WorldWideScience

Sample records for colloidal gold probe

  1. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    International Nuclear Information System (INIS)

    Nara, Seema; Tripathi, Vinay; Singh, Harpal; Shrivastav, Tulsidas G.

    2010-01-01

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL -1 with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  2. Colloidal gold probe based rapid immunochromatographic strip assay for cortisol

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Seema, E-mail: seemanara@mnnit.ac.in [Department of Applied Mechanics (Biotechnology), Motilal Nehru National Institute of Technology, Allahabad 211004 (India); Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Tripathi, Vinay [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India); Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Singh, Harpal [Center for BioMedical Engineering, Indian Institute of Technology, New Delhi 110016 (India); Shrivastav, Tulsidas G. [Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi 110067 (India)

    2010-12-03

    A rapid and semi-quantitative immunochromatographic strip (ICS) test for cortisol analysis in serum was developed. The test strip was based on a competitive assay format. Colloidal gold nanoparticles were synthesized and coupled with cortisol-3-carboxymethyloxime-adipic acid dihydrazide-bovine serum albumin (F-3-CMO-ADH-BSA) antigen to directly compete with cortisol in human serum samples. F-3-CMO-ADH-BSA-gold label and uncoupled colloidal gold nanoparticles were appropriately characterized using UV-vis spectroscopy, transmission electron microscopy and atomic force microscopy. Anticortisol antibody raised against F-3-CMO-BSA immunogen in New Zealand white rabbits was coated on the NC membrane as test line. Anti-BSA antibody was used as control line. The lower detection limit of the ICS test was 30 ng mL{sup -1} with visual detection and was completed in 10 min. About 30 human serum samples were also analyzed by the developed strip test and their range of cortisol concentration was established. The developed ICS test is rapid, economic and user friendly.

  3. Double Layer of a Gold Electrode Probed by AFM Force Measurements

    NARCIS (Netherlands)

    Barten, D.; Kleijn, J.M.; Duval, J.F.L.; Leeuwen, van H.P.; Lyklema, J.; Cohen Stuart, M.A.

    2003-01-01

    Colloidal probe atomic force microscopy was used to determine the electric double layer interactions between a gold electrode and a spherical silica probe. The double layer properties of the gold/solution interface were varied through the pH and salt concentration of the electrolyte, as well as by

  4. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  5. Preparation of radioactive colloidal gold 198Au

    International Nuclear Information System (INIS)

    Cammarosano, S.A.

    1979-01-01

    The preparation with simple equipment of radioactive colloidal gold of particle size about approximately 300 A from seed colloid stabilized by gelatine is described. Some physico-chemical parameters which can affect the process of formation of these colloidal particles are analysed; particle size has been meassured with an electron microscope. The colloid stability has been studied as a function of dilution, age and pH. Nucleation and growth of radioactive colloidal gold have been studied using spectrophotometry. Absorption spectra of the two ones are presented and compared. Quality control of the production process is verified through measurement of parameters, such as radioactive and radiochemical purity and biological distribution in laboratorial animals. This distribution was evalusted for rats injected endovenously with the gold colloidal solution.(Author) [pt

  6. Colloidal gold-McAb probe-based rapid immunoassay strip for simultaneous detection of fumonisins in maize.

    Science.gov (United States)

    Yao, Jingjing; Sun, Yaning; Li, Qingmei; Wang, Fangyu; Teng, Man; Yang, Yanyan; Deng, Ruiguang; Hu, Xiaofei

    2017-05-01

    Fumonisins are a kind of toxic and carcinogenic mycotoxin. A rapid immunochromatographic test strip has been developed for simultaneous detection of fumonisin B 1 , B 2 and B 3 (FB 1 , FB 2 and FB 3 ) in maize based on colloidal gold-labelled monoclonal antibody (McAb) against FB 1 probe. The anti-FB 1 McAb (2E11-H3) was produced through immunisation and cell fusion, and identified as high affinity, specificity and sensitivity. The cross-reaction ratios with fumonisin B 2 and B 3 were accordingly 385% and 72.4%, while none with other analogues. The colloid gold-labelled anti-FB 1 McAb probe was successfully prepared and used for establishing the immunochromatographic strip. The test strip showed high sensitivity and specificity, the IC 50 for FB 1 was 58.08 ng mL -1 , LOD was 11.24 ng mL -1 , calculated from standard curve. Moreover, the test strip exhibited high cross-reactivity with FB 2 and FB 3 , and could be applied to the simultaneous detection of FBs (FB 1 :FB 2 :FB 3 = 12:4:1) in maize sample with high accuracy and precision. The average recoveries of FBs in maize ranged from 90.42% to 95.29%, and CVs were 1.25-3.77%. The results of the test strip for FBs samples showed good correlation with high-performance liquid chromatography analysis. The immunochromatographic test strip could be employed in the rapid simultaneous detection of FB 1 , FB 2 and FB 3 in maize samples on-site. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. The electrical double layer on gold probed by electrokinetic and surface force measurements

    NARCIS (Netherlands)

    Giesbers, M.; Kleijn, J.M.; Cohen Stuart, M.A.

    2002-01-01

    Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 m in diameter)

  8. Colorimetric detection of Ehrlichia canis via nucleic acid hybridization in gold nano-colloids.

    Science.gov (United States)

    Muangchuen, Ajima; Chaumpluk, Piyasak; Suriyasomboon, Annop; Ekgasit, Sanong

    2014-08-08

    Canine monocytic ehrlichiosis (CME) is a major thick-bone disease of dog caused by Ehrlichia canis. Detection of this causal agent outside the laboratory using conventional methods is not effective enough. Thus an assay for E. canis detection based on the p30 outer membrane protein gene was developed. It was based on the p30 gene amplification using loop-mediated isothermal DNA amplification (LAMP). The primer set specific to six areas within the target gene were designed and tested for their sensitivity and specificity. Detection of DNA signals was based on modulation of gold nanoparticles' surface properties and performing DNA/DNA hybridization using an oligonucleotide probe. Presence of target DNA affected the gold colloid nanoparticles in terms of particle aggregation with a plasmonic color change of the gold colloids from ruby red to purple, visible by the naked eye. All the assay steps were completed within 90 min including DNA extraction without relying on standard laboratory facilities. This method was very specific to target bacteria. Its sensitivity with probe hybridization was sufficient to detect 50 copies of target DNA. This method should provide an alternative choice for point of care control and management of the disease.

  9. Secondary Emission From Synthetic Opal Infiltrated by Colloidal Gold and Glycine

    International Nuclear Information System (INIS)

    Dovbeshko, G.I.; Fesenko, O.M.; Boyko, V.V.; Romanyuk, V.R.; Gorelik, V.S.; Moiseyenko, V.N.; Sobolev, V.B.; Shvalagin, V.V.

    2012-01-01

    A comparison of the secondary emission (photoluminescence) and Bragg reflection spectra of photonic crystals (PC), namely, synthetic opals, opals infiltrated by colloidal gold, glycine, and a complex of colloidal gold with glycine is performed. The infiltration of colloidal gold and a complex of colloidal gold with glycine into the pores of PC causes a short-wavelength shift (about 5-15 nm) of the Bragg reflection and increases the intensity of this band by 1.5-3 times. In photoluminescence, the infiltration of PC by colloidal gold and colloidal gold with glycine suppresses the PC emission band near 375-450 nm and enhances the shoulder of the stop-zone band of PC in the region of 470-510 nm. The shape of the observed PC emission band connected with defects in synthetic opal is determined by the type of infiltrates and the excitation wavelength. Possible mechanisms of the effects are discussed.

  10. Preparation of colloidal gold for staining proteins electrotransferred onto nitrocellulose membranes.

    Science.gov (United States)

    Yamaguchi, K; Asakawa, H

    1988-07-01

    This paper describes a simple method of preparing colloidal gold for staining protein blots. Colloidal gold was prepared from 0.005 or 0.01% HAuCl4 by the addition of formalin as a reductant and potassium hydroxide. Staining of small cell carcinoma tissue extract blotted onto nitrocellulose membranes with this colloidal gold solution resulted in the appearance of a large number of clear wine-red bands. The sensitivity of gold staining was 60 times higher than that of Coomassie brilliant blue staining and almost comparable to that of silver staining of proteins in polyacrylamide gel. The sensitivity of this method was also satisfactory in comparison with that of enzyme immunoblotting. The colloidal gold prepared by this method is usable for routine work.

  11. Rubin H. Flocks and Colloidal Gold Treatments for Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Henry M. Rosevear

    2011-01-01

    Full Text Available In the early 1950s, Rubin H. Flocks of the University of Iowa began to treat prostate cancer patients with colloidal gold (Au198 therapy, evolving his technique over nearly 25 years in 1515 patients. We reviewed the long-term outcomes of Flocks' prostate cancer patients as compared to those patients treated by other methods at the University of Iowa before Flocks' chairmanship. We reviewed archived patient records, Flocks' published data, and long-term survival data from the Iowa Tumor Registry to determine short- and long-term outcomes of Flocks' work with colloidal gold. We also reviewed the literature of Flocks' time to compare his outcomes against those of his contemporaries. The use of colloidal gold, either as primary or adjunctive therapy, provided short- and long-term survival benefit for the majority of Flocks' patients as compared to historical treatment options (p < 0.001. Flocks' use of colloidal gold for the treatment of locally advanced prostate cancer offered short- and long-term survival benefits compared to other contemporary treatments.

  12. Wavelength-dependent Faraday–Tyndall effect on laser-induced microbubble in gold colloid

    International Nuclear Information System (INIS)

    Liaw, Jiunn-Woei; Tsai, Shiao-Wen; Lin, Hung-Hsun; Yen, Tzu-Chen; Chen, Bae-Renn

    2012-01-01

    The cavitation microbubbles in dilute gold colloids of different concentrations (2–10 ppm) induced by a focused nanosecond-pulsed laser beam were measured and characterized at different wavelengths by using the passive and active ultrasound measurements. Three colloids with gold nanoparticles (GNPs) of different sizes (10, 45, and 75 nm) were used for experiment. The results show that the lifespan of the microbubble is reduced as the concentration of GNP increases, particularly at the wavelength of 532 nm, the surface plasmon resonance (SPR) of GNP. In contrast, at the off-resonant wavelength (e.g. 700 nm), the lifespan reduction is relatively small. This wavelength-dependent cavitation is attributed to the Faraday–Tyndall effect, a strong light scattering by GNPs. A slight defocusing of the Gaussian beam in gold colloid was proposed. Hence, the waist of the focused beam increases to reduce the optical breakdown in gold colloid. For simplicity, a linear relation between the incremental waist radius of Gaussian beam and the concentration of GNP was assumed. According to this formulation, the theoretical results are consistent with the experimental ones. In addition, the dynamics of the microbubble in gold colloid measured by the active ultrasound method agree with the Rayleigh–Plesset model. -- Highlights: ► The Faraday–Tyndall effect of gold colloid on laser induced microbubble is studied. ► Faraday–Tyndall effect of gold colloid causes the defocusing of laser beam. ► Lifespan of the microbubble is reduced as the concentration of GNP increases. ► Light scattering of laser beam at the surface plasmon resonance of GNP is the maximum.

  13. Synthesis of colloids based on gold nanoparticles dispersed in castor oil

    International Nuclear Information System (INIS)

    Silva, E. C. da; Silva, M. G. A. da; Meneghetti, S. M. P.; Machado, G.; Alencar, M. A. R. C.; Hickmann, J. M.; Meneghetti, M. R.

    2008-01-01

    New colloidal solutions of gold nanoparticles (AuNP), using castor oil as a nontoxic organic dispersant agent, were prepared via three different methods. In all three cases, tetrachloroauric(III) acid was employed as the gold source. The colloids were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The AuNP produced by the three methods were quasispherical in shape, however with different average sizes. The individual characteristics of the nanoparticles presented in each colloidal system were also confirmed by observation of absorption maxima at different wavelengths of visible light. Each method of synthesis leads to colloids with different grades of stability with respect to particle agglomeration.

  14. Radiation-electrochemistry of the colloidal gold micro-electrode: Hydrogen formation by organic free radicals

    International Nuclear Information System (INIS)

    Westerhausen, J.; Henglein, A.; Lilie, J.

    1981-01-01

    Various organic free radicals as well as Ni + ions produce hydrogen in the presence of some 10 -4 M of colloidal gold. The gold catalyst was prepared via the reduction of HAuCl 4 either thermally by citrate or by γ-irradiation. The organic radicals were radiolytically produced. The mechanism of H 2 formation includes electron transfer from the organic radicals to the gold particles, storage of a large number of electrons per gold particle, conversion of the electrons into adsorbed H-atoms and desorption of the latter to form H 2 . - The rates of some of these steps were measured using the method of pulse radiolysis. 1-Hydroxy-1-methyl ethyl radicals, (CH 3 ) 2 COH, react with colloidal gold particles almost diffusion controlled provided that the gold particles are not charged with excess electrons. Charged gold particles react at a substantially lower rate. The stored electrons live seconds or even minutes depending on their number per gold particle. In the stationary state, up to 0.38 Coulomb of electrons could be stored per liter of a 2.9x10 -4 molar gold solution, each gold particle carrying about 39 electrons. A comparison is also made between the catalytic activities of colloidal gold and silver. Due to the relative fast conversion of electrons into adsorbed H-atoms, colloidal gold has less capacity for the storage of electrons than colloidal silver. - The dependence of the hydrogen yield on the pH of the solution, the concentration of gold, the size of the gold particles, the concentration of the polyvinyl alcohol stabilizer, and the intensity of radiation was also investigated. At high intensities, some of the radicals are destroyed in a gold catalysed disproportionation. (orig.)

  15. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate

    International Nuclear Information System (INIS)

    Rousselet, J.

    1966-06-01

    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [fr

  16. Development of colloidal gold immunochromatographic strips for detection of Riemerella anatipestifer.

    Directory of Open Access Journals (Sweden)

    Wanwan Hou

    Full Text Available Riemerella anatipestifer is one of the most important bacterial pathogen of ducks and causes a contagious septicemia. R. anatipestifer infection causes serositis syndromes similar to other bacterial infections in ducks, including infection by Escherichia coli, Salmonella enterica and Pasteurella multocida. Clinically differentiating R. anatipestifer infections from other bacterial pathogen infections is usually difficult. In this study, MAb 1G2F10, a monoclonal antibody against R. anatipestifer GroEL, was used to develop a colloidal gold immunochromatographic strip. Colloidal gold particles were prepared by chemical synthesis to an average diameter of 20 ± 5.26 nm by transmission electron microscope imaging. MAb 1G2F10 was conjugated to colloidal gold particles and the formation of antibody-colloidal gold conjugates was monitored by UV/Vis spectroscopy. Immunochromatographic strips were assembled in regular sequence through different accessories sticked on PVC plate. Strips specifically detected R. anatipestifer within 10 min, but did not detect E. coli, S. enterica and P. multocida. The detection limit for R. anatipestifer was 1 × 10(6 colony forming units, which was 500 times higher than a conventional agglutination test. Accuracy was 100% match to multiplex PCR. Assay stability and reproducibility were excellent after storage at 4°C for 6 months. The immunochromatographic strips prepared in this study offer a specific, sensitive, and rapid detection method for R. anatipestifer, which is of great importance for the prevention and control of R. anatipestifer infections.

  17. A GoldSim Model for Colloid Facilitated Nuclide Transport

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-01-01

    Recently several total system performance assessment (TSPA) programs, called 'template' programs, ready for the safety assessment of radioactive waste repository systems which are conceptually modeled have been developed by utilizing GoldSim and AMBER at KAERI. It is generally believed that chelating agents (chelators) that could be disposed of together with radioactive wastes in the repository and natural colloids available in the geological media affect on nuclides by enhancing their transport in the geological media. A simple GoldSim module to evaluate such quantitative effects, by which colloid and chelator-facilitated nuclide release cases could be modeled and evaluated is introduced. Effects of the chelators alone are illustrated with the case associated with well pumping scenario in a hypothetical repository system

  18. Study of Colloidal Gold Synthesis Using Turkevich Method

    Science.gov (United States)

    Rohiman, Asep; Anshori, Isa; Surawijaya, Akhmadi; Idris, Irman

    2011-12-01

    The synthesis of colloidal gold or Au-nanoparticles (Au-NPs) by reduction of chloroauric acid (HAuCl4) with sodium citrate was done using Turkevich method. We prepare HAuCl4 solution by dissolving gold wires (99.99%) into aqua regia solution. To initiate the Au-NPs synthesis 0.17 ml of 1 % chloroauric acid solution was heated to the boiling point and then 10 ml of 1 % sodium citrate was added to the boiling solution with a constant stirring in order to maintain a homogenous solution. A color of faint gray was observed in the solution approximately one minute and in a period of 2-3 minutes later, it further darkened to deep wine and red color. It showed that the gold solution has reduced to Au-NPs. The effect of process temperature on the size of Au-NPs prepared by sodium citrate reduction has also been investigated. With increasing temperature of Au-NPs synthesis, smaller-size Au-NPs were obtained. The higher temperatures shorten the time needed to achieve activation energy for reduction process. The resulting Au-NPs has been characterized by scanning Electron Microscope (SEM), showing the size of Au-NPs average diameter is ˜20-27 nm. The resulting colloidal gold will be used as catalyst for Si nanowires growth using VLS method.

  19. Probing Dynamics in Colloidal Crystals with Pump-Probe Experiments at LCLS: Methodology and Analysis

    Directory of Open Access Journals (Sweden)

    Nastasia Mukharamova

    2017-05-01

    Full Text Available We present results of the studies of dynamics in colloidal crystals performed by pump-probe experiments using an X-ray free-electron laser (XFEL. Colloidal crystals were pumped with an infrared laser at a wavelength of 800 nm with varying power and probed by XFEL pulses at an energy of 8 keV with a time delay up to 1000 ps. The positions of the Bragg peaks, and their radial and azimuthal widths were analyzed as a function of the time delay. The spectral analysis of the data did not reveal significant enhancement of frequencies expected in this experiment. This allowed us to conclude that the amplitude of vibrational modes excited in colloidal crystals was less than the systematic error caused by the noise level.

  20. Rapid adhesion and proliferation of keratinocytes on the gold colloid/chitosan film scaffold

    International Nuclear Information System (INIS)

    Zhang Yi; He Hong; Gao Wenjuan; Lu Shuangyun; Liu Yang; Gu Haiying

    2009-01-01

    The gold colloid/chitosan film scaffold, which could enhance the attached ratio and accelerate proliferation of newborn mice keratinocytes, was fabricated by nanotechnology and self-assembly technology. This nanometer scaffold was characterized by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The keratinocytes were cultured and observed on three different extracellular matrices (ECM): gold colloid/chitosan film scaffold, chitosan film and cell culture plastic (control groups). 6 h, 12 h, 24 h after inoculation, the cell attached ratios were calculated respectively. In comparison to control groups, this scaffold could significantly (P < 0.01) increase the attached ratio of keratinocytes and promote their growth. Meanwhile, there were not any fusiform fibroblasts growing on this scaffold. The rapidly proliferating keratinocytes were indentified and characterized by immunohistochemistry and transmissive electron microscope (TEM), which showed the cells maintain their biological activity well. The results indicated that gold colloid/chitosan film scaffold was nontoxic to keratinocytes, and was a good candidate for wound dressing in skin tissue engineering.

  1. Determination of hepatic blood flow through radioactive colloidal gold in congestive heart foilure

    International Nuclear Information System (INIS)

    Papaleo Netto, M.; Carvalho, N.; Carvalho Filho, E.T.; Forti, N.A.; Giannini, S.D.; Diament, J.; Decourt, L.V.; Chiaverini, R.

    1974-01-01

    Hepatic blood flow as derermined by radioactive colloidal gold and its correlation with total blood valume are studied in 13 patients with predominantly right-side congestive heart failure. During the phase of cardiac compensation, the following events occur: 1) significant decrease of the half-life of the clearance of radioactive colloidal gold and of the total blood volume; 2) increase of the clearance constant of the radioactive substance and of hepatic blood flow; 3) significantion correlation between the clearance constant and the total blood volume [pt

  2. GOLD CLUSTER LABELS AND RELATED TECHNOLOGIES IN MOLECULAR MORPHOLOGY.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.; POWELL,R.D.

    2004-02-04

    Although intensely colored, even the largest colloidal gold particles are not, on their own, sufficiently colored for routine use as a light microscopy stain: only with very abundant antigens or with specialized illumination methods can bound gold be seen. Colloidal gold probes were developed primarily as markers for electron microscopy, for which their very high electron density and selectivity for narrow size distributions when prepared in different ways rendered them highly suited. The widespread use of gold labeling for light microscopy was made possible by the introduction of autometallographic enhancement methods. In these processes, the bound gold particles are exposed to a solution containing metal ions and a reducing agent; they catalyze the reduction of the ions, resulting in the deposition of additional metal selectively onto the particles. On the molecular level, the gold particles are enlarged up to 30-100 nm in diameter; on the macroscale level, this results in the formation of a dark stain in regions containing bound gold particles, greatly increasing visibility and contrast. The applications of colloidal gold have been described elsewhere in this chapter, we will focus on the use of covalently linked cluster complexes of gold and other metals. A gold cluster complex is a discrete molecular coordination compound comprising a central core, or ''cluster'' of electron-dense metal atoms, ligated by a shell of small organic molecules (ligands), which are linked to the metal atoms on the surface of the core. This structure gives clusters several important advantages as labels. The capping of the metal surface by ligands prevents non-specific binding to cell and tissue components, which can occur with colloidal gold. Cluster compounds are more stable and may be used under a wider range of conditions. Unlike colloidal gold, clusters do not require additional macromolecules such as bovine serum albumin or polyethylene glycol for

  3. In situ spectroscopy of ligand exchange reactions at the surface of colloidal gold and silver nanoparticles

    International Nuclear Information System (INIS)

    Dinkel, Rebecca; Peukert, Wolfgang; Braunschweig, Björn

    2017-01-01

    Gold and silver nanoparticles with their tunable optical and electronic properties are of great interest for a wide range of applications. Often the ligands at the surface of the nanoparticles have to be exchanged in a second step after particle formation in order to obtain a desired surface functionalization. For many techniques, this process is not accessible in situ . In this review, we present second-harmonic scattering (SHS) as an inherently surface sensitive and label-free optical technique to probe the ligand exchange at the surface of colloidal gold and silver nanoparticles in situ and in real time. First, a brief introduction to SHS and basic features of the SHS of nanoparticles are given. After that, we demonstrate how the SHS intensity decrease can be correlated to the thiol coverage which allows for the determination of the Gibbs free energy of adsorption and the surface coverage. (topical review)

  4. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    International Nuclear Information System (INIS)

    Slepička, P.; Elashnikov, R.; Ulbrich, P.; Staszek, M.; Kolská, Z.; Švorčík, V.

    2015-01-01

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H 2 O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H 2 O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H 2 O—1/1), 509–535 nm (PEG/H 2 O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles

  5. Stabilization of sputtered gold and silver nanoparticles in PEG colloid solutions

    Energy Technology Data Exchange (ETDEWEB)

    Slepička, P., E-mail: petr.slepicka@vscht.cz; Elashnikov, R. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Ulbrich, P. [University of Chemistry and Technology Prague, Department of Biochemistry and Microbiology (Czech Republic); Staszek, M. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic); Kolská, Z. [University of J. E. Purkyně, Faculty of Science (Czech Republic); Švorčík, V. [University of Chemistry and Technology Prague, Department of Solid State Engineering (Czech Republic)

    2015-01-15

    In this study, a simple technique for preparation of colloid solution of metal nanoparticles in polyethylene glycol (PEG)/H{sub 2}O is described. By this technique, stable colloidal metal solutions can be prepared ready for use without application of chemical reactions, stabilizers, or reducing agents. The nanoparticles are created by direct sputtering of metal into PEG. The influence of sputter conditions and the concentration of PEG/H{sub 2}O on the properties of nanoparticles was studied. The nanoparticles were characterized by transmission electron microscopy, atomic absorption spectrometry, dynamic light scattering, and UV–Vis spectroscopy. UV–Vis spectra of gold nanoparticle solution exhibit localized surface plasmon resonance characteristic peaks located in the region 513–560 nm (PEG/H{sub 2}O—1/1), 509–535 nm (PEG/H{sub 2}O—1/9), and for silver nanoparticles in the region from 401 to 421 nm. Silver nanoparticles have a broader size distribution compared with gold ones. An appropriate choice of concentration, mixing, and deposition conditions allows preparing the stable solution of gold or silver nanoparticles.

  6. Development of Colloidal Gold-Based Immunochromatographic Assay for Rapid Detection of Goose Parvovirus

    Directory of Open Access Journals (Sweden)

    Xianglong Yu

    2018-05-01

    Full Text Available Goose parvovirus (GPV remains as a worldwide problem in goose industry. For this reason, it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. A rapid immunochromatographic assay based on antibody colloidal gold nanoparticles specific to GPV was developed for the detection of GPV in goose allantoic fluid and supernatant of tissue homogenate. The monoclonal antibodies (Mab was produced by immunizing the BALB/c mice with purified GPV suspension, and the polyclonal antibody (pAb was produced by immunizing the rabbits with recombinant VP3 protein. The colloidal gold was prepared by the reduction of gold salt with sodium citrate coupled with Mab against GPV. The optimal concentrations of the coating antibody and capture antibody were determined to be 1.6 mg/ml and 9 μg/ml. With visual observation, the lower limit was found to be around 1.2 μg/ml. Common diseases of goose were tested to evaluate the specificity of the immune colloidal gold (ICG strip, and no cross-reaction was observed. The clinical detection was examined by carrying out the ICG strip test with 92 samples and comparing the results of these tests with those obtained via agar diffusion test and polymerase chain reaction (PCR test. Therefore, the ICG strip test was a sufficiently sensitive and accurate detection method for a rapid screening of GPV.

  7. Electron transport in gold colloidal nanoparticle-based strain gauges

    Science.gov (United States)

    Moreira, Helena; Grisolia, Jérémie; Sangeetha, Neralagatta M.; Decorde, Nicolas; Farcau, Cosmin; Viallet, Benoit; Chen, Ke; Viau, Guillaume; Ressier, Laurence

    2013-03-01

    A systematic approach for understanding the electron transport mechanisms in resistive strain gauges based on assemblies of gold colloidal nanoparticles (NPs) protected by organic ligands is described. The strain gauges were fabricated from parallel micrometer wide wires made of 14 nm gold (Au) colloidal NPs on polyethylene terephthalate substrates, elaborated by convective self-assembly. Electron transport in such devices occurs by inter-particle electron tunneling through the tunnel barrier imposed by the organic ligands protecting the NPs. This tunnel barrier was varied by changing the nature of organic ligands coating the nanoparticles: citrate (CIT), phosphines (BSPP, TDSP) and thiols (MPA, MUDA). Electro-mechanical tests indicate that only the gold NPs protected by phosphine and thiol ligands yield high gauge sensitivity. Temperature-dependent resistance measurements are explained using the ‘regular island array model’ that extracts transport parameters, i.e., the tunneling decay constant β and the Coulomb charging energy EC. This reveals that the Au@CIT nanoparticle assemblies exhibit a behavior characteristic of a strong-coupling regime, whereas those of Au@BSPP, Au@TDSP, Au@MPA and Au@MUDA nanoparticles manifest a weak-coupling regime. A comparison of the parameters extracted from the two methods indicates that the most sensitive gauges in the weak-coupling regime feature the highest β. Moreover, the EC values of these 14 nm NPs cannot be neglected in determining the β values.

  8. Prophylaxis of meningosis leukemia via intrathecal radioactive colloid gold injection

    Energy Technology Data Exchange (ETDEWEB)

    Angelov, A; Uzunov, I; Marshavelova, J [Meditsinski Fakultet, Plovdiv (Bulgaria)

    1979-01-01

    Prophylaxis against meningosis leukemia (ML) via intrathecal radioactive colloid gold injection was carried out for a period of three years (January 1974 - September 1976) in 21 children with acute lymphoblast leukemia (ALL). The analysis of those patients after one relatively long period of observation (28 months after the last case) reveals that ML developed as a primary isolated manifestation of a recurrence in three children, i.e. in 14.2 per cent versus 68 per cent in the control group without prophylaxis. In another child ML development is in parallel with bone marrow recurrence. The reduction of ML incidence is accompanied with a prolongation of the first remission (in 24 per cent over 2 years and 6 months) and a lengthening of survival for 50 per cent of the patients (62 per cent of the treated patients are alive two years and 4 months during the period of observation). The advantages of the prophylaxis with radioactive colloid gold is emphasized in comparison with the other prophylactic programmes.

  9. Friction behavior of nano-textured polyimide surfaces measured by AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaoliang [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wu, Chunxia; Che, Hongwei; Hou, Junxian [College of Equipment Manufacturing, Hebei University of Engineering, Handan 056038 (China); Jia, Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2014-11-30

    Highlights: • Flat PI film and nano-textured PI film were prepared by spin-coating process. • The nano-textured PI surface has effectively reduced the adhesion and friction. • Friction increased with the increasing of contact area and adhesion. • The growth rate of friction decreased with the increasing of applied load. - Abstract: Flat polyimide (PI) film and silicon dioxide nanoparticle-textured PI film were prepared by means of the spin-coating technique. The adhesion and friction properties of the flat PI surface and nano-textured PI surface were investigated by a series of Atomic force microscope (AFM) colloidal probes. Experimental results revealed that the nano-textured PI surface can significantly reduce the adhesive force and friction force, compared with the flat PI surface. The main reason is that the nano-textures can reduce the contact area between the sample surface and colloidal probe. The effect of colloidal probe size on the friction behavior of the flat and nano-textured PI surfaces was evaluated. The adhesive force and friction force of nano-textured PI surface were increased with the increasing of the size of interacting pairs (AFM colloidal probe) due to the increased contact area. Moreover, the friction forces of flat and nano-textured PI surfaces were increased with applied load and sliding velocity.

  10. Probing Interfacial Water on Nanodiamonds in Colloidal Dispersion.

    Science.gov (United States)

    Petit, Tristan; Yuzawa, Hayato; Nagasaka, Masanari; Yamanoi, Ryoko; Osawa, Eiji; Kosugi, Nobuhiro; Aziz, Emad F

    2015-08-06

    The structure of interfacial water layers around nanoparticles dispersed in an aqueous environment may have a significant impact on their reactivity and on their interaction with biological species. Using transmission soft X-ray absorption spectroscopy in liquid, we demonstrate that the unoccupied electronic states of oxygen atoms from water molecules in aqueous colloidal dispersions of nanodiamonds have a different signature than bulk water. X-ray absorption spectroscopy can thus probe interfacial water molecules in colloidal dispersions. The impacts of nanodiamond surface chemistry and concentration on interfacial water electronic signature are discussed.

  11. Deposition of gold nanoparticles from colloid on TiO2 surface

    Science.gov (United States)

    Rehacek, Vlastimil; Hotovy, Ivan

    2017-11-01

    In this paper, experimental results are presented on the deposition of colloidal gold nanoparticles on the surfaces of TiO2 prepared on silicon/silicon dioxide. Important procedures, such as titanium dioxide surface hydrophilization as well as functionalization by an organosilane coupling agent (3-aminopropyl) trimethoxysilane and (3-mercaptopropyl) trimethoxysilane were investigated in order to obtain a metal oxide surface with the most convenient properties for immobilization of gold nanoparticles having a dense and uniform distribution. TiO2 nanotips prepared by reactive ion etching of oxide surface covered with self-mask gold nanoparticles are demonstrated.

  12. Diffusing colloidal probes of protein-carbohydrate interactions.

    Science.gov (United States)

    Eichmann, Shannon L; Meric, Gulsum; Swavola, Julia C; Bevan, Michael A

    2013-02-19

    We present diffusing colloidal probe measurements of weak, multivalent, specific protein-polysaccharide interactions mediated by a competing monosaccharide. Specifically, we used integrated evanescent wave and video microscopy methods to monitor the three-dimensional Brownian excursions of conconavilin A (ConA) decorated colloids interacting with dextran-functionalized surfaces in the presence of glucose. Particle trajectories were interpreted as binding lifetime histograms, binding isotherms, and potentials of mean force. Binding lifetimes and isotherms showed clear trends of decreasing ConA-dextran-specific binding with increasing glucose concentration, consistent with expectations. Net potentials were accurately captured by superposition of a short-range, glucose-independent ConA-dextran repulsion and a longer-range, glucose-dependent dextran bridging attraction modeled as a harmonic potential. For glucose concentrations greater than 100 mM, the net ConA-dextran potential was found to have only a nonspecific repulsion, similar to that of bovine serum albumin (BSA) decorated colloids over dextran determined in control experiments. Our results demonstrate the first use of optical microscopy methods to quantify the connections between potentials of mean force and the binding behavior of ConA-decorated colloids on dextran-functionalized surfaces.

  13. Development of a colloidal gold immunochromatographic strip for rapid detection of Streptococcus agalactiae in tilapia.

    Science.gov (United States)

    Wen-de, Wu; Min, Li; Ming, Chen; Li-Ping, Li; Rui, Wang; Hai-Lan, Chen; Fu-Yan, Chen; Qiang, Mi; Wan-Wen, Liang; Han-Zhong, Chen

    2017-05-15

    A colloidal gold immunochromatographic strip was developed for rapid detection of Streptococcus agalactiae (S. agalactiae) infection in tilapia. The monoclonal antibodies (mAb) 4C12 and 3A9 were used to target S. agalactiae as colloidal gold-mAb conjugate and captured antibody, respectively. The colloidal gold immunochromatographic strip was assembled via routine procedures. Optimal pH and minimum antibody levels in the reaction system for gold colloidal-mAb 4C12 conjugation were pH 7.4 and 18μg/mL, respectively. Optimal concentrations of the captured antibody 3A9 and goat anti-mouse antibody were 0.6mg/mL and 2mg/mL, respectively. The sensitivity of the strip for detecting S. agalactiae was 1.5×10 5 colony forming units (CFU). No cross-reaction was observed with other commonly encountered bacteria, including Pseudomonas fluorescens, Aeromonas hydrophila, Vibrio anguillarum and Streptococcus iniae. The assay time for S. agalactiae was less than 15min. Tilapia samples artificially infected with S. agalactiae were tested using the newly developed strip. The results indicated that blood, brain, kidney, spleen, metanephros and intestine specimens of infected fish can be used for S. agalactiae detection. The validity of the strip was maintained for 6 months at 4°C. These findings suggested that the immunochromatographic strip was effective for spot and rapid detection of S. agalactiae infected tilapia. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Extensive Characterization of Oxide-Coated Colloidal Gold Nanoparticles Synthesized by Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Romuald Intartaglia

    2016-09-01

    Full Text Available Colloidal gold nanoparticles are a widespread nanomaterial with many potential applications, but their aggregation in suspension is a critical issue which is usually prevented by organic surfactants. This solution has some drawbacks, such as material contamination and modifications of its functional properties. The gold nanoparticles presented in this work have been synthesized by ultra-fast laser ablation in liquid, which addresses the above issues by overcoating the metal nanoparticles with an oxide layer. The main focus of the work is in the characterization of the oxidized gold nanoparticles, which were made first in solution by means of dynamic light scattering and optical spectroscopy, and then in dried form by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and finally by surface potential measurements with atomic force microscopy. The light scattering assessed the nanoscale size of the formed particles and provided insight in their stability. The nanoparticles’ size was confirmed by direct imaging in transmission electron microscopy, and their crystalline nature was disclosed by X-ray diffraction. The X-ray photoelectron spectroscopy showed measurements compatible with the presence of surface oxide, which was confirmed by the surface potential measurements, which are the novel point of the present work. In conclusion, the method of laser ablation in liquid for the synthesis of gold nanoparticles has been presented, and the advantage of this physical approach, consisting of coating the nanoparticles in situ with gold oxide which provides the required morphological and chemical stability without organic surfactants, has been confirmed by using scanning Kelvin probe microscopy for the first time.

  15. Two step continuous method to synthesize colloidal spheroid gold nanorods.

    Science.gov (United States)

    Chandra, S; Doran, J; McCormack, S J

    2015-12-01

    This research investigated a two-step continuous process to synthesize colloidal suspension of spheroid gold nanorods. In the first step; gold precursor was reduced to seed-like particles in the presence of polyvinylpyrrolidone and ascorbic acid. In continuous second step; silver nitrate and alkaline sodium hydroxide produced various shape and size Au nanoparticles. The shape was manipulated through weight ratio of ascorbic acid to silver nitrate by varying silver nitrate concentration. The specific weight ratio of 1.35-1.75 grew spheroid gold nanorods of aspect ratio ∼1.85 to ∼2.2. Lower weight ratio of 0.5-1.1 formed spherical nanoparticle. The alkaline medium increased the yield of gold nanorods and reduced reaction time at room temperature. The synthesized gold nanorods retained their shape and size in ethanol. The surface plasmon resonance was red shifted by ∼5 nm due to higher refractive index of ethanol than water. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. A novel colloidal gold labeled antigen for the detection of Deoxynivalenol using an immunochromatographic assay method

    Science.gov (United States)

    Jin, Yu; Liu, Renrong; Zhu, Lixin; Chen, Zhenzhen

    2017-11-01

    In this paper, an immunochromatographic assay card was developed for the detection of DON in feed and cereals using a novel colloidal gold labeling method. For the colloidal gold immunochromatographic rapid detection (GICD) card, a monoclonal antibody DON-mAb and a goat anti-chicken IgY were drawn on NC membrane as the test line (T line) and the control line (C line) respectively. A gold labeled DON-CBSA conjugate and a gold labeled chicken IgY were sprayed onto the conjugate pad. The GICD card has cut-off levels of 50ng/mL for DON, which is invulnerable to matrix interference, and applicable to a wide range of samples. The GICD detecting results of feed and grain samples were compared with the results of ELISA testing, which showed good consistency.

  17. Depletion interaction measured by colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Wijting, W.K.; Knoben, W.; Besseling, N.A.M.; Leermakers, F.A.M.; Cohen Stuart, M.A.

    2004-01-01

    We investigated the depletion interaction between stearylated silica surfaces in cyclohexane in the presence of dissolved polydimethylsiloxane by means of colloidal probe atomic force microscopy. We found that the range of the depletion interaction decreases with increasing concentration.

  18. Colloidal Gold--Collagen Protein Core--Shell Nanoconjugate: One-Step Biomimetic Synthesis, Layer-by-Layer Assembled Film, and Controlled Cell Growth.

    Science.gov (United States)

    Xing, Ruirui; Jiao, Tifeng; Yan, Linyin; Ma, Guanghui; Liu, Lei; Dai, Luru; Li, Junbai; Möhwald, Helmuth; Yan, Xuehai

    2015-11-11

    The biogenic synthesis of biomolecule-gold nanoconjugates is of key importance for a broad range of biomedical applications. In this work, a one-step, green, and condition-gentle strategy is presented to synthesize stable colloidal gold-collagen core-shell nanoconjugates in an aqueous solution at room temperature, without use of any reducing agents and stabilizing agents. It is discovered that electrostatic binding between gold ions and collagen proteins and concomitant in situ reduction by hydroxyproline residues are critically responsible for the formation of the core-shell nanoconjugates. The film formed by layer-by-layer assembly of such colloidal gold-collagen nanoconjugates can notably improve the mechanical properties and promote cell adhesion, growth, and differentiation. Thus, the colloidal gold-collagen nanoconjugates synthesized by such a straightforward and clean manner, analogous to a biomineralization pathway, provide new alternatives for developing biologically based hybrid biomaterials toward a range of therapeutic and diagnostic applications.

  19. Photochemical Synthesis and Properties of Colloidal Copper, Silver and Gold Adsorbed on Quartz

    International Nuclear Information System (INIS)

    Loginov, Anatoliy V.; Gorbunova, Valentina V.; Boitsova, Tatiana B.

