and MA in real samples conducted by HPLC showed comparable results to those obtained from LFIA. The results of LFIA were in good agreement with those of high performance liquid chromatography (HPLC) in the analysis of CA and MA in foods of animal origin, demonstrating the practical applicability of the developed assay in real samples. Overall, to our knowledge, this is the first report of quantitative or semi-quantitative simultaneous detection for CA and MA by immunochromatographic assay. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Development of Colloidal Gold-Based Lateral Flow Immunoassay for Rapid Qualitative and Semi-Quantitative Analysis of Ustiloxins A and B in Rice Samples

    Science.gov (United States)

    Fu, Xiaoxiang; Xie, Rushan; Wang, Jian; Chen, Xiaojiao; Wang, Xiaohan; Sun, Weibo; Meng, Jiajia; Lai, Daowan; Zhou, Ligang; Wang, Baomin

    2017-01-01

    Rice false smut is a worldwide devastating rice disease infected by the fungal pathogen Villosiclava virens. Ustiloxin A (UA) and ustiloxin B (UB), cyclopeptide mycotoxins, were the major ustiloxins isolated from the rice false smut balls (FSBs) that formed in the pathogen-infected rice spikelets. Based on the specific monoclonal antibodies (mAbs) 2D3G5 and 1B5A10, respectively, against UA and UB, the lateral flow immunoassays (LFIAs) were developed, and the indicator ranges for UA and UB both were 50–100 ng/mL. The cross-reactivities of UB for UA LFIA, and UA for UB LFIA were 5% and 20%, respectively, which were consistent with the icELISA results reported previously. Even at 50,000 ng/mL, none of other commonly existent metabolites in rice samples caused noticeable inhibition. The LFIAs were used for determination of UA and UB contents in rice FSBs and rice grains, and the results were agreeable with those by HPLC and icELISA. There was no change in the sensitivity of either dipstick stored at 4 °C after at least three months. The developed LFIA has specificity and sensitivity for detecting UA and UB as well as simplicity to use. It will be a potential point-of-care device for rapid evaluation of the rice samples contaminated by UA and UB. PMID:28245594

  11. Development of Colloidal Gold-Based Lateral Flow Immunoassay for Rapid Qualitative and SemiQuantitative Analysis of Ustiloxins A and B in Rice Samples.

    Science.gov (United States)

    Fu, Xiaoxiang; Xie, Rushan; Wang, Jian; Chen, Xiaojiao; Wang, Xiaohan; Sun, Weibo; Meng, Jiajia; Lai, Daowan; Zhou, Ligang; Wang, Baomin

    2017-02-24

    Rice false smut is a worldwide devastating rice disease infected by the fungal pathogen Villosiclava virens. Ustiloxin A (UA) and ustiloxin B (UB), cyclopeptide mycotoxins, were the major ustiloxins isolated from the rice false smut balls (FSBs) that formed in the pathogen-infected rice spikelets. Based on the specific monoclonal antibodies (mAbs) 2D3G5 and 1B5A10, respectively, against UA and UB, the lateral flow immunoassays (LFIAs) were developed, and the indicator ranges for UA and UB both were 50-100 ng/mL. The cross-reactivities of UB for UA LFIA, and UA for UB LFIA were 5% and 20%, respectively, which were consistent with the icELISA results reported previously. Even at 50,000 ng/mL, none of other commonly existent metabolites in rice samples caused noticeable inhibition. The LFIAs were used for determination of UA and UB contents in rice FSBs and rice grains, and the results were agreeable with those by HPLC and icELISA. There was no change in the sensitivity of either dipstick stored at 4 °C) after at least three months. The developed LFIA has specificity and sensitivity for detecting UA and UB as well as simplicity to use. It will be a potential point-of-care device for rapid evaluation of the rice samples contaminated by UA and UB.

  12. Development of a colloidal gold-based lateral-flow immunoassay for the rapid simultaneous detection of clenbuterol and ractopamine in swine urine.

    Science.gov (United States)

    Zhang, Ming-Zhou; Wang, Min-Zi; Chen, Zong-Lun; Fang, Jie-Hong; Fang, Mei-Ming; Liu, Jun; Yu, Xiao-Ping

    2009-12-01

    A multianalyte lateral-flow immunochromatographic technique using colloidal gold-labeled polyclonal antibodies was developed for the rapid simultaneous detection of clenbuterol and ractopamine. The assay procedure could be accomplished within 5 min, and the results of this qualitative one-step assay were evaluated visually according to whether test lines appeared or not. When applied to the swine urines, the detection limit and the half maximal inhibitory concentration (IC(50)) of the test strip under an optical density scanner were calculated to be 0.1 +/- 0.01 ng mL(-1) and 0.1 +/- 0.01 ng mL(-1), 0.56 +/- 0.08 ng mL(-1), and 0.71 +/- 0.06 ng mL(-1), respectively, the cut-off levels with the naked eye of 1 ng mL(-1) and 1 ng mL(-1) for clenbuterol and ractopamine were observed. Parallel analysis of swine urine samples with clenbuterol and ractopamine showed comparable results obtained from the multianalyte lateral-flow test strip and GC-MS. Therefore, the described multianalyte lateral-flow test strip can be used as a reliable, rapid, and cost-effective on-site screening technique for the simultaneous determination of clenbuterol and ractopamine residues in swine urine.

  13. Development of a chemiluminescent ELISA and a colloidal gold-based LFIA for TNT detection.

    Science.gov (United States)

    Girotti, S; Eremin, S; Montoya, A; Moreno, M J; Caputo, P; D'Elia, M; Ripani, L; Romolo, F S; Maiolini, E

    2010-01-01

    To identify the explosive used in a terrorist attack, or to obtain an early sign of environmental pollution it is important to use simple and rapid assays able to detect analytes at low levels, possibly on-site. This is particularly true for TNT (2,4,6-trinitrotoluene), one of the most employed explosives in the 20th century and at the same time, because of its toxicity, a well known pollutant. In this work we describe the development of an indirect competitive ELISA with chemiluminescent detection (CL-ELISA) and of a lateral-flow immunoassay (LFIA) based on colloidal gold nanoparticle labels. A commercially available monoclonal antibody was used and 13 specially synthesized conjugates were tested. We optimized the assay by determining the optimal concentration of monoclonal antibody and conjugates and the influence of various non-specific factors such as: tolerance to organic solvents at different concentrations, the washing and competitive step time, and the cross-reactivity with related compounds. The sensitivity and reproducibility of the CL-ELISA were good (LOD and IC(50) values in the ng mL(-1) range, and CV value about 7%). It has been applied to real samples of various materials involved in a controlled explosion of an "improvised explosive device". Three extraction procedures were tested on these samples, all employing methanol as the solvent. The lateral flow immunoassay (LFIA), developed by using the same immunoreagents, reached a detection limit of 1 microg mL(-1) when tested on the same samples analysed by CL-ELISA.

  14. Multiplex tumor marker detection with new chemiluminescent immunoassay based on silica colloidal crystal beads.

    Science.gov (United States)

    Pei, Xiaoping; Chen, Baoan; Li, Li; Gao, Feng; Jiang, Zhi

    2010-01-01

    A new multiplex chemiluminescent immunoassay (CLIA) based on silica colloidal crystal beads (SCCBs) was developed for tumor marker detection. As the code is the characteristic reflection peak originating from the stop-band of colloid crystal, they avoid photobleaching, the potential interference of encoding fluorescence with analyte-detection fluorescence and chemical instability. Meanwhile our SCCBs suspension array improved the luminescence analysis efficiency by using chemiluminescent detection of enzyme labels. By forming a sandwich immunocomplex on SCCBs, the proposed suspension array was used for simultaneous multiplex detection of tumor markers in one test tube. The results showed that the linear range was 0.5-100ng ml(-1) and 1.0-120ng ml(-1) for carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) with a detection limit of 0.12ng ml(-1) and 0.16ng ml(-1) at 3sigma. The proposed array showed the storage stability and the accuracy for sample detection were acceptable, and the results were in acceptable agreement with the reference electrochemiluminescence method. This technique provided an automated, simple, sensitive and low-cost approach for multianalyte immunoassay.

  15. Immunoassay

    Science.gov (United States)

    Immunoassays are analytical methods that employ antibodies or molecules derived from antibodies for the essential binding reactions. The choice of immunoassay system for food safety analysis depends on the analyte, the matrix, and the requirements of the analysis (speed, throughput, sensitivity, spe...

  16. Immunoassays

    Science.gov (United States)

    Hsieh, Y.-H. Peggy

    Immunochemistry is a relatively new science that has developed rapidly in the last few decades. One of the most useful analytical developments associated with this new science is immunoassay. Originally immunoassays were developed in medical settings to facilitate the study of immunology, particularly the antibody-antigen interaction. Immunoassays now are finding widespread applications outside the clinical field because they are appropriate for a wide range of analytes ranging from proteins to small organic molecules. In the food analysis area, immunoassays are widely used for chemical residue analysis, identification of bacteria and viruses, and detection of proteins in food and agricultural products. Protein detection is important for determination of allergens and meat species content, seafood species identification, and detection of genetically modified plant tissues. While immunoassays of all formats are too numerous to cover completely in this chapter, there are several procedures that have become standard for food analysis because of their specificity, sensitivity, and simplicity.

  17. Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles

    Directory of Open Access Journals (Sweden)

    Pekka Hänninen

    2011-11-01

    Full Text Available Besides the typical short-lived fluorescence with decay times in the nanosecond range, colloidal II/VI semiconductor nanoparticles dispersed in buffer also possess a long-lived fluorescence component with decay times in the microsecond range. Here, the signal intensity of the long-lived luminescence at microsecond range is shown to increase 1,000-fold for CdTe nanoparticles in PBS buffer. This long-lived fluorescence can be conveniently employed for time-gated fluorescence detection, which allows for improved signal-to-noise ratio and thus the use of low concentrations of nanoparticles. The detection principle is demonstrated with a time-resolved fluorescence immunoassay for the detection of C-reactive protein (CRP using CdSe-ZnS nanoparticles and green light excitation.

  18. Novel potentiometry immunoassay with amplified sensitivity for diphtheria antigen based on Nafion, colloidal Ag and polyvinyl butyral as matrixes.

    Science.gov (United States)

    Tang, Dianping; Yuan, Ruo; Chai, Yaqin; Zhang, Linyan; Zhong, Xia; Dai, Jianyuan; Liu, Yan

    2004-11-30

    A novel potentiometry immunoassay with amplified sensitivity has been developed for the detection of diphtheria antigen (Diph) via immobilizing diphtheria antibody (anti-Diph) on a platinum electrode based on Nafion, colloidal Ag (Ag), and polyvinyl butyral (PVB) as matrixes in this study. The modified procedure was further characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The influence and factors influencing the performance of resulting immunosensor were studied in detail. The resulting immunosensor exhibited sigmoid curve with log Diph concentrations, high sensitivity (51.4 mV/decade), wide linear range from 8 to 800 ng ml(-1) with a detection limit of 1.5 ng ml(-1), rapid potentiometric response (6 months). Analytical results of clinical samples show that the developed immunoassay is comparable with the enzyme-linked immunosorbent assays (ELISAs) method, implying a promising alternative approach for detecting diphtheria antigen in the clinical diagnosis.

  19. Colloidal gold-based immunochromatographic strip test compromising optimised combinations of anti-S. suis capsular polysaccharide polyclonal antibodies for detection of Streptococcus suis.

    Science.gov (United States)

    Nakayama, Tatsuya; Zhao, Jizi; Takeuchi, Dan; Kerdsin, Anusack; Chiranairadul, Piphat; Areeratana, Prasanee; Loetthong, Phacharaphan; Pienpringam, Anupong; Akeda, Yukihiro; Oishi, Kazunori

    2014-10-15

    A rapid diagnosis kit that detects Streptococcus suis (S. suis) antigens from urine with an immunochromatographic stripe (ICS) test was developed in this study. The ICS test was produced using colloidal gold coated with polyclonal antibodies (pAbs) against S. suis. The pAbs were developed from rabbits immunised with S. suis serotype 2 capsular polysaccharides (CPS). Development of the pAbs was investigated to establish their binding to CPS and to determine the maximum sensitivity of two combination antibodies for the ICS test. The results of the ICS optimisation revealed that the combinations of pAb C-N1 and pAb C-N2 had the highest sensitivity to CPS. The minimum limitation of ICS sensitivity indicated 1.0 × 10(4) colony forming units (CFU) and a CPS concentration of 0.05 µg. The assay time for detection of S. suis antigens is less than 15 min, which is suitable for rapid detection. A cross-reactive test was also conducted, and it detected no other bacteria (Streptococcus pneumoniae, Streptococcus agalactiae, Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae). The cross-reactivity of other serotypes in S. suis was also investigated, and tests for serotypes of 1, 1/2, 3, 4, 5, 6, 7, 8, 9, 14, and 16 were positive. This study presents the first report of a development of an ICS that enables the quantitative detection of streptococcal antigens. The S. suis ICS provides several advantages over other methods, including the speed and simplicity of use. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Lateral flow test strip based on colloidal selenium immunoassay for rapid detection of melamine in milk, milk powder, and animal feed.

    Science.gov (United States)

    Wang, Zhizeng; Zhi, Dejuan; Zhao, Yang; Zhang, Hailong; Wang, Xin; Ru, Yi; Li, Hongyu

    2014-01-01

    Although high melamine (MEL) intake has been proven to cause serious health problems, MEL is sometimes illegally added to milk products and animal feed, arousing serious food safety concerns. A satisfactory method of detecting MEL in onsite or in-home testing is in urgent need of development. This work aimed to explore a rapid, convenient, and cost-effective method of identifying MEL in milk products or other food by colloidal selenium-based lateral flow immunoassay. Colloidal selenium was synthesized by L-ascorbic acid to reduce seleninic acid at room temperature. After conjugation with a monoclonal antibody anti-MEL, a test strip was successfully prepared. The detection limit of the test strip reached 150 μg/kg, 1,000 μg/kg, and 800 μg/kg in liquid milk, milk powder, and animal feed, respectively. No cross-reactions with homologues cyanuric acid, cyanurodiamide, or ammelide were found. Moreover, the MEL test strip can remain stable after storage for 1 year at room temperature. Our results demonstrate that the colloidal selenium MEL test strip can detect MEL in adulterated milk products or animal feed conveniently, rapidly, and sensitively. In contrast with a colloidal gold MEL test strip, the colloidal selenium MEL test strip was easy to prepare and more cost-efficient.

  1. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk.

    Science.gov (United States)

    Shi, Qiaoqiao; Huang, Jie; Sun, Yaning; Yin, Mengqi; Hu, Mei; Hu, Xiaofei; Zhang, Zhijun; Zhang, Gaiping

    2017-11-21

    An ultrasensitive method for the detection of antibiotics in milk is developed based on inexpensive, simple, rapid and portable lateral flow immunoassay (LFI) strip, in combination with high sensitivity surface-enhanced Raman spectroscopy (SERS). In our strategy, an immunoprobe was prepared from colloidal gold (AuNPs) conjugated with both a monoclonal antibody against neomycin (NEO-mAb) and a Raman probe molecule 4-aminothiophenol (PATP). The competitive interaction with immunoprobe between free NEO and the coated antigen (NEO-OVA) resulted in the change of the amount of the immobilized immunoprobe on the paper substrate. The LFI procedure was completed within 15min. The Raman intensity of PATP on the test line of the LFI strip was measured for the quantitative determination of NEO. The IC 50 and the limit of detection (LOD) of this assay are 0.04ng/mL and 0.216pg/mL of NEO, respectively. There is no cross-reactivity (CR) of the assay with other compounds, showing high specificity of the assay. The recoveries for milk samples with added NEO are in the range of 89.7%-105.6% with the relative standard deviations (RSD) of 2.4%-5.3% (n=3). The result reveals that this method possesses high specificity, sensitivity, reproducibility and stability, and can be used to detect a variety of antibiotic residues in milk samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Gold based bulk metallic glass

    OpenAIRE

    Schroers, Jan; Lohwongwatana, Boonrat; Johnson, William L.; Peker, Atakan

    2005-01-01

    Gold-based bulk metallic glass alloys based on Au-Cu-Si are introduced. The alloys exhibit a gold content comparable to 18-karat gold. They show very low liquidus temperature, large supercooled liquid region, and good processibility. The maximum casting thickness exceeds 5 mm in the best glassformer. Au49Ag5.5Pd2.3Cu26.9Si16.3 has a liquidus temperature of 644 K, a glass transition temperature of 401 K, and a supercooled liquid region of 58 K. The Vickers hardness of the alloys in this system...

  3. Lateral flow immunoassay using europium chelate-loaded silica nanoparticles as labels.

    Science.gov (United States)

    Xia, Xiaohu; Xu, Ye; Zhao, Xilin; Li, Qingge

    2009-01-01

    Despite their ease of use, lateral flow immunoassays (LFIAs) often suffer from poor quantitative discrimination and low analytical sensitivity. We explored the use of a novel class of europium chelate-loaded silica nanoparticles as labels to overcome these limitations. Antibodies were covalently conjugated onto europium chelate-loaded silica nanoparticles with dextran as a linker. The resulting conjugates were used as labels in LFIA for detection of hepatitis B surface antigen (HBsAg). We performed quantification with a digital camera and Adobe Photoshop software. We also used 286 clinical samples to compare the proposed method with a quantitative ELISA. A detection limit of 0.03 microg/L was achieved, which was 100 times lower than the colloidal gold-based LFIAs and lower than ELISA. A precise quantitative dose-response curve was obtained, and the linear measurement range was 0.05-3.13 microg/L, within which the CVs were 2.3%-10.4%. Regression analysis of LFIA on ELISA results gave: log (LFIA) = -0.14 log (ELISA) + 1.03 microg/L with r = 0.99 for the quantification of HBsAg in 35 positive serum samples. Complete agreement was observed for the qualitative comparison of 286 clinical samples assayed with LFIA and ELISA. Europium chelate-loaded silica nanoparticle labels have great potential to improve LFIAs, making them useful not only for simple screening applications but also for more sensitive and quantitative immunoassays.

  4. Rapid and sensitive detection of the food allergen glycinin in powdered milk using a lateral flow colloidal gold immunoassay strip test.

    Science.gov (United States)

    Wang, Yao; Deng, Ruiguang; Zhang, Gaiping; Li, Qingmei; Yang, Jifei; Sun, Yaning; Li, Zhixi; Hu, Xiaofei

    2015-03-04

    A rapid immunochromatographic lateral flow test strip in a sandwich format was developed with the colloidal gold-labeled mouse antiglycinin monoclonal antibody (mAb) and rabbit antiglycinin polyclonal antibody (pAb) to specifically identify glycinin, a soybean allergen. The test strip is composed of a sample pad, a conjugate reagent pad, an absorbent pad, and a test membrane containing a control line and a test line. This test strip has high sensitivity, and results can be obtained within 10 min without sophisticated procedures. The limit of detection (LOD) of the test strip was calculated to be 0.69 mg/kg using an optical density scanner that measures relative optical density. The assay showed high specificity for glycinin, with no cross-reactions with other soybean proteins or other food allergens. The recoveries of the lateral flow test strip in detecting glycinin in powdered milk samples ranged between 80.5 and 89.9% with relative standard deviations of less than 5.29% (intra-assay) and 6.72% (interassay). Therefore, the test strip is useful as a quantitative, semiquantitative, or qualitative detection method for glycinin in powdered milk. In addition, the test strip can be used to detect glycinin in other processed foods and may be a valuable tool in identifying effective approaches for reducing the impact of glycinin.

  5. Multifunctional gold-based nanocomposites for theranostics.

    Science.gov (United States)

    Dykman, Lev A; Khlebtsov, Nikolai G

    2016-11-01

    Although Au-particle potential in nanobiotechnology has been recognized for the last 15 years, new insights into the unique properties of multifunctional nanostructures have just recently started to emerge. Multifunctional gold-based nanocomposites combine multiple modalities to improve the efficacy of the therapeutic and diagnostic treatment of cancer and other socially significant diseases. This review is focused on multifunctional gold-based theranostic nanocomposites, which can be fabricated by three main routes. The first route is to create composite (or hybrid) nanoparticles, whose components enable diagnostic and therapeutic functions. The second route is based on smart bioconjugation techniques to functionalize gold nanoparticles with a set of different molecules, enabling them to perform targeting, diagnostic, and therapeutic functions in a single treatment procedure. Finally, the third route for multifunctionalized composite nanoparticles is a combination of the first two and involves additional functionalization of hybrid nanoparticles with several molecules possessing different theranostic modalities. This last class of multifunctionalized composites also includes fluorescent atomic clusters with multiple functionalities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  7. [Clinical value of fluorescence lateral flow immunoassay in diagnosis of influenza A in children].

    Science.gov (United States)

    Guo, Chun; Zhong, Li-Li; Yi, Hong-Ling; Chen, Min

    2016-12-01

    To evaluate the clinical value of a new type of fluorescence lateral flow immunoassay in rapid detection of influenza A virus. A total of 378 samples of nasopharyngeal secretions were collected from 378 children with influenza-like symptoms to detect the influenza A virus by fluorescence lateral flow immunoassay, colloidal gold immunoassay, and RT-PCR between July 2015 and August 2015. Of the 378 samples, 81 (21.4%) were positive for influenza A virus by RT-PCR. Compared with RT-PCR, the sensitivities of fluorescence lateral flow immunoassay and colloidal gold immunoassay were 90.1% (73/81) and 75.3% (61/81), respectively, and the specificities were 99.3% (295/297) and 98.3% (292/297), respectively. The average threshold cycle (Ct) value for the positive samples detected by the fluorescence lateral flow immunoassay (30.6) was higher than that for the positive samples detected by the colloidal gold immunoassay (28.7). Compared with colloidal gold immunoassay, fluorescence lateral flow immunoassay has higher sensitivity, specificity, and concordance rate with RT-PCR, suggesting that it can be used for early screening and diagnosis of influenza A.

  8. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  9. Immunoassays in Biotechnology

    Science.gov (United States)

    Immunoassays have broad applications for a wide variety of important biological compounds and environmental contaminants. Immunoassays can detect the presence of an antigen in the human body, a pollutant in the environment, or a critical antibody in a patient’s serum to develop a...

  10. Gold-Based Nanomaterials for Applications in Nanomedicine.

    Science.gov (United States)

    Ashraf, Sumaira; Pelaz, Beatriz; del Pino, Pablo; Carril, Mónica; Escudero, Alberto; Parak, Wolfgang J; Soliman, Mahmoud G; Zhang, Qian; Carrillo-Carrion, Carolina

    2016-01-01

    In this review, an overview of the current state-of-the-art of gold-based nanomaterials (Au NPs) in medical applications is given. The unique properties of Au NPs, such as their tunable size, shape, and surface characteristics, optical properties, biocompatibility, low cytotoxicity, high stability, and multifunctionality potential, among others, make them highly attractive in many aspects of medicine. First, the preparation methods for various Au NPs including functionalization strategies for selective targeting are summarized. Second, recent progresses on their applications, ranging from the diagnostics to therapeutics are highlighted. Finally, the rapidly growing and promising field of gold-based theranostic nano-platforms is discussed. Considering the great body of existing information and the high speed of its renewal, we chose in this review to generalize the data that have been accumulated during the past few years for the most promising directions in the use of Au NPs in current medical research.

  11. Updates in immunoassays: parasitology.

    Science.gov (United States)

    Josko, Deborah

    2012-01-01

    Although most clinical laboratories use microscopy and routine O&P procedures when identifying parasitic infections, there are several parasites that are better detected through serological means. Toxoplasma, Giardia, and Cryptosporidium were discussed along with immunoassays used for their detection. Immunoassays provide quick results and are less labor intensive than specimen concentration and slide preparation for microscopic examination. These assays are easy to use and provide sensitive and specific results. Some clinical laboratories no longer perform O&Ps in house and refer specimens to reference laboratories for evaluation. By using immunoassays, some of the more common parasites can be identified in a timely manner reducing turn-around times. Some controversy exists over the use of IIF and EIA tests used for ANA testing along with measuring CRPs and PCT as predictors of bacterial sepsis and septic shock. Regardless of the methodology discussed in this series of articles, there are pros and cons to the various immunoassays available. Determining the most appropriate assay based on patient population and volume is governed by the institution and its patients' needs. In conclusion, immunoassays, whether manual or automated, are easy to use, cost effective and allow the medical laboratory professional to provide quick and accurate results to the clinician so the most appropriate treatment can be administered to the patient. The ultimate goal of healthcare professionals is to provide the highest quality of medical care in a timely manner. The use of immunoassays in the clinical laboratory allows the healthcare team to successfully achieve this goal.

  12. Hexadecapolar colloids

    Science.gov (United States)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  13. Colloidal polypyrrole

    Science.gov (United States)

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  14. Development of a chemiluminescence-based quantitative lateral flow immunoassay for on-field detection of 2,4,6-trinitrotoluene.

    Science.gov (United States)

    Mirasoli, Mara; Buragina, Angela; Dolci, Luisa Stella; Guardigli, Massimo; Simoni, Patrizia; Montoya, Angel; Maiolini, Elisabetta; Girotti, Stefano; Roda, Aldo

    2012-04-06

    Simple, rapid and highly sensitive assays, possibly allowing on-site analysis, are required in the security and forensic fields or to obtain early signs of environmental pollution. Several bioanalytical methods and biosensors based on portable devices have been developed for this purpose. Among them, Lateral Flow ImmunoAssays (LFIAs) offer the advantages of rapidity and ease of use and, thanks to the high specificity of antigen-antibody binding, allow greatly simplifying and reducing sample pre-analytical treatments. However, LFIAs usually employ colloidal gold or latex beads as labels and they rely on the formation of colored bands visible by the naked eye. With this assay format, only qualitative or semi-quantitative information can be obtained and low sensitivity is achieved. Recently, the use of enzyme-catalyzed chemiluminescence detection in LFIA has been proposed to overcome these problems. In this work, we describe the development of a quantitative CL-LFIA assay for the detection of 2,4,6-trinitrotoluene (TNT) in real samples. Thanks to the use of a portable imaging device for CL signal measurement based on a thermoelectrically cooled CCD camera, the analysis could be performed directly on-field. A limit of detection of 0.2 μg mL(-1) TNT was obtained, which is five times lower than that obtained with a previously described colloidal gold-based LFIA developed employing the same immunoreagents. The dynamic range of the assay extended up to 5 μg mL(-1) TNT and recoveries ranging from 97% to 111% were obtained in the analysis of real samples (post blast residues obtained from controlled explosion). Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Updates in immunoassays: bacteriology.

    Science.gov (United States)

    Josko, Deborah

    2012-01-01

    There are many immunoassays available that provide rapid, accurate and sensitive results. The intent of this article was to provide a brief overview of some of the products and methodologies available for clinical use and to discuss some of the principles behind the methodology and instrumentation. In the area of infectious disease, the use of immunoassays ensures rapid turnaround times that will result in the administration of prompt, accurate treatment for the patient. Ultimately, this will improve overall patient outcomes while possibly decreasing the costs associated with increased hospital stay. In conclusion, immunoassays are essentially easy to perform, cost-effective, produce highly sensitive and specific results, and allow the medical laboratory professional the ability to report accurate results in a timely manner.

  16. Hydrogel nanoparticle based immunoassay

    Science.gov (United States)

    Liotta, Lance A; Luchini, Alessandra; Petricoin, Emanuel F; Espina, Virginia

    2015-04-21

    An immunoassay device incorporating porous polymeric capture nanoparticles within either the sample collection vessel or pre-impregnated into a porous substratum within fluid flow path of the analytical device is presented. This incorporation of capture particles within the immunoassay device improves sensitivity while removing the requirement for pre-processing of samples prior to loading the immunoassay device. A preferred embodiment is coreshell bait containing capture nanoparticles which perform three functions in one step, in solution: a) molecular size sieving, b) target analyte sequestration and concentration, and c) protection from degradation. The polymeric matrix of the capture particles may be made of co-polymeric materials having a structural monomer and an affinity monomer, the affinity monomer having properties that attract the analyte to the capture particle. This device is useful for point of care diagnostic assays for biomedical applications and as field deployable assays for environmental, pathogen and chemical or biological threat identification.

  17. Species Specific Bacterial Spore Detection Using Lateral-Flow Immunoassay with DPA-Triggered Tb Luminescence

    Science.gov (United States)

    Ponce, Adrian

    2003-01-01

    A method of detecting bacterial spores incorporates (1) A method of lateral-flow immunoassay in combination with (2) A method based on the luminescence of Tb3+ ions to which molecules of dipicolinic acid (DPA) released from the spores have become bound. The present combination of lateral-flow immunoassay and DPA-triggered Tb luminescence was developed as a superior alternative to a prior lateral-flow immunoassay method in which detection involves the visual observation and/or measurement of red light scattered from colloidal gold nanoparticles. The advantage of the present combination method is that it affords both (1) High selectivity for spores of the species of bacteria that one seeks to detect (a characteristic of lateral-flow immunoassay in general) and (2) Detection sensitivity much greater (by virtue of the use of DPA-triggered Tb luminescence instead of gold nanoparticles) than that of the prior lateral-flow immunoassay method

  18. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  19. Colloidal superballs

    NARCIS (Netherlands)

    Rossi, L.

    2012-01-01

    This thesis is organized in four parts as follows. Part 1 focuses on the synthetic aspects of the colloidal model systems that will be used throughout the work described in this thesis. In Chapter 2 we describe synthetic procedures for the preparation of polycrystalline hematite superballs and

  20. Colloidal glasses

    Indian Academy of Sciences (India)

    ... state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the concentration of the jamming entity above random loose packing threshold leading to a disordered state. Common examples: toothpaste, hair gel, shaving foam, concentrated suspensions, emulsions, etc.

  1. Development of SERS substrates for immunoassay applications

    Science.gov (United States)

    Celik, Okkes; Kahraman, Mehmet

    2016-03-01

    Surface-enhanced Raman scattering (SERS) is an emerging technique for the detection and identification of biological structures. SERS is based on immunoassay methods are mostly used for the specific detection and identification of bacteria. In this study, SERS substrates are developed with deposition of synthesized spherical 13 nm gold nanoparticles (AuNPs) and 50 nm silver nanoparticles (AgNPs) on regular glass slides with convective assembly method for SERS based immunoassay for the detection and identification of bacteria. The synthesized NPs are characterized by UV-vis absorption spectroscopy, dynamic light scattering (DLS) and atomic force microscopy (AFM). Colloidal suspensions are concentrated by centrifugation to obtain thin films by the deposition of NPs on a regular glass slide with the convective assembly. The experimental parameters for the convective assembly are optimized by changing of NP concentration, stage velocity and NPs volume dropped between two glass slides. Structural characterization of thin films is performed by AFM and SEM. SERS is also used for the optical characterization of the prepared thin films of NPs. In this study, 4- aminothiophenol (4-ATP) is used as probe molecules to evaluate SERS activity of the thin films depending on the type and concentration of NPs. The results demonstrate that, SERS performances of the thin films are dependent on not only the type of NPs but also it depends on the concentration of NPs which forms thin films. The thin film having highest SERS activity could be used for the SERS-based immunoassays for the detection and identification of bacteria.

  2. Soil colloidal behavior

    Science.gov (United States)

    Recent understanding that organic and inorganic contaminants are often transported via colloidal particles has increased interest in colloid science. The primary importance of colloids in soil science stems from their surface reactivity and charge characteristics. Characterizations of size, shape,...

  3. Anisotropic Model Colloids

    NARCIS (Netherlands)

    van Kats, C.M.

    2008-01-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  4. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  5. Lateral Flow Immunoassay.

    Science.gov (United States)

    Ching, Kathryn H

    2015-01-01

    Lateral flow immunoassays (LFIAs) are a staple in the field of rapid diagnostics. These small handheld devices require no specialized training or equipment to operate, and generate a result within minutes of sample application. They are an ideal format for many types of home test kits, for emergency responders and for food manufacturers and producers looking for a quick evaluation of a given sample. LFIAs rely on high quality monoclonal antibodies that recognize the analyte of interest. As monoclonal antibody technology becomes more accessible to smaller laboratories, there has been increased interest in developing LFIA prototypes for potential commercial manufacture. In this chapter, the basics of designing and building an LFIA prototype are described.

  6. Colloidal Dispersions

    Science.gov (United States)

    Russel, W. B.; Saville, D. A.; Schowalter, W. R.

    1992-03-01

    The book covers the physical side of colloid science from the individual forces acting between submicron particles suspended in a liquid through the resulting equilibrium and dynamic properties. The relevant forces include Brownian motion, electrostatic repulsion, dispersion attraction, both attraction and repulsion due to soluble polymer, and viscous forces due to relative motion between the particles and the liquid. The balance among Brownian motion and the interparticle forces decides the questions of stability and phase behavior. Imposition of external fields produces complex effects, i.e. electrokinetic phenomena (electric field), sedimentation (gravitational field), diffusion (concentration/chemical potential gradient), and non-Newtonian rheology (shear field). The treatment aims to impart a sound, quantitative understanding based on fundamental theory and experiments with well-characterized model systems. This broad grasp of the fundamentals lends insight and helps to develop the intuitive sense needed to isolate essential features of technological problems and design critical experiments. Some exposure to fluid mechanics, statistical mechanics, and electricity and magnetism is assumed, but each subject is reintroduced in a self-contained manner.

  7. Protein adsorption in microengraving immunoassays

    National Research Council Canada - National Science Library

    Song, Qing

    2015-01-01

    .... During the immunoassay, characteristic diffusion and kinetic time scales  and  determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively...

  8. What Is a Colloid?

    Science.gov (United States)

    Lamb, William G.

    1985-01-01

    Describes the properties of colloids, listing those commonly encountered (such as whipped cream, mayonnaise, and fog). Also presents several experiments using colloids and discusses "Silly Putty," a colloid with viscoelastic properties whose counterintuitive properties result from its mixture of polymers. (DH)

  9. Increased sensitivity of lateral flow immunoassay for ochratoxin A through silver enhancement.

    Science.gov (United States)

    Anfossi, L; Di Nardo, F; Giovannoli, C; Passini, C; Baggiani, C

    2013-12-01

    Silver nucleation on gold has been exploited for signal amplification and has found application in several qualitative and quantitative bio-sensing techniques, thanks to the simplicity of the method and the high sensitivity achieved. Very recently, this technique has been tentatively applied to improve the performance of gold-based immunoassays. In this work, the exploitation of the signal amplification due to silver deposition on gold nanoparticles has been first applied to a competitive lateral flow immunoassay (LFIA). The signal enhancement due to silver allowed us to strongly reduce the amount of the competitor and of specific antibodies employed to build an LF device for measuring ochratoxin A (OTA), thus permitting the attainment of a highly sensitive assessment of OTA contamination, with a sensitivity gain of more than 10-fold compared to the gold-based LFIA that used the same immunoreagents and to all previously reported LFIA for measuring OTA. In addition, a less sensitive "quantitative" LFIA could be established, by suitably tuning competitor and antibody amounts, which was characterized by reproducible and accurate OTA determinations (RSD% 6-12%, recovery% 82-117%). The quantitative system allowed a reliable OTA quantification in wines and grape musts at the microgram per liter level requested by the European legislation, as demonstrated by a highly results obtained through the quantitative silver-enhanced LFIA and a reference HPLC-FLD on 30 samples.

  10. Immunoassay for determination of trilobolide

    Czech Academy of Sciences Publication Activity Database

    Huml, L.; Jurášek, M.; Mikšátková, P.; Zimmermann, T.; Tomanová, P.; Buděšínský, Miloš; Rottnerová, Z.; Šimková, M.; Harmatha, Juraj; Kmoníčková, Eva; Lapčík, O.; Drašar, P. B.

    2017-01-01

    Roč. 117, Jan (2017), s. 105-111 ISSN 0039-128X. [Conference on Isoprenoids /23./. Minsk, 04.09.2016-07.09.2016] Institutional support: RVO:61388963 ; RVO:68378041 Keywords : trilobolide * avidin-biotin * ELISA * Laser trilobum * synthesis * immunoassay Subject RIV: CE - Biochemistry Impact factor: 2.282, year: 2016

  11. Protein Adsorption in Microengraving Immunoassays

    Science.gov (United States)

    Song, Qing

    2015-01-01

    Microengraving is a novel immunoassay forcharacterizing multiple protein secretions from single cells. During the immunoassay, characteristic diffusion and kinetic time scales τD and τK determine the time for molecular diffusion of proteins secreted from the activated single lymphocytes and subsequent binding onto the glass slide surface respectively. Our results demonstrate that molecular diffusion plays important roles in the early stage of protein adsorption dynamics which shifts to a kinetic controlled mechanism in the later stage. Similar dynamic pathways are observed for protein adsorption with significantly fast rates and rapid shifts in transport mechanisms when C0* is increased a hundred times from 0.313 to 31.3. Theoretical adsorption isotherms follow the trend of experimentally obtained data. Adsorption isotherms indicate that amount of proteins secreted from individual cells and subsequently captured on a clean glass slide surface increases monotonically with time. Our study directly validates that protein secretion rates can be quantified by the microengraving immunoassay. This will enable us to apply microengraving immunoassays to quantify secretion rates from 104–105 single cells in parallel, screen antigen-specific cells with the highest secretion rate for clonal expansion and quantitatively reveal cellular heterogeneity within a small cell sample. PMID:26501282

  12. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    Energy Technology Data Exchange (ETDEWEB)

    Weil, K. Scott; Rice, Joseph P.

    2005-06-01

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA®, and on zirconia/stainless steel couples joined using this filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation behavior of the brazed joint.

  13. Substrate Effects on the High Temperature Oxidation Behavior of a Gold-Based Braze Filler Metal

    Energy Technology Data Exchange (ETDEWEB)

    Weil, K. Scott; Rice, Joseph P.

    2005-06-30

    Oxidation testing was conducted on a commercial gold-based braze alloy, Gold ABA, and on zirconia and stainless steel joining couples prepared using this braze filler metal. Preliminary results reveal that both substrates play a significant role in determining the overall oxidation resistance of the brazed joint.

  14. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  15. Manipulation of colloidal crystallization

    NARCIS (Netherlands)

    Vermolen, E.C.M.

    2008-01-01

    Colloidal particles (approximately a micrometer in diameter) that are dispersed in a fluid, behave thermodynamically similar to atoms and molecules: at low concentrations they form a fluid, while at high concentrations they can crystallize into a colloidal crystal to gain entropy. The analogy with

  16. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  17. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    Book Description: Colloidal science and technology is one of the fastest growing research and technology areas. This book explores the cutting edge research in colloidal science and technology that will be usefull in almost every aspect of modern society. This book has a depth of information rela...

  18. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  19. Colloidal Plasmas: Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    The present contribution will review the basic physics of the charging mechanism of the colloidal particles as well as the physics of the collective normal mode behavior of the general multi-ion species plasmas. Emphasis will be laid on the clarification of the prevailing confusing ideas about distinct qualities of the various ...

  20. Gold-based hybrid nanomaterials for biosensing and molecular diagnostic applications.

    Science.gov (United States)

    Kim, Jung Eun; Choi, Ji Hye; Colas, Marion; Kim, Dong Ha; Lee, Hyukjin

    2016-06-15

    The properties of gold nanomaterials are particularly of interest to many researchers, since they show unique physiochemical properties such as optical adsorption of specific wavelength of light, high electrical conductance with rich surface electrons, and facile surface modification with sulfhydryl groups. These properties have facilitated the use of gold nanomaterials in the development of various hybrid systems for biosensors and molecular diagnostics. Combined with various synthetic materials such as fluorescence dyes, polymers, oligonucleotides, graphene oxides (GO), and quantum dots (QDs), the gold-based hybrid nanomaterials offer multi-functionalities in molecular detection with high specificity and sensitivity. These two aspects result in the increase of detection speed as well as the lower detection limits, having shown that this diagnosis method is more effective than other conventional ones. In this review, we have highlighted various examples of nanomaterials for biosensing and molecular diagnostics. The gold-based hybrid systems are categorized by three distinct detection approaches, in which include (1) optical, such as surface plasmon resonance (SPR), RAMAN, and surface-enhanced Raman scattering (SERS), (2) fluorescence, such as förster resonance energy transfer (FRET) and nanomaterial surface energy transfer (NSET), and (3) electrochemical, such as potentiometic, amperometric, and conductometric. Each example provides the detailed mechanism of molecular detection as well as the supporting experimental result with the limit of detection (LOD). Lastly, future perspective on novel development of gold-based hybrid nanomaterials is discussed as well as their challenges. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  2. Unilateral palpebral colloid milia

    Directory of Open Access Journals (Sweden)

    Kachhawa Dilip

    1992-01-01

    Full Text Available A 55-year old male presented with innumerable lesions of colloid millium unilaterally over eyelids of left eye. This case is reported because of unilateral distribution of lesions on sun protected area.

  3. Colloids: A microscopic army

    Science.gov (United States)

    Tierno, Pietro

    2017-04-01

    Ensembles of magnetic colloids can undergo an instability triggering the formation of clusters that move faster than the particles themselves. The many-body process relies on hydrodynamics alone and may prove useful for load delivery in fluidics.

  4. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  5. Development of Colloidal Gold‐Based Lateral Flow  Immunoassay for Rapid Qualitative and SemiQuantitative Analysis of Ustiloxins A and B in Rice  Samples

    Directory of Open Access Journals (Sweden)

    Xiaoxiang Fu

    2017-02-01

    Full Text Available Rice false smut is a worldwide devastating rice disease infected by the fungal pathogen Villosiclava virens. Ustiloxin A (UA and ustiloxin B (UB, cyclopeptide mycotoxins, were the major ustiloxins isolated from the rice false smut balls (FSBs that formed in the pathogen‐infected rice spikelets. Based on the specific monoclonal antibodies (mAbs 2D3G5 and 1B5A10, respectively, against UA and UB, the lateral flow immunoassays (LFIAs were developed, and the indicator ranges for UA and UB both were 50-100 ng/mL. The cross‐reactivities of UB for UA LFIA, and UA for UB LFIA were 5% and 20%, respectively, which were consistent with the icELISA results reported previously. Even at 50,000 ng/mL, none of other commonly existent metabolites in rice samples caused noticeable inhibition. The LFIAs were used for determination of UA and UB contents in rice FSBs and rice grains, and the results were agreeable with those by HPLC and icELISA. There was no change in the sensitivity of either dipstick stored at 4 °C after at least three months. The developed LFIA has specificity and sensitivity for detecting UA and UB as well as simplicity to use. It will be a potential point‐of‐care device for rapid evaluation of the rice samples contaminated by UA and UB.

  6. Development of a lateral flow immunoassay for the rapid diagnosis of invasive candidiasis

    OpenAIRE

    Zhengxin He; Lanchun Shi; Xiangyang Ran; Wei Li; Xianling Wang; Fukun Wang

    2016-01-01

    Early and accurate diagnosis of invasive candidiasis (IC) is very important. In this study, a lateral flow immunoassay (LFIA) was developed to detect antibody against Candida albicans enolase (Eno). Colloidal gold particle labeled mouse anti human IgG (1.0 mg/L) was used as the detector reagent. Recombinant enolase (rEno, 1.0 mg/L) and goat anti IgG (1.0 mg/L) were immobilized in test and control lines, respectively, of a nitrocellulose membrane, acting as the capture reagents. The LFIA was u...

  7. Colloid Release from Soil Aggregates

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Møldrup, Per; Schjønning, Per

    2012-01-01

    The content of water-dispersible colloids (WDC) has a major impact on soil functions and structural stability. In addition, the presence of mobile colloids may increase the risk of colloid-facilitated transport of strongly sorbing environmental contaminants. The WDC content was measured in 39 soils...... not associated with organic C (r > 0.89, P colloid release rates were highly correlated with the total clay content (r > 0.84, P ... content measured using a more classical end-over-end method (r > 0.89, P 0.89, P colloids and colloid-facilitated transport...

  8. Graphene- gold based nanocomposites applications in cancer diseases; Efficient detection and therapeutic tools.

    Science.gov (United States)

    Al-Ani, Lina A; AlSaadi, Mohammed A; Kadir, Farkaad A; Hashim, Najihah M; Julkapli, Nurhidayatullaili M; Yehye, Wageeh A

    2017-10-20

    Early detection and efficient treatment of cancer disease remains a drastic challenge in 21st century. Throughout the bulk of funds, studies, and current therapeutics, cancer seems to aggressively advance with drug resistance strains and recurrence rates. Nevertheless, nanotechnologies have indeed given hope to be the next generation for oncology applications. According to US National cancer institute, it is anticipated to revolutionize the perspectives of cancer diagnosis and therapy. With such success, nano-hybrid strategy creates a marvelous preference. Herein, graphene-gold based composites are being increasingly studied in the field of oncology, for their outstanding performance as robust vehicle of therapeutic agents, built-in optical diagnostic features, and functionality as theranostic system. Additional modes of treatments are also applicable including photothermal, photodynamic, as well as combined therapy. This review aims to demonstrate the various cancer-related applications of graphene-gold based hybrids in terms of detection and therapy, highlighting the major attributes that led to designate such system as a promising ally in the war against cancer. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. New strategies for high sensitivity immunoassays.

    OpenAIRE

    Bernard, E. J. D.

    2005-01-01

    Lateral flow immunoassays have large applications in the diagnostic and food industry. A biosensor made of electrostatic self-assembled multilayers of polyphenol oxidase-polyallylamine was studied in order to assess its relevance to a future application in immunoassays. Electrostatic self-assembled multilayers composed only of polyelectrolytes were also investigated to provide a model. This model system allowed understanding the internal properties of this structure. Variations of solution pH...

  10. Medical applications of colloids

    CERN Document Server

    Matijevic, Egon

    2008-01-01

    The first book of its type on the medical and biomedical applications of colloids, although there are some related titles on different topicsDiscusses the effects of uniform particles in drug formulations and releaseEvaluates particle transport and deposition in the human body.

  11. Viscosity of colloidal suspensions

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, E.G.D. [Rockefeller Univ., New York, NY (United States); Schepper, I.M. de [Delft Univ. of Technology (Netherlands)

    1995-12-31

    Simple expressions are given for the effective Newtonian viscosity as a function of concentration as well as for the effective visco-elastic response as a function of concentration and imposed frequency, of monodisperse neutral colloidal suspensions over the entire fluid range. The basic physical mechanisms underlying these formulae are discussed. The agreement with existing experiments is very good.

  12. Nucleation in food colloids

    Science.gov (United States)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  13. Graphene oxide and carboxylated graphene oxide: Viable two-dimensional nanolabels for lateral flow immunoassays.

    Science.gov (United States)

    Yu, Li; Li, Peiwu; Ding, Xiaoxia; Zhang, Qi

    2017-04-01

    Graphene oxide (GO) and carboxylated GO were used as labels for lateral flow immunoassays, instead of the conventionally used colloidal gold and colored latex labels. A sensor is demonstrated that enables fast screening for aflatoxin B 1 (AFB 1 ) as a model analyte using the antibody-GO complex as the recognition element. The visual limit of detection and cut-off value for AFB 1 are 0.3 and 1ng/mL, respectively. It is shown that GO and carboxylated GO are viable black labels for use in lateral flow assays, one typical advantage being the saving cost (compared to the use of colloidal gold). Qualitative results are achieved within 15min, and the analytical results were in good agreement with the reference LC MS/MS method. The method was successfully applied to the on-site determination of AFB 1 in agricultural products. In our perception, it opens new possibilities for the screening of other toxins by lateral flow immunoassays using GO and carboxylated GO as labels. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Immunoassays in monitoring biotechnological drugs.

    Science.gov (United States)

    Gygax, D; Botta, L; Ehrat, M; Graf, P; Lefèvre, G; Oroszlan, P; Pfister, C

    1996-08-01

    For the evaluation and interpretation of pharmacokinetic data reliable quantitative determinations are a requirement that can only be met by well-characterized and fully validated analytical methods. To cope with these requirements a method is being established that is based on an integrated and automated fiber-optic biospecific interaction analysis system (FOBIA) for immunoassays. Performance characteristics of this system used in monitoring of recombinant hirudin (CGP 39 393) are presented. Recombinant hirudin is a highly potent and selective inhibitor of human thrombin. Owing to its size and charge, recombinant hirudin is mainly eliminated by glomerular filtration. But only a fraction of the hirudin dose seems to be reabsorbed at the proximal tubule by luminal endocytosis and hydrolyzed by lysosomal enzymes, leaving approximately 50% of the dose to be extracted in the urine. Thus, renal clearance of recombinant hirudin in the absence of renal insufficiency appears to depend primarily on the glomerular filtration rate. During a 3-month i.v. tolerability study in dogs, some of the dogs developed antibodies against recombinant hirudin. The hirudin-antibody complex accumulated in plasma and apparent hirudin plasma concentrations were therefore much higher than expected from single-dose kinetics. Hirudin captured by antibodies showed an extended half-life and the hirudin-antibody complex is still pharmacologically active, as demonstrated by the observed increase in thrombin time. In conclusion, only appropriate analytical methods allow adequate monitoring and pharmacokinetic characterization of biotechnology drugs in biological materials.

  15. Chemiluminescence lateral flow immunoassay based on Pt nanoparticle with peroxidase activity.

    Science.gov (United States)

    Park, Jong-Min; Jung, Ha-Wook; Chang, Young Wook; Kim, Hyung-Seok; Kang, Min-Jung; Pyun, Jae-Chul

    2015-01-01

    A lateral flow immunoassay (LF-immunoassay) with an enhanced sensitivity and thermostability was developed by using Pt nanoparticles with a peroxidase activity. The Pt nanoparticles were synthesized by citrate reduction method, and the peroxidase activity of Pt nanoparticles was optimized by adjusting reaction conditions. The peroxidase activity was estimated by using Michaelis-Menten kinetics model with TMB as a chromogenic substrate. The kinetics parameters of KM and Vmax were calculated and compared with horseradish peroxidase (HRP). The thermal stability of the Pt nanoparticles was compared with horseradish peroxidase (HRP) according to the storage temperature and long-term storage period. The feasibility of lateral flow immunoassay with a chemiluminescent signal band was demonstrated by the detection of human chorionic gonadotropin (hCG) as a model analyte, and the sensitivity was determined to be improved by as much as 1000-fold compared to the conventional rapid test based on colored gold-colloids. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Colloidal Thermal Fluids

    Science.gov (United States)

    Lotzadeh, Saba

    In this dissertation, a reversible system with a well controlled degree of particle aggregation was developed. By surface modification of colloidal silica with aminosilanes, interactions among the particles were tuned in a controlled way to produce stable sized clusters at different pH values ranges from well-disposed to a colloidal gel. N-[3-(trimethoxysilyl)propyl]ethylenediamine (TMPE) monolayer on particle surface not only removes all the reactive sites to prevent chemical aggregation, also provides steric stabilization in the absence of any repulsion. After surface modification, electrokinetic behavior of silica particles were changed to that of amino groups, positive in acidic pH and neutral at basic pH values. By tuning the pH, the balance between electrostatic repulsion and hydrophobic interactions was reversibly controlled. As a result, clusters with different sizes were developed. The effect of clustering on the thermal conductivity of colloidal dispersions was quantified using silane-treated silica, a system engineered to exhibit reversible clustering under well-controlled conditions. Thermal conductivity of this system was measured by transient hot wire, the standard method of thermal conductivity measurements in liquids. We show that the thermal conductivity increases monotonically with cluster size and spans the entire range between the two limits of Maxwell's theory. The results, corroborated by numerical simulation, demonstrate that large increases of the thermal conductivity of colloidal dispersions are possible, yet fully within the predictions of classical theory. Numerical calculations were performed to evaluate the importance of structural properties of particles/aggregates on thermal conduction in colloidal particles. Thermal conductivity of non-spherical particles including hollow particles, cubic particles and rods was studied using a Monte Carlo algorithm. We show that anisotropic shapes, increase conductivity above that of isotropic

  17. Fractal nematic colloids

    Science.gov (United States)

    Hashemi, S. M.; Jagodič, U.; Mozaffari, M. R.; Ejtehadi, M. R.; Muševič, I.; Ravnik, M.

    2017-01-01

    Fractals are remarkable examples of self-similarity where a structure or dynamic pattern is repeated over multiple spatial or time scales. However, little is known about how fractal stimuli such as fractal surfaces interact with their local environment if it exhibits order. Here we show geometry-induced formation of fractal defect states in Koch nematic colloids, exhibiting fractal self-similarity better than 90% over three orders of magnitude in the length scales, from micrometers to nanometres. We produce polymer Koch-shaped hollow colloidal prisms of three successive fractal iterations by direct laser writing, and characterize their coupling with the nematic by polarization microscopy and numerical modelling. Explicit generation of topological defect pairs is found, with the number of defects following exponential-law dependence and reaching few 100 already at fractal iteration four. This work demonstrates a route for generation of fractal topological defect states in responsive soft matter. PMID:28117325

  18. Colloidal capsules: nano- and microcapsules with colloidal particle shells.

    Science.gov (United States)

    Bollhorst, Tobias; Rezwan, Kurosch; Maas, Michael

    2017-04-18

    Utilizing colloidal particles for the assembly of the shell of nano- and microcapsules holds great promise for the tailor-made design of new functional materials. Increasing research efforts are devoted to the synthesis of such colloidal capsules, by which the integration of modular building blocks with distinct physical, chemical, or morphological characteristics in a capsule's shell can result in novel properties, not present in previous encapsulation structures. This review will provide a comprehensive overview of the synthesis strategies and the progress made so far of bringing nano- and microcapsules with shells of densely packed colloidal particles closer to application in fields such as chemical engineering, materials science, or pharmaceutical and life science. The synthesis routes are categorized into the four major themes for colloidal capsule formation, i.e. the Pickering-emulsion based formation of colloidal capsules, the colloidal particle deposition on (sacrificial) templates, the amphiphilicity driven self-assembly of nanoparticle vesicles from polymer-grafted colloids, and the closely related field of nanoparticle membrane-loading of liposomes and polymersomes. The varying fields of colloidal capsule research are then further categorized and discussed for micro- and nano-scaled structures. Finally, a special section is dedicated to colloidal capsules for biological applications, as a diverse range of reports from this field aim at pharmaceutical agent encapsulation, targeted drug-delivery, and theranostics.

  19. Flocking ferromagnetic colloids.

    Science.gov (United States)

    Kaiser, Andreas; Snezhko, Alexey; Aranson, Igor S

    2017-02-01

    Assemblages of microscopic colloidal particles exhibit fascinating collective motion when energized by electric or magnetic fields. The behaviors range from coherent vortical motion to phase separation and dynamic self-assembly. Although colloidal systems are relatively simple, understanding their collective response, especially under out-of-equilibrium conditions, remains elusive. We report on the emergence of flocking and global rotation in the system of rolling ferromagnetic microparticles energized by a vertical alternating magnetic field. By combing experiments and discrete particle simulations, we have identified primary physical mechanisms, leading to the emergence of large-scale collective motion: spontaneous symmetry breaking of the clockwise/counterclockwise particle rotation, collisional alignment of particle velocities, and random particle reorientations due to shape imperfections. We have also shown that hydrodynamic interactions between the particles do not have a qualitative effect on the collective dynamics. Our findings shed light on the onset of spatial and temporal coherence in a large class of active systems, both synthetic (colloids, swarms of robots, and biopolymers) and living (suspensions of bacteria, cell colonies, and bird flocks).