    2002-01-01

    Original methods for the photochemical production of stable copper, silver and gold colloids in the form of films on quartz, and dispersion in liquids were devised. It is shown that photochemical synthesis of colloidal metals is a difficult multiphase process, and includes the formation of low-valence forms of Cu(I), Au(I) and nonmetal clusters, colloidal particles and their agglomerates. Cluster stabilization and further growth to colloidal particles are achieved by adsorption onto the solid surface (quartz) or by increasing the viscosity of photolyte. In the absence of these methods of stabilization, the processes of intermediate reoxidation to Cu(II) and Au(III) and agglomeration of Ag and Au colloids proceed in a photolyte. Adsorption and the rate of cluster growth on a quartz surface are speeded up by the action of monochromatic UV light. Experimental models of the mechanism of colloidal formation are suggested. The dependence of the growth rate and the properties of the colloids on conditions of the photochemical procedure (energy and light intensity, concentration of initial complex) has been established

  20. A Portable Colloidal Gold Strip Sensor for Clenbuterol and Ractopamine Using Image Processing Technology

    Directory of Open Access Journals (Sweden)

    Yi Guo

    2013-01-01

    Full Text Available A portable colloidal golden strip sensor for detecting clenbuterol and ractopamine has been developed using image processing technology, as well as a novel strip reader has achieved innovatively with this imaging sensor. Colloidal gold strips for clenbuterol and ractopamine is used as first sensor with given biomedical immunication reaction. After three minutes the target sample dropped on, the color showing in the T line is relative to the content of objects as clenbuterol, this reader can finish many functions like automatic acquit ion of colored strip image, quantatively analysis of the color lines including the control line and test line, and data storage and transfer to computer. The system is integrated image collection, pattern recognition and real-time colloidal gold quantitative measurement. In experiment, clenbuterol and ractopamine standard substance with concentration from 0 ppb to 10 ppb is prepared and tested, the result reveals that standard solutions of clenbuterol and ractopamine have a good secondary fitting character with color degree (R2 is up to 0.99 and 0.98. Besides, through standard sample addition to the object negative substance, good recovery results are obtained up to 98 %. Above all, an optical sensor for colloidal strip measure is capable of determining the content of clenbuterol and ractopamine, it is likely to apply to quantatively identifying of similar reaction of colloidal golden strips.

  1. Establishment of colloid gold immunity chromatography assay for cardiac troponin I (cTnI)

    International Nuclear Information System (INIS)

    Wang Dezhi; Chen Jiying; Qin Lili; Zhao Baojian; Zhang Chunming

    2006-01-01

    Objective: To establish the colloid gold Immunity chromatography assay for cardiac troponin I. Methods: To purify cTnI from human cardiac muscle and immunize rabbit with it. cTnI antibody of rabbit anti-human cardiac muscle has been prepared and colloid gold immunity chromatography assay was established by using immunity chromatography technology. Results: Anti-serum titles of cTnI were 1:100000, Ka=2.38 x 10 9 L/mol; Methodological index: Sensitivity: 5 ng/ml; Specificity: cTnI is no cross-reaction with cTnT, cTnC and CK-MB. conclusion: The assay is highly specific, quick and simple. It can be widely used for the early diagnosis of AMI and scientific research. (authors)

  2. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    International Nuclear Information System (INIS)

    Zhang Xiaoliang; Wang Xiu; Kong Wen; Yi Gewen; Jia Junhong

    2011-01-01

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  3. Tribological behavior of micro/nano-patterned surfaces in contact with AFM colloidal probe

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xiaoliang; Wang Xiu; Kong Wen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Yi Gewen [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Jia Junhong, E-mail: jhjia@licp.cas.cn [State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2011-10-15

    In effort to investigate the influence of the micro/nano-patterning or surface texturing on the nanotribological properties of patterned surfaces, the patterned polydimethylsiloxane (PDMS) surfaces with pillars were fabricated by replica molding technique. The surface morphologies of patterned PDMS surfaces with varying pillar sizes and spacing between pillars were characterized by atomic force microscope (AFM) and scanning electron microscope (SEM). The AFM/FFM was used to acquire the friction force images of micro/nano-patterned surfaces using a colloidal probe. A difference in friction force produced a contrast on the friction force images when the colloidal probe slid over different regions of the patterned polymer surfaces. The average friction force of patterned surface was related to the spacing between the pillars and their size. It decreased with the decreasing of spacing between the pillars and the increasing of pillar size. A reduction in friction force was attributed to the reduced area of contact between patterned surface and colloidal probe. Additionally, the average friction force increased with increasing applied load and sliding velocity.

  4. Influence of the pH value of a colloidal gold solution on the absorption spectra of an LSPR-assisted sensor

    International Nuclear Information System (INIS)

    Zhu, Jin; Li, Wenbin; Zhu, Mao; Zhang, Wei; Niu, Wencheng; Liu, Guohua

    2014-01-01

    The localized surface plasmon resonances (LSPRs) of gold particles assembled on a crystal plate are a powerful tool for biological sensors. Here, we prepare gold colloids in different pH solutions. We monitor the effects of the particle radius and particle coverage on the absorption spectra of AT-cut (r-face dihedral angle of about 3°) crystal plates supporting gold nanoparticles. The surface morphologies were monitored on silicon dioxide substrates using ultraviolet and visible (UV-vis) spectroscopy, and atomic force microscopy (AFM). The results showed that the gold particle coverage decreases with increasing pH value of the gold colloid solution. This phenomenon demonstrates that self-assembled gold surfaces were formed via the electrostatic adsorption of gold particles on the positively charged, ionized amino groups on the crystal plates in the acidic solution. The spectrum of gold nanoparticles with different coverage degree on the crystal plates showed that the LSPR properties are highly dependent on pH

  5. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev; Li, Erqiang; Thoroddsen, Sigurdur T

    2014-01-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  6. Soft colloidal probes for AFM force measurements between water droplets in oil

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-11-01

    Here we introduce an extension of the atomic force microscopy (AFM) colloidal probe technique, as a simple and reliable experimental approach to measure the interaction forces between small water droplets (~80-160. μm) dispersed in oil. Small water droplets are formed by capillary breakup of a microscale water jet in air, which is forced out of a fine capillary nozzle, and deposited on a superhydrophobic substrate immersed in tetradecane oil medium. In these conditions the water droplets are very loosely attached to the superhydrophobic substrate and are easily picked up with a hydrophobic AFM cantilever to form a soft colloidal probe. Sample force measurements are conducted to demonstrate the capability of the technique.

  7. Single step synthesis and organization of gold colloids assisted by copolymer templates

    Science.gov (United States)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-06-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future.

  8. Liver function evaluation in leptospirosis with colloidal gold 1 9 8 Au

    Directory of Open Access Journals (Sweden)

    Walber Miranda Silva

    1977-12-01

    Full Text Available Eight patients with leptospirosis were studied with colloidal gold 1 9 8 Au. The radiocolloidal hepatic distribution was altered, presenting a non-homogeneous tiver concentration in seven cases, and a minute to moderate splenic visualization in five. Two patients presented doubtful splenic image, and one seemed to be normal. Liver scanning with colloidal gold 1 9 8 Au is demonstra ted to be a good liver function test.Oito pacientes com Leptospirose foram investigados com ouro coloidal radioativo (1 9 8 Au. A distribuição intrahepática do radiocoloide era alterada, apresentando uma concentração hepática não-homogênea em 7 casos, e visualização esp/ênica de mínima a moderada em 5. Dois tinham dúvida quanto à imagem do baço, e um parecia normal. A cintigrafia hepática com ouro coloidai radioativo (1 9 8 Au é demonstrada ser um bom teste de função hepática.

  9. Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics.

    Science.gov (United States)

    Ovais, Muhammad; Raza, Abida; Naz, Shagufta; Islam, Nazar Ul; Khalil, Ali Talha; Ali, Shaukat; Khan, Muhammad Adeeb; Shinwari, Zabta Khan

    2017-05-01

    The design, development, and biomedical applications of phytochemical-based green synthesis of biocompatible colloidal gold nanoparticles (AuNPs) are becoming an emerging field due to several advantages (safer, eco-friendly, simple, fast, energy efficient, low-cost, and less toxic) over conventional chemical synthetic procedures. Biosynthesized colloidal gold nanoparticles are remarkably attractive in several biomedical applications including cancer theranostics due to small size, unusual physico-chemical properties, facile surface modification, high biocompatibility, and numerous other advantages. Of late, several researchers have investigated the biosynthesis and prospective applications (diagnostics, imaging, drug delivery, and cancer therapeutics) of AuNPs in health care and medicine. However, not a single review article is available in the literature that demonstrates the anti-cancer potential of biosynthesized colloidal AuNPs with detailed mechanistic study. In the present review article, we for the first time discuss the biointerface of colloidal AuNPs, plants, and cancer mainly (i) comprehensive mechanistic aspects of phytochemical-based synthesis of AuNPs; (ii) proposed anti-cancer mechanisms along with biomedical applications in diagnostics, imaging, and drug delivery; and (iii) key challenges for biogenic AuNPs as future cancer nanomedicine.

  10. Gold nanocone probes for near-field scanning optical microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, Bastian; Schaefer, Christian; Nill, Peter; Fleischer, Monika; Kern, Dieter P. [Institute of Applied Physics, University of Tuebingen, Auf der Morgenstelle 10, 72076 Tuebingen (Germany)

    2010-07-01

    Apertureless near-field scanning optical microscopy (ANSOM) provides the possibility to collect simultaneously high-resolution topographical and sub-diffraction limited optical information from a surface. When optically excited, the scanning probes act as optical antennae with a strong near-field enhancement near the tip apex. Spatial resolution and optical near-field enhancement depend strongly on the properties and geometry of the scanning probe - in particular on very sharp tip radii. Various possibilities for fabricating good antennae have been pursued. Most commonly, scanning probes consist of electrochemically etched gold wires which are sharp but not well-defined in geometry. We present two different approaches for ultra sharp and well-defined antennae based upon fabricating gold nanocones with a tip radius smaller than 10 nm which can be used in ANSOM. A transfer process is presented that can be used to attach single gold nanocones to non-metallic probes such as sharp glass fiber tips. Alternatively, new processes are presented to fabricate cones directly on pillars of different materials such as silicon or bismuth, which can be applied to cantilever tips for ANSOM scanning applications.

  11. Photoluminescence enhancement of dye-doped nanoparticles by surface plasmon resonance effects of gold colloidal nanoparticles

    International Nuclear Information System (INIS)

    Chu, Viet Ha; Nghiem, Thi Ha Lien; Tran, Hong Nhung; Fort, Emmanuel

    2011-01-01

    Due to the energy transfer from surface plasmons, the fluorescence of fluorophores near metallic nanostructures can be enhanced. This effect has been intensively studied recently for biosensor applications. This work reports on the luminescence enhancement of 100 nm Cy3 dye-doped polystyrene nanoparticles by energy transfer from surface plasmons of gold colloidal nanoparticles with sizes of 20 and 100 nm. Optimal luminescence enhancement of the fluorophores has been observed in the mixture with 20 nm gold nanoparticles. This can be attributed to the resonance energy transfer from gold nanoparticles to the fluorophore beads. The interaction between the fluorophores and gold particles is attributed to far-field interaction

  12. Single step synthesis and organization of gold colloids assisted by copolymer templates

    International Nuclear Information System (INIS)

    Sarrazin, Aurélien; Gontier, Arthur; Plaud, Alexandre; Béal, Jérémie; Yockell-Lelièvre, Hélène; Bijeon, Jean-Louis; Plain, Jérôme; Adam, Pierre-Michel; Maurer, Thomas

    2014-01-01

    We report here an original single-step process for the synthesis and self-organization of gold colloids by simply incorporating gold salts into a solution prepared using polystyrene (PS)-polymethylmethacrylate copolymer and thiolated PS with propylene glycol methyl ether acetate as a solvent. The spin-coating and annealing of this solution then allows the formation of PS domains. Depending on the polymer concentration of the as-prepared solution, there can be either one or several gold nanoparticles (Au NPs) per PS domain. For high concentrations of Au NPs in PS domains, the coupling between plasmonic NPs leads to the observation of a second peak in the optical extinction spectrum. Such a collective effect could be relevant for the development of optical strain sensors in the near future. (papers)

  13. Colloid Transport and Retention

    DEFF Research Database (Denmark)

    Yuan, Hao; Shapiro, Alexander

    2012-01-01

    related to historical prospective, synthesis, characterization, theoretical modeling and application of unique class of colloidal materials starting from colloidal gold to coated silica colloid and platinum, titania colloids. This book is unique in its design, content, providing depth of science about...

  14. The infrared transmission through gold films on ordered two-dimensional non-close-packed colloidal crystals

    International Nuclear Information System (INIS)

    Ju Jing; Zhou Yuqin; Dong Gangqiang

    2014-01-01

    We studied the infrared transmission properties of gold films on ordered two-dimensional non-close-packed polystyrene (PS) colloidal crystal. The gold films consist of gold half-shells on the PS spheres and gold film with 2D arrays of holes on the glass substrate. An extraordinary optical transmission phenomenon could be found in such a structure. Simulations with the finite-difference time-domain method were also employed to get the transmission spectra and electric field distribution. The transmission response of the samples can be adjusted by controlling the thickness of the gold films. Angle-resolved measurements were performed using polarized light to obtain more information about the surface plasmon polariton resonances of the gold films. As the angle changes, the transmission spectra change a lot. The transmission spectra of p-polarized light have quite different properties compared to those of s-polarized light. (semiconductor physics)

  15. Third-order nonlinear optical response of colloidal gold nanoparticles prepared by sputtering deposition

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Hemerson P. S.; Alencar, Márcio A. R. C.; Hickmann, Jandir M. [Optics and Materials Group–OPTMA, Universidade Federal de Alagoas, CAIXA POSTAL 2051, 57061-970 Maceió (Brazil); Wender, Heberton [Brazilian Synchrotron National Laboratory (LNLS), CNPEM, Rua Giuseppe Máximo Scolfaro 10.000, 13083-970 Campinas (Brazil); Department of Physics, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande (Brazil); Teixeira, Sergio R. [Institute of Physics, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil); Dupont, Jairton [Laboratory of Molecular Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre (Brazil)

    2013-11-14

    The nonlinear optical responses of gold nanoparticles dispersed in castor oil produced by sputtering deposition were investigated, using the thermally managed Z-scan technique. Particles with spherical shape and 2.6 nm of average diameter were obtained and characterized by transmission electron microscopy and small angle X-ray scattering. This colloid was highly stable, without the presence of chemical impurities, neither stabilizers. It was observed that this system presents a large refractive third-order nonlinear response and a negligible nonlinear absorption. Moreover, the evaluation of the all-optical switching figures of merit demonstrated that the colloidal nanoparticles prepared by sputtering deposition have a good potential for the development of ultrafast photonic devices.

  16. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate; Contribution a l'etude pharmacologique du transport des colloides d'or radioactif par le sang et les exsudats sereux

    Energy Technology Data Exchange (ETDEWEB)

    Rousselet, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [French] Apres avoir enonce les proprietes physicochimiques essentielles des colloides nous etudions le devenir biologique de ces substances et, en relation avec leur transport par le sang, leur captation par les elements du Systeme Reticulo-Endothelial. Nous resumons les connaissances acquises jusqu'alors sur le role des proteines seriques dans le transport des substances et particulierement dans le

  17. pH Triggered Recovery and Reuse of Thiolated Poly(acrylic acid) Functionalized Gold Nanoparticles with Applications in Colloidal Catalysis.

    Science.gov (United States)

    Ansar, Siyam M; Fellows, Benjamin; Mispireta, Patrick; Mefford, O Thompson; Kitchens, Christopher L

    2017-08-08

    Thiolated poly(acrylic acid) (PAA-SH) functionalized gold nanoparticles were explored as a colloidal catalyst with potential application as a recoverable catalyst where the PAA provides pH-responsive dispersibility and phase transfer capability between aqueous and organic media. This system demonstrates complete nanoparticle recovery and redispersion over multiple reaction cycles without changes in nanoparticle morphology or reduction in conversion. The catalytic activity (rate constant) was reduced in subsequent reactions when recovery by aggregation was employed, despite unobservable changes in morphology or dispersibility. When colloidal catalyst recovery employed a pH induced phase transfer between two immiscible solvents, the catalytic activity of the recovered nanoparticles was unchanged over four cycles, maintaining the original rate constant and 100% conversion. The ability to recover and reuse colloidal catalysts by aggregation/redispersion and phase transfer methods that occur at low and high pH, respectively, could be used for different gold nanoparticle catalyzed reactions that occur at different pH conditions.

  18. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    International Nuclear Information System (INIS)

    Mora, M.B. de la; Bornacelli, J.; Nava, R.; Zanella, R.; Reyes-Esqueda, J.A.

    2014-01-01

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material

  19. Porous silicon photoluminescence modification by colloidal gold nanoparticles: Plasmonic, surface and porosity roles

    Energy Technology Data Exchange (ETDEWEB)

    Mora, M.B. de la; Bornacelli, J. [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Nava, R. [Centro de Investigación en Energía, Universidad Nacional Autónoma de México, Temixco, Morelos 62580 (Mexico); Zanella, R. [Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Reyes-Esqueda, J.A., E-mail: betarina@gmail.com [Instituto de Física, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico)

    2014-02-15

    Metal nanoparticles on semiconductors are of interest because of the tunable effect of the surface plasmon resonance on the physical properties of the semiconductor. In this work, colloidal gold nanoparticles obtained by two different methods, with an average size of 6.1±2.0 nm and 5.0±2.0 nm, were added to luminescent porous silicon by drop casting. The gold nanoparticles interact with porous silicon by modifying its optical properties such as photoluminescence. That being said, plasmon effects are not the only to be taken into account; as shown in this work, surface chemical modification and porosity also play a key role in the final performance of photoluminescence of a porous silicon–gold nanoparticle hybrid system. -- Highlights: • A hybrid material consisting of porous silicon and gold nanoparticles was fabricated. • Porous silicon/gold nanoparticle hybrid material was made by drop casting. • Influence of plasmonics, surface chemical modification and porosity on the optical behavior of our material was analyzed. • Porosity is proposed as a parameter control to obtain the best effects on luminescence of the hybrid plasmonic material.

  20. A new method to determine the skin thickness of asymmetric UF-membranes using colloidal gold particles

    NARCIS (Netherlands)

    Cuperus, Folkert Petrus; Bargeman, Derk; Smolders, C.A.

    1990-01-01

    In this paper a new method is presented for the determination of the skin thickness of asymmetric ultrafiltration membranes. The method is based on the use of well-defined, uniformly sized colloidal gold particles, permeated from the sublayer side of the membrane, combined with electron microscopic

  1. Location on chitin in the cyst wall of Entamoeba invadens with colloidal gold tracers.

    Science.gov (United States)

    Arroyo-Begovich, A; Cárabez-Trejo, A

    1982-04-01

    Chitin was located in the cyst wall of Entamoeba invadens with colloidal gold-linked wheat germ agglutinin. Cysts stained differentially from trophozoites when encysting cultures were treated with the gold tracer; cysts acquired a wine-red coloration while, in general trophozoites remained unstained. Observation of cells with the electron microscope revealed that the tracer particles were bound specifically to the walls of the surface of the cyst when cells were exposed in suspension, and to the cyst wall cross-section, when cells were exposed to the tracer in thin section, indicating that chitin fibers were distributed on the surface as well as throughout the matrix of the cyst wall.

  2. Synthesis of Monodispersed Gold Nanoparticles with Exceptional Colloidal Stability with Grafted Polyethylene Glycol-g-polyvinyl Alcohol

    Directory of Open Access Journals (Sweden)

    Alaaldin M. Alkilany

    2015-01-01

    Full Text Available Herein, we report the synthesis of spherical gold nanoparticles with tunable core size (23–79 nm in the presence of polyethylene glycol-g-polyvinyl alcohol (PEG-g-PVA grafted copolymer as a reducing, capping, and stabilizing agent in a one-step protocol. The resulted PEG-g-PVA-capped gold nanoparticles are monodispersed with an exceptional colloidal stability against salt addition, repeated centrifugation, and extensive dialysis. The effect of various synthesis parameters and the kinetic/mechanism of the nanoparticle formation are discussed.

  3. Analytical detection and biological assay of antileukemic drug using gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Selvaraj, V. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: rajselva_77@yahoo.co.in; Alagar, M. [Department of Chemical Engineering, Alagappa College of Technology, Anna University, Chennai 600025 (India)]. E-mail: mkalagar@yahoo.com; Hamerton, I. [Chemistry Division, School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom)

    2006-11-12

    Gold nanoparticles are reported and evaluated as probes for the detection of anticancer drug 6-mercaptopurine (6-MP). The nature of binding between 6-MP and the gold nanoparticles via complexation is investigated using ultraviolet-visible spectrum, cyclic voltammetry, transmission electron microscopy, fluorescence and Fourier transform infrared (FT-IR) spectroscopy. The bound antileukemic drug is fluorescent and the quenching property of gold nanoparticles could be exploited for biological investigations. The 6-MP-colloidal gold complex is observed to have appreciable antibacterial and antifungal activity against Micrococcus luteus, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Aspergillus fumigatus, and Aspergillus niger. The experimental studies suggest that gold nanoparticles have the potential to be used as effective carriers for anticancer drugs.

  4. Subcellular localization of alkaline phosphatase in Bacillus licheniformis 749/C by immunoelectron microscopy with colloidal gold

    International Nuclear Information System (INIS)

    Tinglu, G.; Ghosh, A.; Ghosh, B.K.

    1984-01-01

    Subcellular distribution of the alkaline phosphatase of Bacillus licheniformis 749/C was determined by an immunoelectron microscopy method. Anti-alkaline phosphatase antibody labeled with 15- to 18-nm colloidal gold particles (gold-immunoglobulin G [IgG] complex) were used for the study. Both the plasma membrane and cytoplasmic material were labeled with the gold-IgG particles. These particles formed clusters in association with the plasma membrane; in contrast, in the cytoplasm the particles were largely dispersed, and only a few clusters were found. The gold-IgG binding was quantitatively estimated by stereological analysis of labeled, frozen thin sections. This estimation of a variety of control samples showed that the labeling was specific for the alkaline phosphatase. Cluster formation of the gold -IgG particles in association with the plasma membrane suggests that existence of specific alkaline phosphatase binding sites (receptors) in the plasma membrane of B. licheniformis 749/C. 27 references, 6 figures, 1 table

  5. Periodically arranged colloidal gold nanoparticles for enhanced light harvesting in organic solar cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Fernandes Cauduro, André Luis; Kunstmann-Olsen, Casper

    2016-01-01

    Although organic solar cells show intriguing features such as low-cost, mechanical flexibility and light weight, their efficiency is still low compared to their inorganic counterparts. One way of improving their efficiency is by the use of light-trapping mechanisms from nano- or microstructures......, which makes it possible to improve the light absorption and charge extraction in the device’s active layer. Here, periodically arranged colloidal gold nanoparticles are demonstrated experimentally and theoretically to improve light absorption and thus enhance the efficiency of organic solar cells....... Surface-ordered gold nanoparticle arrangements are integrated at the bottom electrode of organic solar cells. The resulting optical interference and absorption effects are numerically investigated in bulk hetero-junction solar cells based on the Finite-Difference Time-Domain (FDTD) and Transfer Matrix...

  6. Fabrication of Periodic Gold Nanocup Arrays Using Colloidal Lithography

    Energy Technology Data Exchange (ETDEWEB)

    DeVetter, Brent M.; Bernacki, Bruce E.; Bennett, Wendy D.; Schemer-Kohrn, Alan; Alvine, Kyle J.

    2017-01-01

    Within recent years, the field of plasmonics has exploded as researchers have demonstrated exciting applications related to chemical and optical sensing in combination with new nanofabrication techniques. A plasmon is a quantum of charge density oscillation that lends nanoscale metals such as gold and silver unique optical properties. In particular, gold and silver nanoparticles exhibit localized surface plasmon resonances—collective charge density oscillations on the surface of the nanoparticle—in the visible spectrum. Here, we focus on the fabrication of periodic arrays of anisotropic plasmonic nanostructures. These half-shell (or nanocup) structures can exhibit additional unique light-bending and polarization dependent optical properties that simple isotropic nanostructures cannot. Researchers are interested in the fabrication of periodic arrays of nanocups for a wide variety of applications such as low-cost optical devices, surface-enhanced Raman scattering, and tamper indication. We present a scalable technique based on colloidal lithography in which it is possible to easily fabricate large periodic arrays of nanocups using spin-coating and self-assembled commercially available polymeric nanospheres. Electron microscopy and optical spectroscopy from the visible to near-IR was performed to confirm successful nanocup fabrication. We conclude with a demonstration of the transfer of nanocups to a flexible, conformal adhesive film.

  7. Pharmacological study of radioactive-gold colloid transport by blood and by serous exudate; Contribution a l'etude pharmacologique du transport des colloides d'or radioactif par le sang et les exsudats sereux

    Energy Technology Data Exchange (ETDEWEB)

    Rousselet, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1966-06-01

    After giving the essential physico-chemical properties of the colloids, the author considers the biological role of these substances and, in connection with their transport by the blood, their capture by elements of the reticula-endothelial system. A summary is given of present knowledge concerning the role of serous proteins in the transport of substances, particularly that of radio-active colloidal gold. The blood fractions which can take part in colloidal gold transport are the red blood corpuscles, the leukocytes and histiocytic elements as well as the plasma. The radioactive distribution in these various fractions is obtained by autoradiography of blood sediments. After showing the importance of the role of the plasma in radioactive particle transport, the author, describes the attempts made to detect a possible of colloidal gold 198 on the various serous proteins using various methods of separation. The ''in vitro'' and ''in vivo'' bonds between colloidal gold-198 particles and either the serous proteins or healthy specimens or the effusion liquids of pathological origin in man, or due to an experimental inflammation with carregenin in the rat, have been studied. The bonding appears to be effective because of the protective macromolecular layer formed by the gelatine. The different positions of the colloidal grains on the electrophoregram can only be explained by their different physico-chemical characteristics. Gold in the ionic form, on the other hand, is combined only with the albumen is the amount metal present does not exceed a certain value. (author) [French] Apres avoir enonce les proprietes physicochimiques essentielles des colloides nous etudions le devenir biologique de ces substances et, en relation avec leur transport par le sang, leur captation par les elements du Systeme Reticulo-Endothelial. Nous resumons les connaissances acquises jusqu'alors sur le role des proteines seriques dans le transport des

  8. Plasmonic effects of gold colloids on the fluorescence behavior of dye-doped SiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Tarpani, Luigi, E-mail: luigi.tarpani@unipg.it; Latterini, Loredana

    2017-05-15

    The interactions of dye molecules with gold nanoparticles are of great interest owing to the potential applications in the areas of bioimaging, sensing and photodynamic therapy applications. In many cases the distances between fluorophores and the metal particles can change during the experiment and the spectral features of the units are not taken into account. In this work, the fluorescence behaviour of two dyes with different spectral properties (Rhodamine B and 9-aminoacridine) are investigated in the presence of gold nanoparticles having diameters of 2 or 26 nm and hence different plasmonic properties. In order to fix the distance between the dye and the gold nanoparticles, the dyes are entrapped in 20 nm silica nanoparticles, and the metal colloids are adsorbed on the silica surface. The distance between the fluorescent units and the metal particles is tuned by growing additional silica layers on the pristine nanoparticles. Steady-state and time-resolved fluorescence measurements show that in the presence of gold nanoparticles, having 2 nm diameter, a drastic quenching of the dye emission is observed, for all the prepared samples, despite the average dye-metal distances. When gold nanoparticles with 26 nm diameters are used, their interactions with the dyes are strongly dependent on the averaged distances between the metal colloids and the dyes and on the overlap of their spectral properties. Indeed, an enhanced emission is observed for 9-aminoacridine while the fluorescence of longer wavelength emitting Rhodamine B is quenched. The steady state and time-resolved data are analysed to evaluate the plasmonic impact of the radiative and non-radiative rate constants of the dyes.

  9. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    Energy Technology Data Exchange (ETDEWEB)

    Dahoumane, Si Amar, E-mail: sa.dahoumane@gmail.com [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France); Yéprémian, Claude; Djédiat, Chakib; Couté, Alain [Muséum National d’Histoire Naturelle, Département RDDM, UMR 7245, Unité MCAM (France); Fiévet, Fernand [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France); Coradin, Thibaud, E-mail: thibaud.coradin@upmc.fr [UPMC—Paris 06, CNRS, Chimie de la Matière Condensée de Paris, Collège de France (France); Brayner, Roberta, E-mail: roberta.brayner@univ-paris-diderot.fr [Paris-Diderot University, Sorbonne Paris Cité, Interfaces, Traitements, Organisation et Dynamique des Systèmes (ITODYS), UMR 7086, CNRS (France)

    2016-03-15

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7–8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  10. Improvement of kinetics, yield, and colloidal stability of biogenic gold nanoparticles using living cells of Euglena gracilis microalga

    Science.gov (United States)

    Dahoumane, Si Amar; Yéprémian, Claude; Djédiat, Chakib; Couté, Alain; Fiévet, Fernand; Coradin, Thibaud; Brayner, Roberta

    2016-03-01

    Recent years have witnessed a boom in the biosynthesis of a large variety of nanomaterials using different biological resources among which algae-based entities have been gaining much more attention within the community of material scientists worldwide. In our previously published findings, we explored some factors that governed the biofabrication of gold nanoparticles using living cultures of microalgae, such as the utilized microalgal genera, the phylum they belong to, and the impact of tetrachloroauric acid concentrations on the ability of these strains to perform the biosynthesis of gold nanoparticles once in contact with these cations. As a follow-up, we present in this paper an improvement of the features of bioproduced gold colloids using living cells of Euglena gracilis microalga when this species is grown under either mixotrophic or autotrophic conditions, i.e., exposed to light and grown in an organic carbon-enriched culture medium versus under autotrophic conditions. As an outcome to this alteration, the growth rate of this photosynthetic microorganism is multiplied 7-8 times when grown under mixotrophic conditions compared to autotrophic ones. Therefore, the yield, the kinetics, and the colloidal stability of the biosynthesized gold nanoparticles are dramatically enhanced. Moreover, the shape and the size of the as-produced nano-objects via this biological method are affected. In addition to round-shaped gold nanoparticles, particular shapes, such as triangles and hexagons, appear. These findings add up to the amassed knowledge toward the design of photobioreactors for the scalable and sustainable production of interesting nanomaterials.

  11. Self-assembly of gold nanoparticles as colloidal crystals induced by polymerization of amphiphilic monomers

    Czech Academy of Sciences Publication Activity Database

    Zucchi, I. A.; Hoppe, C. E.; Galante, M. J.; Williams, R. J. J.; López-Quintela, M. A.; Matějka, Libor; Šlouf, Miroslav; Pleštil, Josef

    2008-01-01

    Roč. 41, č. 13 (2008), s. 4895-4903 ISSN 0024-9297 R&D Projects: GA AV ČR IAA400500701 Grant - others:National Agency for the Promotion of Science and Technology(AR) PICT03-14738; Ministry of Science and Technology(ES) MAT2005-07554-C02-01 Institutional research plan: CEZ:AV0Z40500505 Keywords : self -assembly * gold nanoparticles * hierarchical structure * colloidal crystals Subject RIV: CD - Macromolecular Chemistry Impact factor: 4.407, year: 2008

  12. Fabrication of Localized Surface Plasmon Resonance Fiber Probes Using Ionic Self-Assembled Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Miao Wan

    2010-07-01

    Full Text Available An nm-thickness composite gold thin film consisting of gold nanoparticles and polyelectrolytes is fabricated through ionic self-assembled multilayers (ISAM technique and is deposited on end-faces of optical fibers to construct localized surface plasmon resonance (LSPR fiber probes. We demonstrate that the LSPR spectrum induced by ISAM gold films can be fine-tuned through the ISAM procedure. We investigate variations of reflection spectra of the probe with respect to the layer-by-layer adsorption of ISAMs onto end-faces of fibers, and study the spectral variation mechanism. Finally, we demonstrated using this fiber probe to detect the biotin-streptavidin bioconjugate pair. ISAM adsorbed on optical fibers potentially provides a simple, fast, robust, and low-cost, platform for LSPR biosensing applications.

  13. Absolute and direct microRNA quantification using DNA-gold nanoparticle probes.

    Science.gov (United States)

    Degliangeli, Federica; Kshirsagar, Prakash; Brunetti, Virgilio; Pompa, Pier Paolo; Fiammengo, Roberto

    2014-02-12

    DNA-gold nanoparticle probes are implemented in a simple strategy for direct microRNA (miRNA) quantification. Fluorescently labeled DNA-probe strands are immobilized on PEGylated gold nanoparticles (AuNPs). In the presence of target miRNA, DNA-RNA heteroduplexes are formed and become substrate for the endonuclease DSN (duplex-specific nuclease). Enzymatic hydrolysis of the DNA strands yields a fluorescence signal due to diffusion of the fluorophores away from the gold surface. We show that the molecular design of our DNA-AuNP probes, with the DNA strands immobilized on top of the PEG-based passivation layer, results in nearly unaltered enzymatic activity toward immobilized heteroduplexes compared to substrates free in solution. The assay, developed in a real-time format, allows absolute quantification of as little as 0.2 fmol of miR-203. We also show the application of the assay for direct quantification of cancer-related miR-203 and miR-21 in samples of extracted total RNA from cell cultures. The possibility of direct and absolute quantification may significantly advance the use of microRNAs as biomarkers in the clinical praxis.

  14. Wound healing applications of biogenic colloidal silver and gold nanoparticles: recent trends and future prospects.

    Science.gov (United States)

    Ovais, Muhammad; Ahmad, Irshad; Khalil, Ali Talha; Mukherjee, Sudip; Javed, Rabia; Ayaz, Muhammad; Raza, Abida; Shinwari, Zabta Khan

    2018-05-01

    Nanotechnology has emerged as a prominent scientific discipline in the technological revolution of this millennium. The scientific community has focused on the green synthesis of metal nanoparticles as compared to physical and chemical methods due to its eco-friendly nature and high efficacy. Medicinal plants have been proven as the paramount source of various phytochemicals that can be used for the biogenic synthesis of colloidal silver and gold nanoparticles as compared to other living organisms, e.g., microbes and fungi. According to various scientific reports, the biogenic nanoparticles have shown promising potential as wound healing agents. However, not a single broad review article was present that demonstrates the wound healing application of biogenic silver and gold nanoparticles. Foreseeing the overall literature published, we for the first time intended to discuss the current trends in wound healing via biogenic silver and gold nanoparticles. Furthermore, light has been shed on the mechanistic aspects of wound healing along with futuristic discussion on the faith of biogenic silver and gold nanoparticles as potential wound healing agents.

  15. SERS-barcoded colloidal gold NP assemblies as imaging agents for use in biodiagnostics

    Science.gov (United States)

    Dey, Priyanka; Olds, William; Blakey, Idriss; Thurecht, Kristofer J.; Izake, Emad L.; Fredericks, Peter M.

    2014-03-01

    There is a growing need for new biodiagnostics that combine high throughput with enhanced spatial resolution and sensitivity. Gold nanoparticle (NP) assemblies with sub-10 nm particle spacing have the benefits of improving detection sensitivity via Surface enhanced Raman scattering (SERS) and being of potential use in biomedicine due to their colloidal stability. A promising and versatile approach to form solution-stable NP assemblies involves the use of multi-branched molecular linkers which allows tailoring of the assembly size, hot-spot density and interparticle distance. We have shown that linkers with multiple anchoring end-groups can be successfully employed as a linker to assemble gold NPs into dimers, linear NP chains and clustered NP assemblies. These NP assemblies with diameters of 30-120 nm are stable in solution and perform better as SERS substrates compared with single gold NPs, due to an increased hot-spot density. Thus, tailored gold NP assemblies are potential candidates for use as biomedical imaging agents. We observed that the hot-spot density and in-turn the SERS enhancement is a function of the linker polymer concentration and polymer architecture. New deep Raman techniques like Spatially Offset Raman Spectroscopy (SORS) have emerged that allow detection from beneath diffusely scattering opaque materials, including biological media such as animal tissue. We have been able to demonstrate that the gold NP assemblies could be detected from within both proteinaceous and high lipid containing animal tissue by employing a SORS technique with a backscattered geometry.

  16. Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces.

    Science.gov (United States)

    Oras, Sven; Vlassov, Sergei; Berholts, Marta; Lõhmus, Rünno; Mougin, Karine

    2018-01-01

    Adhesion forces between functionalized gold colloidal nanoparticles (Au NPs) and scanning probe microscope silicon tips were experimentally investigated by atomic force microscopy (AFM) equipped with PeakForce QNM (Quantitative Nanoscale Mechanics) module. Au NPs were synthesized by a seed-mediated process and then functionalized with thiols containing different functional groups: amino, hydroxy, methoxy, carboxy, methyl, and thiol. Adhesion measurements showed strong differences between NPs and silicon tip depending on the nature of the tail functional group. The dependence of the adhesion on ligand density for different thiols with identical functional tail-group was also demonstrated. The calculated contribution of the van der Waals (vdW) forces between particles was in good agreement with experimentally measured adhesive values. In addition, the adhesion forces were evaluated between flat Au films functionalized with the same molecular components and silicon tips to exclude the effect of particle shape on the adhesion values. Although adhesion values on flat substrates were higher than on their nanoparticle counterparts, the dependance on functional groups remained the same.

  17. Colorimetric DNA detection of transgenic plants using gold nanoparticles functionalized with L-shaped DNA probes

    Science.gov (United States)

    Nourisaeid, Elham; Mousavi, Amir; Arpanaei, Ayyoob

    2016-01-01

    In this study, a DNA colorimetric detection system based on gold nanoparticles functionalized with L-shaped DNA probes was prepared and evaluated. We investigated the hybridization efficiency of the L-shaped probes and studied the effect of nanoparticle size and the L-shaped DNA probe length on the performance of the as-prepared system. Probes were attached to the surface of gold nanoparticles using an adenine sequence. An optimal sequence of 35S rRNA gene promoter from the cauliflower mosaic virus, which is frequently used in the development of transgenic plants, and the two complementary ends of this gene were employed as model target strands and probe molecules, respectively. The spectrophotometric properties of the as-prepared systems indicated that the large NPs show better changes in the absorption spectrum and consequently present a better performance. The results of this study revealed that the probe/Au-NPs prepared using a vertical spacer containing 5 thymine oligonucleotides exhibited a stronger spectrophotometric response in comparison to that of larger probes. These results in general indicate the suitable performance of the L-shaped DNA probe-functionalized Au-NPs, and in particular emphasize the important role of the gold nanoparticle size and length of the DNA probes in enhancing the performance of such a system.

  18. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    International Nuclear Information System (INIS)

    Xia, Xiaodong; Long, Yunfei; Wang, Jianxiu

    2013-01-01

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ em max = 650 nm, λ ex max = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O 2 to produce H 2 O 2 , which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10 −6 –140 × 10 −6 M and a detection limit of 0.7 × 10 −6 M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells

  19. Probing Active Nematic Films with Magnetically Manipulated Colloids

    Science.gov (United States)

    Rivas, David; Chen, Kui; Henry, Robert; Reich, Daniel; Leheny, Robert

    We study microtubule-based extensile active nematic films using rod-like and disk-shaped magnetic colloids to probe the mechanical and hydrodynamic properties of this quasi-two dimensional out-of-equilibrium system. The active nematics are driven by molecular motors that hydrolyze ATP and cause sliding motion between microtubular bundles. This motion produces a dynamic nematic director field, which continuously creates pairs of +1/2 and -1/2 defects. In the absence of externally applied forces or torques, we observe that the magnetic rods in contact with the films align with the local director, indicating the existence of mechanical coupling between the film and probe. By applying known magnetic torques to the rods and observing their rotation with respect to the director, we gain insight into this coupling. We also find that by rotating magnetic microdisks using magnetic fields, hydrodynamic flows are produced that compete with the films' intrinsic flow, leading to significant effects on the director field and the defect landscape. At certain rotation rates, the disks produce a vortex-like structure in the director field and cause the creation and shedding of defects from the disk boundary.

  20. Poly(o-phenylenediamine) colloid-quenched fluorescent oligonucleotide as a probe for fluorescence-enhanced nucleic acid detection.

    Science.gov (United States)

    Tian, Jingqi; Li, Hailong; Luo, Yonglan; Wang, Lei; Zhang, Yingwei; Sun, Xuping

    2011-02-01

    In this Letter, we demonstrate that chemical oxidation polymerization of o-phenylenediamine (OPD) by potassium bichromate at room temperature results in the formation of submicrometer-scale poly(o-phenylenediamine) (POPD) colloids. Such colloids can absorb and quench dye-labeled single-stranded DNA (ssDNA) very effectively. In the presence of a target, a hybridization event occurs, which produces a double-stranded DNA (dsDNA) that detaches from the POPD surface, leading to recovery of dye fluorescence. With the use of an oligonucleotide (OND) sequence associated with human immunodeficiency virus (HIV) as a model system, we demonstrate the proof of concept that POPD colloid-quenched fluorescent OND can be used as a probe for fluorescence-enhanced nucleic acid detection with selectivity down to single-base mismatch.

  1. Colloidal probe dynamics in gelatin solution during the sol-gel transition.

    Science.gov (United States)

    Hong, Wei; Xu, Guozhi; Ou, Xiaogang; Sun, Weixiang; Wang, Tao; Tong, Zhen

    2018-05-16

    The dynamics of the colloidal probes in a gelatin solution during the time-dependent sol-gel transition was investigated by multi-particle tracking. The relationship between the relaxation of the medium at the critical gel point and the mean square displacement of the probes was elucidated. Based on this understanding, the critical gel point of gelatin and the corresponding critical exponent n were unambiguously determined by the loss angle criterion and the time-cure superposition. The shift factors of the latter are further used to estimate the time/length-scale evolution of the gelatin during the sol-gel transition. The growth of the medium length scale crossed with the two measuring length scales successively at the pre-gel regime. Coinciding with the length-scale crossovers, the probability density function (PDF) of the probe displacements displayed two transient peaks of non-Gaussianity. In the post-gel regime, the third peak of Gaussianity suggested inhomogeneity in the gel network. The non-Gaussianity results from the bifurcation of diffusivity. The present work showed that the non-Gaussian dynamics of the probes are not the direct equivalence of that of the medium, but an effect of length-scale coupling.

  2. Glucose oxidase-functionalized fluorescent gold nanoclusters as probes for glucose

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Xiaodong [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China); School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Long, Yunfei, E-mail: l_yunfei927@163.com [School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201 (China); Wang, Jianxiu, E-mail: jxiuwang@csu.edu.cn [College of Chemistry and Chemical Engineering, Central South University, Changsha 410083 (China)

    2013-04-15

    Highlights: ► A glucose oxidase/gold nanocluster conjugates formed by etching chemistry. ► Integration of the bioactivities and fluorescence properties within a single unit. ► These conjugates serve as novel fluorescent probe for glucose. -- Abstract: Creation and application of noble metal nanoclusters have received continuous attention. By integrating enzyme activity and fluorescence for potential applications, enzyme-capped metal clusters are more desirable. This work demonstrated a glucose oxidase (an enzyme for glucose)-functionalized gold cluster as probe for glucose. Under physiological conditions, such bioconjugate was successfully prepared by an etching reaction, where tetrakis (hydroxylmethyl) phosphonium-protected gold nanoparticle and thioctic acid-modified glucose oxidase were used as precursor and etchant, respectively. These bioconjugates showed unique fluorescence spectra (λ{sub em} {sub max} = 650 nm, λ{sub ex} {sub max} = 507 nm) with an acceptable quantum yield (ca. 7%). Moreover, the conjugated glucose oxidase remained active and catalyzed reaction of glucose and dissolved O{sub 2} to produce H{sub 2}O{sub 2}, which quenched quantitatively the fluorescence of gold clusters and laid a foundation of glucose detection. A linear range of 2.0 × 10{sup −6}–140 × 10{sup −6} M and a detection limit of 0.7 × 10{sup −6} M (S/N = 3) were obtained. Also, another horseradish peroxidase/gold cluster bioconjugate was produced by such general synthesis method. Such enzyme/metal cluster bioconjugates represented a promising class of biosensors for biologically important targets in organelles or cells.

  3. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  4. Electrogenerated chemiluminescence detection for deoxyribonucleic acid hybridization based on gold nanoparticles carrying multiple probes

    International Nuclear Information System (INIS)

    Wang Hui; Zhang Chengxiao; Li Yan; Qi Honglan

    2006-01-01

    A novel sensitive electrogenerated chemiluminescence (ECL) method for the detection deoxyribonucleic acid (DNA) hybridization based on gold nanoparticles carrying multiple probes was developed. Ruthenium bis(2,2'-bipyridine)(2,2'-bipyridine-4,4'-dicarboxylic acid)-N-hydroxysuccinimide ester (Ru(bpy) 2 (dcbpy)NHS) was used as a ECL label and gold nanoparticle as a carrier. Probe single strand DNA (ss-DNA) was self-assembled at the 3'-terminal with a thiol group to the surface of gold nanoparticle and covalently labeled at the 5'-terminal of a phosphate group with Ru(bpy) 2 (dcbpy)NHS and the resulting conjugate (Ru(bpy) 2 (dcbpy)NHS)-ss-DNA-Au, was taken as a ECL probe. When target analyte ss-DNA was immobilized on a gold electrode by self-assembled monolayer technique and then hybridized with the ECL probe to form a double-stranded DNA (ds-DNA), a strong ECL response was electrochemically generated. The ECL intensity was linearly related to the concentration of the complementary sequence (target ss-DNA) in the range from 1.0 x 10 -11 to 1.0 x 10 -8 mol L -1 , and the linear regression equation was S = 57301 + 4579.6 lg C (unit of C is mol L -1 ). A detection limit of 5.0 x 10 -12 mol L -1 for target ss-DNA was achieved. The ECL signal generated from many reporters of ECL probe prepared is greatly amplified, compared to the convention scheme which is based on one reporter per hybridization event

  5. Surface adhesion properties of graphene and graphene oxide studied by colloid-probe atomic force microscopy

    International Nuclear Information System (INIS)

    Ding Yanhuai; Zhang Ping; Ren Huming; Zhuo Qin; Yang Zhongmei; Jiang Xu; Jiang Yong

    2011-01-01

    Surface adhesion properties are important to various applications of graphene-based materials. Atomic force microscopy is powerful to study the adhesion properties of samples by measuring the forces on the colloidal sphere tip as it approaches and retracts from the surface. In this paper we have measured the adhesion force between the colloid probe and the surface of graphene (graphene oxide) nanosheet. The results revealed that the adhesion force on graphene and graphene oxide surface were 66.3 and 170.6 nN, respectively. It was found the adhesion force was mainly determined by the water meniscus, which was related to the surface contact angle of samples.

  6. Studies on hemodynamics in liver diseases by the use of colloidal gold198 uptakes by liver and spleen

    International Nuclear Information System (INIS)

    Matsunaga, Atsushi

    1983-01-01

    In this study, hepatic blood flow was observed using colloidal gold 198 uptakes by the liver and spleen in the pathogenic conditions in which the uptake was increased in the area of extra hepatic reticuloendothelial systems (especially in splenic RES). The change in the uptake ability of the liver and the contribution to it of intra and extra hepatic shunts were examined. In addition, study was made on the mechanism of how splenic visualization occurred in the colloidal gold 198 scintigram in liver diseases. Out of 84 subjects, 35, 11, 24, and 8 had hepatic cirrhosis and precirrhosis and chronic and acute hepatitis, respectively, and 6 were normal. The results obtained in this study were as follows: (1) The mean value of splenic clearance (splenic blood flow component) in hepatic cirrhosis was 88+-67.5 ml/min. This accounts for approximately 14.6+-11.9 % of the total RES clearance (Classic Effective Hepatic Blood Flow). (2) In hepatic cirrhosis, Classic Hepatic Blood Flow which had been measured up to date was considered to be overestimation by about 19.9+-20.4 % over the mean value of hepatic clearance (hepatic blood flow component) obtained in this study, (3) The hepatic clearance was better indicator of liver disease than the total RES clearance, (4) The ratio between hepatic clearance and cardiac output was considered to be a useful index in assessing the amount of intra and extra hepatic shunts, which had an inverse relationship to the ability of colloid uptake by the liver. (5) Splenic visualization in hepatic cirrhosis was shown to have resulted from the increase in splenic extraction of the colloid, followed by the increase in total splenic blood flow. (author)

  7. Au, Ag and Au:Ag colloidal nanoparticles synthesized by pulsed laser ablation as SERS substrates

    Directory of Open Access Journals (Sweden)

    M. Vinod

    2014-12-01

    Full Text Available Chemically pure colloidal suspensions of gold and silver nanoparticles were synthesized using pulsed laser ablation. The dependence of laser fluence on the surface plasmon characteristics of the nanoparticles was investigated. Au:Ag colloidal suspensions were prepared by mixing highly monodisperse Au and Ag nanocolloids. The plasmon band of these mixtures was found to be highly sensitive to Au:Ag concentration ratio and wavelength of the laser beam used in the ablation process. The Au:Ag mixture consists of almost spherical shaped nanostructures with a tendency to join with adjacent ones. The surface enhanced Raman scattering activity of the Au, Ag and Au:Ag colloidal suspensions was tested using crystal violet as probe molecules. Enhancement in Raman signal obtained with Au:Ag substrates was found to be promising and strongly depends on its plasmon characteristics.

  8. Magnetic bead and gold nanoparticle probes based immunoassay for β-casein detection in bovine milk samples.

    Science.gov (United States)

    Li, Y S; Meng, X Y; Zhou, Y; Zhang, Y Y; Meng, X M; Yang, L; Hu, P; Lu, S Y; Ren, H L; Liu, Z S; Wang, X R

    2015-04-15

    In this work, a double-probe based immunoassay was developed for rapid and sensitive determination of β-casein in bovine milk samples. In the method, magnetic beads (MBs), employed as supports for the immobilization of anti-β-casein polyclonal antibody (PAb), were used as the capture probe. Colloidal gold nanoparticles (AuNPs), employed as a bridge for loading anti-β-casein monoclonal antibody (McAb) and horseradish peroxidase (HRP), were used as the amplification probe. The presence of β-casein causes the sandwich structures of MBs-PAb-β-casein-McAb-AuNPs through the interaction between β-casein and the anti-β-casein antibodies. The HRP, used as an enzymatic-amplified tracer, can catalytically oxidize the substrate 3,3',5,5'-tetramethylbenzidine (TMB), generating optical signals that are proportional to the quantity of β-casein. The linear range of the immunoassay was from 6.5 to 1520ngmL(-1). The limit of detection (LOD) was 4.8ngmL(-1) which was 700 times lower than that of MBs-antibody-HRP based immunoassay and 6-7 times lower than that from the microplate-antibody-HRP based assay. The recoveries of β-casein from bovine milk samples were from 95.0% to 104.3% that had a good correlation coefficient (R(2)=0.9956) with those obtained by an official standard Kjeldahl method. For higher sensitivity, simple sample pretreatment and shorter time requirement of the antigen-antibody reaction, the developed immunoassay demonstrated the viability for detection of β-casein in bovine milk samples. Copyright © 2014. Published by Elsevier B.V.

  9. A homogeneous and “off–on” fluorescence aptamer-based assay for chloramphenicol using vesicle quantum dot-gold colloid composite probes

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Yang-Bao [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Ren, Hong-Xia [Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 10049 (China); Gan, Ning, E-mail: ganning@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Zhou, You [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Cao, Yuting, E-mail: caoyuting@nbu.edu.cn [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Li, Tianhua [State Key Laboratory Base of Novel Functional Materials and Preparation Science, Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211 (China); Chen, Yinji [Faculty of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210000 (China)

    2016-07-27

    In this work, a novel homogeneous and signal “off–on” aptamer based fluorescence assay was successfully developed to detect chloramphenicol (CAP) residues in food based on the fluorescence resonance energy transfer (FRET). The vesicle nanotracer was prepared through labeling single stranded DNA binding protein (SSB) on limposome-CdSe/ZnS quantum dot (SSB/L-QD) complexes. It was worth mentioning that the signal tracer (SSB/L-QD) with vesicle shape, which was fabricated being encapsulated with a number of quantum dots and SSB. The nanotracer has excellent signal amplification effects. The vesicle composite probe was formed by combining aptamer labeled nano-gold (Au-Apt) and SSB/L-QD. Which based on SSB's specific affinity towards aptamer. This probe can't emit fluoresce which is in “off” state because the signal from SSB/L-QD as donor can be quenched by the Au-aptas acceptor. When CAP was added in the composite probe solution, the aptamer on the Au-Apt can be preferentially bounded with CAP then release from the composite probe, which can turn the “off” signal of SSB/L-QD tracer into “on” state. The assay indicates excellent linear response to CAP from 0.001 nM to 10 nM and detection limit down to 0.3 pM. The vesicle probes with size of 88 nm have strong signal amplification. Because a larger number of QDs can be labeled inside the double phosphorus lipid membrane. Besides, it was employed to detect CAP residues in the milk samples with results being agreed well with those from ELISA, verifying its accuracy and reliability. - Highlights: • Homogeneous and “off–on” fluorescence aptamer-based assay was developed to detect chloramphenicol (CAP) residues in food. • This probe was fabricated based on a vesicle QDs signal tracer (SSB/L-QD) combining with Au-Aptamer. • The detection mechanism was based on FRET with high specificity. • The results for CAP detection in the milk samples agreed well with those from ELISA, while

  10. Multidentate-Protected Colloidal Gold Nanocrystals: pH Control of Cooperative Precipitation and Surface Layer Shedding

    Science.gov (United States)

    Kairdolf, Brad A.; Nie, Shuming

    2011-01-01

    Colloidal gold nanocrystals with broad size tunability and unusual pH-sensitive properties have been synthesized by using multidentate polymer ligands. Containing both carboxylic functional groups and sterically hindered aliphatic chains, the multidentate ligands are able to both reduce gold precursors and to stabilize gold nanoclusters during nucleation and growth. The “as-synthesized” nanocrystals are protected by an inner coordinating layer and an outer polymer layer, and are soluble in water and polar solvents. When the solution pH is lowered by just 0.6 units (from pH 4.85 to 4.25), the particles undergo a dramatic cooperative transition from being soluble to insoluble, allowing rapid isolation, purification, and redispersion of the multidentate-protected nanocrystals. A surprise finding is that when a portion of the surface carboxylate groups is neutralized by protonation, the particles irreversibly shed their outer polymer layer and become soluble in nonpolar organic solvents. Further, the multidentate polymer coatings are permeable to small organic molecules, in contrast to tightly packed self-assembled monolayers of alkanethiols on gold. These insights are important towards the design of “smart” imaging and therapeutic nanoparticles that are activated by small pH changes in the tumor interstitial space or endocytic organelles. PMID:21510704

  11. Nanoscale Rheology and Anisotropic Diffusion Using Single Gold Nanorod Probes

    Science.gov (United States)

    Molaei, Mehdi; Atefi, Ehsan; Crocker, John C.

    2018-03-01

    The complex rotational and translational Brownian motion of anisotropic particles depends on their shape and the viscoelasticity of their surroundings. Because of their strong optical scattering and chemical versatility, gold nanorods would seem to provide the ultimate probes of rheology at the nanoscale, but the suitably accurate orientational tracking required to compute rheology has not been demonstrated. Here we image single gold nanorods with a laser-illuminated dark-field microscope and use optical polarization to determine their three-dimensional orientation to better than one degree. We convert the rotational diffusion of single nanorods in viscoelastic polyethylene glycol solutions to rheology and obtain excellent agreement with bulk measurements. Extensions of earlier models of anisotropic translational diffusion to three dimensions and viscoelastic fluids give excellent agreement with the observed motion of single nanorods. We find that nanorod tracking provides a uniquely capable approach to microrheology and provides a powerful tool for probing nanoscale dynamics and structure in a range of soft materials.

  12. Synthesis of a colloid solution of silica-coated gold nanoparticles for X-ray imaging applications

    Science.gov (United States)

    Kobayashi, Yoshio; Nagasu, Ryoko; Shibuya, Kyosuke; Nakagawa, Tomohiko; Kubota, Yohsuke; Gonda, Kohsuke; Ohuchi, Noriaki

    2014-08-01

    This work proposes a method for fabricating silica-coated gold (Au) nanoparticles, surface modified with poly(ethylene glycol) (PEG) (Au/SiO2/PEG), with a particle size of 54.8 nm. X-ray imaging of a mouse is performed with the colloid solution. A colloid solution of 17.9 nm Au nanoparticles was prepared by reducing Au ions (III) with sodium citrate in water at 80 °C. The method used for silica-coating the Au nanoparticles was composed of surface-modification of the Au nanoparticles with (3-aminopropyl)-trimethoxysilane (APMS) and a sol-gel process. The sol-gel process was performed in the presence of the surface-modified Au nanoparticles using tetraethylorthosilicate, APMS, water, and sodium hydroxide, in which the formation of silica shells and the introduction of amino groups to the silica-coated particles took place simultaneously (Au/SiO2-NH2). Surface modification of the Au/SiO2-NH2 particles with PEG, or PEGylation of the particle surface, was performed by adding PEG with a functional group that reacted with an amino group in the Au/SiO2-NH2 particle colloid solution. A computed tomography (CT) value of the aqueous colloid solution of Au/SiO2/PEG particles with an actual Au concentration of 0.112 M was as high as 922 ± 12 Hounsfield units, which was higher than that of a commercial X-ray contrast agent with the same iodine concentration. Injecting the aqueous colloid solution of Au/SiO2/PEG particles into a mouse increased the light contrast of tissues. A CT value of the heart rose immediately after the injection, and this rise was confirmed for up to 6 h.

  13. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.

    Science.gov (United States)

    Huang, Kai; Anne, Agnès; Bahri, Mohamed Ali; Demaille, Christophe

    2013-05-28

    Electrochemical-atomic force microscopy (AFM-SECM) was used to simultaneously probe the physical and electrochemical properties of individual ~20 nm sized gold nanoparticles functionalized by redox-labeled PEG chains. The redox PEGylated nanoparticles were assembled onto a gold electrode surface, forming a random nanoarray, and interrogated in situ by a combined AFM-SECM nanoelectrode probe. We show that, in this so-called mediator-tethered (Mt) mode, AFM-SECM affords the nanometer resolution required for resolving the position of individual nanoparticles and measuring their size, while simultaneously electrochemically directly contacting the redox-PEG chains they bear. The dual measurement of the size and current response of single nanoparticles uniquely allows the statistical distribution in grafting density of PEG on the nanoparticles to be determined and correlated to the nanoparticle diameter. Moreover, because of its high spatial resolution, Mt/AFM-SECM allows "visualizing" simultaneously but independently the PEG corona and the gold core of individual nanoparticles. Beyond demonstrating the achievement of single-nanoparticle resolution using an electrochemical microscopy technique, the results reported here also pave the way toward using Mt/AFM-SECM for imaging nano-objects bearing any kind of suitably redox-labeled (bio)macromolecules.

  14. The kinetics of phagocytosis of 198Au colloids ''in vitro''

    International Nuclear Information System (INIS)

    Astorri, N.L.; Bergoc, R.M.; Bianchin, A.M.; Caro, R.A.; Ihlo, J.E.; Rivera, E.S.

    1982-01-01

    The kinetics of the phagocytosis of 198-Au colloids by macrophages ''in vitro'' was studied by incubating during 5 hours phagocytic cells from the liver and the spleen of Wistar rats with colloidal radiogold particles, in the presence of an adequate culture medium (TC-199 with 10 per cent of Bovine Fetal Serum). In each experiment, the number of colloidal gold particles offered to each phatocytic cell, (Au) 0 and the mean rate of phagocytosis v, were calculated. The latter value was determined by measuring the radioactivity incorporated into the phagocytic cells during the incubation; it was expressed as the number of phagocytized colloidal gold particles per cell per minute. The values of log v = f [log (Au) 0 ] were plotted. The Lineweaver-Burk analysis of the results demonstrates that the kinetics of the phagocytosis of colloidal radiogold particles ''in vitro'' follows a model similar to Michaelis-Menten equations for enzyme reactions. The values of the substratum constant Ks and maximun velocity Vm were obtained by the regression analysis of the 1/v vs. 1/(Au) 0 graph. Vm was equal to 9.44 x 10 and 1.63 x 10 phagocytized colloidal gold particles per cell per minute for liver and spleen macrophages, respectively. Ks was equal to 6.01 x 10 9 and 8.02 x 10 8 colloidal gold particles per cell for liver and spleen macrophages, respectively. The significance of these differences is discussed and attributed mainly to a change of the specific engulfment rate constant. (author) [es

  15. Dilated cardiomyopathy and left bundle branch block associated with ingestion of colloidal gold and silver is reversed by British antiLewisite and vitamin E: The potential toxicity of metals used as health supplements

    Science.gov (United States)

    Archer, Stephen Lawrence

    2008-01-01

    A case of left bundle branch block and a dilated, nonhypertrophic cardiomyopathy associated with ingestion of colloidal gold and silver as an ‘energy tonic’ is described. The cardiac disease was reversed within two months by a course of dimercaprol (Akorn Inc, USA) (British antiLewisite) and vitamin E. This is the first case of gold and silver cardiomyopathy in humans, and highlights the risks of these colloidal metal ‘health supplements’. PMID:18464946

  16. Glucose Sensor Using U-Shaped Optical Fiber Probe with Gold Nanoparticles and Glucose Oxidase.

    Science.gov (United States)

    Chen, Kuan-Chieh; Li, Yu-Le; Wu, Chao-Wei; Chiang, Chia-Chin

    2018-04-16

    In this study, we proposed a U-shaped optical fiber probe fabricated using a flame heating method. The probe was packaged in glass tube to reduce human factors during experimental testing of the probe as a glucose sensor. The U-shaped fiber probe was found to have high sensitivity in detecting the very small molecule. When the sensor was dipped in solutions with different refractive indexes, its wavelength or transmission loss changed. We used electrostatic self-assembly to bond gold nanoparticles and glucose oxidase (GOD) onto the sensor’s surface. The results over five cycles of the experiment showed that, as the glucose concentration increased, the refractive index of the sensor decreased and its spectrum wavelength shifted. The best wavelength sensitivity was 2.899 nm/%, and the linearity was 0.9771. The best transmission loss sensitivity was 5.101 dB/%, and the linearity was 0.9734. Therefore, the proposed U-shaped optical fiber probe with gold nanoparticles and GOD has good potential for use as a blood sugar sensor in the future.

  17. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    International Nuclear Information System (INIS)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong; Kang, Homan; Lee, Yoonsik

    2014-01-01

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature

  18. Controlled Clustering of Gold Nanoparticles using Solid-support for Surface-enhanced Raman Spectroscopic Probes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyejin; Chae, Jinjoo; Jeong, Hong [Department of Chemistry Education, Seoul (Korea, Republic of); Kang, Homan; Lee, Yoonsik [Interdisciplinary Program in Nano-Science and Technology, Pohang (Korea, Republic of)

    2014-03-15

    We fabricated small clusters of gold nanoparticles by using solid-supported aggregation of gold nanoparticles. The fabricated Au nanoclusters consisting mainly of dimers showed homogeneous characteristics in cluster size and SERS intensity. The SERS enhancement of 4-ABT molecules in an effective area within 2-nm gap appeared to be approximately 10. Detachment process by ultrasonication was successively carried out in order to use the nanoclusters as SERS probes. The possibility of these clusters as SERS probe was proved in terms of signal and cluster size. Single molecule-level sensitivity of surface-enhanced Raman scattering (SERS) was known approximately fifteen years ago. Ever since there have been many different applications benefiting from the ultra-high sensitivity such as single molecule detection, chemical sensing and bio-molecular probes. Especially, SERS has drawn much attention in bio-multiplexing probes owing to its unique optical characteristics claiming extremely narrow bandwidth, high sensitivity of light signals, and non-bleaching feature.

  19. Characterization of local hydrophobicity on sapphire (0001) surfaces in aqueous environment by colloidal probe atomic force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Tomoya; Yamazaki, Kenji; Isono, Toshinari; Ogino, Toshio, E-mail: ogino-toshio-rx@ynu.ac.jp

    2017-02-28

    Highlights: • Local hydrophobicity of phase-separated sapphire (0001) surfaces was investigated. • These surfaces are featured by coexistence of hydrophilic and hydrophobic domains. • Each domain was characterized by colloidal probe atomic force microscopy in water. • Both domains can be distinguished by adhesive forces of the probe to the surfaces. • Characterization in aqueous environment is important in bio-applications of sapphire. - Abstract: Sapphire (0001) surfaces exhibit a phase-separation into hydrophobic and hydrophilic domains upon high-temperature annealing, which were previously distinguished by the thickness of adsorbed water layers in air using atomic force microscopy (AFM). To characterize their local surface hydrophobicity in aqueous environment, we used AFM equipped with a colloidal probe and measured the local adhesive force between each sapphire domain and a hydrophilic SiO{sub 2} probe surface, or a hydrophobic polystyrene one. Two data acquisition modes for statistical analyses were used: one is force measurements at different positions of the surface and the other repeated measurement at a fixed position. We found that adhesive force measurements using the polystyrene probe allow us to distinctly separate the hydrophilic and hydrophobic domains. The dispersion in the force measurement data at different positions of the surface is larger than that in the repeated measurements at a fixed position. It indicates that the adhesive force measurement is repeatable although their data dispersion for the measurement positions is relatively large. From these results, we can conclude that the hydrophilic and hydrophobic domains on the sapphire (0001) surfaces are distinguished by a difference in their hydration degrees.

  20. Rapid detection of fumonisin B1 using a colloidal gold immunoassay strip test in corn samples.

    Science.gov (United States)

    Ling, Sumei; Wang, Rongzhi; Gu, Xiaosong; Wen, Can; Chen, Lingling; Chen, Zhibin; Chen, Qing-Ai; Xiao, Shiwei; Yang, Yanling; Zhuang, Zhenhong; Wang, Shihua

    2015-12-15

    Fumonisin B1 (FB1) is the most common and highest toxic of fumonisins species, exists frequently in corn and corn-based foods, leading to several animal and human diseases. Furthermore, FB1 was reported that it was associated with the human esophageal cancer. In view of the harmful of FB1, it is urgent to develop a feasible and accuracy method for rapid detection of FB1. In this study, a competitive immunoassay for FB1 detection was developed based on colloidal gold-antibody conjugate. The FB1-keyhole limpet hemoeyanin (FB1-KLH) conjugate was embedded in the test line, and goat anti-mouse IgG antibody embedded in the control line. The color density of the test line correlated with the concentration of FB1 in the range from 2.5 to 10 ng/mL, and the visual limit detection of test for FB1 was 2.5 ng/mL. The results indicated that the test strip is specific for FB1, and no cross-reactivity to other toxins. The quantitative detection for FB1 was simple, only needing one step without complicated assay performance and expensive equipment, and the total time of visual evaluation was less than 5 min. Hence, the developed colloidal gold-antibody assay can be used as a feasible method for FB1 rapid and quantitative detection in corn samples. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Hybridization thermodynamics of DNA bound to gold nanoparticles

    International Nuclear Information System (INIS)

    Lang, Brian

    2010-01-01

    Isothermal Titration Calorimetry (ITC) was used to study the thermodynamics of hybridization on DNA-functionalized colloidal gold nanoparticles. When compared to the thermodynamics of hybridization of DNA that is free in solution, the differences in the values of the Gibbs free energy of reaction, Δ r G o , the enthalpy, Δ r H o , and entropy, Δ r S o , were small. The change in Δ r G o between the free and bound states was always positive but with statistical significance outside the 95% confidence interval, implying the free DNA is slightly more stable than when in the bound state. Additionally, ITC was also able to reveal information about the binding stoichiometry of the hybridization reactions on the DNA-functionalized gold nanoparticles, and indicates that there is a significant fraction of the DNA on gold nanoparticle surface that is unavailable for DNA hybridization. Furthermore, the fraction of available DNA is dependent on the spacer group on the DNA that is used to span the gold surface from that to the probe DNA.

  2. Pseudo-template synthesis of gold nanoparticles based on polyhydrosilanes

    International Nuclear Information System (INIS)

    Sacarescu, Liviu; Simionescu, Mihaela; Sacarescu, Gabriela

    2011-01-01

    Highly stable colloidal gold nanoparticles are obtained in a pseudo-template system using a specific polyhydrosilane copolymeric structure. This process takes place in situ by microwaves activation of the polymer solution in a non-polar solvent followed by stirring with solid HAuCl 4 in natural light. The experimental procedure is very simple and the resulted colloidal gold solution is indefinitely stable. The specific surface plasmon resonance absorption band of the gold nanoparticles is strongly red shifted and is strictly related to their size. AFM correlated with DLS analysis showed flattened round shaped colloidal polymer-gold nanoparticles with large diameters. SEM-EDX combined analysis reveals that the polysilane-gold nanoparticles show a natural tendency to auto-assemble in close packed structures which form large areas over the polymer film surface.

  3. Synthesis of camptothecin-loaded gold nanomaterials

    International Nuclear Information System (INIS)

    Xing Zhimin; Liu Zhiguo; Zu Yuangang; Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan

    2010-01-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  4. Synthesis of camptothecin-loaded gold nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Xing Zhimin [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Liu Zhiguo, E-mail: zguoliu@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Zu Yuangang, E-mail: nefunano@yahoo.com.cn [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Fu Yujie; Zhao Chunjian; Zhao Xiuhua; Meng Ronghua; Tan Shengnan [Key Laboratory of Forest Plant Ecology of Ministry of Education, Northeast Forestry University, Harbin 150040 (China); Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin 150040 (China)

    2010-04-01

    Camptothecin-loaded gold nanomaterials have been synthesized by the sodium borohydride reduction method under a strong basic condition. The obtained gold nanomaterials have been characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM) and UV-vis absorption spectroscopy. The camptothecin-loaded gold colloidal solution was very stable and can be stored for more than two months at room temperature without obvious changes. The color of the colloidal solution can change from wine red to purple and blue during the acidifying process. It was revealed that the release of camptothecin and the aggregation of gold nanoparticles can be controlled by tuning the solution pH. The present study implied that the gold nanomaterials can be used as the potential carrier for CPT delivery.

  5. Demonstration of vessels in CNS and other organs by AMG silver enhancement of colloidal gold particles dispersed in gelatine.

    Science.gov (United States)

    Danscher, G; Andreasen, A

    1997-12-01

    We present a new autometallographic technique for demonstrating vessels and other small cavities at light microscopy (LM) and electron microscopy (EM) levels. It is possible to obtain detailed knowledge of the 3-D appearance of the vascular system by exchanging blood with a 40 degrees C, 8% gelatine solution containing colloidal gold particles (gold gelatine solution, GGS) and ensuing silver enhancement of the gold particles by autometallography (AMG). The GGS-AMG technique demonstrates the vascular system as a dark web that can be studied in cryostat, vibratome, methacrylate, paraffin and Epon sections at all magnifications. The infused GGS becomes increasingly viscous and finally becomes rigid when the temperature falls below 20 degrees C. An additional advantage of this technique is the fact that none of the tested counterstains or immunotechniques interfere with this AMG approach. The GGS-AMG technique is demonstrated on rat brains but can be applied to any organ. We believe that the present technique is valuable for both experimental studies and routine pathology.

  6. Synoviorthesis with sup 198 Au colloid gold in haemophilia patients. A preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Ortonowski, G.; Ziemski, J.M.; Kucharski, W.; Woy-Wojciechowski, J. (Institute of Haematology, Warsaw (Poland). Dept. of Surgery Institute of Clinical Medicine, Warsaw (Poland). Dept. of Nuclear Medicine)

    1990-01-01

    In 1988-1989 fifteen patients with severe haemophilia A and recurrent bleedings into the knee joint, aged from 19 to 44 years were treated by an intraarticular injection of {sup 198}Au colloid gold. So far 10 of them were assessed after 6 months follow-up. In 6 cases cessation and in 2 cases reduction in number and volume of bleeding were observed. Only in 2 patients the frequency of haemarthroses remained unchanged. No significant difference in tracer uptake was observed between pretreatment {sup 99m}Tc-pertrechnate gamma scans of the knee joints and controls completed 6 months after the radiogold injections. It is worthy to stress the lower costs of the {sup 198}Au synoviorthesis as compared with surgical synovectomy of the knee joint. The radioisotope method is also much less traumatic to the patient than the surgical one. (orig.).

  7. Scanning probe microscopy investigation of gold clusters deposited on atomically flat substrates

    International Nuclear Information System (INIS)

    Vandamme, N; Janssens, E; Vanhoutte, F; Lievens, P; Haesendonck, C van

    2003-01-01

    We systematically studied the influence of the substrate on the shape, mobility, and stability of deposited gold clusters. The Au n clusters were produced in a laser vaporization source and deposited with low kinetic energy (∼0.4 eV/atom) on atomically flat substrates (graphite, mica, and gold and silver films on mica) under UHV conditions. Their size distribution is probed with time-of-flight mass spectrometry and ranges from dimers to several hundreds of atoms. Scanning probe microscopy is used to characterize the deposited clusters and the formation of islands by cluster aggregation. On all substrates, Au n islands can be clearly distinguished and the islands are flattened despite the small impact energy. The shape and size of the island configurations are strongly system dependent. Gold clusters deposited on Au(111) and Ag(111) films grown on mica do not aggregate, but deform due to strong cluster-substrate interactions. The clusters tend to grow epitaxially on these surfaces. On graphite and on mica, deposited clusters do diffuse and aggregate. On the graphite surface, large ramified islands are formed by juxtaposition of small islands and trapping of the clusters at the step edges. On the other hand, the diffusion of the clusters on mica results in a total coalescence of the Au n clusters into compact islands

  8. Hybridization chain reaction-based colorimetric aptasensor of adenosine 5'-triphosphate on unmodified gold nanoparticles and two label-free hairpin probes.

    Science.gov (United States)

    Gao, Zhuangqiang; Qiu, Zhenli; Lu, Minghua; Shu, Jian; Tang, Dianping

    2017-03-15

    This work designs a new label-free aptasensor for the colorimetric determination of small molecules (adenosine 5'-triphosphate, ATP) by using visible gold nanoparticles as the signal-generation tags, based on target-triggered hybridization chain reaction (HCR) between two hairpin DNA probes. The assay is carried out referring to the change in the color/absorbance by salt-induced aggregation of gold nanoparticles after the interaction with hairpins, gold nanoparticles and ATP. To construct such an assay system, two hairpin DNA probes with a short single-stranded DNA at the sticky end are utilized for interaction with gold nanoparticles. In the absence of target ATP, the hairpin DNA probes can prevent gold nanoparticles from the salt-induced aggregation through the interaction of the single-stranded DNA at the sticky end with gold nanoparticles. Upon target ATP introduction, the aptamer-based hairpin probe is opened to expose a new sticky end for the strand-displacement reaction with another complementary hairpin, thus resulting in the decreasing single-stranded DNA because of the consumption of hairpins. In this case, gold nanoparticles are uncovered owing to the formation of double-stranded DNA, which causes their aggregation upon addition of the salt, thereby leading to the change in the red-to-blue color. Under the optimal conditions, the HCR-based colorimetric assay presents good visible color or absorbance responses for the determination of target ATP at a concentration as low as 1.0nM. Importantly, the methodology can be further extended to quantitatively or qualitatively monitor other small molecules or biotoxins by changing the sequence of the corresponding aptamer. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Cytotoxicity evaluation of gold nanoparticles on microalga Dunaliella salina in microplate test system

    Science.gov (United States)

    Chumakov, Daniil; Prilepskii, Artur; Dykman, Lev; Khlebtsov, Boris; Khlebtsov, Nikolai; Bogatyrev, Vladimir

    2018-04-01

    Gold nanoparticles are intensively studied in biomedicine. Assessment of their biocompatibility is highly important. Currently there is lack of evidence, concerning nanotoxicity of ultrasmall gold nanoparticles < 5 nm. Existing data are rather contradictory. The aim of that study was to evaluate the toxicity of 2 nm colloidal gold, using microalga Dunaliella salina. Cellular barriers of that microalga are very similar to animal cells so it might be considered as a valuable model for nanotoxicity testing. Chlorophyll content as a test-function was used. Spectrophotometric method for chlorophyll determination in vivo in suspensions of D.salina cultures was applied. Calculated EC50 48h value of ionic gold was 25.8 +/- 0.3 mg Au/L. EC50 value of phosphine-stabilized gold nanoclusters was 32.2 +/-1.1 mg Au/L. It was not possible to calculate EC50 for 15 nm citrate gold nanoparticles, as they were non-toxic at all concentrations tested. These results are confirmed by fluorescent -microscopic monitoring of the same probes. It was shown that 10-fold growth of phosphine-stabilized gold nanoparticles (from 2.3 +/- 0.9 nm to 21.1 +/- 7.5 nm) led to 7-fold decrease of their toxicity.

  10. Synthesis and optical properties of Au decorated colloidal tungsten oxide nanoparticles

    International Nuclear Information System (INIS)

    Tahmasebi, Nemat; Mahdavi, Seyed Mohammad

    2015-01-01

    Highlights: • Tungsten oxide nanoparticles were prepared by pulsed laser ablation (PLA). • A very fine metallic Au particles or coating are decorated on the surface of tungsten oxide nanoparticles. • UV–Vis spectroscopy shows an absorption peak at ∼530 nm which is due to SPR effect of gold. • After exposing to hydrogen gas, Au/WO_3 colloidal nanoparticles show excellent gasochromic coloring. - Abstract: In this study, colloidal tungsten oxide nanoparticles were fabricated by pulsed laser ablation of tungsten target using the first harmonic of a Nd:YAG laser (1064 nm) in deionized water. After ablation, a 0.33 g/lit HAuCl_4 aqueous solution was added into as-prepared colloidal nanoparticles. In this process, Au"3"+ ions were reduced to decorate gold metallic state (Au"0) onto colloidal tungsten oxide nanoparticles surface. The morphology and chemical composition of the synthesized nanoparticles were studied by AFM, XRD, TEM and XPS techniques. UV–Vis analysis reveals a distinct absorption peak at ∼530 nm. This peak can be attributed to the surface plasmon resonance (SPR) of Au and confirms formation of gold state. Moreover, X-ray photoelectron spectroscopy reveals that Au ions’ reduction happens after adding HAuCl_4 solution into as-prepared colloidal tungsten oxide nanoparticles. Transmission electron microscope shows that an Au shell has been decorated onto colloidal WO_3 nanoparticles. Noble metal decorated tungsten oxide nanostructure could be an excellent candidate for photocatalysis, gas sensing and gasochromic applications. Finally, the gasochromic behavior of the synthesized samples was investigated by H_2 and O_2 gases bubbling into the produced colloidal Au/WO_3 nanoparticles. Synthesized colloidal nanoparticles show excellent coloration contrast (∼80%) through NIR spectra.

  11. AFM Colloidal Probe Measurements Implicate Capillary Condensation in Punch-Particle Surface Interactions during Tableting.

    Science.gov (United States)

    Badal Tejedor, Maria; Nordgren, Niklas; Schuleit, Michael; Millqvist-Fureby, Anna; Rutland, Mark W

    2017-11-21

    Adhesion of the powders to the punches is a common issue during tableting. This phenomenon is known as sticking and affects the quality of the manufactured tablets. Defective tablets increase the cost of the manufacturing process. Thus, the ability to predict the tableting performance of the formulation blend before the process is scaled-up is important. The adhesive propensity of the powder to the tableting tools is mostly governed by the surface-surface adhesive interactions. Atomic force microscopy (AFM) colloidal probe is a surface characterization technique that allows the measurement of the adhesive interactions between two materials of interest. In this study, AFM steel colloidal probe measurements were performed on ibuprofen, MCC (microcrystalline cellulose), α-lactose monohydrate, and spray-dried lactose particles as an approach to modeling the punch-particle surface interactions during tableting. The excipients (lactose and MCC) showed constant, small, attractive, and adhesive forces toward the steel surface after a repeated number of contacts. In comparison, ibuprofen displayed a much larger attractive and adhesive interaction increasing over time both in magnitude and in jump-in/jump-out separation distance. The type of interaction acting on the excipient-steel interface can be related to a van der Waals force, which is relatively weak and short-ranged. By contrast, the ibuprofen-steel interaction is described by a capillary force profile. Even though ibuprofen is not highly hydrophilic, the relatively smooth surfaces of the crystals allow "contact flooding" upon contact with the steel probe. Capillary forces increase because of the "harvesting" of moisture-due to the fast condensation kinetics-leaving a residual condensate that contributes to increase the interaction force after each consecutive contact. Local asperity contacts on the more hydrophilic surface of the excipients prevent the flooding of the contact zone, and there is no such adhesive

  12. Inverse gold photonic crystals and conjugated polymer coated opals for functional materials

    Energy Technology Data Exchange (ETDEWEB)

    Landon, P.B.; Gutierrez, Jose; Ferraris, John P.; Martinez, I.L.; Giridharagopal, Rajiv; Wu, Y.-C.; Lee, Sergey; Parikh, Kunjal; Gillespie, Jessica; Ussery, Geoffrey; Karimi, Behzad; Baughman, Ray; Zakhidov, Anvar; Glosser, R

    2003-10-01

    Inverse gold photonic crystals templated from synthetic opals with a face centered cubic (FCC) crystal lattice were constructed by heat converting gold chloride to metallic gold. Tetrahedral formations constructed of alternating large and small octahedrons oriented in the zinc sulfide structure were created by controlling the infiltration of gold chloride. Silica spheres were coated with polyanilinesulfonic acid, polypyrrole, poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and 5 nm colloidal gold. Ordinary yeast cells were coated with polyanilinesulfonic acid, polypyrrole and 5 nm colloidal gold. Spheres coated with MEH-PPV were dispersed in H{sub 2}O and coated with polyelectrolytes which recharged and sterically stabilized the colloidal surfaces. The recharged spheres self-assembled by sedimentation with a FCC crystalline lattice possessing 500 {mu}m wide and 1 mm long crystallites. Silica spheres with diameters as large as 1500 {mu}m were self-assembled along the [1 0 0] direction of the FCC crystal lattice. Opals infiltrated with gold and opals constructed from polymer coated spheres were co-infiltrated with polypropylene yielding inverse polypropylene composite photonic crystals.