  20. Photophysics of C60 Colloids

    Science.gov (United States)

    2012-11-28

    of C60 Colloids 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Andrew Clements 5d. PROJECT NUMBER 5e. TASK...to C60 Colloids • Desired NLO Response • Overview of Nonlinear Scattering and Absorption • Previous Scholarship/Context • Thesis Question...Computer Modeling • Conclusions 2 UNCLASSIFIED UNCLASSIFIED Description of C60 Colloids C60 Molecules • Cage molecules composed of 60

  1. An immunoassay for urinary extracellular vesicles.

    Science.gov (United States)

    Salih, Mahdi; Fenton, Robert A; Knipscheer, Jeroen; Janssen, Joost W; Vredenbregt-van den Berg, Mirella S; Jenster, Guido; Zietse, Robert; Hoorn, Ewout J

    2016-04-15

    Although nanosized urinary extracellular vesicles (uEVs) are increasingly used for biomarker discovery, their isolation currently relies on time-consuming techniques hindering high-throughput application. To navigate this problem, we designed an immunoassay to isolate, quantify, and normalize uEV proteins. The uEV immunoassay consists of a biotinylated CD9 antibody to isolate uEVs, an antibody against the protein of interest, and two conjugated antibodies to quantify the protein of interest and CD9. As a proof of principle, the immunoassay was developed to analyze the water channel aquaporin-2 (AQP2) and the sodium-chloride cotransporter (NCC). CD9 was used as a capture antibody because immunoprecipitation showed that anti-CD9 antibody, but not anti-CD63 antibody, isolated AQP2 and NCC. CD9 correlated strongly with urine creatinine, allowing CD9 to be used for normalization of spot urines. The uEV immunoassay detected AQP2 and NCC with high sensitivity, low coefficients of variance, and stability in dilution series. After water loading in healthy subjects, the uEV immunoassay detected decreases in AQP2 and NCC equally well as the traditional method using ultracentrifugation and immunoblot. The uEV immunoassay also reliably detected lower and higher AQP2 or NCC levels in uEVs from patients with pathological water or salt reabsorption, respectively. In summary, we report a novel approach to analyze uEVs that circumvents existing isolation and normalization issues, requires small volumes of urine, and detects anticipated changes in physiological responses and clinical disorders. Copyright © 2016 the American Physiological Society.

  2. Colloid thruster technology

    Science.gov (United States)

    Perel, J.

    1971-01-01

    A program is described for attaining control, reproducibility, and predictability of operation for the annular colloid emitter. A thruster of an improved design was used for a 1000 hour test. The thruster was operated with a neutralizer for 1023 hours at 15 kV with an average thrust of 25 micropound and specific impulse of 1160 sec. The performance was stable, and the beam was vectored periodically. The clean condition of the emitter edge at the end of the test coupled with no degradation in performance during the test indicated that the lifetime could be extrapolated by at least an order of magnitude over the test time.

  3. Polymers and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Schurtenberger, P. [ETH Zurich, Inst. fuer Polymere, Zurich (Switzerland)

    1996-11-01

    A wealth of structural information from colloid and polymer solutions on a large range of length scales can be obtained using small angle neutron scattering (SANS) experiments. After a general introduction to the field of soft condensed matter, I shall give a few selected examples on how SANS combined with suitable contrast variation schemes can be used to extract information on the size and conformation of polymer coils in solution and in the melt, and on the local structure and flexibility of polymerlike micelles and microemulsions. (author) 8 figs., tabs., 44 refs.

  4. Colloidal friction: Kinks in motion

    Science.gov (United States)

    Vanossi, Andrea; Tosatti, Erio

    2012-02-01

    The ability of laser interference potentials to trap and control colloidal particles opens up a new potential area of 'toy systems' displaying real physics. A beautiful example is the study of friction between colloidal crystals and a variety of artificially created surface potentials.

  5. Colloid Adsorption onto Responsive Membranes

    Science.gov (United States)

    Dias, Rita S.; Linse, Per

    2008-01-01

    The adsorption of colloids of varying sizes and charges onto a surface that carries both negative and positive charges, representing a membrane, has been investigated using a simple model employing Monte Carlo simulations. The membrane is made of positive and negative charges (headgroups) that are allowed to move along the membrane, simulating the translational diffusion of the lipids, and are also allowed to protrude into the solution, giving rise to a fluid and soft membrane. When an uncharged colloid is placed in the vicinity of the membrane, a short-range repulsion between the colloid and the membrane is observed and the membrane will deflect to avoid coming into contact with the colloid. When the colloid is charged, the membrane response is twofold: the headgroups of the membrane move toward the colloid, as if to partly embrace it, and the positive headgroups of the membrane approach the oppositely charged colloid, inducing the demixing of the membrane lipids (polarization). The presence of protrusions enhances the polarization of the membrane. Potential of mean force calculations show that protrusions give rise to a more long-range attractive colloid-membrane potential which has a smaller magnitude at short separations. PMID:18234818

  6. Colloidal heat engines: a review.

    Science.gov (United States)

    Martínez, Ignacio A; Roldán, Édgar; Dinis, Luis; Rica, Raúl A

    2016-12-21

    Stochastic heat engines can be built using colloidal particles trapped using optical tweezers. Here we review recent experimental realizations of microscopic heat engines. We first revisit the theoretical framework of stochastic thermodynamics that allows to describe the fluctuating behavior of the energy fluxes that occur at mesoscopic scales, and then discuss recent implementations of the colloidal equivalents to the macroscopic Stirling, Carnot and steam engines. These small-scale motors exhibit unique features in terms of power and efficiency fluctuations that have no equivalent in the macroscopic world. We also consider a second pathway for work extraction from colloidal engines operating between active bacterial reservoirs at different temperatures, which could significantly boost the performance of passive heat engines at the mesoscale. Finally, we provide some guidance on how the work extracted from colloidal heat engines can be used to generate net particle or energy currents, proposing a new generation of experiments with colloidal systems.

  7. Modern immunoassays in meat-product analysis.

    Science.gov (United States)

    Fukal, L

    1991-01-01

    The increased regulation of foodstuffs in modern society requires analytical methods which are easy to perform, sensitive, specific and relatively inexpensive. The basic antigen-antibody reaction provides means for very specific analytical procedures. Immunoassays are powerful analytical tools that permit the specific and rapid detection or measurement of antigens and haptens to which antibodies can be produced. Sensitive recognition of the interaction is made possible by labelling the analyte or antibody, mainly with radioisotope (RIA) and enzyme (ELISA). Wide applications of these modern immunoassays to food analysis began about 1980. The paper reviews investigations, where various types of RIA and ELISA were developed for the use in meat product analysis. Detection and determination of various meat species, non-meat proteins, microorganisms and bacterial toxins, drugs, anabolic hormones, pesticides, mycotoxins, and other contaminants in meat and meat products by the means of immunoassays is described. Now, the commercial kits are available for most of these compounds. They make possible to perform analysis in different laboratories under standard conditions. The reason of an enthusiasmic acceptance of this technology is related to its inherent specificity, high sensitivity, and the facility of application. In fact, immunoassays compete with other analytical technics. They have the advantage of economy when screening large numbers of samples.

  8. Immunoassay on Free-standing Electrospun Membranes

    Science.gov (United States)

    Steckl, Andrew; Wu, Dapeng; Han, Daewoo

    2010-03-01

    For the purpose of immunoassay, electrospun membranes can be thought as the thread-like self-assembling of nano/microbeads. Non-woven membranes of electrospun poly(caprolactone) (PCL) fibers display excellent tenacity, flexibility and suitable surface energy. These PCL membranes exhibit easy handling in air, fast spreading and wetting in aqueous solution, and rapid adsorption of protein molecules by hydrophobic interaction. After a fold-and-press process, the membrane porosity was reduced from ˜ 75% to less than 10%, while the thickness increased from ˜5 to 300 μm. The resulting fluorescence signal from adsorbed protein increased more than 120 times. With anti-HSA and HSA-FITC as an immunoassay model, a linear detection range from 500 ng/mL down to 1 ng/mL is obtained, with a detection of limit (LOD) of ˜ 0.08 ng/mL. By comparison, conventional nitrocellulose and thicker PCL fiber electrospun membrane displayed a much higher LOD of ˜100 ng/mL. Immunoassay on free-standing electrospun membrane successfully combines the low-cost and simplicity of conventional membrane immunoassay, with the fast reaction speed and high sensitivity characteristic of magnetic nano/microbeads bioassays.

  9. Immunoassay on free-standing electrospun membranes.

    Science.gov (United States)

    Wu, Dapeng; Han, Daewoo; Steckl, Andrew J

    2010-01-01

    For the purpose of immunoassay, electrospun membranes can be thought as the threadlike self-assembling of nano/microbeads. Nonwoven membranes of electrospun poly(epsilon-caprolactone) (PCL) fibers display excellent tenacity, flexibility and suitable surface energy. These PCL membranes exhibit easy handling in air, fast spreading, and wetting in aqueous solution, and rapid adsorption of protein molecules by hydrophobic interaction. After a fold-and-press process, the membrane porosity was reduced from approximately 75% to less than 10%, whereas the thickness increased from 5.3 to 280 microm. The resulting fluorescence signal from adsorbed protein increased>120x. With anti-HSA and HSA-FITC as an immunoassay model, a linear detection range from 500 ng/mL down to 1 ng/mL is obtained, with a detection of limit (LOD) of approximately 0.08 ng/mL. By comparison, conventional nitrocellulose and a 24.3 microm PCL fiber electrospun membrane displayed a much higher LOD of approximately 100 ng/mL. Immunoassay on free-standing electrospun membrane successfully combines the low-cost and simplicity of conventional membrane immunoassay, with the fast reaction speed and high sensitivity characteristic of magnetic nano/microbeads bioassays.

  10. Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay.

    Science.gov (United States)

    Juntunen, Etvi; Myyryläinen, Tiina; Salminen, Teppo; Soukka, Tero; Pettersson, Kim

    2012-09-01

    Lateral flow (LF) immunoassays (i.e., immunochromatographic assays) have traditionally been applied to analytes that do not require very high analytical sensitivity or quantitative results. The selection of potential analytes is often limited by the performance characteristics of the assay technology. Analytes with more demanding sensitivity requirements call for reporter systems enabling high analytical sensitivity. In this study, we systematically compared the performance of fluorescent europium(III) [Eu(III)] chelate dyed polystyrene nanoparticles and colloidal gold particles in lateral flow assays. The effect of time-resolved measurement mode was also studied. Because binder molecules used in immunoassays might not behave similarly when conjugated to different reporter particles, two model assays were constructed to provide reliable technical comparison of the two reporter systems. The comparative experiment demonstrated that the fluorescent nanoparticles yielded 7- and 300-fold better sensitivity compared with colloidal gold in the two test systems, respectively. Although the two reporter particles may induce variable effects using individual binders, overall the high specific activity of Eu(III) nanoparticles has superior potential over colloidal gold particles for the development of robust high-sensitivity bioaffinity assays. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Colloidal epitaxy : a real-space analysis

    NARCIS (Netherlands)

    Hoogenboom, Jacob Pieter

    2002-01-01

    In colloidal epitaxy a patterned substrate is used to manipulate colloidal crystallization. The technique on the one hand serves as a model system to study the effects of interfaces and defects on (colloidal) crystallization and on the other hand as a means to direct colloidal self-assembly for

  12. Colloids in Acute Burn Resuscitation.

    Science.gov (United States)

    Cartotto, Robert; Greenhalgh, David

    2016-10-01

    Colloids have been used in varying capacities throughout the history of formula-based burn resuscitation. There is sound experimental evidence that demonstrates colloids' ability to improve intravascular colloid osmotic pressure, expand intravascular volume, reduce resuscitation requirements, and limit edema in unburned tissue following a major burn. Fresh frozen plasma appears to be a useful and effective immediate burn resuscitation fluid but its benefits must be weighed against its costs, and risks of viral transmission and acute lung injury. Albumin, in contrast, is less expensive and safer and has demonstrated ability to reduce resuscitation requirements and possibly limit edema-related morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Multifunctional gold-silica nanostructures for ultrasensitive electrochemical immunoassay of streptomycin residues.

    Science.gov (United States)

    Liu, Bingqian; Zhang, Bing; Cui, Yuling; Chen, Huafeng; Gao, Zhuangqiang; Tang, Dianping

    2011-12-01

    A facile and simple electrochemical immunoassay for ultrasensitive determination of streptomycin residues (STR) in food was designed by using nanogold-assembled mesoporous silica (GMSNs) as bionanolabels on a three-dimensional redox-active organosilica-functionalized sensing interface. To construct such a sensing interface, we initially synthesized organosilica colloids by using wet chemical method, and then utilized the prepared colloidal organosilica nanocomposites for the immobilization of monoclonal anti-STR antibodies on a glassy carbon electrode based on a sol-gel method. The bionanolabels were prepared based on coimmobilization of horseradish peroxidase (HRP) and STR-bovine serum albumin conjugates (STR-BSA) on the GMSNs. With a competitive-type immunoassay format, the assay toward STR analyte was carried out in pH 5.5 acetate acid buffer (ABS) by using redox-active organosilica nanocomposites as electron mediators, biofunctionalized GMSNs as traces, and hydrogen peroxide (H(2)O(2)) as enzyme substrate. Under optimal conditions, the reduction current of the electrochemical immunosensor decreased with the increase in STR level in the sample, and displayed a wide dynamic range of 0.05-50 ng mL(-1) with a low detection limit (LOD) of 5 pg mL(-1) at 3s(B). Intra- and interassay coefficients of variation were less than 8.7 and 9.3% for STR detection, respectively. In addition, the methodology was validated with STR spiked samples including honey, milk, kidney, and muscle, receiving a good correspondence with the results obtained from high-performance liquid chromatography (HPLC). © 2011 American Chemical Society

  14. Development of a competitive lateral flow immunoassay for progesterone: influence of coating conjugates and buffer components.

    Science.gov (United States)

    Posthuma-Trumpie, Geertruida A; Korf, Jakob; van Amerongen, Aart

    2008-11-01

    Several aspects of the development of competitive lateral flow immunoassays (LFIAs) are described. The quantitation of progesterone is taken as an example. The LFIA format consisted of a nitrocellulose membrane spotted with various progesterone conjugates as the test line. A mixture of primary antibody and secondary antibody adsorbed to colloidal carbon was used for signal generation. A digital scanner and dedicated software were used to quantitate the response. A reappraisal of the checkerboard titration, often used in the optimisation of immunoassays, is discussed. Surprisingly, the highest sensitivity of the LFIA format (IC(50) of 0.6 microg L(-1) progesterone in buffer) was achieved by using a high coating concentration of the analyte-protein conjugate and a high dilution of the antibody solution. Immediate addition of all reagents in LFIA was superior to premixing the components and allowing prereaction. Of several blocking agents tested bovine serum albumin was superior in performance, whereas the combination of ovalbumin and progesterone substantially influenced test results.

  15. Mechanical Failure in Colloidal Gels

    Science.gov (United States)

    Kodger, Thomas Edward

    When colloidal particles in a dispersion are made attractive, they aggregate into fractal clusters which grow to form a space-spanning network, or gel, even at low volume fractions. These gels are crucial to the rheological behavior of many personal care, food products and dispersion-based paints. The mechanical stability of these products relies on the stability of the colloidal gel network which acts as a scaffold to provide these products with desired mechanical properties and to prevent gravitational sedimentation of the dispersed components. Understanding the mechanical stability of such colloidal gels is thus of crucial importance to predict and control the properties of many soft solids. Once a colloidal gel forms, the heterogeneous structure bonded through weak physical interactions, is immediately subject to body forces, such as gravity, surface forces, such as adhesion to a container walls and shear forces; the interplay of these forces acting on the gel determines its stability. Even in the absence of external stresses, colloidal gels undergo internal rearrangements within the network that may cause the network structure to evolve gradually, in processes known as aging or coarsening or fail catastrophically, in a mechanical instability known as syneresis. Studying gel stability in the laboratory requires model colloidal system which may be tuned to eliminate these body or endogenous forces systematically. Using existing chemistry, I developed several systems to study delayed yielding by eliminating gravitational stresses through density matching and cyclic heating to induce attraction; and to study syneresis by eliminating adhesion to the container walls, altering the contact forces between colloids, and again, inducing gelation through heating. These results elucidate the varied yet concomitant mechanisms by which colloidal gels may locally or globally yield, but then reform due to the nature of the physical, or non-covalent, interactions which form

  16. Emergent behavior in active colloids

    OpenAIRE

    Zöttl, Andreas; Stark, Holger

    2016-01-01

    Active colloids are microscopic particles, which self-propel through viscous fluids by converting energy extracted from their environment into directed motion. We first explain how articial microswimmers move forward by generating near-surface flow fields via self-phoresis or the self-induced Marangoni effect. We then discuss generic features of the dynamics of single active colloids in bulk and in confinement, as well as in the presence of gravity, field gradients, and fluid flow. In the thi...

  17. A Wash-Free Homogeneous Colorimetric Immunoassay Method

    OpenAIRE

    Liu, Huiqiao; Rong, Pengfei; Jia, Hongwei; Yang, Jie; Dong, Bo; Dong, Qiong; Yang, Cejun; Hu, Pengzhi; Wang, Wei; Liu, Haitao; Liu, Dingbin

    2016-01-01

    Rapid and convenient biosensing platforms could be beneficial to timely diagnosis and treatment of diseases in virtually any care settings. Sandwich immunoassays, the most commonly used methods for protein detection, often rely on expensive tags such as enzyme and tedious wash and incubation procedures operated by skilled labor. In this report, we revolutionized traditional sandwich immunoassays by providing a wash-free homogeneous colorimetric immunoassay method without requirement of any se...

  18. Preparation of colloidal gold immunochromatographic strip for detection of Paragonimiasis skrjabini.

    Science.gov (United States)

    Wang, Ying; Wang, Lifang; Zhang, Jianwei; Wang, Guangxi; Chen, Wenbi; Chen, Lin; Zhang, Xilin

    2014-01-01

    Paragonimiasis is a food-borne trematodiasis, a serious public health issue and a neglected tropical disease. Paragonimus skrjabini is a unique species found in China. Unlike paragonimiasis westermani, it is nearly impossible to make a definitive diagnosis for paragonimiasis skrjabini by finding eggs in sputum or feces. Immunodiagnosis is the best choice to detect paragonimiasis skrjabini. There is an urgent need to develop a novel, rapid and simple immunoassay for large-scale screening patients in endemic areas. To develop a rapid, simple immunodiagnostic assay for paragonimiasis, rabbit anti-human IgG was conjugated to colloidal gold particles and used to detect antibodies in the sera of paragonimiasis patients. The synthesis and identification of colloidal gold particles and antibody-colloidal gold conjugates were performed. The size of colloidal gold particles was examined using a transmission electron microscope (TEM). The average diameter of colloidal gold particles was 17.46 nm with a range of 14.32-21.80 nm according to the TEM images. The formation of antibody-colloidal gold conjugates was monitored by UV/Vis spectroscopy. Excretory-secretory (ES) antigen of Paragonimus skrjabini was coated on nitrocellulose membrane as the capture line. Recombinant Staphylococcus protein A was used to prepare the control line. This rapid gold immunochromatographic strip was assembled in regular sequence through different accessories sticked on PVC board. The relative sensitivity and specificity of the strip was 94.4% (51/54) and 94.1% (32/34) respectively using ELISA as the standard method. Its stability and reproducibility were quite excellent after storage of the strip at 4°C for 6 months. Immunochromatographic strip prepared in this study can be used in a rapid one-step immunochromatographic assay, which is instantaneous and convenient.

  19. Preparation of colloidal gold immunochromatographic strip for detection of Paragonimiasis skrjabini.

    Directory of Open Access Journals (Sweden)

    Ying Wang

    Full Text Available BACKGROUND: Paragonimiasis is a food-borne trematodiasis, a serious public health issue and a neglected tropical disease. Paragonimus skrjabini is a unique species found in China. Unlike paragonimiasis westermani, it is nearly impossible to make a definitive diagnosis for paragonimiasis skrjabini by finding eggs in sputum or feces. Immunodiagnosis is the best choice to detect paragonimiasis skrjabini. There is an urgent need to develop a novel, rapid and simple immunoassay for large-scale screening patients in endemic areas. METHODOLOGY/PRINCIPAL FINDINGS: To develop a rapid, simple immunodiagnostic assay for paragonimiasis, rabbit anti-human IgG was conjugated to colloidal gold particles and used to detect antibodies in the sera of paragonimiasis patients. The synthesis and identification of colloidal gold particles and antibody-colloidal gold conjugates were performed. The size of colloidal gold particles was examined using a transmission electron microscope (TEM. The average diameter of colloidal gold particles was 17.46 nm with a range of 14.32-21.80 nm according to the TEM images. The formation of antibody-colloidal gold conjugates was monitored by UV/Vis spectroscopy. Excretory-secretory (ES antigen of Paragonimus skrjabini was coated on nitrocellulose membrane as the capture line. Recombinant Staphylococcus protein A was used to prepare the control line. This rapid gold immunochromatographic strip was assembled in regular sequence through different accessories sticked on PVC board. The relative sensitivity and specificity of the strip was 94.4% (51/54 and 94.1% (32/34 respectively using ELISA as the standard method. Its stability and reproducibility were quite excellent after storage of the strip at 4°C for 6 months. CONCLUSIONS/SIGNIFICANCE: Immunochromatographic strip prepared in this study can be used in a rapid one-step immunochromatographic assay, which is instantaneous and convenient.

  20. Improving lateral-flow immunoassay (LFIA) diagnostics via biomarker enrichment for mHealth.

    Science.gov (United States)

    Lai, James J; Stayton, Patrick S

    2015-01-01

    Optical detection technologies based on mobile devices can be utilized to enable many mHealth applications, including a reader for lateral-flow immunoassay (LFIA). However, an intrinsic challenge associated with LFIA for clinical diagnostics is the limitation in sensitivity. Therefore, rapid and simple specimen processing strategies can directly enable more sensitive LFIA by purifying and concentrating biomarkers. Here, a binary reagent system is presented for concentrating analytes from a larger volume specimen to improve the malaria LFIA's limit of detection (LOD). The biomarker enrichment process utilizes temperature-responsive gold-streptavidin conjugates, biotinylated antibodies, and temperature-responsive magnetic nanoparticles. The temperature-responsive gold colloids were synthesized by modifying the citrate-stabilized gold colloids with a diblock copolymer, containing a thermally responsive poly(N-isopropylacrylamide) (pNIPAAm) segment and a gold-binding block composed of NIPAAm-co-N,N-dimethylaminoethylacrylamide. The gold-streptavidin conjugates were synthesized by conjugating temperature-responsive gold colloids with streptavidin via covalent linkages using carbodiimide chemistry chemistry. The gold conjugates formed half-sandwiches, gold labeled biomarker, by complexing with biotinylated antibodies that were bound to Plasmodium falciparum histidine-rich protein 2 (PfHRP2), a malaria antigen. When a thermal stimulus was applied in conjunction with a magnetic field, the half-sandwiches and temperature-responsive magnetic nanoparticles that were both decorated with pNIPAAm formed large aggregates that were efficiently magnetically separated from human plasma. The binary reagent system was applied to a large volume (500 μL) specimen for concentrating biomarker 50-fold into a small volume and applied directly to an off-the-shelf malaria LFIA to improve the signal-to-noise ratio.

  1. Comparison of an enzyme-immunoassay with a radio-immunoassay ...

    African Journals Online (AJOL)

    immunoassay (EIA) method for detecting the hepatitis markers anti-HBs, anti-HBc and HBsAg. The results indicated that the RIA and EIA were comparable for the HBsAg marker but that the RIA test was more sensit!ve for anti-HBs and more ...

  2. [Enzyme immunoassay of usnic acid in lichens].

    Science.gov (United States)

    Burkin, A A; Kononenko, G P; Tolpysheva, T Iu

    2013-01-01

    An enzyme immunoassay for usnic acid in lichens was developed, the sensitivity of which was 0.1 microg/g of air-dried material (0.00001%). Polyclonal rabbit antibodies against bovine serum albumin conjugated to (+)-usnic acid under the conditions of formaldehyde condensation made it possible to determine the analyzed substance in solutions at concentrations from 1 ng/mL when it interacts with an immobilized gelatin conjugate homologous in the binding mode. Usnic acid in 2-26600 microg/g (0.0002-2.6%) amounts was found in all 236 studied samples of lichens belonging to 53 species and 8 families.

  3. Gliadin Detection in Food by Immunoassay

    Science.gov (United States)

    Grant, Gordon; Sporns, Peter; Hsieh, Y.-H. Peggy

    Immunoassays are very sensitive and efficient tests that are commonly used to identify a specific protein. Examples of applications in the food industry include identification of proteins expressed in genetically modified foods, allergens, or proteins associated with a disease, including celiac disease. This genetic disease is associated with Europeans and affects about one in every 200 people in North America. These individuals react immunologically to wheat proteins, and consequently their own immune systems attack and damage their intestines. This disease can be managed if wheat proteins, specifically "gliadins," are avoided in foods.

  4. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  5. Metallic Colloid Wavelength-Ratiometric Scattering Sensors

    Science.gov (United States)

    Roll, David; Malicka, Joanna; Gryczynski, Ignacy; Gryczynski, Zygmunt

    2009-01-01

    Gold and silver colloids display strong colors as a result of electron oscillations induced by incident light, which are referred to as the plasmon absorption. This absorption is dependent on colloid–colloid proximity, which has been the basis of absorption assays using colloids. We now describe a new approach to optical sensing using the light scattering properties of colloids. Colloid aggregation was induced by avidin–biotin interactions, which shifted the plasmon absorption to longer wavelengths. We found the spectral shift results in changes in the scattering at different incident wavelengths. By measuring the ratio of scattered intensities at two incident wavelengths, this measurement was made independent of the total colloid concentration. The high scattering efficiency of the colloids resulted in intensities equivalent to fluorescence when normalized by the optical density of the fluorophore and colloid. This approach can be used in a wide variety of assay formats, including those commonly used with fluorescence detection. PMID:14570195

  6. Crack formation and prevention in colloidal drops.

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A; Kim, So Youn; Weon, Byung Mook

    2015-08-17

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  7. Colloids near phase transition lines under shear

    NARCIS (Netherlands)

    Lenstra, T.A.J.

    2001-01-01

    The aim of this thesis is to investigate the structure formation and deformation in colloidal systems due to an externally applied shear flow. The focus is on two different kind of colloidal systems: suspensions of attractive spherical colloidal particles in the neighbourhood of a gas-liquid

  8. Synthesis and Characterization of Supramolecular Colloids.

    Science.gov (United States)

    Vilanova, Neus; De Feijter, Isja; Voets, Ilja K

    2016-04-22

    Control over colloidal assembly is of utmost importance for the development of functional colloidal materials with tailored structural and mechanical properties for applications in photonics, drug delivery and coating technology. Here we present a new family of colloidal building blocks, coined supramolecular colloids, whose self-assembly is controlled through surface-functionalization with a benzene-1,3,5-tricarboxamide (BTA) derived supramolecular moiety. Such BTAs interact via directional, strong, yet reversible hydrogen-bonds with other identical BTAs. Herein, a protocol is presented that describes how to couple these BTAs to colloids and how to quantify the number of coupling sites, which determines the multivalency of the supramolecular colloids. Light scattering measurements show that the refractive index of the colloids is almost matched with that of the solvent, which strongly reduces the van der Waals forces between the colloids. Before photo-activation, the colloids remain well dispersed, as the BTAs are equipped with a photo-labile group that blocks the formation of hydrogen-bonds. Controlled deprotection with UV-light activates the short-range hydrogen-bonds between the BTAs, which triggers the colloidal self-assembly. The evolution from the dispersed state to the clustered state is monitored by confocal microscopy. These results are further quantified by image analysis with simple routines using ImageJ and Matlab. This merger of supramolecular chemistry and colloidal science offers a direct route towards light- and thermo-responsive colloidal assembly encoded in the surface-grafted monolayer.

  9. Immunoassay analysis of lysergic acid diethylamide.

    Science.gov (United States)

    Cody, J T; Valtier, S

    1997-10-01

    Screening large numbers of urine samples for drugs of abuse is typically accomplished using immunoassays that allow for processing large numbers of samples without the requirement of sample preparation before analysis. Until fairly recently, screening of lysergic acid diethylamide (LSD) in urine samples could only be accomplished by the use of radioimmunoassays (RIA). Recently, new nonisotopic immunoassays have been developed for the screening of samples for LSD. These assays lend themselves to rapid, high-volume, automated analysis compared with RIA procedures. In order to evaluate the current commercially available assays, samples prepared at known concentrations were tested by each of the assays. In addition, samples from known use of LSD were tested and the performance of each of the assays compared. The assays examined in this study included RIA assays from Roche Diagnostics (Abuscreen) and Diagnostic Products (coat-a-count) and nonisotopic assays from Roche (OnLine), Behring (EMIT), Boehringer Mannheim (CEDIA), and STC (Microplate EIA). Assays that could readily be carried out in a semiquantitative mode (determining concentration based on a calibration curve) were evaluated as to their relative response to the samples tested. All of the assays evaluated identified all of the samples which confirmed positive by gas chromatography-mass spectrometry (GC-MS). Likewise, each of the assays identified some samples which did not confirm as positive by GC-MS.

  10. Colorimetric stack pad immunoassay for bacterial identification.

    Science.gov (United States)

    Eltzov, Evgeni; Marks, Robert S

    2017-01-15

    A new colorimetric immunoassay concept, utilizing conventional lateral flow membranes (e.g., conjugation, sample, absorption and nitrocellulose), were placed in a different configuration in a stacking manner, where the liquid sample that may contain the analyte diffuses from the bottom to the upper-most layer. The key element of this proprietary technology is a capture layer, where a nitrocellulose membrane is modified with the target analyte of interest, namely in this study target Escherichia coli. During the immunoassay operation, samples contaminated with the target bacteria will conjugate to their corresponding HRP-antibodies laying in wait and the immune-target measurand complex flows by capillarity towards the upper-most layer to generate a colorimetric signal (positive answer) through an enzymatic reaction. In target-free samples, previously immobilized target bacteria on the capture layer will prevent the HRP-labeled anti-target antibodies from migrating to the upper-most layer, where the enzymatic substrate lays in wait. After optimization, the sensitivity of this approach was found to be 1,000 folds higher than ELISAs (102cellsmL-1). The advantages of the stacked pad assay include: miniaturization, operational simplicity, fast response time (less than 5min), useful sensitivity. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Colloids and Nucleation

    Science.gov (United States)

    Ackerson, Bruce

    1997-01-01

    The objectives of the work funded under this grant were to develop a microphotographic technique and use it to monitor the nucleation and growth of crystals of hard colloidal spheres. Special attention is given to the possible need for microgravity studies in future experiments. A number of persons have been involved in this work. A masters student, Keith Davis, began the project and developed a sheet illumination apparatus and an image processing system for detection and analysis. His work on a segmentation program for image processing was sufficient for his master's research and has been published. A post doctoral student Bernie Olivier and a graduate student Yueming He, who originally suggested the sheet illumination, were funded by another source but along with Keith made photographic series of several samples (that had been made by Keith Davis). Data extraction has been done by Keith, Bernie, Yueming and two undergraduates employed on the grant. Results are published in Langmuir. These results describe the sheet lighting technique as one which illuminates not only the Bragg scattering crystal, but all the crystals. Thus, accurate crystal counts can be made for nucleation rate measurements. The strange crystal length scale reduction, observed in small angle light scattering (SALS) studies, following the initial nucleation and growth period, has been observed directly. The Bragg scattering (and dark) crystal size decreases in the crossover region. This could be an effect due to gravitational forces or due to over- compression of the crystal during growth. Direct observations indicate a complex morphology for the resulting hard sphere crystals. The crystal edges are fairly sharp but the crystals have a large degree of internal structure. This structure is a result of (unstable) growth and not aggregation. As yet unpublished work compares growth exponents data with data obtained by SALS. The nucleation rate density is determined over a broad volume fraction range

  12. Performance Improvement of the One-Dot Lateral Flow Immunoassay for Aflatoxin B1 by Using a Smartphone-Based Reading System

    OpenAIRE

    Jihea Moon; Giyoung Kim; Sangdae Lee

    2013-01-01

    This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisi...

  13. Colloid characterization and quantification in groundwater samples

    Energy Technology Data Exchange (ETDEWEB)

    K. Stephen Kung

    2000-06-01

    This report describes the work conducted at Los Alamos National Laboratory for studying the groundwater colloids for the Yucca Mountain Project in conjunction with the Hydrologic Resources Management Program (HRMP) and the Underground Test Area (UGTA) Project. Colloidal particle size distributions and total particle concentration in groundwater samples are quantified and characterized. Colloid materials from cavity waters collected near underground nuclear explosion sites by HRMP field sampling personnel at the Nevada Test Site (NTS) were quantified. Selected colloid samples were further characterized by electron microscope to evaluate the colloid shapes, elemental compositions, and mineral phases. The authors have evaluated the colloid size and concentration in the natural groundwater sample that was collected from the ER-20-5 well and stored in a 50-gallon (about 200-liter) barrel for several months. This groundwater sample was studied because HRMP personnel have identified trace levels of radionuclides in the water sample. Colloid results show that even though the water sample had filtered through a series of Millipore filters, high-colloid concentrations were identified in all unfiltered and filtered samples. They had studied the samples that were diluted with distilled water and found that diluted samples contained more colloids than the undiluted ones. These results imply that colloids are probably not stable during the storage conditions. Furthermore, results demonstrate that undesired colloids have been introduced into the samples during the storage, filtration, and dilution processes. They have evaluated possible sources of colloid contamination associated with sample collection, filtrating, storage, and analyses of natural groundwaters. The effects of container types and sample storage time on colloid size distribution and total concentration were studied to evaluate colloid stability by using J13 groundwater. The data suggests that groundwater samples

  14. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  15. Supramolecular perspectives in colloid science

    NARCIS (Netherlands)

    Cohen Stuart, M.A.

    2008-01-01

    Supramolecular chemistry puts emphasis on molecular assemblies held together by non-covalent bonds. As such, it is very close in spirit to colloid science which also focuses on objects which are small, but beyond the molecular scale, and for which other forces than covalent bonds are crucial. We

  16. Basic physics of colloidal plasmas

    Indian Academy of Sciences (India)

    Abstract. Colloidal plasma is a distinct class of the impure plasmas with multispecies ionic com- position. The distinction lies in the phase distribution of the impurity-ion species. ... near the driven electrode by use of video laser scanning. Moreover, many workers for solid particles termed as the dust grains or grains reported ...

  17. Microbial effects on colloidal agglomeration

    Energy Technology Data Exchange (ETDEWEB)

    Hersman, L.

    1995-11-01

    Colloidal particles are known to enhance the transport of radioactive metals through soil and rock systems. This study was performed to determine if a soil microorganism, isolated from the surface samples collected at Yucca Mountain, NV, could affect the colloidal properties of day particles. The agglomeration of a Wyoming bentonite clay in a sterile uninoculated microbial growth medium was compared to the agglomeration in the medium inoculated with a Pseudomonas sp. In a second experiment, microorganisms were cultured in the succinate medium for 50 h and removed by centrifugation. The agglomeration of the clay in this spent was compared to sterile uninoculated medium. In both experiments, the agglomeration of the clay was greater than that of the sterile, uninoculated control. Based on these results, which indicate that this microorganism enhanced the agglomeration of the bentonite clay, it is possible to say that in the presence of microorganisms colloidal movement through a rock matrix could be reduced because of an overall increase in the size of colloidal particle agglomerates. 32 refs.

  18. Colloidal aspects of texture perception

    NARCIS (Netherlands)

    Vliet, van T.

    2010-01-01

    The perception of complex textures in food is strongly related to the way food is processed during eating, and is modulated by other basic characteristics, such as taste and aroma. An understanding at the colloidal level of the basic processes in the mouth is essential in order to link the

  19. Colloidal liquid crystal reinforced nanocomposites

    NARCIS (Netherlands)

    Ozdilek, C.

    2006-01-01

    The main objective of this research is to investigate the use of colloidal Boehmite rods as reinforcement filler for polymer nanocomposites and to introduce them as an alternative to the well-known clay systems. Since Boehmite rods have been studied for many years as a model nematic system, the

  20. Investigating the Synthesis, Structure, and Catalytic Properties of Versatile Gold-Based Nanocatalvsts

    Science.gov (United States)

    Pretzer, Lori A.

    thermophilic-enzyme complexes responsive to near infrared electromagnetic radiation, which is absorbed minimally by biological tissues. When enzyme-Au nanorod complexes are illuminated with a near-infrared laser, thermal energy is generated which activates the thermophilic enzyme. Enzyme-Au nanorod complexes encapsulated in calcium alginate are reusable and stable for several days, making them viable for industrial applications. Lastly, highly versatile Au nanoparticles with diameters of ~3-12 nm were prepared using carbon monoxide (CO) to reduce a Au salt precursor onto preformed catalytic Au particles. Compared to other reducing agents used to generate metallic NPs, CO can be used at room temperature and its oxidized form does not interfere with the colloidal stability of NPs suspended in water. Controlled synthesis of different sized particles was verified through detailed ultraviolet-visible spectroscopy, small angle X-ray scattering, and transmission electron microscopy measurements. This synthesis method should be extendable to other monometallic and multimetallic compositions and shapes, and can be improved by using preformed particles with a narrower size distribution.

  1. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  2. Brazing of Stainless Steel to Yttria-Stabilized Zirconia Using Gold-Based Brazes for Solid Oxide Fuel Cell Applications

    Science.gov (United States)

    Singh, M.; Shpargel, T. P.; Asthana, R.

    2007-01-01

    Two gold-base active metal brazes (gold-ABA and gold-ABA-V) were evaluated for oxidation resistance to 850 C, and used to join yttria-stabilized zirconia (YSZ) to a corrosion-resistant ferritic stainless steel for possible use in solid oxide fuel cells. Thermogravimetric analysis and optical microscopy and scanning electron microscopy coupled with energy-dispersive spectroscopy were used to evaluate the braze oxidation behavior, and microstructure and composition of the YSZ/braze/steel joints. Both gold-ABA and gold-ABA-V exhibited nearly linear oxidation kinetics at 850 C, with gold-ABA-V showing faster oxidation than gold-ABA. Both brazes produced metallurgically sound YSZ/steel joints due to chemical interactions of Ti and V with the YSZ and steel substrates.

  3. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  4. Colloid dispersion on the pore scale.

    Science.gov (United States)

    Baumann, Thomas; Toops, Laura; Niessner, Reinhard

    2010-02-01

    Dispersion describes the spreading of a tracer or contaminant in an aquifer. Detailed knowledge of dispersion is the key to successful risk assessment in case of groundwater pollution or groundwater protection. The dispersion of colloids on the pore scale is controlled by flow velocity, ionic strength, colloid size, colloid concentration, and colloid-matrix interactions. The objective of this study was to provide quantitative data and to assess the scale dependency of colloid dispersion on the pore scale. The positions of carboxylated polystyrene microspheres (1 microm, 0.5 microm) were recorded during transport experiments in silicon micromodels with three pore topologies. The positions were combined into particle trajectories revealing the flow path of individual colloids. More than thousand trajectories were evaluated for each experiment to obtain the dispersivity of the colloids for flow distances between 10 and 1000 microm. All experiments were run at high Peclet numbers. The pore scale dispersivity was on the order of 8-30% of the flow distance with pure water, dependent on the heterogeneity of the pore topology. The dispersivity was positively correlated with the ionic strength and inversely correlated with the colloid size and the flow velocity. A coating of the micromodel surface with humic acid also increased dispersivity. The quantitative data set presented here supports the theoretical framework for colloid transport and allows to parametrize colloid transport on the pore scale. Copyright 2009 Elsevier Ltd. All rights reserved.

  5. What happens when pharmaceuticals meet colloids.

    Science.gov (United States)

    Xing, Yingna; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2015-12-01

    Pharmaceuticals (PCs) have been widely detected in natural environment due to agricultural application of reclaimed water, sludge and animal wastes. Their potential risks to various ecosystems and even to human health have caused great concern; however, little was known about their environmental behaviors. Colloids (such as clays, metal oxides, and particulate organics) are kind of substances that are active and widespread in the environment. When PCs meet colloids, their interaction may influence the fate, transport, and toxicity of PCs. This review summarizes the progress of studies on the role of colloids in mediating the environmental behaviors of PCs. Synthesized results showed that colloids can adsorb PCs mainly through ion exchange, complexation and non-electrostatic interactions. During this process the structure of colloids and the stability of PCs may be changed. The adsorbed PCs may have higher risks to induce antibiotic resistance; besides, their transport may also be altered considering they have great chance to move with colloids. Solution conditions (such as pH, ionic strength, and cations) could influence these interactions between PCs and colloids, as they can change the forms of PCs and alter the primary forces between PCs and colloids in the solution. It could be concluded that PCs in natural soils could bind with colloids and then co-transport during the processes of irrigation, leaching, and erosion. Therefore, colloid-PC interactions need to be understood for risk assessment of PCs and the best management practices of various ecosystems (such as agricultural and wetland systems).

  6. Stable colloids in molten inorganic salts

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-01

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  7. Stable colloids in molten inorganic salts.

    Science.gov (United States)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other. Electrostatic stabilization of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute-solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute-solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  8. Chancellor Water Colloids: Characterization and Radionuclide Association

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Fattah, Amr I. [Los Alamos National Laboratory

    2012-06-18

    Concluding remarks about this paper are: (1) Gravitational settling, zeta potential, and ultrafiltration data indicate the existence of a colloidal phase of both the alpha and beta emitters in the Chancellor water; (2) The low activity combined with high dispersion homogeneity of the Chancellor water indicate that both alpha and beta emitters are not intrinsic colloids; (3) Radionuclides in the Chancellor water, particularly Pu, coexist as dissolved aqueous and sorbed phases - in other words the radionuclides are partitioned between the aqueous phase and the colloidal phase; (4) The presence of Pu as a dissolved species in the aqueous phase, suggests the possibility of Pu in the (V) oxidation state - this conclusion is supported by the similarity of the k{sub d} value of Pu determined in the current study to that determined for Pu(V) sorbed onto smectite colloids, and the similar electrokinetic behavior of the Chancellor water colloids to smectite colloids; (5) About 50% of the Pu(V) is in the aqueous phase and 50% is sorbed on colloids (mass concentration of colloids in the Chancellor water is 0.12 g/L); (6) The k{sub d} of the Pu and the beta emitters (fission products) between aqueous and colloidal phases in the Chancellor water is {approx}8.0 x 10{sup 3} mL/g using two different activity measurement techniques (LSC and alpha spectroscopy); (7) The gravitational settling and size distributions of the association colloids indicate that the properties (at least the physical ones) of the colloids to which the alpha emitters are associated with seem to be different that the properties of the colloids to which the beta emitters are associated with - the beta emitters are associated with very small particles ({approx}50 - 120 nm), while the alpha emitters are associated with relatively larger particles; and (8) The Chancellor water colloids are extremely stable under the natural pH and ionic strength conditions, indicating high potential for transport in the

  9. Immunosorbent assay using gold colloid cluster technology for determination of IgEs in patients’ sera

    Directory of Open Access Journals (Sweden)

    Haifa Al-Dubai

    2010-10-01

    Full Text Available Haifa Al-Dubai1, Irene Lichtscheidl2, Martina Strobl1, Gisela Pittner1, Fritz Pittner11Department of Biochemistry, Max F Perutz Laboratories, University of Vienna, Vienna, Austria; 2Institute of Cell Imaging and Ultrastructure Research, Vienna, AustriaAbstract: This study focuses on the development of a sensitive and simple cluster-linked immunosorbent assay (CLISA using gold colloidal cluster labeling for determination of proteins such as antigens (Ags or antibodies (Abs. Abs for detection can be labeled with gold colloid clusters (GCCs. The Fc domain of the Abs binds to the clusters, and the Fab domain to the Ag on a nitrocellulose membrane or a microtiter plate as a support for dot-blotting. The signal of positive interaction between GCC-labeled Abs and its dotted Ag is detectable by the naked eye and can be quantified by comparison to a color scale prepared from a dilution series of known sample concentrations. The colored reaction product is stable for prolonged periods and does not fade, making this method a simple, fast, and convenient means for detection of Ag or Ab biorecognitions and an alternative to enzyme-linked immunosorbent assay. Several interactions between different Ags or Abs (eg, ß-lactoglobulin and solutions avoiding gold colloidal cluster flocculation (eg, using protein G were studied. CLISA was tested for other analytical purposes such as detection of IgEs in patients’ sera.Keywords: ELISA, allergen, patient sera, CLISA, immunoassay, ß-lactoglobulin

  10. Electrokinetic properties of polymer colloids

    Science.gov (United States)

    Micale, F. J.; Fuenmayor, D. Y.

    1986-01-01

    The surface of polymer colloids, especially polystyrene latexes, were modified for the purpose of controlling the electrokinetic properties of the resulting colloids. Achievement required a knowledge of electrical double layer charging mechanism, as a function of the electrolyte conditions, at the polymer/water interface. The experimental approach is to control the recipe formulation in the emulsion polymerization process so as to systematically vary the strong acid group concentration on the surface of the polymer particles. The electrophoretic mobility of these model particles will then be measured as a function of surface group concentration and as a function of electrolyte concentration and type. An effort was also made to evaluate the electrophoretic mobility of polystyrene latexes made in space and to compare the results with latexes made on the ground.

  11. Colloid solutions for fluid resuscitation.

    Science.gov (United States)

    Bunn, Frances; Trivedi, Daksha

    2012-06-13

    Colloids are widely used in the replacement of fluid volume. However doubts remain as to which colloid is best. Different colloids vary in their molecular weight and therefore in the length of time they remain in the circulatory system. Because of this and their other characteristics, they may differ in their safety and efficacy. To compare the effects of different colloid solutions in patients thought to need volume replacement. We searched the Cochrane Injuries Specialised Register (searched 1 Dec 2011), Cochrane Central Register of Controlled Trials 2011, issue 4 (The Cochrane Library); MEDLINE (Ovid) (1948 to November Week 3 2011); EMBASE (Ovid) (1974 to 2011 Week 47); ISI Web of Science: Science Citation Index Expanded (1970 to 1 Dec 2011); ISI Web of Science: Conference Proceedings Citation Index-Science (1990 to 1 Dec 2011); CINAHL (EBSCO) (1982 to 1 Dec 2011); National Research Register (2007, Issue 1) and PubMed (searched 1 Dec 2011). Bibliographies of trials retrieved were searched, and for the initial version of the review drug companies manufacturing colloids were contacted for information (1999). Randomised controlled trials comparing colloid solutions in critically ill and surgical patients thought to need volume replacement. Two authors independently extracted the data and assessed the quality of the trials. The outcomes sought were death, amount of whole blood transfused, and incidence of adverse reactions. Ninety trials, with a total of 5678 participants, met the inclusion criteria. Quality of allocation concealment was judged to be adequate in 35 trials and poor or uncertain in the rest.Deaths were obtained in 61 trials. For albumin or PPF versus hydroxyethyl starch (HES) 32 trials (n = 1769) reported mortality. The pooled relative risk (RR) was 1.07 (95% CI 0.87 to 1.32). When the trials by Boldt were removed from the analysis the pooled RR was 0.90 (95% CI 0.68 to 1.20). For albumin or PPF versus gelatin, nine trials (n = 824) reported

  12. Colloidal liquid crystal reinforced nanocomposites

    OpenAIRE

    Ozdilek, C.

    2006-01-01

    The main objective of this research is to investigate the use of colloidal Boehmite rods as reinforcement filler for polymer nanocomposites and to introduce them as an alternative to the well-known clay systems. Since Boehmite rods have been studied for many years as a model nematic system, the motivation was to explore some additional properties which could arise from their nematic behaviour in a polymer matrix. The Boehmite system was expected to retain the nematic behavior in the polymer m...

  13. Can LC and LC-MS ever replace immunoassays?

    Directory of Open Access Journals (Sweden)

    Timothy G. Cross

    2016-10-01

    Full Text Available Immunoassays have been the technology of choice for the analysis of biomolecules for many decades across a wide range of applications in research, diagnostics and infectious disease monitoring. There are good reasons for the wide adoption of immunoassays but even such a well established and characterised technique has limitations and as such investigators are looking at alternative technologies. One such alternative is liquid chromatography (LC and, more specifically, liquid chromatography coupled with mass spectrometry (LC-MS. This article will review both immunoassay and LC and LC-MS technologies and methodologies and discuss the advantages and limitations of both approaches. In addition, the next developments that will need to occur before there is widespread adoption of LC and LC-MS technology preferentially over immunoassays will be examined.

  14. Immunoassay using probe-labelling immunogold nanoparticles with silver staining enhancement via surface-enhanced Raman scattering.

    Science.gov (United States)

    Xu, Shuping; Ji, Xiaohui; Xu, Weiqing; Li, Xiaoling; Wang, Lianying; Bai, Yubai; Zhao, Bing; Ozaki, Yukihiro

    2004-01-01

    This paper reports a novel immunoassay based on surface-enhanced Raman scattering (SERS) and immunogold labelling with silver staining enhancement. Immunoreactions between immunogold colloids modified by a Raman-active probe molecule (e.g., 4-mercaptobenzoic acid) and antigens, which were captured by antibody-assembled chips such as silicon or quartz, were detected via SERS signals of Raman-active probe molecule. All the self-assembled steps were subjected to the measurements of ultraviolet-visible (UV-vis) spectra to monitor the formation of a sandwich structure onto a substrate. The immunoassay was performed by a sandwich structure consisting of three layers. The first layer was composed of immobilized antibody molecules of mouse polyclonal antibody against Hepatitis B virus surface antigen (PAb) on a silicon or quartz substrate. The second layer was the complementary Hepatitis B virus surface antigen (Antigen) molecules captured by PAb on the substrate. The third layer was composed of the probe-labelling immunogold nanoparticles, which were modified by mouse monoclonal antibody against Hepatitis B virus surface antigen (MAb) and 4-mercaptobenzoic acid (MBA) as the Raman-active probe on the surface of gold colloids. After silver staining enhancement, the antigen is identified by a SERS spectrum of MBA. A working curve of the intensity of a SERS signal at 1585 cm(-1) due to the [small nu](8a) aromatic ring vibration of MBA versus the concentration of analyte (Antigen) was obtained and the non-optimized detection limit for the Hepatitis B virus surface antigen was found to be as low as 0.5 [micro sign]g mL(-1).

  15. Implant materials modified by colloids

    Directory of Open Access Journals (Sweden)

    Zboromirska-Wnukiewicz Beata

    2016-03-01

    Full Text Available Recent advances in general medicine led to the development of biomaterials. Implant material should be characterized by a high biocompatibility to the tissue and appropriate functionality, i.e. to have high mechanical and electrical strength and be stable in an electrolyte environment – these are the most important properties of bioceramic materials. Considerations of biomaterials design embrace also electrical properties occurring on the implant-body fluid interface and consequently the electrokinetic potential, which can be altered by modifying the surface of the implant. In this work, the surface of the implants was modified to decrease the risk of infection by using metal colloids. Nanocolloids were obtained using different chemical and electrical methods. It was found that the colloids obtained by physical and electrical methods are more stable than colloids obtained by chemical route. In this work the surface of modified corundum implants was investigated. The implant modified by nanosilver, obtained by electrical method was selected. The in vivo research on animals was carried out. Clinical observations showed that the implants with modified surface could be applied to wounds caused by atherosclerotic skeleton, for curing the chronic and bacterial inflammations as well as for skeletal reconstruction surgery.

  16. Janus Nematic Colloids with Designable Valence

    Directory of Open Access Journals (Sweden)

    Simon Čopar

    2014-05-01

    Full Text Available Generalized Janus nematic colloids based on various morphologies of particle surface patches imposing homeotropic and planar surface anchoring are demonstrated. By using mesoscopic numerical modeling, multiple types of Janus particles are explored, demonstrating a variety of novel complex colloidal structures. We also show binding of Janus particles to a fixed Janus post in the nematic cell, which acts as a seed and a micro-anchor for the colloidal structure. Janus colloidal structures reveal diverse topological defect configurations, which are effectively combinations of surface boojum and bulk defects. Topological analysis is applied to defects, importantly showing that topological charge is not a well determined topological invariant in such patchy nematic Janus colloids. Finally, this work demonstrates colloidal structures with designable valence, which could allow for targeted and valence-conditioned self-assembly at micro- and nano-scale.

  17. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  18. Crystallization of DNA-coated colloids.

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S; Weck, Marcus; Pine, David J

    2015-06-16

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  19. Finger-Actuated, Self-Contained Immunoassay Cassettes

    OpenAIRE

    Qiu, Xianbo; Thompson, Jason A.; Chen, Zongyuan; Liu, Changchun; Chen, Dafeng; Ramprasad, Sudhir; Mauk, Michael G; Ongagna, Serge; Barber, Cheryl; Abrams, William R.; Malamud, Daniel; Paul L A M Corstjens; Bau, Haim H.

    2009-01-01

    The building blocks for an inexpensive, disposable, luminescence-based microfluidic immunoassay cassette are described, and their integration in a point-of-care diagnostic system is demonstrated. Fluid motion in the cassette is driven by depressing finger-actuated pouches. All reagents needed for the immunoassay can be stored in the cassette in liquid form. Prior to use, the cassette consists of two separate parts. A top storage component contains pouches, sealed storage chambers, a metering ...

  20. Radio-immunoassay of somatostatin from isolated rat pancreatic islets

    Energy Technology Data Exchange (ETDEWEB)

    Vonen, B.; Florholmen, J.; Giaever, A.K.; Burhol, P. (Tromsoe Univ. (Norway))

    1989-04-01

    Certain aspects of radio-immunoassay of somatostatin from isolated rat pancreatic islets are described. Somatostatin-14, and not somatostatin-28, is secreted from isolated rat pancreatic islets. Less somatostatin secretion is measured per islet owing to purity of tracer in the radio-immunoassay. Theophylline apparently cross-reacts with somatostatin in the assay described, and this has to be taken into consideration when studying somatostatin release induced by theophylline in isolated islets. (author).

  1. Does colloid shape affect detachment of colloids by a moving air-water interface?

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L; Davis, Howard P

    2013-05-14

    Air-water interfaces interact strongly with colloidal particles by capillary forces. The magnitude of the interaction force depends on, among other things, the particle shape. Here, we investigate the effects of particle shape on colloid detachment by a moving air-water interface. We used hydrophilic polystyrene colloids with four different shapes (spheres, barrels, rods, and oblong disks), but otherwise identical surface properties. The nonspherical shapes were created by stretching spherical microspheres on a film of polyvinyl alcohol (PVA). The colloids were then deposited onto the inner surface of a glass channel. An air bubble was introduced into the channel and passed through, thereby generating a receding followed by an advancing air-water interface. The detachment of colloids by the air-water interfaces was visualized with a confocal microscope, quantified by image analysis, and analyzed statistically to determine significant differences. For all colloid shapes, the advancing air-water interface caused pronounced colloid detachment (>63%), whereas the receding interface was ineffective in colloid detachment (colloid shapes, the barrels were most readily removed (94%) by the advancing interface, followed by the spheres and oblong disks (80%) and the rods (63%). Colloid detachment was significantly affected by colloid shape. The presence of an edge, as it occurs in a barrel-shaped colloid, promoted colloid detachment because the air-water interface is being pinned at the edge of the colloid. This suggests that the magnitude of colloid mobilization and transport in porous media is underestimated for edged particles and overestimated for rodlike particles when a sphere is used as a model colloid.

  2. Transformative Colloidal Nanomaterials for Mid- Infrared Devices

    Science.gov (United States)

    2015-06-11

    Distribution Unlimited Final Report: Transformative Colloidal Nanomaterials for Mid- Infrared Devices The views, opinions and/or findings contained in this...reviewed journals: Final Report: Transformative Colloidal Nanomaterials for Mid-Infrared Devices Report Title The grant focused on the Photoluminescence...explored for mid-infrared photoluminescence, in view of applying it to LEDs, lasers or negative luminescence devices. Colloidal nanomaterials are already

  3. Binary Colloidal Alloy Test Conducted on Mir

    Science.gov (United States)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and

  4. Critical appraisal of four IL-6 immunoassays.

    Directory of Open Access Journals (Sweden)

    Dana K Thompson

    Full Text Available BACKGROUND: Interleukin-6 (IL-6 contributes to numerous inflammatory, metabolic, and physiologic pathways of disease. We evaluated four IL-6 immunoassays in order to identify a reliable assay for studies of metabolic and physical function. Serial plasma samples from intravenous glucose tolerance tests (IVGTTs, with expected rises in IL-6 concentrations, were used to test the face validity of the various assays. METHODS AND FINDINGS: IVGTTs, administered to 14 subjects, were performed with a single infusion of glucose (0.3 g/kg body mass at time zero, a single infusion of insulin (0.025 U/kg body mass at 20 minutes, and frequent blood collection from time zero to 180 minutes for subsequent Il-6 measurement. The performance metrics of four IL-6 detection methods were compared: Meso Scale Discovery immunoassay (MSD, an Invitrogen Luminex bead-based multiplex panel (LX, an Invitrogen Ultrasensitive Luminex bead-based singleplex assay (ULX, and R&D High Sensitivity ELISA (R&D. IL-6 concentrations measured with MSD, R&D and ULX correlated with each other (Pearson Correlation Coefficients r = 0.47-0.94, p<0.0001 but only ULX correlated (r = 0.31, p = 0.0027 with Invitrogen Luminex. MSD, R&D, and ULX, but not LX, detected increases in IL-6 in response to glucose. All plasma samples were measurable by MSD, while 35%, 1%, and 4.3% of samples were out of range when measured by LX, ULX, and R&D, respectively. Based on representative data from the MSD assay, baseline plasma IL-6 (0.90 ± 0.48 pg/mL increased significantly as expected by 90 minutes (1.29 ± 0.59 pg/mL, p = 0.049, and continued rising through 3 hours (4.25 ± 3.67 pg/mL, p = 0.0048. CONCLUSION: This study established the face validity of IL-6 measurement by MSD, R&D, and ULX but not LX, and the superiority of MSD with respect to dynamic range. Plasma IL-6 concentrations increase in response to glucose and insulin, consistent with both an early glucose-dependent response (detectable at 1

  5. Field-usable lateral flow immunoassay for the rapid detection of a macluravirus, large cardamom chirke virus.

    Science.gov (United States)

    Maheshwari, Yogita; Vijayanandraj, Selvaraj; Jain, Rakesh Kumar; Mandal, Bikash

    2018-03-01

    A simple and rapid lateral flow immunoassay (LFIA) was developed by utilizing gold nanoparticles conjugated to a polyclonal antibody against coat protein of large cardamom chirke virus (LCCV). The LFIA based on the principle of sandwich immunoassay detected LCCV within ∼10 min and the result could be evaluated visually. The colloidal gold (CG) was made using 1% gold chloride solution. The LCCV IgG (1 μg/μl) and Mouse IgG (0.5 μg/μl) were conjugated with CG individually and coated onto a conjugate pad at 1:1 ratio. A sample extraction procedure was optimized in order to get adequate clear leaf sap of large cardamom leaf within few minutes. The sensitivity limit of the detection was 1:40 dilution of LCCV infected leaf sap. The diagnostic performance of LFIA was compared with ELISA using field samples. The LFIA was free from false positive as no visible test line was developed with healthy and potyviruses such as papaya ringspot virus and potato virus Y. The diagnostic specificity and sensitivity of LFIA was 100% and 90%, respectively. The Cohen's kappa coefficient (0.701) suggested a very good agreement between the ELISA and LFIA. Receiver operating characteristic analysis indicated that LFIA was a robust method as the area under the curve (0.950) is significantly (P <0.0001) broader. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    Science.gov (United States)

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  7. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  8. Colloidal paradigm in supercapattery electrode systems

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2018-01-01

    Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.

  9. Developing a Salivary Antibody Multiplex Immunoassay to ...

    Science.gov (United States)

    The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to develop an immunoassay capable of measuring the presence of antibodies in human saliva to multiple pathogens simultaneously. Saliva is particularly attractive in this application because it is noninvasive, cheaper and easier to collect than serum. Antigens from environmental pathogens were coupled to carboxylated microspheres (beads) and used to measure antibodies in very small volumes of human saliva samples using the Luminex xMAP solution-phase assay. Beads were coupled to antigens from Campylobacter jejuni, Helicobacter pylori, Toxoplasma gondii, noroviruses (G I.1 and G II.4) and hepatitis A virus. To ensure that the antigens were sufficiently coupled to the beads, coupling was confirmed using species-specific, animal-derived primary detection antibodies, followed by incubation with biotinylated anti-species secondary detection antibodies and streptavidin-R-phycoerythrin reporter (SAPE). As a control to measure non-specific binding, one bead set was treated identically to the others except it was not coupled to any antigen. The antigen coupled and control beads were then incubated with prospectively-collected human saliva samples, analyzed on a Luminex 100 platform, and the presence

  10. Integrated optic immunoassay for virus detection

    Science.gov (United States)

    Boiarski, Anthony A.; Busch, James R.; Miller, Larry S.; Zulich, A. W.; Burans, James

    1995-05-01

    An integrated optic refractometer device was developed to perform a rapid one-step, label-free immunoassay. The device measures refractive index changes at the surface of a planar waveguide using interferometry. Antibodies were applied to the waveguide surface to provide a bioselective coating for detecting and quantifying a specific antigen of interest. The detection limit of this biosensor was determined for adenovirus as a model for other viral analytes of military, medical, and environmental interest. As binding of the antigen occurred on the sensor surface, a time-dependent phase shift of the helium-neon laser light beam was detected and was measured over a 10-minute time period. Adenovirus was detected at levels of 250 - 2500 viral particles/ml. This detection limit was obtained for a mono-layer of antibody attached to the sensor. Use of a high-density, multi-layer antibody coating approach resulted in improved detection limits for bacteria and protein analytes of general interest.

  11. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    OpenAIRE

    Luigjes, B.

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a specially adapted centrifuge for measuring heavy and strongly light absorbing colloids. Magnetic composite colloids can be prepared from thermodynamically stable Pickering emulsions of 3-methacrylox...

  12. Electrochemistry in Colloids and Dispersions. Volume 3. Colloidal Semiconductors

    Science.gov (United States)

    1992-02-04

    Technique’ Generation electrochemically RuO2 /polybrene rapid mixing 1-12 11 colloid & stopped flow I r electrochemically RuO./ TiO2 rapid mixing 1-12 11...8217OOOO1 92-06924 9 2i~ 1111 -1,llNi(ilI~l 11 Best Available Copy ~ REDOX MECHANISMS IN HETEROGENEOUS PHOTOCATALYSIS . THE CASE OF HOLES vs. OH*RADICAL...CONTENTS ABSTRACT p.i Volume III 21. Redox mechanisms in heterogeneous photocatalysis . The case of holes vs OH radical oxidation and free vs. surface-bound

  13. Self-Assembly at the Colloidal Scale

    Science.gov (United States)

    Zhong, Xiao

    The existence of self-assembly, the phenomenon of spontaneous structural formation from building blocks, transcends many orders of magnitude, ranging from molecular to cosmic. It is arguably the most common, important, and complex question in science. This thesis aims for understanding a spectrum of self-assembly-self assembly at the colloidal scale. Of the whole spectrum of self-assembly, the colloidal scale is of particular interest and importance to researchers, for not only comprehensive tools for colloidal scale studies have been well established, but also the various promising applications colloidal self-assembly can facilitate. In this thesis, a high throughput technique-Polymer Pen Lithography (PPL) is modified and its potential for creating corrals for colloidal assembly is evaluated. Then two different approaches of assembling colloids are explored in depth. One of them is by using a phenomenon called dielectrophoresis (DEP) as driving force to manipulate colloidal nucleation and crystal growth. And the other takes advantage of the Pt-catalyzed H2O 2 redox reaction to drive micrometer-scaled, rod-shaped colloids to swim and assemble. Lastly, an optical method called Holographic Video Microscopy (HVM) is used to monitor and characterize "bad" self-assembly of proteins, that is their aggregations. The four studies discussed in this thesis represent advancements in the colloidal scale from different aspects. The PPL technique enriched the toolbox for colloidal self-assembly. The DEP driven colloidal nucleation and crystal growth shed light on deeper understanding the mechanism of crystallization. And the swimming and assembly of micro-scale rods leads to kinetics reminiscent of bacterial run-and-tumble motion. Finally, the HVM technique for monitoring and understanding protein aggregation could potentially lead to better quality assurance for therapeutic proteins and could be a powerful tool for assessing their shelf lives.

  14. Colloid transport in dual-permeability media.

    Science.gov (United States)

    Leij, Feike J; Bradford, Scott A

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Vertical flow immunoassay (VFA) biosensor for a rapid one-step immunoassay.

    Science.gov (United States)

    Oh, Young Kyoung; Joung, Hyou-Arm; Kim, Sanghyo; Kim, Min-Gon

    2013-03-07

    A highly rapid, one-step immunoassay of high sensitivity C-reactive protein (hsCRP) using a biosensor with a vertical flow immunoassay (VFA) was developed. The VFA biosensor was primarily composed of a sample pad, conjugate pad, FTH film and nitrocellulose (NC) membrane, which were all vertically stacked upon one another. Anti-hsCRP and secondary antibodies were consecutively immobilized on the NC membrane at the position below the holes. Gold nanoparticles (AuNPs) conjugated with another anti-hsCRP antibody were encapsulated in the conjugation pad. Various assay conditions, including the size of the hole and the sample volume, were optimized. Under optimized conditions, hsCRP concentrations from 0.01 to 10 μg mL(-1) were detected within 2 min. In comparison with a lateral flow assay (LFA) system, the VFA sensor showed a gradual increase of signal in a concentration-dependent manner without a hook effect in the tested range.

  16. Multicenter Comparison of Seven 25OH Vitamin D Automated Immunoassays.

    Science.gov (United States)

    Lippi, Giuseppe; Salvagno, Gian Luca; Fortunato, Antonio; Dipalo, Mariella; Aloe, Rosalia; Da Rin, Giorgio; Giavarina, Davide

    2015-07-01

    The measurement of 25OH vitamin D continues to grow in clinical laboratories. The aim of this multi-center study was to compare the results of seven automated commercial immunoassays with a reference HPLC technique. One hundred and twenty consecutive outpatient serum samples were centrifuged, divided in aliquots, frozen and shipped to the participating laboratories. 25OH Vitamin D was measured with a reference HPLC system and with seven automated commercial immunoassays (Roche Cobas E601, Beckman Coulter Unicel DXI 800, Ortho Vitros ES, DiaSorin Liaison, Siemens Advia Centaur, Abbott Architect i System and IDS iSYS). Compared to the reference method, the regression coefficients ranged from 0.923 to 0.961 (all p<0.001). The slope of Deming fit ranged from 0.95 to 1.06, whereas the intercept was comprised between -15.2 and 9.2 nmol/L. The bias from the reference HPLC technique varied from -14.5 to 8.7 nmol/L. The minimum performance goal for bias was slightly exceeded by only one immunoassay. The agreement between HPLC and the different immunoassays at 50 nmol/L 25OH Vitamin D varied between 0.61 and 0.85 (all p<0.001). The percentage of samples below this cut-off was significantly different with only one immunoassay. The excellent correlation with the reference HPLC technique attests that all seven automated immunoassays may be reliably used for routine assessment of 25OH-D in clinical laboratories. The significant bias among the different methods seems mostly attributable to the lack of standardization and calls for additional efforts for improving harmonization of 25OH-D immunoassays.

  17. Rapid Detection of Escherichia coli O157 and Shiga Toxins by Lateral Flow Immunoassays

    Directory of Open Access Journals (Sweden)

    Jinliang Wang

    2016-03-01

    Full Text Available Shiga toxin-producing Escherichia coli O157:H7 (STEC cause food-borne illness that may be fatal. STEC strains enumerate two types of potent Shiga toxins (Stx1 and Stx2 that are responsible for causing diseases. It is important to detect the E. coli O157 and Shiga toxins in food to prevent outbreak of diseases. We describe the development of two multi-analyte antibody-based lateral flow immunoassays (LFIA; one for the detection of Stx1 and Stx2 and one for the detection of E. coli O157 that may be used simultaneously to detect pathogenic E. coli O157:H7. The LFIA strips were developed by conjugating nano colloidal gold particles with monoclonal antibodies against Stx1 and Stx2 and anti-lipid A antibodies to capture Shiga toxins and O157 antigen, respectively. Our results indicate that the LFIA for Stx is highly specific and detected Stx1 and Stx2 within three hours of induction of STEC with ciprofloxacin at 37 °C. The limit of detection for E. coli O157 LFIA was found to be 105 CFU/mL in ground beef spiked with the pathogen. The LFIAs are rapid, accurate and easy to use and do not require sophisticated equipment or trained personnel. Following the assay, colored bands on the membrane develop for end-point detection. The LFIAs may be used for screening STEC in food and the environment.

  18. Rapid Detection of Escherichia coli O157 and Shiga Toxins by Lateral Flow Immunoassays.

    Science.gov (United States)

    Wang, Jinliang; Katani, Robab; Li, Lingling; Hegde, Narasimha; Roberts, Elisabeth L; Kapur, Vivek; DebRoy, Chitrita

    2016-03-25

    Shiga toxin-producing Escherichia coli O157:H7 (STEC) cause food-borne illness that may be fatal. STEC strains enumerate two types of potent Shiga toxins (Stx1 and Stx2) that are responsible for causing diseases. It is important to detect the E. coli O157 and Shiga toxins in food to prevent outbreak of diseases. We describe the development of two multi-analyte antibody-based lateral flow immunoassays (LFIA); one for the detection of Stx1 and Stx2 and one for the detection of E. coli O157 that may be used simultaneously to detect pathogenic E. coli O157:H7. The LFIA strips were developed by conjugating nano colloidal gold particles with monoclonal antibodies against Stx1 and Stx2 and anti-lipid A antibodies to capture Shiga toxins and O157 antigen, respectively. Our results indicate that the LFIA for Stx is highly specific and detected Stx1 and Stx2 within three hours of induction of STEC with ciprofloxacin at 37 °C. The limit of detection for E. coli O157 LFIA was found to be 10⁵ CFU/mL in ground beef spiked with the pathogen. The LFIAs are rapid, accurate and easy to use and do not require sophisticated equipment or trained personnel. Following the assay, colored bands on the membrane develop for end-point detection. The LFIAs may be used for screening STEC in food and the environment.

  19. Development of a lateral flow immunoassay for the rapid diagnosis of invasive candidiasis

    Directory of Open Access Journals (Sweden)

    Zhengxin He

    2016-09-01

    Full Text Available Early and accurate diagnosis of invasive candidiasis (IC is very important. In this study, a lateral flow immunoassay (LFIA was developed to detect antibody against Candida albicans enolase (Eno. Colloidal gold particle labeled mouse anti human IgG (1.0 mg/L was used as the detector reagent. Recombinant enolase (rEno, 1.0 mg/L and goat anti IgG (1.0 mg/L were immobilized in test and control lines, respectively, of a nitrocellulose membrane, acting as the capture reagents. The LFIA was used to detect anti Eno in 38 sera from clinically proven IC patients, as well as in 50 healthy control subjects. Compared with an indirect ELISA designed as a reference test, the specificity and sensitivity of the LFIA were 98.2% and 84.8%, respectively. Excellent agreement between the results obtained by ELISA and the LFIA (kappa = 0.851 was observed in this study. In addition, the agreement between the blood culture results and LFIA test is strong (kappa = 0.658. The data presented in the study indicate that the LFIA test is a suitable tool for the serological surveillance of IC in the field or in poorly equipped laboratories.

  20. Development of a Lateral Flow Immunoassay for the Rapid Diagnosis of Invasive Candidiasis.

    Science.gov (United States)

    He, Zheng-Xin; Shi, Lan-Chun; Ran, Xiang-Yang; Li, Wei; Wang, Xian-Ling; Wang, Fu-Kun

    2016-01-01

    Early and accurate diagnosis of invasive candidiasis (IC) is very important. In this study, a lateral flow immunoassay (LFIA) was developed to detect antibody against Candida albicans enolase (Eno). Colloidal gold particle labeled mouse anti human IgG (1.0 mg/L) was used as the detector reagent. Recombinant enolase (rEno, 1.0 mg/L) and goat anti IgG (1.0 mg/L) were immobilized in test and control lines, respectively, of a nitrocellulose membrane, acting as the capture reagents. The LFIA was used to detect anti Eno in 38 sera from clinically proven IC patients, as well as in 50 healthy control subjects. Compared with an indirect ELISA designed as a reference test, the specificity and sensitivity of the LFIA were 98.2 and 84.8%, respectively. Excellent agreement between the results obtained by ELISA and the LFIA (κ = 0.851) was observed in this study. In addition, the agreement between the blood culture results and LFIA test is strong (κ = 0.658). The data presented in the study indicate that the LFIA test is a suitable tool for the serological surveillance of IC in the field or in poorly equipped laboratories.

  1. Structural color from colloidal glasses

    Science.gov (United States)

    Magkiriadou, Sofia

    When a material has inhomogeneities at a lengthscale comparable to the wavelength of light, interference can give rise to structural colors: colors that originate from the interaction of the material's microstructure with light and do not require absorbing dyes. In this thesis we study a class of these materials, called photonic glasses, where the inhomogeneities form a dense and random arrangement. Photonic glasses have angle-independent structural colors that look like those of conventional dyes. However, when this work started, there was only a handful of colors accessible with photonic glasses, mostly hues of blue. We use various types of colloidal particles to make photonic glasses, and we study, both theoretically and experimentally, how the optical properties of these glasses relate to their structure and constituent particles. Based on our observations from glasses of conventional particles, we construct a theoretical model that explains the scarcity of yellow, orange, and red photonic glasses. Guided by this model, we develop novel colloidal systems that allow a higher degree of control over structural color. We assemble glasses of soft, core-shell particles with scattering cores and transparent shells, where the resonant wavelength can be tuned independently of the reflectivity. We then encapsulate glasses of these core-shell particles into emulsion droplets of tunable size; in this system, we observe, for the first time, angle-independent structural colors that cover the entire visible spectrum. To enhance color saturation, we begin experimenting with inverse glasses, where the refractive index of the particles is lower than the refractive index of the medium, with promising results. Finally, based on our theoretical model for scattering from colloidal glasses, we begin an exploration of the color gamut that could be achieved with this technique, and we find that photonic glasses are a promising approach to a new type of long-lasting, non-toxic, and

  2. Engineering Entropy for Colloidal Design

    Science.gov (United States)

    Geng, Yina; Anders, Greg Van; Dodd, Paul M.; Glotzer, Sharon C.; Glotzer group Collaboration

    The inverse design of target material structures is a fundamental challenge. Here, we demonstrate the direct inverse design of soft materials for target crystal structures using entropy alone. Our approach does not require any geometric ansatz. Instead, it efficiently samples 92- or 188-dimensional building-block parameter spaces to determine thermodynamically optimal shapes. We present detailed data for optimal particle characteristics and parameter tolerances for six target structures. Our results demonstrate a general, rational, and precise method for engineering new colloidal materials, and will guide nanoparticle synthesis to realize these materials.

  3. Structured fluids polymers, colloids, surfactants

    CERN Document Server

    Witten, Thomas A

    2010-01-01

    Over the last thirty years, the study of liquids containing polymers, surfactants, or colloidal particles has developed from a loose assembly of facts into a coherent discipline with substantial predictive power. These liquids expand our conception of what condensed matter can do. Such structured-fluid phenomena dominate the physical environment within living cells. This book teaches how to think of these fluids from a unified point of view showing the far-reaching effects ofthermal fluctuations in producing forces and motions. Keeping mathematics to a minimum, the book seeks the simplest expl

  4. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  5. Colloidal Electrolytes and the Critical Micelle Concentration

    Science.gov (United States)

    Knowlton, L. G.

    1970-01-01

    Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)

  6. Manipulating colloids with charges and electric fields

    NARCIS (Netherlands)

    Leunissen, M.E.

    2007-01-01

    This thesis presents the results of experimental investigations on a variety of colloidal suspensions. Colloidal particles are at least a hundred times larger than atoms or molecules, but suspended in a liquid they display the same phase behavior, including fluid and crystalline phases. Due to their

  7. Colloid transport in dual-permeability media

    Science.gov (United States)

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the incre...

  8. Dynamics of colloidal crystals in shear flow

    NARCIS (Netherlands)

    Derks, D.; Wu, Y.L.; van Blaaderen, A.; Imhof, A.

    2009-01-01

    We investigate particle dynamics in nearly hard sphere colloidal crystals submitted to a steady shear flow. Both the fluctuations of single colloids and the collective motion of crystalline layers as a whole are studied by using a home-built counter rotating shear cell in combination with confocal

  9. Structure and Dynamics at Colloidal Boundaries

    NARCIS (Netherlands)

    de Villeneuve, V.W.A.

    2008-01-01

    This thesis is made up of several studies of boundaries occurring in colloidal hard sphere crystals and phase separated colloid-polymer mixtures. These boundaries can be studied on the particle level, in real space and in real time by confocal microscopy. A general introduction on the experimental

  10. Colloidal iron(III) pyrophosphate particles

    NARCIS (Netherlands)

    Rossi, L.; Velikov, K. P.; Philipse, A.P.

    2014-01-01

    Ferric pyrophosphate is a widely used material in the area of mineral fortification but its synthesis and properties in colloidal form are largely unknown. In this article, we report on the synthesis and characterisation of colloidal iron(III) pyrophosphate particles with potential for application

  11. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    Science.gov (United States)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  12. Multicenter Analytical Validation of Aβ40 Immunoassays

    Directory of Open Access Journals (Sweden)

    Linda J. C. van Waalwijk van Doorn

    2017-07-01

    Full Text Available BackgroundBefore implementation in clinical practice, biomarker assays need to be thoroughly analytically validated. There is currently a strong interest in implementation of the ratio of amyloid-β peptide 1-42 and 1-40 (Aβ42/Aβ40 in clinical routine. Therefore, in this study, we compared the analytical performance of six assays detecting Aβ40 in cerebrospinal fluid (CSF in six laboratories according to a recently standard operating procedure (SOP developed for implementation of ELISA assays for clinical routine.MethodsAβ40 assays of six vendors were validated in up to three centers per assay according to recently proposed international consensus validation protocols. The performance parameters included sensitivity, precision, dilutional linearity, recovery, and parallelism. Inter-laboratory variation was determined using a set of 20 CSF samples. In addition, test results were used to critically evaluate the SOPs that were used to validate the assays.ResultsMost performance parameters of the different Aβ40 assays were similar between labs and within the predefined acceptance criteria. The only exceptions were the out-of-range results of recovery for the majority of experiments and of parallelism by three laboratories. Additionally, experiments to define the dilutional linearity and hook-effect were not executed correctly in part of the centers. The inter-laboratory variation showed acceptable low levels for all assays. Absolute concentrations measured by the assays varied by a factor up to 4.7 for the extremes.ConclusionAll validated Aβ40 assays appeared to be of good technical quality and performed generally well according to predefined criteria. A novel version of the validation SOP is developed based on these findings, to further facilitate implementation of novel immunoassays in clinical practice.

  13. Colloidal astaxanthin: preparation, characterisation and bioavailability evaluation.

    Science.gov (United States)

    Anarjan, Navideh; Tan, Chin Ping; Nehdi, Imededdine Arbi; Ling, Tau Chuan

    2012-12-01

    Astaxanthin colloidal particles were produced using solvent-diffusion technique in the presence of different food grade surface active compounds, namely, Polysorbate 20 (PS20), sodium caseinate (SC), gum Arabic (GA) and the optimum combination of them (OPT). Particle size and surface charge characteristics, rheological behaviour, chemical stability, colour, in vitro cellular uptake, in vitro antioxidant activity and residual solvent concentration of prepared colloidal particles were evaluated. The results indicated that in most cases the mixture of surface active compounds lead to production of colloidal particles with more desirable physicochemical and biological properties, as compared to using them individually. The optimum combination of PS20, SC and GA could produce the astaxanthin colloidal particles with small particle size, polydispersity index (PDI), conductivity and higher zeta potential, mobility, cellular uptake, colour intensity and in vitro antioxidant activity. In addition, all prepared astaxanthin colloidal particles had significantly (ppowder. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Capillary Isoelectric Focusing Immunoassay for Fat Cell Differentiation Proteomics.

    Directory of Open Access Journals (Sweden)

    Mary G Johlfs

    Full Text Available Profiling cellular proteome is critical to understanding signal integration during cell fate determination. In this study, the capability of capillary isoelectric focusing (cIEF immunoassays to detect post-translational modifications (PTM of protein isoforms is demonstrated. cIEF immunoassays exhibit protein detection sensitivity at up to 5 orders of magnitude higher than traditional methods. This detection ultra-sensitivity permits proteomic profiling of several nanograms of tissue samples. cIEF immunoassays are employed to simultaneously profile three protein kinases during fat cell differentiation: cGMP-dependent protein kinase type I (PKG-I of the nitric oxide (NO signaling pathway, protein kinase B (Akt of the insulin signaling pathway, and extracellular signal-regulated kinase (ERK of the mitogen-activated protein kinase (MAPK signaling pathway. Interestingly, a switch in the expression level of PKG- isoforms is observed during fat cell differentiation. While both PKG-Iα and PKG-Iβ isoforms are present in preadipocytes, only PKG-Iβ isoform is expressed in adipocytes. On the other hand, the phosphorylation level increases for Akt while decreases for ERK1 and ERK2 following the maturation of preadipocytes into adipocytes. Taken together, cIEF immunoassay provides a highly sensitive means to study fat cell differentiation proteomics. cIEF immunoassay should be a powerful proteomics tool to study complex protein signal integration in biological systems.

  15. Colloid-Associated Radionuclide Concentration Limits: ANL

    Energy Technology Data Exchange (ETDEWEB)

    C. Mertz

    2000-12-21

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M&O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types.

  16. Stable colloids in molten inorganic salts

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hao; Dasbiswas, Kinjal; Ludwig, Nicholas B.; Han, Gang; Lee, Byeongdu; Vaikuntanathan, Suri; Talapin, Dmitri V.

    2017-02-15

    A colloidal solution is a homogeneous dispersion of particles or droplets of one phase (solute) in a second, typically liquid, phase (solvent). Colloids are ubiquitous in biological, chemical and technological processes1, 2, homogenizing highly dissimilar constituents. To stabilize a colloidal system against coalescence and aggregation, the surface of each solute particle is engineered to impose repulsive forces strong enough to overpower van der Waals attraction and keep the particles separated from each other2. Electrostatic stabilization3, 4 of charged solutes works well in solvents with high dielectric constants, such as water (dielectric constant of 80). In contrast, colloidal stabilization in solvents with low polarity, such as hexane (dielectric constant of about 2), can be achieved by decorating the surface of each particle of the solute with molecules (surfactants) containing flexible, brush-like chains2, 5. Here we report a class of colloidal systems in which solute particles (including metals, semiconductors and magnetic materials) form stable colloids in various molten inorganic salts. The stability of such colloids cannot be explained by traditional electrostatic and steric mechanisms. Screening of many solute–solvent combinations shows that colloidal stability can be traced to the strength of chemical bonding at the solute–solvent interface. Theoretical analysis and molecular dynamics modelling suggest that a layer of surface-bound solvent ions produces long-ranged charge-density oscillations in the molten salt around solute particles, preventing their aggregation. Colloids composed of inorganic particles in inorganic melts offer opportunities for introducing colloidal techniques to solid-state science and engineering applications.

  17. Investigation of a colloidal damper.

    Science.gov (United States)

    Suciu, C V; Iwatsubo, T; Deki, S

    2003-03-01

    A novel application of nanotechnology in the field of mechanical engineering, called colloidal damper (CD), is investigated. This device is complementary to the hydraulic damper (HD), having a cylinder-piston construction. Particularly for CD, the hydraulic oil is replaced by a colloidal suspension, which consists of a mesoporous matrix and a lyophobic fluid. In this work, the porous matrix is from silica gel modified by linear chains of n-alkylchlorosilanes and water is considered as an associated working fluid. A design solution from a practical point of view of the CD test rig and the measuring technique of the hysteresis are described. A brief review of the water physical properties relative to the CD concept is presented. Influence of the bonding density, length of the grafted molecule, pore diameter, and particle diameter on the CD hysteresis is investigated for distinctive types and mixtures of silica gels. Temperature variation during functioning is recorded and the CD cycle is interpreted from a thermodynamic standpoint. Variation of the CD dissipated energy and efficiency with pressure, water quantity, and relaxation time is illustrated. Experimental results are justified by the analysis of the water flow into the porous matrix, CD thermodynamics, and the mechanism of the energy dissipation. Our findings agree with the previously published data.

  18. Magnetic colloids as drug vehicles.

    Science.gov (United States)

    Durán, J D G; Arias, J L; Gallardo, V; Delgado, A V

    2008-08-01

    This review article is a description of the present status of magnetic drug delivery systems (DDS). These are colloidal dispersions of composite nanoparticles consisting of a (polymeric or inorganic) biocompatible matrix and magnetic units, and designed to load and release therapeutic drugs. The matrix, together perhaps with adsorbed polymers or polyelectrolytes, provides the DDS with additional colloidal stability and eventually control of the immune response, and the magnetic inclusions have the goal of providing magnetic guidance. The techniques used in the production of the particles are described. The large surface/volume ratio of the particles brings about a superlative importance of the interface aspects, which are depicted in some detail. Attention is also paid to the possibilities that magnetic DDS offer to be guided by magnetic fields, and to their fate upon entering in contact with the blood proteins and the tumor cells. A description of in vitro and in vivo biodistribution experiments helps in this description. The number of animal experiments performed using magnetic DDS is rather large, but results in humans are far from being sufficient in number, something easily understood. The hopes for improvement and the challenges that must be overcome are described in the closing section.

  19. Colloid transport and retention in unsaturated porous media: effect of colloid input concentration.

    Science.gov (United States)

    Zhang, Wei; Morales, Verónica L; Cakmak, M Ekrem; Salvucci, Anthony E; Geohring, Larry D; Hay, Anthony G; Parlange, Jean-Yves; Steenhuis, Tammo S

    2010-07-01

    Colloids play an important role in facilitating transport of adsorbed contaminants in soils. Recent studies showed that under saturated conditions colloid retention was a function of its concentration. It is unknown if this is the case under unsaturated conditions. In this study, the effect of colloid concentration on colloid retention was investigated in unsaturated columns by increasing concentrations of colloid influents with varying ionic strength. Colloid retention was observed in situ by bright field microscopy and quantified by measuring colloid breakthrough curves. In our unsaturated experiments, greater input concentrations resulted in increased colloid retention at ionic strength above 0.1 mM, but not in deionized water (i.e., 0 mM ionic strength). Bright field microscope images showed that colloid retention mainly occurred at the solid-water interface and wedge-shaped air-water-solid interfaces, whereas the retention at the grain-grain contacts was minor. Some colloids at the air-water-solid interfaces were rotating and oscillating and thus trapped. Computational hydrodynamic simulation confirmed that the wedge-shaped air-water-solid interface could form a "hydrodynamic trap" by retaining colloids in its low velocity vortices. Direct visualization also revealed that colloids once retained acted as new retention sites for other suspended colloids at ionic strength greater than 0.1 mM and thereby could explain the greater retention with increased input concentrations. Derjaguin-Landau-Verwey-Overbeek (DLVO) energy calculations support this concept. Finally, the results of unsaturated experiments were in agreement with limited saturated experiments under otherwise the same conditions.

  20. A Wash-Free Homogeneous Colorimetric Immunoassay Method.

    Science.gov (United States)

    Liu, Huiqiao; Rong, Pengfei; Jia, Hongwei; Yang, Jie; Dong, Bo; Dong, Qiong; Yang, Cejun; Hu, Pengzhi; Wang, Wei; Liu, Haitao; Liu, Dingbin

    2016-01-01

    Rapid and convenient biosensing platforms could be beneficial to timely diagnosis and treatment of diseases in virtually any care settings. Sandwich immunoassays, the most commonly used methods for protein detection, often rely on expensive tags such as enzyme and tedious wash and incubation procedures operated by skilled labor. In this report, we revolutionized traditional sandwich immunoassays by providing a wash-free homogeneous colorimetric immunoassay method without requirement of any separation steps. The proposed strategy was realized by controlling the growth of gold nanoparticles (AuNPs) to mediate the interparticle spacing in the protein-AuNP oligomers. We have demonstrated the successful in vitro detection of cancer biomarker in serum samples from patients with high clinical sensitivity and specificity.

  1. Development of a new ARCHITECT automated periostin immunoassay.

    Science.gov (United States)

    Jeanblanc, Nicolette M; Hemken, Philip M; Datwyler, Maria J; Brophy, Susan E; Manetz, T Scott; Lee, Rozanne; Liang, Meina; Chowdhury, Partha S; Varkey, Reena; Grant, Ethan P; Streicher, Katie; Greenlees, Lydia; Ranade, Koustubh; Davis, Gerard J

    2017-01-01

    Periostin is being investigated as a potential biomarker for T-helper-2 (Th2)-driven asthma or eosinophilic inflammation and may help to identify patients more likely to benefit from interleukin-13-targeted treatments. We report the development and analytic performance of the investigational use only ARCHITECT Periostin Immunoassay, a new automated assay developed to detect serum periostin concentrations. We assessed assay performance in terms of precision, sensitivity, linearity, interference from classical immunoassay interferents and representatives of common asthma medications, specimen handling, and isoform reactivity. The assay was also used to assess the biological variability of serum periostin concentrations in samples from healthy volunteers and from subjects with uncontrolled asthma (the intended use population). The percentage CVs for 5-day total precision, assessed using two instruments, was ARCHITECT Periostin Immunoassay is a reliable and robust test for measuring serum periostin concentrations. Copyright © 2016. Published by Elsevier B.V.

  2. Antigen excess in modern immunoassays: to anticipate on the unexpected.

    Science.gov (United States)

    Jacobs, Joannes F M; van der Molen, Renate G; Bossuyt, Xavier; Damoiseaux, Jan

    2015-02-01

    Immunoassays measuring sera with high analyte concentration may be prone to an artifact that causes underestimation of the analyte concentration. This phenomenon is generally described as antigen excess or the prozone effect. Characteristically, serum with high concentrations of a certain analyte can give a false negative/low result when tested at the recommended dilution, but reacts strongly positive upon further dilution. Increased insight of the antigen excess mechanisms and tools to prevent it has reduced the analytical problems caused by prozone effects in daily laboratory practice. However, misinterpretation of laboratory results caused by antigen excess does still occur, in virtually any type of immunoassay. Awareness by the laboratory specialist of the mechanisms underlying antigen excess in the different immunoassays, strategies to detect it, and adequate communication with clinicians can help to avoid reporting false negative test-results. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Reactive magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles for specific antigen detection using microcontact printing technique.

    Science.gov (United States)

    Eissa, Mohamed M; Mahbubor Rahman, Md; Zine, Nadia; Jaffrezic, Nicole; Errachid, Abdelhamid; Fessi, Hatem; Elaissari, Abdelhamid

    2013-03-01

    Epoxy-functionalized magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles (mPDGs) were prepared by co-polymerization of 1,4-divinylbenzene and glycidyl methacrylate monomers. The reaction was conducted by batch emulsion polymerization in the presence of an oil in water magnetic emulsion as a seed. The chemical composition, morphology, iron oxide content, magnetic properties, particle size and colloidal stability of the prepared magnetic polymer particles were characterized using Fourier transform infrared spectroscopy, transmission electron microscopy, thermal gravimetric analysis, vibrating sample magnetometry, dynamic light scattering, and zeta potential determination, respectively. The prepared mPDGs were immobilized on a self-assembled monolayer of 3-aminopropyltriethoxysilane (APTES)/octadecyltrichlorosilane (OTS), which were patterned on glass using microcontact printing technique, forming mPDGs-APTES/OTS reactive surface. This construction (mPDGs-APTES/OTS) was used as a solid support for immunoassay. The immobilized magnetic particles were bioconjugated with monoclonal anti-human IL-10 antibody to provide specific and selective recognition sites for the recombinant human IL-10 protein (antigen). Fluorescence microscopic examination was carried out to follow this immunoassay using fluorescently labeled anti-human IL-10 antibody. The results obtained proved the successful use of mPDGs-APTES/OTS microcontact printed surfaces in an immunoassay, which can be exploited and integrated into microsystems in order to elaborate medical devices (e.g. biosensors) which could provide rapid analysis at high sensitivity with low volumes of analyte. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Peptide dot immunoassay and immunoblotting: electroblotting from aluminum thin-layer chromatography plates and isoelectric focusing gels to activated nitrocellulose

    DEFF Research Database (Denmark)

    Bjerrum, O.J.; Holm, A.; Lauritzen, Edgar

    1993-01-01

    Peptide dot immunoassay, electroblotting, activated nitrocellulose, dot blot, membranes, peptides and proteins......Peptide dot immunoassay, electroblotting, activated nitrocellulose, dot blot, membranes, peptides and proteins...

  5. Phosphate binding by natural iron-rich colloids in streams

    NARCIS (Netherlands)

    Baken, S.; Moens, C.; Griffioen, J.J.; Smolders, E.

    2016-01-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the

  6. Synthesis and Analytical Centrifugation of Magnetic Model Colloids

    NARCIS (Netherlands)

    Luigjes, B.|info:eu-repo/dai/nl/31412330X

    2012-01-01

    This thesis is a study of the preparation and thermodynamic properties of magnetic colloids. First, two types of magnetic model colloids are investigated: composite colloids and single-domain nanoparticles. Thermodynamics of magnetic colloids is studied using analytical centrifugation, including a

  7. PRNP variants in goats reduce sensitivity of detection of PrPSc by immunoassay

    Science.gov (United States)

    Immunoassays are extensively utilized in disease diagnostics with monoclonal antibodies serving as critical tools within the assay. Detection of scrapie in sheep and goats relies heavily on immunoassays including immunohistochemistry, western blotting, and ELISA. In the United States, regulatory tes...

  8. Rapid detection of fungal alpha-amylase in the work environment with a lateral flow immunoassay

    NARCIS (Netherlands)

    Bogdanovic, J.; Koets, M.; Sander, I.; Wouters, I.; Meijster, T.; Heederik, D.J.J.; Amerongen, van A.; Doekes, G.

    2006-01-01

    Background Occupational allergen exposure assessment usually requires airborne dust sampling at the worksite followed by dust extraction and enzyme immunoassay (EIA) analysis at the laboratory. Use of semiquantitative lateral flow immunoassays (LFIAs) may allow a more rapid detection procedure with

  9. Visual immunoassay for detection of Salmonella in foods: collaborative study.

    Science.gov (United States)

    Flowers, R S; Klatt, M J; Keelan, S L

    1988-01-01

    A collaborative study was performed in 13 laboratories to validate a visual enzyme immunoassay (EIA) procedure, TECRA, for rapid detection of Salmonella in foods. The EIA method was compared with the standard culture procedure for detection of Salmonella in 6 food types: ground black pepper, soy flour, dried whole eggs, milk chocolate, nonfat dry milk, and raw deboned turkey. Uninoculated and inoculated samples were included in each food group analyzed. There was no significant difference in the productivity of the EIA and culture procedures at the 5% level for any of the 6 foods. The enzyme immunoassay screening method has been approved interim official first action.

  10. [The colloid milium: An observation associated with trichinosis].

    Science.gov (United States)

    Okhremchuk, Ilona; Abed, Safia; Nguyen, Anh Tuan; Brandone, Nicolas; Morand, Jean-Jacques

    2016-04-01

    The colloid milium has four clinical forms: adult colloid milium, juvenile colloid milium, paracolloid (or nodular colloid degeneration) and pigmented colloid milium. We report the case of an adult colloid milium in a man of 56, who presented episodes of diffuse pruritus associated with myalgia and digestive disorders, indicative of trichinosis. He also developed gradually over the past 10 years, yellowish injuries in the mandibles and neck for whom histology objectified a colloid milium. Etiology and treatment are still unknown; association with a trichinosis is probably coincidental. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  11. Site-specific functionalization of anisotropic nanoparticles: from colloidal atoms to colloidal molecules

    DEFF Research Database (Denmark)

    Li, Fan; Yoo, Won Cheol; Beernink, Molly B

    2009-01-01

    Multipodal nanoparticles (NPs) with controlled tethers are promising principal building blocks, useful for constructing more complex materials, much like atoms are connected into more complex molecules. Here we report colloidal sphere templating as a viable means to create tetrapodal NPs with site......-specific tethers. Amorphous sol-gel materials were molded by the template into shaped NPs that mimic tetravalent atoms but on the length scale of colloids. Synthetic methods were developed to modify only the tips of the tetrapods with a range of possible functional groups to generate anisotropic NPs capable...... of directional bonding to other NPs. We also illustrate that sets of tethered "colloidal atoms" can assemble themselves into "colloidal molecules" with precise placement of the modifying colloids. The templating and tethering approaches to these anisotropic colloidal building blocks and the assembly methods...

  12. Oxyhydroxy Silicate Colloids: A New Type of Waterborne Actinide(IV) Colloids

    Science.gov (United States)

    Weiss, Stephan; Hennig, Christoph; Brendler, Vinzenz; Ikeda‐Ohno, Atsushi

    2016-01-01

    Abstract At the near‐neutral and reducing aquatic conditions expected in undisturbed ore deposits or in closed nuclear waste repositories, the actinides Th, U, Np, and Pu are primarily tetravalent. These tetravalent actinides (AnIV) are sparingly soluble in aquatic systems and, hence, are often assumed to be immobile. However, AnIV could become mobile if they occur as colloids. This review focuses on a new type of AnIV colloids, oxyhydroxy silicate colloids. We herein discuss the chemical characteristics of these colloids and the potential implication for their environmental behavior. The binary oxyhydroxy silicate colloids of AnIV could be potentially more mobile as a waterborne species than the well‐known mono‐component oxyhydroxide colloids. PMID:27957406

  13. The Ongoing Controversy: Crystalloids Versus Colloids.

    Science.gov (United States)

    Pierce, Janet D; Shen, Qiuhua; Thimmesch, Amanda

    2016-01-01

    There is still much debate over the optimal fluid to use for resuscitation. Different studies have indicated either crystalloid or colloid is the ideal intravenous solution to administer, based on mortality or various physiological parameters. Older studies found differences between crystalloids and colloids. However, with the evolving science of fluid administration, more recent studies have shown no differences in patient outcomes. This review article will provide an overview of these substances and discuss the advantages, disadvantages, and implications for giving crystalloids and colloids in clinical practice.

  14. Colloidal QDs-polymer nanocomposites

    Science.gov (United States)

    Gordillo, H.; Suárez, I.; Rodríguez-Cantó, P.; Abargues, R.; García-Calzada, R.; Chyrvony, V.; Albert, S.; Martínez-Pastor, J.

    2012-04-01

    Nanometer-size colloidal semiconductor nanocrystals, or Quantum Dots (NQD), are very prospective active centers because their light emission is highly efficient and temperature-independent. Nanocomposites based on the incorporation of QDs inside a polymer matrix are very promising materials for application in future photonic devices because they combine the properties of QDs with the technological feasibility of polymers. In the present work some basic applications of these new materials have been studied. Firstly, the fabrication of planar and linear waveguides based on the incorporation of CdS, CdSe and CdTe in PMMA and SU-8 are demonstrated. As a result, photoluminescence (PL) of the QDs are coupled to a waveguide mode, being it able to obtain multicolor waveguiding. Secondly, nanocomposite films have been evaluated as photon energy down-shifting converters to improve the efficiency of solar cells.

  15. Carbon Nanomaterials as Antibacterial Colloids

    Directory of Open Access Journals (Sweden)

    Michael Maas

    2016-07-01

    Full Text Available Carbon nanomaterials like graphene, carbon nanotubes, fullerenes and the various forms of diamond have attracted great attention for their vast potential regarding applications in electrical engineering and as biomaterials. The study of the antibacterial properties of carbon nanomaterials provides fundamental information on the possible toxicity and environmental impact of these materials. Furthermore, as a result of the increasing prevalence of resistant bacteria strains, the development of novel antibacterial materials is of great importance. This article reviews current research efforts on characterizing the antibacterial activity of carbon nanomaterials from the perspective of colloid and interface science. Building on these fundamental findings, recent functionalization strategies for enhancing the antibacterial effect of carbon nanomaterials are described. The review concludes with a comprehensive outlook that summarizes the most important discoveries and trends regarding antibacterial carbon nanomaterials.

  16. Colloid-Facilitated Transport of Radionuclides through the Vadose Zone

    Energy Technology Data Exchange (ETDEWEB)

    Flury, Markus; Harsh, James B.; Zachara, John M.; McCarthy, John F.; Lichtner, Peter C.

    2006-05-31

    This project seeks to improve the basic understanding of the role of colloids in facilitating the transport of contaminants in the vadose zone. We focus on three major thrusts: (1) thermodynamic stability and mobility of colloids formed by reactions of sediments with highly alkaline tank waste solutions, (2) colloid-contaminant interactions, and (3) in-situ colloid mobilization and colloid facilitated contaminant transport occurring in both contaminated and uncontaminated Hanford sediments.

  17. Colloidal Stabilization of Neurofilaments and Microtubules

    National Research Council Canada - National Science Library

    Hoh, Jan

    2000-01-01

    ... in what has been called colloidal stabilization. We suggest that failure of such stabilization may be related to, and even causal, in neuropathologies such as amyotrophic lateral sclerosis (ALS...

  18. Suspensions of colloidal particles and aggregates

    CERN Document Server

    Babick, Frank

    2016-01-01

    This book addresses the properties of particles in colloidal suspensions. It has a focus on particle aggregates and the dependency of their physical behaviour on morphological parameters. For this purpose, relevant theories and methodological tools are reviewed and applied to selected examples. The book is divided into four main chapters. The first of them introduces important measurement techniques for the determination of particle size and interfacial properties in colloidal suspensions. A further chapter is devoted to the physico-chemical properties of colloidal particles—highlighting the interfacial phenomena and the corresponding interactions between particles. The book’s central chapter examines the structure-property relations of colloidal aggregates. This comprises concepts to quantify size and structure of aggregates, models and numerical tools for calculating the (light) scattering and hydrodynamic properties of aggregates, and a discussion on van-der-Waals and double layer interactions between ...

  19. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  20. Solid colloids with surface-mobile linkers.

    Science.gov (United States)

    van der Meulen, Stef A J; Helms, Gesa; Dogterom, Marileen

    2015-06-17

    In this report we review the possibilities of using colloids with surface mobile linkers for the study of colloidal self-assembly processes. A promising route to create systems with mobile linkers is the use of lipid (bi-)layers. These lipid layers can be either used in the form of vesicles or as coatings for hard colloids and emulsion droplets. Inside the lipid bilayers molecules can be inserted via membrane anchors. Due to the fluidity of the lipid bilayer, the anchored molecules remain mobile. The use of different lipid mixtures even allows creating Janus-like particles that exhibit directional bonding if linkers are used which have a preference for a certain lipid phase. In nature mobile linkers can be found e.g. as receptors in cells. Therefore, towards the end of the review, we also briefly address the possibility of using colloids with surface mobile linkers as model systems to mimic cell-cell interactions and cell adhesion processes.

  1. Properties of surface functionalized iron oxide nanoparticles (ferrofluid) conjugated antibody for lateral flow immunoassay application

    Energy Technology Data Exchange (ETDEWEB)

    Nor, Noorhashimah Mohamad [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); Abdul Razak, Khairunisak, E-mail: khairunisak@eng.usm.my [School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang (Malaysia); NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), 11800 USM, Penang (Malaysia); Tan, Soo Choon; Noordin, Rahmah [NanoBiotechnology Research and Innovation (NanoBRI), Institute for Research in Molecular Medicine (INFORMM), 11800 USM, Penang (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer The effects of acid functionalization and biocompatible polymer on iron oxide nanoparticles (IONPs) ferrofluid were studied. Black-Right-Pointing-Pointer The IONPs functionalized using citric acid (IONPs-CA) is the most stable ferrofluid with zeta potential value of -49 mV. Black-Right-Pointing-Pointer IONPs-CA can be directly conjugated with antibody without biocompatible polymer coating. Black-Right-Pointing-Pointer IONPs-CA had optimum detection efficiency of 15 min assay time. Black-Right-Pointing-Pointer IONPs-CA showed the highest colour intensity in labelling lateral flow immunoassay. - Abstract: In this study, colloidal stability of iron oxide nanoparticles (IONPs) with several acid functionalizations and biocompatible polymer coating were compared for use as labelling agent in lateral flow immunoassay (LFIA). IONPs were synthesized using the precipitation method and peptized using perchloric acid (PA), nitric acid (NA) and citric acid (CA) to form a stable IONPs ferrofluid. Steric stabilization of IONPs using silane polyethelene glycol (SiPEG) was developed to improve biocompatibility and provide spaces for subsequent conjugation process. From the transmission electron microscopy (TEM) images, the sizes of IONPs obtained with different acids peptization were in range of 11-17 nm. The IONPs peptized using citric acid showed the most stable ferrofluid condition at physiological condition with zeta potential value of -49 mV. The LFIA was also developed to examine the conjugation properties of IONPs to mouse anti-human IgG{sub 4} antibody (M{alpha}HIgG{sub 4}). IONPs functionalized with citric acid can be directly conjugated with the M{alpha}HIgG{sub 4} without the need of SiPEG addition. This is due to the presence of the carboxylic group that acted as a ligand to the extended bond formation with the antibody. Moreover, the conjugation of IONPs with M{alpha}HIgG{sub 4} was also tested in a LFIA to detect brugian

  2. Multiplex biosensor immunoassays for antibiotics in the food chain

    NARCIS (Netherlands)

    Haasnoot, W.

    2009-01-01

    The use of antibiotics in food-producing animals may result in unwanted residues in food products. The main objective of the present research was to study the development and application of fast and automated multiplex surface plasmon resonance (SPR)-based biosensor immunoassays (BIAs), based on

  3. A Compact Immunoassay Platform Based on a Multicapillary Glass Plate

    Directory of Open Access Journals (Sweden)

    Shuhua Xue

    2014-05-01

    Full Text Available A highly sensitive, rapid immunoassay performed in the multi-channels of a micro-well array consisting of a multicapillary glass plate (MCP and a polydimethylsiloxane (PDMS slide is described. The micro-dimensions and large surface area of the MCP permitted the diffusion distance to be decreased and the reaction efficiency to be increased. To confirm the concept of the method, human immunoglobulin A (h-IgA was measured using both the proposed immunoassay system and the traditional 96-well plate method. The proposed method resulted in a 1/5-fold decrease of immunoassay time, and a 1/56-fold cut in reagent consumption with a 0.05 ng/mL of limit of detection (LOD for IgA. The method was also applied to saliva samples obtained from healthy volunteers. The results correlated well to those obtained by the 96-well plate method. The method has the potential for use in disease diagnostic or on-site immunoassays.

  4. Is the turbidimetric immunoassay of haptoglobin phenotype-dependent?

    NARCIS (Netherlands)

    Rijn, H.J.M. van; Wilt, W. van der; Stroes, J.W.; Schrijver, J.

    Comparison of the turbidimetric immunoassay of haptoglobin with a reference method (the RID technique with appropriate correction for phenotype) clearly showed the turbidimetric assay to be phenotype-dependent. Correction factors for the three main phenotypes were calculated and reference values

  5. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    Cold shock response in various organisms is induced by an abrupt downshift in temperature and leads to a dramatic increase in production of a homologous class of cold shock proteins. These proteins are essential for low temperature survival of bacteria. To identify CSP from diversified microflora, immunoassay was ...

  6. An enzyme immunoassay for detection of Japanese encephalitis ...

    Indian Academy of Sciences (India)

    Japanese encephalitis virus (JEV) induces human peripheral blood monocytes to secrete a chemotactic cytokine [human macrophage-derived factor (hMDF)] which causes chemotaxis of neutrophils. The only known assay for hMDF cannot quantify its level in samples, so an enzyme immunoassay has been standardized for ...

  7. Biosensor immunoassay for flumequine in broiler serum and muscle

    NARCIS (Netherlands)

    Haasnoot, W.; Gercek, H.; Cazemier, G.; Nielen, M.W.F.

    2007-01-01

    Flumequine (Flu) is one of the fluoroquinolones most frequently applied for the treatment of broilers in The Netherlands. For the detection of residues of Flu in blood serum of broilers, a biosensor immunoassay (BIA) was developed which was fast (7.5 min per sample) and specific (no cross-reactivity

  8. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... Full Length Research Paper. Development of immunoassay for the identification of cold shock proteins from diversified microflora. Mahejibin Khan1*, Satish Kumar2 and Reeta Goel1. 1Department of Microbiology, C.B.S&HG.B.P.U.A&T, Pantnagar, Uttranchal, India. 2Central Instrumentation Facility, I.V.R.I, ...