  13. Optical properties of spherical and oblate spheroidal gold shell colloids

    NARCIS (Netherlands)

    Penninkhof, J.J.; Moroz, A.; van Blaaderen, A.; Polman, A.

    2008-01-01

    The surface plasmon modes of spherical and oblate spheroidal core−shell colloids composed of a 312 nm diameter silica core and a 20 nm thick Au shell are investigated. Large arrays of uniaxially aligned core−shell colloids with size aspect ratios ranging from 1.0 to 1.7 are fabricated using a novel

  14. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni

    2015-03-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  15. Probing droplets with biological colloidal suspensions on smart surfaces by synchrotron radiation micro- and nano-beams

    KAUST Repository

    Marinaro, Giovanni; Accardo, Angelo; Benseny-Cases, Nú ria; Burghammer, Manfred C.; Castillo-Michel, Hiram A.; Cotte, Marine; Dante, Silvia; De Angelis, Francesco De; Di Cola, Emanuela; Di Fabrizio, Enzo M.; Hauser, C.; Riekel, Christian

    2015-01-01

    Droplets with colloidal biological suspensions evaporating on substrates with defined wetting properties generate confined environments for initiating aggregation and self-assembly processes. We describe smart micro- and nanostructured surfaces, optimized for probing single droplets and residues by synchrotron radiation micro- and nanobeam diffraction techniques. Applications are presented for Ac-IVD and β-amyloid (1-42) peptides capable of forming cross-β sheet structures. Complementary synchrotron radiation FTIR microspectroscopy addresses secondary structure formation. The high synchrotron radiation source brilliance enables fast raster-scan experiments. © 2015 Elsevier Ltd.

  16. Microrheology of colloidal systems

    International Nuclear Information System (INIS)

    Puertas, A M; Voigtmann, T

    2014-01-01

    Microrheology was proposed almost twenty years ago as a technique to obtain rheological properties in soft matter from the microscopic motion of colloidal tracers used as probes, either freely diffusing in the host medium, or subjected to external forces. The former case is known as passive microrheology, and is based on generalizations of the Stokes–Einstein relation between the friction experienced by the probe and the host-fluid viscosity. The latter is termed active microrheology, and extends the measurement of the friction coefficient to the nonlinear-response regime of strongly driven probes. In this review article, we discuss theoretical models available in the literature for both passive and active microrheology, focusing on the case of single-probe motion in model colloidal host media. A brief overview of the theory of passive microrheology is given, starting from the work of Mason and Weitz. Further developments include refined models of the host suspension beyond that of a Newtonian-fluid continuum, and the investigation of probe-size effects. Active microrheology is described starting from microscopic equations of motion for the whole system including both the host-fluid particles and the tracer; the many-body Smoluchowski equation for the case of colloidal suspensions. At low fluid densities, this can be simplified to a two-particle equation that allows the calculation of the friction coefficient with the input of the density distribution around the tracer, as shown by Brady and coworkers. The results need to be upscaled to agree with simulations at moderate density, in both the case of pulling the tracer with a constant force or dragging it at a constant velocity. The full many-particle equation has been tackled by Fuchs and coworkers, using a mode-coupling approximation and the scheme of integration through transients, valid at high densities. A localization transition is predicted for a probe embedded in a glass-forming host suspension. The

  17. Reversible peptide oligomerization over nanoscale gold surfaces

    Directory of Open Access Journals (Sweden)

    Kazushige Yokoyama

    2015-11-01

    Full Text Available A selective oligomeric formation of amyloid beta 1-40 (Ab1-40 monomers over a nanogold colloidal surface was investigated. An unfolded Ab1-40 monomer is considered to construct a dimer or trimer based oligomeric form with its hydrophobic segment placing outward under an acidic condition. Under a basic condition, a conformation of Ab is expected to take a folded monomeric form with its hydrophilic segment folded inward, avoiding the networking with residual colloidal particles. The most probable oligomeric form constructed over a 20 nm gold colloidal surface within a 25 ℃ to 65 ℃ temperature range is a dimer based unit and that over 30 or 40 nm gold colloidal surface below 15 ℃ is concluded to be a trimer based unit. However, selective oligomerization was not successfully reproduced under the rest of the conditions. A dipole-induced dipole interaction must cause a flexible structural change between folded and unfolded forms.

  18. Plasmonic Colloidal Nanoantennas for Tip-Enhanced Raman Spectrocopy

    Science.gov (United States)

    Dill, Tyler J.

    Plasmonic nanoantennas that a support localized surface plasmon resonance (LSPR) are capable of confining visible light to subwavelength dimensions due to strong electromagnetic field enhancement at the probe tip. Nanoantenna enable optical methods such as tip-enhanced Raman spectroscopy (TERS), a technique that uses scanning probe microscopy tips to provide chemical information with nanoscale spatial resolution and single-molecule sensitivities. The LSPR supported by the probe tip is extremely sensitive to the nanoscale morphology of the nanoantenna. Control of nanoscale morphology is notoriously difficult to achieve, resulting in TERS probes with poor reproducibility. In my thesis, I demonstrate high-performance, predictable, and broadband nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal substrate, these probes support a strong optical resonance in the gap between the substrate and the probe, producing dramatic field enhancements. I show through experiment and electromagnetic modeling that close-packed but electrically isolated nanoparticles are electromagnetically coupled. Hybridized LSPRs supported by self-assembled nanoparticles with a broadband optical response, giving colloidal nanoantenna a high tolerance for geometric variation resulting from fabrication. I find that coupled nanoparticles act as a waveguide, transferring energy from many neighboring nanoparticles towards the active TERS apex. I also use surface-enhanced Raman spectroscopy (SERS) to characterize the effects of nanoparticle polydispersity and gap height on the Raman enhancement. These colloidal probes have consistently achieved dramatic Raman enhancements in the range of 108-109 with sub-50 nm spatial resolution. Furthermore, in contrast to other nanospectroscopy probes, these colloidal probes can be fabricated in a scalable fashion with a batch

  19. Determination of gold in natural waters by neutron activation-#betta#-spectrometry after preconcentration on activated charcoal

    International Nuclear Information System (INIS)

    Hamilton, T.W.; Ellis, J.; Florence, T.M.

    1983-01-01

    A method for the determination of gold at very low levels in waters is presented. The method involves batchwise pre-concentration of gold from 1 l of water at pH 3-4 onto 0.1 g of activated charcoal by shaking for 5 min and subsequent treatment of the activated charcoal by instrumental neutron activation-#betta#-spectrometry. Activated charcoal quantitatively adsorbs ionic and colloidal gold from solutions prepared with distilled water and also from natural surface waters spiked and equilibrated with these two forms of gold. Three ion-exchange resins were evaluated for pre-concentration purposes; ionic gold removal was quantitative but colloidal gold removal was incomplete. Electrodeposition at a carbon fibre electrode gave similar results. The charcoal pre-concentration technique was tested on solutions containing 198 Au tracer and a total gold concentration of 1 μg l - 1 . The limit of detection of total gold (ionic and colloidal) for the carbon adsorption/neutron activation-#betta#-spectrometry procedure is 0.3 ng l - 1 . The method was used to determine gold in surface waters from auriferous regions. (Auth.)

  20. Heparin Assisted Photochemical Synthesis of Gold Nanoparticles and Their Performance as SERS Substrates

    Science.gov (United States)

    Rodríguez-Torres, Maria del Pilar; Díaz-Torres, Luis Armando; Romero-Servin, Sergio

    2014-01-01

    Reactive and pharmaceutical-grade heparins were used as biologically compatible reducing and stabilizing agents to photochemically synthesize colloidal gold nanoparticles. Aggregates and anisotropic shapes were obtained photochemically under UV black-light lamp irradiation (λ = 366 nm). Heparin-functionalized gold nanoparticles were characterized by Scanning Electron Microscopy and UV-Vis spectroscopy. The negatively charged colloids were used for the Surface Enhanced Raman Spectroscopy (SERS) analysis of differently charged analytes (dyes). Measurements of pH were taken to inspect how the acidity of the medium affects the colloid-analyte interaction. SERS spectra were taken by mixing the dyes and the colloidal solutions without further functionalization or addition of any aggregating agent. PMID:25342319

  1. Synthesis of oxocarbon-encapsulated gold nanoparticles with blue-shifted localized surface plasmon resonance by pulsed laser ablation in water with CO2 absorbers

    Science.gov (United States)

    Del Rosso, T.; Rey, N. A.; Rosado, T.; Landi, S.; Larrude, D. G.; Romani, E. C.; Freire Junior, F. L.; Quinteiro, S. M.; Cremona, M.; Aucelio, R. Q.; Margheri, G.; Pandoli, O.

    2016-06-01

    Colloidal suspensions of oxocarbon-encapsulated gold nanoparticles have been synthesized in a one-step procedure by pulsed-laser ablation (PLA) at 532 nm of a solid gold target placed in aqueous solution containing CO2 absorbers, but without any stabilizing agent. Multi-wavelength surface enhanced Raman spectroscopy allows the identification of adsorbed amorphous carbon and graphite, Au-carbonyl, Au coordinated CO2-derived bicarbonates/carbonates and hydroxyl groups around the AuNPs core. Scanning electron microscopy, energy dispersive x-ray analysis and high resolution transmission electron microscopy highlight the organic shell structure around the crystalline metal core. The stability of the colloidal solution of nanocomposites (NCs) seems to be driven by solvation forces and is achieved only in neutral or basic pH using monovalent hydroxide counter-ions (NaOH, KOH). The NCs are characterized by a blue shift of the localized surface plasmon resonance (LSPR) band typical of metal-ligand stabilization by terminal π-back bonding, attributed to a core charging effect caused by Au-carbonyls. Total organic carbon measurements detect the final content of organic carbon in the colloidal solution of NCs that is about six times higher than the value of the water solution used to perform PLA. The colloidal dispersions of NCs are stable for months and are applied as analytical probes in amino glycoside antibiotic LSPR based sensing.

  2. Immunocytochemical localisation of phloem lectin from Cucurbita maxima using peroxidase and colloidal-gold labels.

    Science.gov (United States)

    Smith, L M; Sabnis, D D; Johnson, R P

    1987-04-01

    Antibodies were raised against lectin purified from the sieve-tube exudate of Cucurbita maxima. Immunocytochemistry, using peroxidase-labelled antibodies and Protein A-colloidal gold, was employed to determine the location of the lectin within the tissues and cells of C. maxima and other cucurbit species. The anti-lectin antibodies bound to P-protein aggregates in sieve elements and companion cells, predominantly in the extrafascicular phloem of C. maxima. This may reflect the low rate of translocation in these cells. Under the electron microscope, the lectin was shown to be a component of P-protein filaments and was also found in association with the sieve-tube reticulum which lines the plasmalemma. The anti-lectin antibodies reacted with sieve-tube proteins from other species of the genus Cucurbita but showed only limited reaction with other genera. We suggest that the lectin serves to anchor P-protein filaments and associated proteins to the parietal layer of sieve elements.

  3. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections.

    Science.gov (United States)

    Alsaiari, Shahad K; Hammami, Mohammed A; Croissant, Jonas G; Omar, Haneen W; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M

    2017-03-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.

    2017-01-25

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  5. Colloidal Gold Nanoclusters Spiked Silica Fillers in Mixed Matrix Coatings: Simultaneous Detection and Inhibition of Healthcare-Associated Infections

    KAUST Repository

    Alsaiari, Shahad K.; Hammami, Mohamed Amen; Croissant, Jonas G.; Omar, Haneen; Neelakanda, Pradeep; Yapici, Tahir; Peinemann, Klaus-Viktor; Khashab, Niveen M.

    2017-01-01

    Healthcare-associated infections (HAIs) are the infections that patients get while receiving medical treatment in a medical facility with bacterial HAIs being the most common. Silver and gold nanoparticles (NPs) have been successfully employed as antibacterial motifs; however, NPs leaching in addition to poor dispersion and overall reproducibility are major hurdles to further product development. In this study, the authors design and fabricate a smart antibacterial mixed-matrix membrane coating comprising colloidal lysozyme-templated gold nanoclusters as nanofillers in poly(ethylene oxide)/poly(butylene terephthalate) amphiphilic polymer matrix. Mesoporous silica nanoparticles-lysozyme functionalized gold nanoclusters disperse homogenously within the polymer matrix with no phase separation and zero NPs leaching. This mixed-matrix coating can successfully sense and inhibit bacterial contamination via a controlled release mechanism that is only triggered by bacteria. The system is coated on a common radiographic dental imaging device (photostimulable phosphor plate) that is prone to oral bacteria contamination. Variation and eventually disappearance of the red fluorescence surface under UV light signals bacterial infection. Kanamycin, an antimicrobial agent, is controllably released to instantly inhibit bacterial growth. Interestingly, the quality of the images obtained with these coated surfaces is the same as uncoated surfaces and thus the safe application of such smart coatings can be expanded to include other medical devices without compromising their utility.

  6. Synthesis and characterization of colloidal fluorescent silver nanoclusters.

    Science.gov (United States)

    Huang, Sherry; Pfeiffer, Christian; Hollmann, Jana; Friede, Sebastian; Chen, Justin Jin-Ching; Beyer, Andreas; Haas, Benedikt; Volz, Kerstin; Heimbrodt, Wolfram; Montenegro Martos, Jose Maria; Chang, Walter; Parak, Wolfgang J

    2012-06-19

    Ultrasmall water-soluble silver nanoclusters are synthesized, and their properties are investigated. The silver nanoclusters have high colloidal stability and show fluorescence in the red. This demonstrates that like gold nanoclusters also silver nanoclusters can be fluorescent.

  7. SERS microscopy: plasmonic nanoparticle probes and biomedical applications

    Science.gov (United States)

    Gellner, M.; Schütz, M.; Salehi, M.; Packeisen, J.; Ströbel, P.; Marx, A.; Schmuck, C.; Schlücker, S.

    2010-08-01

    Nanoparticle probes for use in targeted detection schemes and readout by surface-enhanced Raman scattering (SERS) comprise a metal core, Raman reporter molecules and a protective shell. One design of SERS labels specifically optimized for biomedical applications in conjunction with red laser excitation is based on tunable gold/silver nanoshells, which are completely covered by a self-assembled monolayer (SAM) of Raman reporters. A shell around the SAM-coated metal core stabilizes the colloid and prevents particle aggregation. The optical properties and SERS efficiencies of these plasmonic nanostructures are characterized both experimentally and theoretically. Subsequent bioconjugation of SERS probes to ligands such as antibodies is a prerequisite for the selective detection of the corresponding target molecule via the characteristic Raman signature of the label. Biomedical imaging applications of SERS-labeled antibodies for tumor diagnostics by SERS microscopy are presented, using the localization of the tumor suppressor p63 in prostate tissue sections as an example.

  8. Femtosecond laser generated gold nanoparticles and their plasmonic properties

    International Nuclear Information System (INIS)

    Das, Rupali; Navas, M. P.; Soni, R. K.

    2016-01-01

    The pulsed laser ablation in liquid medium is now commonly used to generate stable colloidal nanoparticles (NPs) in absence of any chemical additives or stabilizer with diverse applications. In this paper, we report generation of gold NPs (Au NPs) by ultra-short laser pulses. Femtosecond (fs) laser radiation (λ = 800 nm) has been used to ablate a gold target in pure de-ionized water to produce gold colloids with smallsize distribution. The average size of the particles can be further controlled by subjecting to laser-induced post-irradiation providing a versatile physical method of size-selected gold nanoparticles. The optical extinction and morphological dimensions were investigated with UV-Vis spectroscopy and Transmission Electron Microscopy measurements, respectively. Finite difference time domain (FDTD) method is employed to calculate localized surface plasmon (LSPR) wavelength and the near-field generated by Au NPs and their hybrids.

  9. Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk

    Science.gov (United States)

    Shi, Qiaoqiao; Huang, Jie; Sun, Yaning; Yin, Mengqi; Hu, Mei; Hu, Xiaofei; Zhang, Zhijun; Zhang, Gaiping

    2018-05-01

    An ultrasensitive method for the detection of antibiotics in milk is developed based on inexpensive, simple, rapid and portable lateral flow immunoassay (LFI) strip, in combination with high sensitivity surface-enhanced Raman spectroscopy (SERS). In our strategy, an immunoprobe was prepared from colloidal gold (AuNPs) conjugated with both a monoclonal antibody against neomycin (NEO-mAb) and a Raman probe molecule 4-aminothiophenol (PATP). The competitive interaction with immunoprobe between free NEO and the coated antigen (NEO-OVA) resulted in the change of the amount of the immobilized immunoprobe on the paper substrate. The LFI procedure was completed within 15 min. The Raman intensity of PATP on the test line of the LFI strip was measured for the quantitative determination of NEO. The IC50 and the limit of detection (LOD) of this assay are 0.04 ng/mL and 0.216 pg/mL of NEO, respectively. There is no cross-reactivity (CR) of the assay with other compounds, showing high specificity of the assay. The recoveries for milk samples with added NEO are in the range of 89.7%-105.6% with the relative standard deviations (RSD) of 2.4%-5.3% (n = 3). The result reveals that this method possesses high specificity, sensitivity, reproducibility and stability, and can be used to detect a variety of antibiotic residues in milk samples.

  10. Aqueous gold nanosols stabilized by electrostatic protection generated by X-ray irradiation assisted radical reduction

    International Nuclear Information System (INIS)

    Wang, C.-H.; Hua, Tzu-En; Chien, C.-C.; Yu, Y.-L.; Yang, T.-Y.; Liu, C.-J.; Leng, W.-H.; Hwu, Y.; Yang, Y.-C.; Kim, Chong-Cook; Je, Jung-Ho; Chen, C.-H.; Lin, H.-M.; Margaritondo, G.

    2007-01-01

    Reductant, stabilizer-free colloidal gold solutions were fabricated by a new room-temperature synchrotron X-ray irradiation method. The influence of process parameters such as the pH value and the exposure time on the structure of gold nanoparticles was investigated. The mechanisms underlying the X-ray-triggered reduction of gold ions and the formation of gold clusters are discussed in detail. The X-ray irradiation derived highly concentrated gold nanoparticles are readily to be re-dispersed and possess suitable colloidal stability within cellular environment. The characterization included a study of the possible cytotoxicity for the EMT-6 tumor cell line: the negative results indicate that the gold clusters produced with our approach are biocompatible

  11. Preparation of gold ethanol colloid by the arc discharge method

    International Nuclear Information System (INIS)

    Tseng, K.-H.; Huang, J.-C.; Liao, C.-Y.; Tien, D.-C.; Tsung, T.-T.

    2009-01-01

    A new method using the arc discharge method (ADM) to synthesize gold nanoparticles in an anhydrous ethanol was studied. Fabricated gold nanoparticles were characterized by different techniques. Unlike conventional methods for metal nanoparticles synthesis, the ADM method does not require application of chemical surfactants and stabilizers. The microstructure of ADM-produced gold nanoparticles was examined by transmission electron microscope (TEM) and scanning electron microscope (SEM). The particle size was found in the range of 2-40 nm. The chemical composition of gold nanoparticles has been confirmed by the energy dispersive X-ray analysis (EDX). The crystal structure of the nanoscale gold particles was studied using the X-ray diffraction (XRD) method. Images of the gold nanoparticles, Zeta potential, size distribution, and ultraviolet-visible (UV-vis) absorbance were investigated. This innovative approach for gold nanoparticles preparation has been successfully established. The experimental results showed that the ADM technique is easy, cheap and clean method which can be used to manufacture gold nanoparticles suspended in ethanol solution without any surfactant

  12. Silver enhancement of nanogold and undecagold

    Energy Technology Data Exchange (ETDEWEB)

    Hainfield, J.F.; Furuya, F.R.

    1995-07-01

    A recent advance in immunogold technology has been the use of molecular gold instead of colloidal gold. A number of advantages are realized by this approach, such as stable covalent, site-specific attachment, small probe size and absence of aggregates for improved penetration. Silver enhancement has led to improved and unique results for electron and light microscopy, as well as their use with blots and gels. Most previous work with immunogold silver staining has been done with colloidal gold particles. More recently, large gold compounds (``clusters``) having a definite number of gold atoms and defined organic shell, have been used, frequently with improved results. These gold dusters, large compared to simple compounds, are, however, at the small end of the colloidal gold scale in size; undecagold is 0.8 nm and Nanogold is 1.4 nm. They may be used in practically all applications where colloidal gold is used (Light and electron microscopy, dot blots, etc.) and in some unique applications, where at least the larger colloidal golds don`t work, such as running gold labeled proteins on gels (which are later detected by silver enhancement). The main differences between gold clusters and colloidal golds are the small size of the dusters and their covalent attachment to antibodies or other molecules.

  13. Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold

    NARCIS (Netherlands)

    Heffels, W.; Bastiaansen, C.W.M.; Caseri, W.R.; Smith, P.

    2000-01-01

    Polymer nanocomposites were prepd. by mixing ultrahigh-mol.-wt. polyethylene and gold colloids coated with a self-assembled monolayer of dodecanethiol. Subsequently, these materials were oriented by solid state drawing which induced the formation of uniaxially oriented arrays of gold particles. As a

  14. On the Enhanced Antibacterial Activity of Antibiotics Mixed with Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shantrokha AN

    2009-01-01

    Full Text Available Abstract The bacterial action of gentamicin and that of a mixture of gentamicin and 15-nm colloidal-gold particles onEscherichia coliK12 was examined by the agar-well-diffusion method, enumeration of colony-forming units, and turbidimetry. Addition of gentamicin to colloidal gold changed the gold color and extinction spectrum. Within the experimental errors, there were no significant differences in antibacterial activity between pure gentamicin and its mixture with gold nanoparticles (NPs. Atomic absorption spectroscopy showed that upon application of the gentamicin-particle mixture, there were no gold NPs in the zone of bacterial-growth suppression in agar. Yet, free NPs diffused into the agar. These facts are in conflict with the earlier findings indicating an enhancement of the bacterial activity of similar gentamicin–gold nanoparticle mixtures. The possible causes for these discrepancies are discussed, and the suggestion is made that a necessary condition for enhancement of antibacterial activity is the preparation of stable conjugates of NPs coated with the antibiotic molecules.

  15. Anticancer Agents: Does a Phosphonium Behave Like a Gold(I) Phosphine Complex? Let a "Smart" Probe Answer!

    Science.gov (United States)

    Ali, Moussa; Dondaine, Lucile; Adolle, Anais; Sampaio, Carla; Chotard, Florian; Richard, Philippe; Denat, Franck; Bettaieb, Ali; Le Gendre, Pierre; Laurens, Véronique; Goze, Christine; Paul, Catherine; Bodio, Ewen

    2015-06-11

    Gold phosphine complexes, such as auranofin, have been recognized for decades as antirheumatic agents. Clinical trials are now underway to validate their use in anticancer or anti-HIV treatments. However, their mechanisms of action remain unclear. A challenging question is whether the gold phosphine complex is a prodrug that is administered in an inactive precursor form or rather that the gold atom remains attached to the phosphine ligand during treatment. In this study, we present two novel gold complexes, which we compared to auranofin and to their phosphonium analogue. The chosen ligand is a phosphine-based smart probe, whose strong fluorescence depends on the presence of the gold atom. The in vitro biological action of the gold complexes and the phosphonium derivative were investigated, and a preliminary in vivo study in healthy zebrafish larvae allowed us to evaluate gold complex biodistribution and toxicity. The different analyses carried out showed that these gold complexes were stable and behaved differently from phosphonium and auranofin, both in vitro and in vivo. Two-photon microscopy experiments demonstrated that the cellular targets of these gold complexes are not the same as those of the phosphonium analogue. Moreover, despite similar IC50 values in some cancer cell lines, gold complexes displayed a low toxicity in vivo, in contrast to the phosphonium salt. They are therefore suitable for future in vivo investigations.

  16. Silver-gold core-shell nanoparticles containing methylene blue as SERS labels for probing and imaging of live cells

    International Nuclear Information System (INIS)

    Guo, X.; Guo, Z.; Jin, Y.; Liu, Z.; Zhang, W.; Huang, D.

    2012-01-01

    We report on silver-gold core-shell nanostructures that contain Methylene Blue (MB) at the gold/x96silver interface. They can be used as reporter molecules in surface-enhanced Raman scattering (SERS) labels. The labels are stable and have strong SERS activity. TEM imaging revealed that these nanoparticles display bright and dark stripe structures. In addition, these labels can act as probes that can be detected and imaged through the specific Raman signatures of the reporters. We show that such SERS probes can identify cellular structures due to enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the core-shell nanostructures. They also provide structural information on the cellular environment as demonstrated for these nanoparticles as new SERS-active and biocompatible substrates for imaging of live cells. (author)

  17. Real time drift measurement for colloidal probe atomic force microscope: a visual sensing approach

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yuliang, E-mail: wangyuliang@buaa.edu.cn; Bi, Shusheng [Robotics Institute, School of Mechanical Engineering and Automation, Beihang University, Beijing 100191 (China); Wang, Huimin [Department of Materials Science and Engineering, The Ohio State University, 2041 College Rd., Columbus, OH 43210 (United States)

    2014-05-15

    Drift has long been an issue in atomic force microscope (AFM) systems and limits their ability to make long time period measurements. In this study, a new method is proposed to directly measure and compensate for the drift between AFM cantilevers and sample surfaces in AFM systems. This was achieved by simultaneously measuring z positions for beads at the end of an AFM colloidal probe and on sample surface through an off-focus image processing based visual sensing method. The working principle and system configuration are presented. Experiments were conducted to validate the real time drift measurement and compensation. The implication of the proposed method for regular AFM measurements is discussed. We believe that this technique provides a practical and efficient approach for AFM experiments requiring long time period measurement.

  18. Colorimetric detection of manganese(II) ions using gold/dopa nanoparticles.

    Science.gov (United States)

    Narayanan, Kannan Badri; Park, Hyun Ho

    2014-10-15

    We report here a one-pot, greener, eco-friendly strategy for the synthesis of gold nanoparticles using L-dopa. The as-prepared dopa-functionalized gold nanoparticles (AuNPs/dopa) can detect low concentrations of manganese(II) metal ions in aqueous solution. The binding forces between dopa and Mn(2+) ions cause dopa-functionalized gold nanoparticles to come closer together, decreasing the interparticle distance and aggregating it with a change in color of colloidal solution from red to purplish-blue. Dynamic light scattering (DLS) analysis showed a decreased surface charge on the surface of gold nanoparticles when exposed to Mn(2+) ions, which caused cross-linking aggregation. Transmission electron microscopic (TEM) images also revealed the aggregation of gold nanoparticles with the addition of Mn(2+) ions. The extinction ratio of absorbance at 700-550nm (A700/A550) was linear against the concentration of [Mn(2+)] ions. Thus, the optical absorption spectra of gold colloidal solution before and after the addition of Mn(2+) ions reveal the concentration of Mn(2+) ions in solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    Science.gov (United States)

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  20. Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry

    International Nuclear Information System (INIS)

    Dykman, Lev A; Bogatyrev, Vladimir A

    2007-01-01

    The review summarises data on the synthesis and functionalisation of gold nanoparticles and their applications in biological investigations. Particular attention is given to applications of colloidal gold in solid-phase assays, immunoassay and studies of biologically active compounds by vibrational spectroscopy. A special section deals with the use of gold nanoparticles as antigen carriers in immunisation.

  1. Surface vertical deposition for gold nanoparticle film

    International Nuclear Information System (INIS)

    Diao, J J; Qiu, F S; Chen, G D; Reeves, M E

    2003-01-01

    In this rapid communication, we present the surface vertical deposition (SVD) method to synthesize the gold nanoparticle films. Under conditions where the surface of the gold nanoparticle suspension descends slowly by evaporation, the gold nanoparticles in the solid-liquid-gas junction of the suspension aggregate together on the substrate by the force of solid and liquid interface. When the surface properties of the substrate and colloidal nanoparticle suspension define for the SVD, the density of gold nanoparticles in the thin film made by SVD only depends on the descending velocity of the suspension surface and on the concentration of the gold nanoparticle suspension. (rapid communication)

  2. [Biosynthesis of gold nanoparticles by Azospirillum brasilense].

    Science.gov (United States)

    Kupriashina, M A; Vetchinkina, E P; Burov, A M; Ponomareva, E G; Nikitina, V E

    2014-01-01

    Plant-associated nitrogen-fixing soil bacteria Azospirillum brasilense were shown to reduce the gold of chloroauric acid to elemental gold, resulting in formation of gold nanoparicles. Extracellular phenoloxidizing enzymes (laccases and Mn peroxidases) were shown to participate in reduction of Au+3 (HAuCl4) to Au(0). Transmission electron microscopy revealed accumulation of colloidal gold nanoparticles of diverse shape in the culture liquid of A. brasilense strains Sp245 and Sp7. The size of the electron-dense nanospheres was 5 to 50 nm, and the size of nanoprisms varied from 5 to 300 nm. The tentative mechanism responsible for formation of gold nanoparticles is discussed.

  3. Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes

    Energy Technology Data Exchange (ETDEWEB)

    Puricelli, Luca; Galluzzi, Massimiliano; Schulte, Carsten; Podestà, Alessandro, E-mail: alessandro.podesta@mi.infn.it; Milani, Paolo [CIMaINa and Department of Physics, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy)

    2015-03-15

    Atomic Force Microscopy (AFM) has a great potential as a tool to characterize mechanical and morphological properties of living cells; these properties have been shown to correlate with cells’ fate and patho-physiological state in view of the development of novel early-diagnostic strategies. Although several reports have described experimental and technical approaches for the characterization of cellular elasticity by means of AFM, a robust and commonly accepted methodology is still lacking. Here, we show that micrometric spherical probes (also known as colloidal probes) are well suited for performing a combined topographic and mechanical analysis of living cells, with spatial resolution suitable for a complete and accurate mapping of cell morphological and elastic properties, and superior reliability and accuracy in the mechanical measurements with respect to conventional and widely used sharp AFM tips. We address a number of issues concerning the nanomechanical analysis, including the applicability of contact mechanical models and the impact of a constrained contact geometry on the measured Young’s modulus (the finite-thickness effect). We have tested our protocol by imaging living PC12 and MDA-MB-231 cells, in order to demonstrate the importance of the correction of the finite-thickness effect and the change in Young’s modulus induced by the action of a cytoskeleton-targeting drug.

  4. In situ growth of hollow gold-silver nanoshells within porous silica offers tunable plasmonic extinctions and enhanced colloidal stability.

    Science.gov (United States)

    Li, Chien-Hung; Jamison, Andrew C; Rittikulsittichai, Supparesk; Lee, Tai-Chou; Lee, T Randall

    2014-11-26

    Porous silica-coated hollow gold-silver nanoshells were successfully synthesized utilizing a procedure where the porous silica shell was produced prior to the transformation of the metallic core, providing enhanced control over the structure/composition of the bimetallic hollow core. By varying the reaction time and the precise amount of gold salt solution added to a porous silica-coated silver-core template solution, composite nanoparticles were tailored to reveal a readily tunable surface plasmon resonance that could be centered across the visible and near-IR spectral regions (∼445-800 nm). Characterization by X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that the synthetic methodology afforded particles having uniform composition, size, and shape. The optical properties were evaluated by absorption/extinction spectroscopy. The stability of colloidal solutions of our composite nanoparticles as a function of pH was also investigated, revealing that the nanoshells remain intact over a wide range of conditions (i.e., pH 2-10). The facile tunability, enhanced stability, and relatively small diameter of these composite particles (∼110 nm) makes them promising candidates for use in tumor ablation or as photothermal drug-delivery agents.

  5. Hydrothermal synthesis of histidine-functionalized single-crystalline gold nanoparticles and their pH-dependent UV absorption characteristic.

    Science.gov (United States)

    Liu, Zhiguo; Zu, Yuangang; Fu, Yujie; Meng, Ronghua; Guo, Songling; Xing, Zhimin; Tan, Shengnan

    2010-03-01

    L-Histidine capped single-crystalline gold nanoparticles have been synthesized by a hydrothermal process under a basic condition at temperature between 65 and 150 degrees C. The produced gold nanoparticles were spherical with average diameter of 11.5+/-2.9nm. The synthesized gold colloidal solution was very stable and can be stored at room temperature for more than 6 months. The color of the colloidal solution can change from wine red to mauve, purple and blue during the acidifying process. This color changing phenomenon is attributed to the aggregation of gold nanoparticles resulted from hydrogen bond formation between the histidines adsorbed on the gold nanoparticles surfaces. This hydrothermal synthetic method is expected to be used for synthesizing some other amino acid functionalized gold nanomaterials.

  6. Tuning the structural and optical properties of gold/silver nanoalloys prepared by laser ablation in liquids for ultra-sensitive spectroscopy and optical trapping

    Directory of Open Access Journals (Sweden)

    F. Neri

    2011-09-01

    Full Text Available The plasmon resonance of metallic Au/Ag alloys in the colloidal state was tuned from 400 nm to 500 nm using a laser irradiated technique, performed directly in the liquid state. Interesting optical nonlinearities, trapping effects and spectroscopic enhancements were detected as function of gold concentration in the nanoalloys. In particular a reduction of the limiting threshold was observed by increasing the gold amount. The SERS activity of the Au/Ag alloys was tested in liquid and in solid state in presence of linear carbon chains as probe molecules. The dependence of the increased Raman signals on the nanoparticle Au/Ag atomic ratio is presented and discussed. Finally preliminary studies and prospects for optical and Raman tweezers experiments are discussed.

  7. Complex protein nanopatterns over large areas via colloidal lithography

    DEFF Research Database (Denmark)

    Kristensen, Stine H; Pedersen, Gitte Albinus; Ogaki, Ryosuke

    2013-01-01

    The patterning of biomolecules at the nanoscale provides a powerful method to investigate cellular adhesion processes. A novel method for patterning is presented that is based on colloidal monolayer templating combined with multiple and angled deposition steps. Patterns of gold and SiO2 layers...

  8. Self-assembly of patchy colloidal dumbbells

    NARCIS (Netherlands)

    Avvisati, Guido|info:eu-repo/dai/nl/407630198; Vissers, Teun|info:eu-repo/dai/nl/304829943; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807

    2015-01-01

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter sigma(1) and one

  9. Deposition kinetics of nanocolloidal gold particles

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Hakbijl, Mark; Wormeester, Herbert; Poelsema, Bene

    2005-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane (APTES), is investigated in situ using single wavelength optical reflectometry. A well-defined flow of colloids towards the

  10. Dynamics of colloidal particles in ice

    KAUST Repository

    Spannuth, Melissa

    2011-01-01

    We use x-ray photon correlation spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high particle density, where some of the colloids were forced into contact and formed disordered aggregates. The particles in these high density regions underwent ballistic motion, with a characteristic velocity that increased with temperature. This ballistic motion is coupled with both stretched and compressed exponential decays of the intensity autocorrelation function. We suggest that this behavior could result from ice grain boundary migration. © 2011 American Institute of Physics.

  11. Preparation and characterization compatible pellets for immobilization of colloidal sulphur nanoparticles

    Science.gov (United States)

    Adlim, M.; Zarlaida, F.; Khaldun, I.; Dewi, R.; Jamilah, M.

    2018-03-01

    Mercury pollution in atmosphere is dominated by mercury vapour release from coal burning and gold-amalgam separation in gold mining. The initial steps in formulating a compatible mercury absorbent for mercury stabilization was fabrication of pellet supported colloidal sulphur. Sulphur is used to stabilize mercury vapour by formation of metacinnabar that has much lower toxicity. The sulphur reactivity toward mercury vapour can be enhanced by using colloidal sulphur nanoparticles immobilized on compatible pellets. Clay pellets would have heat resistance but in fact, they were less stable in aqueous solution although their stability increased with inclusion of rice husk ash and sawdust or pineapple leaf fibre in the composite. Pellets made of rice husk ash and polyvinyl acetate were stable in water at least for 24 hours. Sulphur from thiosulfate precursor that immobilized onto surface of pellet using chitosan as the stabilizer and the binding agent gave lower sulphur content compared to sulphur from other precursors (sulphur powder and sulphur-CS2). Sulphur from thiosulfate precursor was in form of colloid, has nanosize, and disperse particles on the surface of rice husk ash pellets. Sulphur immobilization methods affect on sulphur particles exposure on the pellet surface.

  12. Lipophilic phosphorescent gold(I) clusters as selective probes for visualization of lipid droplets by two-photon microscopy

    Czech Academy of Sciences Publication Activity Database

    Koshel, E. I.; Cheluskin, P. S.; Melnikov, A. S.; Serdobintsev, P. Y.; Stolbovaia, A. Y.; Saifitdinova, A. F.; Scheslavskiy, V. I.; Chernyavskiy, Oleksandr; Gaginskaya, E. R.; Koshevoy, I. O.; Tunik, S. P.

    2017-01-01

    Roč. 332, Jan 1 (2017), s. 122-130 ISSN 1010-6030 R&D Projects: GA MŠk(CZ) LM2015062 Institutional support: RVO:67985823 Keywords : polynuclear gold-alkynyl cluster * lipophilic probe * phosphorescence * adipocyte * two-photon microscopy * PLIM Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Medical laboratory technology (including laboratory samples analysis Impact factor: 2.625, year: 2016

  13. Comparative study of colloidal gold and quantum dots as labels for multiplex screening tests for multi-mycotoxin detection

    Energy Technology Data Exchange (ETDEWEB)

    Foubert, Astrid, E-mail: astrid.foubert@hotmail.com; Beloglazova, Natalia V.; De Saeger, Sarah

    2017-02-22

    Quantum dots (QDs) and colloidal gold nanoparticles (CG) were evaluated as labels for multiplex lateral flow immunoassay (LFIA) for determination of mycotoxins deoxynivalenol (DON), zearalenone (ZEN) and T2/HT2-toxin (T2/HT2) in cereal matrices. Both developed assays were based on the same immunoreagents (except for the labels), therefore their analytical characteristics could be objectively compared. For both LFIAs antigens (DON-ovalbumin (OVA), ZEN-OVA and T2-OVA) and rabbit anti-mouse immunoglobulin were immobilized on a nitrocellulose membrane as three test lines and one control line, respectively. Depending on the LFIA, monoclonal antibodies (mAb) against DON, ZEN and T2 were conjugated with CdSeS/ZnS QDs or CG. T2 and HT2 were detected by one test line (T2-OVA) with an anti-T2 mAb which showed 110% cross-reactivity with HT2. Both tests were developed in accordance with the legal limits and were developed in such a way that they had the same cut-off limits of 1000 μg kg{sup −1}, 80 μg kg{sup −1} and 80 μg kg{sup −1} for DON, ZEN and T2/HT2, respectively in order to allow a correct comparison. Applicability of these assays was demonstrated by analysis of naturally contaminated wheat samples. The results demonstrate that both the LFIAs can be used as rapid, cost-effective and convenient qualitative tool for on-site screening for simultaneous detection of DON, ZEN and HT2/T2 in wheat without special instrumentation. However, the QD-based LFIA consumed less immunoreagents and was more sensitive and economically beneficial. In addition, the results were easier to interpret, resulting in a lower false negative rate (<5%) which was in good agreement with Commission Decision 2002/657/EC regarding the performance of analytical methods intended for screening purposes. - Highlights: • Development of colloidal gold- and quantum dot-based multiplex lateral flow immunoassay. • Lateral flow immunoassays allow simultaneous detection of four mycotoxins.

  14. Surface forces studied with colloidal probe atomic force microscopy

    NARCIS (Netherlands)

    Giesbers, M.

    2001-01-01

    Forces between surfaces are a determining factor for the performance of natural as well as synthetic colloidal systems, and play a crucial role in industrial production processes. Measuring these forces is a scientific and experimental challenge and over the years several techniques have

  15. Electrode reactions of iron oxide-hydroxide colloids.

    Science.gov (United States)

    Mahmoudi, Leila; Kissner, Reinhard

    2014-11-07

    Small-sized FeO(OH) colloids stabilised by sugars, commercially available for the clinical treatment of iron deficiency, show two waves during cathodic polarographic sweeps, or two current maxima with stationary electrodes, in neutral to slightly alkaline aqueous medium. Similar signals are observed with Fe(III) in alkaline media, pH > 12, containing citrate in excess. Voltammetric and polarographic responses reveal a strong influence of fast adsorption processes on gold and mercury. Visible spontaneous accumulation was also observed on platinum. The voltammetric signal at more positive potential is caused by Fe(III)→Fe(II) reduction, while the one at more negative potential has previously been assigned to Fe(II)→Fe(0) reduction. However, the involvement of adsorption phenomena leads us to the conclusion that the second cathodic current is caused again by Fe(III)→Fe(II), of species deeper inside the particles than those causing the first wave. This is further supported by X-ray photoelectron spectra obtained after FeO(OH) particle adsorption and reduction on a gold electrode surface. The same analysis suggests that sucrose stabilising the colloid is still bound to the adsorbed material, despite dilution and rinsing.