  9. Alternating current electrokinetics enhanced in situ capacitive immunoassay.

    Science.gov (United States)

    Li, Shanshan; Ren, Yukun; Cui, Haochen; Yuan, Quan; Wu, Jie; Eda, Shigetoshi; Jiang, Hongyuan

    2015-02-01

    A rapid in situ capacitive immunoassay is presented herein. Conventional immunoassay typically relies on diffusion for transport of analytes in many cases causing long detection time and lack of sensitivity. By integrating alternating current electrokinetics (ACEK) and impedance sensing, this work provides a rapid in situ capacitive affinity biosensing. ACEK induces both fluid flow and particle motion, conveying target molecules toward electrodes immobilized with probes, resulting in rapid enrichment of target molecules and a capacitance change at the ''electrode-fluid'' interface. The benefit of ACEK enhanced immunoassay was demonstrated using the antigen and antibody from Johne's disease (JD) as an example. To clarify the importance of DEP and ACET effects for binding reaction, two different electrode pattern designs for capacitive immunoassay are studied. The asymmetric array and symmetric electrodes exhibit very similar response at lower electric field due to DEP effects, while asymmetric array has remarkable higher response at high-electric field because the convection becomes more important at high field. The disease positive and negative serum samples are distinguished in few minutes. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Dimethylamylamine: a drug causing positive immunoassay results for amphetamines.

    Science.gov (United States)

    Vorce, Shawn P; Holler, Justin M; Cawrse, Brian M; Magluilo, Joseph

    2011-04-01

    The Department of Defense (DoD) operates six forensic urine drug-testing laboratories that screen close to 5 million urine samples for amphetamines yearly. Recently, the DoD laboratories have observed a significant decrease in the confirmation rates for amphetamines because of specimens screening positive by two separate immunoassays and confirming negative by gas chromatography-mass spectrometry (GC-MS). Previous studies conducted by the Division of Forensic Toxicology, Armed Force Institute of Pathology (AFIP) utilizing a GC-MS basic drug screen and a designer drug screen revealed no common compound or compound classes as to the cause of the immunoassay-positive results. Additional information obtained from an immunoassay vendor suggested the anorectic compound dimethylamylamine (DMAA) may be the cause of the false-positive screens. An additional 134 false-positive samples were received and analyzed using liquid chromatography-tandem mass spectrometry (LC-MS-MS) for DMAA. LC-MS-MS analysis revealed the presence of DMAA in 92.3% of the false-positive samples at a concentration of approximately 6.0 mg/L DMAA, causing a positive screen on both immunoassay kits.

  11. Development of immunoassay for the identification of cold shock ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-02-05

    Feb 5, 2007 ... essential for low temperature survival of bacteria. To identify CSP from diversified microflora, immunoassay was developed. A small 14 kDa protein from cold tolerant mutant, CRPF8 of. Pseudomonas fluorescens was concentrated and fractionated by HPLC and antisera was raised. Specificity of anti-CRPF8 ...

  12. Equilibrium gels of limited valence colloids

    OpenAIRE

    Sciortino, Francesco; Zaccarelli, Emanuela

    2017-01-01

    Gels are low-packing arrested states of matter which are able to support stress. On cooling, limited valence colloidal particles form open networks stabilized by the progressive increase of the interparticle bond lifetime. These gels, named equilibrium gels, are the focus of this review article. Differently from other types of colloidal gels, equilibrium gels do not require an underlying phase separation to form. Oppositely, they form in a region of densities deprived of thermodynamic instabi...

  13. Design and fabrication of colloidal polymer nanocomposites

    OpenAIRE

    Wang, T.; Keddie, JL

    2009-01-01

    It is well established that colloidal polymer particles can be used to create organised structures by methods of horizontal deposition, vertical deposition, spin-casting, and surface pattern-assisted deposition. Each particle acts as a building block in the structure. This paper reviews how two-phase (or hybrid) polymer colloids can offer an attractive method to create nanocomposites. Structure in the composite can be controlled at the nanoscale by using such particles. Methods to create armo...

  14. Coarse-graining polymers as soft colloids

    OpenAIRE

    Louis, A.A.; Bolhuis, P. G.; Finken, R.; Krakoviack, V.; de Meijer, E. J.; Hansen, J. P.

    2001-01-01

    We show how to coarse grain polymers in a good solvent as single particles, interacting with density-independent or density-dependent interactions. These interactions can be between the centres of mass, the mid-points or end-points of the polymers. We also show how to extend these methods to polymers in poor solvents and mixtures of polymers. Treating polymers as soft colloids can greatly speed up the simulation of complex many-polymer systems, including polymer-colloid mixtures.

  15. Tunable Time-Dependent Colloidal Interactions

    Science.gov (United States)

    Bergman, Andrew M.; Rogers, W. Benjamin; Manoharan, Vinothan N.

    Self-assembly of colloidal particles can be driven by changes in temperature, density, or the concentration of solutes, and it is even possible to program the thermal response and equilibrium phase transitions of such systems. It is still difficult, however, to tune how the self-assembly process varies in time. We demonstrate control over the time-dependence of colloidal interactions, using DNA-functionalized colloidal particles with binding energies that are set by the concentration of a free linker strand in solution. We control the rate at which this free strand is consumed using a catalytic DNA reaction, whose rate is governed by the concentration of a catalyst strand. Varying the concentration of the linker, its competitor, and the catalyst at a fixed temperature, we can tune the rate and degree of the formation of colloidal aggregates and their following disassembly. Close to the colloidal melting point, the timescales of these out-of-equilibrium assembly and disassembly processes are determined by the rate of the catalytic reaction. Far below the colloidal melting point, however, the effects from varying our linker and competitor concentrations dominate.

  16. Inventions Utilizing Microfluidics and Colloidal Particles

    Science.gov (United States)

    Marr, David W.; Gong, Tieying; Oakey, John; Terray, Alexander V.; Wu, David T.

    2009-01-01

    Several related inventions pertain to families of devices that utilize microfluidics and/or colloidal particles to obtain useful physical effects. The families of devices can be summarized as follows: (1) Microfluidic pumps and/or valves wherein colloidal-size particles driven by electrical, magnetic, or optical fields serve as the principal moving parts that propel and/or direct the affected flows. (2) Devices that are similar to the aforementioned pumps and/or valves except that they are used to manipulate light instead of fluids. The colloidal particles in these devices are substantially constrained to move in a plane and are driven to spatially order them into arrays that function, variously, as waveguides, filters, or switches for optical signals. (3) Devices wherein the ultra-laminar nature of microfluidic flows is exploited to effect separation, sorting, or filtering of colloidal particles or biological cells in suspension. (4) Devices wherein a combination of confinement and applied electrical and/or optical fields forces the colloidal particles to become arranged into three-dimensional crystal lattices. Control of the colloidal crystalline structures could be exploited to control diffraction of light. (5) Microfluidic devices, incorporating fluid waveguides, wherein switching of flows among different paths would be accompanied by switching of optical signals.

  17. Self-replication with magnetic dipolar colloids

    Science.gov (United States)

    Dempster, Joshua M.; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  18. Colloidal oatmeal: history, chemistry and clinical properties.

    Science.gov (United States)

    Kurtz, Ellen S; Wallo, Warren

    2007-02-01

    Oatmeal has been used for centuries as a soothing agent to relieve itch and irritation associated with various xerotic dermatoses. In 1945, a ready to use colloidal oatmeal, produced by finely grinding the oat and boiling it to extract the colloidal material, became available. Today, colloidal oatmeal is available in various dosage forms from powders for the bath to shampoos, shaving gels, and moisturizing creams. Currently, the use of colloidal oatmeal as a skin protectant is regulated by the U.S. Food and Drug Administration (FDA) according to the Over-The-Counter Final Monograph for Skin Protectant Drug Products issued in June 2003. Its preparation is also standardized by the United States Pharmacopeia. The many clinical properties of colloidal oatmeal derive from its chemical polymorphism. The high concentration in starches and beta-glucan is responsible for the protective and water-holding functions of oat. The presence of different types of phenols confers antioxidant and anti-inflammatory activity. Some of the oat phenols are also strong ultraviolet absorbers. The cleansing activity of oat is mostly due to saponins. Its many functional properties make colloidal oatmeal a cleanser, moisturizer, buffer, as well as a soothing and protective anti-inflammatory agent.

  19. Colloids with high-definition surface structures

    Science.gov (United States)

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  20. Self-replication with magnetic dipolar colloids.

    Science.gov (United States)

    Dempster, Joshua M; Zhang, Rui; Olvera de la Cruz, Monica

    2015-10-01

    Colloidal self-replication represents an exciting research frontier in soft matter physics. Currently, all reported self-replication schemes involve coating colloidal particles with stimuli-responsive molecules to allow switchable interactions. In this paper, we introduce a scheme using ferromagnetic dipolar colloids and preprogrammed external magnetic fields to create an autonomous self-replication system. Interparticle dipole-dipole forces and periodically varying weak-strong magnetic fields cooperate to drive colloid monomers from the solute onto templates, bind them into replicas, and dissolve template complexes. We present three general design principles for autonomous linear replicators, derived from a focused study of a minimalist sphere-dimer magnetic system in which single binding sites allow formation of dimeric templates. We show via statistical models and computer simulations that our system exhibits nonlinear growth of templates and produces nearly exponential growth (low error rate) upon adding an optimized competing electrostatic potential. We devise experimental strategies for constructing the required magnetic colloids based on documented laboratory techniques. We also present qualitative ideas about building more complex self-replicating structures utilizing magnetic colloids.

  1. Light driven assembly of active colloids

    Science.gov (United States)

    Aubret, Antoine; Mena, Youssef; Ramananarivo, Sophie; Sacanna, Stefano; Palacci, Jeremie

    Self-propelled particles (SPP) are a key tool since they are of relative simplicity as compared to biological micro-entities and provide a higher level of control. They can convert an energy source into motion and work, and exhibit surprising non-equilibrium behavior. In our work, we focus on the manipulation of colloids using light. We exploit osmotic and phoretic effects to act on single and ensemble of colloids. The key mechanism relies on the photocatalytic decomposition of hydrogen peroxide using hematite, which triggers the motion of colloids around it when illuminated. We use hematite particles and particles with photocatalytic inclusions (i.e. SPP). We first show that the interactions between hematite and colloidal tracers can be tuned by adjusting the chemical environment. Furthermore, we report a phototaxic behavior (migration in light gradient) of the particles. From this, we explore the effect of spatio-temporal modulation of the light to control the motion of colloids at the single particle level, and to generate self-assembled colloidal structures through time and space. The so-formed structures are maintained by phoretic and hydrodynamic forces resulting from the motion of each particles. Ultimately, a dynamic light modulation may be a route for the creation of act

  2. Workshop report: Immunoassay standardisation for "universal" influenza vaccines.

    Science.gov (United States)

    Pavlova, Sophia; D'Alessio, Flavia; Houard, Sophie; Remarque, Edmond J; Stockhofe, Norbert; Engelhardt, Othmar G

    2017-05-01

    The development of broadly reactive influenza vaccines raises the need to identify the most appropriate immunoassays that can be used for the evaluation of so-called universal influenza vaccines and to explore a path towards the standardisation of such assays. More than fifty experts from the global influenza vaccine research and development field met to initiate such discussion at a workshop co-organised by the EDUFLUVAC consortium, a European Union funded project coordinated by the European Vaccine Initiative, and the National Institutes of Health/National Institute of Allergy and Infectious Diseases, USA. The workshop audience agreed that it was not possible to establish a single immunoassay for "universal" influenza vaccines because the current approaches differ in the vaccines' nature and immunogenicity properties. Therefore, different scientific rationales for the immunoassay selection are required. To avoid dilution of efforts, the choice of the primary evaluation criteria (eg serological assays or T-cell assays) should drive the effort of harmonisation. However, at an early phase of clinical development, more efforts on exploratory assessments should be undertaken to better define the immune profile in response to immunisation with new vaccines. The workshop concluded that each laboratory should aim towards validation of the appropriate immunoassays used during the entire process of vaccine development from antigen discovery up to establishment of correlates of protection, including the different steps of quality control (eg potency assays), animal studies and human clinical development. Standardisation of the immunoassays is the ultimate goal, and there is a long way to go. © 2017 Crown copyright. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.

  3. Fabricating a UV-Vis and Raman Spectroscopy Immunoassay Platform.

    Science.gov (United States)

    Hanson, Cynthia; Israelsen, Nathan D; Sieverts, Michael; Vargis, Elizabeth

    2016-11-10

    Immunoassays are used to detect proteins based on the presence of associated antibodies. Because of their extensive use in research and clinical settings, a large infrastructure of immunoassay instruments and materials can be found. For example, 96- and 384-well polystyrene plates are available commercially and have a standard design to accommodate ultraviolet-visible (UV-Vis) spectroscopy machines from various manufacturers. In addition, a wide variety of immunoglobulins, detection tags, and blocking agents for customized immunoassay designs such as enzyme-linked immunosorbent assays (ELISA) are available. Despite the existing infrastructure, standard ELISA kits do not meet all research needs, requiring individualized immunoassay development, which can be expensive and time-consuming. For example, ELISA kits have low multiplexing (detection of more than one analyte at a time) capabilities as they usually depend on fluorescence or colorimetric methods for detection. Colorimetric and fluorescent-based analyses have limited multiplexing capabilities due to broad spectral peaks. In contrast, Raman spectroscopy-based methods have a much greater capability for multiplexing due to narrow emission peaks. Another advantage of Raman spectroscopy is that Raman reporters experience significantly less photobleaching than fluorescent tags(1). Despite the advantages that Raman reporters have over fluorescent and colorimetric tags, protocols to fabricate Raman-based immunoassays are limited. The purpose of this paper is to provide a protocol to prepare functionalized probes to use in conjunction with polystyrene plates for direct detection of analytes by UV-Vis analysis and Raman spectroscopy. This protocol will allow researchers to take a do-it-yourself approach for future multi-analyte detection while capitalizing on pre-established infrastructure.

  4. Optimization of a lateral flow immunoassay for the ultrasensitive detection of aflatoxin M{sub 1} in milk

    Energy Technology Data Exchange (ETDEWEB)

    Anfossi, Laura, E-mail: laura.anfossi@unito.it [Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin (Italy); Baggiani, Claudio; Giovannoli, Cristina; Biagioli, Flavia; D’Arco, Gilda; Giraudi, Gianfranco [Department of Chemistry, University of Turin, Via Giuria, 5, I-10125 Turin (Italy)

    2013-04-15

    Highlights: ► The development of a high sensitive lateral flow immunoassay is described. ► The developed assay allowed aflatoxin M{sub 1} detection in milk at level required by EU regulations. ► Article describes advances in lateral flow technology towards high sensitivity. ► A simple and rapid sample pre-treatment was proposed to overthrow matrix interference. -- Abstract: A high sensitive immunoassay-based lateral flow device for semi-quantitatively determine aflatoxin M{sub 1} (AFM{sub 1}) in milk was developed. Investigation and optimization of the competitor design and of the gold-labelling strategy allowed the attainment of the ultra-sensitive assessment of AFM{sub 1} contamination at nanograms per litre level (LOD 20 ng L{sup −1}, IC{sub 50} 99 ng L{sup −1}), as requested by European regulations. A one order of magnitude detectability enhancement in comparison to previously reported gold colloid immunochromatographic assays for this toxin was obtained. Direct detection of the target toxin in milk could be obtained by acquiring images of the strips and correlating intensities of the coloured lines with analyte concentrations. The one-step assay can be completed in 17 min, including a very simple and rapid sample preparation, which allowed the application of the assay to milk samples which differ in fat and protein contents. Although imprecise (mean RSD about 30%), the method proved to be accurate and sensitive enough to allow the correct attribution of sample as compliant or non-compliant according to EU legislation in force. Agreeing results to those of a reference ELISA were obtained on 40 milk samples by matrix-matched calibration in pasteurized milk.

  5. Molecular Recognition in the Colloidal World.

    Science.gov (United States)

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-11-21

    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  6. Physicochemical Characterization of Iron Carbohydrate Colloid Drug Products.

    Science.gov (United States)

    Zou, Peng; Tyner, Katherine; Raw, Andre; Lee, Sau

    2017-09-01

    Iron carbohydrate colloid drug products are intravenously administered to patients with chronic kidney disease for the treatment of iron deficiency anemia. Physicochemical characterization of iron colloids is critical to establish pharmaceutical equivalence between an innovator iron colloid product and generic version. The purpose of this review is to summarize literature-reported techniques for physicochemical characterization of iron carbohydrate colloid drug products. The mechanisms, reported testing results, and common technical pitfalls for individual characterization test are discussed. A better understanding of the physicochemical characterization techniques will facilitate generic iron carbohydrate colloid product development, accelerate products to market, and ensure iron carbohydrate colloid product quality.

  7. Colloids in the intensive care unit.

    Science.gov (United States)

    Kruer, Rachel M; Ensor, Christopher R

    2012-10-01

    The most recent published evidence on the use of colloids versus crystalloids in critical care is reviewed, with a focus on population-dependent differences in safety and efficacy. Colloids offer a number of theoretical advantages over crystalloids for fluid resuscitation, but some colloids (e.g., hydroxyethyl starch solutions, dextrans) can have serious adverse effects, and albumin products entail higher costs. The results of the influential Saline Versus Albumin Fluid Evaluation (SAFE) trial and a subsequent SAFE subgroup analysis indicated that colloid therapy should not be used in patients with traumatic brain injury and other forms of trauma due to an increased mortality risk relative to crystalloid therapy. With regard to patients with severe sepsis, two meta-analyses published in 2011, which collectively evaluated 82 trials involving nearly 10,000 patients, indicated comparable outcomes with the use of either crystalloids or albumins. For patients requiring extracorporeal cardiopulmonary bypass (CPB) during heart surgery, the available evidence supports the use of a colloid, particularly albumin, for CPB circuit priming and postoperative volume expansion. In select patients with burn injury, the published evidence supports the use of supplemental colloids if adequate urine output cannot be maintained with a crystalloid-only rescue strategy. The results of the SAFE trial and a subgroup analysis of SAFE data suggest that colloids should be avoided in patients with trauma and traumatic brain injury. There are minimal differences in outcome between crystalloids and hypo-oncotic or iso-oncotic albumin for fluid resuscitation in severe sepsis; in select populations, such as patients undergoing cardiac surgery, the use of iso-oncotic albumin may confer a survival advantage and should be considered a first-line alternative.

  8. Performance improvement of the one-dot lateral flow immunoassay for aflatoxin B1 by using a smartphone-based reading system.

    Science.gov (United States)

    Lee, Sangdae; Kim, Giyoung; Moon, Jihea

    2013-04-18

    This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA) detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1) was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.

  9. Colloidal spirals in nematic liquid crystals.

    Science.gov (United States)

    Senyuk, Bohdan; Pandey, Manoj B; Liu, Qingkun; Tasinkevych, Mykola; Smalyukh, Ivan I

    2015-12-07

    One of the central experimental efforts in nematic colloids research aims to explore how the interplay between the geometry of particles along with the accompanying nematic director deformations and defects around them can provide a means of guiding particle self-assembly and controlling the structure of particle-induced defects. In this work, we design, fabricate, and disperse low-symmetry colloidal particles with shapes of spirals, double spirals, and triple spirals in a nematic fluid. These spiral-shaped particles, which are controlled by varying their surface functionalization to provide tangential or perpendicular boundary conditions of the nematic molecular alignment, are found inducing director distortions and defect configurations with non-chiral or chiral symmetry. Colloidal particles also exhibit both stable and metastable multiple orientational states in the nematic host, with a large number of director configurations featuring both singular and solitonic nonsingular topological defects accompanying them, which can result in unusual forms of colloidal self-assembly. Our findings directly demonstrate how the symmetry of particle-generated director configurations can be further lowered, or not, as compared to the low point group symmetry of solid micro-inclusions, depending on the nature of induced defects while satisfying topological constraints. We show that achiral colloidal particles can cause chiral symmetry breaking of elastic distortions, which is driven by complex three-dimensional winding of induced topological line defects and solitons.

  10. Colloids with continuously tunable surface charge.

    Science.gov (United States)

    van Ravensteijn, Bas G P; Kegel, Willem K

    2014-09-09

    In this paper, we present a robust way to tune the surface potential of polystyrene colloids without changing the pH, ionic strength, etc. The colloids are composed of a cross-linked polystyrene core and a cross-linked vinylbenzyl chloride layer. Besides the chlorine groups, the particle surface contains sulfate/sulfonate groups (arising from the polymerization initiators) that provide a negative surface potential. Performing a Menschutkin reaction on the surface chlorine groups with tertiary amines allows us to introduce quaternary, positively charged amines. The overall charge on the particles is then determined by the ratio between the sulfate/sulfonate moieties and the quaternary amines. Using this process, we were able to invert the charge in a continuous manner without losing colloidal stability upon passing the isoelectric point. The straightforward reaction mechanism together with the fact that the reaction could be quenched rapidly resulted in a colloidal system in which the ζ potential can be tuned between -80 and 45 mV. As proof of principle, the positively charged particles were used in heterocoagulation experiments with nanometer- and micrometer-sized negatively charged silica particles to create geometrically well-defined colloidal (nano) clusters.

  11. Enzyme immunoassay for detection of Salmonella in foods: collaborative study.

    Science.gov (United States)

    Flowers, R S; Eckner, K; Gabis, D A; Robison, B J; Mattingly, J A; Silliker, J H

    1986-01-01

    A collaborative study was performed in 25 laboratories to validate an enzyme immunoassay (EIA) procedure utilizing 2 specific monoclonal antibodies for rapid detection of Salmonella in foods. The EIA was compared with the standard culture procedure for detection of Salmonella in 6 food types: ground black pepper, soy isolate, dried whole eggs, milk chocolate, nonfat dry milk, and raw deboned turkey. Uninoculated and inoculated samples were included in each food group analyzed, with the exception of poultry which was naturally contaminated. There was no significant difference in the productivity of the EIA and culture procedures at the 5% level for any of the 6 foods. The enzyme immunoassay screening method has been adopted official first action.

  12. Bioluminescence immunoassay for angiotensin II using aequorin as a label.

    Science.gov (United States)

    Qu, Xiaoge; Deo, Sapna K; Dikici, Emre; Ensor, Mark; Poon, Michael; Daunert, Sylvia

    2007-12-15

    Angiotensin II is a biologically active component of the renin-angiotensin system. High levels of angiotensin II may be responsible for hypertension and heart failure because they increase systemic vascular resistance, arterial pressure, and sodium and fluid retention. Therefore, it is important to monitor angiotensin II levels for the treatment of hypertension and heart diseases. The goal of this work was to develop a bioluminescence immunoassay using aequorin as a label to measure angiotensin II levels in human plasma. This method utilizes a genetically engineered fusion protein between angiotensin II and aequorin. For that, the C terminus of angiotensin II was fused to the N terminus of apoaequorin using molecular biology techniques. A heterogeneous immunoassay was then developed for the determination of angiotensin II. A detection limit of 1 pg/mL was obtained with the optimized assay, allowing for the determination of angiotensin II at physiological levels in human plasma.

  13. Silver and gold enhancement methods for lateral flow immunoassays.

    Science.gov (United States)

    Rodríguez, Myriam Oliveira; Covián, Lucía Blanco; García, Agustín Costa; Blanco-López, Maria Carmen

    2016-01-01

    Sensitivity is the main concern at the development of rapid test by lateral flow immunoassays. On the other hand, low limits of detection are often required at medical diagnostics and other field of analysis. To overcome this drawback, several enhancement protocols have been described. In this paper, we have selected different silver enhancement methods and one dual gold conjugation, and we critically compared the amplification produced when applied to a gold-nanoparticle based lateral flow immunoassay for the detection of prostate specific antigen (PSA). The highest amplification was obtained by using an immersion method based on a solution of silver nitrate and hydroquinone/citrate buffer in proportion 1:1. Under these conditions, the system is capable of detecting PSA within 20 min at levels as low as 0.1 ng/mL, with a 3-fold sensitivity improvement. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Design and Fabrication of a PDMS Microchip Based Immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Guocheng; Wang, Wanjun; Wang, Jun; Lin, Yuehe

    2010-07-01

    In this paper, we describe the design and fabrication process of a polydimethylsiloxane (PDMS) microchip for on-chip multiplex immunoassay application. The microchip consists of a PDMS microfluidic channel layer and a micro pneumatic valve control layer. By selectively pressurizing the pneumatic microvalves, immuno reagents were controlled to flow and react in certain fluidic channel sites. Cross contamination was prevented by tightly closed valves. Our design was proposed to utilize PDMS micro channel surface as the solid phase immunoassay substrate and simultaneously detect four targets antigens on chip. Experiment result shows that 20psi valve pressure is sufficient to tightly close a 200µm wide micro channel with flow rate up to 20µl/min.

  15. Cavity enhanced immunoassay measurements in microtiter plates using BBCEAS

    OpenAIRE

    Bajuszova, Z; Ali, Z; Scott, SM; Seetohul, LN; Islam, M

    2016-01-01

    We report on the first detailed use of broadband cavity enhanced absorption spectroscopy (BBCEAS) as a detection system for immunoassay. A vertical R ≥ 0.99 optical cavity was integrated with a motorised XY stage, which functioned as a receptacle for 96 well microtiter plates. The custom built cavity enhanced microplate reader was used to make measurements on a commercially available osteocalcin sandwich ELISA kit. A 30 fold increase in path length was obtained with a minimum detectable chang...

  16. A device architecture for three-dimensional, patterned paper immunoassays.

    Science.gov (United States)

    Schonhorn, Jeremy E; Fernandes, Syrena C; Rajaratnam, Anjali; Deraney, Rachel N; Rolland, Jason P; Mace, Charles R

    2014-12-21

    Diagnostic assays can provide valuable information about the health status of a patient, which include detection of biomarkers that indicate the presence of an infection, the progression or regression of a disease, and the efficacy of a course of treatment. Critical healthcare decisions must often be made at the point-of-care, far from the infrastructure and diagnostic capabilities of centralized laboratories. There exists an obvious need for diagnostic tools that are designed to address the unique challenges encountered by healthcare workers in limited-resource settings. Paper, a readily-available and inexpensive commodity, is an attractive medium with which to develop diagnostic assays for use in limited-resource settings. In this article, we describe a device architecture to perform immunoassays in patterned paper. These paper-based devices use a combination of lateral and vertical flow to control the wicking of fluid in three-dimensions. We provide guidelines to aid in the design of these devices and we illustrate how patterning can be used to tune the duration and performance of the assay. We demonstrate the use of these paper-based devices by developing a sandwich immunoassay for human chorionic gonadotropin (hCG) in urine, a biomarker of pregnancy. We then directly compare the qualitative and quantitative results of these paper-based immunoassays to commercially available lateral flow tests (i.e., the home pregnancy test). Our results suggest paper-based devices may find broad utility in the development of immunoassays for use at the point-of-care.

  17. Liquid crystal phase behaviour of colloidal platelets in external fields

    NARCIS (Netherlands)

    Beek, David van der

    2005-01-01

    In this thesis, the liquid crystal phase behaviour of colloidal platelets in external fields is studied. We have specifically investigated the influence of morphological, gravitational, magnetic and centrifugal fields. Part I of this thesis involves sterically stabilised colloidal gibbsite

  18. Inorganic passivation and doping control in colloidal quantum dot photovoltaics

    KAUST Repository

    Hoogland, Sjoerd H.

    2012-01-01

    We discuss strategies to reduce midgap trap state densities in colloidal quantum dot films and requirements to control doping type and magnitude. We demonstrate that these improvements result in colloidal quantum dot solar cells with certified 7.0% efficiency.

  19. A general approach for monodisperse colloidal perovskites, Chemistry of Materials

    NARCIS (Netherlands)

    Demirors, A.F.; Imhof, A.

    2009-01-01

    We describe a novel general method for synthesizing monodisperse colloidal perovskite particles at room temperature by postsynthesis addition of metal hydroxides to amorphous titania colloids. In previous work, we used titania particles to synthesize homogenously mixed silica-titania composite

  20. Anisotropic self-assembly of colloidal particles in polymer-colloid composites: A simulation study

    Science.gov (United States)

    Goswami, Monojoy; Sumpter, Bobby

    2010-03-01

    The self-assembly of colloidal particles has potential applications in optical fibers, sensors and photovoltaic cells. In this work we have carried out stochastic molecular dynamics simulations of colloid-polymer composites in order to investigate the fundamental self-assembly processes of the particles, in an effort to design more optimal materials for the applications stated above. Results were obtained for spherical colloidal particles of different screening lengths dispersed in a polymer matrix at melt density. By tuning the screening length and interaction strengths between the colloid and polymer, self-assembly into structures that generate anisotropy in the composite material is demonstrated. This phenomenon in colloid-polymer mixtures is analogous to the previously observed self-assembly of grafted nanoparticles in polymer nanocomposites. Our results show a potentially easier way of producing anisotropic self-assembly in polymer-nanocomposites based on colloidal particles as fillers. We also discuss the dynamics of the polymer chains and colloidal particles for different screening lengths and polymer-filler interaction strengths.

  1. Heterogeneous immunoassays using magnetic beads on a digital microfluidic platform.

    Science.gov (United States)

    Sista, Ramakrishna S; Eckhardt, Allen E; Srinivasan, Vijay; Pollack, Michael G; Palanki, Srinivas; Pamula, Vamsee K

    2008-12-01

    A digital microfluidic platform for performing heterogeneous sandwich immunoassays based on efficient handling of magnetic beads is presented in this paper. This approach is based on manipulation of discrete droplets of samples and reagents using electrowetting without the need for channels where the droplets are free to move laterally. Droplet-based manipulation of magnetic beads therefore does not suffer from clogging of channels. Immunoassays on a digital microfluidic platform require the following basic operations: bead attraction, bead washing, bead retention, and bead resuspension. Several parameters such as magnetic field strength, pull force, position, and buffer composition were studied for effective bead operations. Dilution-based washing of magnetic beads was demonstrated by immobilizing the magnetic beads using a permanent magnet and splitting the excess supernatant using electrowetting. Almost 100% bead retention was achieved after 7776-fold dilution-based washing of the supernatant. Efficient resuspension of magnetic beads was achieved by transporting a droplet with magnetic beads across five electrodes on the platform and exploiting the flow patterns within the droplet to resuspend the beads. All the magnetic-bead droplet operations were integrated together to generate standard curves for sandwich heterogeneous immunoassays on human insulin and interleukin-6 (IL-6) with a total time to result of 7 min for each assay.

  2. Single Step Nanoplasmonic Immunoassay for the Measurement of Protein Biomarkers

    Directory of Open Access Journals (Sweden)

    Shradha Prabhulkar

    2013-02-01

    Full Text Available A nanoplasmonic biosensor for highly-sensitive, single-step detection of protein biomarkers is presented. The principle is based on the utilization of the optical scattering properties of gold nanorods (GNRs conjugated to bio-recognition molecules. The nanoplasmonic properties of the GNRs were utilized to detect proteins using near-infrared light interferometry. We show that the antibody-conjugated GNRs can specifically bind to our model analyte, Glucose Transporter-1 (Glut-1. The signal intensity of back-scattered light from the GNRs bound after incubation, correlated well to the Glut-1 concentration as per the calibration curve. The detection range using this nanoplasmonic immunoassay ranges from 10 ng/mL to 1 ug/mL for Glut-1. The minimal detectable concentration based on the lowest discernable concentration from zero is 10 ng/mL. This nanoplasmonic immunoassay can act as a simple, selective, sensitive strategy for effective disease diagnosis. It offers advantages such as wide detection range, increased speed of analysis (due to fewer incubation/washing steps, and no label development as compared to traditional immunoassay techniques. Our future goal is to incorporate this detection strategy onto a microfluidic platform to be used as a point-of-care diagnostic tool.

  3. Detection of chemicals by a reporter immunoassay: application to fluoride.

    Science.gov (United States)

    Sagot, Marie-Astrid; Heutte, Florence; Renard, Pierre-Yves; Dollé, Frédéric; Pradelles, Philippe; Ezan, Eric

    2004-08-01

    This report describes a concept in which an immunoassay is used indirectly to quantify a nonantigenic very low molecular weight compound participating in a chemical reaction with a haptenic reporter. The detection limit of each reagent is, therefore, governed only by the affinity of the antibodies toward the reporter. Fluoride was used as a model, and silylated estradiol was used as a reporter. Upon silylation with N-O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) or N-O-bis(dimethylterbutylsilyl) trifluoroacetamide (MTBSTFA), estradiol is no longer recognized by antibodies specific to estradiol. After reaction with hydrofluoric acid (HF) or fluoride salts (KF, CsF, NaF), its immunoreactivity is restored, and native estradiol is formed and is detected by immunoassay. The level of synthesized estradiol is dependent on the concentration of fluoride. A fluoride detection limit of 0.3 microg/L (15 nM) is obtained. Potential interference with other acids has been eliminated by choosing the silyl group (trimethylsilyl vs tert-butyldimethylsilyl) and by selecting optimal reaction conditions for the desilylation. The method has been applied to the detection of fluoride salts in natural waters (range 0.28-9.0 mg/L) and in an atmosphere artificially contaminated with HF between 8 and 160 microg/m(3) in the parts-per-billion range. This indirect immunoassay combines simplicity and high sensitivity and, therefore, can be used in field monitoring. Finally, the extension of the concept to other chemicals is discussed.

  4. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.J. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Zeh, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Probst, T. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Lin, X. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Schauer, C. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ivanovich, M. [AEA Environment and Energy, Harwell (United Kingdom); Longworth, G. [AEA Environment and Energy, Harwell (United Kingdom); Hasler, S.E. [AEA Environment and Energy, Harwell (United Kingdom); Gardiner, M. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Fritz, P. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Klotz, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Lazik, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Wolf, M. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Geyer, S. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ({sup 2}H, {sup 3}H, {sup 13}C, {sup 14}C, {sup 18}O, {sup 34}S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  5. Crack opening: from colloidal systems to paintings.

    Science.gov (United States)

    Léang, Marguerite; Giorgiutti-Dauphiné, Frédérique; Lee, Lay-Theng; Pauchard, Ludovic

    2017-08-30

    Shrinkage cracks are observed in many materials, particularly in paintings where great interest lies in deducing quantitative information on the material with the aim of proposing authentication methods. We present experimental measurements on the crack opening induced by the drying of colloidal layers and compare these results to the case of a pictorial layer. We propose a simple model to predict the crack width as a function of the thickness of the drying layer, based on the balance between the drying stress buildup and the shear frictional stress with the substrate. Key parameters of the model include the mechanical properties that are measured experimentally using micro-indentation testing. A good agreement between theory and experimental data for both colloidal layers and the real painting is found. These results, by comparing the shrinkage cracks in model layers and in pictorial layers, validate the method based on the use of colloidal systems to simulate and to reproduce drying cracks in paintings.

  6. Dynamics of colloidal particles with capillary interactions.

    Science.gov (United States)

    Domínguez, Alvaro; Oettel, Martin; Dietrich, S

    2010-07-01

    We investigate the dynamics of colloids at a fluid interface driven by attractive capillary interactions. At submillimeter length scales, the capillary attraction is formally analogous to two-dimensional gravity. In particular it is a nonintegrable interaction and it can be actually relevant for collective phenomena in spite of its weakness at the level of the pair potential. We introduce a mean-field model for the dynamical evolution of the particle number density at the interface. For generic values of the physical parameters the homogeneous distribution is found to be unstable against large-scale clustering driven by the capillary attraction. We also show that for the instability to be observable, the appropriate values for the relevant parameters (colloid radius, surface charge, external electric field, etc.) are experimentally well accessible. Our analysis contributes to current studies of the structure and dynamics of systems governed by long-ranged interactions and points toward their experimental realizations via colloidal suspensions.

  7. Targeted delivery of colloids by swimming bacteria

    Science.gov (United States)

    Koumakis, N.; Lepore, A.; Maggi, C.; Di Leonardo, R.

    2013-01-01

    The possibility of exploiting motile microorganisms as tiny propellers represents a fascinating strategy for the transport of colloidal cargoes. However, delivery on target sites usually requires external control fields to steer propellers and trigger cargo release. The need for a constant feedback mechanism prevents the design of compact devices where biopropellers could perform their tasks autonomously. Here we show that properly designed three-dimensional (3D) microstructures can define accumulation areas where bacteria spontaneously and efficiently store colloidal beads. The process is stochastic in nature and results from the rectifying action of an asymmetric energy landscape over the fluctuating forces arising from collisions with swimming bacteria. As a result, the concentration of colloids over target areas can be strongly increased or depleted according to the topography of the underlying structures. Besides the significance to technological applications, our experiments pose some important questions regarding the structure of stationary probability distributions in non-equilibrium systems. PMID:24100868

  8. Manipulating semiconductor colloidal stability through doping.

    Science.gov (United States)

    Fleharty, Mark E; van Swol, Frank; Petsev, Dimiter N

    2014-10-10

    The interface between a doped semiconductor material and electrolyte solution is of considerable fundamental interest, and is relevant to systems of practical importance. Both adjacent domains contain mobile charges, which respond to potential variations. This is exploited to design electronic and optoelectronic sensors, and other enabling semiconductor colloidal materials. We show that the charge mobility in both phases leads to a new type of interaction between semiconductor colloids suspended in aqueous electrolyte solutions. This interaction is due to the electrostatic response of the semiconductor interior to disturbances in the external field upon the approach of two particles. The electrostatic repulsion between two charged colloids is reduced from the one governed by the charged groups present at the particles surfaces. This type of interaction is unique to semiconductor particles and may have a substantial effect on the suspension dynamics and stability.

  9. Shape-shifting colloids via stimulated dewetting

    Science.gov (United States)

    Youssef, Mena; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2016-07-01

    The ability to reconfigure elementary building blocks from one structure to another is key to many biological systems. Bringing the intrinsic adaptability of biological systems to traditional synthetic materials is currently one of the biggest scientific challenges in material engineering. Here we introduce a new design concept for the experimental realization of self-assembling systems with built-in shape-shifting elements. We demonstrate that dewetting forces between an oil phase and solid colloidal substrates can be exploited to engineer shape-shifting particles whose geometry can be changed on demand by a chemical or optical signal. We find this approach to be quite general and applicable to a broad spectrum of materials, including polymers, semiconductors and magnetic materials. This synthetic methodology can be further adopted as a new experimental platform for designing and rapidly prototyping functional colloids, such as reconfigurable micro swimmers, colloidal surfactants and switchable building blocks for self-assembly.

  10. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  11. Phosphate binding by natural iron-rich colloids in streams.

    Science.gov (United States)

    Baken, Stijn; Moens, Claudia; van der Grift, Bas; Smolders, Erik

    2016-07-01

    Phosphorus (P) in natural waters may be bound to iron (Fe) bearing colloids. However, the natural variation in composition and P binding strength of these colloids remain unclear. We related the composition of "coarse colloids" (colloids in the 0.1-1.2 μm size range) in 47 Belgian streams to the chemical properties of the streamwater. On average, 29% of the P in filtered (colloids. The concentration of Fe-rich colloids in streams decreases with increasing water hardness and pH. The P bearing colloids in these streams mostly consist of Fe hydroxyphosphates and of Fe oxyhydroxides with surface adsorbed P, which is underpinned by geochemical speciation calculations. In waters with molar P:Fe ratios above 0.5, only a minor part of the P is bound to coarse colloids. In such waters, the colloids have molar P:Fe ratios between 0.2 and 1 and are, therefore, nearly saturated with P. Conversely, in streams with molar P:Fe ratios below 0.1, most of the P is bound to Fe-rich colloids. Equilibration of synthetic and natural Fe and P bearing colloids with a zero sink reveals that colloids with low molar P:Fe ratios contain mostly nonlabile P, whereas P-saturated colloids contain mostly labile P which can be released within 7 days. Equilibration at a fixed free orthophosphate activity shows that the Fe-rich colloids may bind only limited P through surface adsorption, in the range of 0.02-0.04 mol P (mol Fe)(-1). The P:Fe ratios measured in naturally occurring Fe and P bearing colloids is clearly higher (between 0.05 and 1). These colloids are therefore likely formed by coprecipitation of P during oxidation of Fe(II), which leads to the formation of Fe hydroxyphosphate minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Interplay between Colloids and Interfaces : Emulsions, Foams and Microtubes

    NARCIS (Netherlands)

    de Folter, J.W.J.

    2013-01-01

    The central theme of this thesis is the interplay between colloids and interfaces. The adsorption of colloids at fluid-fluid interfaces is the main topic and covers Chapters 2-6. Pickering emulsions where colloidal particles act as emulsion stabilizers in the absence of surfactants are studied in a

  13. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  14. Fabrication of anisotropic multifunctional colloidal carriers

    Science.gov (United States)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  15. Self-assembly of colloidal surfactants

    Science.gov (United States)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  16. Separation of plutonium oxide nanoparticles and colloids

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Richard E.; Skanthakumar, S.; Soderholm, L. [Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL (United States)

    2011-11-18

    Oil and vinegar: Colloidal plutonium is an important component of Pu aqueous speciation. Pu colloids are problematic in nuclear separations and are a potential transport vector in the environment. Using a mixture of n-octanol and trichloroacetic acid a selective and reversible separation of these particles can be achieved by exploiting their surface reactivity (Li{sub 2}[Pu{sub 38}O{sub 56}Cl{sub 42}(H{sub 2}O){sub 20}].15H{sub 2}O). (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Neutron diffraction from superparamagnetic colloidal crystals

    Science.gov (United States)

    Ličen, M.; Drevenšek-Olenik, I.; Čoga, L.; Gyergyek, S.; Kralj, S.; Fally, M.; Pruner, C.; Geltenbort, P.; Gasser, U.; Nagy, G.; Klepp, J.

    2017-11-01

    We fabricated a superparamagnetic ordered structure via self-assembly of a colloidal crystal from a suspension of maghemite nanoparticles and polystyrene beads. Such crystals are potential candidates for novel polarizing beam-splitters for cold neutrons, complementing the available methods of neutron polarization. Different bead sizes and nanoparticle concentrations were tested to obtain a crystal of reasonable quality. Neutron diffraction experiments in the presence of an external magnetic field were performed on the most promising sample. We demonstrate that the diffraction efficiency of such crystals can be controlled by the magnetic field. Our measurements also indicate that the Bragg diffraction regime can be reached with colloidal crystals.

  18. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  19. Colloids in the River Inn

    Science.gov (United States)

    Ueckert, Martina; Niessner, Reinhard; Baumann, Thomas

    2015-04-01

    In the light of an increasing number of technical applications using nanoparticles and reports of adverse effects of engineered nanoparticles, research on the occurrence and stability of particles in all compartments has to be intensified. Colloids in river water represent the geologic setting, environmental conditions, and the anthropogenic use in its catchment. The river not only acts as a sink for nanoparticles but also as the source term due to exchange in the hyporheic zone and in bank filtration setups. The concentration, size distribution and elemental composition of particles in the River Inn were studied from the source in the Swiss Alps to the river mouth at Passau from 2008 to 2014. Samples were collected after each tributary from a sub-catchment and filtered on site using a new filtration device for gentle filtration. The elemental composition was determined after acid digestion with ICP/MS. SEM/EDX analysis provided morphological and elemental information for single particles. A complementary chemical analysis of the river water was performed to assess the geochemical stability of individual particles. As presented at EGU 2014, particles in the upper, rural parts mainly reveal changes in the geological setting of the tributary catchments. Not unexpectedly, particles originating from crystalline rocks, were more stable than particles originating from calcareous rocks. Anthropogenic and industrial influences increase in the lower parts. This went together with a change of the size distribution, an increase of the number of organic particles, and a decrease of the microfauna. Interestingly, specific leisure activities in a sub-catchment, like extensive downhill skiing, manifest itself in the particle composition. This general setting was validated in last year's sampling campaigns. An interesting change in on site parameters and hydrochemical composition was seen during all sampling campaigns at an inflow from the valley Kaunertal, Austria. Therefore

  20. Measuring colloidal osmotic compressibility of a polymer-crowded colloidal suspension by optical trapping

    Science.gov (United States)

    Fu, Jinxin; Kara, Vural; Ou-Yang, H. Daniel

    2013-03-01

    Particle interactions determine the stability of nanoparticle suspensions and the phase separation of particle-polymer mixtures. However, due to the small sizes of the dispersed nanoparticles, it is not easy to directly measure interaction forces between particles in a colloidal suspension. In this paper, we propose an ``Optical Bottle'' approach to quantify these particle interactions in a suspension by measuring the colloidal osmotic compressibility of the nanoparticles. Virial expansion of the colloidal osmotic compressibility yields virial coefficients of different orders. The second order virial coefficient of aqueous suspensions of colloidal polystyrene nanospheres in the presence of high-salt (KCl) and polyethylene glycol (PEG) is found to decrease with increasing PEG concentration, suggesting an attractive depletion interaction between the PEG-crowed polystyrene particles.

  1. Influence of biofilms on colloid transport: investigations with laponite as a model colloid

    Energy Technology Data Exchange (ETDEWEB)

    Leon-Morales, C.F.; Flemming, H.C.; Leis, A. [Duisburg Univ. (Germany). Inst. for Interface Biotechnology

    2003-07-01

    The synthetic clay mineral laponite RD was used as a model compound to investigate colloid transport in the presence of bacterial biofilms. A complex but pronounced delay in the transport of laponite was observed in colonised porous media, clearly demonstrating the influence of attached bacterial biomass on colloid transport. The transport of laponite under conditions which promoted laponite aggregation was associated with release of attached bacteria; this effect was shown to be independent of ionic strength, indicating that the colloids caused detachment of bacteria. Two major mechanisms are proposed to account for the different colloid transport patterns obtained in the presence or absence of biomass: (1) hydrodynamic effects due to aggregation of laponite and subsequent blockage of a proportion of the flow channels, and (2) sorption of laponite by bacterial biomass. (orig.)

  2. A rapid lateral flow immunoassay for the detection of tyrosine phosphatase-like protein IA-2 autoantibodies in human serum.

    Directory of Open Access Journals (Sweden)

    Ingrid Kikkas

    Full Text Available Type 1 diabetes (T1D results from the destruction of pancreatic insulin-producing beta cells and is strongly associated with the presence of islet autoantibodies. Autoantibodies to tyrosine phosphatase-like protein IA-2 (IA-2As are considered to be highly predictive markers of T1D. We developed a novel lateral flow immunoassay (LFIA based on a bridging format for the rapid detection of IA-2As in human serum samples. In this assay, one site of the IA-2As is bound to HA-tagged-IA-2, which is subsequently captured on the anti-HA-Tag antibody-coated test line on the strip. The other site of the IA-2As is bound to biotinylated IA-2, allowing the complex to be visualized using colloidal gold nanoparticle-conjugated streptavidin. For this study, 35 serum samples from T1D patients and 44 control sera from non-diabetic individuals were analyzed with our novel assay and the results were correlated with two IA-2A ELISAs. Among the 35 serum samples from T1D patients, the IA-2A LFIA, the in-house IA-2A ELISA and the commercial IA-2A ELISA identified as positive 21, 29 and 30 IA-2A-positive sera, respectively. The major advantages of the IA-2A LFIA are its rapidity and simplicity.

  3. Preliminary evaluation of a lateral flow immunoassay device for screening urine samples for the presence of sulphamethazine.

    Science.gov (United States)

    O'Keeffe, M; Crabbe, P; Salden, M; Wichers, J; Van Peteghem, C; Kohen, F; Pieraccini, G; Moneti, G

    2003-07-01

    A lateral flow immunoassay (LFIA) device was developed and applied to testing urine samples for residues of the antimicrobial sulphamethazine (SMZ). This report describes the preparation of a rat monoclonal antibody to SMZ and its characterisation in an ELISA format. Apart from SMZ, the antibody showed high (> or =50%) cross-reactivity to N4-acetyl-sulphamethazine (55%), sulphamerazine (59%) and sulphisoxazole (50%) and lower cross-reactivity of 18% to sulphachlorpyridazine and sulphadiazine. The LFIA device consisted of a nitrocellulose membrane spotted with SMZ-ovalbumin and goat anti-mouse antibody as capture line and control line, respectively. Mouse anti-rat IgG F(ab')2 fragment specific antibody, adsorbed to colloidal carbon, was used as the detection ligand in the LFIA. The LFIA device had a cut-off value of 6.3 ng/ml in diluted (1/10) urine. Urine samples from SMZ-treated pigs, and bovine and porcine urine samples fortified with SMZ were used for a blind, four-laboratory evaluation of the performance of the LFIA device. Concentrations of SMZ in the test samples (n=29), as determined by LC-MS/MS, ranged from 0 (LFIA device showed an overall sensitivity of 100%, a specificity of 71%, and positive and negative prediction values of 73% and 100%, respectively. The LFIA device has been fabricated as a test kit for determining SMZ residues in animals produced for slaughter.

  4. A rapid lateral flow immunoassay for the detection of tyrosine phosphatase-like protein IA-2 autoantibodies in human serum.

    Science.gov (United States)

    Kikkas, Ingrid; Mallone, Roberto; Larger, Etienne; Volland, Hervé; Morel, Nathalie

    2014-01-01

    Type 1 diabetes (T1D) results from the destruction of pancreatic insulin-producing beta cells and is strongly associated with the presence of islet autoantibodies. Autoantibodies to tyrosine phosphatase-like protein IA-2 (IA-2As) are considered to be highly predictive markers of T1D. We developed a novel lateral flow immunoassay (LFIA) based on a bridging format for the rapid detection of IA-2As in human serum samples. In this assay, one site of the IA-2As is bound to HA-tagged-IA-2, which is subsequently captured on the anti-HA-Tag antibody-coated test line on the strip. The other site of the IA-2As is bound to biotinylated IA-2, allowing the complex to be visualized using colloidal gold nanoparticle-conjugated streptavidin. For this study, 35 serum samples from T1D patients and 44 control sera from non-diabetic individuals were analyzed with our novel assay and the results were correlated with two IA-2A ELISAs. Among the 35 serum samples from T1D patients, the IA-2A LFIA, the in-house IA-2A ELISA and the commercial IA-2A ELISA identified as positive 21, 29 and 30 IA-2A-positive sera, respectively. The major advantages of the IA-2A LFIA are its rapidity and simplicity.

  5. Quantitative uptake of colloidal particles by cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: wolfgang.parak@physik.uni-marburg.de [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  6. Purification of rhamnolipid using colloidal magnetic nanoparticles ...

    African Journals Online (AJOL)

    Phospholipid-coated colloidal magnetic nanoparticles with mean magnetite core size of 9 nm are shown to be effective ion exchange media for the recovery and purification of Rhaminolipid from culture mixtures. These particles have high adsorption capacity for purification (an order of magnitude larger than the best ...

  7. Random packing of colloids and granular matter

    NARCIS (Netherlands)

    Wouterse, A.

    2008-01-01

    This thesis deals with the random packing of colloids and granular matter. A random packing is a stable disordered collection of touching particles, without long-range positional and orientational order. Experimental random packings of particles with the same shape but made of different materials

  8. Designing Zirconium Coated Polystyrene Colloids and Application

    Directory of Open Access Journals (Sweden)

    Diana Chira

    2009-01-01

    Full Text Available A simple technique has been developed to prepare core colloids that are modified using zirconium oxychloride, based on heating a solution of core colloid composites, consisting of poly (ethylenimine (PEI and zirconium oxychloride. The interaction of zirconium oxychloride with the polystyrene (PS core colloids has been investigated using Fourier transform-infrared spectroscopy (FT-IR, energy dispersive X-ray spectroscopy (EDX, and scanning electron microscopy (SEM data. FT-IR studies confirm the occurrence of amine groups present in PEI which are oxidized to carboxyl groups after the reaction. The EDX data and the SEM images confirm the presence of zirconium particles immobilized on the polystyrene surfaces. Demeton, a highly toxic nerve agent, was used due to its ability to easily bind through its organophosphate group illustrating a practical application of the PS-PEI-Zr particles. Attenuated Total Reflection (ATR Spectroscopy was used to assess the interactions between the toxic nerve agent demeton-S and the PS-PEI-Zr particles. The results show that the presented technique for coating polystyrene core colloids with zirconium was successfully accomplished, and the newly formed particles easily bond with demeton agents through the P=O functional group.

  9. Advanced Colloids Experiment (ACE-T1)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Brown, Dan; Eustace, John

    2015-01-01

    Increment 45 - 46 Science Symposium presentation of Advanced Colloids Experiment (ACE-T1) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  10. Advanced Colloids Experiment (ACE-H-2)

    Science.gov (United States)

    Meyer, William V.; Sicker, Ron; Chmiel, Alan J.; Eustace, John; LaBarbera, Melissa

    2015-01-01

    Increment 43 - 44 Science Symposium presentation of Advanced Colloids Experiment (ACE-H-2) to RPO. The purpose of this event is for Principal Investigators to present their science objectives, testing approach, and measurement methods to agency scientists, managers, and other investigators.

  11. Colloidal photonic crystals: from lasing to microfluidics

    Science.gov (United States)

    Clays, Koen; Zhong, Kuo; Song, Kai

    2017-08-01

    Colloidal photonic crystals are photonic crystals made by bottom-up physical chemistry strategies from monodisperse colloidal particles. The self-assembly process is automatically leading to inherently three-dimensional structures with their optical properties determined by the periodicity, induced by this ordering process, in the dielectric properties of the colloidal material. The best-known optical effect is the photonic band gap, the range of energies, or wavelengths, that is forbidden for photons to exist in the structure. This photonic band gap is similar to the electronic band gap of electronic semiconductor crystals. We have previously shown how with the proper photonic band gap engineering, we can insert allowed pass band defect modes and use the suppressing band gap in combination with the transmitting pass band to induce spectral narrowing of emission. We show now how with a high-quality narrow pass band in a broad stop band, it is possible to achieve photonic crystal lasing in self-assembled colloidal photonic crystals with a planar defect. In addition, with proper surface treatment in combination with patterning, we prepare for addressable integrated photonics. Finally, by incorporating a water in- and outlet, we can create optomicrofluidic structures on a photonic crystal allowing the optical probing of microreactors or micro-stopped-flow in the lab-on-an-optical-chip.

  12. Electroneutrality and phase behavior of colloidal suspensions.

    Science.gov (United States)

    Denton, A R

    2007-11-01

    Several statistical mechanical theories predict that colloidal suspensions of highly charged macroions and monovalent microions can exhibit unusual thermodynamic phase behavior when strongly deionized. Density-functional, extended Debye-Hückel, and response theories, within mean-field and linearization approximations, predict a spinodal phase instability of charged colloids below a critical salt concentration. Poisson-Boltzmann cell model studies of suspensions in Donnan equilibrium with a salt reservoir demonstrate that effective interactions and osmotic pressures predicted by such theories can be sensitive to the choice of reference system, e.g., whether the microion density profiles are expanded about the average potential of the suspension or about the reservoir potential. By unifying Poisson-Boltzmann and response theories within a common perturbative framework, it is shown here that the choice of reference system is dictated by the constraint of global electroneutrality. On this basis, bulk suspensions are best modeled by density-dependent effective interactions derived from a closed reference system in which the counterions are confined to the same volume as the macroions. Lower-dimensional systems (e.g., monolayers, clusters), depending on the strength of macroion-counterion correlations, may be governed instead by density-independent effective interactions tied to an open reference system with counterions dispersed throughout the reservoir, possibly explaining the observed structural crossover in colloidal monolayers and anomalous metastability of colloidal crystallites.

  13. Cubic colloids : Synthesis, functionalization and applications

    NARCIS (Netherlands)

    Castillo, S.I.R.

    2015-01-01

    This thesis is a study on cubic colloids: micron-sized cubic particles with rounded corners (cubic superballs). Owing to their shape, particle packing for cubes is more efficient than for spheres and results in fascinating phase and packing behavior. For our cubes, the particle volume fraction when

  14. Morphology of colloidal metal pyrophosphate salts

    NARCIS (Netherlands)

    van Leeuwen, Y.M.; Velikov, K.; Kegel, W.K.

    2012-01-01

    We report the preparation and characterization of colloidal particles of several pyrophosphate metal salts, including, for the first time, salts containing multiple metals. These materials are compared in order to determine the influence of the composition and experimental conditions on particle

  15. Non-Fickian diffusion in colloidal glasses

    NARCIS (Netherlands)

    Hagen, M.H.J.; Frenkel, D.; Lowe, C.P.

    1998-01-01

    We have studied numerically the decay of the self-dynamic structure factor (SDSF) for a small particle diffusing in a colloidal glass. We show that, in line with theoretical predictions, the super-Burnett coefficient (characterizing the deviation of the fourth moment of the single particle

  16. Repeptization and the theory of electrocratic colloids

    NARCIS (Netherlands)

    Frens, G.; Overbeek, J.Th.G.

    The coagulation and the repeptization of electrocratic colloids can be treated in one theory provided that the appropriate boundary conditions are chosen. From this version of the DLVO theory it follows that for each sol there exists a critical value Z∞c of the double layer parameter Z∞, Z∞ =

  17. Hydrodynamic flow induced anisotropy in colloid adsorption

    NARCIS (Netherlands)

    Loenhout, Marijn T.J.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2009-01-01

    The possibility to induce structure in layers of colloid particles by using the hydrodynamic blocking effect is investigated both experimentally and by using Monte Carlo simulations. Latex particles with diameters of 1.1 m and 0.46 m are deposited on 3-amino-propyltriethoxysilane (APTES)

  18. Patchy particles made by colloidal fusion

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-01

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or `patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  19. The colloidal chemistry of ceramic clays

    Science.gov (United States)

    Phelps, G. W.

    1984-01-01

    The colloidal chemistry and mineralogy of two argil minerals were studied. Deposits of kaolin and of ceramic clays in the United States and England are discussed for the probable mechanism of formation. The structural modifications of the bed, original material associated with the clays and the proper use of flocculants are discussed.

  20. Natural and Synthetic Colloids in Veterinary Medicine.

    Science.gov (United States)

    Brooks, Aimee; Thomovsky, Elizabeth; Johnson, Paula

    2016-06-01

    This review article covers basic physiology underlying the clinical use of natural and artificial colloids as well as provide practice recommendations. It also touches on the recent scrutiny of these products in human medicine and how this may have an effect on their use in veterinary medicine. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Binary Colloidal Superlattices Assembled by Magnetic Fields

    Science.gov (United States)

    Yellen, Benjamin

    2013-03-01

    Colloidal particle superlattices represent a fascinating class of complex materials which in many cases have corollary structures at the atomic scale. These complex systems thus not only help elucidate the principles of materials assembly in nature, but further provide design criteria for fabrication of novel materials at the macroscopic scale. Methods for assembling colloidal particle superlattices include controlled drying, ionic interactions, and dipolar interactions. However, a general pathway for producing a wider variety of colloidal crystals remains a fundamental challenge. Here we demonstrate a versatile colloidal assembly system in which the design rules can be tuned to yield over 20 different pre-programmed lattice structures, including kagome, honeycomb, square tiles, as well as a variety of chain and ring configurations. We tune the crystal type by controlling the relative concentrations and interaction strengths between spherical superparamagnetic and diamagnetic particles. An external magnetic field causes like particles to repel and unlike particles to attract. The combination of our experimental observations with potential energy calculations of various lattice structures suggest that the lowest energy lattice configuration is determined by two parameters, namely the dipole moment and relative concentration of each particle type. Triangle MRSEC DMR-1121107, NSFC 51150110161

  2. Design and fabrication of colloidal polymer nanocomposites.

    Science.gov (United States)

    Wang, Tao; Keddie, Joseph L

    2009-01-01

    It is well established that colloidal polymer particles can be used to create organised structures by methods of horizontal deposition, vertical deposition, spin-casting, and surface pattern-assisted deposition. Each particle acts as a building block in the structure. This paper reviews how two-phase (or hybrid) polymer colloids can offer an attractive method to create nanocomposites. Structure in the composite can be controlled at the nanoscale by using such particles. Methods to create armored particles, such as via methods of hetero-flocculation and Pickering polymerization, are of particular interest here. Polymer colloids can also be blended with other types of nanoparticles, e.g. nanotubes and clay platelets, to create nanocomposites. Structure can be controlled over length scales approaching the macroscopic through the assembly of hybrid particles or particle blends via any of the various deposition methods. Colloidal nanocomposites can offer unprecedented long-range 2D or 3D order that provides a periodic modulation of physical properties. They can also be employed as porous templates for further nanomaterial fabrication. Challenges in the design and control of the macroscopic properties, especially mechanical, are considered. The importance of the internal interfacial structure (e.g. between inorganic and polymer particles) is highlighted.

  3. Dipolar structures in colloidal magnetite dispersions

    NARCIS (Netherlands)

    Klokkenburg, Mark

    2007-01-01

    Dipolar structures in liquid colloidal dispersions comprising well-defined magnetite (Fe3O4) nanoparticles with a permanent magnetic dipole moment are analyzed on a single-particle level by in situ cryogenic transmission electron microscopy (2D). Compared to conventional ferrofluids, these

  4. Colloidal models. A bit of history

    NARCIS (Netherlands)

    Lyklema, J.

    2015-01-01

    This paper offers an anthology on developments in colloid and interface science emphasizing themes that may be of direct or indirect interest to Interfaces Against Pollution. Topics include the determination of Avogadro’s number, development in the insight into driving forces for double layer

  5. Patchy particles made by colloidal fusion.

    Science.gov (United States)

    Gong, Zhe; Hueckel, Theodore; Yi, Gi-Ra; Sacanna, Stefano

    2017-10-12

    Patches on the surfaces of colloidal particles provide directional information that enables the self-assembly of the particles into higher-order structures. Although computational tools can make quantitative predictions and can generate design rules that link the patch motif of a particle to its internal microstructure and to the emergent properties of the self-assembled materials, the experimental realization of model systems of particles with surface patches (or 'patchy' particles) remains a challenge. Synthetic patchy colloidal particles are often poor geometric approximations of the digital building blocks used in simulations and can only rarely be manufactured in sufficiently high yields to be routinely used as experimental model systems. Here we introduce a method, which we refer to as colloidal fusion, for fabricating functional patchy particles in a tunable and scalable manner. Using coordination dynamics and wetting forces, we engineer hybrid liquid-solid clusters that evolve into particles with a range of patchy surface morphologies on addition of a plasticizer. We are able to predict and control the evolutionary pathway by considering surface-energy minimization, leading to two main branches of product: first, spherical particles with liquid surface patches, capable of forming curable bonds with neighbouring particles to assemble robust supracolloidal structures; and second, particles with a faceted liquid compartment, which can be cured and purified to yield colloidal polyhedra. These findings outline a scalable strategy for the synthesis of patchy particles, first by designing their surface patterns by computer simulation, and then by recreating them in the laboratory with high fidelity.

  6. Colloid suspension stability and transport through unsaturated porous media

    Energy Technology Data Exchange (ETDEWEB)

    McGraw, M.A.; Kaplan, D.I.

    1997-04-01

    Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.

  7. Colloid-Mediated Transport of PPCPs through Porous Media

    Science.gov (United States)

    Chen, Xijuan; Xing, Yingna; Chen, Xin; Zhuang, Jie

    2017-04-01

    Pharmaceutical and personal care products (PPCPs) enter the soil through reclaimed water irrigation and biosolid land application. Colloids, such as clays that are present in soil, may interact with PPCPs to affect their fate and transport in the subsurface environment. This study addresses how soil colloids mediate the sorption and transport behaviors of PPCPs through laboratory column experiments. The affinities of PPCPs for colloids as well as the influence factors were investigated. For PPCPs that have high sorption (e.g., ciprofloxacin with Kd ˜104-5 L/kg) on soil colloids, the transport is dominantly controlled by colloids, with a higher extent of colloid-facilitated effect at lower ionic strength. For PPCPs that have intermediate sorption (e.g., tetracycline with Kd ˜103-4 L/kg) on soil colloids, the mobility of dissolved and colloid-bound PPCPs respond oppositely to the effect of changes in solution ionic strength, making the net effect of soil colloids on PPCP transport variable with soil solution chemistry. For PPCPs with low sorption (e.g., ibuprofen with Kd ˜102-3 L/kg) on soil colloids, other measures (such as pre-filtration) must be taken. This study suggested that colloids are significant carriers of PPCPs in the subsurface environment and could affect their off-site environmental risks.

  8. Colloid Bound Transport of Contaminats In The Unsaturated Zone

    Science.gov (United States)

    Hofmann, T.; Christ, A.

    Colloids can play a major role in the relocation of contaminants in the unsaturated zone. The amount of colloid driven transport is defined by soil chemistry, soil water chemistry and water flow velocity as well as colloid composition and formation. In a current research project we investigate the filtration and mobilization of colloids in unsaturated column studies. We use different soil types, chosen by a wide range of mean grain size and heterogeneity. Particle tracers are polystyrene solids with a de- fined negative surface charge and defined size from 50 nm to 10 µm. In addition, we use natural colloids extracted from a wide range of contaminated and uncontaminated land. Experimental conditions are exactly controlled throughout all the time. We alter mainly flow velocity ionic strength in order to study the filtration behaviour of the soils. In addition, Pyrene and Lead are are used as model contaminants. First results show the colloids are not retarded in many coarse structured soil types. Preferential colloid flow shows a major impact in breakthrough behaviour. Colloid bound lead is relocated significant through the unsaturated zone, whereas non colloid bound lead species are strongly retarded. In the presentation we will show results of contami- nant processes and present new results on the filtration behaviour of colloids in the unsaturated zone depending on flow velocity, soil type and colloid size.

  9. Preferences for colloid use in Scandinavian intensive care units

    DEFF Research Database (Denmark)

    Perner, A.; Aneman, A.; Guttormsen, A.B.

    2008-01-01

    BACKGROUND: Fluid resuscitation is a frequent intervention in intensive care. Colloids are widely used, but recent data suggest harm by some of these solutions. This calls for more clinical studies on this matter, but the current preferences for colloid use in Scandinavian intensive care units...... (ICUs) are unknown. METHODS: In March-May 2007, 120 Scandinavian ICUs were invited to answer a web-based survey consisting of 18 questions on types of colloids, indications, contraindications and rationale of use. RESULTS: Seventy-three ICUs, of which 31 were university hospital units, answered...... the questionnaire. Most ICUs used both synthetic and natural colloids, and hydroxyethyl starch (HES) 130/0.4 was the preferred colloid in 59 units. Eleven ICUs had protocols for colloid use. The most frequent indication was second-line fluid for hypovolaemia, but one in three ICUs used colloids as first-line fluid...

  10. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  11. Quantitative uptake of colloidal particles by cell cultures.

    Science.gov (United States)

    Feliu, Neus; Hühn, Jonas; Zyuzin, Mikhail V; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif; Said, Alaa Hassan; Escudero, Alberto; Pelaz, Beatriz; Gonzalez, Elena; Duarte, Miguel A Correa; Roy, Sathi; Chakraborty, Indranath; Lim, Mei L; Sjöqvist, Sebastian; Jungebluth, Philipp; Parak, Wolfgang J

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  12. Microfluidic heavy metal immunoassay based on absorbance measurement.

    Science.gov (United States)

    Date, Yasumoto; Terakado, Shingo; Sasaki, Kazuhiro; Aota, Arata; Matsumoto, Norio; Shiku, Hitoshi; Ino, Kosuke; Watanabe, Yoshitomo; Matsue, Tomokazu; Ohmura, Naoya

    2012-03-15

    A simple and rapid flow-based multioperation immunoassay for heavy metals using a microfluidic device was developed. The antigen-immobilized microparticles in a sub-channel were introduced as the solid phase into a main channel structures through a channel flow mechanism and packed into a detection area enclosed by dam-like structures in the microfluidic device. A mixture of a heavy metal and a gold nanoparticle-labeled antibody was made to flow toward the corresponding metal through the main channel and make brief contact with the solid phase. A small portion of the free antibody was captured and accumulated on the packed solid phase. The measured absorbance of the gold label was proportional to the free antibody portion and, thus, to the metal concentration. Each of the monoclonal antibodies specific for cadmium-EDTA, chromium-EDTA, or lead-DTPA was applied to the single-channel microfluidic device. Under optimized conditions of flow rate, volume, and antibody concentration, the theoretical (antibody K(d)-limited) detection levels of the three heavy metal species were achieved within only 7 min. The dynamic range for cadmium, chromium, and lead was 0.57-60.06 ppb, 0.03-0.97 ppb, and 0.04-5.28 ppb, respectively. An integrated microchannel device for simultaneous multiflow was also successfully developed and evaluated. The multiplex cadmium immunoassay of four samples was completed within 8 min for a dynamic range of 0.42-37.48 ppb. Present microfluidic heavy metal immunoassays satisfied the Japanese environmental standard for cadmium, chromium and, lead, which provided in the soil contamination countermeasures act. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Chimeric recombinant antibody fragments in cardiac troponin I immunoassay.

    Science.gov (United States)

    Hyytiä, Heidi; Heikkilä, Taina; Brockmann, Eeva-Christine; Kekki, Henna; Hedberg, Pirjo; Puolakanaho, Tarja; Lövgren, Timo; Pettersson, Kim

    2015-03-01

    To introduce a novel nanoparticle-based immunoassay for cardiac troponin I (cTnI) utilizing chimeric antibody fragments and to demonstrate that removal of antibody Fc-part and antibody chimerization decrease matrix related interferences. A sandwich-type immunoassay for cTnI based on recombinant chimeric (mouse variable/human constant) antigen binding (cFab) antibodies and intrinsically fluorescent nanoparticles was developed. To test whether using chimeric antibody fragments helps to avoid matrix related interferences, samples (n=39) with known amounts of triglycerides, bilirubin, rheumatoid factor (RF) or human anti-mouse antibodies (HAMAs) were measured with the novel assay, along with a previously published nanoparticle-based research assay with the same antibody epitopes. The limit of detection (LoD) was 3.30ng/L. Within-laboratory precision for 29ng/L and 2819ng/L cTnI were 13.7% and 15.9%, respectively. Regression analysis with Siemens ADVIA Centaur® yielded a slope (95% confidence intervals) of 0.18 (0.17-1.19) and a y-intercept of 1.94 (-1.28-3.91) ng/L. When compared to a previously published nanoparticle-based assay, the novel assay showed substantially reduced interference in the tested interference prone samples, 15.4 vs. 51.3%. A rheumatoid factor containing sample was decreased from 241ng/L to immunoassay for the detection of cTnI and decreased matrix related interferences, thus resulting in a lower number of falsely elevated cTnI-values. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  14. iQuant™ Analyser: A rapid quantitative immunoassay reader.

    Science.gov (United States)

    Joseph, Jayaraj; Vasan, Jayaraman Kiruthi; Shah, Malay; Sivaprakasam, Mohansankar; Mahajan, Lalit

    2017-07-01

    Lateral flow immunoassays (LFIA) used in rapid quantitative point of care testing require an accurate, reliable and easy to operate instrument to read the LFIA kit and calculate the quantitative result value. We present iQuant® Analyser, an immunoassay reader designed for reading the Quanti® range of LFIA test kits for key markers such as HbA1C, Vitamin D, TSH etc. The instrument utilizes a laser based confocal optics system to capture the test and control lines from the LFIA kit, digitizes the fluorescent signal with high spatiotemporal resolution, computes necessary peak area ratios, applies calibration curves and declares the final result in an automated manner with minimal operator input. The instrument uses kit specific calibration information embedded on each LFIA test kit, to compute the final clinical parameter without using any external calibration chip. An intuitive icon based interface enables easy operation with minimal key presses, suited for point of care applications. The technology is designed in a modular manner to enable the instrument to perform tests on various parameters such as HbA1C, TSH, and Vitamin D etc without any hardware changes, using test-specific LFIA kits. The functional performance of the iQuant Analyser was verified over the range of expected area ratio values with standard reference cartridges that provided stable fluorescent lines. Repeatability of the instrument was found to be excellent with coefficient of variation (CoV) of area ratios found to be less than 1%. The inter-instrument reproducibility was also found to be good with CoV less than 4 %. Tests using blood samples with Quanti LFIA kits verified the accuracy of HbA1C results to be acceptable as per international standards with errors <; 4 %. The iQuant Analyser is a portable, easy to use rapid quantitative immunoassay reader best suited for point of care applications.

  15. Immunoassay cross-reactivity of phenylephrine and methamphetamine.

    Science.gov (United States)

    Curtin, Lindsay B; Cawley, Michael J

    2012-05-01

    Phenylephrine, an α(1) -adrenergic agonist, and methamphetamine, a prescription drug and substance of abuse, have similar chemical structures and thus have the potential to cross-react in qualitative screening tools such as a urine drug screening (UDS) performed by immunoassay. This cross-reactivity may yield a false-positive result that may affect the provision of care in certain patient populations and clinical situations. We describe a 36-year-old woman with confirmed brain death after a short hospital stay who had an initial UDS that was negative for methamphetamine. The patient was assessed for potential organ donation, which included obtaining a follow-up UDS. A urine sample was obtained after being hospitalized for 36 hours, which tested positive for methamphetamine, with no suspected ingestion of the target substance. Confirmatory laboratory testing indicated that intravenous phenylephrine and its metabolites were the likely cause of the false-positive UDS. However, the patient was not deemed to be a suitable candidate for organ donation, but clear documentation of the reason for denial of organ donation was not available in the patient's medical record. To our knowledge, this is the first case published in the English-language literature that describes the clinical occurrence of apparent immunoassay cross-reactivity of methamphetamine and phenylephrine that resulted in a false-positive UDS for methamphetamine. In addition, this report describes the potential implications of this situation on clinical care, including organ donation acceptance. Toxicology screening in the emergency department and intensive care unit is a tool to assist in the diagnosis of medical conditions, but it may not always be reliable. Therefore, positive immunoassay results that may change the management of a patient's condition should be quickly verified with confirmatory testing to minimize unfavorable consequences. © 2012 Pharmacotherapy Publications, Inc.

  16. Pholcodine interference in the immunoassay for opiates in urine.

    Science.gov (United States)

    Svenneby, G; Wedege, E; Karlsen, R L

    1983-01-01

    The excretion in urine after single oral therapeutic doses of morphine derivatives was analysed with radioimmunoassay (RIA) and homogeneous enzyme immunoassay (EMIT) for opiates. In contrast to the rapid excretion of ethylmorphine and codeine, pholcodine showed positive results for opiates 2-6 weeks after intake when the urines were analysed with the RIA-method. When analysed with the EMIT-method, positive results were obtained for pholcodine for approximately 10 days. As pholcodine is a common component in cough mixtures, its prolonged excretion could represent a hazard in interpreting the results from drug analyses of urines.

  17. A method for studies on interactions between a gold-based drug and plasma proteins based on capillary electrophoresis with inductively coupled plasma mass spectrometry detection

    DEFF Research Database (Denmark)

    Nguyen, Tam T T N; Østergaard, Jesper; Gammelgaard, Bente

    2015-01-01

    An analytical method based on capillary electrophoresis (CE) and inductively coupled plasma mass spectrometry (ICP-MS) detection was developed for studies on the interaction of gold-containing drugs and plasma proteins using auranofin as example. A detection limit of 18 ng/mL of auranofin...... corresponding to 5.2 ng/mL Au and a precision of 1.5 % were obtained. Kinetic studies of the interaction between auranofin and protein were performed by incubation in aqueous solutions as well as 20 % human plasma at 37 °C. The reaction of auranofin with human serum albumin (HSA) and plasma proceeded fast; 50...... was the major auranofin-interacting protein in plasma. The CE-ICP-MS method is proposed as a novel approach for kinetic studies of the interactions between gold-based drugs and plasma proteins. Graphical Abstract Development of a CE-ICP-MS based method allows for studies on interaction of the gold containing...

  18. Screening of cannabinoids, benzoylecgonine and opiates in whole blood and urine using emit II plus immunoassay and konelab 30

    DEFF Research Database (Denmark)

    Simonsen, Kirsten Wiese; Christiansen, Nobuko; Müller, Irene Breum

    2004-01-01

    Screening,cannabinoids,benzoylecgonine,opiates in whole blood and urine, emit II, immunoassay,konelab 30......Screening,cannabinoids,benzoylecgonine,opiates in whole blood and urine, emit II, immunoassay,konelab 30...

  19. Advanced Colloids Experiment (ACE) Science Overview

    Science.gov (United States)

    Meyer, William V.; Sicker, Ronald J.; Chiaramonte, Francis P.; Luna, Unique J.; Chaiken, Paul M.; Hollingsworth, Andrew; Secanna, Stefano; Weitz, David; Lu, Peter; Yodh, Arjun; hide

    2013-01-01

    The Advanced Colloids Experiment is being conducted on the International Space Station (ISS) using the Light Microscopy Module (LMM) in the Fluids Integrated Rack (FIR). Work to date will be discussed and future plans and opportunities will be highlighted. The LMM is a microscope facility designed to allow scientists to process, manipulate, and characterize colloidal samples in micro-gravity where the absence of gravitational settling and particle jamming enables scientists to study such things as:a.The role that disordered and ordered-packing of spheres play in the phase diagram and equation of state of hard sphere systems,b.crystal nucleation and growth, growth instabilities, and the glass transition, c.gelation and phase separation of colloid polymer mixtures,d.crystallization of colloidal binary alloys,e.competition between crystallization and phase separation,f.effects of anisotropy and specific interactions on packing, aggregation, frustration and crystallization,g.effects of specific reversible and irreversible interactions mediated in the first case by hybridization of complementary DNA strands attached to separate colloidal particles,h.Lock and key interactions between colloids with dimples and spheres which match the size and shape of the dimples,i.finding the phase diagrams of isotropic and interacting particles,j.new techniques for complex self-assembly including scenarios for self-replication, k.critical Casimir forces,l.biology (real and model systems) in microgravity,m.etc. By adding additional microscopy capabilities to the existing LMM, NASA will increase the tools available for scientists that fly experiments on the ISS enabling scientists to observe directly what is happening at the particle level. Presently, theories are needed to bridge the gap between what is being observed (at a macroscopic level when photographing samples) with what is happening at a particle (or microscopic) level. What is happening at a microscopic level will be directly

  20. Specific immunoassays for detection of intact and cleaved forms of the urokinase receptor

    DEFF Research Database (Denmark)

    Piironen, Timo; Laursen, Birgitte; Pass, Jesper

    2004-01-01

    . Established immunoassays measure a combination of uPAR forms. Our aim was to design immunoassays for specific quantification of the individual forms of uPAR. METHODS: Using appropriate combinations of epitope-mapped monoclonal antibodies (Mabs) for capture and europium-labeled detection Mabs, we designed two...

  1. Colloid mobilization and seasonal variability in a semiarid headwater stream

    Science.gov (United States)

    Mills, Taylor J.; Suzanne P. Ancerson,; Bern, Carleton; Aguirre, Arnulfo; Derry, Louis A.

    2017-01-01

    Colloids can be important vectors for the transport of contaminants in the environment, but little is known about colloid mobilization at the watershed scale. We present colloid concentration, composition, and flux data over a large range of hydrologic conditions from a small watershed (Gordon Gulch) in the foothills of the Colorado Front Range. Colloids, consisting predominantly of Si, Fe, and Al, were present in most stream samples but were not detected in groundwater samples. Mineralogical and morphological analysis indicated that the colloids were composed of kaolinite and illite clays with lesser amounts of amorphous Fe-hydroxides. Although colloid composition remained relatively constant over the sampled flow conditions, colloid concentrations varied considerably and increased as ionic strength of stream water decreased. The highest concentrations occurred during precipitation events after extended dry periods. These observations are consistent with laboratory studies that have shown colloids can be mobilized by decreases in pore-water ionic strength, which likely occurs during precipitation events. Colloidal particles constituted 30 to 35% of the Si mass flux and 93 to 97% of the Fe and Al mass fluxes in the Colloids are therefore a significant and often overlooked component of mass fluxes whose temporal variations may yield insight into hydrologic flowpaths in this semiarid catchment.

  2. Mobile linkers on DNA-coated colloids: valency without patches.

    Science.gov (United States)

    Angioletti-Uberti, Stefano; Varilly, Patrick; Mognetti, Bortolo M; Frenkel, Daan

    2014-09-19

    Colloids coated with single-stranded DNA (ssDNA) can bind selectively to other colloids coated with complementary ssDNA. The fact that DNA-coated colloids (DNACCs) can bind to specific partners opens the prospect of making colloidal "molecules." However, in order to design DNACC-based molecules, we must be able to control the valency of the colloids, i.e., the number of partners to which a given DNACC can bind. One obvious, but not very simple approach is to decorate the colloidal surface with patches of single-stranded DNA that selectively bind those on other colloids. Here we propose a design principle that exploits many-body effects to control the valency of otherwise isotropic colloids. Using a combination of theory and simulation, we show that we can tune the valency of colloids coated with mobile ssDNA, simply by tuning the nonspecific repulsion between the particles. Our simulations show that the resulting effective interactions lead to low-valency colloids self-assembling in peculiar open structures, very different from those observed in DNACCs with immobile DNA linkers.

  3. Comparative study of colloidal gold and quantum dots as labels for multiplex screening tests for multi-mycotoxin detection

    Energy Technology Data Exchange (ETDEWEB)

    Foubert, Astrid, E-mail: astrid.foubert@hotmail.com; Beloglazova, Natalia V.; De Saeger, Sarah

    2017-02-22

    Quantum dots (QDs) and colloidal gold nanoparticles (CG) were evaluated as labels for multiplex lateral flow immunoassay (LFIA) for determination of mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T2/HT2-toxin (T2/HT2) in cereal matrices. Both developed assays were based on the same immunoreagents (except for the labels), therefore their analytical characteristics could be objectively compared. For both LFIAs antigens (DON-ovalbumin (OVA), ZEN-OVA and T2-OVA) and rabbit anti-mouse immunoglobulin were immobilized on a nitrocellulose membrane as three test lines and one control line, respectively. Depending on the LFIA, monoclonal antibodies (mAb) against DON, ZEN and T2 were conjugated with CdSeS/ZnS QDs or CG. T2 and HT2 were detected by one test line (T2-OVA) with an anti-T2 mAb which showed 110% cross-reactivity with HT2. Both tests were developed in accordance with the legal limits and were developed in such a way that they had the same cut-off limits of 1000 μg kg{sup −1}, 80 μg kg{sup −1} and 80 μg kg{sup −1} for DON, ZEN and T2/HT2, respectively in order to allow a correct comparison. Applicability of these assays was demonstrated by analysis of naturally contaminated wheat samples. The results demonstrate that both the LFIAs can be used as rapid, cost-effective and convenient qualitative tool for on-site screening for simultaneous detection of DON, ZEN and HT2/T2 in wheat without special instrumentation. However, the QD-based LFIA consumed less immunoreagents and was more sensitive and economically beneficial. In addition, the results were easier to interpret, resulting in a lower false negative rate (<5%) which was in good agreement with Commission Decision 2002/657/EC regarding the performance of analytical methods intended for screening purposes. - Highlights: • Development of colloidal gold- and quantum dot-based multiplex lateral flow immunoassay. • Lateral flow immunoassays allow simultaneous detection of four mycotoxins.

  4. Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media.

    Science.gov (United States)

    Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang

    2015-01-01

    While bismerthiazol [N,N'-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Multiplex detection of plant pathogens using a microsphere immunoassay technology.

    Directory of Open Access Journals (Sweden)

    Ratthaphol Charlermroj

    Full Text Available Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac, chilli vein-banding mottle virus (CVbMV, potyvirus, watermelon silver mottle virus (WSMoV, tospovirus serogroup IV and melon yellow spot virus (MYSV, tospovirus. An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour was much shorter than that of ELISA (4 hours. This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.

  6. Aequorin fusion proteins as bioluminescent tracers for competitive immunoassays

    Science.gov (United States)

    Mirasoli, Mara; Michelini, Elisa; Deo, Sapna K.; Dikici, Emre; Roda, Aldo; Daunert, Sylvia

    2004-06-01

    The use of bio- and chemiluminescence for the development of quantitative binding assays offers undoubted advantages over other detection systems, such as spectrophotometry, fluorescence, or radioactivity. Indeed, bio- and chemiluminescence detection provides similar, or even better, sensitivity and detectability than radioisotopes, while avoiding the problems of health hazards, waste disposal, and instability associated with the use of radioisotopes. Among bioluminescent labels, the calcium-activated photoprotein aequorin, originally isolated from Aequorea victoria and today available as a recombinant product, is characterized by very high detectability, down to attomole levels. It has been used as a bioluminescent label for developing a variety of highly sensitive immunoassays, using various analyte-aequorin conjugation strategies. When the analyte is a protein or a peptide, genetic engineering techniques can be used to produce protein fusions where the analyte is in-frame fused with aequorin, thus producing homogeneous one-to-one conjugation products, available in virtually unlimited amount. Various assays were developed using this strategy: a short review of the most interesting applications is presented, as well as the cloning, purification and initial characterization of an endothelin-1-aequorin conjugate suitable for developing a competitive immunoassay for endothelin-1, a potent vasoconstrictor peptide, involved in hypertension.

  7. Finger-Actuated, Self-Contained Immunoassay Cassettes

    Science.gov (United States)

    Qiu, Xianbo; Thompson, Jason A.; Chen, Zongyuan; Liu, Changchun; Chen, Dafeng; Ramprasad, Sudhir; Mauk, Michael G.; Ongagna, Serge; Barber, Cheryl; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L.A.M.; Bau, Haim H.

    2010-01-01

    The building blocks for an inexpensive, disposable, luminescence-based microfluidic immunoassay cassette are described, and their integration in a point-of-care diagnostic system is demonstrated. Fluid motion in the cassette is driven by depressing finger-actuated pouches. All reagents needed for the immunoassay can be stored in the cassette in liquid form. Prior to use, the cassette consists of two separate parts. A top storage component contains pouches, sealed storage chambers, a metering chamber, and needle seats. The bottom processing component contains connection needles, a mixing chamber, and a detection chamber with immobilized proteins. Subsequent to sample introduction, the storage and processing components are mated. The needles form hydraulic connections between the two parts and, in some cases, close valves. The pouches are then actuated sequentially to induce flow of various reagents and facilitate process operations. The cassette is compatible with different detection modalities. Both a cassette with immunochromatographic-based detection and a cassette with microbead-based detection were constructed and evaluated. The immunochromatographic cassette was used to detect antibodies to HIV in saliva samples. The bead-based cassette was used to detect the proinflammatory chemokine IL-8. The experimental data demonstrates good repeatability and reasonable sensitivity. PMID:19597994

  8. Enhanced Fluorescent Immunoassays on Silver Fractal-like Structures

    Science.gov (United States)

    Shtoyko, Tanya; Matveeva, Evgenia G.; Chang, I-Fen; Gryczynski, Zygmunt; Goldys, Ewa; Gryczynski, Ignacy

    2009-01-01

    Using the effect of the fluorescence enhancement in close proximity to metal nanostructures, we have been able to demonstrate ultrasensitive immunoassays suitable for the detection of biomarkers. Silver fractal-like structures have been grown by electrochemical reduction of silver on the surface of glass slides. A model immunoassay was performed on the slide surface with rabbit IgG (antigen) non-covalently immobilized on the slide, and Rhodamine Red-X labeled anti-rabbit IgG conjugate subsequently bound to the immobilized antigen. The fluorescence signal was measured from the glass-fractals surface using a confocal microscope, and the images were compared to the images from the same surface not coated with fractals. Our results showed significant enhancement (more than 100-fold) of the signal detected on fractals compared to bare glass. We thus demonstrate that such fractal-like structures can assist in improving the signals from assays used in medical diagnostics, especially those for analytes with molecular weight under 100 kD. PMID:18288816

  9. Application of photonic crystal enhanced fluorescence to a cytokine immunoassay.

    Science.gov (United States)

    Mathias, Patrick C; Ganesh, Nikhil; Cunningham, Brian T

    2008-12-01

    Photonic crystal surfaces are demonstrated as a means for enhancing the detection sensitivity and resolution for assays that use a fluorescent tag to quantify the concentration of an analyte protein molecule in a liquid test sample. Computer modeling of the spatial distribution of resonantly coupled electromagnetic fields on the photonic crystal surface are used to estimate the magnitude of enhancement factor compared to performing the same fluorescent assay on a plain glass surface, and the photonic crystal structure is fabricated and tested to experimentally verify the performance using a sandwich immunoassay for the protein tumor necrosis factor-alpha (TNFalpha). The demonstrated photonic crystal fabrication method utilizes a nanoreplica molding technique that allows for large-area inexpensive fabrication of the structure in a format that is compatible with confocal microarray laser scanners. The signal-to-noise ratio for fluorescent spots on the photonic crystal is increased by at least 5-fold relative to the glass slide, allowing a TNF-alpha concentration of 1.6 pg/mL to be distinguished from noise on a photonic crystal surface. In addition, the minimum quantitative limit of detection on the photonic crystal surface is one-third the limit on the glass slide--a decrease from 18 to 6 pg/mL. The increased performance of the immunoassay allows for more accurate quantitation of physiologically relevant concentrations of TNF-alpha in a protein microarray format that can be expanded to multiple cytokines.

  10. Novel strategies to enhance lateral flow immunoassay sensitivity for detecting foodborne pathogens.

    Science.gov (United States)

    Shan, Shan; Lai, Weihua; Xiong, Yonghua; Wei, Hua; Xu, Hengyi

    2015-01-28

    Food contaminated by foodborne pathogens causes diseases, affects individuals, and even kills those affected individuals. As such, rapid and sensitive detection methods should be developed to screen pathogens in food. One current detection method is lateral flow immunoassay, an efficient technique because of several advantages, including rapidity, simplicity, stability, portability, and sensitivity. This review presents the format and principle of lateral flow immunoassay strip and the development of conventional lateral flow immunoassay for detecting foodborne pathogens. Furthermore, novel strategies that can be applied to enhance the sensitivity of lateral flow immunoassay to detect foodborne pathogens are presented; these strategies include innovating new label application, designing new formats of lateral flow immunoassay, combining with other methods, and developing signal amplification systems. With these advancements, detection sensitivity and detection time can be greatly improved.

  11. Development of a novel ultrasensitive enzyme immunoassay for human glutamic acid decarboxylase 65 antibody.

    Science.gov (United States)

    Numata, Satoshi; Katakami, Hideki; Inoue, Shinobu; Sawada, Hirotake; Hashida, Seiichi

    2016-07-01

    We developed a novel, ultrasensitive enzyme immunoassay (immune complex transfer enzyme immunoassay) for determination of glutamic acid decarboxylase autoantibody concentrations in serum samples from patients with type 2 diabetes. We developed an immune complex transfer enzyme immunoassay for glutamic acid decarboxylase autoantibody and measured glutamic acid decarboxylase autoantibody from 22 patients with type 1 diabetes, 29 patients with type 2 diabetes, and 32 healthy controls. A conventional ELISA kit identified 10 patients with type 1 diabetes and one patient with type 2 diabetes as glutamic acid decarboxylase autoantibody positive, whereas 15 patients with type 1 diabetes and six patients with type 2 diabetes were identified as glutamic acid decarboxylase autoantibody positive using immune complex transfer enzyme immunoassay. Immune complex transfer enzyme immunoassay is a highly sensitive and specific assay for glutamic acid decarboxylase autoantibody and might be clinically useful for diabetic onset prediction and early diagnosis. © The Author(s) 2016.

  12. Colloidal Dancers: Designing networks of DNA-functionalized colloids for non-random walks

    Science.gov (United States)

    Gehrels, Emily W.; Rogers, W. Benjamin; Zeravcic, Zorana; Manoharan, Vinothan N.

    2014-03-01

    We present experimental developments of a system of DNA-functionalized colloidal particles with the goal of creating directed motion (`dancing') along patterned substrates in response to temperature cycling. We take advantage of toehold exchange in the design of the DNA sequences that mediate the colloidal interactions to produce broadened, flat, or even re-entrant binding and unbinding transitions between the particles and substrate. Using this new freedom of design, we devise systems where, by thermal ratcheting, we can externally control the direction of motion and sequence of steps of the colloidal dancer. In comparison to DNA-based walkers, which move autonomously and whose motion is controlled by the substrate, our colloidal dancers respond to external driving, and their motion can be controlled in situ. Our use of DNA-functionalized colloidal particles instead of pure DNA systems also enables walking on the mesoscale in contrast to the molecular length scales previously demonstrated, allowing for the future prospect of directed transport over larger distances.

  13. Enhancement of the detection limit for lateral flow immunoassays: evaluation and comparison of bioconjugates.

    Science.gov (United States)

    Linares, Elisângela M; Kubota, Lauro T; Michaelis, Jens; Thalhammer, Stefan

    2012-01-31

    There is an increasing demand for convenient and accurate point-of-care tools that can detect and diagnose different stages of a disease in remote or impoverished settings. In recent years, lateral flow immunoassays (LFIA) have been indicated as a suitable medical diagnostic tool for these environments because they require little or no sample preparation, provide rapid and reliable results with no electronic components and thus can be manufactured at low costs and operated by unskilled personnel. However, even though they have been successfully applied to acute and chronic disease detection, LFIA based on gold nanoparticles, the standard marker, show serious limitations when high sensitivity is needed, such as early stage disease detection. Moreover, based on the lack of comparative information for label performance, significant optimization of the systems that are currently in use might be possible. To this end, in the presented work, we compare the detection limit between the four most used labels: colloidal-gold, silver enhanced gold, blue latex bead and carbon black nanoparticles. Preliminary results were obtained by using the biotin-streptavidin coupling as a model system and showed that carbon black had a remarkably low detection limit of 0.01 μg/mL in comparison to 0.1 μg/mL, 1 μg/mL and 1mg/mL for silver-coated gold nanoparticles, gold nanoparticles and polystyrene beads, respectively. Therefore, as a proof of concept, carbon black was used in a detection system for Dengue fever. This was achieved by immobilizing monoclonal antibodies for the nonstructural glycoprotein (NS1) of the Dengue virus to carbon black. We found that the colorimetric detection limit of 57 ng/mL for carbon black was ten times lower than the 575 ng/mL observed for standard gold nanoparticles; which makes it sensitive enough to diagnose a patient on the first days of infection. We therefore conclude that, careful screening of detection labels should be performed as a necessary step

  14. Forging Colloidal Nanostructures via Cation Exchange Reactions

    Science.gov (United States)

    2016-01-01

    Among the various postsynthesis treatments of colloidal nanocrystals that have been developed to date, transformations by cation exchange have recently emerged as an extremely versatile tool that has given access to a wide variety of materials and nanostructures. One notable example in this direction is represented by partial cation exchange, by which preformed nanocrystals can be either transformed to alloy nanocrystals or to various types of nanoheterostructures possessing core/shell, segmented, or striped architectures. In this review, we provide an up to date overview of the complex colloidal nanostructures that could be prepared so far by cation exchange. At the same time, the review gives an account of the fundamental thermodynamic and kinetic parameters governing these types of reactions, as they are currently understood, and outlines the main open issues and possible future developments in the field. PMID:26891471

  15. Polydopamine Based Colloidal Materials: Synthesis and Applications.

    Science.gov (United States)

    Deng, Ziwei; Shang, Bin; Peng, Bo

    2017-11-10

    Polydopamine is a synthetic analogue of natural melanin (eumelanin) produced from oxidative polymerization of dopamine. Owing to its strong adhesion ability, versatile chemical reactivity, biocompatibility and biodegradation, polydopamine is commonly applied as a versatile linker to synthesize colloidal materials with diverse structures, unique physicochemical properties and tunable functions, which allow for a broad scope of applications including biomedicine, sensing, catalysis, environment and energy. In this personal account, we discuss first about the different synthetic approaches of polydopamine, as well as its polymerization mechanism, and then with a comprehensive overview of recent progress in the synthesis and applications of polydopamine-based colloidal materials. Finally, we summarize this personal account with future perspectives. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Interaction between colloidal particles. Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)

    2010-02-15

    This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports

  17. Crust formation in drying colloidal suspensions

    KAUST Repository

    Style, R. W.

    2010-06-30

    During the drying of colloidal suspensions, the desiccation process causes the suspension near the air interface to consolidate into a connected porous matrix or crust. Fluid transport in the porous medium is governed by Darcy\\'s law and the equations of poroelasticity, while the equations of colloid physics govern processes in the suspension. We derive new equations describing this process, including unique boundary conditions coupling the two regions, yielding a moving-boundary model of the concentration and stress profiles during drying. A solution is found for the steady-state growth of a nedimensional crust during constant evaporation rate from the surface. The solution is used to demonstrate the importance of the system boundary conditions on stress profiles and diffusivity in a drying crust. © 2011 The Royal Society.

  18. Laser diffraction analysis of colloidal crystals

    Energy Technology Data Exchange (ETDEWEB)

    Sogami, Ikuo S.; Shinohara, Tadatomi; Yoshiyama, Tsuyoshi [Kyoto Sangyo Univ., Department of Physics, Kyoto (Japan)

    2001-10-01

    Laser diffraction analysis is made on crystallization in salt-free aqueous suspensions of highly-charged colloidal particles for semi-dilute specimens of concentration 0.1-10.0 vol%. Kossel diffraction patterns which represent faithfully accurate information on lattice symmetries in the suspensions enable us to investigate the time evolution of colloidal crystals. The results show that the crystallization proceeds by way of the following intermediate phase transitions: two-dimensional hcp structure {yields} random layer structure {yields} layer structure with one sliding degree of freedom {yields} stacking disorder structure {yields} stacking structure with multivariant periodicity {yields} fcc twin structure with twin plane (111) {yields} normal fcc structure {yields} bcc twin structure with twin plane (11-bar2) or (1-bar12) {yields} normal bcc structure. For concentrated suspensions (>2 vol %), the phase transition ceases to proceed at the normal fcc structure. (author)

  19. Anisotropic hydrodynamic function of dense confined colloids

    Science.gov (United States)

    Nygârd, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2017-06-01

    Dense colloidal dispersions exhibit complex wave-vector-dependent diffusion, which is controlled by both direct particle interactions and indirect nonadditive hydrodynamic interactions mediated by the solvent. In bulk the hydrodynamic interactions are probed routinely, but in confined geometries their studies have been hitherto hindered by additional complications due to confining walls. Here we solve this issue by combining high-energy x-ray photon correlation spectroscopy and small-angle x-ray-scattering experiments on colloid-filled microfluidic channels to yield the confined fluid's hydrodynamic function in the short-time limit. Most importantly, we find the confined fluid to exhibit a strongly anisotropic hydrodynamic function, similar to its anisotropic structure factor. This observation is important in order to guide future theoretical research.

  20. Colloid Release From Differently Managed Loess Soil

    DEFF Research Database (Denmark)

    Vendelboe, Anders Lindblad; Schjønning, Per; Møldrup, Per

    2012-01-01

    of the total clay not associated with organic matter. No significant difference in release rate was found for air-dry aggregates. The low-carbon soils initially had a higher content of WSA but were more susceptible to disaggregation than the high-carbon soils. Furthermore, the application of NPK fertilizer had......The content of water-dispersible colloids (WDC) in a soil can have a major impact on soil functions, such as permeability to water and air, and on soil strength, which can impair soil fertility and workability. In addition, the content of WDC in the soil may increase the risk of nutrient loss...... and of colloid-facilitated transport of strongly sorbing compounds. In the present study, soils from the Bad Lauchstadt long-term static fertilizer experiment with different management histories were investigated to relate basic soil properties to the content of WDC, the content of water-stable aggregates (WSA...

  1. Ultrasonic wave interactions with magnetic colloids

    CERN Document Server

    Chapman, J R

    2001-01-01

    fluids have been performed in an effort to determine the relative stability of the fluids. The experimental results have been compared with a combined scattering and hydrodynamic model (Allegra and Hawley 1972) and the ultrasonic anisotropy theory of Skumiel (1997). An on-line quality assurance process is proposed. Originally invented as a method for moving spacecraft fuel in weightless conditions, magnetic colloids or ferrofluids are now used in applications as diverse as the dissipation of heat in the voice coils of a loudspeaker, and for the separation of scrap metal. It has been found that aqueous ferrofluids become unstable after a period of time and with dilution. Therefore, there is a need to characterize the colloidal fluid to study the effects of degradation. Additionally, due to the high cost of ferrofluids and the large volumes required for some applications, the fluid is recycled. It is therefore necessary to develop a system for quality assurance for the fluid reclamation process. Ultrasonic meth...

  2. Gray Correlation Analysis on the Relationship Between Colloidal Structure and Chemical Component of Asphalt Colloid and Performance

    Directory of Open Access Journals (Sweden)

    X. J. Cao

    2015-01-01

    Full Text Available Asphalt is considered a colloidal material and it is important to study the relationship between its colloidal structure, chemical components and performance. The aromatic nucleus content of asphalt at different depth analysed by attenuated total reflection (ATR was taken as the index of colloid structure. The gray correlation was used to analyse the relationship between colloidal structure and chemical components of asphalt gel and performance. The results show that the correlation degree between the index of colloidal structure and saturates and resins is high, which proves that saturates and resins play an important role in asphalt colloid structure. With regard to the asphalt performance indexes, the complex modulus G* and the tangent of the phase angle (tan δ have good correlation with the index of colloidal structure at the temperature of 30 – 70 °C but poor correlation at the temperature of 70 – 90 °C. Low temperature performance has a good correlation with colloid structure index, and tg can better reflect the characteristics of colloidal structure. The analysis shows that the colloidal structure of asphalt is a complex system and it is necessary to use more than one index to characterize the performance.

  3. The Silicon:Colloidal Quantum Dot Heterojunction

    KAUST Repository

    Masala, Silvia

    2015-10-13

    A heterojunction between crystalline silicon and colloidal quantum dots (CQDs) is realized. A special interface modification is developed to overcome an inherent energetic band mismatch between the two semiconductors, and realize the efficient collection of infrared photocarriers generated in the CQD film. This junction is used to produce a sensitive near infrared photodetector. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Depleted Bulk Heterojunction Colloidal Quantum Dot Photovoltaics

    KAUST Repository

    Barkhouse, D. Aaron R.

    2011-05-26

    The first solution-processed depleted bulk heterojunction colloidal quantum dot solar cells are presented. The architecture allows for high absorption with full depletion, thereby breaking the photon absorption/carrier extraction compromise inherent in planar devices. A record power conversion of 5.5% under simulated AM 1.5 illumination conditions is reported. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Thermal Jamming of a Colloidal Glass

    KAUST Repository

    Agarwal, Praveen

    2011-12-01

    We investigate the effect of temperature on structure and dynamics of a colloidal glass created by tethering polymers to the surface of inorganic nanoparticles. Contrary to the conventional assumption, an increase in temperature slows down glassy dynamics of the material, yet causes no change in its static structure factor. We show that these findings can be explained within the soft glassy rheology framework if the noise temperature X of the glass phase is correlated with thermodynamic temperature. © 2011 American Physical Society.

  6. Colloidal silver solutions with antimicrobial properties

    Energy Technology Data Exchange (ETDEWEB)

    Petica, A. [INCDIE ICPE-Advanced Research, Bucharest (Romania)], E-mail: petica@icpe-ca.ro; Gavriliu, S.; Lungu, M.; Buruntea, N. [INCDIE ICPE-Advanced Research, Bucharest (Romania); Panzaru, C. [Institute of Medicine and Pharmacy, Iassy (Romania)

    2008-08-25

    Some colloidal silver solutions involving the electrochemical technique with 'sacrificial anode method and different stabilizers and co-stabilizers' have been prepared. A constant current pulse generator with stirrer at different working times has been used. To achieve stable colloidal silver solutions, a mix of different tensioactive agents namely [poly (N-vinylpyrrolidone)], Na-naphthalene sulphonate, Na-lauryl sulfate and Na-dodecyl sulphonate were tested. The effects of these various mixes of polymer and ionic surfactants upon the Ag concentration and UV-vis spectra of silver nanoparticles were determined by spectrophotometer techniques. The nanoparticles sizes have been analyzed through dynamic light scattering technique and the silver nanoparticle morphology has been evidenced by transmission electron microscopy (TEM). Micobiological analysis has been made by determining minimal inhibitorial concentration upon the following germs: Staphylococcus aureus (ATCC) (Gram-positive cocci), Pseudomonas aeruginosa (ATTC), Escherichia coli (ATCC) and Acinetobacter spp. (Gram-negative coccobacillus). To evaluate the antifungal effect, the antibiogram method involving various tests using a fungi mix of Aspergillus, Penicillium and Trichoderma species has been used. The presented method allows obtaining of some stable colloidal solutions containing up to 35 ppm of Ag with very good antimicrobial and antifungal properties.

  7. C-cells in colloid goiter

    Directory of Open Access Journals (Sweden)

    Lima Marcus A.

    2003-01-01

    Full Text Available PURPOSE: The aim of this investigation was to quantitatively evaluate C-cells in colloid goiters, analyzing 36 thyroids that were obtained through thyroidectomy from 24 patients with goiter and 12 normal glands from adult patients without thyroid disease, which were used as the control group. MATERIAL AND METHODS: On average, 6 different thyroid areas were sampled and labeled by immunohistochemistry with a monoclonal anticalcitonin antibody, utilizing the avidin-biotin-peroxidase complex. C-cells were counted in fields measuring 1 square centimeter, and the mean number of cells per field was then calculated. Data were statistically analyzed using the Mann-Whitney test. RESULTS: In the colloid goiter group, the number of C-cells ranged from 0 to 23 per field, while in normal controls they ranged from 20 to 148 per field. CONCLUSIONS: These results demonstrate a significant decrease of C-cell number in the colloid goiter group compared with control group, indicating that the hyperplastic process is restricted to follicular cells, to the detriment of C-cells, which probably cease to receive trophic stimuli.

  8. Dense colloidal fluids form denser amorphous sediments.

    Science.gov (United States)

    Liber, Shir R; Borohovich, Shai; Butenko, Alexander V; Schofield, Andrew B; Sloutskin, Eli

    2013-04-09

    We relate, by simple analytical centrifugation experiments, the density of colloidal fluids with the nature of their randomly packed solid sediments. We demonstrate that the most dilute fluids of colloidal hard spheres form loosely packed sediments, where the volume fraction of the particles approaches in frictional systems the random loose packing limit, ϕRLP = 0.55. The dense fluids of the same spheres form denser sediments, approaching the so-called random close packing limit, ϕRCP = 0.64. Our experiments, where particle sedimentation in a centrifuge is sufficiently rapid to avoid crystallization, demonstrate that the density of the sediments varies monotonically with the volume fraction of the initial suspension. We reproduce our experimental data by simple computer simulations, where structural reorganizations are prohibited, such that the rate of sedimentation is irrelevant. This suggests that in colloidal systems, where viscous forces dominate, the structure of randomly close-packed and randomly loose-packed sediments is determined by the well-known structure of the initial fluids of simple hard spheres, provided that the crystallization is fully suppressed.

  9. Patchy polymer colloids with tunable anisotropy dimensions.

    Science.gov (United States)

    Kraft, Daniela J; Hilhorst, Jan; Heinen, Maria A P; Hoogenraad, Mathijs J; Luigjes, Bob; Kegel, Willem K

    2011-06-09

    We present the synthesis of polymer colloids with continuously tunable anisotropy dimensions: patchiness, roughness, and branching. Our method makes use of controlled fusion of multiple protrusions on highly cross-linked polymer particles produced by seeded emulsion polymerization. Carefully changing the synthesis conditions, we can tune the number of protrusions, or branching, of the obtained particles from spheres with one to three patches to raspberry-like particles with multiple protrusions. In addition to that, roughness is generated on the seed particles by adsorption of secondary nucleated particles during synthesis. The size of the roughness relative to the smooth patches can be continuously tuned by the initiator, surfactant, and styrene concentrations. Seed colloids chemically different from the protrusions induce patches of different chemical nature. The underlying generality of the synthesis procedure allows for application to a variety of seed particle sizes and materials. We demonstrate the use of differently sized polyNIPAM (poly-N-isopropylacrylamide), as well as polystyrene and magnetite filled polyNIPAM seed particles, the latter giving rise to magnetically anisotropic colloids. The high yield together with the uniform, anisotropic shape make them interesting candidates for use as smart building blocks in self-assembling systems.

  10. Flow of colloidal suspensions through small orifices

    Science.gov (United States)

    Hidalgo, R. C.; Goñi-Arana, A.; Hernández-Puerta, A.; Pagonabarraga, I.

    2018-01-01

    In this work, we numerically study a dense colloidal suspension flowing through a small outlet driven by a pressure drop using lattice-Boltzmann methods. This system shows intermittent flow regimes that precede clogging events. Several pieces of evidence suggest that the temperature controls the dynamic state of the system when the driving force and the aperture size are fixed. When the temperature is low, the suspension's flow can be interrupted during long time periods, which can be even two orders of magnitude larger than the system's characteristic time (Stokes). We also find that strong thermal noise does not allow the formation of stable aggregate structures avoiding extreme clogging events, but, at the same time, it randomizes the particle trajectories and disturbs the advective particle flow through the aperture. Moreover, examining the particle velocity statistics, we obtain that in the plane normal to the pressure drop the colloids always move as free particles regardless of the temperature value. In the pressure drop direction, at high temperature the colloids experience a simple balance between advective and diffusive transport, but at low temperature the nature of the flow is much more complex, correlating with the occurrence of very long clogging events.

  11. An evaporation model of colloidal suspension droplets

    Science.gov (United States)

    Sartori, Silvana; Li\\ Nán, Amable; Lasheras, Juan C.