  16. β-Cyclodextrin functionalised gold nanoclusters as luminescence probes for the ultrasensitive detection of dopamine.

    Science.gov (United States)

    Ban, Rui; Abdel-Halim, E S; Zhang, Jianrong; Zhu, Jun-Jie

    2015-02-21

    A novel luminescence probe based on mono-6-amino-β-cyclodextrin (NH2-β-CD) functionalised gold nanoclusters (β-CD-AuNC) was designed for dopamine (DA) detection. The NH2-β-CD molecules were conjugated onto the surface of 11-mercaptoundecanoic acid capped AuNCs (11-MUA-AuNC) via a carbodiimide coupling reaction. The integrity of the β-CD cavities was preserved on the surface of AuNCs and they retained their capability for molecular DA host-guest recognition. DA could be captured by the β-CD cavities to form an inclusion complex in which the oxidised DA could quench the fluorescence of the β-CD-AuNC probe by electron transfer. The probe could be used to quantify DA in the range of 5-1000 nM with a detection limit of 2 nM. This sensitivity was 1-2 orders of magnitude higher than that in previously reported methods. Interference by both ascorbic acid (AA) and uric acid (UA) was not observed. Therefore, the β-CD-AuNC probe could be directly used to determine the DA content in biological samples without further separation. This strategy was successfully applied to a DA assay in spiked human serum samples and it exhibited remarkable accuracy, sensitivity and selectivity.

  17. Colloidal gold-based immunochromatographic strip assay for the rapid detection of three natural estrogens in milk.

    Science.gov (United States)

    Wang, Zhongxing; Guo, Lingling; Liu, Liqiang; Kuang, Hua; Xu, Chuanlai

    2018-09-01

    In this study, we developed highly sensitive and specific monoclonal antibodies (mAbs) against estrone (E 1 ), 17β-estradiol (17β-E 2 ), and estriol (E 3 ). The half-maximal inhibitory concentration values of anti-E 1 , anti-17β-E 2 , and anti-E 3 mAbs were 0.46, 0.36, and 0.39 ng/mL, respectively, based on competitive enzyme-linked immunosorbent assay (ic-ELISA) results. A rapid colloidal gold-based immunoassay strip assay was developed for the determination of E 1, 17β-E 2 , and E 3 residues in milk samples. The assay had a visual cut-off value of 5 ng/mL, and required 10 min to assess with the naked eye. The results obtained from the immunochromatographic strip assay were consistent with those obtained from ic-ELISA and gas chromatography-mass spectrometry. The immunochromatographic strip assay is useful and rapid for the detection of E 1 , 17β-E 2 , and E 3 in milk. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    Science.gov (United States)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  19. One-Step Synthesis of PEGylated Gold Nanoparticles with Tunable Surface Charge

    Directory of Open Access Journals (Sweden)

    Rares Stiufiuc

    2013-01-01

    Full Text Available The present work reports a rapid, simple and efficient one-step synthesis and detailed characterisation of stable aqueous colloids of gold nanoparticles (AuNPs coated with unmodified poly(ethyleneglycol (PEG molecules of different molecular weights and surface charges. By mixing and heating aqueous solutions of PEG with variable molecular chain and gold(III chloride hydrate (HAuCl4 in the presence of NaOH, we have successfully produced uniform colloidal 5 nm PEG coated AuNPs of spherical shape with tunable surface charge and an average diameter of 30 nm within a few minutes. It has been found out that PEGylated AuNPs provide optical enhancement of the characteristic vibrational bands of PEG molecules attached to the gold surface when they are excited with both visible (532 nm and NIR (785 nm laser lines. The surface enhanced Raman scattering (SERS signal does not depend on the length of the PEG molecular chain enveloping the AuNPs, and the stability of the colloid is not affected by the addition of concentrated salt solution (0.1 M NaCl, thus suggesting their potential use for in vitro and in vivo applications. Moreover, by gradually changing the chain length of the biopolymer, we were able to control nanoparticles’ surface charge from −28 to −2 mV, without any modification of the Raman enhancement properties and of the colloidal stability.

  20. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jian-jun [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China); Zhang, Ning; Wang, Jingyuan [The First Affiliated Hospital of Xi’an Jiaotong University, Department of Clinical Laboratory (China); Yang, Chun-yu; Zhu, Jian, E-mail: nanoptzj@163.com; Zhao, Jun-wu, E-mail: nanoptzhao@163.com [Xi’an Jiaotong University, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Biomedical Analytical Technology and Instrumentation, School of Life Science and Technology (China)

    2016-02-15

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity.

  1. Tuning the EDTA-induced self-assembly and plasmonic spectral properties of gold nanorods: application in surface-enhanced Raman scattering

    International Nuclear Information System (INIS)

    Li, Jian-jun; Zhang, Ning; Wang, Jingyuan; Yang, Chun-yu; Zhu, Jian; Zhao, Jun-wu

    2016-01-01

    Self-assembly of cetyl trimethyl ammonium bromide-protected colloidal gold nanorods with different aspect ratios has been studied by adding the ethylene diamine tetraacetic acid (EDTA). Both the assembly strength and assembly configuration fashion of the gold nanorods could be tuned by changing the aspect ratio. For gold nanorods with small aspect ratio, side-by-side assembly takes the major role in the aggregation. In this case, the blue shift of the longitudinal absorption and the increase of the transverse absorption lead to the great uplift of the middle spectrum dip as the EDTA is increased. For gold nanorods with large aspect ratio, end-to-end assembly takes the major role in the aggregation. In this case, the longitudinal absorption peak fades down rapidly and a tailing absorption peak at longer wavelength uplifts greatly as the EDTA is increased. The surface-enhanced Raman scattering (SERS) activity of the assembled gold nanorods has been studied using alpha-fetoprotein (AFP) as the Raman active probe. It has been found that both the side-by-side assembly and end-to-end assembly of the gold nanorods could effectively improve the Raman signal of the AFP. And the gold nanorod substrate with side-by-side assembly has higher SERS activity. Graphical Abstract: Side-by-side assembly of gold nanorods leads to the middle spectrum dip of LSPR uplift greatly as the EDTA is increased, which also effectively improves the SERS activity

  2. Detection of Helicobacter Pylori Genome with an Optical Biosensor Based on Hybridization of Urease Gene with a Gold Nanoparticles-Labeled Probe

    Science.gov (United States)

    Shahrashoob, M.; Mohsenifar, A.; Tabatabaei, M.; Rahmani-Cherati, T.; Mobaraki, M.; Mota, A.; Shojaei, T. R.

    2016-05-01

    A novel optics-based nanobiosensor for sensitive determination of the Helicobacter pylori genome using a gold nanoparticles (AuNPs)-labeled probe is reported. Two specific thiol-modified capture and signal probes were designed based on a single-stranded complementary DNA (cDNA) region of the urease gene. The capture probe was immobilized on AuNPs, which were previously immobilized on an APTES-activated glass, and the signal probe was conjugated to different AuNPs as well. The presence of the cDNA in the reaction mixture led to the hybridization of the AuNPs-labeled capture probe and the signal probe with the cDNA, and consequently the optical density of the reaction mixture (AuNPs) was reduced proportionally to the cDNA concentration. The limit of detection was measured at 0.5 nM.

  3. Probing the photoluminescence properties of gold nanoclusters by fluorescence lifetime correlation spectroscopy

    International Nuclear Information System (INIS)

    Yuan, C. T.; Lin, T. N.; Shen, J. L.; Lin, C. A.; Chang, W. H.; Cheng, H. W.; Tang, J.

    2013-01-01

    Gold nanoclusters (Au NCs) have attracted much attention for promising applications in biological imaging owing to their tiny sizes and biocompatibility. So far, most efforts have been focused on the strategies for fabricating high-quality Au NCs and then characterized by conventional ensemble measurement. Here, a fusion single-molecule technique combining fluorescence correlation spectroscopy and time-correlated single-photon counting can be successfully applied to probe the photoluminescence (PL) properties for sparse Au NCs. In this case, the triplet-state dynamics and diffusion process can be observed simultaneously and the relevant time constants can be derived. This work provides a complementary insight into the PL mechanism at the molecular levels for Au NCs in solution

  4. Effects of Quebracho Tannin on Recovery of Colloidal Gold from ...

    African Journals Online (AJOL)

    This paper considered effects of Quebracho Tannin (QT) on recovery of gold from the oxidized flotation concentrate wash liquor. The effect of Quebracho Tannin on Total Suspended Solids (TSS) was also established. This research established that the gold lost to tailings was not soluble in the effluent but was mainly in the ...

  5. Tuning plasmons layer-by-layer for quantitative colloidal sensing with surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Anderson, William J; Nowinska, Kamila; Hutter, Tanya; Mahajan, Sumeet; Fischlechner, Martin

    2018-04-19

    Surface-enhanced Raman spectroscopy (SERS) is well known for its high sensitivity that emerges due to the plasmonic enhancement of electric fields typically on gold and silver nanostructures. However, difficulties associated with the preparation of nanostructured substrates with uniform and reproducible features limit reliability and quantitation using SERS measurements. In this work we use layer-by-layer (LbL) self-assembly to incorporate multiple functional building blocks of collaborative assemblies of nanoparticles on colloidal spheres to fabricate SERS sensors. Gold nanoparticles (AuNPs) are packaged in discrete layers, effectively 'freezing nano-gaps', on spherical colloidal cores to achieve multifunctionality and reproducible sensing. Coupling between layers tunes the plasmon resonance for optimum SERS signal generation to achieve a 10 nM limit of detection. Significantly, using the layer-by-layer construction, SERS-active AuNP layers are spaced out and thus optically isolated. This uniquely allows the creation of an internal standard within each colloidal sensor to enable highly reproducible self-calibrated sensing. By using 4-mercaptobenzoic acid (4-MBA) as the internal standard adenine concentrations are quantified to an accuracy of 92.6-99.5%. Our versatile approach paves the way for rationally designed yet quantitative colloidal SERS sensors and their use in a variety of sensing applications.

  6. Determination of the activity of telomerase in cancer cells by using BSA-protected gold nanoclusters as a fluorescent probe.

    Science.gov (United States)

    Xu, Yujuan; Zhang, Peng; Wang, Zhen; Lv, Shaoping; Ding, Caifeng

    2018-02-27

    Gold nanoclusters (AuNCs) protected with a bovine serum albumin (BSA) coating are known to emit red fluorescence (peaking at 650 nm) on photoexcitation with ultraviolet light (365 nm). On addition of Cu(II) ions, fluorescence is quenched because Cu(II) complexes certain amino acid units in the BSA chain. Fluorescence is, however, restored if pyrophosphate (PPi) is added because it will chelate Cu(II) and remove it from the BSA coating on the AuNCs. Because PPi is involved in the function of telomerase, the BSA@AuNCs loaded with Cu(II) can act as a fluorescent probe for determination of the activity of telomerase. A fluorescent assay was worked out for telomerase that is highly sensitive and has a wide linear range (10 nU to 10 fM per mL). The fluorescent probe was applied to the determination of telomerase activity in cervix carcinoma cells via imaging. It is shown that tumor cells can be well distinguished from normal cells by monitoring the differences in intracellular telomerase activity. Graphical abstract Gold nanoclusters (AuNCs) protected by bovine serum albumin (BSA) and displaying red photoluminescence were prepared as fluorescent probe for the determination of telomerase activity and used for imaging of cervix carcinoma (HeLa) cells.

  7. The in vitro formation of placer gold by bacteria

    Science.gov (United States)

    Southam, Gordon; Beveridge, Terrance J.

    1994-10-01

    A laboratory simulation was developed to provide mechanistic information about placer (nugget) gold development in the natural environment. To initiate the simulation, ionic gold was immobilized to a high capacity by Bacillus subtilis 168 (116.2 μg/mg dry weight bacteria) as fine-grained intracellular colloids (5-50 nm). During the low-temperature diagenesis experiment (60°C), the release of organics due to bacterial autolysis coincided with the in vitro formation of hexagonal-octahedral gold crystals (20 μm). This octahedral gold was observed to aggregate, forming fine-grained placer gold (50 μm). In addition to achieving a fundamental understanding into secondary gold deposition, a significant economic benefit could be realized by employing this environmentally safe procedure to concentrate widely dispersed gold in placer deposits to facilitate mining by conventional methodologies.

  8. Laser induced photoacoustic spectroscopy applied to a study on coagulation processes of Tc(IV) colloid

    International Nuclear Information System (INIS)

    Sekine, T.; Kino, S.; Kino, Y.; Kudo, H.

    2001-01-01

    Quantitative determination of size and concentration of colloid particles in aqueous solutions was performed by laser induced photoacoustic spectroscopy (LPAS), and this technique was applied to a study on coagulation processes of Tc(IV) colloids. The intensity of photoacoustic signals from colloid particles (polystyrene, gold sols) was successfully calculated as a product of the number of particles and the absorption cross section per particle based on the Mie's light scattering theory. With this technique, the coagulation of Tc(IV) colloids prepared by the reduction of TcO 4 with Sn(II) was observed. The observed growth rate of colloid particles was successfully analyzed by a newly developed collision model, in which both the distribution of the kinetic energy of particles and the potential barrier between the two particles played significant roles. (author)

  9. Scintigraphic study of gastric emptying with colloidal tin

    International Nuclear Information System (INIS)

    Rodríguez Paleo, Lester; Nuez Vilar, Maricela; Machado Lois, Marisel; López González, María Karla; Torres Leyva, Oscar; Izquierdo Izquierdo, Yimel; García González, Idelsy; Conesa Gonzalez, Ana Ibis

    2016-01-01

    Gastroparesis is defined as a delay in gastric emptying in the absence of mechanical obstruction, associated with symptoms such as nausea and / or vomiting, feeling of postprandial gastric fullness, early satiety or epigastric pain for more than 3 months. The gold standard in the diagnosis of delayed gastric emptying scintigraphy is gastric emptying and radiopharmaceutical has been used more 99m Tc-sulfur colloid not available in the country. In order to evaluate the usefulness of colloidal tin in the scintigraphic gastric emptying study, a descriptive study was conducted in 64 patients over 18 years using as radiopharmaceutical 99m Tc-Sn colloid. 31% of patients had symptoms. The emptying time was normal in 50 cases and the association of gastroparesis symptoms was observed in 20 (15 diabetic and 5 non-diabetic), 9 patients had a delayed emptying, but reported no symptoms. Gastroparesis was more frequent in women than in men (35% versus 21%). 21% of patients had a moderate delayed gastric emptying. Conclusions: The results obtained with 99m Tc-Sn colloid are comparable to those reported by other authors using 99m Tc-SC in the scintigraphic assessment of gastric emptying. (author)

  10. Ligand-free gold atom clusters adsorbed on graphene nano sheets generated by oxidative laser fragmentation in water

    Science.gov (United States)

    Lau, Marcus; Haxhiaj, Ina; Wagener, Philipp; Intartaglia, Romuald; Brandi, Fernando; Nakamura, Junji; Barcikowski, Stephan

    2014-08-01

    Over three decades after the first synthesis of stabilized Au55-clusters many scientific questions about gold cluster properties are still unsolved and ligand-free colloidal clusters are difficult to fabricate. Here we present a novel route to produce ultra-small gold particles by using a green technique, the laser ablation and fragmentation in water, without using reductive or stabilizing agents at any step of the synthesis. For fabrication only a pulsed laser, a gold-target, pure water, sodium hydroxide and hydrogen peroxide are deployed. The particles are exemplarily hybridized to graphene supports showing that these carbon-free colloidal clusters might serve as versatile building blocks.

  11. Nature vs. nurture: gold perpetuates "stemness".

    Science.gov (United States)

    Paul, Willi; Sharma, Chandra P; Deb, Kaushik Dilip

    2011-01-01

    Adult tissues contain quiescent reservoirs of multipotent somatic stem cells and pluripotent embryonic-like stem cells (ELSCs). Credited with regenerative properties gold is used across both -contemporary and -ancient medicines. Here, we show that gold exerted these effects by enhancing the pool of pluripotent ELSC while improving their stemness. We used hESCs as an in-vitro model to understand if gold could enhance self-renewal and pluripotency. Swarna-bhasma (SB), an ancient Indian gold microparticulate (41.1 nm), preparation, reduced spontaneous-differentiation, improved self-renewal, pluripotency and proliferation of hESCs. Colloidal gold-nanoparticles (GNP) (15.59 nm) were tested to confirm that the observations were attributable to nanoparticulate-gold. SB and GNP exposure: maintained -stemness, -karyotypic stability, enhanced pluripotency till day-12, increased average colony-sizes, and reduced the number of autonomously-derived differentiated FGFR1 positive fibroblast-niche-cells/colony. Particulate-gold induced upregulation of FGFR1 and IGF2 expression, and decrease in IGF1 secretion indicates IGF1/2 mediated support for enhanced pluripotency and self-renewal in hESCs.

  12. Gold nanoparticle-based probes for the colorimetric detection of Mycobacterium avium subspecies paratuberculosis DNA.

    Science.gov (United States)

    Ganareal, Thenor Aristotile Charles S; Balbin, Michelle M; Monserate, Juvy J; Salazar, Joel R; Mingala, Claro N

    2018-02-12

    Gold nanoparticle (AuNP) is considered to be the most stable metal nanoparticle having the ability to be functionalized with biomolecules. Recently, AuNP-based DNA detection methods captured the interest of researchers worldwide. Paratuberculosis or Johne's disease, a chronic gastroenteritis in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), was found to have negative effect in the livestock industry. In this study, AuNP-based probes were evaluated for the specific and sensitive detection of MAP DNA. AuNP-based probe was produced by functionalization of AuNPs with thiol-modified oligonucleotide and was confirmed by Fourier-Transform Infrared (FTIR) spectroscopy. UV-Vis spectroscopy and Scanning Electron Microscopy (SEM) were used to characterize AuNPs. DNA detection was done by hybridization of 10 μL of DNA with 5 μL of probe at 63 °C for 10 min and addition of 3 μL salt solution. The method was specific to MAP with detection limit of 103 ng. UV-Vis and SEM showed dispersion and aggregation of the AuNPs for the positive and negative results, respectively, with no observed particle growth. This study therefore reports an AuNP-based probes which can be used for the specific and sensitive detection of MAP DNA. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Synthesis of gold nanoparticles with graphene oxide.

    Science.gov (United States)

    Wang, Wenshuo; He, Dawei; Zhang, Xiqing; Duan, Jiahua; Wu, Hongpeng; Xu, Haiteng; Wang, Yongsheng

    2014-05-01

    Single sheets of functionalized graphene oxide are derived through chemical exfoliation of natural flake graphite. We present an effective synthetic method of graphene-gold nanoparticles hybrid nanocomposites. AFM (Atomic Force Microscope) was used to measure the thickness of the individual GO nanosheet. FTIR (Fourier transform infrared) spectroscopy was used to verify the attachment of oxygen functionalities on the surface of graphene oxide. TEM (Transmission Electron Microscope) data revealed the average diameters of the gold colloids and characterized the composite particles situation. Absorption spectroscopy showed that before and after synthesis the gold particle size did not change. Our studies indicate that the hybrid is potential substrates for catalysts and biosensors.

  14. Rapid immune colloidal gold strip for cetacean meat restraining illegal trade and consumption: implications for conservation and public health.

    Science.gov (United States)

    Lo, Chieh; Chin, Li-Te; Chu, Chi-Shih; Wang, Yu-Ting; Chan, Kun-Wei; Yang, Wei-Cheng

    2013-01-01

    The consumption of cetacean meat is geographically common and often of undetermined sustainability. Besides, it can expose humans to contaminants and zoonotic pathogens. The illegality of possessing cetacean meat was likely under-reported in some countries due to lack of attention paid by the officials although DNA analysis of market products helped to show such practices. We developed two monoclonal antibodies against synthetic peptides of myoglobin (Mb) for constructing a rapid immune colloidal gold strip. Only cetacean Mb is capable of binding to both antibodies and presents positive signal while the Mb from other animals can bind only 1 of the antibodies and presents negative result. The strip for cetacean meat would be an applicable and cost-effective test for field inspectors and even the general public. It contributes to increase the reporting capacity and coverage of illegal cetacean meat possession, which has implications for global cetacean conservation and public health.

  15. Preparation of gold nanoparticles for plasmonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Benkovicova, Monika, E-mail: monika.benkovicova@savba.sk [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia); Polymer Institute SAS, Dubravska cesta 9, 845 41 Bratislava (Slovakia); Vegso, Karol; Siffalovic, Peter; Jergel, Matej; Luby, Stefan; Majkova, Eva [Institute of Physics SAS, Dubravska cesta 9, 845 11 Bratislava (Slovakia)

    2013-09-30

    We present a simple hot injection method for the preparation of colloidal solutions of hydrophobic spherical gold nanoparticles with the diameter around 20 nm and size dispersion below 20%. Various surfactants with different lengths of hydrocarbon chains, such as oleylamine, 1-octadecanethiol, poly (N-vinylpyrrolidone), and AgNO{sub 3} in 1,5-pentanediol, were used for sterical stabilization in the colloidal solution. The hydrodynamic nanoparticle size and size dispersion were determined by the dynamic light scattering (DLS) while the small-angle X-ray scattering (SAXS) from the colloidal solution provided information on the size of the metallic nanoparticle core (without surfactant). Plasmon enhanced resonant absorption peaks between 500 nm and 600 nm were detected by the UV–VIS spectrophotometry. The nanoparticle arrays on silicon prepared by solvent evaporation or Langmuir-Schaefer method were inspected by high-resolution scanning electron microscopy and grazing-incidence SAXS (GISAXS). The presence of side maxima in the GISAXS pattern gives evidence of the nanoparticle ordering by self-assembly while very close values of the interparticle distance derived from GISAXS and the nanoparticle size derived from DLS indicate a close-packed order. - Highlights: ► Preparation of gold nanoparticles by use a various of surfactants ► Preparation of monodisperse nanoparticles ► Characterization of nanoparticles on a solid substrate.

  16. The treatment of rheumatoid arthritis, osteoarthritis, and non-specific synovitis by intra-articular injection of radioactive colloidal gold (198Au)

    International Nuclear Information System (INIS)

    Kim, S.J.

    1981-01-01

    In this study, thirty-nine knee and three ankle effusions and pains unresponsive to the usual methods of therapy were treated by intra-articular injection of radioactive colloidal gold from November 1964 to January 1979 and followed up. Thirteen cases had classical rheumatoid arthritis: fifteen non-specific synovitis: two pigmented villonodular synovitis: one post-synovectomy, and one tuberculous arthritis. The results were as follows: 1) In eleven cases (84.6 %) of rheumatoid arthritis fourteen cases (93.3 %) of non-specific synovitis, and five cases (50.0 %) of osteoarthritis, the effusion disappeared. 2) In twelve cases (92.3 %) of rheumatoid arthritis, thirteen cases (86.7 %) of non-specific synovitis, and only two cases (20.0 %) of oseoarthritis, the pain disappeared. 3) As a whole, in thirty-three cases (78.6 %), the effusion disappeared and in twenty-eight cases (66.7 %) the pain disappeared. (author)

  17. Formation and optical characterisation of colloidal gold monolayers

    NARCIS (Netherlands)

    Kooij, Ernst S.; Brouwer, E.A.M.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    We study the deposition of charge-stabilised gold nanocolloids on silicon substrates, which have been derivatised with (aminopropyl)triethoxysilane. Atomic force microscopy (AFM) and spectroscopic ellipsometry are employed to investigate the nanocrystal monolayers ex situ. Analysis of AFM images

  18. The green synthesis of gold nanoparticles using the ethanol extract pf black tea and its tannin free fraction

    International Nuclear Information System (INIS)

    Banoee, M.; Mokhtari, N.; Akhavan Sepahi, A.; Jafari Fesharaki, P.; Monsef-Esfahani, H. R.; Ehsanfar, Z.; Khoshayand, M. R.; Shahverdi, A. R.

    2010-01-01

    In this research the ethanol extract of black tea and its tannin free fraction used for green synthesis of gold nanoparticles. All the extracts were used separately for the synthesis of gold nanoparticles through the reduction of aqueous AuCl 4 - . Transmission electron microscopy and visible absorption spectroscopy confirmed the reduction of gold ions to gold nanoparticles. The ethanol extract of black tea and its tannin free ethanol extract produced gold nanoparticles in the size ranges of 2.5-27.5 nm and 1.25-17.5 nm with an average size of 10 nm and 3 nm, respectively. The prepared colloid gold nanoparticles, using the ethanol extract of black tea, did not show the appropriate stability during storage time (24 hours) at 4 d eg C . In contrast, gold colloids, which were synthesized by a tannin free fraction showed no particle aggregation during short and long storage times at the same conditions. To the best of our knowledge, this is the first report on the rapid synthesis of gold nanoparticles using ethanol extract of black tea and its tannin free fraction.

  19. Ionic Strength Dependent Kinetics of Nanocolloidal Gold Deposition

    NARCIS (Netherlands)

    Brouwer, E.A.M.; Kooij, Ernst S.; Wormeester, Herbert; Poelsema, Bene

    2003-01-01

    The deposition kinetics of the irreversible adsorption of citrate-stabilized, nanocolloidal gold particles on Si/SiO2 surfaces, derivatized with (aminopropyl)triethoxysilane, is investigated in situ using single wavelength reflectometry. A well-defined flow of colloids toward the surface is realized

  20. Suppression of gold nanoparticle agglomeration and its separation via nylon membranes

    Institute of Scientific and Technical Information of China (English)

    Ayyavoo Jayalakshmi; In-Chul Kim; Young-Nam Kwon

    2017-01-01

    Use of ultraporous nylon membrane is one of the most widely employed techniques for removal of hard and soft nanoparticles in the semiconductor industry,and the accurate determination of membrane pore size is necessary in order to avoid manufacturing defects caused by contamination.The gold nanoparticle has several benefits for the evaluation of polymeric membranes;however,the nanoparticles agglomerate easily on the nylon membrane and make it difficult to evaluate the membrane precisely.The properties of 2-amino-2-hydroxymethyl-1,3-propanediol (ADP) ligand in gold nanoparticle solution were systematically investigated,and ADP was utilized for improved evaluation of the nylon membranes.Nylon membrane used in this study was prepared by phase inversion techniques.Ultrathin dense layer on top of the membrane surface and Darcy structures in the microporous membrane support were observed.The gold particle rejection was carried out at various pH values from 4 to 14 and higher rejection was observed at pH 4 and 8.The suppression of gold colloid agglomeration using ADP and monodispersity of gold colloids was also analyzed by confocal laser scanning microscopy (CLSM),transmission electron microscopy (TEM),and scanning electron microscopy (SEM).van der Waals interaction energy of the particles was reduced in the addition of ADP.The presence ofADP ligand in the gold solutions prevented the agglomeration of gold nanoparticles and reduced the adsorption of the particles on the nylon membrane surface,leading to precise evaluation of membrane pore sizes.

  1. A Plasmonic Gold Nanostar Theranostic Probe for In Vivo Tumor Imaging and Photothermal Therapy

    Science.gov (United States)

    Liu, Yang; Ashton, Jeffrey R.; Moding, Everett J.; Yuan, Hsiangkuo; Register, Janna K.; Fales, Andrew M.; Choi, Jaeyeon; Whitley, Melodi J.; Zhao, Xiaoguang; Qi, Yi; Ma, Yan; Vaidyanathan, Ganesan; Zalutsky, Michael R.; Kirsch, David G.; Badea, Cristian T.; Vo-Dinh, Tuan

    2015-01-01

    Nanomedicine has attracted increasing attention in recent years, because it offers great promise to provide personalized diagnostics and therapy with improved treatment efficacy and specificity. In this study, we developed a gold nanostar (GNS) probe for multi-modality theranostics including surface-enhanced Raman scattering (SERS) detection, x-ray computed tomography (CT), two-photon luminescence (TPL) imaging, and photothermal therapy (PTT). We performed radiolabeling, as well as CT and optical imaging, to investigate the GNS probe's biodistribution and intratumoral uptake at both macroscopic and microscopic scales. We also characterized the performance of the GNS nanoprobe for in vitro photothermal heating and in vivo photothermal ablation of primary sarcomas in mice. The results showed that 30-nm GNS have higher tumor uptake, as well as deeper penetration into tumor interstitial space compared to 60-nm GNS. In addition, we found that a higher injection dose of GNS can increase the percentage of tumor uptake. We also demonstrated the GNS probe's superior photothermal conversion efficiency with a highly concentrated heating effect due to a tip-enhanced plasmonic effect. In vivo photothermal therapy with a near-infrared (NIR) laser under the maximum permissible exposure (MPE) led to ablation of aggressive tumors containing GNS, but had no effect in the absence of GNS. This multifunctional GNS probe has the potential to be used for in vivo biosensing, preoperative CT imaging, intraoperative detection with optical methods (SERS and TPL), as well as image-guided photothermal therapy. PMID:26155311

  2. IMPACT OF POLYCYCLIC AROMATIC HYDROCARBONS OF THE ELECTROCHEMICAL RESPONSES OF A FERRICYNIDE PROBE AT TEMPLATE-MODIFIED SELF ASSEMBLED MONOLAYERS ON GOLD ELECTRODES

    Science.gov (United States)

    The impact of pyrene on the electrochemical response of the ferricyanide probe using Self Assembled Monolayer (SAM)-modified gold electrodes was investigated using Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV). These results suggest the feasibility of using SAMs, par...

  3. Quantitative and Label-Free Detection of Protein Kinase A Activity Based on Surface-Enhanced Raman Spectroscopy with Gold Nanostars.

    Science.gov (United States)

    He, Shuai; Kyaw, Yi Mon Ei; Tan, Eddie Khay Ming; Bekale, Laurent; Kang, Malvin Wei Cherng; Kim, Susana Soo-Yeon; Tan, Ivan; Lam, Kong-Peng; Kah, James Chen Yong

    2018-04-26

    The activity of extracellular protein kinase A (PKA) is known to be a biomarker for cancer. However, conventional PKA assays based on colorimetric, radioactive, and fluorometric techniques suffer from intensive labeling-related preparations, background interference, photobleaching, and safety concerns. While surface-enhanced Raman spectroscopy (SERS)-based assays have been developed for various enzymes to address these limitations, their use in probing PKA activity is limited due to subtle changes in the Raman spectrum with phosphorylation. Here, we developed a robust colloidal SERS-based scheme for label-free quantitative measurement of PKA activity using gold nanostars (AuNS) as a SERS substrate functionalized with bovine serum albumin (BSA)-kemptide (Kem) bioconjugate (AuNS-BSA-Kem), where BSA conferred colloidal stability and Kem is a high-affinity peptide substrate for PKA. By performing principle component analysis (PCA) on the SERS spectrum, we identified two Raman peaks at 725 and 1395 cm -1 , whose ratiometric intensity change provided a quantitative measure of Kem phosphorylation by PKA in vitro and allowed us to distinguish MDA-MB-231 and MCF-7 breast cancer cells known to overexpress extracellular PKA catalytic subunits from noncancerous human umbilical vein endothelial cells (HUVEC) based on their PKA activity in cell culture supernatant. The outcome demonstrated potential application of AuNS-BSA-Kem as a SERS probe for cancer screening based on PKA activity.

  4. Search for an optimal colloid for sentinel node imaging

    International Nuclear Information System (INIS)

    Imam, S.K.; Killingsworth, M.

    2005-01-01

    This study aims at finding a cost-effective and stable colloid of appropriate size to replace antimony sulfide colloid which is now in routine use in Australia for sentinel lymph node (SLN) imaging. For this reason we evaluated three colloids; namely phytate, hepatate and stannous fluoride (SnF 2 ). As colloids of particle size of 100-200 nm seem to be appropriate for sentinel node imaging, the three radiolabelled colloid preparations were filtered through 0.1 and 0.22 μm filters and then studied on electron microscope. Electron microscopy showed that unlike phytate, the particle size of the hepatate and SnF 2 colloids did not increase beyond the size limit of 200 nm over a period of as long as 26 hours. Instead, they remained well within the size limits chosen. The stability of particle size is required for intra-operative gamma probe lymphatic mapping that sometimes may be performed on the following day. Hepatate and SnF 2 colloids appeared to be more suited for sentinel lymph node imaging, the latter being an inhouse product is more cost-effective. Further studies based on nodal uptake and the behavior of these two radiopharmaceuticals in animals is suggested in order to evaluate their potential for future wide-spread application in human sentinel node imaging. (author)

  5. Probing phosphate ion via the europium(III)-modulated fluorescence of gold nanoclusters

    International Nuclear Information System (INIS)

    Ding, Shou-Nian; Li, Chun-Mei; Gao, Bu-Hong; Kargbo, Osman; Zhou, Chan; Chen, Xi; Wan, Neng

    2014-01-01

    Fluorescent gold nanoclusters (Au-NCs) were synthesized by a one-pot method using 11-mercaptoundecanoic acid as a reducing and capping reagent. It is found that the red fluorescence of the Au-NCs is quenched by the introduction of Eu(III) at pH 7.0, but that fluorescence is restored on addition of phosphate. The Au-NCs were investigated by transmission electron microscopy and fluorescence photographs. The effect of pH on fluorescence was studied in the range from pH 6 to 10 and is found to be strong. Based on these findings, we have developed an assay for phosphate. Ions such as citrate, Fe(CN) 6 3− , SO 4 2− , S 2 O 8 2− , Cl − , HS − , Br − , AcO − , NO 2 − , SCN − , ClO 4 − , HCO 3 − , NO 3 − , Cd 2+ , Ba 2+ , Zn 2+ , Mg 2+ , and glutamate do not interfere, but ascorbate and Fe 3+ can quench Au-NCs fluorescence. The fluorescent nanocluster probe responds to phosphate in the range from 0.18 to 250 μM, and the detection limit is 180 nM. The probe also responds to pyrophosphate and ATP. (author)

  6. Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules

    International Nuclear Information System (INIS)

    Diegoli, Sara; Manciulea, Adriana L.; Begum, Shakiela; Jones, Ian P.; Lead, Jamie R.; Preece, Jon A.

    2008-01-01

    The increasing exploitation of nanomaterials into many consumer and other products is raising concerns as these nanomaterials are likely to be released into the environment. Due to our lack of knowledge about the environmental chemistry, transport and ecotoxicology of nanomaterials, it is of paramount importance to study how natural aquatic colloids can interact with manufactured gold nanoparticles as these interactions will determine their environmental fate and behaviour. In this context, our work aims to quantify the effect of naturally occurring riverine macromolecules - International Humic Substances Society (IHSS) Suwannee River Humic Acid Standard (SRHA) - on citrate- and acrylate-stabilized gold nanoparticles. The influence of SRHA on the stability of the gold colloids was studied as a function of pH by UV-visible absorption spectroscopy, dynamic light scattering (DLS) and transmission electron microscopy (TEM). At high ionic strengths (0.1 M), extensive and rapid aggregation occurred, while more subtle effects were observed at lower ionic strength values. Evidence was found that SRHA enhances particle stability at extreme pH values (ionic strength < 0.01 M) by substituting and/or over-coating the original stabilizer on the gold nanoparticle surface, thus affecting surface charge and chemistry. These findings have important implications for the fate and behaviour of nanoparticles in the environment and their ecotoxicity

  7. Chemistry and stability of thiol based polyethylene glycol surface coatings on colloidal gold and their relationship to protein adsorption and clearance in vivo

    Science.gov (United States)

    Carpinone, Paul

    Nanomaterials have presented a wide range of novel biomedical applications, with particular emphasis placed on advances in imaging and treatment delivery. Of the many particulate nanomaterials researched for biomedical applications, gold is one of the most widely used. Colloidal gold has been of great interest due to its chemical inertness and its ability to perform multiple functions, such as drug delivery, localized heating of tissues (hyperthermia), and imaging (as a contrast agent). It is also readily functionalized through the use of thiols, which spontaneously form sulfur to gold bonds with the surface. Polyethylene glycol (PEG) is the most widely used coating material for these particles as it provides both steric stability to the suspension and protein resistance. These properties extend the circulation time of the particles in blood, and consequently the efficacy of the treatment. Despite widespread use of PEG coated gold particles, the coating chemistry and stability of these particles are largely unknown. The goal of this work was to identify the mechanisms leading to degradation and stability of thiol based polyethylene glycol coatings on gold particles and to relate this behavior to protein adsorption and clearance in vivo. The results indicate that the protective PEG coating is susceptible to sources of oxidation (including dissolved oxygen) and competing adsorbates, among other factors. The quality of commercially available thiolated PEG reagents was also found to play a key role in the quality and protein resistance of the final PEG coating. Analysis of the stability of these coatings indicated that they rapidly degrade under physiological conditions, leading to the onset of protein adsorption when exposed to plasma or blood. Paralleling the protein adsorption behavior and onset of coating degradation observed in vitro, blood clearance of parenterally administered PEG coated particles in mice began after approximately 2h of circulation time. Taken

  8. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    International Nuclear Information System (INIS)

    Carralero, Veronica; Gonzalez-Cortes, Araceli; Yanez-Sedeno, Paloma; Pingarron, Jose M.

    2007-01-01

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL -1 with a slope value of -82.3 nA ng -1 mL, and a detection limit of 0.43 ng mL -1 . The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL -1 concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 ± 3% and 99 ± 3%, respectively, were obtained

  9. Nanostructured progesterone immunosensor using a tyrosinase-colloidal gold-graphite-Teflon biosensor as amperometric transducer

    Energy Technology Data Exchange (ETDEWEB)

    Carralero, Veronica [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Gonzalez-Cortes, Araceli [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain); Yanez-Sedeno, Paloma [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)]. E-mail: yseo@quim.ucm.es; Pingarron, Jose M. [Department of Analytical Chemistry, Faculty of Chemistry, University Complutense of Madrid, 28040 Madrid (Spain)

    2007-07-16

    A novel progesterone immunosensor using a colloidal gold-graphite-Teflon-tyrosinase composite biosensor as amperometric transducer is reported. A sequential competitive configuration between the analyte and progesterone labelled with alkaline phosphatase (AP) was used. Phenyl phosphate was employed as the AP-substrate and the enzyme reaction product, phenol, was oxidized by tyrosinase to o-quinone, which is subsequently reduced at -0.1 V at the biocomposite electrode. Variables such as the concentration of phenyl phosphate, the amount of antibody attached to the electrode surface, immersion time in a 2% BSA solution, working pH and incubation times in progesterone and AP conjugate were optimized. A linear calibration graph for progesterone was obtained between 0 and 40 ng mL{sup -1} with a slope value of -82.3 nA ng{sup -1} mL, and a detection limit of 0.43 ng mL{sup -1}. The time needed to reach the steady-state current from the addition of phenyl phosphate was 30-40 s. These analytical characteristics improve substantially those reported for other progesterone immunosensors. A lifetime of 14 days with no need to apply any regeneration procedure was also achieved. The usefulness of the immunosensor was evaluated by determining progesterone in milk samples spiked with the analyte at 5.0 and 1.5 ng mL{sup -1} concentration levels. Following a very simple procedure, involving only sample dilution, mean recoveries (n = 7) of 98 {+-} 3% and 99 {+-} 3%, respectively, were obtained.