    2009-11-01

    Colloidal suspensions of polymers in water or other solvents are widely used in the pharmaceutical industry to coat tablets with different agents. These allow controlling the rate at which the drug is delivered, taste or physical appearance. The coating is performed by simultaneously spraying and drying the tablets with the colloidal suspension at moderately high temperatures. The spreading of the coating on the pills surface depends on the droplet Webber and Reynolds numbers, angle of impact, but more importantly on the rheological properties of the drop. We present a model for the evaporation of a colloidal suspension droplet in a hot air environment with temperatures substantially lower than the boiling temperature of the carrier fluid. As the liquid vaporizes from the surface, a compacting front advances into the droplet faster than the liquid surface regresses, forming a shell of a porous medium where the particles reach their maximum packing density. While the surface regresses, the evaporation rate is determined by both the rate at which heat is transported to the droplet surface and the rate at which liquid vapor is diffused away from it. This regime continues until the compacting front reaches the center of the droplet, at which point the evaporation rate is drastically reduced.

  12. Surface molecular view of colloidal gelation

    Science.gov (United States)

    Roke, Sylvie; Berg, Otto; Buitenhuis, Johan; van Blaaderen, Alfons; Bonn, Mischa

    2006-01-01

    We investigate the phase behavior of surface-functionalized silica colloids at both the molecular and macroscopic levels. This investigation allows us to relate collective properties such as aggregation, gelation, and aging directly to molecular interfacial behavior. By using surface-specific vibrational spectroscopy, we reveal dramatic changes in the conformation of alkyl chains terminating submicrometer silica particles. In fluid suspension at high temperatures, the interfacial molecules are in a liquid-like state of conformational disorder. As the temperature is lowered, the onset of gelation is identified by macroscopic phenomena, including changes in turbidity, heat release, and diverging viscosity. At the molecular level, the onset of this transition coincides with straightening of the carbon–carbon backbones of the interfacial molecules. In later stages, their intermolecular crystalline packing improves. It is the increased density of this ordered boundary layer that increases the van der Waals attraction between particles, causing the colloidal gas to aggregate. The approach presented here can provide insights into phase transitions that occur through surface modifications in a variety of colloidal systems. PMID:16938857

  13. Shear Driven Aggregation in Latex Colloids

    Science.gov (United States)

    Ahuja, Suresh

    2013-03-01

    Reynolds number is small in colloidal flow and therefore, colloidal volume fraction and Peclet number are important. AS the volume fraction and attractive coupling between particles increase, relaxation time and Weisenberg number become significant. Shear-induced aggregation of latex colloids is due to the interplay between the shear-induced formation and breakage of latex.particles. While particle size is limited by breakage, their number density increases with the shearing-time. Upon cessation of shear, the particles interconnect into an assembly held by grainy bonds. It results in increase in yield stress and dynamic modulus. A contact model enables aggregates maintaining their structures under low stress while being restructured under high stress. Modeling involves solution of Navier- Stokes equation with moving particles as boundary condition for the flow like using the Lattice Boltzmann approach or by using (accelerated) Stokesian Dynamics. Alternate approach is to model the fluid phase by soft repulsive particles with pair-wise noise and friction, known as dissipative particle dynamics (DPD). This method by construction produces full inertial hydrodynamics, but applying the correct fluid-particle boundary condition is non-trivial. Both particle to particle and particle to wall collisions can be considered using Johnson-Kendall- Roberts (JKR) analysis of collision dynamics of dissipative forces using a soft-sphere modeling technique. Our experimental work used emulsion polymerized latex that was subjected to steady and dynamic shear. Yield stress, dynamic modulus and relaxation time increased on shearing in conjunction with changes in aggregate size.

  14. Colloquium: Toward living matter with colloidal particles

    Science.gov (United States)

    Zeravcic, Zorana; Manoharan, Vinothan N.; Brenner, Michael P.

    2017-07-01

    A fundamental unsolved problem is to understand the differences between inanimate matter and living matter. Although this question might be framed as philosophical, there are many fundamental and practical reasons to pursue the development of synthetic materials with the properties of living ones. There are three fundamental properties of living materials that we seek to reproduce: The ability to spontaneously assemble complex structures, the ability to self-replicate, and the ability to perform complex and coordinated reactions that enable transformations impossible to realize if a single structure acted alone. The conditions that are required for a synthetic material to have these properties are currently unknown. This Colloquium examines whether these phenomena could emerge by programming interactions between colloidal particles, an approach that bootstraps off of recent advances in DNA nanotechnology and in the mathematics of sphere packings. The argument is made that the essential properties of living matter could emerge from colloidal interactions that are specific—so that each particle can be programmed to bind or not bind to any other particle—and also time dependent—so that the binding strength between two particles could increase or decrease in time at a controlled rate. There is a small regime of interaction parameters that gives rise to colloidal particles with lifelike properties, including self-assembly, self-replication, and metabolism. The parameter range for these phenomena can be identified using a combinatorial search over the set of known sphere packings.

  15. Colloidal forming of metal/ceramic composites

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Herencia, A.J.; Gutierrez, C.A.; Millan, A.J.; Nieto, M.I.; Moreno, R. [Inst. de Ceramica y Vidrio, Madrid (Spain)

    2002-07-01

    Metal/Ceramic composites have very attractive properties as either structural or electronic materials. For certain applications, complex microstructures and shapes are required. Colloidal processing of ceramics has proved to provide better properties and allows to obtain near net complex shaped parts. However colloidal processing has not received a similar attention in powder metallurgy. This work deals with the colloidal approach to the forming of metallic and metal/ceramic composites in an aqueous medium. Rheological behavior of concentrated pure nickel, nickel/alumina and nickel/zirconia suspensions is studied and optimized for obtaining flat surfaces or near net shaped parts by tape casting and gel casting respectively. In each case the influence of the processing additives (acrylic binders for tape casting and carrageenans for gel casting) on the rheological behavior of the slurries is determined. Pure nickel and nickel/ceramic composites with different compositions have been prepared. Static and dynamic sintering studies were performed at different conditions in order to control the porosity and microstructure of the final bodies, which were characterized by optical microscopy. (orig.)

  16. Electrophoretic ``Equilibrium'' Profile of Charged Colloids

    Science.gov (United States)

    Planques, Romain; Chaikin, Paul

    2008-03-01

    We perform an electrophoresis experiment of a concentrated colloid against a semipermeable membrane. The electric field forces the charged particles against the membrane and sets up a concentration profile similar to that of a colloid in gravitational sedimentation equilibrium where gravitational forces compete against the osmotic pressure gradient. In the present case there is a current which flows through the electrolyte so the system reaches a steady state profile rather than equilibrium. The electric field, colloid and ionic concentrations adjust self consistently to produce the profile. We use 91 nm polystyrene spheres with sufficient charge that they crystallize and observe their Bragg scattering as a function of height to determine the lattice spacing and particle concentration. We also use 700nm spheres and obtain their concentration profile with X-ray absorption. The fluid flow is zero for a capped system. Connecting a return tube from the supernatant side above the electrophoretic sediment to below the filter yields an electroosmotic flow and circulation. The profile changes substantially and allows us to study the hydrodynamic interactions as a function of concentration for the electrophoresing particles.

  17. Remotely Controlled Mixers for Light Microscopy Module (LMM) Colloid Samples

    Science.gov (United States)

    Kurk, Michael A. (Andy)

    2015-01-01

    Developed by NASA Glenn Research Center, the LMM aboard the International Space Station (ISS) is enabling multiple biomedical science experiments. Techshot, Inc., has developed a series of colloid specialty cell systems (C-SPECS) for use in the colloid science experiment module on the LMM. These low-volume mixing devices will enable uniform particle density and remotely controlled repetition of LMM colloid experiments. By automating the experiment process, C-SPECS allow colloid samples to be processed more quickly. In addition, C-SPECS will minimize the time the crew will need to spend on colloid experiments as well as eliminate the need for multiple and costly colloid samples, which are expended after a single examination. This high-throughput capability will lead to more efficient and productive use of the LMM. As commercial launch vehicles begin routine visits to the ISS, C-SPECS could become a significant means to process larger quantities of high-value materials for commercial customers.

  18. Local elastic response measured near the colloidal glass transition

    Science.gov (United States)

    Anderson, D.; Schaar, D.; Hentschel, H. G. E.; Hay, J.; Habdas, Piotr; Weeks, Eric R.

    2013-03-01

    We examine the response of a dense colloidal suspension to a local force applied by a small magnetic bead. For small forces, we find a linear relationship between the force and the displacement, suggesting the medium is elastic, even though our colloidal samples macroscopically behave as fluids. We interpret this as a measure of the strength of colloidal caging, reflecting the proximity of the samples' volume fractions to the colloidal glass transition. The strain field of the colloidal particles surrounding the magnetic probe appears similar to that of an isotropic homogeneous elastic medium. When the applied force is removed, the strain relaxes as a stretched exponential in time. We introduce a model that suggests this behavior is due to the diffusive relaxation of strain in the colloidal sample.

  19. Design and elaboration of colloidal molecules: an overview.

    Science.gov (United States)

    Duguet, Etienne; Désert, Anthony; Perro, Adeline; Ravaine, Serge

    2011-02-01

    The concept of colloidal molecules was first evoked by van Blaaderen in 2003 for describing small non-spherical colloids made of the aggregation of a small number of particles. He predicted original properties to the complex assemblies of such colloids, in particular in optics. This critical review deals with the different strategies reported for creating robust clusters of spherical particles which could mimic the space-filling models of simple conventional molecules. These routes concern either the controlled clustering of preformed colloids directed by coalescence, physical routes, chemical routes, or 2-D/3-D geometrical confinement, or strategies starting from a single colloid which is decorated by satellite colloids by taking advantage of controlled phase separation or nucleation and growth phenomena. These routes are compared from the viewpoint of the accessible shapes, their tunability and scalability (146 references).

  20. Inertial and viscoelastic forces on rigid colloids in microfluidic channels.

    Science.gov (United States)

    Howard, Michael P; Panagiotopoulos, Athanassios Z; Nikoubashman, Arash

    2015-06-14

    We perform hybrid molecular dynamics simulations to study the flow behavior of rigid colloids dispersed in a dilute polymer solution. The underlying Newtonian solvent and the ensuing hydrodynamic interactions are incorporated through multiparticle collision dynamics, while the constituent polymers are modeled as bead-spring chains, maintaining a description consistent with the colloidal nature of our system. We study the cross-stream migration of the solute particles in slit-like channels for various polymer lengths and colloid sizes and find a distinct focusing onto the channel center under specific solvent and flow conditions. To better understand this phenomenon, we systematically measure the effective forces exerted on the colloids. We find that the migration originates from a competition between viscoelastic forces from the polymer solution and hydrodynamically induced inertial forces. Our simulations reveal a significantly stronger fluctuation of the lateral colloid position than expected from thermal motion alone, which originates from the complex interplay between the colloid and polymer chains.

  1. [Indications and limitations for colloids in interventions and surgery].

    Science.gov (United States)

    Artmann, Thorsten; Gan, Tong Joo; Kranke, Peter

    2015-04-01

    Over the last few decades colloids have played an important part in the stabilisation of patients with acute need of intravascular volume replacement. After the 6S and the CHEST trials were published in 2012 and the subsequent recommendations of the European Medicines Agency (EMA) and the Food and Drug Administration (FDA) there has been some uncertainty about the current clinical relevance and routine use of colloids. This article summarizes the current evidence and relevance of colloids in the perioperative environment and in the interventional setting on the basis of the recently published German S3-guidelines for volume therapy in adults. In situations of acute volume resuscitation colloids are still appropriate. Only colloids in balanced solutions should be used. Possible side effects, contraindications and the maximum daily dose have to be taken into consideration when administering colloids.

  2. Colloids in external electric and magnetic fields: Colloidal crystals, pinning, chain formation, and electrokinetics

    Science.gov (United States)

    Zhao, J.; Papadopoulos, P.; Roth, M.; Dobbrow, C.; Roeben, E.; Schmidt, A.; But, H.-J. t.; Auernhammer, G. K.; Vollmer, D.

    2013-11-01

    The motion of dilute and concentrated dispersions of colloids by external electric or magnetic fields is discussed. Electrokinetics is studied for colloids in confinement, where the confining walls can be flat or rough. As an example for a rough wall superhydrophobic surfaces are chosen. It is shown that the reduced friction at the water-air interface is insufficient to enhance electro-osmosis. Magnetic particles are pulled through a crystalline matrix formed by nonmagnetic colloids to investigate local melting and recrystallization of a crystalline matrix. The average strain field is calculated and the reorganization processes are compared to those induced by shear fields. Using single domain, magnetically blocked particles of different shape and surface characteristics, the interplay between particles, their environment and an external field is investigated.

  3. Shape Separation of Colloidal Metal Nanoparticles via Size Exclusion Chromatography

    OpenAIRE

    Marvi, Sarrah

    2016-01-01

    The inherent polydispersity of solution-based, colloidal nanoparticle syntheses has necessitated the development of facile post-processing methods for the purification of anisotropic nanoparticles. Here, the use of size exclusion chromatography is explored for the shape separation of colloidal silver nanocube and colloidal gold bipyramid solutions. Multiple column packing materials, pore sizes, and mobile phases were tested to address the prevalent issues of metal adsorption to the high surfa...

  4. Experimental verification of morphological instability in freezing aqueous colloidal suspensions.

    Science.gov (United States)

    Peppin, S S L; Wettlaufer, J S; Worster, M G

    2008-06-13

    We describe an experimental test of a new theory of the unidirectional freezing of aqueous colloidal suspensions. At low freezing speeds a planar ice lens completely rejects the particles, forming a steady-state compacted boundary layer in the liquid region. At higher speeds the planar interface becomes thermodynamically unstable and breaks down geometrically to trap bulk regions of colloid within. The theoretical stability threshold is determined experimentally, thereby demonstrating that colloidal suspensions can be treated analogously to atomic or molecular alloys.

  5. Colloidal rods and spheres in partially miscible binary liquids

    OpenAIRE

    Hijnen, Niek

    2013-01-01

    Different scenarios for assembling rod-like and spherical colloidal particles using binary mixtures of partially miscible liquids were investigated experimentally. Suitable rod-like colloids were developed first. The subsequent studies of colloids in binary liquids consisted, on one hand, of systems where particles were partially wetted by both phases and, on the other hand, of systems where particles were completely wetted by the minority phase. A simple method to prepare l...

  6. Electric field mediated colloidal assembly and control

    Science.gov (United States)

    Juarez, Jaime Javier

    2011-12-01

    This dissertation presents video microscopy measurements and computer simulations of colloidal particle interactions in inhomogeneous, high-frequency AC electric fields. The interactions of particles with each other and inhomogeneous electric fields are quantified as a function of concentration, field amplitude, and frequency. Visual state diagrams show that these interactions in concentrated systems produce quasi-two dimensional microstructures including confined hard disk fluids, oriented dipolar chains, and oriented hexagonal close packed crystals. The interaction of a particle interacting with an electric field is directly measured with analyses of a single diffusing colloid within electric fields in the absence of many body effects. Concentrated systems are characterized in terms of density profiles across the electrode gap and angular pair distribution functions. An inverse Monte Carlo analysis extracted the induced dipole-induced dipole interaction from concentrated measurements. A single adjustable parameter consistently modified the induced dipole-field potential and the induced dipole-induced dipole potential to account for modification of the local electric field as the result of the local particle concentration, frequency and configuration. Confocal laser scanning microscopy (CLSM) perform sensitive measurements of internal three dimensional structure of crystals assembled in an interfacial quadrupole electrode device. Radial distributions as functions of elevation are used to characterize the equilibrium structure. A single adjustable parameter modified known potentials to match Monte Carlo simulations with experiment. The local density from experiment and simulation matched the expected density calculated from a balance of osmotic pressure and dielectrophoretic compression. Simulations qualitatively matched experimental observations of microstructure as a function of field amplitude. Programmable assembly for colloidal crystals is implemented in the

  7. Lateral Flow Immunoassays for Ebola Virus Disease Detection in Liberia.

    Science.gov (United States)

    Phan, Jill C; Pettitt, James; George, Josiah S; Fakoli, Lawrence S; Taweh, Fahn M; Bateman, Stacey L; Bennett, Richard S; Norris, Sarah L; Spinnler, David A; Pimentel, Guillermo; Sahr, Phillip K; Bolay, Fatorma K; Schoepp, Randal J

    2016-10-15

     Lateral flow immunoassays (LFIs) are point-of-care diagnostic assays that are designed for single use outside a formal laboratory, with in-home pregnancy tests the best-known example of these tests. Although the LFI has some limitations over more-complex immunoassay procedures, such as reduced sensitivity and the potential for false-positive results when using complex sample matrices, the assay has the benefits of a rapid time to result and ease of use. These benefits make it an attractive option for obtaining rapid results in an austere environment. In an outbreak of any magnitude, a field-based rapid diagnostic assay would allow proper patient transport and for safe burials to be conducted without the delay caused by transport of samples between remote villages and testing facilities. Use of such point-of-care instruments in the ongoing Ebola virus disease (EVD) outbreak in West Africa would have distinct advantages in control and prevention of local outbreaks, but proper understanding of the technology and interpretation of results are important.  In this study, a LFI, originally developed by the Naval Medical Research Center for Ebola virus environmental testing, was evaluated for its ability to detect the virus in clinical samples in Liberia. Clinical blood and plasma samples and post mortem oral swabs submitted to the Liberian Institute for Biomedical Research, the National Public Health Reference Laboratory for EVD testing, were tested and compared to results of real-time reverse transcription-polymerase chain reaction (rRT-PCR), using assays targeting Ebola virus glycoprotein and nucleoprotein.  The LFI findings correlated well with those of the real-time RT-PCR assays used as benchmarks.  Rapid antigen-detection tests such as LFIs are attractive alternatives to traditional immunoassays but have reduced sensitivity and specificity, resulting in increases in false-positive and false-negative results. An understanding of the strengths, weaknesses

  8. Colloid mobilization by fluid displacement fronts in channels.

    Science.gov (United States)

    Lazouskaya, Volha; Wang, Lian-Ping; Or, Dani; Wang, Gang; Caplan, Jeffrey L; Jin, Yan

    2013-09-15

    Understanding colloid mobilization during transient flow in soil is important for addressing colloid and contaminant transport issues. While theoretical descriptions of colloid detachment exist for saturated systems, corresponding mechanisms of colloid mobilization during drainage and imbibition have not been considered in detail. In this work, theoretical force and torque analyses were performed to examine the interactive effects of adhesion, drag, friction, and surface tension forces on colloid mobilization and to outline conditions corresponding to the mobilization mechanisms such as lifting, sliding, and rolling. Colloid and substrate contact angles were used as variables to determine theoretical criteria for colloid mobilization mechanisms during drainage and imbibition. Experimental mobilization of hydrophilic and hydrophobic microspheres with drainage and imbibition fronts was investigated in hydrophilic and hydrophobic channels using a confocal microscope. Colloid mobilization differed between drainage and imbibition due to different dynamic contact angles and interfacial geometries on the contact line. Experimental results did not fully follow the theoretical criteria in all cases, which was explained with additional factors not included in the theory such as presence of aggregates and trailing films. Theoretical force and torque analyses resulted in similar mobilization predictions and suggested that all mobilization mechanisms contributed to the observed colloid mobilization. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Reversible Control of Anisotropic Electrical Conductivity using Colloidal Microfluidic Networks

    National Research Council Canada - National Science Library

    Beskok, Ali; Bevan, Michael; Lagoudas, Dimitris; Ounaies, Zoubeida; Bahukudumbi, Pradipkumar; Everett, William

    2007-01-01

    This research addresses the tunable assembly of reversible colloidal structures within microfluidic networks to engineer multifunctional materials that exhibit a wide range of electrical properties...

  10. Giant Leaking Colloid Cyst Presenting with Aseptic Meningitis

    DEFF Research Database (Denmark)

    Bakhtevari, Mehrdad Hosseinzadeh; Sharifi, Guive; Jabbari, Reza

    2015-01-01

    BACKGROUND: Colloid cysts are benign third ventricle lesions that need to be diagnosed correctly because of their association with sudden death. Chemical or aseptic meningitis is a rare presentation of a colloid cyst. METHODS: We present a case of a 69-year-old man with fever, alteration of mental...... status, and meningismus. Microbiological examination of the cerebrospinal fluid revealed aseptic meningitis. Brain imaging revealed a third ventricular colloid cyst with hydrocephalus. RESULTS: The tumor was resected via endoscopic intervention. There were no persistent operative complications related...... to the endoscopic procedure. CONCLUSIONS: Chemical or aseptic meningitis is an unusual clinical manifestation of a colloid cyst, complicating the differential diagnosis, especially in the elderly....

  11. Morphological deformation during evaporation induced assembly of mixed colloidal suspension

    Science.gov (United States)

    Sen, D.; Melo, J. S.; Bahadur, J.; Mazumder, S.; Bhattacharya, S.; D'Souza, S. F.

    2010-12-01

    Sphere to deformed doughnut type transformation of colloidal droplets during evaporation induced assembly of colloidal silica and E. coli was observed. Distortion modulations get amplified with increase in volume fraction of anisotropic soft colloidal component. Reduction in elastic constants of formed shell, at the boundary of a drying droplet, and the anisotropic nature of bacterial component facilitate the deformation process. The charge modification of E. coli surface by Poly cationic Polytheleneimine ceases the morphological transformation and results spherical assembled grains. Hierarchical structures of these assembled colloidal grains have been probed using electron microscopy and small- angle neutron scattering techniques.

  12. Study of the stability coated and uncoated nanosilver colloid

    Science.gov (United States)

    Harsojo, Respitaningrum, Afrianto, Toto; Sosiati, Harini

    2013-09-01

    The stability of nanosilver colloids made using electrochemical process and chemical process were investigated. In the process using a DC generator cell, two silver electrodes under a DC voltage were used to generate the colloid. In the chemical process the colloid was made using the dilution of AgNO3 in deionized water with the addition of sodium citrate. To increase the stability to this colloid was added polyvinyl alcohol. The stability In those three colloids were investigated using UV-Vis spectrometer. The size of the nano Ag was measured using transmission electron microscope (TEM). The study reveals that within period of two weeks the trend toward a stable colloid is shown by colloid using DC generator. The addition of PVA may stabilize the unstable colloid made using the chemichal process and reduce the size particle to significantly smaller particle compared to the one made using DC generator cell. The condition of obtaining the stable nano colloid silver with smaller particle size was discussed.

  13. Statics and dynamics of colloidal particles on optical tray arrays

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory

    2009-01-01

    We examine the statics and dynamics of charged colloids interacting with periodic optical trap arrays. In particular we study the regime where more than one colloid is confined in each trap, creating effective dimer, trimer, and higher order states called colloidal molecular crystals. The n-mer states have all effective orientational degree of freedom which can be controlled with an external driving field. In general, the external field causes a polarization effect where the orientation of the n-mers aligns with the external field, similar to liquid crystal systems. Additionally, under a rotating external drive the n-mers can rotate with the drive. In some cases a series of structural transitions in the colloidal crystal states occur in the rotating field due to a competition between the ordering of the colloidal molecular crystals and the polarization effect which orients the n-mers in the direction of the drive. We also show that for some parameters, the n-mers continuously rotate with the drive without witching, that depinning transitions can occur where the colloids jump from well to well, and that there are a number of distinct dynamical transitions between the phases. Finally, we illustrate colloidal orderings at fillings of more than four colloids per trap, indicating that it is possible to create higher order colloidal crystal cluster phases.

  14. Internal Dynamics of Equilibrium Colloidal Clusters

    Science.gov (United States)

    Perry, Rebecca Wood

    Colloidal clusters, aggregates of a few micrometer-sized spherical particles, are a model experimental system for understanding the physics of self-assembly and processes such as nucleation. Colloidal clusters are well suited for studies on these topics because they are the simplest colloidal system with internal degrees of freedom. Clusters made from particles that weakly attract one another continually rearrange between different structures. By characterizing these internal dynamics and the structures connected by the rearrangement pathways, we seek to understand the statistical physics underlying self-assembly and equilibration. In this thesis, we examine the rearrangement dynamics of colloidal clusters and analyze the equilibrium distributions of ground and excited states. We prepare clusters of up to ten microspheres bound by short-range depletion interactions that are tuned to allow equilibration between multiple isostatic arrangements. To study these clusters, we use bright-field and digital holographic microscopy paired with computational post-processing to amass ensemble-averaged and time-averaged probabilities. We study both two-dimensional (2D) and three-dimensional (3D) clusters composed of either one or two species of particles. To learn about geometrical nucleation barriers, we track rearrangements of particles within freely rotating and translating 3D clusters. We show that rearrangements occur on a timescale of seconds, consistent with diffusion-dominated internal dynamics. To better understand excited states and transition pathways, we track hundreds of rearrangements between degenerate ground states in 2D clusters. We show that the rearrangement rates can be understood using a model with two parameters, which account for the diffusion coefficient along the excited-state rearrangement pathways and the interaction potential. To explore new methods to control self-assembly, we analyze clusters of two species with different masses and different

  15. Active Colloids in Isotropic and Anisotropic Electrolytes

    Science.gov (United States)

    Peng, Chenhui

    Electrically driven flows of fluids with respect to solid surfaces (electro-osmosis) and transport of particles in fluids (electrophoresis), collectively called electrokinetics, is a technologically important area of modern science. In this thesis, we study the electrokinetic phenomena in both isotropic and anisotropic fluids. A necessary condition of electrokinetics is separation of electric charges in space. In classic linear electrokinetics, with an isotropic electrolyte such as water, the charges are separated through dissociation of ionic groups at the solid-fluid interface; presence of the electric field is not required. In the nonlinear electrokinetics, the charges are separated with the assistance of the electric field. In the so-called induced-charge electro-osmosis (ICEO) the electric field separates charges near strongly polarizable surfaces such as metals. We establish the patterns of electro-osmotic velocities caused by nonlinear ICEO around an immobilized metallic and Janus (metallic-dielectric) spheres placed in water. In the case of the Janus particles, the flows are asymmetric, which results in pumping of water around the particle if it is immobilized, or in electrophoresis is the particle is free. When the isotropic electrolyte such as water is replaced with a LC electrolyte, the mechanism of the field-assisted charge separation becomes very different. Namely, the charges are separated at the director gradients, thanks to the anisotropy of electric conductivity and dielectric permittivity of the LC. These distortions can be created by the colloidal particles placed in the LC. We demonstrate the occurrence of nonlinear LC-enabled electro-osmosis (LCEO) by studying the flow patterns around colloidal spheres with different surface anchoring. LCEO velocities grow with the square of the electric field, which allows one to use an AC field to drive steady flows and to avoid electrode damage. Director distortions needed to trigger the LCEO can also be

  16. Clinical development of placental malaria vaccines and immunoassays harmonization

    DEFF Research Database (Denmark)

    Chêne, Arnaud; Houard, Sophie; Nielsen, Morten A

    2016-01-01

    Placental malaria caused by Plasmodium falciparum infection constitutes a major health problem manifesting as severe disease and anaemia in the mother, impaired fetal development, low birth weight or spontaneous abortion. Prevention of placental malaria currently relies on two key strategies...... that are losing efficacy due to spread of resistance: long-lasting insecticide-treated nets and intermittent preventive treatment during pregnancy. A placental malaria vaccine would be an attractive, cost-effective complement to the existing control tools. Two placental malaria vaccine candidates are currently...... in Phase Ia/b clinical trials. During two workshops hosted by the European Vaccine Initiative, one in Paris in April 2014 and the other in Brussels in November 2014, the main actors in placental malaria vaccine research discussed the harmonization of clinical development plans and of the immunoassays...

  17. Laser-fabricated gold nanoparticles for lateral flow immunoassays.

    Science.gov (United States)

    Cederquist, Kristin B; Liu, Bing; Grima, Megan R; Dalack, Peter J; Mahorn, Jordan T

    2017-01-01

    Gold nanoparticles fabricated by pulsed laser ablation are an attractive alternative over those made by chemical reduction, as they offer a more reactive, chemically-bare surface. In this manuscript, we investigate the interactions of these nanoparticles with different classes of antibodies and quantify surface coverage via a fluorescence-based displacement assay. Saturation surface coverage of monoclonal antibodies was found to be almost 2× higher for particles made by pulsed laser ablation (∼28 antibodies/particle) as opposed to those made by chemical means (∼17 antibodies/particle). This higher coverage translated into ∼2× better immunoassay sensitivity, demonstrated by a sandwich lateral flow assay for human chorionic gonadotropin. This work highlights the advantages of these pulsed laser-fabricated materials and showcases their unique properties for colorimetric assay development. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Chemiluminescence enzyme immunoassay for the determination of sulfamethoxydiazine

    Science.gov (United States)

    Wu, Yongjun; Yu, Songcheng; Yu, Fei; Yan, Nali; Qu, Lingbo; Zhang, Hongquan

    2011-10-01

    Sulfamethoxydiazine (SMD), which is often used for animal disease treatment, is harmful to human health. No SMD residue should be detected in food in some countries, such as USA and Japan. Therefore, it is significant to develop a high-throughput, high-sensitivity and accurate method for the determination of the content of SMD in food. In this paper, chemiluminescence enzyme immunoassay (CLEIA) was developed for quantification of SMD. For this method, the limit of detection was 3.2 pg/ml, the linear range was from 10 to 2000 pg/ml, the within-day and inter-day precision were below 13% and below 18%, respectively, and the recovery was from 85% to 105%. Milk and egg were selected as samples to be examined with this method, and the result indicated that this CLEIA method was suitable for screening and quality control of food.

  19. Development of an ultrasensitive immunoassay for detecting tartrazine.

    Science.gov (United States)

    Li, Zhuokun; Song, Shanshan; Xu, Liguang; Kuang, Hua; Guo, Shidong; Xu, Chuanlai

    2013-06-25

    We have developed an ultrasensitive indirect competitive enzyme-linked immunosorbent assay for the determination of tartrazine. Two carboxylated analogues of tartrazine with different spacer lengths, and one derivative from commercial tartrazine after a little chemical modification, were synthesized as haptens in order to produce antibodies specific to tartrazine. The effect of sulfonic acid groups on the hapten structure of tartrazine was also studied carefully for the first time. A most specific monoclonal antibody against tartrazine was created and exhibited an IC50 value of 0.105 ng/mL and a limit of detection of 0.014 ng/mL, with no cross-reactivity to other structurally-related pigments. The established immunoassay was applied to the determination of tartrazine in fortified samples of orange juice and in real positive samples of carbonated beverages.

  20. Development of an Ultrasensitive Immunoassay for Detecting Tartrazine

    Directory of Open Access Journals (Sweden)

    Chuanlai Xu

    2013-06-01

    Full Text Available We have developed an ultrasensitive indirect competitive enzyme-linked immunosorbent assay for the determination of tartrazine. Two carboxylated analogues of tartrazine with different spacer lengths, and one derivative from commercial tartrazine after a little chemical modification, were synthesized as haptens in order to produce antibodies specific to tartrazine. The effect of sulfonic acid groups on the hapten structure of tartrazine was also studied carefully for the first time. A most specific monoclonal antibody against tartrazine was created and exhibited an IC50 value of 0.105 ng/mL and a limit of detection of 0.014 ng/mL, with no cross-reactivity to other structurally-related pigments. The established immunoassay was applied to the determination of tartrazine in fortified samples of orange juice and in real positive samples of carbonated beverages.

  1. The standardization of 5 immunoassays for anti-Toxoplasma immunoglobulin G(IgG).

    Science.gov (United States)

    Zhang, Kuo; Lin, Guigao; Han, Yanxi; Li, Jinming

    2017-09-01

    Quantitative immunoassays to detect IgG antibodies are the most commonly used tests for diagnosing toxoplasmosis. We investigated the current state of standardization of quantitative immunoassays used to measure anti-Toxoplasma IgG levels. Four fully automated immunoassays (Architect i4000ISR, Immulite 2000 Xpi, Siemens; Liaison, DiaSorin; Cobas e601, Roche) and one manual immunoassay (ELISA classic Toxo IgG, Virion Serion) were performed on the following: individual patient serum samples, the WHO international standards, control samples, and calibrators provided by 5 immunoassay manufacturers. Statistical analysis was used to illustrate the results. No perfect correlation (slope=1.0) was found between any 2 assays. Large differences in anti-Toxoplasma IgG titers were observed among the 5 immunoassays using serum samples from individual patients. Using IS 01/600 as a calibrator minimized the inter-assay variability of anti-Toxoplasma IgG values CONCLUSIONS: There is still significant effort needed towards standardization of anti-Toxoplasma IgG quantitative immunoassays. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Bone-specific alkaline phosphatase by immunoassay or electrophoresis: their use in clinical practice.

    Science.gov (United States)

    Ahmed, Farhan; Gibbons, Stephen M

    2015-03-01

    Measurement of bone-specific alkaline phosphatase (BALP) may be useful in diagnosing and monitoring metabolic bone disease. This study aimed to evaluate the BALP immunoassay and compare it with electrophoresis (densitometry) for the quantitation of BALP. Metra BALP immunoassay kits were used for the method comparison. BALP was also quantitated by electrophoresis (densitometry) in seven patients with active Paget's disease. Immunoassay results did not correlate well with densitometrically quantitated BALP, as there was a statistically significant (palkaline phosphatase (ALP) such as liver, placental and intestinal was also observed. The Metra BALP immunoassay is quoted as having an upper dynamic limit of 140 U/L and recommends that samples only require dilution above this level; we observed inconsistent results upon dilution of samples below this level. Immunoassay and electrophoresis did not correlate well for BALP quantitation. Possible interference with other isoforms of ALP was observed with the BALP immunoassay. The accuracy of the BALP immunoassay is questionable at higher concentrations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Streptavidin-functionalized capillary immune microreactor for highly efficient chemiluminescent immunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Yang Zhanjun [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); College of Chemistry and Engineering, Yangzhou University, 88 South University Avenue, Yangzhou 225002 (China); Zong Chen [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Ju Huangxian, E-mail: hxju@nju.edu.cn [State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093 (China); Yan Feng, E-mail: yanfeng2007@sohu.com [Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009 (China)

    2011-11-07

    Highlights: {yields} A novel capillary immune microreactor was proposed for highly efficient flow-through chemiluminescent immunoassay. {yields} The microreactor was prepared by functionalizing capillary inner wall with streptavidin for capture of biotinylated antibody. {yields} The proposed immunoassay method showed wide dynamic range, good reproducibility, stability and practicality. {yields} The microreactor was low-cost and disposable, and possessed several advantages over the conventional immunoreactors. - Abstract: A streptavidin functionalized capillary immune microreactor was designed for highly efficient flow-through chemiluminescent (CL) immunoassay. The functionalized capillary could be used as both a support for highly efficient immobilization of antibody and a flow cell for flow-through immunoassay. The functionalized inner wall and the capture process were characterized using scanning electron microscopy. Compared to conventional packed tube or thin-layer cell immunoreactor, the proposed microreactor showed remarkable properties such as lower cost, simpler fabrication, better practicality and wider dynamic range for fast CL immunoassay with good reproducibility and stability. Using {alpha}-fetoprotein as model analyte, the highly efficient CL flow-through immunoassay system showed a linear range of 3 orders of magnitude from 0.5 to 200 ng mL{sup -1} and a low detection limit of 0.1 ng mL{sup -1}. The capillary immune microreactor could make up the shortcoming of conventional CL immunoreactors and provided a promising alternative for highly efficient flow-injection immunoassay.

  4. Evaluation of repeat Clostridium difficile enzyme immunoassay testing.

    Science.gov (United States)

    Cardona, Diana M; Rand, Kenneth H

    2008-11-01

    Clostridium difficile is the leading cause of antibiotic-associated diarrhea and pseudomembranous colitis, which have significant morbidity and mortality. Accurate and timely diagnosis is critical. Repeat enzyme immunoassay testing for C. difficile toxin has been recommended because of tests between 1 January 2006 and 31 December 2006 were retrospectively analyzed for results and testing patterns. The Wampole C. difficile Tox A/B II enzyme immunoassay kit was used. There were a total of 8,256 tests from 3,112 patients; 49% of tests were repeated. Of the 3,749 initially negative patient tests, 96 were positive upon repeat testing within 10 days of the first test. Of repeat tests, 0.9% repeated on day 0 (same day as the first test), 1.8% on day 1, 3.8% on day 2, 2.6% on day 3, 5.4% on days 4 to 6, and 10.6% on days 7 to 10 were positive. Thirty-eight patients had a positive test within 48 h of an initial negative test, and based on chart review, 18 patients were treated empirically while 16 were treated following the new result. None had evidence of medical complications. Of initially positive patients, 91% were positive upon repeat testing on day 0, 75% on day 1, and 58% on day 2, to a low of 14% on days 7 to 10. Depending on the clinical setting, these data support not repeating C. difficile tests within 2 days of a negative result and limiting repeat testing to >/=1 week of a positive result.

  5. A Facile Nanoparticle Immunoassay for Cancer Biomarker Discovery

    Directory of Open Access Journals (Sweden)

    Baker Cheryl H

    2011-05-01

    Full Text Available Abstract Background Gold nanoparticles (AuNPs scatter light intensely at or near their surface plasmon wavelength region. Using AuNPs coupled with dynamic light scattering (DLS detection, we developed a facile nanoparticle immunoassay for serum protein biomarker detection and analysis. A serum sample was first mixed with a citrate-protected AuNP solution. Proteins from the serum were adsorbed to the AuNPs to form a protein corona on the nanoparticle surface. An antibody solution was then added to the assay solution to analyze the target proteins of interest that are present in the protein corona. The protein corona formation and the subsequent binding of antibody to the target proteins in the protein corona were detected by DLS. Results Using this simple assay, we discovered multiple molecular aberrations associated with prostate cancer from both mice and human blood serum samples. From the mice serum study, we observed difference in the size of the protein corona and mouse IgG level between different mice groups (i.e., mice with aggressive or less aggressive prostate cancer, and normal healthy controls. Furthermore, it was found from both the mice model and the human serum sample study that the level of vascular endothelial growth factor (VEGF, a protein that is associated with tumor angiogenesis adsorbed to the AuNPs is decreased in cancer samples compared to non-cancerous or less malignant cancer samples. Conclusion The molecular aberrations observed from this study may become new biomarkers for prostate cancer detection. The nanoparticle immunoassay reported here can be used as a convenient and general tool to screen and analyze serum proteins and to discover new biomarkers associated with cancer and other human diseases.

  6. Europium nanoparticle-based high performing immunoassay for the screening of treponemal antibodies.

    Directory of Open Access Journals (Sweden)

    Sheikh M Talha

    Full Text Available Treponema pallidum subspecies pallidum (Tp is the causative agent of syphilis which mainly spreads through sexual contact, blood transfusion and perinatal route. In order to curtail the spread of the infection and to clinically manage the disease, timely, accurate and reliable diagnosis is very important. We have developed an immunoassay for the detection of treponemal antibodies in human serum or plasma samples. In vivo biotinylated and non-biotinylated versions of the recombinant antigen were designed by the fusion of three Tp-specific antigens namely Tp15, Tp17 and Tp47. These fusion antigens were expressed in E. coli and purified using single-step metal affinity chromatography. Biotinylated fusion antigen immobilized on streptavidin coated plate was used to capture the treponemal antibodies and the non-biotinylated antigen coated on europium nanoparticles was used as tracer. Assays with two different incubation times of 10 min and 1 h were developed, and following the incubation the europium fluorescence was measured using time-resolved fluorometry. The developed time-resolved fluorometric (TRF immunoassays were evaluated with in-house and commercial serum/plasma sample panels. For well-established treponemal antibodies positive or negative samples, the sensitivity of TRF immunoassay with 10 min incubation time was 97.4%, and of TRF immunoassay with 1 h incubation time was 98.7%, and the specificities of both the TRF immunoassays were 99.2%. For the samples with discordant results with the reference assays, both the TRF immunoassays showed better specificity than the Enzygnost syphilis enzyme immunoassay as a screening test. The two different incubation times did not have any significant effect on the signal to cutoff (S/Co ratios obtained with the two immunoassays (p=0.06. Our results indicate that the developed immunoassay with a short incubation time of 10 min has the potential to be used in clinical laboratories and in blood

  7. Europium Nanoparticle-Based High Performing Immunoassay for the Screening of Treponemal Antibodies

    Science.gov (United States)

    Talha, Sheikh M.; Hytönen, Jukka; Westhorpe, Adam; Kumar, Sushil; Khanna, Navin; Pettersson, Kim

    2013-01-01

    Treponema pallidum subspecies pallidum (Tp) is the causative agent of syphilis which mainly spreads through sexual contact, blood transfusion and perinatal route. In order to curtail the spread of the infection and to clinically manage the disease, timely, accurate and reliable diagnosis is very important. We have developed an immunoassay for the detection of treponemal antibodies in human serum or plasma samples. In vivo biotinylated and non-biotinylated versions of the recombinant antigen were designed by the fusion of three Tp-specific antigens namely Tp15, Tp17 and Tp47. These fusion antigens were expressed in E. coli and purified using single-step metal affinity chromatography. Biotinylated fusion antigen immobilized on streptavidin coated plate was used to capture the treponemal antibodies and the non-biotinylated antigen coated on europium nanoparticles was used as tracer. Assays with two different incubation times of 10 min and 1 h were developed, and following the incubation the europium fluorescence was measured using time-resolved fluorometry. The developed time-resolved fluorometric (TRF) immunoassays were evaluated with in-house and commercial serum/plasma sample panels. For well-established treponemal antibodies positive or negative samples, the sensitivity of TRF immunoassay with 10 min incubation time was 97.4%, and of TRF immunoassay with 1 h incubation time was 98.7%, and the specificities of both the TRF immunoassays were 99.2%. For the samples with discordant results with the reference assays, both the TRF immunoassays showed better specificity than the Enzygnost syphilis enzyme immunoassay as a screening test. The two different incubation times did not have any significant effect on the signal to cutoff (S/Co) ratios obtained with the two immunoassays (p = 0.06). Our results indicate that the developed immunoassay with a short incubation time of 10 min has the potential to be used in clinical laboratories and in blood-bank settings as a

  8. Interface instability modes in freezing colloidal suspensions: revealed from onset of planar instability

    National Research Council Canada - National Science Library

    Wang, Lilin; You, Jiaxue; Wang, Zhijun; Wang, Jincheng; Lin, Xin

    2016-01-01

    Freezing colloidal suspensions widely exists in nature and industry. Interface instability has attracted much attention for the understandings of the pattern formation in freezing colloidal suspensions...

  9. Physics of Colloids in Space (PCS): Microgravity Experiment Completed Operations on the International Space Station

    Science.gov (United States)

    Doherty, Michael P.; Sankaran, Subramanian

    2003-01-01

    Immediately after mixing, the two-phase-like colloid-polymer critical point sample begins to phase separate, or de-mix, into two phases-one that resembles a gas and one that resembles a liquid, except that the particles are colloids and not atoms. The colloid-poor black regions (colloidal gas) grow bigger, and the colloid-rich white regions (colloidal liquid) become whiter as the domains further coarsen. Finally, complete phase separation is achieved, that is, just one region of each colloid-rich (white) and colloid-poor (black) phase. This process was studied over four decades of length scale, from 1 micrometer to 1 centimeter.

  10. Fast microbial reduction of ferrihydrite colloids from a soil effluent

    Science.gov (United States)

    Fritzsche, Andreas; Bosch, Julian; Rennert, Thilo; Heister, Katja; Braunschweig, Juliane; Meckenstock, Rainer U.; Totsche, Kai U.

    2012-01-01

    Recent studies on the microbial reduction of synthetic iron oxide colloids showed their superior electron accepting property in comparison to bulk iron oxides. However, natural colloidal iron oxides differ in composition from their synthetic counterparts. Besides a potential effect of colloid size, microbial iron reduction may be accelerated by electron-shuttling dissolved organic matter (DOM) as well as slowed down by inhibitors such as arsenic. We examined the microbial reduction of OM- and arsenic-containing ferrihydrite colloids. Four effluent fractions were collected from a soil column experiment run under water-saturated conditions. Ferrihydrite colloids precipitated from the soil effluent and exhibited stable hydrodynamic diameters ranging from 281 (±146) nm in the effluent fraction that was collected first and 100 (±43) nm in a subsequently obtained effluent fraction. Aliquots of these oxic effluent fractions were added to anoxic low salt medium containing diluted suspensions of Geobacter sulfurreducens. Independent of the initial colloid size, the soil effluent ferrihydrite colloids were quickly and completely reduced. The rates of Fe2+ formation ranged between 1.9 and 3.3 fmol h-1 cell-1, and are in the range of or slightly exceeding previously reported rates of synthetic ferrihydrite colloids (1.3 fmol h-1 cell-1), but greatly exceeding previously known rates of macroaggregate-ferrihydrite reduction (0.07 fmol h-1 cell-1). The inhibition of microbial Fe(III) reduction by arsenic is unlikely or overridden by the concurrent enhancement induced by soil effluent DOM. These organic species may have increased the already high intrinsic reducibility of colloidal ferrihydrite owing to quinone-mediated electron shuttling. Additionally, OM, which is structurally associated with the soil effluent ferrihydrite colloids, may also contribute to the higher reactivity due to increasing solubility and specific surface area of ferrihydrite. In conclusion, ferrihydrite

  11. Development of Dual Quantitative Lateral Flow Immunoassay for the Detection of Mycotoxins.

    Science.gov (United States)

    Wang, Yuan-Kai; Yan, Ya-Xian; Sun, Jian-He

    2017-01-01

    Lateral flow immunoassays have been widely used in recent years for detection of toxins, heavy metals, and biomarkers. To improve the efficiency of individual lateral flow immunoassays, multiplex analytical strips play an important role in the detection of several important analytes. In this chapter, development of a dual lateral flow immunoassay is presented for detection of a variety of low molecular weight molecules. Various buffers, additives, and materials are introduced and evaluated. Depending on the analyte to be tested, the technique allows for selection of optimum buffers, additives, and other materials.

  12. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    NARCIS (Netherlands)

    Wolthoorn, A.; Temminghoff, E.J.M.; Riemsdijk, van W.H.

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the

  13. Explorative analysis of microbes, colloids and gases

    Energy Technology Data Exchange (ETDEWEB)

    Hallbeck, Lotta; Pedersen, Karsten (Microbial Analytics Sweden AB, Goeteborg (Sweden))

    2008-08-15

    The overall objectives of the hydrogeochemical description for Forsmark are to establish a detailed understanding of the hydrogeochemical conditions at the site and to develop models that fulfil the needs identified by the safety assessment groups during the site investigation phase. Issues of concern to safety assessment are radionuclide transport and technical barrier behaviour, both of which are dependent on the chemistry of groundwater and pore water and their evolution with time. In this report, part of the final hydrogeochemical evaluation work of the site investigation at the Forsmark site, is presented. The work was conducted by SKB's hydrogeochemical project group, ChemNet, which consists of independent consultants and Univ. researchers with expertise in geochemistry, hydrochemistry, hydrogeochemistry, microbiology, geomicrobiology, analytical chemistry etc. The resulting site descriptive model version, mainly based on 2.2 data and complementary 2.3 data, was carried out during September 2006 to December 2007. This report focuses on microbiology, colloids and gases: - Microbes (Chapter 1): Several methods must be used to characterize active microbial communities in groundwater. Microbial parameters of interest are the total number of cells (TNC) and the presence of various metabolic groups of microorganisms. Different microbial groups influence the environment in different ways, depending on what metabolic group is dominant. Typically, the following redox couples are utilized by bacteria in granitic groundwater: H{sub 2}O/O{sub 2}, NO{sub 3}-/N{sub 2}, Mn2+/Mn(IV), Fe2+/Fe(III), S2-/SO{sub 4}2-, CH{sub 4}/CO{sub 2}, CH{sub 3}COOH/CO{sub 2}, and H{sub 2}/H+. The data will indicate the activity of specific microbial populations at particular sites and how they may affect the geochemistry. - Colloids (Chapter 2): Particles in the size range from 1 to 1x10-3 mum are regarded as colloids. Their small size prohibits them from settling, which gives them the

  14. Sustainable steric stabilization of colloidal titania nanoparticles

    Science.gov (United States)

    Elbasuney, Sherif

    2017-07-01

    A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180-240 °C to ensure DDSA ring opening and binding to titania nanoparticles. Organic-modified titania demonstrated complete change in surface properties from hydrophilic to hydrophobic and exhibited phase transfer from the aqueous phase to the organic phase. Exclusive surface modification in the reactor was found to be an effective approach; it demonstrated surfactant loading level 2.2 times that of post synthesis surface modification. Titania was also stabilized in aqueous media using poly acrylic acid (PAA) as polar polymeric dispersant. PAA-titania nanoparticles demonstrated a durable amorphous polymeric layer of 2 nm thickness. This

  15. Electrostatic Complexation between Membrane and Colloid

    Science.gov (United States)

    Wang, Jiafang; Muthukumar, M.

    2006-03-01

    As a primary model of endocytosis, the electrostatic complexation between membrane and colloid is studied. Using a simple approximation, the membrane shape can be determined easily without solving the nonlinear differential shape equation, which facilitates the consideration of electrostatic effects. The phase diagram for the electrostatic complexes can be constructed in terms of the rescaled stretching tension, adhesion strength, and the screening length. By referring to the phase diagram, the possible phase transitions due to the variations of the electrostatic factors (including the charge density, and the screening length) are discussed.

  16. Chiral edge fluctuations of colloidal membranes

    Science.gov (United States)

    Jia, Leroy; Zakhary, Mark; Dogic, Zvonimir; Pelcovits, Robert; Powers, Thomas

    Using experiments and theory we study chiral fluctuations of the edge of a nearly flat colloidal membrane, consisting of rod-like viruses held together by the depletion interaction. Our measurements show an anomalous peak in the power spectrum around 1 inverse micron. Using an effective theory to describe the liquid crystal degrees of freedom by geometric properties of the edge, such as length, geodesic torsion, and curvature, we calculate the spectrum of out-of-plane edge fluctuations. The peak arises for sufficiently strong chirality, and corresponds to the instability of a flat membrane to a shape with helical, rippled edges.

  17. Introduction to Applied Colloid and Surface Chemistry

    DEFF Research Database (Denmark)

    Kontogeorgis, Georgios; Kiil, Søren

    on water. Food companies want to develop healthy, tasty but also long-lasting food products which appeal to the environmental authorities and the consumer. Detergent and enzyme companies are working to develop improved formulations which clean more persistent stains, at lower temperatures and amounts......, to the benefit of both the environment and our pocket. Cosmetics is also big business! Creams, lotions and other personal care products are really just complex emulsions. All of the above can be explained by the principles and methods of colloid and surface chemistry. A course on this topic is truly valuable...

  18. Dips and rims in dried colloidal films.

    Science.gov (United States)

    Parneix, C; Vandoolaeghe, P; Nikolayev, V S; Quéré, D; Li, J; Cabane, B

    2010-12-31

    We describe a spatial pattern arising from the nonuniform evaporation of a colloidal film. Immediately after the film deposition, an obstacle is positioned above its free surface, minimizing evaporation at this location. In a first stage, the film dries everywhere but under the obstacle, where a liquid region remains. Subsequently, this liquid region evaporates near its boundaries with the dry film. This loss of water causes a flow of liquid and particles from the center of the obstructed region to its periphery. The final film has a dip surrounded by a rim whose diameter is set by the obstacle. This turns out to be a simple technique for structuring films of nanometric thickness.

  19. Size determinations of colloidal fat emulsions

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Klaus, Katrin; Steiniger, Frank

    2009-01-01

    Size and size distributions of colloidal dispersions are of crucial importance for their performance and safety. In the present study, commercially available fat emulsions (Lipofundin N, Lipofundin MCT and Lipidem) were analyzed by photon correlation spectroscopy, laser diffraction with adequate...... but a slightly smaller size was indicated by all methods for Lipidem. Sub-micron resolution was best in the Coulter LS but the fraction of larger particles in the upper nm-range was presumably underestimated. The emulsions could be analyzed in a highly reproducible manner by asymmetrical flow field...

  20. Colloid research for the Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, E.A.

    1992-05-01

    Research is needed to understand the role of particulates in the migration of radionuclides away from the sites of nuclear tests at the Nevada Test Site. The process of testing itself may produce a reservoir of particles to serve as vectors for the transport of long-lived radionuclides in groundwater. Exploratory experiments indicate the presence of numerous particulates in the vicinity of the Cambric test but a much lower loading in a nearby well that has been pumped continuously for 15 years. Recent groundwater colloid research is briefly reviewed to identify sampling and characterization methods that may be applicable at the Nevada Test Site.

  1. Dual FITC lateral flow immunoassay for sensitive detection of Escherichia coli O157:H7 in food samples.

    Science.gov (United States)

    Song, Chunmei; Liu, Jinxin; Li, Jianwu; Liu, Qing

    2016-11-15

    A pattern of signal amplification lateral flow immunoassay (LFIA) for pathogen detection, which used fluorescein isothiocyanate (FITC) labeled antigen and antibody for dual FITC-LFIA was developed. Escherichia coli O157:H7 (E.coli O157:H7) was selected as the model analyte. In the signal amplification LFIA method, FITC was mixed with sample culture medium, with the presence of E.coli O157:H7 in the samples, the bacteria could emit a yellow-green fluorescence after incubation, creating a fluorescent antigen probe. This antigen probe was added to LFIA, which already contained E.coli O157:H7 monoclonal antibodies-FITC (McAb-E.coli O157:H7-FITC) dispersed in the conjugate pad. Another E.coli O157:H7 McAb was the test line, and goat anti-mouse IgG antibody was the control line in nitrocellulose (NC) membrane. The visual limit of detection (LOD) of the strip for qualitative detection was 10(5) CFU/mL while the LOD for semi-quantitative detection could down to 10(4) CFU/mL by using scanning reader. Signal amplification LFIA was perfectly applied to the detection of food samples with E.coli O157:H7. The LOD was substantially improved to 1 CFU/mL of the original bacterial content after pre-incubation of the bread, milk and jelly samples in broth for 10, 8 and 8h respectively. The results of this method was more sensitive by 10-fold than the conventional colloidal gold (CG) based strips and comparable to the traditional ELISA. This simple, low-cost and easy to be popularized method served as a significant step towards the development of monitoring food-borne pathogens in food-safety testing. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Photoelectrochemical studies on colloidal copper (I) oxide/modified ...

    Indian Academy of Sciences (India)

    ... of the organic monomer such as ionization potential (IP), electron affinity (EA) and energy bandgap (Eg), and the barrier height at the IOI interface. Stability of the colloidal system is attributed to the physical dimensions of the photoactive system. The nano-colloidal particle offers a condition where its size is less than √.

  3. Particle Trapping and Banding in Rapid Colloidal Solidification

    KAUST Repository

    Elliott, J. A. W.

    2011-10-11

    We derive an expression for the nonequilibrium segregation coefficient of colloidal particles near a moving solid-liquid interface. The resulting kinetic phase diagram has applications for the rapid solidification of clay soils, gels, and related colloidal systems. We use it to explain the formation of bandlike defects in rapidly solidified alumina suspensions. © 2011 American Physical Society.