  10. Colloidal silica films for high-capacity DNA arrays

    Science.gov (United States)

    Glazer, Marc Irving

    The human genome project has greatly expanded the amount of genetic information available to researchers, but before this vast new source of data can be fully utilized, techniques for rapid, large-scale analysis of DNA and RNA must continue to develop. DNA arrays have emerged as a powerful new technology for analyzing genomic samples in a highly parallel format. The detection sensitivity of these arrays is dependent on the quantity and density of immobilized probe molecules. We have investigated substrates with a porous, "three-dimensional" surface layer as a means of increasing the surface area available for the synthesis of oligonucleotide probes, thereby increasing the number of available probes and the amount of detectable bound target. Porous colloidal silica films were created by two techniques. In the first approach, films were deposited by spin-coating silica colloid suspensions onto flat glass substrates, with the pores being formed by the natural voids between the solid particles (typically 23nm pores, 35% porosity). In the second approach, latex particles were co-deposited with the silica and then pyrolyzed, creating films with larger pores (36 nm), higher porosity (65%), and higher surface area. For 0.3 mum films, enhancements of eight to ten-fold and 12- to 14-fold were achieved with the pure silica films and the films "templated" with polymer latex, respectively. In gene expression assays for up to 7,000 genes using complex biological samples, the high-capacity films provided enhanced signals and performed equivalently or better than planar glass on all other functional measures, confirming that colloidal silica films are a promising platform for high-capacity DNA arrays. We have also investigated the kinetics of hybridization on planar glass and high-capacity substrates. Adsorption on planar arrays is similar to ideal Langmuir-type adsorption, although with an "overshoot" at high solution concentration. Hybridization on high-capacity films is

  11. Nonequilibrium Equation of State in Suspensions of Active Colloids

    Directory of Open Access Journals (Sweden)

    Félix Ginot

    2015-01-01

    Full Text Available Active colloids constitute a novel class of materials composed of colloidal-scale particles locally converting chemical energy into motility, mimicking micro-organisms. Evolving far from equilibrium, these systems display structural organizations and dynamical properties distinct from thermalized colloidal assemblies. Harvesting the potential of this new class of systems requires the development of a conceptual framework to describe these intrinsically nonequilibrium systems. We use sedimentation experiments to probe the nonequilibrium equation of state of a bidimensional assembly of active Janus microspheres and conduct computer simulations of a model of self-propelled hard disks. Self-propulsion profoundly affects the equation of state, but these changes can be rationalized using equilibrium concepts. We show that active colloids behave, in the dilute limit, as an ideal gas with an activity-dependent effective temperature. At finite density, increasing the activity is similar to increasing adhesion between equilibrium particles. We quantify this effective adhesion and obtain a unique scaling law relating activity and effective adhesion in both experiments and simulations. Our results provide a new and efficient way to understand the emergence of novel phases of matter in active colloidal suspensions.

  12. THE RESPONSE OF DISSEMINATED RETICULUM CELL SARCOMA TO THE INTRAVENOUS INJECTION OF COLLOIDAL RADIOACTIVE GOLD

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Philip; Levitt, Seymour H.

    1963-06-15

    Case histories of two patients treated with colloidal radiogold for diffuse reticulum cell sarcoma are presented. Further analysis of the method is suggested by the unusually long survival time of one of the patients. It was concluded that, although external radiotherapy remains the treatment of choice in localized reticulum cell sarcoma, intravenous colloidal radiogold may be a useful agent in lymphosarcomas with diffuse minute neoplastic liver and spleen involvements. Intravenous colloidal radiogold can produce bone marrow depression and thrombocytopenia which can lead to death. This factor tends to argue against therapeutic use of the agent. It is suggested that no more than 50 mC Au/sup 198/ intravenously should be used for treatment of this disease. (R.M.G.)

  13. A Novel Diagnostic Method to Detect Duck Tembusu Virus: A Colloidal Gold-Based Immunochromatographic Assay

    Directory of Open Access Journals (Sweden)

    Guanliu Yu

    2018-05-01

    Full Text Available Duck Tembusu virus (DTMUV is an emerging pathogenic flavivirus that has resulted in large economic losses to the duck-rearing industry in China since 2010. Therefore, an effective diagnostic approach to monitor the spread of DTMUV is necessary. Here, a novel diagnostic immunochromatographic strip (ICS assay was developed to detect DTMUV. The assay was carried out using colloidal gold coated with purified monoclonal antibody A12D3 against envelope E protein. Purified polyclonal C12D1 antibodies from BALB/c mice against the envelope E protein were used as the capture antibody. Goat anti-mouse IgG was used to detect DTMUV, which was also assembled on the ICS. Results showed that the ICS could specifically detect DTMUV within 10 min. It also could be stored 25 and 4°C for 4 and 6 months, respectively. The sensitivity of the ICS indicated that the dilution multiples of positive allantoic fluid of DTMUV (LD50: 104.33/0.2 ml was up to 200. Its specificity and sensibility showed no significant change under the above storage situations. Fifty clinical samples were simultaneously detected by ICS and reverse-transcription polymerase chain reaction with a 93.9% coincidence rate between them. It proved that the ICS in the present study was highly specific, sensitive, repeatable, and more convenient to rapidly detect DTMUV in clinical samples.

  14. Optical Properties of Linoleic Acid Protected Gold Nanoparticles

    Directory of Open Access Journals (Sweden)

    Ratan Das

    2011-01-01

    Full Text Available Linoleic acid-protected gold nanoparticles have been synthesized through the chemical reduction of tetrachloroaurate ions by ethanol in presence of sodium linoleate. The structure of these nanoparticles is investigated using transmission electron microscopy, which shows that the Au nanoparticles are spherical in shape with a narrow size distribution which ranges from 8 to 15 nm. Colloidal dispersion of gold nanoparticles in cyclohexane exhibits absorption bands in the ultraviolet-visible range due to surface plasmon resonance, with absorption maximum at 530 nm. Fluorescence spectra of gold nanoparticles also show an emission peak at 610 nm when illuminated at 450 nm. UV-Vis spectroscopy reveals that these nanoparticles remain stable for 10 days.

  15. Modeling for Colloid and Chelator Facilitated Nuclide Transport in Radioactive Waste Disposal System

    International Nuclear Information System (INIS)

    Lee, Youn Myoung; Jeong, Jong Tae

    2010-08-01

    A modeling study and development of a total system performance assessment (TSPA) program template, by which assessment of safety and performance for a radioactive waste repository with normal and/or abnormal nuclide release cases can be made has been developed. Colloid and chelator facilitated transport that is believed to result for faster nuclide transport in various mediabothinthegeosphereandbiospherehas been evaluated deterministically and probabilistically to demonstrate the capability of the template developed through this study. To this end colloid and chelator facilitated nuclide transport has been modeled rather strainghtforwardly with assumed data through this study by utilizing some powerful function offered by GoldSim. An evaluation in view of apparent influence of colloid and chelator on the nuclide transport in the various media in and around a repository system with data assumed are illustrated

  16. Surface-Enhanced Raman Spectroscopy Study of 4-ATP on Gold Nanoparticles for Basal Cell Carcinoma Fingerprint Detection

    Science.gov (United States)

    Quynh, Luu Manh; Nam, Nguyen Hoang; Kong, K.; Nhung, Nguyen Thi; Notingher, I.; Henini, M.; Luong, Nguyen Hoang

    2016-05-01

    The surface-enhanced Raman signals of 4-aminothiophenol (4-ATP) attached to the surface of colloidal gold nanoparticles with size distribution of 2 to 5 nm were used as a labeling agent to detect basal cell carcinoma (BCC) of the skin. The enhanced Raman band at 1075 cm-1 corresponding to the C-S stretching vibration in 4-ATP was observed during attachment to the surface of the gold nanoparticles. The frequency and intensity of this band did not change when the colloids were conjugated with BerEP4 antibody, which specifically binds to BCC. We show the feasibility of imaging BCC by surface-enhanced Raman spectroscopy, scanning the 1075 cm-1 band to detect the distribution of 4-ATP-coated gold nanoparticles attached to skin tissue ex vivo.

  17. Invited Review Article: Tip modification methods for tip-enhanced Raman spectroscopy (TERS) and colloidal probe technique: A 10 year update (2006-2016) review

    Science.gov (United States)

    Yuan, C. C.; Zhang, D.; Gan, Y.

    2017-03-01

    Engineering atomic force microscopy tips for reliable tip enhanced Raman spectroscopy (TERS) and colloidal probe technique are becoming routine practices in many labs. In this 10 year update review, various new tip modification methods developed over the past decade are briefly reviewed to help researchers select the appropriate method. The perspective is put in a large context to discuss the opportunities and challenges in this area, including novel combinations of seemingly different methods, potential applications of some methods which were not originally intended for TERS tip fabrication, and the problems of high cost and poor reproducibility of tip fabrication.

  18. Stabilizing Protein Effects on the Pressure Sensitivity of Fluorescent Gold Nanoclusters

    Science.gov (United States)

    2016-01-13

    affected by the environment of the stabilizing protein, allowing these hybrid systems to act as sensors in many applications.2,9,14–19 This has led...Biosens Bioelectron. 2012;32:297–299. 8. Joseph D, Geckeler KE. Synthesis of highly fluorescent gold nanoclusters using egg white proteins. Colloids Surf...Chang HW, Chien YC, Hsiao JK, Cheng JT, Chou PT. Insulin -directed synthesis of fluorescent gold nanoclusters: preservation of insulin bioactivity and

  19. Near-field interaction of colloid near wavy walls

    Science.gov (United States)

    Luo, Yimin; Serra, Francesca; Wong, Denise; Steager, Edward; Stebe, Kathleen

    Anisotropic media can be used to manipulate colloids, in tandem with carefully designed boundary conditions. For example, in bulk nematic liquid crystal, a wall with homeotropic anchoring repels a colloid with the same anchoring; yet by changing the surface topography from planar to concave, one can turn repulsion into attraction. We explore the behaviors of micro-particles with associated topological defects (hedgehogs or Saturn rings) near wavy walls. The walls locally excite disturbance, which decays into bulk. The range of influence is related to the curvature. The distortion can be used to position particles, either directly on the structure or at a distance away, based on the ``splay-matching'' rules. When distortion becomes stronger through the deepening of the well, the splay field created by the wall can prompt transformation from a Saturn ring to a hedgehog. We combine wells of different wavelength and depth to direct colloid movement. We apply a magnetic field to reset the initial position of ferromagnetic colloids and subsequently release them to probe the elastic energy landscape. Our platform enables manipulation, particle selection, and a detailed study of defect structure under the influence of curvature. Army Research Office.

  20. Physico-chemical studies on a new production method of radioactive gold colloids

    International Nuclear Information System (INIS)

    Barrabin, H.; Caro, R.A.; Ihlo, J.E.; Richards, D.E.; Radicella, R.

    1975-04-01

    The preparation of gelatin protected radiogold colloids with small particles is described. A simplified procedure is utilized by which it is possible to eliminate the complicate equipment used until now. Some of the physicochemical parameters which affect the process are also analyzed. (author)

  1. Gold Nanoparticles as Probes for Nano-Raman Spectroscopy: Preliminary Experimental Results and Modeling

    Directory of Open Access Journals (Sweden)

    V. Le Nader

    2012-01-01

    Full Text Available This paper presents an effective Tip-Enhanced Raman Spectrometer (TERS in backscattering reflection configuration. It combines a tip-probe nanopositioning system with Raman spectroscope. Specific tips were processed by anchoring gold nanoparticles on the apex of tapered optical fibers, prepared by an improved chemical etching method. Hence, it is possible to expose a very small area of the sample (~20 nm2 to the very strong local electromagnetic field generated by the lightning rod effect. This experimental configuration was modelled and optimised using the finite element method, which takes into account electromagnetic effects as well as the plasmon resonance. Finally, TERS measurements on single-wall carbon nanotubes were successfully performed. These results confirm the high Raman scattering enhancement predicted by the modelling, induced by our new nano-Raman device.

  2. Interactions of benzoic acid and phosphates with iron oxide colloids using chemical force titration.

    Science.gov (United States)

    Liang, Jana; Horton, J Hugh

    2005-11-08

    Colloidal iron oxides are an important component in soil systems and in water treatment processes. Humic-based organic compounds, containing both phenol and benzoate functional groups, are often present in these systems and compete strongly with phosphate species for binding sites on the iron oxide surfaces. Here, we examine the interaction of benzoate and phenolic groups with various iron oxide colloids using atomic force microscopy (AFM) chemical force titration measurements. Self-assembled monolayers (SAMs) of 4-(12-mercaptododecyloxy)benzoic acid and 4-(12-mercaptododecyloxy)phenol were used to prepare chemically modified Au-coated AFM tips, and these were used to probe the surface chemistry of a series of iron oxide colloids. The SAMs formed were also characterized using scanning tunneling microscopy, reflection-absorption infrared spectroscopy, and X-ray photoelectron spectroscopy. The surface pK(a) of 4-(12- mercaptododecyloxy)benzoic acid has been determined to be 4.0 +/- 0.5, and the interaction between the tip and the sample coated with a SAM of this species is dominated by hydrogen bonding. The chemical force titraton profile for an AFM probe coated with 4-(12- mercaptododecyloxy)benzoic acid and a bare iron oxide colloid demonstrates that the benzoic acid function group interacts with all three types of iron oxide sites present on the colloid surface over a wide pH range. Similar experiments were carried out on colloids precipitated in the presence of phosphoric, gallic, and tannic acids. The results are discussed in the context of the competitive binding interactions of solution species present in soils or in water treatment processes.

  3. Nonlinear refractive index measuring using a double-grating interferometer in pump–probe configuration and Fourier transform analysis

    International Nuclear Information System (INIS)

    Rasouli, Saifollah; Ghorbani, Mahnaz

    2012-01-01

    In this paper, we have presented a simple, stable, highly sensitive and timesaving method based on a double-grating interferometer in conjunction with a pump–probe technique for measuring the nonlinear refractive index. A pump laser beam is aligned collinearly with an expanded plane parallel probe beam by a dichroic mirror. These beams pass through the sample, while right behind the sample using a suitable bandpass filter the pump beam is intercepted. The distorted probe beam then passes through a double-grating interferometer. One of the lateral shearing interference patterns is recorded by use of a CCD camera and, after digitization, has been stored in a computer. The interference pattern is analyzed by means of a Fourier transform algorithm. The refractive index changes have been obtained from phase distribution of the recorded fringe patterns. The implementation of the technique is straightforward and the arrangement is very simple and stable yet its sensitivity is comparable with other interferometry methods. It is also not a time consuming method. The method is applied for measuring the thermal nonlinear refractive index n 2 of colloidal gold nanoparticles in water solution. (paper)

  4. In vivo integrity of polymer-coated gold nanoparticles

    Science.gov (United States)

    Kreyling, Wolfgang G.; Abdelmonem, Abuelmagd M.; Ali, Zulqurnain; Alves, Frauke; Geiser, Marianne; Haberl, Nadine; Hartmann, Raimo; Hirn, Stephanie; de Aberasturi, Dorleta Jimenez; Kantner, Karsten; Khadem-Saba, Gülnaz; Montenegro, Jose-Maria; Rejman, Joanna; Rojo, Teofilo; de Larramendi, Idoia Ruiz; Ufartes, Roser; Wenk, Alexander; Parak, Wolfgang J.

    2015-07-01

    Inorganic nanoparticles are frequently engineered with an organic surface coating to improve their physicochemical properties, and it is well known that their colloidal properties may change upon internalization by cells. While the stability of such nanoparticles is typically assayed in simple in vitro tests, their stability in a mammalian organism remains unknown. Here, we show that firmly grafted polymer shells around gold nanoparticles may degrade when injected into rats. We synthesized monodisperse radioactively labelled gold nanoparticles (198Au) and engineered an 111In-labelled polymer shell around them. Upon intravenous injection into rats, quantitative biodistribution analyses performed independently for 198Au and 111In showed partial removal of the polymer shell in vivo. While 198Au accumulates mostly in the liver, part of the 111In shows a non-particulate biodistribution similar to intravenous injection of chelated 111In. Further in vitro studies suggest that degradation of the polymer shell is caused by proteolytic enzymes in the liver. Our results show that even nanoparticles with high colloidal stability can change their physicochemical properties in vivo.

  5. Rapid Detection and Identification of Overdose Drugs in Saliva by Surface-Enhanced Raman Scattering Using Fused Gold Colloids

    Directory of Open Access Journals (Sweden)

    Frank Inscore

    2011-07-01

    Full Text Available The number of drug-related emergency room visits in the United States doubled from 2004 to 2009 to 4.6 million. Consequently there is a critical need to rapidly identify the offending drug(s, so that the appropriate medical care can be administered. In an effort to meet this need we have been investigating the ability of surface-enhanced Raman spectroscopy (SERS to detect and identify numerous drugs in saliva at ng/mL concentrations within 10 minutes. Identification is provided by matching measured spectra to a SERS library comprised of over 150 different drugs, each of which possess a unique spectrum. Trace detection is provided by fused gold colloids trapped within a porous glass matrix that generate SERS. Speed is provided by a syringe-driven sample system that uses a solid-phase extraction capillary combined with a SERS-active capillary in series. Spectral collection is provided by a portable Raman analyzer. Here we describe successful measurement of representative illicit, prescribed, and over-the-counter drugs by SERS, and 50 ng/mL cocaine in saliva as part of a focused study.

  6. Peptide-functionalized iron oxide magnetic nanoparticle for gold mining

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wei-Zheng; Cetinel, Sibel; Sharma, Kumakshi; Borujeny, Elham Rafie; Montemagno, Carlo, E-mail: montemag@ualberta.ca [Ingenuity Lab, 1-070C (Canada)

    2017-02-15

    Here, we present our work on preparing a novel nanomaterial composed of inorganic binding peptides and magnetic nanoparticles for inorganic mining. Two previously selected and well-characterized gold-binding peptides from cell surface display, AuBP1 and AuBP2, were exploited. This nanomaterial (AuBP-MNP) was designed to fulfill the following two significant functions: the surface conjugated gold-binding peptide will recognize and selectively bind to gold, while the magnetic nano-sized core will respond and migrate according to the applied external magnetic field. This will allow the smart nanomaterial to mine an individual material (gold) from a pool of mixture, without excessive solvent extraction, filtration, and concentration steps. The working efficiency of AuBP-MNP was determined by showing a dramatic reduction of gold nanoparticle colloid concentration, monitored by spectroscopy. The binding kinetics of AuBP-MNP onto the gold surface was determined using surface plasmon resonance (SPR) spectroscopy, which exhibits around 100 times higher binding kinetics than peptides alone. The binding capacity of AuBP-MNP was demonstrated by a bench-top mining test with gold microparticles.

  7. Chemically functionalized gold nanoparticles: Synthesis, characterization, and applications

    Science.gov (United States)

    Daniel, Weston Lewis

    This thesis focuses on the development and application of gold nanoparticle based detection systems and biomimetic structures. Each class of modified nanoparticle has properties that are defined by its chemical moieties that interface with solution and the gold nanoparticle core. In Chapter 2, a comparison of the biomolecular composition and binding properties of various preparations of antibody oligonucleotide gold nanoparticle conjugates is presented. These constructs differed significantly in terms of their structure and binding properties. Chapter 3 reports the use of electroless gold deposition as a light scattering signal enhancer in a multiplexed, microarray-based scanometric immunoassay using the gold nanoparticle probes evaluated in Chapter 2. The use of gold development results in greater signal enhancement than the typical silver development, and multiple rounds of metal development were found to increase the resulting signal compared to one development. Chapter 4 describes an amplified scanometric detection method for human telomerase activity. Gold nanoparticles functionalized with specific oligonucleotide sequences can efficiently capture telomerase enzymes and subsequently be elongated. Both the elongated and unmodified oligonucleotide sequences are simultaneously measured. At low telomerase concentrations, elongated strands cannot be detected, but the unmodified sequences, which come from the same probe particles, can be detected because their concentration is higher, providing a novel form of amplification. Chapter 5 reports the development of a novel colorimetric nitrite and nitrate ion assay based upon gold nanoparticle probes functionalized with Griess reaction reagents. This assay takes advantage of the distance-dependent plasmonic properties of the gold nanoparticles and the ability of nitrite ion to facilitate the cross coupling of novel nanoparticle probes. The assay works on the concept of a kinetic end point and can be triggered at the EPA

  8. Nanobubble trouble on gold surfaces

    DEFF Research Database (Denmark)

    Holmberg, Maria; Kuhle, A.; Garnaes, J.

    2003-01-01

    When analyzing surfaces related to biosensors with in situ atomic force microscopy (AFM), the existence of nanobubbles called for our attention. The bubbles seem to form spontaneously when gold surfaces are immersed in clean water and are probably a general phenomenon at water-solid interfaces....... Besides from giving rise to undesired effects in, for example, biosensors, nanobubbles can also cause artifacts in AFM imaging. We have observed nanobubbles on unmodified gold surfaces, immersed in clean water, using standard silicon AFM probes. Nanobubbles can be made to disappear from contact mode AFM...... images and then to reappear by changing the scanning force. By combining contact mode AFM imaging and local force measurements, the interaction between the nanobubbles and the probe can be analyzed and give information about the characteristics of nanobubbles. A model of the forces between the AFM probe...

  9. Influence of Temperature on the Colloidal Stability of Polymer-Coated Gold Nanoparticles in Cell Culture Media.

    Science.gov (United States)

    Zyuzin, Mikhail V; Honold, Tobias; Carregal-Romero, Susana; Kantner, Karsten; Karg, Matthias; Parak, Wolfgang J

    2016-04-06

    The temperature-dependence of the hydrodynamic diameter and colloidal stability of gold-polymer core-shell particles with temperature-sensitive (poly(N-isopropylacrylamide)) and temperature-insensitive shells (polyallylaminine hydrochloride/polystyrensulfonate, poly(isobutylene-alt-maleic anhydride)-graft-dodecyl) are investigated in various aqueous media. The data demonstrate that for all nanoparticle agglomeration, i.e., increase in effective nanoparticle size, the presence of salts or proteins in the dispersion media has to be taken into account. Poly(N-isopropylacrylamide) coated nanoparticles show a reversible temperature-dependent increase in size above the volume phase transition of the polymer shell when they are dispersed in phosphate buffered saline or in media containing protein. In contrast, the nanoparticles coated with temperature-insensitive polymers show a time-dependent increase in size in phosphate buffered saline or in medium containing protein. This is due to time-dependent agglomeration, which is particularly strong in phosphate buffered saline, and induces a time-dependent, irreversible increase in the hydrodynamic diameter of the nanoparticles. This demonstrates that one has to distinguish between temperature- and time-induced agglomerations. Since the size of nanoparticles regulates their uptake by cells, temperature-dependent uptake of thermosensitive and non-thermosensitive nanoparticles by cells lines is compared. No temperature-specific difference between both types of nanoparticles could be observed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Fiscal 2000 regional consortium research and development project - regional new technology creation research and development. Development of micro-array for next generation gene analysis (1st fiscal year); 2000 nendo chiiki consortium kenkyu kaihatsu jigyo - chiiki shingijutsu soshutsu kenkyu kaihatsu seika hokokusho. Jisedai idenshi kaiseki micro array no kaihatsu (daiichi nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Efforts are under way to construct a novel DNA (deoxyribonucleic acid) micro-array for gene diagnosis on the basis of technologies of laser scan type manipulation, nanometric position detection, and micro-machining. Using these technologies, structural changes to accompany reactions induced in the probe DNA deposited on an array are detected for the identification of the DNA. Activities are conducted in the four fields of (1) the study of probe DNA fixation technology, (2) development of an optical detection system, (3) detailed check of DNA micro-array performance evaluation technologies, and (4) a comprehensive survey. In field (1), gold colloid modified DNA molecules are designed and evaluated, and the fixation of DNA to substrates and technologies for integration are studied. In field (2), the gold colloid modified DNA is fixed on a thin gold film, and then a surface plasmon resonance (SPR) is observed in the wake of hybridization. Furthermore, a Brownian motion is observed of the metal particles fixed on a glass substrate via DNA. (NEDO)

  11. Optical Manipulation of Shape-Morphing Elastomeric Liquid Crystal Microparticles Doped with Gold Nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y. R.; Evans, J. S.; Lee, T.; Senyuk, B.; Keller, P.; He, S. L.; Smalyukh, I. I.

    2012-06-11

    We demonstrate facile optical manipulation of shape of birefringent colloidal microparticles made from liquid crystal elastomers. Using soft lithography and polymerization, we fabricate elastomeric microcylinders with weakly undulating director oriented on average along their long axes. These particles are infiltrated with gold nanospheres acting as heat transducers that allow for an efficient localized transfer of heat from a focused infrared laser beam to a submicrometer region within a microparticle. Photothermal control of ordering in the liquid crystal elastomer using scanned beams allows for a robust control of colloidal particles, enabling both reversible and irreversible changes of shape. Possible applications include optomechanics, microfluidics, and reconfigurable colloidal composites with shape-dependent self-assembly.

  12. Gold - Old Drug with New Potentials.

    Science.gov (United States)

    Faa, Gavino; Gerosa, Clara; Fanni, Daniela; Lachowicz, Joanna I; Nurchi, Valeria M

    2018-01-01

    Research into gold-based drugs for a range of human diseases has seen a revival in recent years. This article reviews the most important applications of gold products in different fields of human pathology. Au(I) and Au(III) compounds have been re-introduced in clinical practice for targeting the cellular components involved in the onset and progression of viral and parasitic diseases, rheumatoid arthritis and cancer. After some brief historical notes, this article takes into account the applications of gold compounds against Mycobacterium tuberculosis, and also in tuberculosis and in rheumatoid arthritis treatment. The use of gold containing drugs in the cure of cancer are then considered, with special emphasis to the use of nanoparticles and to the photo-thermal cancer therapy. The use of colloidal gold in diagnostics, introduced in the last decade is widely discussed. As a last point a survey on the adverse effects and on the toxicity of the various gold derivatives in use in medicine is presented. In this review, we described the surprisingly broad spectrum of possible uses of gold in diagnostics and in therapeutic approaches to multiple human diseases, ranging from degenerative to infectious diseases, and to cancer. In particular, gold nanoparticles appear as attractive elements in modern clinical medicine, combining high therapeutic properties, high selectivity in targeting cancer cells and low toxicity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Quantitative analysis of gold nanorod alignment after electric field assisted deposition

    NARCIS (Netherlands)

    Ahmed, W.; Ahmed, Waqqar; Kooij, Ernst S.; van Silfhout, Arend; Poelsema, Bene

    2009-01-01

    We have studied the alignment of colloidal gold nanorods, deposited from solution onto well-defined substrates in the presence of an AC electric field generated by micrometer spaced electrodes. The field strengths employed in our experiments are sufficiently large to overcome Brownian motion and

  14. Hetero-Colloidal Metal Particle Multilayer Films Grown Using Electrostatic Interactions at the Air-water Interface

    International Nuclear Information System (INIS)

    Sastry, Murali; Mayya, K.S.

    2000-01-01

    The formation of nanoparticle multilayer films by electrostatic immobilization of surface-modified colloidal particles at the air-water interface has been recently demonstrated by us. In this paper, we extend our study to show that multilayer assemblies consisting of metal particles of different chemical nature (hetero-colloidal particle superlattices) and size can be deposited by the versatile Langmuir-Blodgett technique. Multilayer films consisting of a different number of bilayers of gold and silver colloidal particles have been deposited and characterized using quartz crystal microgravimetry and UV-visible spectroscopy measurements. It is observed that while layer-by-layer deposition of the different colloidal particle assemblies is possible by this technique without a detectable variation in the cluster density in the different layers, a degree of post-deposition reorganization of the clusters occurs in the film. In addition to this aging behavior, the effect of different organic solvents on the reorganization process has also been studied

  15. Distance within colloidal dimers probed by rotation-induced oscillations of scattered light

    NARCIS (Netherlands)

    van Vliembergen, R.W.L.; van IJzendoorn, L.J.; Prins, M.W.J.

    2016-01-01

    Aggregation processes of colloidal particles are of broad scientific and technological relevance. The earliest stage of aggregation, when dimers appear in an ensemble of single particles, is very important to characterize because it opens routes for further aggregation processes. Furthermore, it

  16. Development of a Colloidal Gold-Based Immunochromatographic Strip for Rapid Detection of Klebsiella pneumoniae Serotypes K1 and K2.

    Science.gov (United States)

    Siu, L Kristopher; Tsai, Yu-Kuo; Lin, Jung-Chung; Chen, Te-Li; Fung, Chang-Phone; Chang, Feng-Yee

    2016-12-01

    In this study, a novel colloidal gold-based immunochromatographic strip (ICS) containing anti-Klebsiella pneumoniae capsular polysaccharide polyclonal antibodies was developed to specifically detect K. pneumoniae serotypes K1 and K2. Capsular polysaccharide K1 and K2 antigens were first used to produce polyclonal anti-K1 and anti-K2 antibodies. Reference strains with different serotypes, nontypeable K. pneumoniae strains, and other bacterial species were then used to assess the sensitivity and specificity of these test strips. The detection limit was found to be 10 5 CFU, and the ICSs were stable for 6 months when stored at room temperature. No false-positive or false-negative results were observed, and equivalent results were obtained compared to those of more conventional test methods, such as PCR or serum agglutination. In conclusion, the ICS developed here requires no technical expertise and allows for the specific, rapid, and simultaneous detection of K. pneumoniae serotypes K1 and K2. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  17. MICROSCOPIC USES OF NANOGOLD.

    Energy Technology Data Exchange (ETDEWEB)

    HAINFELD,J.F.POWELL,R.D.FURUYA,F.R.

    2003-04-17

    Gold has been used for immunocytochemistry since 1971 when Faulk and Taylor discovered adsorption of antibodies to colloidal gold. It is an ideal label for electron microscopy (EM) due to its high atomic number, which scatters electrons efficiently, and the fact that preparative methods have been developed to make uniform particles in the appropriate size range of 5 to 30 nm. Use in light microscopy (LM) generally requires silver enhancement (autometallography; AMG) of these small gold particles. Significant advances in this field since that time have included a better understanding of the conditions for best antibody adsorption, more regular gold size production, adsorption of other useful molecules, like protein A, and advances in silver enhancement. Many studies have also been accomplished showing the usefulness of these techniques to cell biology and biomedical research. A further advance in this field was the development of Nanogold{trademark}, a 1.4 nm gold cluster. A significant difference from colloidal gold is that Nanogold is actually a coordination compound containing a gold core covalently linked to surface organic groups. These in turn may be covalently attached to antibodies. This approach to immunolabeling has several advantages compared to colloidal gold such as vastly better penetration into tissues, generally greater sensitivity, and higher density of labeling. Since Nanogold is covalently coupled to antibodies, it may also be directly coupled to almost any protein, peptide, carbohydrate, or molecule of interest, including molecules which do not adsorb to colloidal gold. This increases the range of probes possible, and expands the applications of gold labeling.

  18. Active colloids

    International Nuclear Information System (INIS)

    Aranson, Igor S

    2013-01-01

    A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior. (physics of our days)

  19. Colorimetric detection of Cucumber green mottle mosaic virus using unmodified gold nanoparticles as colorimetric probes.

    Science.gov (United States)

    Wang, Lin; Liu, Zhanmin; Xia, Xueying; Yang, Cuiyun; Huang, Junyi; Wan, Sibao

    2017-05-01

    Cucumber green mottle mosaic virus (CGMMV)causes a severe mosaic symptom of watermelon and cucumber, and can be transmitted via infected cucumber seeds, leaves and soil. It remains a challenge to detect this virus to prevent its introduction and infection and spread in fields. For this purpose, a simple and sensitive label-free colorimetric detection method for CGMMV has been developed with unmodified gold nanoparticles (AuNPs) as colorimetric probes. The method is based on the finding that the presence of RT-PCR target products of CGMMV and species-specific probes results in color change of AuNPs from red to blue after NaCl induction. Normally, species-specific probes attach to the surface of AuNPs and thereby increasing their resistance to NaCl-induced aggregation. The concentration of sodium, probes in the reaction system and evaluation of specificity and sensitivity of a novel assay, visual detection of Cucumber green mottle mosaic virus using unmodified AuNPs has been carried out with simple preparation of samples in our study. Through this assay, as low as 30pg/μL of CGMMV RNA was thus detected visually, by the naked eye, without the need for any sophisticated, expensive instrumentation and biochemical reagents. The specificity was 100% and exhibited good reproducibility in our assays. The results note that this assay is highly species-specific, simple, low-cost, and visual for easy detection of CGMMV in plant tissues. Therefore, visual assay is a potentially useful tool for middle or small-scales corporations and entry-exit inspection and quarantine bureau to detect CGMMV in cucumber seeds or plant tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Colloidal organization

    CERN Document Server

    Okubo, Tsuneo

    2015-01-01

    Colloidal Organization presents a chemical and physical study on colloidal organization phenomena including equilibrium systems such as colloidal crystallization, drying patterns as an example of a dissipative system and similar sized aggregation. This book outlines the fundamental science behind colloid and surface chemistry and the findings from the author's own laboratory. The text goes on to discuss in-depth colloidal crystallization, gel crystallization, drying dissipative structures of solutions, suspensions and gels, and similar-sized aggregates from nanosized particles. Special emphas

  1. Stability of contamination-free gold and silver nanoparticles produced by nanosecond laser ablation of solid targets in water

    International Nuclear Information System (INIS)

    Nikov, R.G.; Nikolov, A.S.; Nedyalkov, N.N.; Dimitrov, I.G.; Atanasov, P.A.; Alexandrov, M.T.

    2012-01-01

    Highlights: ► Au and Ag colloids were prepared by nanosecond laser ablation of solids in water. ► The alteration of the produced colloids during one month was investigated. ► Optical transmission spectra of the samples were measured from 350 to 800 nm. ► TEM measurements were made of as-prepared colloids and on the 30-th day. ► Zeta potential measurements were performed of as-prepared samples. - Abstract: Preparation of noble metal nanoparticle (NPs) colloids using pulsed laser ablation in water has an inherent advantage compared to the different chemical methods used, especially when biological applications of the colloids are considered. The fabrication method is simple and the NPs prepared in this way are contamination free. The method of laser ablation of a solid target in water is applied in the present work in order to obtain gold and silver NP colloids. The experiment was preformed by using the fundamental wavelength (1064 nm) of a Nd:YAG laser system. The target immersed in double distilled water was irradiated for 20 min by laser pulses with duration of 15 ns and repetition rate of 10 Hz. The sedimentation and aggregation of NPs in the colloids, stored at constant temperature, as a function of the time after preparation were investigated. The analyses are based on optical transmission spectroscopy in UV and vis regions. The change of the plasmon resonance wavelength as a function of time was studied. Zeta potential measurement was also utilized to measure the charge of the NPs in the colloids. The size distribution of the NPs and its change in time was determined by transmission electron microscopy (TEM). On the basis of the results obtained, the optimal conditions of post fabrication manipulation with gold and silver colloids are defined in view of producing stable NPs with a narrow size distribution.

  2. Colorimetric and dynamic light scattering detection of DNA sequences by using positively charged gold nanospheres: a comparative study with gold nanorods

    Science.gov (United States)

    Pylaev, T. E.; Khanadeev, V. A.; Khlebtsov, B. N.; Dykman, L. A.; Bogatyrev, V. A.; Khlebtsov, N. G.

    2011-07-01

    We introduce a new genosensing approach employing CTAB (cetyltrimethylammonium bromide)-coated positively charged colloidal gold nanoparticles (GNPs) to detect target DNA sequences by using absorption spectroscopy and dynamic light scattering. The approach is compared with a previously reported method employing unmodified CTAB-coated gold nanorods (GNRs). Both approaches are based on the observation that whereas the addition of probe and target ssDNA to CTAB-coated particles results in particle aggregation, no aggregation is observed after addition of probe and nontarget DNA sequences. Our goal was to compare the feasibility and sensitivity of both methods. A 21-mer ssDNA from the human immunodeficiency virus type 1 HIV-1 U5 long terminal repeat (LTR) sequence and a 23-mer ssDNA from the Bacillus anthracis cryptic protein and protective antigen precursor (pagA) genes were used as ssDNA models. In the case of GNRs, unexpectedly, the colorimetric test failed with perfect cigar-like particles but could be performed with dumbbell and dog-bone rods. By contrast, our approach with cationic CTAB-coated GNPs is easy to implement and possesses excellent feasibility with retention of comparable sensitivity—a 0.1 nM concentration of target cDNA can be detected with the naked eye and 10 pM by dynamic light scattering (DLS) measurements. The specificity of our method is illustrated by successful DLS detection of one-three base mismatches in cDNA sequences for both DNA models. These results suggest that the cationic GNPs and DLS can be used for genosensing under optimal DNA hybridization conditions without any chemical modifications of the particle surface with ssDNA molecules and signal amplification. Finally, we discuss a more than two-three-order difference in the reported estimations of the detection sensitivity of colorimetric methods (0.1 to 10-100 pM) to show that the existing aggregation models are inconsistent with the detection limits of about 0.1-1 pM DNA and that

  3. Photochemical modification of diamond powder with sulfur functionalities and its behavior on gold surfaces

    International Nuclear Information System (INIS)

    Nakamura, T; Ohana, T; Hagiwara, Y; Tsubota, T

    2010-01-01

    A useful method of modifying the surface of diamond powders with sulfur-containing functionalities was developed by the use of the photolysis of elemental sulfur. The introduction of sulfur-containing functional groups on the diamond surfaces was confirmed by means of XPS, DRIFT and mass spectroscopy analyses. The sulfur-modified diamond powders exhibited surface-attachment behavior to gold surfaces through the sulfur-containing linkage. In brief, exposure of the modified diamond powders to gold colloids resulted in gold nanoparticles being attached to the diamond powders. Treatment of the modified diamond powders with gold thin film on Si substrate afforded alignment of surface-attached diamond powders through sulfur linkages by self-assembly.

  4. Feasibility Study on the Use of the Seeding Growth Technique in Producing a Highly Stable Gold Nanoparticle Colloidal System

    Directory of Open Access Journals (Sweden)

    Kim Han Tan

    2015-01-01

    Full Text Available Stable colloidal gold nanoparticles (Au NPs are synthesized successfully using a seeding growth technique. The size of the nanoparticles is determined using transmission electron microscopy (TEM, and it is observed that the size of the nanoparticles ranges from 7 to 30 nm. The TEM images and optical absorption spectra of the Au NPs reveal that the suspension is well dispersed and consistent with the particle size. The feasibility of the seeding growth technique is investigated using Turbiscan Classic MA 2000 screening stability tester. Based on the peak thickness kinetics and mean value kinetics, the backscattered light profiles indicate that the suspension is highly stable without particle sedimentation as well as negligible agglomeration. In addition, the Au NPs are proven to remain stable over a period of 2 months. Particle sedimentation eventually occurs due to the weight of nanoparticles. It is concluded that the seeding growth technique is feasible in synthesizing stable Au NPs. Controlling the stability, size and shape of Au NPs are technologically important because of the strong correlation between these parameters and the optical, electrical, and catalytic properties of the nanoparticles.

  5. Case study on the dynamics of ultrafast laser heating and ablation of gold thin films by ultrafast pump-probe reflectometry and ellipsometry

    Science.gov (United States)

    Pflug, T.; Wang, J.; Olbrich, M.; Frank, M.; Horn, A.

    2018-02-01

    To increase the comprehension of ultrafast laser ablation, the ablation process has to be portrayed with sufficient temporal resolution. For example, the temporal modification of the complex refractive index {\\tilde{n}} and the relative reflectance of a sample material after irradiation with ultrafast single-pulsed laser radiation can be measured with a pump-probe setup. This work describes the construction and validation of a pump-probe setup enabling spatially, temporally, and spectroscopically resolved Brewster angle microscopy, reflectometry, ellipsometry, and shadow photography. First pump-probe reflectometry and ellipsometry measurements are performed on gold at λ _{probe}= 440 nm and three fluences of the single-pulsed pump radiation at λ _{pump}= 800 nm generating no, gentle, and strong ablation. The relative reflectance overall increases at no and gentle ablation. At strong ablation, the relative reflectance locally decreases, presumable caused by emitted thermal electrons, ballistic electrons, and ablating material. The refractive index n is slightly decreasing after excitation, while the extinction coefficient k is increasing.

  6. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    International Nuclear Information System (INIS)

    Lawton, J J; Pulisciano, A; Palmer, R E

    2009-01-01

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  7. Local secondary-electron emission spectra of graphite and gold surfaces obtained using the Scanning Probe Energy Loss Spectrometer (SPELS)

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, J J; Pulisciano, A; Palmer, R E, E-mail: R.E.Palmer@bham.ac.u [Nanoscale Physics Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)

    2009-11-25

    Secondary-electron emission (SEE) spectra have been obtained with the Scanning Probe Energy Loss Spectrometer at a tip-sample distance of only 50 nm. Such short working distances are required for the best theoretical spatial resolution (<10 nm). The SEE spectra of graphite, obtained as a function of tip bias voltage, are shown to correspond to unoccupied states in the electronic band structure. The SEE spectra of thin gold films demonstrate the capability of identifying (carbonaceous) surface contamination with this technique.

  8. Colloidal gold-labeled insulin complex. Characterization and binding to adipocytes.

    Science.gov (United States)

    Moll, U M; Thun, C; Pfeiffer, E F

    1986-01-01

    Biologically active insulin gold complex was used as an ultrastructural marker to study insulin binding sites, uptake, and internalization in isolated rat adipocytes. The preparation conditions for monodispersed particles, ca. 16 nm in diameter and loaded with approximately 100 insulin molecules, are reported. The complex is stable for at least six weeks. Single particles or small clusters were scattered across the cell membrane. The distribution of unbound receptors seemed to be independent of the extensive system of pre-existing surface connected vesicles in adipocytes. The uptake of particles took place predominantly via non-coated pinocytotic invaginations; clathrin-coated pits did not seem to be important for this process. Lysosome-like structures contained aggregates of 10-15 particles. These data suggest that insulin gold complex is a useful marker for the specific labeling of insulin binding sites.

  9. Formation of neutral and charged gold carbonyls on highly facetted gold nanostructures

    Science.gov (United States)

    Chau, Thoi-Dai; Visart de Bocarmé, Thierry; Kruse, Norbert; Wang, Richard L. C.; Kreuzer, Hans Jürgen

    2003-12-01

    We show that gold mono- and di-carbonyls are formed on gold field emitter tips during interaction with carbon monoxide gas at room temperature and in the presence of high electrostatic fields. The experiments are done in a time-of-flight atom probe to obtain mass spectra. The yield of monocarbonyl cations is about twice that of di-carbonyl ions. Density functional theory calculations are reported that explain the field stabilization of adsorbed carbonyls and the desorption yield of their cations.

  10. Development of a colloidal gold-immunochromatography assay to detect immunoglobulin G antibodies to Treponema pallidum with TPN17 and TPN47.

    Science.gov (United States)

    Lin, Li-Rong; Fu, Zuo-Gen; Dan, Bing; Jing, Guang-Jun; Tong, Man-li; Chen, De-Teng; Yu, Yang; Zhang, Chang-Gong; Yang, Tian-Ci; Zhang, Zhong-Ying

    2010-11-01

    Syphilis remains a worldwide public health problem; it is necessary to develop a new diagnostic approach that is easier and faster than conventional tests. Here, we report a new testing method named colloidal gold-immunochromatography assay (GICA) to detect syphilis instead of fluorescent treponemal antibody-absorption (FTA-Abs). Syphilis-specific immunoglobulin G (IgG) antibody was detected with GICA established on syphilis-specific recombinant proteins, TPN17 and TPN47. FTA-Abs Treponema pallidum (TP)-IgG was set as the gold standard. A GICA test was performed to detect the serum of 14 967 subjects who took a serologic test for syphilis at the Xiamen Center of Clinical Laboratory, Fujian, China, from March 2009 to February 2010, among which 1326 cases were diagnosed as syphilitic. The results showed that the sensitivity, specificity, and positive predictive value were 99.38% (1279/1287), 99.96% (12,975/12,980), and 99.61% (1279/1284), respectively. The positive rate between the 2 test methods had no significant difference (χ(2) = 0.003, P > 0.05). Detection on 500 interference specimens indicated that the biologic false-positive rate of the GICA test was extremely low and free from other biologic and chemical factors. The characteristics of GICA TP-IgG correspond to that of FTA-Abs TP-IgG (EUROIMMUN Medizinische Labordiagnostika, Germany). The GICA test is convenient, fast, and inexpensive, and it can be used both as a confirmatory test and a screening indicator, instead of FTA-Abs TP-IgG. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Holographic characterization of colloidal particles in turbid media

    Science.gov (United States)

    Cheong, Fook Chiong; Kasimbeg, Priya; Ruffner, David B.; Hlaing, Ei Hnin; Blusewicz, Jaroslaw M.; Philips, Laura A.; Grier, David G.

    2017-10-01

    Holographic particle characterization uses in-line holographic microscopy and the Lorenz-Mie theory of light scattering to measure the diameter and the refractive index of individual colloidal particles in their native dispersions. This wealth of information has proved invaluable in fields as diverse as soft-matter physics, biopharmaceuticals, wastewater management, and food science but so far has been available only for dispersions in transparent media. Here, we demonstrate that holographic characterization can yield precise and accurate results even when the particles of interest are dispersed in turbid media. By elucidating how multiple light scattering contributes to image formation in holographic microscopy, we establish the range conditions under which holographic characterization can reliably probe turbid samples. We validate the technique with measurements on model colloidal spheres dispersed in commercial nanoparticle slurries.

  12. Determination of hepatic fractional clearance of radioactive gold colloids for a measure of effective hepatic blood flow

    International Nuclear Information System (INIS)

    Fujii, Masahiro

    1979-01-01

    For a measure of effective blood flow, a hepatic fractional clearance of 198 Au-colloids was determined, which was obtained from the disappearance rate multiplied by the fraction of injected dose taken up by the liver. The hepatic uptake was determined with a gamma camera. The counts over the liver was corrected for body weight and height. The method was considered sufficiently simple for routine use. 198 Au-colloids were obtained from Dainabot Lab. and CIS. The former gave 64% higher values of disappearance rate than the latter, without any change in the organ distribution. A quality control tests were applied over a six-year period to the disappearance rates. Reproducibility within 95 to confidence limits was found for both groups. In 28 normal control subjects, hepatic fractional clearance of the colloids from Dainabot Lab. was 18.5 +- 3.4%/min. In patients with progressed hepatic disease, both hepatic fractional clearance and final hepatic uptake were decreased, showing that the determination of hepatic uptake is necessary in measuring effective hepatic blood flow by the colloidal clearance method. The influence of splenic uptake is discussed in relation to hepatic blood flow measurement. (author)

  13. Adsorption kinetics of alkanethiol-capped gold nanoparticles at the hexane–water interface

    International Nuclear Information System (INIS)

    Ferdous, Sultana; Ioannidis, Marios A.; Henneke, Dale

    2011-01-01

    The pendant drop technique was used to characterize the adsorption behavior of n-dodecane-1-thiol and n-hexane-1-thiol-capped gold nanoparticles at the hexane–water interface. The adsorption process was studied by analyzing the dynamic interfacial tension versus nanoparticle concentration, both at early times and at later stages (i.e., immediately after the interface between the fluids is made and once equilibrium has been established). A series of gold colloids were made using nanoparticles ranging in size from 1.60 to 2.85 nm dissolved in hexane for the interfacial tension analysis. Following free diffusion of nanoparticles from the bulk hexane phase, adsorption leads to ordering and rearrangement of the nanoparticles at the interface and formation of a dense monolayer. With increasing interfacial coverage, the diffusion-controlled adsorption for the nanoparticles at the interface was found to change to an interaction-controlled assembly and the presence of an adsorption barrier was experimentally verified. At the same bulk concentration, different sizes of n-dodecane-1-thiol nanoparticles showed different absorption behavior at the interface, in agreement with the findings of Kutuzov et al. (Phys Chem Chem Phys 9:6351–6358, 2007). The experiments additionally demonstrated the important role played by the capping agent. At the same concentration, gold nanoparticles stabilized by n-hexane-1-thiol exhibited greater surface activity than gold nanoparticles of the same size stabilized by n-dodecane-1-thiol. These findings contribute to the design of useful supra-colloidal structures by the self-assembly of alkane-thiol-capped gold nanoparticles at liquid–liquid interfaces.

  14. Magneto-optical characterization of colloidal dispersions. Application to nickel nanoparticles.

    Science.gov (United States)

    Pascu, Oana; Caicedo, José Manuel; Fontcuberta, Josep; Herranz, Gervasi; Roig, Anna

    2010-08-03

    We report here on a fast magneto-optical characterization method for colloidal liquid dispersions of magnetic nanoparticles. We have applied our methodology to Ni nanoparticles with size equal or below 15 nm synthesized by a ligand stabilized solution-phase synthesis. We have measured the magnetic circular dichroism (MCD) of colloidal dispersions and found that we can probe the intrinsic magnetic properties within a wide concentration range, from 10(-5) up to 10(-2) M, with sensitivity to concentrations below 1 microg/mL of magnetic Ni particles. We found that the measured MCD signal scales up with the concentration thus providing a means of determining the concentration values of highly diluted dispersions. The methodology presented here exhibits large flexibility and versatility and might be suitable to study either fundamental problems related to properties of nanosize particles including surface related effects which are highly relevant for magnetic colloids in biomedical applications or to be applied to in situ testing and integration in production lines.

  15. Study of preparation and survey of radioisotopes tracer applications of gold nanoparticles in the multi-phase industrial processes

    International Nuclear Information System (INIS)

    Huynh Thai Kim Ngan; Trinh Cong Son; Duong Thi Bich Chi; Tran Tri Hai; Nguyen Huu Quang; Bui Trong Duy; Le Trong Nghia; Ngo Duc Tin

    2014-01-01

    Gold nanoparticles (AuNPs) were prepared by Turkevich and Brust method. The labeled gold in liquids is the colloidal form with nano size particle of gold. This particles is of high dispersity in the liquid phase that makes them a good physical tracer. The stability and dissolve of AuNPs in solvents such as water, toluene are hereafter discussed. The size of AuNPs was determined through UV-Visible spectroscopy (UV-Vis) and transmission electron microscope (TEM). (author)

  16. Influence of Surface Adsorption on Work Function Measurements on Gold-Platinum Interface Using Scanning Kelvin Probe Microscopy

    International Nuclear Information System (INIS)

    Mugo, Simon; Yuan Jun

    2012-01-01

    Surface potential difference (SPD) on freshly coated gold and platinum electrodes have been found to be much smaller than bulk work functions consideration and to be dependent on time. We show these discrepancies arise due to formation of surface dipoles caused by adsorbed contaminants in ambient environments. The process is reversible by gentle annealing consistent with contaminant hypothesis. Examination of potential changes on individual electrodes suggest that the Pt surface is more sensitive to ambient conditions than the Au surface in accordance with their relative chemical activities. The result has great implication for interpretation of Kelvin probe measurements obtained on practical devices exposed to ambient environments.

  17. Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation

    International Nuclear Information System (INIS)

    Penninkhof, J.J.; Dillen, T. van; Roorda, S.; Graf, C.; Blaaderen, A. van; Vredenberg, A.M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO 2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks

  18. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    Science.gov (United States)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  19. Color and texture morphing with colloids on multilayered surfaces.

    Science.gov (United States)

    Chen, Ziguang; Li, Shumin; Arkebauer, Andrew; Gogos, George; Tan, Li

    2015-05-20

    Dynamic morphing of marine species to match with environment changes in color and texture is an advanced means for surviving, self-defense, and reproduction. Here we use colloids that are placed inside a multilayered structure to demonstrate color and texture morphing. The multilayer is composed of a thermal insulating base layer, a light absorbing mid layer, and a liquid top layer. When external light of moderate intensity (∼0.2 W cm(-2)) strikes the structure, colloids inside the liquid layer will be assembled to locations with an optimal absorption. When this system is exposed to continuous laser pulses, more than 18,000 times of reversible responses are recorded, where the system requests 20 ms to start the response and another 160 ms to complete. The flexibility of our concept further allows the system to be built on a variety of light-absorbing substrates, including dyed paper, gold thin film, and amorphous silicon, with the top layer even a solid.

  20. Vibrational properties of gold nanoparticles obtained by green synthesis

    Science.gov (United States)

    Alvarez, Ramón A. B.; Cortez-Valadez, M.; Bueno, L. Oscar Neira; Britto Hurtado, R.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C. E.; Serrano-Corrales, Luis Ivan; Arizpe-Chávez, H.; Flores-Acosta, M.

    2016-10-01

    This study reports the synthesis and characterization of gold nanoparticles through an ecological method to obtain nanostructures from the extract of the plant Opuntia ficus-indica. Colloidal nanoparticles show sizes that vary between 10-20 nm, and present various geometric morphologies. The samples were characterized through optical absorption, Raman Spectroscopy and Transmission Electron Microscopy (TEM). Additionally, low energy metallic clusters of Aun (n=2-20 atoms) were modeled by computational quantum chemistry. The theoretical results were obtained with Density Functional Theory (DFT). The predicted results of Au clusters show a tendency and are correlated with the experimental results concerning the optical absorption bands and Raman spectroscopy in gold nanoparticles.

  1. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus.

    Science.gov (United States)

    Mata, Y N; Torres, E; Blázquez, M L; Ballester, A; González, F; Muñoz, J A

    2009-07-30

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  2. Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus

    International Nuclear Information System (INIS)

    Mata, Y.N.; Torres, E.; Blazquez, M.L.; Ballester, A.; Gonzalez, F.; Munoz, J.A.

    2009-01-01

    In this paper, the bioreduction of Au(III) to Au(0) using biomass of the brown alga Fucus vesiculosus was investigated. The recovery and reduction process took place in two stages with an optimum pH range of 4-9 with a maximum uptake obtained at pH 7. In the first stage, an induction period previous to gold reduction, the variation of pH, redox potential and gold concentration in solution was practically negligible and no color change was observed. In the second stage, the gold reduction was followed by a sharp decrease of gold concentration, pH and redox potential of solution and a color change from yellow to reddish purple. Hydroxyl groups present in the algal polysaccharides were involved in the gold bioreduction. Metallic gold was detected as microprecipitates on the biomass surface and in colloidal form as nanoparticles in the solution. Bioreduction with F. vesiculosus could be an alternative and environmentally friendly process that can be used for recovering gold from dilute hydrometallurgical solutions and leachates of electronic scraps, and for the synthesis of gold nanoparticles of different size and shape.

  3. Mixed-order phase transition in a colloidal crystal

    Science.gov (United States)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-01

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field H. At the transition field Hs, the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length ξ∝|H2-Hs2|-1/2. Mean-field critical exponents are predicted, since the upper critical dimension of the transition is du=2. Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  4. Mixed-order phase transition in a colloidal crystal.

    Science.gov (United States)

    Alert, Ricard; Tierno, Pietro; Casademunt, Jaume

    2017-12-05

    Mixed-order phase transitions display a discontinuity in the order parameter like first-order transitions yet feature critical behavior like second-order transitions. Such transitions have been predicted for a broad range of equilibrium and nonequilibrium systems, but their experimental observation has remained elusive. Here, we analytically predict and experimentally realize a mixed-order equilibrium phase transition. Specifically, a discontinuous solid-solid transition in a 2D crystal of paramagnetic colloidal particles is induced by a magnetic field [Formula: see text] At the transition field [Formula: see text], the energy landscape of the system becomes completely flat, which causes diverging fluctuations and correlation length [Formula: see text] Mean-field critical exponents are predicted, since the upper critical dimension of the transition is [Formula: see text] Our colloidal system provides an experimental test bed to probe the unconventional properties of mixed-order phase transitions.

  5. Immobilization of rhodium complexes at thiolate monolayers on gold surfaces : Catalytic and structural studies

    NARCIS (Netherlands)

    Belser, T; Stöhr, Meike; Pfaltz, A

    2005-01-01

    Chiral rhodium-diphosphine complexes have been incorporated into self-assembled thiolate monolayers (SAMS) on gold colloids. Catalysts of this type are of interest because they combine properties of homogeneous and heterogeneous systems. In addition, it should be possible to influence the catalytic

  6. Terbium(III)/gold nanocluster conjugates: the development of a novel ratiometric fluorescent probe for mercury(II) and a paper-based visual sensor.

    Science.gov (United States)

    Qi, Yan-Xia; Zhang, Min; Zhu, Anwei; Shi, Guoyue

    2015-08-21

    In this work, a novel ratiometric fluorescent probe was developed for rapid, highly accurate, sensitive and selective detection of mercury(II) (Hg(2+)) based on terbium(III)/gold nanocluster conjugates (Tb(3+)/BSA-AuNCs), in which bovine serum albumin capped gold nanoclusters (BSA-AuNCs) acted as the signal indicator and terbium(III) (Tb(3+)) was used as the build-in reference. Our proposed ratiometric fluorescent probe exhibited unique specificity toward Hg(2+) against other common environmentally and biologically important metal ions, and had high accuracy and sensitivity with a low detection limit of 1 nM. In addition, our proposed probe was effectively employed to detect Hg(2+) in the biological samples from the artificial Hg(2+)-infected rats. More significantly, an appealing paper-based visual sensor for Hg(2+) was designed by using filter paper embedded with Tb(3+)/BSA-AuNC conjugates, and we have further demonstrated its feasibility for facile fluorescent sensing of Hg(2+) in a visual format, in which only a handheld UV lamp is used. In the presence of Hg(2+), the paper-based visual sensor, illuminated by a handheld UV lamp, would undergo a distinct fluorescence color change from red to green, which can be readily observed with naked eyes even in trace Hg(2+) concentrations. The Tb(3+)/BSA-AuNC-derived paper-based visual sensor is cost-effective, portable, disposable and easy-to-use. This work unveiled a facile approach for accurate, sensitive and selective measuring of Hg(2+) with self-calibration.

  7. Stability and biocompatibility of photothermal gold nanorods after lyophilization and sterilization

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, Leyre [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), C/ Mariano Esquillor, R and D Building, University of Zaragoza, 50018 Zaragoza (Spain); Cebrian, Virginia [CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza (Spain); Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); Martin-Saavedra, Francisco [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza (Spain); Arruebo, Manuel, E-mail: arruebom@unizar.es [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), C/ Mariano Esquillor, R and D Building, University of Zaragoza, 50018 Zaragoza (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza (Spain); Vilaboa, Nuria [Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza (Spain); Santamaria, Jesus, E-mail: Jesus.Santamaria@unizar.es [Department of Chemical Engineering, Nanoscience Institute of Aragon (INA), C/ Mariano Esquillor, R and D Building, University of Zaragoza, 50018 Zaragoza (Spain); CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Zaragoza (Spain)

    2013-10-15

    Graphical abstract: - Highlights: • Morphological changes are observed for CTABr capped gold nanorods over time. • Polystyrenesulfonate (PSS) and polyethyleneglycol (PEG) coated nanorods are stable. • Re-suspendible and sterilizable colloids are prepared using those capping agents. • Those materials are efficient heat sinks potentially used in photothermal therapy. - Abstract: Suspensions in phosphate buffered saline (PBS) of gold nanorods stabilized with cetyltrimethyl ammonium chloride (CTABr), polystyrenesulfonate (PSS) and methyl-polyethyleneglycol-thiol (m-PEG-SH) have been prepared and the evolution of their colloidal stability and plasmonic response over time has been evaluated. Their performance after lyophilization, alcoholic sterilization and resuspension has also been characterized. Sub-cytotoxic doses on HeLa cells were calculated for the three surface functionalizations used. Their heating efficiency at different exposure times was also evaluated after being irradiated with near infrared light. The best results were obtained for m-PEG-SH stabilized rods, which were not only stable, sterilizable and lyophilizable, but also biocompatible at all doses tested, showing potential as a stable, re-suspendible and biocompatible hyperthermic agent.

  8. Stability and biocompatibility of photothermal gold nanorods after lyophilization and sterilization

    International Nuclear Information System (INIS)

    Gomez, Leyre; Cebrian, Virginia; Martin-Saavedra, Francisco; Arruebo, Manuel; Vilaboa, Nuria; Santamaria, Jesus

    2013-01-01

    Graphical abstract: - Highlights: • Morphological changes are observed for CTABr capped gold nanorods over time. • Polystyrenesulfonate (PSS) and polyethyleneglycol (PEG) coated nanorods are stable. • Re-suspendible and sterilizable colloids are prepared using those capping agents. • Those materials are efficient heat sinks potentially used in photothermal therapy. - Abstract: Suspensions in phosphate buffered saline (PBS) of gold nanorods stabilized with cetyltrimethyl ammonium chloride (CTABr), polystyrenesulfonate (PSS) and methyl-polyethyleneglycol-thiol (m-PEG-SH) have been prepared and the evolution of their colloidal stability and plasmonic response over time has been evaluated. Their performance after lyophilization, alcoholic sterilization and resuspension has also been characterized. Sub-cytotoxic doses on HeLa cells were calculated for the three surface functionalizations used. Their heating efficiency at different exposure times was also evaluated after being irradiated with near infrared light. The best results were obtained for m-PEG-SH stabilized rods, which were not only stable, sterilizable and lyophilizable, but also biocompatible at all doses tested, showing potential as a stable, re-suspendible and biocompatible hyperthermic agent

  9. Anisotropic Model Colloids

    NARCIS (Netherlands)

    van Kats, C.M.

    2008-01-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are

  10. Polymers at interfaces and in colloidal dispersions.

    Science.gov (United States)

    Fleer, Gerard J

    2010-09-15

    This review is an extended version of the Overbeek lecture 2009, given at the occasion of the 23rd Conference of ECIS (European Colloid and Interface Society) in Antalya, where I received the fifth Overbeek Gold Medal awarded by ECIS. I first summarize the basics of numerical SF-SCF: the Scheutjens-Fleer version of Self-Consistent-Field theory for inhomogeneous systems, including polymer adsorption and depletion. The conformational statistics are taken from the (non-SCF) DiMarzio-Rubin lattice model for homopolymer adsorption, which enumerates the conformational details exactly by a discrete propagator for the endpoint distribution but does not account for polymer-solvent interaction and for the volume-filling constraint. SF-SCF corrects for this by adjusting the field such that it becomes self-consistent. The model can be generalized to more complex systems: polydispersity, brushes, random and block copolymers, polyelectrolytes, branching, surfactants, micelles, membranes, vesicles, wetting, etc. On a mean-field level the results are exact; the disadvantage is that only numerical data are obtained. Extensions to excluded-volume polymers are in progress. Analytical approximations for simple systems are based upon solving the Edwards diffusion equation. This equation is the continuum variant of the lattice propagator, but ignores the finite segment size (analogous to the Poisson-Boltzmann equation without a Stern layer). By using the discrete propagator for segments next to the surface as the boundary condition in the continuum model, the finite segment size can be introduced into the continuum description, like the ion size in the Stern-Poisson-Boltzmann model. In most cases a ground-state approximation is needed to find analytical solutions. In this way realistic analytical approximations for simple cases can be found, including depletion effects that occur in mixtures of colloids plus non-adsorbing polymers. In the final part of this review I discuss a

  11. Preparation of gold nanoparticles by γ-ray irradiation method using polyvinyl pyrrolidone (PVP) as stabilizer

    International Nuclear Information System (INIS)

    Nguyen Tan Man; Le Hai; Le Huu Tu; Tran Thu Hong; Tran Thi Tam; Pham Thi Le Ha; Pham Thi Sam

    2011-01-01

    Gold nanoparticles were prepared from (Au 3+ ) aqueous solution by the method of γ-ray irradiation using polyvinylpyrrolidone (PVP) as stabilizer. The saturated conversion dose (Au 3+ --> Au o ) determined by UV-Vis spectroscopy was found to be about 5 kGy. The UV-Vis spectrum showed that an absorption peak at λ max =524 nm due to surface plasmon resonance. The image of transmission electron microscopy (TEM) showed that the gold nanoparticles are mostly spherical in shape and have an average diameter of ≅20 nm. The prepared colloidal gold nanoparticles solution is good stability for 6 months of storage. (author)

  12. Utilization of electrodeposition for electrothermal atomic absorption spectrometry determination of gold

    International Nuclear Information System (INIS)

    Konecna, Marie; Komarek, Josef

    2007-01-01

    Gold was determined by electrothermal atomic absorption spectrometry after electrochemical preconcentration on the graphite ridge probe used as a working electrode and sample support. The probe surface was electrochemically modified with Pd, Re and the mixture of both. The electrolysis of gold was performed under galvanostatic control at 0.5 mA. Maximum pyrolysis temperature for the probe surface modified with Pd was 1200 deg. C, with Re 1300 deg. C. The relative standard deviation for the determination of 2 μg l -1 Au was not higher than 5.6% (n = 8) for 2 min electrodeposition. The sensitivity of gold determination was reproducible for 300 electrodeposition and atomization cycles. When the probe surface was modified with a mixture of Pd and Re the detection limit was 31 ng l -1 for 2 min electrodeposition, 3.7 ng l -1 for 30 min, 1.5 ng l -1 for 1 h and 0.4 ng l -1 for 4 h electrodeposition, respectively. The procedure was applied to the determination of gold in river water samples. The relative standard deviation for the determination of 2.5 ng l -1 Au at 4 h electrodeposition time at 0.5 mA was 7.5%

  13. Size-controlled synthesis of superparamagnetic iron oxide nanoparticles and their surface coating by gold for biomedical applications

    Science.gov (United States)

    Maleki, H.; Simchi, A.; Imani, M.; Costa, B. F. O.

    2012-11-01

    The size mono-dispersity, saturation magnetization, and surface chemistry of magnetic nanoparticles (NPs) are recognized as critical factors for efficient biomedical applications. Here, we performed modified water-in-oil inverse nano-emulsion procedure for preparation of stable colloidal superparamagnetic iron oxide NPs (SPIONs) with high saturation magnetization. To achieve mono-dispersed SPIONs, optimization process was probed on several important factors including molar ratio of iron salts [Fe3+ and Fe2+], the concentration of ammonium hydroxide as reducing agent, and molar ratio of water to surfactant. The biocompatibility of the obtained NPs, at various concentrations, was evaluated via MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay and the results showed that the NPs were non-toxic at concentrations gold (˜4 nm) through chemical reduction of attached gold salts at the surface of the SPIONs. The Fe3O4 core/Au shell particles demonstrate strong plasmon resonance absorption and can be separated from solution using an external magnetic field. Experimental data from both physical and chemical determinations of the changes in particle size, surface plasmon resonance optical band, phase components, core-shell surface composition, and magnetic properties have confirmed the formation of the mono-dispersed core-shell nanostructure.

  14. Simultaneous Expression of GUS and Actin Genes by Using the Multiplex RT-PCR and Multiplex Gold Nanoparticle Probes.

    Science.gov (United States)

    Ghazi, Yaser; Vaseghi, Akbar; Ahmadi, Sepideh; Haddadi, Fatemeh

    2018-04-23

    Gene expression analysis is considered to be extremely important in many different biological researches. DNA-based diagnostic test, which contributes to DNA identification, has higher specificity, cost, and speed than some biochemical and molecular methods. In this study, we try to use the novel nano technology approach with Multiplex RT-PCR and Gold nano particular probes (GNPs-probes) in order to get gene expression in Curcumas melons. We used Agrobacterium tumefactions for gene transfer and GUS reporter gene as a reporter. After cDNA synthesis, Multiplex PCR and Multiplex RT-PCR techniques were used. Finally, probes were designed for RNA of GUS and Actin genes, and then the analysis of the gene expression using the probes attached to GNPs was carried out and the color changes in the GNPs were applied. In the following, probes hybridization was checked with DNA between 400 to 700 nm wavelengths and the highest rate was observed in the 550 to 650 nm. The results show that the simultaneous use of GNP-attached detectors and Multiplex RT-PCRcan reduce time and costmore considerably than somelaboratory methods for gene expiration investigation. Additionally, it can be seen thatthere is an increase in sensitivity and specificity of our investigation. Based on our findings, this can bea novel study doneusingMultiplex RT-PCRand unmodified AuNPs for gene transfer and expression detection to plants. We can claim that this assay has a remarkable advantage including rapid, cost-effectiveness, specificity and accuracy to detect transfer and expression genes in plants. Also,we can use this technique from other gene expressionsin many different biology samples.

  15. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    International Nuclear Information System (INIS)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R; Castillo, S J; Zavala, G

    2011-01-01

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  16. Bio-synthesis of gold nanoparticles by human epithelial cells, in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Larios-Rodriguez, E; Rangel-Ayon, C; Herrera-Urbina, R [Departamento de Ingenieria Quimica y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Castillo, S J [Departamento de Investigacion en Fisica, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora, C.P. 83000 (Mexico); Zavala, G, E-mail: elarios@polimeros.uson.mx [Instituto de Biotecnologia, Universidad Nacional Autonoma de Mexico, Cuernavaca, Morelos (Mexico)

    2011-09-02

    Healthy epithelial cells, in vivo, have the ability to synthesize gold nanoparticles when aqueous tetrachloroauric acid is made to react with human skin. Neither a reducing agent nor a protecting chemical is needed for this bio-synthesis method. The first indication of gold nanoparticle formation is the staining of the skin, which turns deep purple. Stereoscopic optical micrographs of human skin tissue in contact with aqueous tetrachloroauric acid clearly show the staining of the epithelial cells. The UV-Vis spectrum of these epithelial cells shows an absorption band with a maximum at 553 nm. This absorption peak is within the wavelength region where the surface plasmon resonance (SPR) band of aqueous colloidal gold exhibits a maximum. Transmission electron micrographs show that gold nanoparticles synthesized by epithelial cells have sizes between 1 and 100 nm. The electron diffraction pattern of these nanoparticles reveals a crystalline structure whose interplanar distances correspond to fcc metallic gold. Transmission electron micrographs of ultra-thin (70 nm thick) slices of epithelial cells clearly and undoubtedly demonstrate that gold nanoparticles are inside the cell. According to high resolution transmission electron micrographs of intracellular single gold nanoparticles, they have the shape of a polyhedron.

  17. Cytosolic delivery of materials with endosome-disrupting colloids

    Science.gov (United States)

    Helms, Brett A.; Bayles, Andrea R.

    2016-03-15

    A facile procedure to deliver nanocrystals to the cytosol of live cells that is both rapid and general. The technique employs a unique cationic core-shell polymer colloid that directs nanocrystals to the cytosol of living cells within a few hours of incubation. The present methods and compositions enable a host of advanced applications arising from efficient cytosolic delivery of nanocrystal imaging probes: from single particle tracking experiments to monitoring protein-protein interactions in live cells for extended periods.

  18. Seed Mediated Growth of Gold Nanoparticles Based on Liquid Arc Discharge

    International Nuclear Information System (INIS)

    Ashkarran, Ali Akbar

    2013-01-01

    We report studies on the growth of gold nanoparticles by a seed-mediated approach in solution. The synthetic method is adapted from one we published earlier (Ashkarran et al. Appl. Phys. A 2009, 96, 423). The synthesized gold nanoparticles were characterized by X-ray diffraction (XRD), dynamic light scattering (DLS), UV-Vis spectroscopy, optical imaging and atomic force microscopy (AFM). Optical absorption spectroscopy of the prepared samples at 15 A arc current in HAuCl 4 solution shows a surface plasmon resonance around 520 nm. It is found that sodium citrate acts as a stabilizer and surface capping agent of the colloidal nanoparticles. The intensity of the plasmonic peak of the prepared gold nanoparticles for 1 minute arc duration gradually increases due to seed mediation for up to 6 hours. The formation time of gold nanoparticles at higher seed concentrations is less than that at lower seed concentrations. (plasma technology)

  19. Laser-induced agglomeration of gold nanoparticles dispersed in a liquid

    Energy Technology Data Exchange (ETDEWEB)

    Serkov, A.A.; Shcherbina, M.E. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation); Kuzmin, P.G., E-mail: qzzzma@gmail.com [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); Kirichenko, N.A. [Wave Research Center of A.M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38, Vavilov Street, 119991 Moscow (Russian Federation); The Federal State Educational Institution of Higher Professional Education, Moscow Institute of Physics and Technology (State University), Moscow (Russian Federation)

    2015-05-01

    Highlights: • Pulsed laser irradiation of dense gold nanoparticles colloidal solution can result in their agglomeration. • Gas bubbles in-phase pulsation induced by laser radiation accounts for nanoparticles agglomeration. • Time evolution of the size distribution function proceeds in activation mode. • The electrostatic-like model of nanoparticles agglomeration is in good correspondence with the experimental data. - Abstract: Dynamics of gold nanoparticles (NPs) ensemble in dense aqueous solution under exposure to picosecond laser radiation is studied both experimentally and theoretically. Properties of NPs are examined by means of transmission electron microscopy, optical spectroscopy, and size-measuring disk centrifuge. Theoretical investigation of NPs ensemble behavior is based on the analytical model taking into account collisions and agglomeration of particles. It is shown that in case of dense NPs colloidal solutions (above 10{sup 14} particles per milliliter) the process of laser fragmentation typical for nanosecond laser exposure turns into laser-induced agglomeration which leads to formation of the particles with larger sizes. It is shown that there is a critical concentration of NPs: at higher concentrations agglomeration rate increases tremendously. The results of mathematical simulation are in compliance with experimental data.

  20. Biosynthesis of nanoparticles of metals and metalloids by basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases.

    Science.gov (United States)

    Vetchinkina, Elena P; Loshchinina, Ekaterina A; Vodolazov, Ilya R; Kursky, Viktor F; Dykman, Lev A; Nikitina, Valentina E

    2017-02-01

    The work shows the ability of cultured Basidiomycetes of different taxonomic groups-Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum, and Grifola frondosa-to recover gold, silver, selenium, and silicon, to elemental state with nanoparticles formation. It examines the effect of these metal and metalloid compounds on the parameters of growth and accumulation of biomass; the optimal cultivation conditions and concentrations of the studied ion-containing compounds for recovery of nanoparticles have been identified. Using the techniques of transmission electron microscopy, dynamic light scattering, X-ray fluorescence and X-ray phase analysis, the degrees of oxidation of the bioreduced elements, the ζ-potential of colloidal solutions uniformity, size, shape, and location of the nanoparticles in the culture fluid, as well as on the surface and the inside of filamentous hyphae have been determined. The study has found the part played by homogeneous chromatographically pure fungal phenol-oxidizing enzymes (laccases, tyrosinases, and Mn-peroxidases) in the recovery mechanism with formation of electrostatically stabilized colloidal solutions. A hypothetical mechanism of gold(III) reduction from HAuCl 4 to gold(0) by phenol oxidases with gold nanoparticles formation of different shapes and sizes has been introduced.

  1. EDITORIAL: Colloidal suspensions Colloidal suspensions

    Science.gov (United States)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    Special issue in honour of Henk Lekkerkerker's 65th birthday Professor Henk N W Lekkerkerker is a world-leading authority in the field of experimental and theoretical soft condensed matter. On the occasion of his 65th birthday in the summer of 2011, this special issue celebrates his many contributions to science. Henk Lekkerkerker obtained his undergraduate degree in chemistry at the University of Utrecht (1968) and moved to Calgary where he received his PhD in 1971. He moved to Brussels as a NATO fellow at the Université Libre de Bruxelles and was appointed to an assistant professorship (1974), an associate professorship (1977) and a full professorship (1980) in physical chemistry at the Vrije Universiteit Brussel. In 1985 he returned to The Netherlands to take up a professorship at the Van 't Hoff Laboratory, where he has been ever since. He has received a series of awards during his career, including the Onsager Medal (1999) of the University of Trondheim, the Bakhuys Roozeboom Gold Medal (2003) of the Royal Dutch Academy of Arts and Sciences (KNAW), the ECIS-Rhodia European Colloid and Interface Prize (2003), and the Liquid Matter Prize of the European Physical Society (2008). He was elected a member of KNAW in 1996, was awarded an Academy Chair position in 2005, and has held several visiting lectureships. Henk's work focuses on phase transitions in soft condensed matter, and he has made seminal contributions to both the theoretical and experimental aspects of this field. Here we highlight three major themes running through his work, and a few selected publications. So-called depletion interactions may lead to phase separation in colloid-polymer mixtures, and Henk realised that the partitioning of polymer needs to be taken into account to describe the phase behaviour correctly [1]. Colloidal suspensions can be used as model fluids, with the time- and length-scales involved leading to novel opportunities, notably the direct observation of capillary waves at a

  2. Conductivity of Pedot-Pss with Gold and Silver Nanocomposites Modified Gold Electrodes for Ganoderma Boninense DNA Detection

    Directory of Open Access Journals (Sweden)

    Sabo Wada Dutse

    2015-08-01

    Full Text Available The conductivity of a designed electrochemical DNA biosensor was improved using gold and or silver nanoparticles. A gold electrode modified with a conductive nanocomposite of poly(3,4-ethylene dioxythiophen–poly (styrenesulfonate (Pedot-Pss and gold or silver nano particles enhanced the conductivity of the electrode surface area. Bare and modified gold electrode surfaces were characterized using cyclic voltammetry (CV technique in ethylenediaminetetraacetic acid (TE supporting electrolyte. Immobilization of a 20-mer DNA probe was achieved by covalent attachment of the amine group of the capture probe to a carboxylic group of an activated 3,3’-dithiodipropionic acid layer using EDC/NHSS for Hybridization. The effect of hybridization temperature and time was optimized and the sensor demonstrated specific detection for the target concentration ranged between 1.0´10-15 M to 1.0´10-9 M with a detection limit of 9.70´10-19 M. Control experiments verified the specificity of the biosensor in the presence of mismatched DNA sequence. The DNA hybridization was monitored using a new ruthenium complex [Ru(dppz2(qtpyCl2; dppz = dipyrido [3,2–a:2’,3’-c] phenazine; qtpy=2,2’,-4,4”.4’4”’-quarterpyridyl redox indicator.

  3. Fluorescence Quenching of Alpha-Fetoprotein by Gold Nanoparticles: Effect of Dielectric Shell on Non-Radiative Decay

    Science.gov (United States)

    Zhu, Jian; Li, Jian-Jun; Wang, A.-Qing; Chen, Yu; Zhao, Jun-Wu

    2010-09-01

    Fluorescence quenching spectrometry was applied to study the interactions between gold colloidal nanoparticles and alpha-fetoprotein (AFP). Experimental results show that the gold nanoparticles can quench the fluorescence emission of adsorbed AFP effectively. Furthermore, the intensity of fluorescence emission peak decreases monotonously with the increasing gold nanoparticles content. A mechanism based on surface plasmon resonance-induced non-radiative decay was investigated to illuminate the effect of a dielectric shell on the fluorescence quenching ability of gold nanoparticles. The calculation results show that the increasing dielectric shell thickness may improve the monochromaticity of fluorescence quenching. However, high energy transfer efficiency can be obtained within a wide wavelength band by coating a thinner dielectric shell.

  4. Synthesis and analysis of gold nanoclusters on silicon substrates by ion beams

    International Nuclear Information System (INIS)

    Sood, D.K.; Venkatachalam, D.K.; Bhargava, S.K.; Evans, P.J.

    2005-01-01

    To facilitate the growth of silica nanowires on silicon substrates, two different seeding techniques: 1) ion implantation and 2) chemical deposition of as-synthesised gold colloids have been compared for the formation of catalysing gold nanoclusters. The prepared substrates of both types were analysed using Rutherford backscattering spectrometry at ANSTO to determine the amount of gold and its depth distribution. The topography of the substrates deposited with chemically synthesised gold nanoparticles were studied under SEM. The preliminary ion beam (RBS) analysis has shown ion implantation as a novel technique for seeding Au nanoclusters on silicon substrates facilitating growth of nanowires. This method holds a great potential for using any metal across the periodic table that can act as catalysing seed nanoclusters for nanowire growth. The use of chemical deposition as a seeding technique to deposit as-synthesised gold nanoparticles requires further investigations. RBS results show significant difference in the depth distribution of the gold nanoparticles on silicon substrates seeded by two different techniques. (author). 6 refs., 4 figs

  5. Reverse Transfection Using Gold Nanoparticles

    Science.gov (United States)

    Yamada, Shigeru; Fujita, Satoshi; Uchimura, Eiichiro; Miyake, Masato; Miyake, Jun

    Reverse transfection from a solid surface has the potential to deliver genes into various types of cell and tissue more effectively than conventional methods of transfection. We present a method for reverse transfection using a gold colloid (GC) as a nanoscaffold by generating nanoclusters of the DNA/reagentcomplex on a glass surface, which could then be used for the regulation of the particle size of the complex and delivery of DNA into nuclei. With this method, we have found that the conjugation of gold nanoparticles (20 nm in particle size) to the pEGFP-N1/Jet-PEI complex resulted in an increase in the intensity of fluorescence of enhanced green fluorescent protein (EGFP) (based on the efficiency of transfection) from human mesenchymal stem cells (hMSCs), as compared with the control without GC. In this manner, we constructed a method for reverse transfection using GC to deliver genes into the cells effectively.

  6. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Energy Technology Data Exchange (ETDEWEB)

    Li, Junbo, E-mail: Lijunbo@haust.edu.cn [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China); Wu, Wenlan [Henan University of Science and Technology, School of Medicine (China); Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan [Henan University of Science and Technology, School of Chemical Engineering and Pharmaceutics (China)

    2017-03-15

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol-b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG-b-PAMPImB) coating gold nanoparticles (PEG-b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  7. Constructing of DNA vectors with controlled nanosize and single dispersion by block copolymer coating gold nanoparticles as template assembly

    Science.gov (United States)

    Li, Junbo; Wu, Wenlan; Gao, Jiayu; Liang, Ju; Zhou, Huiyun; Liang, Lijuan

    2017-03-01

    Synthesized vectors with nanoscale size and stable colloid dispersion are highly desirable for improving gene delivery efficiency. Here, a core-shell template particle was constructed with polyethylene glycol- b-poly1-(3-aminopropyl)-3-(2-methacryloyloxy propylimidazolium bromine) (PEG- b-PAMPImB) coating gold nanoparticles (PEG- b-PAMPImB-@-Au NPs) for loading DNA and delivering in vitro. Data from transmission electron microscopy (TEM) and dynamic light scattering (DLS) suggest that these nanoplexes, by forming an electrostatic complex with DNA at the inner PAMPImB shell, offer steric protection for the outer PEG corona leading to single dispersion and small size. Notably, higher colloid stability and lower cytotoxicity were achieved with these nanoplexes when compared with PAMPImB monolayer-coated gold nanoparticles (Au NPs). Confocal laser scanning microscopy and intracellular trafficking TEM further indicate that the nanoplexes can translocate across the cell membrane and partly enter the nucleus for high efficient expression. Thus, template assembly represents a promising approach to control the size and colloid stability of gene vectors and ensure safety and efficiency of DNA delivery.