  4. Magnetic nanostructures obtained by colloidal crystallization onto patterned substrates

    Energy Technology Data Exchange (ETDEWEB)

    Crisan, O.; Angelakeris, M. E-mail: agelaker@auth.gr; Vouroutzis, N.; Crisan, A.D.; Pavlidou, E.; Kostic, I.; Sobal, N.; Giersig, M.; Flevaris, N.K

    2004-05-01

    Colloidal solutions of magnetic nanoparticles are regularly dispersed onto patterned substrates in order to form novel magnetic nanostructures. The morphology of these nanostructures is investigated by atomic force microscopy (AFM) and scanning electron microscopy (SEM) and their structure is correlated with magnetic properties. It is shown that, depending on the nature of the substrate, different nanoparticle growth modes are identified during the colloidal crystallization.

  5. Preferences for colloid use in Scandinavian intensive care units

    DEFF Research Database (Denmark)

    2008-01-01

    Fluid resuscitation is a frequent intervention in intensive care. Colloids are widely used, but recent data suggest harm by some of these solutions. This calls for more clinical studies on this matter, but the current preferences for colloid use in Scandinavian intensive care units (ICUs...

  6. Comparison of intravenous colloid and colloid‑crystalloid ...

    African Journals Online (AJOL)

    2013-09-25

    Sep 25, 2013 ... Context: Many studies comparing different intravenous fluid types usually do not use equipotent volumes of three to one crystalloid to colloid ratio in such comparisons. Conflicting results emanate from such studies. Aim: This study was designed to compare the efficacy of equipotent volumes of colloid and ...

  7. Stable Colloidal Drug Aggregates Catch and Release Active Enzymes

    Science.gov (United States)

    McLaughlin, Christopher K.; Duan, Da; Ganesh, Ahil N.; Torosyan, Hayarpi

    2016-01-01

    Small molecule aggregates are considered nuisance compounds in drug discovery, but their unusual properties as colloids could be exploited to form stable vehicles to preserve protein activity. We investigated the co-aggregation of seven molecules chosen because they had been previously intensely studied as colloidal aggregators, co-formulating them with bis-azo dyes. The co-formulation reduced colloid sizes to colloid formulations are more stable than previous aggregator particles. Specifically, co-aggregation of Congo Red with sorafenib, tetraiodophenolphthalein (TIPT) or vemurafenib produced particles that are stable in solutions of high ionic strength and high protein concentrations. Like traditional, single compound colloidal aggregates, the stabilized colloids adsorbed and inhibited enzymes like β-lactamase, malate dehydrogenase and trypsin. Unlike traditional aggregates, the co-formulated colloid-protein particles could be centrifuged and re-suspended multiple times, and from re-suspended particles, active trypsin could be released up to 72 hours after adsorption. Unexpectedly, the stable colloidal formulations can sequester, stabilize, and isolate enzymes by spin-down, resuspension and release. PMID:26741163

  8. Gas-liquid phase coexistence in colloidal suspensions

    NARCIS (Netherlands)

    Gruenberg, H.H.; Roij, R. van; Klein, G.

    2001-01-01

    We describe a charge-stabilized colloidal suspension within a Poisson-Boltzmann cell model and calculate the free energy as well as the compressibility as a function of colloidal density. The same quantities are also calculated from the linearized Poisson-Boltzmann equation. Comparing nonlinear

  9. Predicting colloid transport through saturated porous media: A critical review

    National Research Council Canada - National Science Library

    Molnar, Ian L; Johnson, William P; Gerhard, Jason I; Willson, Clinton S; O'Carroll, Denis M

    2015-01-01

    ... of field‐scale predictions may be constrained by the simplifying assumptions built into mechanistic models, correlation equations, and their relationship to our growing understanding of actual, pore‐scale colloid behavior. Prediction of colloid transport through the subsurface is important for a wide range of environmental and human‐health...

  10. Fabrication and Characterization of Colloidal Crystal Thin Films

    Science.gov (United States)

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  11. Highly Elastic and Self-Healing Composite Colloidal Gels.

    NARCIS (Netherlands)

    Diba, M.; Wang, H.; Kodger, T.E.; Parsa, S.; Leeuwenburgh, S.C.G.

    2017-01-01

    Composite colloidal gels are formed by the pH-induced electrostatic assembly of silica and gelatin nanoparticles. These injectable and moldable colloidal gels are able to withstand substantial compressive and tensile loads, and exhibit a remarkable self-healing efficiency. This study provides new,

  12. Self-Assembly of Magnetic Colloids in Soft Confinement

    NARCIS (Netherlands)

    Liu, P.

    2016-01-01

    The central theme in this thesis is the effect of the soft confinements consisting of molecular microtubes and fluid interfaces, on the self-assembly of colloids. We have specially focused on the synthesis of magnetic colloids and the magnetic responses of self-assembled structures including

  13. Iron-rich colloids as carriers of phosphorus in streams

    NARCIS (Netherlands)

    Baken, Stijn; Regelink, Inge C.; Comans, Rob N.J.; Smolders, Erik; Koopmans, Gerwin F.

    2016-01-01

    Colloidal phosphorus (P) may represent an important fraction of the P in natural waters, but these colloids remain poorly characterized. In this work, we demonstrate the applicability of asymmetric flow field-flow fractionation (AF4) coupled to high resolution ICP-MS for the characterization of

  14. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  15. Experiments in which oil, water and colloidal particles meet

    NARCIS (Netherlands)

    Elbers, N.A.

    2015-01-01

    In this thesis, the results are reported of experimental studies in which oil, water and colloidal particles meet. Colloidal particles are particles that have at least one characteristic length scale in the range between a few nanometers (nm) and several micrometers (μm). Mixtures of oil and water,

  16. Colloidal interactions in two-dimensional nematic emulsions

    Indian Academy of Sciences (India)

    Abstract. We review theoretical and experimental work on colloidal interactions in two- dimensional (2D) nematic emulsions. We pay particular attention to the effects of (i) the nematic elastic constants, (ii) the size of the colloids, and (iii) the boundary conditions at the particles and the container. We consider the interactions ...

  17. Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media

    DEFF Research Database (Denmark)

    Sharma, Anu; Kawmoto, Ken; Møldrup, Per

    2012-01-01

    A series of column experiments was conducted to investigate the transport and deposition of variably charged colloids in saturated porous media. Soil colloids with diameters volcanic-ash soil from Nishi-Tokyo (referred to here as VAS colloids) and a red-yellow soil from...... Okinawa (RYS colloids) in Japan. The VAS colloids exhibited a negative surface charge with a high pH dependency, whereas the RYS colloids exhibited a negative surface charge with less pH dependency. The soil colloids were applied as colloidal suspensions to 10-cm-long saturated sand columns packed....... Breakthrough curves and deposition profiles for soil colloids were strong functions of the hydrodynamics, solution pH, and surface charge of the colloids and sand grains. Greater deposition was typical for lower flow rates and lower pH. The deposition of VAS colloids in both sands under low-pH conditions...

  18. Predicting colloid transport through saturated porous media: A critical review

    Science.gov (United States)

    Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.

    2015-09-01

    Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities

  19. Interactions in charged colloidal suspensions: A molecular dynamics simulation study

    Science.gov (United States)

    Padidela, Uday Kumar; Behera, Raghu Nath

    2017-07-01

    Colloidal suspensions are extensively used in everyday life and find several applications in the pharmaceutical, chemical, food industries, etc. We present the classical molecular dynamics simulation results of the structural and transport properties of charged colloidal suspensions as a function of its size, charge and concentration. The system is viewed as a two-component (colloids and counterions) primitive model consisting of spherical colloid particle (macroion) and the counterions (micro-particles), which are treated explicitly. The solvent is treated as dielectric continuum. A systematic trend in the radial distribution functions g(r), potential of mean force W(r), different thermodynamic properties and diffusion coefficients is obtained as a function of colloid charge, size and concentration. An attractive minimum in W(r) is obtained at short interparticle distance.

  20. Nonlinear machine learning and design of reconfigurable digital colloids.

    Science.gov (United States)

    Long, Andrew W; Phillips, Carolyn L; Jankowksi, Eric; Ferguson, Andrew L

    2016-09-14

    Digital colloids, a cluster of freely rotating "halo" particles tethered to the surface of a central particle, were recently proposed as ultra-high density memory elements for information storage. Rational design of these digital colloids for memory storage applications requires a quantitative understanding of the thermodynamic and kinetic stability of the configurational states within which information is stored. We apply nonlinear machine learning to Brownian dynamics simulations of these digital colloids to extract the low-dimensional intrinsic manifold governing digital colloid morphology, thermodynamics, and kinetics. By modulating the relative size ratio between halo particles and central particles, we investigate the size-dependent configurational stability and transition kinetics for the 2-state tetrahedral (N = 4) and 30-state octahedral (N = 6) digital colloids. We demonstrate the use of this framework to guide the rational design of a memory storage element to hold a block of text that trades off the competing design criteria of memory addressability and volatility.

  1. Fluorescent Immunoassay Development for PrPSc Detection and Antemortem Diagnosis of TSEs

    National Research Council Canada - National Science Library

    Carp, Richard I

    2005-01-01

    The overall goal of our study is to develop methods of high-sensitivity and high-specificity for the antemortem diagnosis of prion diseases by detecting PrPSc in biological fluids using fluorescent immunoassay...

  2. Fluorescent Immunoassay Development for PrP(Sc) Detection and Antemortem Diagnosis of TSEs

    National Research Council Canada - National Science Library

    Carp, Richard I

    2004-01-01

    The overall goal of our study is to develop methods of high-sensitivity and high-specificity for the antemortem diagnosis of prion diseases by detecting PrPsc in biological fluids using fluorescent immunoassay...

  3. An Inexpensive, Fast and Sensitive Quantitative Lateral Flow Magneto-Immunoassay for Total Prostate Specific Antigen

    Science.gov (United States)

    Barnett, Jacqueline M.; Wraith, Patrick; Kiely, Janice; Persad, Raj; Hurley, Katrina; Hawkins, Peter; Luxton, Richard

    2014-01-01

    We describe the detection characteristics of a device the Resonant Coil Magnetometer (RCM) to quantify paramagnetic particles (PMPs) in immunochromatographic (lateral flow) assays. Lateral flow assays were developed using PMPs for the measurement of total prostate specific antigen (PSA) in serum samples. A detection limit of 0.8 ng/mL was achieved for total PSA using the RCM and is at clinically significant concentrations. Comparison of data obtained in a pilot study from the analysis of serum samples with commercially available immunoassays shows good agreement. The development of a quantitative magneto-immunoassay in lateral flow format for total PSA suggests the potential of the RCM to operate with many immunoassay formats. The RCM has the potential to be modified to quantify multiple analytes in this format. This research shows promise for the development of an inexpensive device capable of quantifying multiple analytes at the point-of-care using a magneto-immunoassay in lateral flow format. PMID:25587419

  4. A sensitive rapid on-site immunoassay for heavy metal contamination

    Energy Technology Data Exchange (ETDEWEB)

    Blake, R.; Blake, D.; Flowers, G.

    1996-05-02

    This project concerns the development of immunoassays for heavy metals that will permit the rapid on-site analysis of specific heavy metals, including lead and chromium in water and soil samples. 2 refs.

  5. Rapid Sediment Characterization of PCB With Elisa: An Immunoassay Technique a Rapid Sediment Characterization (RSC) Tool

    National Research Council Canada - National Science Library

    Ta, Nick

    2001-01-01

    ...) immunoassay test kits for screening of PCBs in sediment samples. Traditional sampling and analysis methods of marine ecosystems, namely sediment, do not always provide the information needed in a timely and cost effective manner...

  6. Occurrence and fate of colloids and colloid-associated metals in a mining-impacted agricultural soil upon prolonged flooding.

    Science.gov (United States)

    Xia, Bing; Qiu, Hao; Knorr, Klaus-Holger; Blodau, Christian; Qiu, Rongliang

    2018-04-15

    Colloids formed during soil flooding can potentially facilitate the mobilization of metal contaminants. Here, laboratory batch incubations with a contaminated soil were performed to monitor temporal changes in the porewater dynamics of metals, the morphology and composition of colloids, and the speciation of colloids-associated metals during 30 days of flooding. The concentrations of colloidal and dissolved metals increased initially and peaked at a certain time, but then decreased with the on-going sulfate reduction. The combined analysis of spectrometric, spectroscopic, and size-fractionation results revealed that the dynamics of Cu were dominated by microbe-associated colloids and were mediated largely by Cu(0) biomineralization and subsequent sulfidation, while the microbe-associated and freely dispersed colloids were equally relevant for governing the dynamics of Cd and Pb. Mobilization of Zn, on the other hand, was dominated by its dissolved form, probably due to the low thermodynamic stability of Zn-sulfide. Additionally, adsorption via organic functional groups was another mechanism for metal incorporation into colloids. We also provided direct spectroscopic evidence for the formation and persistence of dispersed heterocolloids consisting of Cu x S and CdS during flooding. Our findings suggest that colloids-induced metal mobilization should be considered in assessing bioavailability and risks of metals in contaminated soils upon flooding. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Colloidal Quantum Dot Photovoltaics: A Path Forward

    KAUST Repository

    Kramer, Illan J.

    2011-11-22

    Colloidal quantum dots (CQDs) offer a path toward high-efficiency photovoltaics based on low-cost materials and processes. Spectral tunability via the quantum size effect facilitates absorption of specific wavelengths from across the sun\\'s broad spectrum. CQD materials\\' ease of processing derives from their synthesis, storage, and processing in solution. Rapid advances have brought colloidal quantum dot photovoltaic solar power conversion efficiencies of 6% in the latest reports. These achievements represent important first steps toward commercially compelling performance. Here we review advances in device architecture and materials science. We diagnose the principal phenomenon-electronic states within the CQD film band gap that limit both current and voltage in devices-that must be cured for CQD PV devices to fulfill their promise. We close with a prescription, expressed as bounds on the density and energy of electronic states within the CQD film band gap, that should allow device efficiencies to rise to those required for the future of the solar energy field. © 2011 American Chemical Society.

  8. Predicting tensorial electrophoretic effects in asymmetric colloids

    Science.gov (United States)

    Mowitz, Aaron J.; Witten, T. A.

    2017-12-01

    We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970), 10.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).

  9. Dynamics and Rheology of Soft Colloidal Glasses

    KAUST Repository

    Wen, Yu Ho

    2015-01-20

    © 2015 American Chemical Society. The linear viscoelastic (LVE) spectrum of a soft colloidal glass is accessed with the aid of a time-concentration superposition (TCS) principle, which unveils the glassy particle dynamics from in-cage rattling motion to out-of-cage relaxations over a broad frequency range 10-13 rad/s < ω < 101 rad/s. Progressive dilution of a suspension of hairy nanoparticles leading to increased intercenter distances is demonstrated to enable continuous mapping of the structural relaxation for colloidal glasses. In contrast to existing empirical approaches proposed to extend the rheological map of soft glassy materials, i.e., time-strain superposition (TSS) and strain-rate frequency superposition (SRFS), TCS yields a LVE master curve that satis fies the Kramers-Kronig relations which interrelate the dynamic moduli for materials at equilibrium. The soft glassy rheology (SGR) model and literature data further support the general validity of the TCS concept for soft glassy materials.

  10. Estrogen receptor determination in endometrial carcinoma: ligand binding assay versus enzyme immunoassay

    DEFF Research Database (Denmark)

    Nyholm, H C; Nielsen, Anette Lynge; Lyndrup, J

    1995-01-01

    We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA, and cyto......We compared concentrations of cytosolic estrogen receptors (ERc) measured in 35 postmenopausal endometrial carcinomas by ligand binding method (LBA) (dextran-coated charcoal assay) and enzyme immunoassay (EIA). Correlations between ERc, nuclear estrogen receptors (ERn) determined by EIA...

  11. Large-scale assembly of colloidal particles

    Science.gov (United States)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  12. Screening for antibodies against Treponema pallidum with chemiluminescent microparticle immunoassay: analysis of discordant serology results and clinical characterization.

    Science.gov (United States)

    Li, Zhiyan; Feng, Zhenru; Liu, Ping; Yan, Cunling

    2016-09-01

    Traditionally, testing for syphilis has consisted of initial screening with a non-treponemal test, then retesting reactive specimens with a treponemal test. Recent availability of a chemiluminescent microparticle immunoassay for detecting antibodies against Treponema pallidum has led several laboratories in China to adopt chemiluminescent microparticle immunoassay for screening of syphilis, with subsequent testing of reactive serum samples with non-treponemal tests. We evaluated the utility of chemiluminescent microparticle immunoassay for routine screening of syphilis. Antibodies against Treponema pallidum were screened in 20,550 serum samples using chemiluminescent microparticle immunoassay. Chemiluminescent microparticle immunoassay-positive samples were reflexively tested with rapid plasma reagin tests and Treponema pallidum particle agglutination assays. Dot-immunoblot assays were used to confirm results of chemiluminescent microparticle immunoassay-positive and Treponema pallidum particle agglutination-negative serum samples. Overall, 267 samples (1.3%) were chemiluminescent microparticle immunoassay-positive, and 185 (69.3%) of those chemiluminescent microparticle immunoassay-positive serum samples were also Treponema pallidum particle agglutination-positive. Samples' signal to cut-off ratio for chemiluminescent microparticle immunoassay correlated with diagnostic reliability, as greater samples' signal to cut-off ratio corresponded with greater concordance between chemiluminescent microparticle immunoassay and Treponema pallidum particle agglutination results. Dot-immunoblot testing of 82 chemiluminescent microparticle immunoassay-positive and Treponema pallidum particle agglutination-negative serum samples showed that 16 samples (19.5%) were Dot-immunoblot-positive, 28 (34.2%) were indeterminate and 38 (46.3%) were negative. Because there is a certain percentage of false-positive results using chemiluminescent microparticle immunoassay for routine

  13. Do all screening immunoassay positive buprenorphine samples need to be confirmed?

    Science.gov (United States)

    Saleem, Mohamed; Martin, Helen; Tolya, Anne; Coates, Penny

    2017-11-01

    Background Interference from opiates in the Microgenics CEDIA® Buprenorphine assay is known to produce false-positive buprenorphine screening immunoassay results necessitating confirmatory buprenorphine testing by chromatography/mass spectrometry methods. Method We reviewed data on falsely positive buprenorphine immunoassay screen (cut-off ≥ 5  µg/L) but negative for buprenorphine by gas chromatography mass spectrometry (cut-off ≥ 5  µg/L) and had a positive opiate immunoassay result (cut-off ≥ 300  µg/L). The results were collected over three months, and the data were evaluated to determine whether there is an opiate immunoassay screen concentration below which a false-positive buprenorphine result will not occur. Results We found that cross-reactivity in the CEDIA® buprenorphine immunoassay by opiates at concentrations buprenorphine result. After changing our practice to not proceed with confirmatory buprenorphine gas chromatography mass spectrometry assay when the opiate screening concentration is below an even more conservative cut-off of buprenorphine immunoassay screen do not require confirmatory testing for buprenorphine.

  14. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    Science.gov (United States)

    Löwen, Hartmut

    2012-11-01

    Colloidal dispersions have long been proven as pivotal model systems for equilibrium phase transition such as crystallization, melting and liquid-gas phase transition. The last decades have revealed that this is also true for nonequilibrium phenomena. In fact, the fascinating possibility to track the individual trajectories of colloidal particles has greatly advanced our understanding of collective behaviour in classical many-body systems and has helped to reveal the underlying physical principles of glass transition, crystal nucleation, and interfacial dynamics (to name just a few typical nonequilibrium effects). External fields can be used to bring colloids out of equilibrium in a controlled way. Different kinds of external fields can be applied to colloidal dispersions, namely shear flow, electric, magnetic and laser-optical fields, and confinement. Typical research areas can be sketched with the by now traditional complexity diagram (figure 1). The complexity of the colloidal system itself as embodied in statistical degrees of freedom is shown on the x-axis while the complexity of the problem posed, namely bulk, an inhomogeneity in equilibrium, steady state nonequilibrium and full time-dependent nonequilibrium are shown on the y-axis. The different external fields which can be imposed are indicated by the different hatched areas. figure1 Figure 1. Diagram of complexity for colloidal dispersions in external fields: while the x-axis shows the complexity of the system, the y-axis shows the complexity of the problem. Regions which can be accessed by different kinds of external fields are indicated. The arrows indicate recent research directions. Active particles are also indicated with a special complexity of internal degrees of freedom [1]. This collection of papers reflects the scientific programme of the International Conference on Colloidal Dispersions in External Fields III (CODEF III) which took place in Bonn-Bad Godesberg from 20-23 March 2012. This was the

  15. Depletion controlled surface deposition of uncharged colloidal spheres from stable bulk dispersions

    NARCIS (Netherlands)

    Ouhajji, Samia; Nylander, Tommy; Piculell, Lennart; Tuinier, Remco; Linse, Per; Philipse, Albert P.

    2016-01-01

    The competition between surface adsorption and bulk aggregation was investigated for silica colloids dispersed in cyclohexane in contact with hydrophobized silica substrates. Central to this study is that the colloids and surfaces have the same material and surface properties. Colloid-colloid and

  16. Towards true 3-dimensional BCC colloidal crystals with controlled lattice orientation

    NARCIS (Netherlands)

    Dziomkina, N.; Hempenius, Mark A.; Vancso, Gyula J.

    2009-01-01

    A fabrication method of colloidal crystals possessing the BCC crystal structure is described. BCC colloidal crystals with a thickness of up to seven colloidal layers were grown in the direction of the (100) crystal plane. Defect free colloidal crystals with a homogeneous surface coverage were

  17. The colloid investigations conducted at the Aespoe Hard Rock Laboratory during 2000-2004

    Energy Technology Data Exchange (ETDEWEB)

    Laaksoharju, Marcus [Geopoint AB, Stockholm (Sweden); Wold, Susanna [Royal Inst. of Tech., Stockholm (Sweden). School of Chemical Science and Engineering, Nuclear Chemistry] (eds.)

    2005-12-15

    In 2000, SKB decided to initiate an international colloid project at the Aespoe Hard Rock Laboratory in Sweden. The objectives of the colloid project are to: (i) study the role of bentonite as a colloid source, (ii) verify the background colloid concentration at Aespoe HRL and, (iii) investigate the potential for colloid formation/transport in natural groundwater concentrations. The experimental concepts for the colloid project are: laboratory experiments with bentonite, background field measurements of natural colloids, borehole specific bentonite colloid stability experiments and a fracture specific transport experiment. The activities concerning the laboratory experiments and background field measurements are described in this work; the other activities are ongoing or planned. The following conclusions were made: The bentonite colloid stability is strongly dependent on the groundwater ionic strength. Natural colloids are organic degradation products such as humic and fulvic acids, inorganic colloids (clay, calcite, iron hydroxide) and microbes. Microbes form few but large particles and their concentration increase with increasing organic carbon concentrations. The small organic colloids are present in very low concentrations in deep granitic groundwater. The concentrations can be rather high in shallow waters. The colloid concentration decreases with depth and salinity, since colloids are less stable in saline waters. The colloid content at Aespoe is less than 300 ppb. The colloid content at repository level is less than 50 ppb. The groundwater variability obtained in the boreholes reflects well the natural groundwater variability along the whole HRL tunnel.

  18. A Microsystem for Magnetic Immunoassay Based on Planar Microcoil Array.

    Science.gov (United States)

    Zheng, Yushan; Shang, Nan; Haddad, Pierre S; Sawan, Mohamad

    2016-04-01

    This work focuses on the circuit and system implementation of a microsystem platform for magnetic immunoassay, which is a novel type of diagnostic method using magnetic beads as labels. Three main challenges facing this work-design of a high performance sensor, packaging technique and design of integrated circuits are discussed. Planar microcoil array are exploited as sensor of magnetic beads, whereas ultra thin bottom microplate in traditional ELISA is used for the assay. Main circuits blocks include bidirectional current supply circuit, magnetic field sensing circuit and on-chip temperature sensor. Experiments using mouse IgG with different densities were performed on the proposed platform, results show that a minimum density of 100 pg/mL can be detected, which is a comparable sensitivity to conventional optical ELISA, and a quantitative relationship can be acquired in the range from 1 ng/ml to 1 ug/ml, thus this platform is suitable for quantitative analysis in practical health and environment application and has potential for medical diagnostics, food pathogen detection or water analysis.

  19. Nanoparticle-based immunosensors and immunoassays for aflatoxins

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xu; Niessner, Reinhard [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany); Tang, Dianping [Key Laboratory of Analysis and Detection for Food Safety, MOE & Fujian Province, Department of Chemistry, Fuzhou University, Fuzhou 350108 (China); Knopp, Dietmar, E-mail: dietmar.knopp@ch.tum.de [Institute of Hydrochemistry and Chair of Analytical Chemistry, Technische Universität München, Marchioninistrasse 17, D-81377 München (Germany)

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety. - Highlights: • Novel concepts and promising applications of nanoparticle-based immunological methods for the determination of aflatoxins. • Inclusion of most important nanomaterials and hybrid nanostructures. • Inclusion of electrochemical, optical and mass-sensitive biosensors as well as optical and immunochromatographic assays.

  20. Radio-immunoassay of gastrin in human plasma

    Science.gov (United States)

    Ganguli, P. C.; Hunter, W. M.

    1972-01-01

    1. A radio-immunoassay for gastrin has been developed using partially purified porcine gastrin to raise antibodies and highly purified natural porcine gastrin I for radio-iodination with 125I. The separation of antibody-bound from free hormone was performed by a double-antibody method. 2. In this assay highly purified natural porcine gastrin I, synthetic human gastrin I, radio-iodinated porcine gastrin I, gastrin in the plasma of a healthy volunteer, a patient with pernicious anaemia and another patient with the Zollinger—Ellison syndrome were immunologically identical. 3. The fasting plasma gastrin concentration of fourteen gastric ulcer patients was significantly higher than that of the 113 hospital controls with no history of gastro-intestinal disease, while twenty-seven duodenal ulcer patients had gastrin levels within the normal range. 4. Plasma gastrin concentration was significantly elevated in pernicious anaemia (fifty-one patients), achlorhydria (thirty-three patients), hypochlorhydria (eleven patients) and in nine patients with histologically proven Zollinger-Ellison syndrome. 5. In human volunteers a protein meal stimulated endogenous gastrin release while a carbohydrate meal did not. Atropine sulphate I.M., and hydrochloric acid orally, produced a significant fall in the level of circulating gastrin. PMID:5014108

  1. Flow cytometry based rapid duplexed immunoassay for fusarium mycotoxins.

    Science.gov (United States)

    Czéh, Árpád; Mézes, Miklós; Mandy, Francis; Szőke, Zsuzsanna; Nagyéri, György; Laufer, Noémi; Kőszegi, Balázs; Koczka, Tamás; Kunsági-Máté, Sándor; Lustyik, György

    2017-02-01

    At small food processing facilities, the most frequently used test to determine if grain-derived mycotoxin concentrations are compliant with legal limits is the enzyme-linked immunosorbent assay (ELISA). Each kit is designed to detect one of the six dangerous mycotoxins. With the increasing occurrence of coinfection of grain with multiple-mycotoxins in the field and/or during storage, ELISA is no longer a cost effective best assay option. With ELISA, each species of mycotoxin requires different sample preparation/extraction and a 45 min incubation. The alternative multiplexed assay presented here, the competitive fluorescent microsphere immunoassay (CFIA), follows current food safety standards. It handles several toxins simultaneously with a single universal extraction protocol. The authors' objective was to modify an existing commercial CFIA kit developed for bench top flow cytometry and extend its utility for point-of-need (PON) applications. The accelerated protocol offers over 60% reduction in total processing time and it detects dual mycotoxin contamination simultaneously. The observed enhanced binding kinetics equations reported here utilizing suspended solid phase particles in liquid phase, are also supported by published theoretical calculations. In the near future portable cytometry may bring rapid multiplexed PON testing to assure the safety of small food processing installations. © 2016 International Society for Advancement of Cytometry. © 2016 International Society for Advancement of Cytometry.

  2. Integrated microfluidic immunoassay for the rapid determination of clenbuterol.

    Science.gov (United States)

    Kong, Jing; Jiang, Lei; Su, Xiaoou; Qin, Jianhua; Du, Yuguang; Lin, Bingcheng

    2009-06-07

    An integrated microfluidic immunoassay system was established for high throughput analysis of clenbuterol. This system consisted of an integrated microchip and a linear confocal laser induced fluorescence (LIF) scanner. The microchip was composed of three layers: a fluidic channel layer, a PDMS membrane layer and a pneumatic control layer. The multi-layer chip was integrated with 36 pneumatic micro-valves and multiple micro-pumps to realize the flexible reagent delivery, facilitating the automatic assays with less consumption of samples and reduced analysis time. The homemade LIF scanner was able to simultaneously detect multi-channels and provide the potential capability of high throughput assays. The performance of the system was demonstrated by the determination of clenbuterol, one of the most widely used beta-agonists. Under the optimal conditions, the linear range and the limit of detection of clenbuterol were 0 approximately 5.0 ng mL(-1) and 0.088 ng mL(-1), respectively. The recovery rates determined with pig urine samples of 1.0 ng mL(-1) and 2.0 ng mL(-1) were 98.74% and 102.51% (n = 3), respectively. The total detection time was less than 30 min. The system had the potential application for rapid detection of multiple beta-agonists in clinical, pharmaceutical and chemical analyses.

  3. Evaluation of a new chemiluminescence immunoassay for diagnosis of syphilis

    Directory of Open Access Journals (Sweden)

    Mo Xiaohui

    2010-02-01

    Full Text Available Abstract Objective To assess the sensitivity, specificity, and feasibility of a new chemiluminescence immunoassay (CLIA in the diagnosis of syphilis. Methods At first, a retrospective study was conducted, using 135 documented cases of syphilis and 30 potentially interfering samples and 80 normal sera. A prospective study was also performed by testing 2, 071 unselected samples for routine screening for syphilis. CLIA was compared with a nontreponemal test (TRUST and a treponemal test (TPPA. Results There was an agreement of 100% between CLIA and TPPA in the respective study. The percentage of agreement among the 245 sera tested was 100.0%. Compared with TPPA, the specificity of CLIA was 99.9% (1817/1819, the sensitivity of CLIA was 100.0% (244/244 in the prospective study. CLIA showed 99.5% agreement with TPPA by testing 2, 071 unselected samples. And CLIA seemed to be more sensitive than TPPA in detecting the samples of primary syphilis. Conclusions CLIA is easy to perform and the indicator results are objective and unequivocal. It may be suitable for large-scale screening as a treponemal test substituted for TPPA.

  4. Enhanced lateral flow immunoassay using gold nanoparticles loaded with enzymes.

    Science.gov (United States)

    Parolo, Claudio; de la Escosura-Muñiz, Alfredo; Merkoçi, Arben

    2013-02-15

    The use of gold nanoparticles (AuNPs) as labeling carriers in combination with the enzymatic activity of the horseradish peroxidase (HRP) in order to achieve an improved optical lateral flow immunoassay (LFIA) performance is presented here. Briefly in a LFIA with an immune-sandwich format AuNPs are functionalized with a detection antibody already modified with HRP, obtaining an 'enhanced' label. Two different detection strategies have been tested: the first one following just the red color of the AuNPs and the second one using a substrate for the HRP (3 different substrates are evaluated), which produces a darker color that enhances the intensity of the previous red color of the unmodified AuNPs. In such very simple way it is gaining sensitivity (up to 1 order of magnitude) without losing the simplicity of the LFIA format, opening the way to other LFIA applications including their on-demand performance tuning according to the analytical scenario. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. A rapid lateral flow immunoassay for serological diagnosis of pertussis.

    Science.gov (United States)

    Salminen, Teppo; Knuutila, Aapo; Barkoff, Alex-Mikael; Mertsola, Jussi; He, Qiushui

    2018-03-07

    Current serological diagnosis of pertussis is usually done by ELISA. However, the ELISAs are often central-laboratory based, require trained staff and have long turnaround times. A rapid point-of-care (POC) assay for pertussis serology would aid in both diagnosis and surveillance of the disease. While lateral flow immunoassays (LFIA) are simple to use and ideal for point-of-care diagnostics, they were limited to qualitative assays until recently. In this study, we developed a quantitative LFIA with fluorescent Eu-nanoparticle reporters for the detection of anti-pertussis toxin (PT) IgG. The assay was evaluated by testing 198 serum samples with varying anti-PT IgG levels and the result was compared to those obtained with standardized anti-PT IgG ELISA. At the diagnostic cutoff of 100 IU/mL in ELISA, the LFIA had a concordance of 92% with the ELISA, with a specificity of 96% [95% confidence interval (CI): 89-99%] and a sensitivity of 88% [CI: 77-94%]. The developed LFIA has a turnaround time of one hour and requires only a simple manipulation by the user and an instrument for the quantitative detection of the signal. We conclude that the LFIA is specific and sensitive for serological diagnosis of pertussis and is suitable for a POC test. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. PhoneQuant: A smartphone-based quantitative immunoassay analyser.

    Science.gov (United States)

    Shah, Malay Ilesh; Joseph, Jayaraj; Sanne, Ujwal Sriharsha; Sivaprakasam, Mohanasankar

    2017-07-01

    There is a vital need for portable and cost-effective point-of-care (PoC) testing technologies that provide reliable and rapid results. Lateral Flow Immunoassays (LFIA) are suitable PoC diagnostic tools with the potential for use in a wide variety of field applications ranging from uses in clinical diagnostics to aiding law enforcement. Quick and reliable diagnosis of non-communicable diseases (NCD) like diabetes is vital especially in developing countries like India where the burden of these diseases is very high and is increasing day by day. In this paper, we have presented the design of smartphone-based fully quantitative LFIA analyser, An automatic image processing algorithm is also described. A repeatability study was done with stable fluorescence reference cartridges. The Coefficient of Variation (CoV) for repeatability study was calculated and it was found to be good (LFIA analysers and it has good potential to be deployed at physician's desk or for in-home PoC testing for quick and reliable diagnosis.

  7. Specific Immunoassays for Placental Alkaline Phosphatase As a Tumor Marker

    Science.gov (United States)

    Stinghen, Sérvio T.; Moura, Juliana F.; Zancanella, Patrícia; Rodrigues, Giovanna A.; Pianovski, Mara A.; Lalli, Enzo; Arnold, Dodie L.; Minozzo, João C.; Callefe, Luis G.; Ribeiro, Raul C.; Figueiredo, Bonald C.

    2006-01-01

    Human placental (hPLAP) and germ cell (PLAP-like) alkaline phosphatases are polymorphic and heat-stable enzymes. This study was designed to develop specific immunoassays for quantifying hPLAP and PLAP-like enzyme activity (EA) in sera of cancer patients, pregnant women, or smokers. Polyclonal sheep anti-hPLAP antibodies were purified by affinity chromatography with whole hPLAP protein (ICA-PLAP assay) or a synthetic peptide (aa 57–71) of hPLAP (ICA-PEP assay); the working range was 0.1–11 U/L and cutoff value was 0.2 U/L EA for nonsmokers. The intra- and interassay coefficients of variation were 3.7%–6.5% (ICA-PLAP assay) and 9.0%–9.9% (ICA-PEP assay). An insignificant cross-reactivity was noted for high levels of unheated intestinal alkaline phosphatase in ICA-PEP assay. A positive correlation between the regression of tumor size and EA was noted in a child with embryonal carcinoma. It can be concluded that ICA-PEP assay is more specific than ICA-PLAP, which is still useful to detect other PLAP/PLAP-like phenotypes. PMID:17489017

  8. Enzyme immunoassay for tenuazonic acid in apple and tomato products.

    Science.gov (United States)

    Gross, Madeleine; Curtui, Valeriu; Ackermann, Yvonne; Latif, Hadri; Usleber, Ewald

    2011-12-14

    The Alternaria mycotoxin tenuazonic acid was derivatized with succinic anhydride and conjugated to keyhole limpet hemocyanin (KLH) and to horseradish peroxidase (HRP), respectively. The KLH conjugate was used to produce polyclonal antibodies in rabbits. A competitive direct enzyme immunoassay (EIA) for tenuazonic acid was established, which was moderately sensitive for tenuazonic acid [50% inhibition concentration (IC(50)): 320 ± 130 ng/mL] but strongly reacted with tenuazonic acid acetate (IC(50): 23.3 ± 7.5 ng/mL). Therefore, an optimized EIA protocol was established, which employed acetylation of standard and sample extract solutions. The mean standard curve detection limit (IC(30)) for tenuazonic acid acetate was 5.4 ± 2.0 ng/mL, enabling detection limits for tenuazonic acid in apple and tomato products of 25-50 ng/g (150 ng/g in tomato paste). Recoveries in a concentration range of 50-2000 ng/g were 60-130% in apple juice and tomato juice and 40-150% in other tomato products. Tenuazonic acid was detected in apple juice and tomato products from German retail shops at levels of 50-200 ng/g. In conclusion, this novel EIA for tenuazonic acid could be useful within a screening program for Alternaria mycotoxins in food.

  9. Designing novel nano-immunoassays: antibody orientation versus sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    Puertas, S; Moros, M; Fernandez-Pacheco, R; Ibarra, M R; Grazu, V; De la Fuente, J M, E-mail: vgrazu@unizar.e, E-mail: jmfuente@unizar.e [Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus RIo Ebro, EdifIcio I-D, Mariano Esquillor, s/n, 50018 Zaragoza (Spain)

    2010-12-01

    There is a growing interest in the use of magnetic nanoparticles (MNPs) for their application in quantitative and highly sensitive biosensors. Their use as labels of biological recognition events and their detection by means of some magnetic method constitute a very promising strategy for quantitative high-sensitive lateral-flow assays. In this paper, we report the importance of nanoparticle functionalization for the improvement of sensitivity for a lateral-flow immunoassay. More precisely, we have found that immobilization of IgG anti-hCG through its polysaccharide moieties on MNPs allows more successful recognition of the hCG hormone. Although we have used the detection of hCG as a model in this work, the strategy of binding antibodies to MNPs through its sugar chains reported here is applicable to other antibodies. It has huge potential as it will be very useful for the development of quantitative and high-sensitive lateral-flow assays for its use on human and veterinary, medicine, food and beverage manufacturing, pharmaceutical, medical biologics and personal care product production, environmental remediation, etc.

  10. Enzyme immunoassay for mycophenolic acid in milk and cheese.

    Science.gov (United States)

    Usleber, Ewald; Dade, Melanie; Schneider, Elisabeth; Dietrich, Richard; Bauer, Johann; Märtlbauer, Erwin

    2008-08-27

    Mycophenolic acid (MPA) was reacted with N-hydroxysuccinimide and conjugated to keyhole limpet hemocyanin (KLH), and to horseradish peroxidase (HRP), respectively. The MPA-KLH was used to produce anti-MPA antiserum in rabbits. A competitive direct enzyme immunoassay (EIA) for MPA was established with anti-MPA antiserum and MPA-HRP conjugate. The mean 50% inhibition and detection limit of MPA standard curves (n = 103) were 197 +/- 67 and 81 +/- 48 pg/mL, respectively. The EIA was specific for MPA and its synthetic 2-morpholinoethyl ester, mycophenolate mofetil (91% relative cross-reactivity). Raw bulk milk and pasteurized milk, with and without beta-glucuronidase pretreatment, were analyzed by EIA. No MPA was found in milk, at a detection limit of 100 pg/mL (recovery 58-66% at 0.125-2 ng/mL). Blue-veined cheese from the German market (n = 53) was analyzed by EIA, and the detection limit was at 0.5 ng/g (recovery 68-79% at 5-100 ng/g). All but two cheeses contained MPA, although mostly (66%) at levels of Roquefort cheeses. Highest levels (4-11 microg/g) were found in a German soft cheese preparation. MPA levels in mycelium-rich parts of cheese were 3 times higher than in mycelium-free parts.

  11. Nanoparticle-based immunosensors and immunoassays for aflatoxins.

    Science.gov (United States)

    Wang, Xu; Niessner, Reinhard; Tang, Dianping; Knopp, Dietmar

    2016-03-17

    Aflatoxins are naturally existing mycotoxins produced mainly by Aspergillus flavus and Aspergillus parasiticus, present in a wide range of food and feed products. Because of their extremely high toxicity and carcinogenicity, strict control of maximum residue levels of aflatoxins in foodstuff is set by many countries. In daily routine, different chromatographic methods are used almost exclusively. As supplement, in several companies enzyme immunoassay-based sample testing as primary screening is performed. Recently, nanomaterials such as noble metal nanoparticles, magnetic particles, carbon nanomaterials, quantum dots, and silica nanomaterials are increasingly utilized for aflatoxin determination to improve the sensitivity and simplify the detection. They are employed either as supports for the immobilization of biomolecules or as electroactive or optical labels for signal transduction and amplification. Several nanoparticle-based electrochemical, piezoelectric, optical, and immunodipstick assays for aflatoxins have been developed. In this review, we summarize these recent advances and illustrate novel concepts and promising applications in the field of food safety. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. A Multiplex Microsphere Immunoassay for Zika Virus Diagnosis.

    Science.gov (United States)

    Wong, Susan J; Furuya, Andrea; Zou, Jing; Xie, Xuping; Dupuis, Alan P; Kramer, Laura D; Shi, Pei-Yong

    2017-02-01

    Rapid and accurate diagnosis of infectious agents is essential for patient care, disease control, and countermeasure development. The present serologic diagnosis of Zika virus (ZIKV) infection relies mainly on IgM-capture ELISA which is confounded with the flaw of cross-reactivity among different flaviviruses. In this communication, we report a multiplex microsphere immunoassay (MIA) that captures the diagnostic power of viral envelope protein (that elicits robust, yet cross-reactive antibodies to other flaviviruses) and the differential power of viral nonstructural proteins NS1 and NS5 (that induce more virus-type specific antibodies). Using 153 patient specimens with known ZIKV and/or dengue virus (DENV; a closely related flavivirus) infections, we showed that (i) ZIKV envelope-based MIA is equivalent or more sensitive than IgM-capture ELISA in diagnosing ZIKV infection, (ii) antibody responses to NS1 and NS5 proteins are more ZIKV-specific than antibody response to envelope protein, (iii) inclusion of NS1 and NS5 in the MIA improves the diagnostic accuracy when compared with the MIA that uses envelope protein alone. The multiplex MIA achieves a rapid diagnosis (turnaround timeZIKV infection and for monitoring immune responses in vaccine trials. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A Multiplex Microsphere Immunoassay for Zika Virus Diagnosis

    Directory of Open Access Journals (Sweden)

    Susan J. Wong

    2017-02-01

    Full Text Available Rapid and accurate diagnosis of infectious agents is essential for patient care, disease control, and countermeasure development. The present serologic diagnosis of Zika virus (ZIKV infection relies mainly on IgM-capture ELISA which is confounded with the flaw of cross-reactivity among different flaviviruses. In this communication, we report a multiplex microsphere immunoassay (MIA that captures the diagnostic power of viral envelope protein (that elicits robust, yet cross-reactive antibodies to other flaviviruses and the differential power of viral nonstructural proteins NS1 and NS5 (that induce more virus-type specific antibodies. Using 153 patient specimens with known ZIKV and/or dengue virus (DENV; a closely related flavivirus infections, we showed that (i ZIKV envelope-based MIA is equivalent or more sensitive than IgM-capture ELISA in diagnosing ZIKV infection, (ii antibody responses to NS1 and NS5 proteins are more ZIKV-specific than antibody response to envelope protein, (iii inclusion of NS1 and NS5 in the MIA improves the diagnostic accuracy when compared with the MIA that uses envelope protein alone. The multiplex MIA achieves a rapid diagnosis (turnaround time < 4 h and requires small specimen volume (10 μl in a single reaction. This serologic assay could be developed for use in clinical diagnosis of ZIKV infection and for monitoring immune responses in vaccine trials.

  14. Evaluation of three enzyme immunoassays for HIV-1 antigen detection.

    Science.gov (United States)

    Willoughby, P B; Lisker, A; Folds, J D

    1989-01-01

    Three enzyme immunoassay (EIA) methods for the detection of human immunodeficiency virus (HIV-1) were evaluated. Serum or plasma samples from 22 individuals seropositive for HIV-1 antibodies were tested with the Abbott, Coulter, and DuPont kits for presence of HIV-1 p24 antigen. Another 12 samples were tested with two kits only. Discordant results were obtained with 9 of 34 (26%) HIV-1-antibody-positive patient samples tested. Most of these discrepancies were found in samples containing less than 30 pg/ml of HIV-1 p24 core antigen. A sampling of sera from normal blood donors and patients with infectious or autoimmune diseases revealed a low level of false positive reactions, especially with sera containing antinuclear antibodies or rheumatoid factor. Noteworthy is the frequency of false positive reactions seen with the DuPont EIA for HIV-1 p24 antigen. 18/111 sera (16.2%) containing auto-antibodies tested positively with the DuPont HIV-1 p24 antigen EIA. The nonspecific nature of the test reactivity for 9/10 of these samples was confirmed using an HIV-1 p24 antigen inhibition assay. These findings are discussed in light of the need for HIV-1 antigen detection in the clinical laboratory and of other methods for HIV-1 detection: the polymerase chain reaction and measurements of reverse transcriptase activity.

  15. Sensitive, Fast, and Specific Immunoassays for Methyltestosterone Detection

    Directory of Open Access Journals (Sweden)

    Na Kong

    2015-04-01

    Full Text Available An indirect competitive enzyme-linked immunosorbent assay (icELISA and an immunochromatographic strip assay using a highly specific monoclonal antibody, were developed to detect methyltestosterone (MT residues in animal feed. The optimized icELISA had a half-inhibition concentration value of 0.26 ng/mL and a limit of detection value of 0.045 ng/mL. There was no cross-reactivity with eight analogues, revealing high specificity for MT. Based on icELISA results, the recovery rate of MT in animal feed was 82.4%–100.6%. The results were in accordance with those obtained by gas chromatography-mass spectrometry. The developed immunochromatographic strip assay, as the first report for MT detection, had a visual cut-off value of 1 ng/mL in PBS, 2.5 ng/g in fish feed, and 2.5 ng/g in pig feed. Therefore, these immunoassays are useful and fast tools for MT residue detection in animal feed.

  16. Chronoamperometry-Based Redox Cycling for Application to Immunoassays.

    Science.gov (United States)

    Lee, Ga-Yeon; Park, Jun-Hee; Chang, Young Wook; Cho, Sungbo; Kang, Min-Jung; Pyun, Jae-Chul

    2018-01-26

    In this work, the chronoamperometry-based redox cycling of 3,3',5,5'-tetramethylbenzidine (TMB) was performed by using interdigitated electrode (IDE). The signal was obtained from two sequential chronoamperometric profiles: (1) with the generator at the oxidative potential of TMB and the collector at the reductive potential of TMB, and (2) with the generator at the reductive potential of TMB and the collector at the oxidative potential of TMB. The chronoamperometry-based redox cycling (dual mode) showed a sensitivity of 1.49 μA/OD, and the redox cycling efficiency was estimated to be 94% (n = 10). The sensitivities of conventional redox cycling with the same interdigitated electrode and chronoamperometry using a single working electrode (single mode) were estimated to be 0.67 μA/OD and 0.18 μA/OD, respectively. These results showed that the chronoamperometry-based redox cycling (dual mode) could be more effectively used to quantify the oxidized TMB than other amperometric methods. The chronoamperometry-based redox cycling (dual mode) was applied to immunoassays using a commercial ELISA kit for medical diagnosis of the human hepatitis B virus surface antigen (hHBsAg). Finally, the chronoamperometry-based redox cycling (dual mode) provided more than a 10-fold higher sensitivity than conventional chronoamperometry using a single working electrode (single mode) when applied to a commercial ELISA kit for medical diagnosis of hHBsAg.

  17. Colloid-borne forms of tetravalent actinides: a brief review.

    Science.gov (United States)

    Zänker, Harald; Hennig, Christoph

    2014-02-01

    Tetravalent actinides, An(IV), are usually assumed to be little mobile in near-neutral environmental waters because of their low solubility. However, there are certain geochemical scenarios during which mobilization of An(IV) in a colloid-borne (waterborne) form cannot be ruled out. A compilation of colloid-borne forms of tetravalent actinides described so far for laboratory experiments together with several examples of An(IV) colloids observed in field experiments and real-world scenarios are given. They are intended to be a knowledge base and a tool for those who have to interpret actinide behavior under environmental conditions. Synthetic colloids containing structural An(IV) and synthetic colloids carrying adsorbed An(IV) are considered. Their behavior is compared with the behavior of An(IV) colloids observed after the intentional or unintentional release of actinides into the environment. A list of knowledge gaps as to the behavior of An(IV) colloids is provided and items which need further research are highlighted. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Structure and Stability of Colloid-Nanoparticle Mixtures

    Science.gov (United States)

    Weight, Braden M.; Denton, Alan R.

    Colloidal particles can acquire charge through dissociation of counterions in a polar solvent. The resulting electrostatic interactions between particles stabilize the suspension against aggregation due to van der Waals forces and can affect physical properties. We explore the influence of added nanoparticles on structure and phase behavior of charge-stabilized colloidal suspensions. To reduce complexity, we model electrostatic interparticle interactions via effective Yukawa (screened-Coulomb) pair potentials, which implicitly include counterions and salt ions in the Debye screening constant. Within this coarse-grained model, we perform molecular dynamics simulations of mixtures of charged colloids and nanoparticles. Over ranges of parameters (charges, sizes, and concentrations of the two species), we analyze particle configurations to compute radial distribution functions and static structure factors. These structural properties reveal that nanoparticles tend to weaken correlations between colloids, thus destabilizing colloidal crystals. We further show that nanoparticles may be implicitly incorporated into an effective colloid-colloid pair potential to facilitate modeling of complex multicomponent systems and to guide experiments and applications to nanocomposite materials. This research was supported by the National Science Foundation (Grant No. DMR-1106331).

  19. Multifunctional assembly of micrometer-sized colloids for cell sorting.

    Science.gov (United States)

    Nie, Chenyao; Wang, Bing; Zhang, Jiangyan; Cheng, Yongqiang; Lv, Fengting; Liu, Libing; Wang, Shu

    2015-06-03

    Compared to the extensively studied nanometer-sized colloids, less attention has been paid to the assembly of micrometer-sized colloids with multifunctional characteristics. To address this need, a bottom-up approach is developed for constructing self-assemblies of micrometer-sized magnetic colloids possessing multifunctionality, including magnetic, optical, and biological activities. Biotinylated oligo (p-phenylene vinylene) (OPV) derivatives are designed to mediate the self-assembly of streptavidin-modified magnetic beads. The optical element OPV derivatives provide a fluorescence imaging ability for tracing the assembly process. Target cells can be recognized and assembled by the colloidal assembly with bioactive element antibodies. The colloidal assembly reveals better cell isolation performance by its amplified magnetic response in comparison to monodisperse colloids. The self-assembly of micrometer-sized magnetic colloids through a combination of different functional ingredients to realize multifunction is conceptually simple and easy to achieve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Sustainable steric stabilization of colloidal titania nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Elbasuney, Sherif, E-mail: sherif_basuney2000@yahoo.com

    2017-07-01

    Graphical abstract: Controlled surface properties of titania nanoparticles via surface modification, flocculation from aqueous phase (a), stabilization in aqueous phase (b), extraction to organic phase (c). - Highlights: • Complete change in surface properties of titania nanoparticles from hydrophilic to hydrophobic. • Harvesting the formulated nanoparticles from the aqueous phase to the organic phase. • Exclusive surface modification in the reactor during nanoparticle synthesis. • Sustainable stabilization of titania nanoparticles in aqueous media with polar polymeric dispersant. - Abstract: A route to produce a stable colloidal suspension is essential if mono-dispersed particles are to be successfully synthesized, isolated, and used in subsequent nanocomposite manufacture. Dispersing nanoparticles in fluids was found to be an important approach for avoiding poor dispersion characteristics. However, there is still a great tendency for colloidal nanoparticles to flocculate over time. Steric stabilization can prevent coagulation by introducing a thick adsorbed organic layer which constitutes a significant steric barrier that can prevent the particle surfaces from coming into direct contact. One of the main features of hydrothermal synthesis technique is that it offers novel approaches for sustainable nanoparticle surface modification. This manuscript reports on the sustainable steric stabilization of titanium dioxide nanoparticles. Nanoparticle surface modification was performed via two main approaches including post-synthesis and in situ surface modification. The tuneable hydrothermal conditions (i.e. temperature, pressure, flow rates, and surfactant addition) were optimized to enable controlled steric stabilization in a continuous fashion. Effective post synthesis surface modification with organic ligand (dodecenyl succinic anhydride (DDSA)) was achieved; the optimum surface coating temperature was reported to be 180–240 °C to ensure DDSA ring opening

  1. Electrochemistry in Colloids and Dispersions. Volume 2. Solute Distribution, Diffusion, and Transport Colloidal Metals

    Science.gov (United States)

    1992-02-04

    Electrochemical methods and physico-chemical structures of liquid disperse systems Alain Berthod Laboratoire des Sciences Analytique , Universite...Catalyse et Chimie des Surfaces, UA. 423 du CNRS, 4 Rue Blaise Pascal, F-67070 trasbourg, France 5 pp. 11-195 to 11-216 - 20. Modern aspects of colloidal...Electrochemical Methods and Physicochemical 3I Structures of Uquid Disperse Systems I I I I Alain Berthod Laboratoire des Sciences Analytiques , UA CNRS 435

  2. The Colloid Controversy: Are Colloids Bad and What Are the Options?

    Science.gov (United States)

    Wong, Christine; Koenig, Amie

    2017-03-01

    Biologic and synthetic colloid solutions are frequently used to increase oncotic pressure and to treat shock. Research has shown that each product has both risks and benefits. Hydroxyethyl starches have gained a reputation for increasing risk of death, acute kidney injury, and coagulation abnormalities in people, but additional studies are needed to see whether these concerns hold true in veterinary patients. This article reviews the risks and benefits of currently available products. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Colloids in sepsis: evenly distributed molecules surrounded by uneven questions.

    Science.gov (United States)

    Zampieri, Fernando Godinho; Park, Marcelo; Azevedo, Luciano Cesar Pontes

    2013-05-01

    Colloids are frequently used for fluid expansion in the intensive care unit, although its use on several clinical scenarios remains unproven of any relevant clinical benefit. The purpose of this article was to carry out a narrative review regarding the safety and efficacy of colloids in patients with sepsis and septic shock, with emphasis on the most commonly used colloids, albumin and starches. Colloids are effective fluid expanders and are able to restore the hemodynamic profile with less total volume than crystalloids. These properties appear to be preserved even in patients with sepsis with increased capillary permeability. However, some colloids are associated with renal impairment and coagulation abnormalities. Starch use was associated with increased mortality in two large clinical trials. Also, starches probably have significant renal adverse effects and may be related to more need for renal replacement therapy in severe sepsis. Albumin is the only colloid that has been shown safe in patients with sepsis and that may be associated with improved outcomes on specific subpopulations. No trial so far found any robust clinical end point favoring colloid use in patients with sepsis. Because there is no proven benefit of the use of most colloids in patients with sepsis, its use should not be encouraged outside clinical trials. Albumin is the only colloid solution that has proven to be safe, and its use may be considered on hypoalbuminemic patients with sepsis. Nevertheless, there are no robust data to recommend routine albumin administration in sepsis. Starch use should be avoided in patients with sepsis because of the recent findings of a multicenter randomized study until further evidence is available.

  4. Study on Colloidal Model of Petroleum Residues through the Attraction Potential between Colloids

    Directory of Open Access Journals (Sweden)

    Long-li Zhang

    2016-01-01

    Full Text Available The samples of DaGang atmospheric residue (DG-AR, Middle East atmospheric residue (ME-AR, TaHe atmospheric residue (TH-AR, and their thermal reaction samples were chosen for study. All the samples were fractioned into six components separately, including saturates plus light aromatics, heavy aromatics, light resins, middle resins, heavy resins, and asphaltenes. The dielectric permittivity of the solutions of these components was measured, and the dielectric permittivity values of the components can be determined by extrapolation, which increased steadily from saturates plus light aromatics to asphaltenes. Moreover, the Hamaker constants of the components were calculated from their dielectric permittivity values. The Van der Waals attractive potential energy between colloids corresponding to various models could be calculated from the fractional composition and the Hamaker constants of every component. It was assumed that the cores of colloidal particles were formed by asphaltenes and heavy resins mainly; the other fractions acted as dispersion medium. For the three serials of thermal reaction samples, the Van der Waals attraction potential energy between colloids for this kind of model was calculated. For TH-AR thermal reaction samples, the Van der Waals attraction potential energy presented the maximum as thermal reaction is going on, which was near to the end of coke induction period.

  5. Zeta potential in colloid science principles and applications

    CERN Document Server

    Hunter, Robert J; Rowell, R L

    2013-01-01

    Zeta Potential in Colloid Science: Principles and Applications covers the concept of the zeta potential in colloid chemical theory. The book discusses the charge and potential distribution at interfaces; the calculation of the zeta potential; and the experimental techniques used in the measurement of electrokinetic parameters. The text also describes the electroviscous and viscoelectric effects; applications of the zeta potential to areas of colloid science; and the influence of simple inorganic ions or more complex adsorbates on zeta potential. Physical chemists and people involved in the stu

  6. Colloids in Cardiac Surgery-Friend or Foe?

    DEFF Research Database (Denmark)

    Ryhammer, Pia Katarina; Tang, Mariann; Hoffmann-Petersen, Joachim

    2017-01-01

    been applied to patients outside intensive care. The aim of this study was to evaluate the impact this change has had on the outcomes in a large population of cardiac surgery patients, with a focus on the type of colloid infusion. DESIGN: A prospective, registered, observational study, using propensity...... crystalloids or colloids. The colloid group was further divided into HES or human albumin (HA). Analyses were based on the following 3 subsections: HES versus crystalloids, HA versus crystalloids, and HES versus HA, with use of propensity score matching or direct matching of cases. Primary outcome parameters...

  7. Colloid-in-Liquid Crystal Gels Formed via Spinodal Decomposition

    Science.gov (United States)

    Pal, Santanu Kumar; de Pablo, Juan J.

    2014-01-01

    We report that colloid-in-liquid crystal (CLC) gels can be formed via a two-step process that involves spinodal decomposition of a dispersion of colloidal particles in an isotropic phase of mesogens followed by nucleation of nematic domains within the colloidal network defined by the spinodal process. This pathway contrasts to previously reported routes leading to the formation of CLC gels, which have involved entanglement of defects or exclusion of particles from growing nematic domains. The new route provides the basis of simple design rules that enable control of the microstructure and dynamic mechanical properties of the gels. PMID:24651134

  8. Two dimensional self-assembly of inverse patchy colloids

    OpenAIRE

    K, Remya Ann Mathews; Mani, Ethayaraja

    2017-01-01

    We report on the self-assembly of inverse patchy colloids (IPC) using Monte Carlo simulations in two-dimensions. The IPC model considered in this work corresponds to either bipolar colloids or colloids decorated with complementary DNA on their surfaces, where only patch and non-patch parts attract. The patch coverage is found to be a dominant factor in deciding equilibrium self-assembled structures. In particular, both regular square and triangular crystals are found to be stable at 0.5 patch...

  9. Dynamic electrophoresis of charged colloids in an oscillating electric field.

    Science.gov (United States)

    Shih, Chunyu; Yamamoto, Ryoichi

    2014-06-01

    The dynamics of charged colloids in an electrolyte solution is studied using direct numerical simulations via the smoothed profile method. We calculated the complex electrophoretic mobility μ(ω) of the charged colloids under an oscillating electric field of frequency ω. We show the existence of three dynamically distinct regimes, determined by the momentum diffusion and ionic diffusion time scales. The present results agree well with approximate theories based on the cell model in dilute suspensions; however, systematic deviations between the simulation results and theoretical predictions are observed as the volume fraction of colloids is increased, similar to the case of constant electric fields.

  10. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    Directory of Open Access Journals (Sweden)

    Tianyi Zhao

    2014-01-01

    Full Text Available This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs would be significant for PC’s applications in functional coatings and various optic devices.

  11. Fabrication of Phase-Change Polymer Colloidal Photonic Crystals

    OpenAIRE

    Tianyi Zhao; Youzhuan Zhang; Jingxia Wang; Yanlin Song; Lei Jiang

    2014-01-01

    This paper presents the preparation of phase-change polymer colloidal photonic crystals (PCs) by assembling hollow latex spheres encapsulated with dodecanol for the first time. The monodispersed hollow latex spheres were obtained by phase reversion of monodispersed core-shell latex spheres in the n-hexane, which dissolves the PS core and retains the PMMA/PAA shell. The as-prepared phase-change colloidal PCs show stable phase-change behavior. This fabrication of phase-change colloidal PCs woul...

  12. Multiple Exciton Generation in Colloidal Nanocrystals

    Directory of Open Access Journals (Sweden)

    Charles Smith

    2013-12-01

    Full Text Available In a conventional solar cell, the energy of an absorbed photon in excess of the band gap is rapidly lost as heat, and this is one of the main reasons that the theoretical efficiency is limited to ~33%. However, an alternative process, multiple exciton generation (MEG, can occur in colloidal quantum dots. Here, some or all of the excess energy is instead used to promote one or more additional electrons to the conduction band, potentially increasing the photocurrent of a solar cell and thereby its output efficiency. This review will describe the development of this field over the decade since the first experimental demonstration of multiple exciton generation, including the controversies over experimental artefacts, comparison with similar effects in bulk materials, and the underlying mechanisms. We will also describe the current state-of-the-art and outline promising directions for further development.

  13. Energy landscapes of planar colloidal clusters

    Science.gov (United States)

    Morgan, John W. R.; Wales, David J.

    2014-08-01

    A short-ranged pairwise Morse potential is used to model colloidal clusters with planar morphologies. Potential and free energy global minima as well as rearrangement paths, obtained by basin-hopping global optimisation and discrete path sampling, are characterised. The potential and free energy landscapes are visualised using disconnectivity graphs. The short-ranged potential is found to favour close-packed structures, with the potential energy primarily controlled by the number of nearest neighbour contacts. In the case of quasi-degeneracy the free energy global minimum may differ from the potential energy global minimum. This difference is due to symmetry effects, which result in a higher entropy for structures with lower symmetry.

  14. Probing colloidal particle aggregation by light scattering.

    Science.gov (United States)

    Trefalt, Gregor; Szilagyi, Istvan; Oncsik, Tamas; Sadeghpour, Amin; Borkovec, Michal

    2013-01-01

    The present article reviews recent progress in the measurement of aggregation rates in colloidal suspensions by light scattering. Time-resolved light scattering offers the possibility to measure absolute aggregation rate constants for homoaggregation as well as heteroaggregation processes. We further discuss the typical concentration dependencies of the aggregation rate constants on additives. Addition of simple salts containing monovalent counterions leads to screening of the electrostatic repulsion of the charged particles and a transition from slow to rapid aggregation. Addition of salts containing multivalent counterions may lead to a charge reversal, which results in a sequence of two instability regions. Heteroaggregation rates between oppositely charged particles decrease with increasing salt level. This decrease is caused by screening of the electrostatic attraction between these particles.

  15. Computer simulation of electrokinetics in colloidal systems

    Science.gov (United States)

    Schmitz, R.; Starchenko, V.; Dünweg, B.

    2013-11-01

    The contribution gives a brief overview outlining how our theoretical understanding of the phenomenon of colloidal electrophoresis has improved over the decades. Particular emphasis is put on numerical calculations and computer simulation models, which have become more and more important as the level of description became more detailed and refined. Due to computational limitations, it has so far not been possible to study "perfect" models. Different complementary models have hence been developed, and their various strengths and deficiencies are briefly discussed. This is contrasted with the experimental situation, where there are still observations waiting for theoretical explanation. The contribution then outlines our recent development of a numerical method to solve the electrokinetic equations for a finite volume in three dimensions, and describes some new results that could be obtained by the approach.

  16. Anomalous electrical conductivity of nanoscale colloidal suspensions.

    Science.gov (United States)

    Chakraborty, Suman; Padhy, Sourav

    2008-10-28

    The electrical conductivity of colloidal suspensions containing nanoscale conducting particles is nontrivially related to the particle volume fraction and the electrical double layer thickness. Classical electrochemical models, however, tend to grossly overpredict the pertinent effective electrical conductivity values, as compared to those obtained under experimental conditions. We attempt to address this discrepancy by appealing to the complex interconnection between the aggregation kinetics of the nanoscale particles and the electrodynamics within the double layer. In particular, we model the consequent alterations in the effective electrophoretic mobility values of the suspension by addressing the fundamentals of agglomeration-deagglomeration mechanisms through the pertinent variations in the effective particulate dimensions, solid fractions, as well as the equivalent suspension viscosity. The consequent alterations in the electrical conductivity values provide a substantially improved prediction of the corresponding experimental findings and explain the apparent anomalous behavior predicted by the classical theoretical postulates.

  17. Engineering optical soliton bistability in colloidal media

    CERN Document Server

    Matuszewski, Michal

    2010-01-01

    We consider a mixture consisting of two species of spherical nanoparticles dispersed in a liquid medium. We show that with an appropriate choice of refractive indices and particle diameters, it is possible to observe the phenomenon of optical soliton bistability in two spatial dimensions in a broad beam power range. Previously, this possibility was ruled out in the case of a single-species colloid. As a particular example, we consider the system of hydrophilic silica particles and gas bubbles generated in the process of electrolysis in water. The interaction of two soliton beams can lead to switching of the lower branch solitons to the upper branch, and the interaction of solitons from different branches is phase independent and always repulsive.

  18. Observed Dependence of Colloid Detachment on the Concentration of Initially Attached Colloids and Collector Surface Heterogeneity in Porous Media.

    Science.gov (United States)

    Li, Tiantian; Jin, Yan; Huang, Yuanfang; Li, Baoguo; Shen, Chongyang

    2017-03-07

    Sand column experiments were conducted to examine the effects of the concentration of attached colloids (CAC) on their subsequent detachment upon decreasing solution ionic strength (IS). Different pore volumes of latex microparticle suspensions were injected into the columns to allow different amounts of colloids to attach at ISs of 0.001, 0.01, and 0.2 M. Then, deionized water was introduced to release the attached colloids. Results show that the fraction of attachments that were reversible to reduction of IS (FRA) increased with increasing CAC at a given IS if the sand was extensively treated using acids to reduce surface charge heterogeneity. This indicates that colloids were preferentially immobilized in sites favoring irreversible attachment and then gradually occupied reversible sites. In contrast, the FRA decreased with increasing CAC at 0.001 M in sand without the acid treatment, illustrating the opposite attachment sequence. Scanning electron microscope examinations reveal that the concave regions favored irreversible colloid attachment. Reversible attachment is likely due to immobilization on flat surfaces with charge heterogeneities, retention in stagnation point regions via secondary minimum association, ripening in the acid-treated sand, and capture of colloids by protruding asperities with charge heterogeneity in the untreated sand. At ISs of 0.01 and 0.2 M, the FRA was essentially independent of CAC in the untreated sand because the colloids were randomly attached on the sand surfaces over time.

  19. Hybrid passivated colloidal quantum dot solids

    KAUST Repository

    Ip, Alex

    2012-07-29

    Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulating ligands that enable colloidal stability following synthesis with shorter organic linkers or halide anions, leading to improved passivation and higher packing densities. Although this substitution has been performed using solid-state ligand exchange, a solution-based approach is preferable because it enables increased control over the balance of charges on the surface of the quantum dot, which is essential for eliminating midgap trap states. Furthermore, the solution-based approach leverages recent progress in metal:chalcogen chemistry in the liquid phase. Here, we quantify the density of midgap trap states in CQD solids and show that the performance of CQD-based photovoltaics is now limited by electrong-"hole recombination due to these states. Next, using density functional theory and optoelectronic device modelling, we show that to improve this performance it is essential to bind a suitable ligand to each potential trap site on the surface of the quantum dot. We then develop a robust hybrid passivation scheme that involves introducing halide anions during the end stages of the synthesis process, which can passivate trap sites that are inaccessible to much larger organic ligands. An organic crosslinking strategy is then used to form the film. Finally, we use our hybrid passivated CQD solid to fabricate a solar cell with a certified efficiency of 7.0%, which is a record for a CQD photovoltaic device. © 2012 Macmillan Publishers Limited. All rights reserved.

  20. Performance Improvement of the One-Dot Lateral Flow Immunoassay for Aflatoxin B1 by Using a Smartphone-Based Reading System

    Directory of Open Access Journals (Sweden)

    Jihea Moon

    2013-04-01

    Full Text Available This study was conducted to develop a simple, rapid, and accurate lateral flow immunoassay (LFIA detection method for point-of-care diagnosis. The one-dot LFIA for aflatoxin B1 (AFB1 was based on the modified competitive binding format using competition between AFB1 and colloidal gold-AFB1-BSA conjugate for antibody binding sites in the test zone. A Smartphone-based reading system consisting of a Samsung Galaxy S2 Smartphone, a LFIA reader, and a Smartphone application for the image acquisition and data analysis. The detection limit of one-dot LFIA for AFB1 is 5 μg/kg. This method provided semi-quantitative analysis of AFB1 samples in the range of 5 to 1,000 μg/kg. Using combination of the one-dot LFIA and the Smartphone-based reading system, it is possible to conduct a more fast and accurate point-of-care diagnosis.

  1. Replacing antibodies with aptamers in lateral flow immunoassay.

    Science.gov (United States)

    Chen, Ailiang; Yang, Shuming

    2015-09-15

    Aptamers have been identified against various targets as a type of chemical or nucleic acid ligand by systematic evolution of ligands by exponential enrichment (SELEX) with high sensitivity and specificity. Aptamers show remarkable advantages over antibodies due to the nucleic acid nature and target-induced structure-switching properties and are widely used to design various fluorescent, electrochemical, or colorimetric biosensors. However, the practical applications of aptamer-based sensing and diagnostics are still lagging behind those of antibody-based tests. Lateral flow immunoassay (LFIA) represents a well established and appropriate technology among rapid assays because of its low cost and user-friendliness. The antibody-based platform is utilized to detect numerous targets, but it is always hampered by the antibody preparation time, antibody stability, and effect of modification on the antibody. Seeking alternatives to antibodies is an area of active research and is of tremendous importance. Aptamers are receiving increasing attention in lateral flow applications because of a number of important potential performance advantages. We speculate that aptamer-based LFIA may be one of the first platforms for commercial use of aptamer-based diagnosis. This review first gives an introduction to aptamer including the selection process SELEX with its focus on aptamer advantages over antibodies, and then depicts LFIA with its focus on aptamer opportunities in LFIA over antibodies. Furthermore, we summarize the recent advances in the development of aptamer-based lateral flow biosensing assays with the aim to provide a general guide for the design of aptamer-based lateral flow biosensing assays. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Role of DR-70 immunoassay in suspected malignant pleural effusion

    Science.gov (United States)

    Sengupta, Amitabha; Saha, Kaushik; Jash, Debraj; Banerjee, Sourindra Nath; Biswas, Nirendra Mohan; Dey, Atin

    2013-01-01

    Context: A good proportion of patients with undiagnosed pleural effusion (PE) turn into malignancy over a period of time. Identification of positive biomarker may help in selecting the individuals who require close follow-up. Aims: The aims of this study were to evaluate the role of DR-70 immunoassay in suspected malignant PE. Settings and Design: We conducted a cross-sectional study among 89 patients of suspected malignant PE and 50 normal subjects (NS) were taken as control. Materials and Methods: Patients with exudative PE; who had pleural fluid lymphocyte count greater than 50% and adenosine deaminase less than 30 U/L were taken as cases. We had selected NSs among relatives of patients having normal blood chemistry and radiological investigations. Sensitivity and specificity of the test to differentiate malignant and non-malignant PE and also to identify PE with underlying malignancy was analyzed. Results: Mean value of DR-70 in NS was found to be 0.83 ± 0.273 mg/L without any significant difference between males (0.82 mg/L) and females (0.85 mg/L). Mean value of DR-70 in PE with underlying cancer was 5.03 ± 3.79 mg/L. Sensitivity (80%) and specificity (77.78%) of the test was maximum in PE with underlying cancer using cut-off value of 2 mg/L. Mean value DR-70 in malignant PE was 5.18 ± 3.75 mg/L and in non-malignant PE was 3.73 ± 3.74 mg/L without any statistically significant difference (P = 0.08). Conclusions: DR-70 assay has high sensitivity in detecting underlying lung cancer, but has no role in differentiating malignant PE from non-malignant PE. PMID:24339491

  3. Interfacial colloidal rod dynamics: Coefficients, simulations, and analysis

    Science.gov (United States)

    Yang, Yuguang; Bevan, Michael A.

    2017-08-01

    Colloidal rod diffusion near a wall is modeled and simulated based on a constrained Stokesian dynamic model of chains-of-spheres. By modeling colloidal rods as chains-of-spheres, complete diffusion tensors are computed for colloidal rods in bulk media and near interfaces, including hydrodynamic interactions, translation-rotation coupling, and all diffusion modes in the particle and lab frames. Simulated trajectories based on the chain-of-spheres diffusion tensor are quantified in terms of typical experimental quantities such as mean squared positional and angular displacements as well as autocorrelation functions. Theoretical expressions are reported to predict measured average diffusivities as well as the crossover from short-time anisotropic translational diffusion along the rod's major axis to isotropic diffusion. Diffusion modes are quantified in terms of closed form empirical fits to model results to aid their use in interpretation and prediction of experiments involving colloidal rod diffusion in interfacial and confined systems.

  4. On the Absence of Red Structural Color in Colloidal Glasses

    Science.gov (United States)

    Magkiriadou, Sofia; Park, Jin-Gyu; Kim, Young-Seok; Yi, Gi-Ra; Manoharan, Vinothan N.

    2013-03-01

    When a colloidal glass is illuminated, the short-ranged spatial correlations between neighboring particles can give rise to constructive interference for a particular wavelength. Unlike the structural colors arising from Bragg diffraction in colloidal crystals, the colors of these colloidal glasses are independent of angle due to the disordered, isotropic microstructure. We therefore call them ``photonic glasses.'' A similar coloration mechanism is found in the feathers of certain birds. However, there are few examples of red photonic glasses either in nature or in colloidal systems. Using scattering theory, we show that the absence of red photonic glasses can be explained by the wavelength-dependence of the single-particle scattering cross-section, which can override the interference condition set by the structure. We propose ways to overcome this obstacle, and we report on experimental methods to make non-iridescent, structural red color.

  5. DEMONSTRATION BULLETIN: COLLOID POLISHING FILTER METHOD - FILTER FLOW TECHNOLOGY, INC.

    Science.gov (United States)

    The Filter Flow Technology, Inc. (FFT) Colloid Polishing Filter Method (CPFM) was tested as a transportable, trailer mounted, system that uses sorption and chemical complexing phenomena to remove heavy metals and nontritium radionuclides from water. Contaminated waters can be pro...

  6. 20mN, Variable Specific Impulse Colloid Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Colloid thrusters have long been known for their exceptional thrust efficiency and ability to operate over a range of specific impulse due to easily variable...

  7. Observation of a microcrystalline gel in colloids with competing interactions.

    Science.gov (United States)

    Zhang, Tian Hui; Groenewold, Jan; Kegel, Willem K

    2009-12-14

    A stable short-range crystalline structure is observed in colloidal systems with competing short-range attractions and long-range repulsions. We term these structures "microcrystalline gels" as the microcrystals are embedded in a dense disordered network.

  8. Electrolyte-induced Instability of Colloidal Dispersions in Nonpolar Solvents.

    Science.gov (United States)

    Smith, Gregory N; Finlayson, Samuel D; Rogers, Sarah E; Bartlett, Paul; Eastoe, Julian

    2017-10-05

    Dispersions of poly(methyl methacrylate) (PMMA) latexes were prepared in a low dielectric, nonpolar solvent (dodecane) both with and without the oil-soluble electrolyte, tetradodecylammonium-tetrakis(3,5-bis(trifluoromethyl)phenyl)borate. For dispersions with a high concentration of background electrolyte, the latexes become colloidally unstable and sediment in a short period of time (Instability of the dispersions is due to an apparent attraction between the colloids, directly observed using optical tweezers by bringing optically trapped particles into close proximity. Simple explanations generally used by colloid scientists to explain loss of stability (charge screening or stabilizer collapse) are insufficient to explain this observation. This unexpected interaction seems, therefore, to be a consequence of the materials that can be dispersed in low dielectric media and is expected to have ramifications for studying colloids in such solvents.

  9. Phase coexistence in polydisperse athermal polymer-colloidal mixture.

    Science.gov (United States)

    Hlushak, S P; Kalyuzhnyi, Yu V; Cummings, P T

    2008-04-21

    A theoretical scheme developed earlier [Y. V. Kalyuzhnyi et al., Chem. Phys. Lett. 443, 243 (2007)] is used to calculate the full phase diagram of polydisperse athermal polymer-colloidal mixture with polydispersity in both colloidal and polymeric components. In the limiting case of bidisperse polymer-colloidal mixture, theoretical results are compared against computer simulation results. We present the cloud and shadow curves, critical binodals, and distribution functions of the coexisting phases and discuss the effects of polydispersity on their behavior. According to our analysis polydispersity extends the region of the phase instability, shifting the critical point to the lower values of the pressure and density. For the high values of the pressure polydispersity causes strong fractionation effects, with the large size colloidal particles preferring the low-density shadow phase and long chain length polymeric particles preferring the high-density shadow phase.

  10. Cell labelling with colloidal substances in whole blood

    Energy Technology Data Exchange (ETDEWEB)

    Schroth, H.J.; Oberhausen, E.; Berberich, R.

    1981-10-01

    A method for the labelling of leucocytes with sup(99m)Tc-colloid is described. The labelling can be done in samples of whole blood, because the colloid is only taken up by the phagocytotic cells, the monocytes and the granulocytes. The part of the colloid that is not phagocytized is brought to a soluble state with Na-citrate, so that only the phagocytized colloid is reinjected. The labelling efficiency with this method is between 80% and 90%. Measurements of the activity in the leucocytes 3 h after reinjection, have shown that at least 50% of the labelled cells are at this time still available in the blood pool. The clinical results on 32 patients with the tentative diagnosis of an abdominal abscess and on 42 patients with the tentative diagnosis of septic loosening of an endoprosthesis have shown that the labelled leucocytes are very well suited to show up local foci of inflammation.

  11. Charge-extraction strategies for colloidal quantum dot photovoltaics

    KAUST Repository

    Lan, Xinzheng

    2014-02-20

    The solar-power conversion efficiencies of colloidal quantum dot solar cells have advanced from sub-1% reported in 2005 to a record value of 8.5% in 2013. Much focus has deservedly been placed on densifying, passivating and crosslinking the colloidal quantum dot solid. Here we review progress in improving charge extraction, achieved by engineering the composition and structure of the electrode materials that contact the colloidal quantum dot film. New classes of structured electrodes have been developed and integrated to form bulk heterojunction devices that enhance photocharge extraction. Control over band offsets, doping and interfacial trap state densities have been essential for achieving improved electrical communication with colloidal quantum dot solids. Quantum junction devices that not only tune the optical absorption spectrum, but also provide inherently matched bands across the interface between p-and n-materials, have proven that charge separation can occur efficiently across an all-quantum-tuned rectifying junction. © 2014 Macmillan Publishers Limited.

  12. Colloidal stability of the surrfactant/lipid/dna particles

    OpenAIRE

    KRIVTSOV A.; Olsson, U.; Lindman, B; BILALOV A.

    2014-01-01

    The DNA incorporated 1 μm size vesicular multi-lamellar aggregates were obtained. Colloidal stability of the cationic surfactant-DNA/lecithin self-assemblies obtained by “solvent shifting” method increases with lecithin content was found.

  13. 99M-Technetium labeled tin colloid radiopharmaceuticals

    Science.gov (United States)

    Winchell, Harry S.; Barak, Morton; Van Fleet, III, Parmer

    1976-07-06

    An improved 99m-technetium labeled tin(II) colloid, size-stabilized for reticuloendothelial organ imaging without the use of macromolecular stabilizers and a packaged tin base reagent and an improved method for making it are disclosed.

  14. Flow Electrification in Nonaqueous Colloidal Suspensions, studied with Video Microscopy

    NARCIS (Netherlands)

    Tolpekin, V.A.; van den Ende, Henricus T.M.; Duits, Michael H.G.; Mellema, J.

    2004-01-01

    Flow electrification in nonaqueous suspensions has been scarcely reported in the literature but can significantly affect colloidal stability and (phase) behavior, perhaps even without being recognized. We have observed it in shear flow experiments on concentrated binary suspensions of hydrophobized

  15. Bulk synthesis of polymer-inorganic colloidal clusters.

    Science.gov (United States)

    Perro, Adeline; Manoharan, Vinothan N

    2010-12-21

    We describe a procedure to synthesize colloidal clusters with polyhedral morphologies in high yield (liter quantities at up to 70% purity) using a combination of emulsion polymerization and inorganic surface chemistry. We show that the synthesis initially used for silica-polystyrene hybrid clusters can be generalized to create clusters from other inorganic and polymer particles. We also show that high yields of particular morphologies can be obtained by precise control of the inorganic seed particle size, a finding that can be explained using a hard-sphere packing model. These clusters can be further chemically modified for a variety of applications. Introducing a cross-linker leads to colloidal clusters that can be index matched in an appropriate solvent, allowing them to be used for particle tracking or optical studies of colloidal self-assembly. Also, depositing a thin silica layer on these colloids allows the surface properties to be controlled using silane chemistry.

  16. The Development of Structure in Nanoscale Colloidal Silica -- Polymer Nanocomposites

    Science.gov (United States)

    Meth, Jeff; Londono, J. David; Chi, Changzai; Wood, Barbara; Cotts, Patricia; Gam, Sangah; Winey, Karen; Composto, Russell

    2011-03-01

    Controlling the state of dispersion or agglomeration in polymeric nanocomposites has a profound impact on their properties. Many nanocomposites are manufactured by a solution process. In such processes, colloidal silica dispersed in a formulation possesses a certain interparticle structure, and this structure changes as the coating formulation dries. In this work, we have measured the structure of colloidal silica -- PMMA formulations as a function of solvent content using small angle X-ray scattering (SAXS). We found that the formulations dried in two stages: concentration and neutralization. In the concentrating stage, the charged colloid structure prevails, and the formulation simply concentrated down. In the neutralization stage, the colloid gradually lost its charge. Controlling the matrix viscosity enables one to control the final state of dispersion. These findings explain how and why it is possible to create good nanodispersions in some material systems. These general findings are applicable to a wide range of material systems.

  17. PCR detection of groundwater bacteria associated with colloidal transport

    Energy Technology Data Exchange (ETDEWEB)

    Cruz-Perez, P.; Stetzenbach, L.D.; Alvarez, A.J.

    1996-02-29

    Colloidal transport may increase the amount of contaminant material than that which could be transported by water flow alone. The role of colloids in groundwater contaminant transport is complicated and may involve many different processes, including sorption of elements onto colloidal particles, coagulation/dissolution, adsorption onto solid surfaces, filtration, and migration. Bacteria are known to concentrate minerals and influence the transport of compounds in aqueous environments and may also serve as organic colloids, thereby influencing subsurface transport of radionuclides and other contaminants. The initial phase of the project consisted of assembling a list of bacteria capable of sequestering or facilitating mineral transport. The development and optimization of the PCR amplification assay for the detection of the organisms of interest, and the examination of regional groundwaters for those organisms, are presented for subsequent research.

  18. Characterization of uranium corrosion product colloids by dynamic light scattering.

    Energy Technology Data Exchange (ETDEWEB)

    Mertz, C.; Bowers, D.; Goldberg, M.; Shelton-Davis, C.

    2000-11-16

    The Department of Energy plans to dispose of approximately 2100 metric tons of spent metallic uranium fuel in the mined repository at Yucca Mountain. Laboratory studies at Argonne National Laboratory have shown that corrosion of metallic uranium fuel with groundwater generates significant quantities of stable colloids. This finding is considered very important in light of the recent report (1) of rapid subsurface transport of radionuclides at the Nevada Test Site via colloids. Thus, sparingly soluble radionuclides can be transported with the colloids through the subsurface aqueous environment to much greater distances than is predicted based on the aqueous volubility of the radionuclides alone. Accordingly, characterization of colloids generated by fuel corrosion is necessary for assessing the long-term fate and transport of radionuclides in the repository environment.

  19. Colloidal motion under the action of a thermophoretic force

    Science.gov (United States)

    Burelbach, Jerome; Zupkauskas, Mykolas; Lamboll, Robin; Lan, Yang; Eiser, Erika

    2017-09-01

    We present thermophoretic measurements in aqueous suspensions of three different polystyrene (PS) particles of varying negative charge, size, and surface coating. Our measurement technique is based on the observation of the colloidal steady-state distribution using conventional bright-field microscopy, which avoids undesirable effects such as laser-induced convection or local heating. We find that the colloids with the weakest zeta potential exhibit the strongest thermophoretic effect, suggesting that the Soret coefficient has a more intricate dependence on surface functionality than predicted by existing theoretical approaches. We also study the relaxation of the colloids to steady-state and propose a model to quantify the relaxation speed, based on the time evolution of the colloidal center of mass. Our observations are well described by this model and show that the relaxation speed tends to increase with the magnitude of the thermophoretic force.

  20. Stable liquid crystalline phases of colloidally dispersed exfoliated layered niobates.

    Science.gov (United States)

    Nakato, Teruyuki; Miyamoto, Nobuyoshi; Harada, Akiko

    2004-01-07

    Colloidally dispersed niobium oxide nanosheets obtained by exfoliation of layered niobates HNb(3)O(8) and HTiNbO(5) formed stable liquid crystalline phases; their liquid crystallinity was dependent on the niobate species exfoliated.

  1. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    DEFF Research Database (Denmark)

    Guler, Urcan; Suslov, Sergey; Kildishev, Alexander V.

    2015-01-01

    Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average ...

  2. Linking Colloid Deposit Morphology and Clogging in Porous Media

    Science.gov (United States)

    Roth, E. J.; Mont-eton, M. E.; Mays, D. C.

    2012-12-01

    Innovations in the field of groundwater remediation have been hampered by delivery limitations in the porous media. For example, colloid deposits (comprising clays or silts) can cause a detrimental reduction in permeability, or clogging, which is problematic for groundwater remediation as well as granular media filtration and aquifer storage and recovery. During remediation, clogging creates preferential pathways in the media, leading to localized rather than spatially extensive contaminant treatment. Consequentially, remediation efforts become more expensive, less effective, and take a very long time. This presentation describes ongoing research investigating the link between colloid deposit morphology and clogging in porous media. As described by Darcy's Law, the velocity of fluid flow through porous media is proportional to permeability, which depends, in part, on porosity. However, changes in permeability are not in accord with changes in porosity as predicted by the Kozeny-Carman equation. It is hypothesized that unmeasured aspects of colloid deposit morphology could be the cause of this anomaly. Colloidal phenomena have important and dynamic effects on the permeability of natural porous media, and several lines of evidence suggest a correlation between clogging in porous media and the fractal dimension of colloid deposits. Here, a custom-built static light scattering apparatus is used to measure the fractal dimension of colloid deposits in refractive index matched porous media within a flow column. The media in our flow column is Nafion, which becomes essentially invisible when saturated by a solution of isopropanol and water. Polystyrene microspheres are then added to the influent through the column as a surrogate for natural colloids. Light from a laser is passed through the column, scattering from the deposited colloids, but not from the index matched Nafion. The resulting intensity of scattered light is measured as a function of scattering angle, and then

  3. Cross-reactivity of steroid hormone immunoassays: clinical significance and two-dimensional molecular similarity prediction.

    Science.gov (United States)

    Krasowski, Matthew D; Drees, Denny; Morris, Cory S; Maakestad, Jon; Blau, John L; Ekins, Sean

    2014-01-01

    Immunoassays are widely used in clinical laboratories for measurement of plasma/serum concentrations of steroid hormones such as cortisol and testosterone. Immunoassays can be performed on a variety of standard clinical chemistry analyzers, thus allowing even small clinical laboratories to do analysis on-site. One limitation of steroid hormone immunoassays is interference caused by compounds with structural similarity to the target steroid of the assay. Interfering molecules include structurally related endogenous compounds and their metabolites as well as drugs such as anabolic steroids and synthetic glucocorticoids. Cross-reactivity of a structurally diverse set of compounds were determined for the Roche Diagnostics Elecsys assays for cortisol, dehydroepiandrosterone (DHEA) sulfate, estradiol, progesterone, and testosterone. These data were compared and contrasted to package insert data and published cross-reactivity studies for other marketed steroid hormone immunoassays. Cross-reactivity was computationally predicted using the technique of two-dimensional molecular similarity. The Roche Elecsys Cortisol and Testosterone II assays showed a wider range of cross-reactivity than the DHEA sulfate, Estradiol II, and Progesterone II assays. 6-Methylprednisolone and prednisolone showed high cross-reactivity for the cortisol assay, with high likelihood of clinically significant effect for patients administered these drugs. In addition, 21-deoxycortisol likely produces clinically relevant cross-reactivity for cortisol in patients with 21-hydroxylase deficiency, while 11-deoxycortisol may produce clinically relevant cross-reactivity in 11β-hydroxylase deficiency or following metyrapone challenge. Several anabolic steroids may produce clinically significant false positives on the testosterone assay, although interpretation is limited by sparse pharmacokinetic data for some of these drugs. Norethindrone therapy may impact immunoassay measurement of testosterone in women

  4. Generation of colloidal granules and capsules from double emulsion drops

    Science.gov (United States)

    Hess, Kathryn S.

    Assemblies of colloidal particles are extensively used in ceramic processing, pharmaceuticals, inks and coatings. In this project, the aim was to develop a new technique to fabricate monodispersed colloidal assemblies. The use of microfluidic devices and emulsion processing allows for the fabrication of complex materials that can be used in a variety of applications. A microfluidic device is used to create monodispersed water/oil/water (w/o/w) double emulsions with interior droplets of colloidal silica suspension ranging in size from tens to hundreds of microns. By tailoring the osmotic pressure using glycerol as a solute in the continuous and inner phases of the emulsion, we can control the final volume size of the monodispersed silica colloidal crystals that form in the inner droplets of the double emulsion. Modifying the ionic strength in the colloidal dispersion can be used to affect the particle-particle interactions and crystal formation of the final colloidal particle. This w/o/w technique has been used with other systems of metal oxide colloids and cellulose nanocrystals. Encapsulation of the colloidal suspension in a polymer shell for the generation of ceramic-polymer core-shell particles has also been developed. These core-shell particles have spawned new research in the field of locally resonant acoustic metamaterials. Systems and chemistries for creating cellulose hydrogels within the double emulsions have also been researched. Water in oil single emulsions and double emulsions have been used to create cellulose hydrogel spheres in the sub-100 micron diameter range. Oil/water/oil double emulsions allow us to create stable cellulose capsules. The addition of a second hydrogel polymer, such as acrylate or alginate, further strengthens the cellulose gel network and can also be processed into capsules and particles using the microfluidic device. This work could have promising applications in acoustic metamaterials, personal care products, pharmaceuticals

  5. Fourier-transform light scattering of individual colloidal clusters.

    Science.gov (United States)

    Yu, HyeonSeung; Park, HyunJoo; Kim, Youngchan; Kim, Mahn Won; Park, YongKeun

    2012-07-01

    We present measurements of the scalar-field light scattering of individual dimer, trimer, and tetrahedron shapes among colloidal clusters. By measuring the electric field with quantitative phase imaging at the sample plane and then numerically propagating to the far-field scattering plane, the two-dimensional light-scattering patterns from individual colloidal clusters are effectively and precisely retrieved. The measured scattering patterns are consistent with simulated patterns calculated from the generalized multiparticle Mie solution.

  6. Charge renormalization and phase separation in colloidal suspensions

    OpenAIRE

    Diehl, Alexandre; BARBOSA, Marcia C.; Levin, Yan

    2000-01-01

    We explore the effects of counterion condensation on fluid-fluid phase separation in charged colloidal suspensions. It is found that formation of double layers around the colloidal particles stabilizes suspensions against phase separation. Addition of salt, however, produces an instability which, in principle, can lead to a fluid-fluid separation. The instability, however, is so weak that it should be impossible to observe a fully equilibrated coexistence experimentally.

  7. Synthesis of colloidal solutions with silicon nanocrystals from porous silicon.

    Science.gov (United States)

    Luna López, José Alberto; Garzón Román, Abel; Gómez Barojas, Estela; Gracia, Jf Flores; Martínez Juárez, Javier; Carrillo López, Jesús

    2014-01-01

    In this work, we have obtained colloidal solutions of Si nanocrystals (Si-ncs), starting from free-standing porous silicon (PSi) layers. PSi layers were synthesized using a two-electrode Teflon electrochemical cell; the etching solution contained hydrogen peroxide 30%, hydrofluoric acid 40% (HF), and methanol. The anodizing current density was varied to 250 mA cm(-2), 1 A cm(-2), and 1.2 A cm(-2). Thus obtained, PSi was mechanically pulverized in a mortar agate; then, the PSi powders were poured into different solutions to get the final Si-ncs colloidal solutions. The different optical, morphological, and structural characteristics of the colloidal solutions with Si-ncs were measured and studied. These Si-ncs colloidal solutions, measured by photoluminescence (PL), revealed efficient blue-green or violet emission intensities. The results of X-ray diffraction (XRD) indicate that the colloidal solutions are mainly composed of silicon nanocrystallites. The result of UV-vis transmittance indicates that the optical bandgap energies of the colloidal solutions varied from 2.3 to 3.5 eV for colloids prepared in methanol, ethanol, and acetone. The transmission electron microscopy (TEM) images showed the size of the nanocrystals in the colloidal solutions. Fourier transform infrared spectroscopy (FTIR) spectra showed different types of chemical bonds such as Si-O-Si, Si-CH2, and SiH x , as well as some kind of defects. 61.46Df.-a; 61.43.Gt; 61.05.cp; 78.55.-m; 81.15.Gh.

  8. Universal hydrodynamic mechanisms for crystallization in active colloidal suspensions

    Science.gov (United States)

    Singh, Rajesh; Adhikari, R.

    We derive, using the boundary integral formulation of Stokes flow, exact expressions for forces and torques between active colloidal particles near a plane wall. From the leading terms of these expressions we identify universal mechanisms for the crystallization of active colloids. Through detailed simulations, we find that active crystallization is not an activated process, as in equilibrium, but proceeds through a spinodal-like instability.

  9. Self-assembled tunable networks of sticky colloidal particles

    Energy Technology Data Exchange (ETDEWEB)

    Demortiere, Arnaud; Snezhko, Oleksiy Alexey; Sapozhnikov, Maksim; Becker, Nicholas G.; Proslier, Thomas; Aronson, Igor S.

    2017-07-18

    Self-assembled tunable networks of microscopic polymer fibers ranging from wavy colloidal "fur" to highly interconnected networks are created from polymer systems and an applied electric field. The networks emerge via dynamic self-assembly in an alternating (ac) electric field from a non-aqueous suspension of "sticky" polymeric colloidal particles with a controlled degree of polymerization. The resulting architectures are tuned by the frequency and amplitude of the electric field and surface properties of the particles.

  10. Charge renormalization for effective interactions of colloids at water interfaces

    OpenAIRE

    Frydel, D.; Dietrich, S.; Oettel, M.

    2007-01-01

    We analyze theoretically the electrostatic interaction of surface-charged colloids at water interfaces with special attention to the experimentally relevant case of large charge densities on the colloid-water interface. Whereas linear theory predicts an effective dipole potential the strength of which is proportional to the square of the product of charge density and screening length, nonlinear charge renormalization effects change this dependence to a weakly logarithmic one. These results ap...

  11. Highly sensitive immunoassay based on E. coli with autodisplayed Z-domain

    Energy Technology Data Exchange (ETDEWEB)

    Jose, Joachim [Institute of Pharmaceutical Chemistry, Heinrich Heine University, Duesseldorf (Germany); Park, Min [School of Materials and Sciences, College of Engineering, Yonsei University, 134 Shin-chon-dong, Seo-dae-mun-gu, Seoul 120-749 (Korea, Republic of); Pyun, Jae-Chul, E-mail: jcpyun@yonsei.ac.kr [School of Materials and Sciences, College of Engineering, Yonsei University, 134 Shin-chon-dong, Seo-dae-mun-gu, Seoul 120-749 (Korea, Republic of)

    2010-05-14

    The Z-domain of protein A has been known to bind specifically to the F{sub c} region of antibodies (IgGs). In this work, the Z-domain of protein A was expressed on the outer membrane of Escherichia coli by using 'Autodisplay' technology as a fusion protein of autotransport domain. The E. coli with autodisplayed Z-domain was applied to the sandwich-type immunoassay as a solid-support of detection-antibodies against a target analyte. For the feasibility demonstration of the E. coli based immunoassay, C-reactive protein (CRP) assay was carried out by using E. coli with autodisplayed Z-domain. The limit of detection (LOD) and binding capacity of the E. coli based immunoassay were estimated to be far more sensitive than the conventional ELISA. Such a far higher sensitivity of E. coli based immunoassay than conventional ELISA was explained by the orientation control of immobilized antibodies and the mobility of E. coli in assay matrix. From the test results of 45 rheumatoid arthritis (RA) patients' serum and 15 healthy samples, a cut-off value was established to have optimal sensitivity and selectivity values for RA. The CRP test result of each individual sample was compared with ELISA which is the reference method for RA diagnosis. From this work, the E. coli with Z-domain was proved to be feasible for the medical diagnosis based on sandwich-type immunoassay.

  12. Application of a new anti-zearalenone monoclonal antibody in different immunoassay formats.

    Science.gov (United States)

    Burmistrova, Natalia A; Goryacheva, Irina Yu; Basova, Evgenia Yu; Franki, Ann-Sophie; Elewaut, Dirk; Van Beneden, Katrien; Deforce, Dieter; Van Peteghem, Carlos; De Saeger, Sarah

    2009-11-01

    Monoclonal antibodies against zearalenone (ZEA) were raised in mice according to the hybridoma technology and applied in different immunochemical techniques. More specifically, three formats based on the competitive direct enzyme immunoassay principle were developed: an enzyme-linked immunosorbent assay (ELISA), a flow-through gel-based immunoassay column and a flow-through membrane-based immunoassay. In ELISA, the 50% inhibitory concentration (IC50) was 0.8 ng/mL, and the limit of detection for ZEA standard solutions was 0.1 ng/mL. The antibodies showed a high ZEA (100%) and alpha-zearalenol (alpha-ZOL) (69%) recognition, while cross-reactivities with alpha-zearalanol, zearalanone, beta-zearalenol and beta- zearalanol were 42%, 22%, dilution up to 5% and 15% (v/v) of wheat matrix, respectively). The cut-off level of the gel- and membrane-based immunoassays was established at 100 microg/kg. Potentials and limitations of the developed methods were compared. The possible application for multi-mycotoxin analysis of the ELISA method based on a single monoclonal antibody was investigated. Therefore, principal component analysis and partial least squares regression data modelling were used to separate the immunoassay responses of two cross-reactants (ZEA and alpha-ZOL).

  13. An extended range generic immunoassay for total human therapeutic antibodies in preclinical pharmacokinetic studies.

    Science.gov (United States)

    Hall, Colin M; Pearson, Josh T; Patel, Vimal; Wienkers, Larry C; Greene, Robert J

    2013-07-31

    Bioanalytical support of discovery programs for human monoclonal antibody therapies involves quantitation by immunoassay. Historically, preclinical samples have been analyzed by the traditional Enzyme-Linked Immuno-Sorbent Assay (ELISA). We investigated transferring our generic ELISA for quantitating human IgG constructs in preclinical serum samples to an automated microfluidics immunoassay platform based on nanoscale streptavidin bead columns. Transfer of our immunoassay to the automated platform resulted in not only the anticipated reduction in analysts' time required for manual manipulation (ELISA) but also a substantial increase in the dynamic range of the immunoassay. The generic nature and wide dynamic range of this automated microcolumn immunoassay permit bioanalytical support of novel therapeutic candidates without the need to develop new, specific assay reagents and minimize the chances that sample reassays will be required due to out of range concentration results. Improved process efficiencies and enhanced workflow during the analysis of preclinical PK samples that enable high throughput assessment of a human monoclonal antibody lead in early discovery programs. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Colloid-Facilitated Plutonium Transport in Fractured Tuffaceous Rock.

    Science.gov (United States)

    Wolfsberg, Andrew; Dai, Zhenxue; Zhu, Lin; Reimus, Paul; Xiao, Ting; Ware, Doug

    2017-05-16

    Colloids have the potential to enhance the mobility of strongly sorbing radionuclide contaminants in groundwater at underground nuclear test sites. This study presents an experimental and numerical investigation of colloid-facilitated plutonium transport in fractured porous media to identify plutonium reactive transport processes. The transport parameters for dispersion, diffusion, sorption, and filtration are estimated with inverse modeling by minimizing the least-squares objective function of multicomponent concentration data from multiple transport experiments with the shuffled complex evolution metropolis algorithm. Capitalizing on an unplanned experimental artifact that led to colloid formation, we adopt a stepwise strategy to first interpret the data from each experiment separately and then to incorporate multiple experiments simultaneously to identify a suite of plutonium-colloid transport processes. Nonequilibrium or kinetic attachment and detachment of plutonium-colloid in fractures were clearly demonstrated and captured in the inverted modeling parameters along with estimates of the source plutonium fraction that formed plutonium-colloids. The results from this study provide valuable insights for understanding the transport mechanisms and environmental impacts of plutonium in groundwater aquifers.

  15. Electric Field Driven Self-Assembly of Colloidal Rods

    Science.gov (United States)

    Juarez, Jaime; Chaudhary, Kundan; Chen, Qian; Granick, Steve; Lewis, Jennifer

    2012-02-01

    The ability to assemble anisotropic colloidal building blocks into ordered configurations is of both scientific and technological importance. We are studying how electric field-induced interactions guide the self-assembly of these blocks into well aligned microstructures. Specifically, we present observations of the assembly of colloidal silica rods (L/D ˜ 4) within planar electrode cells as a function of different electric field parameters. Results from video microscopy and image analysis demonstrate that aligned microstructures form due to the competition between equilibrium interactions of induced dipoles and non-equilibrium processes (i.e., electro-osmosis). Under the appropriate electric field conditions (˜ kHZ AC fields), aligned colloidal rod fluids form over large areas on the electrode surface. The superposition of a DC electric field to this aligned colloidal rod fluid initiates their condensation into a vertically oriented crystalline phase. Ongoing work is now focused on exploring how temporal changes to electric fields influence colloidal rod dynamics and, hence, the assembly kinetics of aligned colloidal monolayers.

  16. Nanosized Iron Oxide Colloids Strongly Enhance Microbial Iron Reduction▿ †

    Science.gov (United States)

    Bosch, Julian; Heister, Katja; Hofmann, Thilo; Meckenstock, Rainer U.

    2010-01-01

    Microbial iron reduction is considered to be a significant subsurface process. The rate-limiting bioavailability of the insoluble iron oxyhydroxides, however, is a topic for debate. Surface area and mineral structure are recognized as crucial parameters for microbial reduction rates of bulk, macroaggregate iron minerals. However, a significant fraction of iron oxide minerals in the subsurface is supposed to be present as nanosized colloids. We therefore studied the role of colloidal iron oxides in microbial iron reduction. In batch growth experiments with Geobacter sulfurreducens, colloids of ferrihydrite (hydrodynamic diameter, 336 nm), hematite (123 nm), goethite (157 nm), and akaganeite (64 nm) were added as electron acceptors. The colloidal iron oxides were reduced up to 2 orders of magnitude more rapidly (up to 1,255 pmol h−1 cell−1) than bulk macroaggregates of the same iron phases (6 to 70 pmol h−1 cell−1). The increased reactivity was not only due to the large surface areas of the colloidal aggregates but also was due to a higher reactivity per unit surface. We hypothesize that this can be attributed to the high bioavailability of the nanosized aggregates and their colloidal suspension. Furthermore, a strong enhancement of reduction rates of bulk ferrihydrite was observed when nanosized ferrihydrite aggregates were added. PMID:19915036

  17. Liquid bridging of cylindrical colloids in near-critical solvents

    Science.gov (United States)

    Labbé-Laurent, M.; Law, A. D.; Dietrich, S.

    2017-09-01

    Within mean field theory, we investigate the bridging transition between a pair of parallel cylindrical colloids immersed in a binary liquid mixture as a solvent that is close to its critical consolute point Tc. We determine the universal scaling functions of the effective potential and of the force between the colloids. For a solvent that is at the critical concentration and close to Tc, we find that the critical Casimir force is the dominant interaction at close separations. This agrees very well with the corresponding Derjaguin approximation for the effective interaction between the two cylinders, while capillary forces originating from the extension of the liquid bridge turn out to be more important at large separations. In addition, we are able to infer from the wetting characteristics of the individual colloids the first-order transition of the liquid bridge connecting two colloidal particles to the ruptured state. While specific to cylindrical colloids, the results presented here also provide an outline for identifying critical Casimir forces acting on bridged colloidal particles as such and for analyzing the bridging transition between them.

  18. Chancellor Water Colloids: Characterization and Radionuclide Associated Transport

    Energy Technology Data Exchange (ETDEWEB)

    Reimus, Paul William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Boukhalfa, Hakim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-09-26

    Column transport experiments were conducted in which water from the Chancellor nuclear test cavity was transported through crushed volcanic tuff from Pahute Mesa. In one experiment, the cavity water was spiked with solute 137Cs, and in another it was spiked with 239/240Pu(IV) nanocolloids. A third column experiment was conducted with no radionuclide spike at all, although the 137Cs concentrations in the water were still high enough to quantify in the column effluent. The radionuclides strongly partitioned to natural colloids present in the water, which were characterized for size distribution, mass concentration, zeta potential/surface charge, critical coagulation concentration, and qualitative mineralogy. In the spiked water experiments, the unanalyzed portion of the high-concentration column effluent samples were combined and re-injected into the respective columns as a second pulse. This procedure was repeated again for a third injection. Measurable filtration of the colloids was observed after each initial injection of the Chancellor water into the columns, but the subsequent injections (spiked water experiments only) exhibited no apparent filtration, suggesting that the colloids that remained mobile after relatively short transport distances were more resistant to filtration than the initial population of colloids. It was also observed that while significant desorption of 137Cs from the colloids occurred after the first injection in both the spiked and unspiked waters, subsequent injections of the spiked water exhibited much less 137Cs desorption (much greater 137Cs colloid-associated transport). This result suggests that the 137Cs that remained associated with colloids during the first injection represented a fraction that was more strongly adsorbed to the mobile colloids than the initial 137Cs associated with the colloids. A greater amount of the 239/240

  19. [Characteristics of DNA adsorption and desorption in variable and constant charge soil colloids].

    Science.gov (United States)

    Wang, Dai-Zhang; Wang, Shen-Yang; Jiang, Xin; Heng, Li-Sha; Tan, Jin-Fang; Liu, Shi-Liang; Cao, Yong-Xian

    2009-09-15

    The characteristics of adsorption and desorption of DNA by Red soil colloid, Latosol colloid, Chao colloid and Cinnamon colloid at different pH values were studied using a batch method. It showed that there was an increase of solution pH after adsorption of DNA by the four soil colloids in both NaCl and KCl electrolyte systems. The increasing ranges of pH values were in order of Red soil colloid > Latosol colloid > Chao colloid > Cinnamon colloid, and NaCl electrolyte system > KCl electrolyte system. The amounts of DNA adsorption on soil colloids decreased with the increase of pH value. The maximum amounts of DNA adsorption in different colloids were about 13.1-14.8 microg x mg(-1) when pH values were 2-4. The decreasing ranges of the amounts of DNA adsorption were about 5.5 microg x mg(-1) in NaCl electrolyte system and 2.1 Mg x mg(-1) in KCl electrolyte system in Red soil colloid and Latosol colloid after the rising of equilibrium solution pH from 4.2 to 8.6, whereas the remarked decreasing ranges of the adsorption amounts of DNA were about 8.3-12.2 microg x mg(-1) on Chao colloid and Cinnamon colloid in two electrolyte systems. The decreasing ranges of DNA adsorption were in order of the constant charge (Chao soil and Cinnamon) colloids > the variable charge (Red soil and Latosol) colloids. The differences of desorption on the variable and the constant charge colloids are very significant while the DNA adsorbed was desorbed with NaOAc solution and NaH2 PO4 solution. The desorption percent desorption of DNA as NaH2PO4 desorbent was 23.5%-40.2% larger on the variable charge colloids than 8.8%-21.6% on the constant charge of colloids at the three different solution pH values of 3, 5 and 7, while that as NaOAc desorbent was 72.3%-85.9% larger on the constant charge colloids than 10%-24.5% on the variable charge colloids. These results implied that the ligand exchange played a more important role in DNA adsorption on the variable charge colloids, and electrostatic

  20. Analysis report for WIPP colloid model constraints and performance assessment parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mariner, Paul E.; Sassani, David Carl

    2014-03-01

    An analysis of the Waste Isolation Pilot Plant (WIPP) colloid model constraints and parameter values was performed. The focus of this work was primarily on intrinsic colloids, mineral fragment colloids, and humic substance colloids, with a lesser focus on microbial colloids. Comments by the US Environmental Protection Agency (EPA) concerning intrinsic Th(IV) colloids and Mg-Cl-OH mineral fragment colloids were addressed in detail, assumptions and data used to constrain colloid model calculations were evaluated, and inconsistencies between data and model parameter values were identified. This work resulted in a list of specific conclusions regarding model integrity, model conservatism, and opportunities for improvement related to each of the four colloid types included in the WIPP performance assessment.