  8. A simple gel electrophoresis method for separating polyhedral gold nanoparticles

    Science.gov (United States)

    Kim, Suhee; Lee, Hye Jin

    2015-07-01

    In this paper, a simple approach to separate differently shaped and sized polyhedral gold nanoparticles (NPs) within colloidal solutions via gel electrophoresis is described. Gel running parameters for separating efficiently gold NPs including gel composition, added surfactant types and applied voltage were investigated. The plasmonic properties and physical structure of the separated NPs extracted from the gel matrix were then investigated using transmission electron microscopy (TEM) and UV-vis spectrophotometry respectively. Data analysis revealed that gel electrophoresis conditions of a 1.5 % agarose gel with 0.1 % sodium dodecyl sulfate (SDS) surfactant under an applied voltage of 100 V resulted in the selective isolation of ~ 50 nm polyhedral shaped gold nanoparticles. Further efforts are underway to apply the method to purify biomolecule-conjugated polyhedral Au NPs that can be readily used for NP-enhanced biosensing platforms.

  9. Gold core@silver semishell Janus nanoparticles prepared by interfacial etching

    Science.gov (United States)

    Chen, Limei; Deming, Christopher P.; Peng, Yi; Hu, Peiguang; Stofan, Jake; Chen, Shaowei

    2016-07-01

    Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold cores, as manifested in transmission electron microscopy, UV-vis absorption, and X-ray photoelectron spectroscopy measurements. Interestingly, the Au@Ag semishell Janus nanoparticles exhibited enhanced electrocatalytic activity in oxygen reduction reactions, as compared to their Au@Ag and Ag@Au core-shell counterparts, likely due to a synergistic effect between the gold cores and silver semishells that optimized oxygen binding to the nanoparticle surface.Gold core@silver semishell Janus nanoparticles were prepared by chemical etching of Au@Ag core-shell nanoparticles at the air/water interface. Au@Ag core-shell nanoparticles were synthesized by chemical deposition of a silver shell onto gold seed colloids followed by the self-assembly of 1-dodecanethiol onto the nanoparticle surface. The nanoparticles then formed a monolayer on the water surface of a Langmuir-Blodgett trough, and part of the silver shell was selectively etched away by the mixture of hydrogen peroxide and ammonia in the water subphase, where the etching was limited to the side of the nanoparticles that was in direct contact with water. The resulting Janus nanoparticles exhibited an asymmetrical distribution of silver on the surface of the gold

  10. Colloidal Plasmonic Titanium Nitride Nanoparticles: Properties and Applications

    Directory of Open Access Journals (Sweden)

    Guler Urcan

    2015-01-01

    Full Text Available Optical properties of colloidal plasmonic titanium nitride nanoparticles are examined with an eye on their photothermal and photocatalytic applications via transmission electron microscopy and optical transmittance measurements. Single crystal titanium nitride cubic nanoparticles with an average size of 50 nm, which was found to be the optimum size for cellular uptake with gold nanoparticles [1], exhibit plasmon resonance in the biological transparency window and demonstrate a high absorption efficiency. A self-passivating native oxide at the surface of the nanoparticles provides an additional degree of freedom for surface functionalization. The titanium oxide shell surrounding the plasmonic core can create new opportunities for photocatalytic applications.

  11. Single-particle colloid tracking in four dimensions.

    Science.gov (United States)

    Anthony, Stephen M; Hong, Liang; Kim, Minsu; Granick, Steve

    2006-11-21

    Coating a close-packed fluorescent colloid monolayer with a nanometer-thick metal film followed by sonication in liquid produces modulated optical nanoprobes. The metal coating modulates the fluorescence as these structures rotate in suspension, enabling the use of these particles as probes to monitor both rotational and center-of-mass (translational) dynamics in complex environments. Here, we demonstrate methods to simultaneously measure two translational and two rotational degrees of freedom, with excellent agreement to theory. The capability to determine two angles of rotation opens several new avenues of future research.

  12. Probing the equilibrium dynamics of colloidal hard spheres above the mode-coupling glass transition

    NARCIS (Netherlands)

    Brambilla, G.; al Masri, J.H.M.; Pierno, M.; Berthier, L.; Cipelletti, L.

    2010-01-01

    We use dynamic light scattering and computer simulations to study equilibrium dynamics and dynamic heterogeneity in concentrated suspensions of colloidal hard spheres. Our study covers an unprecedented density range and spans seven decades in structural relaxation time, , including equilibrium

  13. Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges

    International Nuclear Information System (INIS)

    Kolosova, Anna Yu.; Sibanda, Liberty; Dumoulin, Frederic; Lewis, Janet; Duveiller, Etienne; Van Peteghem, Carlos; Saeger, Sarah de

    2008-01-01

    A lateral-flow immunoassay using a colloidal gold-labelled monoclonal antibody was developed for the rapid detection of deoxynivalenol (DON). Different parameters, such as the amount of immunoreagents, type of the materials, composition of the blocking solution and of the detector reagent mixture, were investigated to provide the optimum assay performance. The experimental results demonstrated that such a visual test had an indicator range rather than a cut-off value. Thus, tests for DON determination with two different indicator ranges of 250-500 and 1000-2000 μg kg -1 were designed. The method allowed detection of DON at low and high concentration levels, which could be useful for research and practical purposes. The assay applied to spiked wheat and pig feed samples demonstrated accurate and reproducible results. The applicability of the developed lateral-flow test was also confirmed under real field conditions. The test strips prepared in Belgium were sent to Mexico, where they were used for the screening of DON contamination in different bread wheat entries from Fusarium Head Blight inoculated plots. The results were compared with those obtained by ELISA and LC-MS/MS. A poor correlation between ELISA and LC-MS/MS was observed. Visual results of the dipstick tests were in a good agreement with the results of the LC-MS/MS method. Coupled with a simple and fast sample preparation, this qualitative one-step test based on the visual evaluation of results did not require any equipment. Results could be obtained within 10 min. The described assay format can be used as a simple, rapid, cost-effective and robust on-site screening tool for mycotoxin contamination in different agricultural commodities

  14. Two-dimensional nanopatterning by PDMS relief structures of polymeric colloidal crystals

    Science.gov (United States)

    Nam, Hye Jin; Kim, Ju-Hee; Jung, Duk-Young; Park, Jong Bae; Lee, Hae Seong

    2008-06-01

    A new constructive method of fabricating a nanoparticle self-assembly on the patterned surface of a poly(dimethylsiloxane) (PDMS) relief nanostructure was demonstrated. Patterned PDMS templates with close-packed microwells were fabricated by molding against a self-assembled monolayer of polystyrene spheres. Alkanethiol-functionalized gold nanoparticles with an average particle size of 2.5 nm were selectively deposited onto a hydrophobic self-assembled monolayer printed on the substrate by the micro-contact printing (μCP) of the prepared PDMS microwell, in which the patterned gold nanoparticles consisted of close-packed hexagons with an average diameter of 370 nm. In addition, two-dimensional colloidal crystals derived from PMMA microspheres with a diameter of 380 nm and a negative surface charge were successfully formed on the hemispherical microwells by electrostatic force using positively charged PAH-coated PDMS as a template to produce multidimensional nanostructures.

  15. Engineering Metallic Nanoparticles for Enhancing and Probing Catalytic Reactions.

    Science.gov (United States)

    Collins, Gillian; Holmes, Justin D

    2016-07-01

    Recent developments in tailoring the structural and chemical properties of colloidal metal nanoparticles (NPs) have led to significant enhancements in catalyst performance. Controllable colloidal synthesis has also allowed tailor-made NPs to serve as mechanistic probes for catalytic processes. The innovative use of colloidal NPs to gain fundamental insights into catalytic function will be highlighted across a variety of catalytic and electrocatalytic applications. The engineering of future heterogenous catalysts is also moving beyond size, shape and composition considerations. Advancements in understanding structure-property relationships have enabled incorporation of complex features such as tuning surface strain to influence the behavior of catalytic NPs. Exploiting plasmonic properties and altering colloidal surface chemistry through functionalization are also emerging as important areas for rational design of catalytic NPs. This news article will highlight the key developments and challenges to the future design of catalytic NPs. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Gold chloride clusters with Au(III) and Au(I) probed by FT-ICR mass spectrometry and MP2 theory.

    Science.gov (United States)

    Lemke, Kono H

    2014-05-07

    Microsolvated clusters of gold chloride are probed by electrospray ionization mass spectrometry (ESI-MS) and scalar relativistic electronic structure calculations. Electrospray ionization of aqueous AuCl3 leads to mononuclear clusters of types [AuCl2](+)(H2O)n (n = 0-4), [AuOHCl](+)(H2O)n (n = 0-1) and [AuCl2](+)(HCl)2(H2O)n (n = 0-4). In addition, strong ion signals due to dinuclear [Au2Cl5-xOHx](+)(H2O)n (x = 0-1) are present in ESI mass spectra of aqueous AuCl3, with the abundance of individual dinuclear species controlled by the concentration-dependent variation of the precursor complexes [AuCl2-xOHx](+)(H2O)n and AuCl3. Equilibrium structures, energies and thermodynamic properties of mono- and dinuclear gold clusters have been predicted using MP2 and CCSD(T) theory, and these data have been applied to examine the influence of microsolvation on cluster stability. Specifically, results from CCSD(T) calculations indicate that non-covalently bound ion-neutral complexes Au(+)(Cl2)(H2O)n, with formal Au(I), are the dominant forms of mononuclear gold with n = 0-2, while higher hydrates (n > 2) are covalently bound [AuCl2](+)(H2O)n complexes in which gold exists as Au(III). MP2 calculations show that the lowest energy structure of dinuclear gold is an ion-molecule cluster [Au2Cl(Cl2)2](+) consisting of a single-bridged digold-chloronium ion bound end-on to two dichlorine ligands, with two higher energy isomers, single-bridged [Au2Cl3(Cl2)](+) and double-bridged [Au2Cl5](+) clusters. Finally, AuAu interactions in the singly-bridged clusters [Au2Cl(Cl2)2](+)(H2O)n and [Au2Cl3(Cl2)](+)(H2O)n are examined employing a wide range of computational tools, including natural bond order (NBO) analysis and localized orbital locator (LOL) profiles.

  17. Compartmental analysis of colloidal radiogold kinetics in liver and spleen of patients with hypersplenism

    International Nuclear Information System (INIS)

    Ristanovic, D.; Kostic, K.; Djokic, D.

    1979-01-01

    A mathematical model of colloidal substance kinetics in a five-compartment system is presented. If colloidal radioactive gold sup(198)Au is used, the model can be applied to the patient with enlarged and very active spleen. Radiogold activities in blood samples taken from patient's peripheral vein were measured. An indirect method of finding four out of five rate constants of the system is proposed. The facts presented by this study can be summarized as follows: in hypersplenism, the amount of radiogold, removed from the blood stream by the liver reticuloendothelial system, is about four times higher than the one coursing back from the liver through the hepatic vein into the systemic circulation. The radiogold amount, entering the liver in a given time, is twice as much as the substance amount passing from the systemic circulation to the spleen for the same period of time. The amount of the colloid injected before splenectomy is distributed in such a manner that, on an average, 60% is stored in liver and the rest, in the reticuloendothelial system of the spleen

  18. Suppression of hepatic hematopoiesis with radioactive gold (198Au)

    International Nuclear Information System (INIS)

    Turner, A.R.; Gummerman, L.W.; Boggs, D.R.

    1985-01-01

    A patient with idiopathic myelofibrosis of some 20 yr duration developed esophageal varices and ascites. No explanation for increased portal pressure other than hepatic hematopoiesis was found. Consequently, a trial of cobalt irradiation to the liver was undertaken with definite but transient decrease in ascites. Subsequently, two courses of radioactive colloidal gold were given, again with definite but transient beneficial effects on the degree of ascites. This latter benefit occurred without suppression of marrow function

  19. A Highly Specific Gold Nanoprobe for Live-Cell Single-Molecule Imaging

    Science.gov (United States)

    Leduc, Cécile; Si, Satyabrata; Gautier, Jérémie; Soto-Ribeiro, Martinho; Wehrle-Haller, Bernhard; Gautreau, Alexis; Giannone, Grégory; Cognet, Laurent; Lounis, Brahim

    2013-04-01

    Single molecule tracking in live cells is the ultimate tool to study subcellular protein dynamics, but it is often limited by the probe size and photostability. Due to these issues, long-term tracking of proteins in confined and crowded environments, such as intracellular spaces, remains challenging. We have developed a novel optical probe consisting of 5-nm gold nanoparticles functionalized with a small fragment of camelid antibodies that recognize widely used GFPs with a very high affinity, which we call GFP-nanobodies. These small gold nanoparticles can be detected and tracked using photothermal imaging for arbitrarily long periods of time. Surface and intracellular GFP-proteins were effectively labeled even in very crowded environments such as adhesion sites and cytoskeletal structures both in vitro and in live cell cultures. These nanobody-coated gold nanoparticles are probes with unparalleled capabilities; small size, perfect photostability, high specificity, and versatility afforded by combination with the vast existing library of GFP-tagged proteins.

  20. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.

    Science.gov (United States)

    Lien, Miao-Bin; Kim, Ji-Young; Han, Myung-Geun; Chang, You-Chia; Chang, Yu-Chung; Ferguson, Heather J; Zhu, Yimei; Herzing, Andrew A; Schotland, John C; Kotov, Nicholas A; Norris, Theodore B

    2017-06-27

    A systematic study is presented of the intensity-dependent nonlinear light scattering spectra of gold nanorods under resonant excitation of the longitudinal surface plasmon resonance (SPR). The spectra exhibit features due to coherent second and third harmonic generation as well as a broadband feature that has been previously attributed to multiphoton photoluminescence arising primarily from interband optical transitions in the gold. A detailed study of the spectral dependence of the scaling of the scattered light with excitation intensity shows unexpected scaling behavior of the coherent signals, which is quantitatively accounted for by optically induced damping of the SPR mode through a Fermi liquid model of the electronic scattering. The broadband feature is shown to arise not from luminescence, but from scattering of the second-order longitudinal SPR mode with the electron gas, where efficient excitation of the second order mode arises from an optical asymmetry of the nanorod. The electronic-temperature-dependent plasmon damping and the Fermi-Dirac distribution together determine the intensity dependence of the broadband emission, and the structure-dependent absorption spectrum determines the spectral shape through the fluctuation-dissipation theorem. Hence a complete self-consistent picture of both coherent and incoherent light scattering is obtained with a single set of physical parameters.

  1. Improved sentinel node visualization in breast cancer by optimizing the colloid particle concentration and tracer dosage

    NARCIS (Netherlands)

    Valdés Olmos, R. A.; Tanis, P. J.; Hoefnagel, C. A.; Nieweg, O. E.; Muller, S. H.; Rutgers, E. J.; Kooi, M. L.; Kroon, B. B.

    2001-01-01

    Faint lymph uptake may hamper sentinel node (SN) identification by scintigraphy and subsequent gamma probe localization. The aim of the present study was to evaluate an adjustment in the colloid particle concentration and tracer dosage to optimize mammary lymphoscintigraphy. Scintigraphy was

  2. Wavelength-Dependent Differential Interference Contrast Microscopy: Selectively Imaging Nanoparticle Probes in Live Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wei; Wang, Gufeng; Fang, Ning; and Yeung, Edward S.

    2009-11-15

    Gold and silver nanoparticles display extraordinarily large apparent refractive indices near their plasmon resonance (PR) wavelengths. These nanoparticles show good contrast in a narrow spectral band but are poorly resolved at other wavelengths in differential interference contrast (DIC) microscopy. The wavelength dependence of DIC contrast of gold/silver nanoparticles is interpreted in terms of Mie's theory and DIC working principles. We further exploit this wavelength dependence by modifying a DIC microscope to enable simultaneous imaging at two wavelengths. We demonstrate that gold/silver nanoparticles immobilized on the same glass slides through hybridization can be differentiated and imaged separately. High-contrast, video-rate images of living cells can be recorded both with and without illuminating the gold nanoparticle probes, providing definitive probe identification. Dual-wavelength DIC microscopy thus presents a new approach to the simultaneous detection of multiple probes of interest for high-speed live-cell imaging.

  3. Saturated Zone Colloid Transport

    International Nuclear Information System (INIS)

    H. S. Viswanathan

    2004-01-01

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R col is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R col that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k att , and detachment rate constants, k det , of colloids to the fracture surface have been measured for the fractured volcanics, and separate R col uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant retardation. Radionuclides irreversibly

  4. Phoenix dactylifera L. leaf extract phytosynthesized gold nanoparticles; controlled synthesis and catalytic activity

    Science.gov (United States)

    Zayed, Mervat F.; Eisa, Wael H.

    2014-03-01

    A green synthesis route was reported to explore the reducing and capping potential of Phoenix dactylifera extract for the synthesis of gold nanoparticles. The processes of nucleation and growth of gold nanoparticles were followed by monitoring the absorption spectra during the reaction. The size and morphology of these nanoparticles was typically imaged using transmission electron microscopy (TEM). The particle size ranged between 32 and 45 nm and are spherical in shape. Fourier transform infrared (FTIR) analysis suggests that the synthesized gold nanoparticles might be stabilized through the interactions of hydroxyl and carbonyl groups in the carbohydrates, flavonoids, tannins and phenolic acids present in P. dactylifera. The as-synthesized Au colloids exhibited good catalytic activity for the degradation of 4-nitrophenol.

  5. Electrospun nanofibers decorated with bio-sonochemically synthesized gold nanoparticles as an ultrasensitive probe in amalgam-based mercury (II) detection system.

    Science.gov (United States)

    Parsaee, Zohreh

    2018-06-01

    In this study, bio-ultrasound-assisted synthesized gold nanoparticles using Gracilaria canaliculata algae have been immobilized on a polymeric support and used as a glassy probe chemosensor for detection and rapid removal of Hg 2+ ions. The function of the suggested chemosensor has been explained based on gold-amalgam formation and its catalytic role on the reaction of sodium borohydride and rhodamine B (RhB) with fluorescent and colorimetric sensing function. The catalyzed reduction of RhB by the gold amalgam led to a distinguished color change from red and yellow florescence to colorless by converting the amount of Hg 2+ deposited on Au-NPs. The detection limit of the colorimetric and fluorescence assays for Hg 2+ was 2.21 nM and 1.10 nM respectively. By exposing the mentioned colorless solution to air for at least 2 h, unexpectedly it was observed that the color and fluorescence of RhB were restored. Have the benefit of the above phenomenon a recyclable and portable glass-based sensor has been provided by immobilizing the Au-NPs and RB on the glass slide using electrospinning. Moreover, the introduced combinatorial membrane has facilitated the detection and removal of Hg 2+ ions in various Hg (II)-contaminated real water samples with efficiency of up to 99%. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Colloid chemistry: available sorption models and the question of colloid adhesion

    International Nuclear Information System (INIS)

    Grauer, R.

    1990-05-01

    A safety analysis of a radioactive waste repository should consider the possibility of nuclide transport by colloids. This would involve describing the sorption properties of the colloids and their transport in porous and fissured media. This report deals with a few selected aspects of the chemistry of this complex subject. Because the mechanisms of ion adsorption onto surfaces are material-specific, increased attention should be paid to identifying the material constitution of aquatic colloids. Suitable models already exist for describing reversible adsorption; these models describe sorption using mass action equations. The surface coordination model, developed for hydrous oxide surfaces, allows a uniform approach to be adopted for different classes of materials. This model is also predictive and has been applied successfully to natural systems. From the point of view of nuclide transport by colloids, irreversible sorption represents the most unfavourable situation. There is virtually no information available on the extent of reversibility and on the desorption kinetics of important nuclide/colloid combinations. Experimental investigations are therefore necessary in this respect. The only question considered in connection with colloid transport and its modelling is that of colloid sticking. Natural colloids, and the surfaces of the rock on which they may be collected, generally have negative surface charges so that colloid sticking will be difficult. The DLVO theory contains an approach for calculating the sticking factor from the surface potentials of the solid phases and the ionic strength of the water. However, it has been shown that this theory is inapplicable because of inherent shortcomings which lead to completely unrealistic predictions. The sticking probability of colloids should therefore be determined experimentally for systems which correspond as closely as possible to reality. (author) 66 figs., 12 tabs., 204 refs

  7. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human α-lactalbumin in genetically modified cow milk.

    Science.gov (United States)

    Tao, Chenyu; Zhang, Qingde; Feng, Na; Shi, Deshi; Liu, Bang

    2016-03-01

    The qualitative and quantitative declaration of food ingredients is important to consumers, especially for genetically modified food as it experiences a rapid increase in sales. In this study, we designed an accurate and rapid detection system using colloidal gold immunochromatographic strip assay (GICA) methods to detect genetically modified cow milk. First, we prepared 2 monoclonal antibodies for human α-lactalbumin (α-LA) and measured their antibody titers; the one with the higher titer was used for further experiments. Then, we found the optimal pH value and protein amount of GICA for detection of pure milk samples. The developed strips successfully detected genetically modified cow milk and non-modified cow milk. To determine the sensitivity of GICA, a quantitative ELISA system was used to determine the exact amount of α-LA, and then genetically modified milk was diluted at different rates to test the sensitivity of GICA; the sensitivity was 10 μg/mL. Our results demonstrated that the applied method was effective to detect human α-LA in cow milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Colloid Titration--A Rapid Method for the Determination of Charged Colloid.

    Science.gov (United States)

    Ueno, Keihei; Kina, Ken'yu

    1985-01-01

    "Colloid titration" is a volumetric method for determining charged polyelectrolytes in aqueous solutions. The principle of colloid titration, reagents used in the procedure, methods of endpoint detection, preparation of reagent solutions, general procedure used, results obtained, and pH profile of colloid titration are considered. (JN)

  9. Saturated Zone Colloid Transport

    Energy Technology Data Exchange (ETDEWEB)

    H. S. Viswanathan

    2004-10-07

    This scientific analysis provides retardation factors for colloids transporting in the saturated zone (SZ) and the unsaturated zone (UZ). These retardation factors represent the reversible chemical and physical filtration of colloids in the SZ. The value of the colloid retardation factor, R{sub col} is dependent on several factors, such as colloid size, colloid type, and geochemical conditions (e.g., pH, Eh, and ionic strength). These factors are folded into the distributions of R{sub col} that have been developed from field and experimental data collected under varying geochemical conditions with different colloid types and sizes. Attachment rate constants, k{sub att}, and detachment rate constants, k{sub det}, of colloids to the fracture surface have been measured for the fractured volcanics, and separate R{sub col} uncertainty distributions have been developed for attachment and detachment to clastic material and mineral grains in the alluvium. Radionuclides such as plutonium and americium sorb mostly (90 to 99 percent) irreversibly to colloids (BSC 2004 [DIRS 170025], Section 6.3.3.2). The colloid retardation factors developed in this analysis are needed to simulate the transport of radionuclides that are irreversibly sorbed onto colloids; this transport is discussed in the model report ''Site-Scale Saturated Zone Transport'' (BSC 2004 [DIRS 170036]). Although it is not exclusive to any particular radionuclide release scenario, this scientific analysis especially addresses those scenarios pertaining to evidence from waste-degradation experiments, which indicate that plutonium and americium may be irreversibly attached to colloids for the time scales of interest. A section of this report will also discuss the validity of using microspheres as analogs to colloids in some of the lab and field experiments used to obtain the colloid retardation factors. In addition, a small fraction of colloids travels with the groundwater without any significant

  10. RNase-gold labelling in primary roots of Zea Mays L.: evaluation of a particulate marker

    International Nuclear Information System (INIS)

    Piche, Y.; Peterson, R.L.; Ackerley, C.A.; Rauser, W.E.

    1984-01-01

    RNase-gold complexes were applied to thin sections of glutaraldehyde-fixed and Spurr's resin-embedded corn root tips in order to assess the specificity of these gold complexes for RNA in meristematic cells. Numerous micrographs showed that among cellular compartments, nucleoli, nuclei and portions of the cytoplasm were densely labelled whereas cell walls and vacuoles were infrequently labelled. A number of controls used to test the specificity of the labelling showed that RNase-gold was bound to RNA in the cells. Quantitative evaluation of the labelling performed on the samples using morphometric and X-ray microanalysis confirmed the qualitative distribution of RNase-gold based on visual evidence. Minor discrepancies were apparent between morphometric and X-ray microanalysis results. These results show that corn root tissues fixed and embedded in this way retain RNA in a form which can be labelled effectively with RNase-colloidal gold complexes. (author)

  11. Exploring the Possibilities of Biological Fabrication of Gold Nanostructures Using Orange Peel Extract

    Directory of Open Access Journals (Sweden)

    Laura Castro

    2015-09-01

    Full Text Available Development of nanotechnology requires a constant innovation and improvement in many materials. The exploration of natural resources is a promising eco-friendly alternative for physical and chemical methods. In the present work, colloidal gold nanostructures were prepared using orange peel extract as a stabilizing and reducing agent. The initial pH value of the solution and the concentration of the gold precursor had an effect on the formation and morphology of nanoparticles. The method developed is environmentally friendly and allows control of nanoparticles. By controlling the pH and, especially, the gold concentration, we are able to synthesize crystalline gold nanowires using orange peel extract in the absence of a surfactant or polymer to direct nanoparticle growth, and without external seeding. UV-VIS spectroscopy, transmission electron microscopy (TEM, and X-ray diffraction (XRD were used to characterize the nanoparticles obtained by biosynthesis.

  12. Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi ( Ocimum sanctum) leaf

    Science.gov (United States)

    Philip, Daizy; Unni, C.

    2011-05-01

    Aqueous extract of Ocimum sanctum leaf is used as reducing agent for the environmentally friendly synthesis of gold and silver nanoparticles. The nanoparticles were characterized using UV-vis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and FTIR analysis. These methods allow the synthesis of hexagonal gold nanoparticles having size ∼30 nm showing two surface plasmon resonance (SPR) bands by changing the relative concentration of HAuCl 4 and the extract. Broadening of SPR is observed at larger quantities of the extract possibly due to biosorption of gold ions. Silver nanoparticles with size in the range 10-20 nm having symmetric SPR band centered around 409 nm are obtained for the colloid synthesized at room temperature at a pH of 8. Crystallinity of the nanoparticles is confirmed from the XRD pattern. Biomolecules responsible for capping are different in gold and silver nanoparticles as evidenced by the FTIR spectra.

  13. Design of Magnetic Gelatine/Silica Nanocomposites by Nanoemulsification: Encapsulation versus in Situ Growth of Iron Oxide Colloids

    Directory of Open Access Journals (Sweden)

    Joachim Allouche

    2014-07-01

    Full Text Available The design of magnetic nanoparticles by incorporation of iron oxide colloids within gelatine/silica hybrid nanoparticles has been performed for the first time through a nanoemulsion route using the encapsulation of pre-formed magnetite nanocrystals and the in situ precipitation of ferrous/ferric ions. The first method leads to bi-continuous hybrid nanocomposites containing a limited amount of well-dispersed magnetite colloids. In contrast, the second approach allows the formation of gelatine-silica core-shell nanostructures incorporating larger amounts of agglomerated iron oxide colloids. Both magnetic nanocomposites exhibit similar superparamagnetic behaviors. Whereas nanocomposites obtained via an in situ approach show a strong tendency to aggregate in solution, the encapsulation route allows further surface modification of the magnetic nanocomposites, leading to quaternary gold/iron oxide/silica/gelatine nanoparticles. Hence, such a first-time rational combination of nano-emulsion, nanocrystallization and sol-gel chemistry allows the elaboration of multi-component functional nanomaterials. This constitutes a step forward in the design of more complex bio-nanoplatforms.

  14. Analysis of colloid transport

    International Nuclear Information System (INIS)

    Travis, B.J.; Nuttall, H.E.

    1985-01-01

    The population balance methodology is described and applied to the transport and capture of polydispersed colloids in packed columns. The transient model includes particle growth, capture, convective transport, and dispersion. We also follow the dynamic accumulation of captured colloids on the solids. The multidimensional parabolic partial differential equation was solved by a recently enhanced method of characteristics technique. This computational technique minimized numerical dispersion and is computationally very fast. The FORTRAN 77 code ran on a VAX-780 in less than a minute and also runs on an IBM-AT using the Professional FORTRAN compiler. The code was extensively tested against various simplified cases and against analytical models. The packed column experiments by Saltelli et al. were re-analyzed incorporating the experimentally reported size distribution of the colloid feed material. Colloid capture was modeled using a linear size dependent filtration function. The effects of a colloid size dependent filtration factor and various initial colloid size distributions on colloid migration and capture were investigated. Also, we followed the changing colloid size distribution as a function of position in the column. Some simple arguments are made to assess the likelihood of colloid migration at a potential NTS Yucca Mountain waste disposal site. 10 refs., 3 figs., 1 tab

  15. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    International Nuclear Information System (INIS)

    Hechster, Elad; Sarusi, Gabby; Shapiro, Arthur; Lifshitz, Efrat

    2016-01-01

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’s surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  16. Optical and electrical characterizations of a single step ion beam milling mesa devices of chloride passivated PbS colloidal quantum dots based film

    Energy Technology Data Exchange (ETDEWEB)

    Hechster, Elad, E-mail: elad.hechster@gmail.com; Sarusi, Gabby [Electro-Optics Engineering Unit and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 84100 Israel (Israel); Shapiro, Arthur; Lifshitz, Efrat [Schulich Faculty of Chemistry, Solid State Institute, Russel Berrie Nanotechnology Institute, Technion – Israel Institute of technology, 32000 Haifa (Israel)

    2016-07-15

    Colloidal Quantum Dots (CQDs) are of increasing interest, thanks to their quantum size effect that gives rise to their usage in various applications, such as biological tagging, solar cells and as the sensitizing layer of night vision devices. Here, we analyze the optical absorbance of chloride passivated PbS CQDs as well as revealing a correlation between their photoluminescence and sizes distribution, using theoretical models and experimental results from the literature. Next, we calculate the CQDs resistivity as a film. Although resistivity can be calculated from sheet resistance measurement using four point probes, such measurement is usually carried-out on the layer’s surface that in most cases has dangling bonds and surface states, which might affect the charges flow and modify the resistivity. Therefore; our approach, which was applied in this work, is to extract the actual resistivity from measurements that are performed along the film’s thickness (z-direction). For this intent, we fabricated gold capped PbS mesas devices using a single step Ion Beam Milling (IBM) process where we milled the gold and the PbS film continually, and then measured the vertical resistance. Knowing the mesas’ dimensions, we calculate the resistivity. To the best of our knowledge, no previous work has extracted, vertically, the resistivity of chloride passivated PbS CQDs using the above method.

  17. Colloid process engineering

    CERN Document Server

    Peukert, Wolfgang; Rehage, Heinz; Schuchmann, Heike

    2015-01-01

    This book deals with colloidal systems in technical processes and the influence of colloidal systems by technical processes. It explores how new measurement capabilities can offer the potential for a dynamic development of scientific and engineering, and examines the origin of colloidal systems and its use for new products. The future challenges to colloidal process engineering are the development of appropriate equipment and processes for the production and obtainment of multi-phase structures and energetic interactions in market-relevant quantities. The book explores the relevant processes and for controlled production and how they can be used across all scales.

  18. Uptake of Au(III) Ions by Aluminum Hydroxide and Their Spontaneous Reduction to Elemental Gold (Au(0)).

    Science.gov (United States)

    Yokoyama; Matsukado; Uchida; Motomura; Watanabe; Izawa

    2001-01-01

    The behavior of AuCl(4)(-) ions during the formation of aluminum hydroxide at pH 6 was examined. With an increase in NaCl concentration, the content of gold taken up by aluminum hydroxide decreased, suggesting that chloro-hydroxy complexes of Au(III) ion were taken up due to the formation of Al-O-Au bonds. It was found unexpectedly that the Au(III) ions taken up were spontaneously reduced to elemental gold without addition of a specific reducing reagent and then colloidal gold particles were formed. The mechanisms for the uptake of Au(III) ions by aluminum hydroxide and for their spontaneous reduction are discussed. Copyright 2001 Academic Press.

  19. Diazonium-derived aryl films on gold nanoparticles: evidence for a carbon-gold covalent bond.

    Science.gov (United States)

    Laurentius, Lars; Stoyanov, Stanislav R; Gusarov, Sergey; Kovalenko, Andriy; Du, Rongbing; Lopinski, Gregory P; McDermott, Mark T

    2011-05-24

    Tailoring the surface chemistry of metallic nanoparticles is generally a key step for their use in a wide range of applications. There are few examples of organic films covalently bound to metal nanoparticles. We demonstrate here that aryl films are formed on gold nanoparticles from the spontaneous reduction of diazonium salts. The structure and the bonding of the film is probed with surface-enhanced Raman scattering (SERS). Extinction spectroscopy and SERS show that a nitrobenzene film forms on gold nanoparticles from the corresponding diazonium salt. Comparison of the SERS spectrum with spectra computed from density functional theory models reveals a band characteristic of a Au-C stretch. The observation of this stretch is direct evidence of a covalent bond. A similar band is observed in high-resolution electron energy loss spectra of nitrobenzene layers on planar gold. The bonding of these types of films through a covalent interaction on gold is consistent with their enhanced stability observed in other studies. These findings provide motivation for the use of diazonium-derived films on gold and other metals in applications where high stability and/or strong adsorbate-substrate coupling are required.

  20. Impact of gold nanoparticles combined to X-Ray irradiation on bacteria

    International Nuclear Information System (INIS)

    Simon-Deckers, A.; Gouget, B.; Carriere, M.; Brun, E.; Sicard-Roselli, C.

    2008-01-01

    Recent increase of multi drug-resistant bacteria represents a crucial issue of public health. As innovative approaches are required to face that problem, those emerging from nano-technology are of great interest. In that context we propose the possibility to use gold nano-particles combined with ionising radiation to destroy pathogenic bacteria. For that, we investigated the potential X-Rays enhanced reduction of bacterial cell viability, following nanoparticle exposure, on a bacterial model, Escherichia coli. Our first concern was to confirm the absence of toxicity of the colloidal solution used. Then, we developed an X-Ray irradiation system and showed that gold nanoparticles increased the efficiency of ionising radiation to induce bacteria cell death. (authors)

  1. Sensitive DNA impedance biosensor for detection of cancer, chronic lymphocytic leukemia, based on gold nanoparticles/gold modified electrode

    International Nuclear Information System (INIS)

    Ensafi, Ali A.; Taei, M.; Rahmani, H.R.; Khayamian, T.

    2011-01-01

    Highlights: → Chronic lymphocytic leukemia causes an increase in the number of white blood cells. → We introduced a highly sensitive biosensor for the detection of chronic lymphocytic leukemia. → A suitable 25-mer ssDNA probe was immobilized on the surface of the gold nanoparticles. → We used electrochemical impedance spectroscopy as a suitable tool for the detection. → Detection of chronic lymphocytic leukemia in blood sample was checked using the sensor. - Abstract: A simple and sensitive DNA impedance sensor was prepared for the detection of chronic lymphocytic leukemia. The DNA electrochemical biosensor is worked based on the electrochemical impedance spectroscopic (EIS) detection of the sequence-specific DNA related to chronic lymphocytic leukemia. The ssDNA probe was immobilized on the surface of the gold nanoparticles. Compared to the bare gold electrode, the gold nanoparticles-modified electrode could improve the density of the probe DNA attachment and hence the sensitivity of the DNA sensor greatly. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy were performed in a solution containing 1.0 mmol L -1 K 3 [Fe(CN) 6 ]/K 4 [Fe(CN) 6 ] and 50 mmol L -1 phosphate buffer saline pH 6.87 plus 50 mmol L -1 KCl. In the CV studied, the potential was cycled from 0.0 to +0.65 V with a scan rate of 50 mV s -1 . Using EIS, the difference of the electron transfer resistance (ΔR et ) was linear with the logarithm of the complementary oligonucleotides sequence concentrations in the range of 7.0 x 10 -12 -2.0 x 10 -7 mol L -1 , with a detection limit of 1.0 x 10 -12 mol L -1 . In addition, the DNA sensor showed a good reproducibility and stability during repeated regeneration and hybridization cycles.

  2. Total internal reflection sum-frequency generation spectroscopy and dense gold nanoparticles monolayer: a route for probing adsorbed molecules

    International Nuclear Information System (INIS)

    Tourillon, Gerard; Dreesen, Laurent; Volcke, Cedric; Sartenaer, Yannick; Thiry, Paul A; Peremans, Andre

    2007-01-01

    We show that sum-frequency generation spectroscopy performed in the total internal reflection configuration (TIR-SFG) combined with a dense gold nanoparticles monolayer allows us to study, with an excellent signal to noise ratio and high signal to background ratio, the conformation of adsorbed molecules. Dodecanethiol (DDT) was used as probe molecules in order to assess the potentialities of the approach. An enhancement of more than one order of magnitude of the SFG signals arising from the adsorbed species is observed with the TIR geometry compared to the external reflection one while the SFG non-resonant contribution remains the same for both configurations. Although further work is required to fully understand the origin of the SFG process on nanoparticles, our work opens new possibilities for studying nanostructures

  3. Mimusops elengi bark extract mediated green synthesis of gold nanoparticles and study of its catalytic activity

    Science.gov (United States)

    Majumdar, Rakhi; Bag, Braja Gopal; Ghosh, Pooja

    2016-04-01

    The bark extract of Mimusops elengi is rich in different types of plant secondary metabolites such as flavonoids, tannins, triterpenoids and saponins. The present study shows the usefulness of the bark extract of Mimusops elengi for the green synthesis of gold nanoparticles in water at room temperature under very mild conditions. The synthesis of the gold nanoparticles was complete within a few minutes without any extra stabilizing or capping agents and the polyphenols present in the bark extract acted as both reducing as well as stabilizing agents. The synthesized colloidal gold nanoparticles were characterized by HRTEM, surface plasmon resonance spectroscopy and X-ray diffraction studies. The synthesized gold nanoparticles have been used as an efficient catalyst for the reduction of 3-nitrophenol and 4-nitrophenol to their corresponding aminophenols in water at room temperature.

  4. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez M, A. L. [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Paseo Colon esq. Paseo Tollocan s/n, 50120 Toluca, Estado de Mexico (Mexico); Cabrera L, L. I. [UNAM-UAEM, Centro Conjunto de Investigacion en Quimica Sustentable, Km 14.5 Carretera Toluca-Atlacomulco, 50200 San Cayetano-Toluca, Estado de Mexico (Mexico)

    2015-07-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  5. Reaction parameters for controlled sonosynthesis of gold nanoparticles

    International Nuclear Information System (INIS)

    Gonzalez M, A. L.; Cabrera L, L. I.

    2015-01-01

    The synthesis of gold nanoparticles by sonochemical technique has been previously performed with excellent results. The synthesis has been carried out in the presence of citric acid, a strong reducing agent, which allows the nucleation and growth of gold nanoparticles, at the same time that controls particle size. In this work we report the use of sodium tartrate as a mild reducing agent that allows a better understanding of the effect of the reaction parameters during gold nanoparticle synthesis. A conventional sonication bath (37 k Hz) was used for the sonochemical synthesis. This work focuses on the reaction temperature effect and the effect of sodium tartrate concentration. It was confirmed that particle size, and particle morphology is dependent of these two reaction parameters. Equally, colloidal stabilization was related to reaction temperature and sodium tartrate concentration. It was also determined that Ostwald ripening takes place during sonochemical reaction under our conditions, allowing to understand the mechanism that takes place during synthesis. Gold nanoparticles with main particle size of 17 nm were achieved by this method. Characterization techniques used: Fourier transform infrared spectra (Ftir), X-ray diffraction and Atomic Force Microscope was used in order to determine particle size of the synthetic product of reaction M10c by tapping mode. (Author)

  6. Identification of Paracoccidioides brasiliensis by gold nanoprobes

    Science.gov (United States)

    Martins, Jaciara F. S.; Castilho, Maiara L.; Cardoso, Maria A. G.; Carreiro, Andrea P.; Martin, Airton A.; Raniero, Leandro

    2012-01-01

    Paracoccidioides brasiliensis (P. brasiliensis) is a thermal dimorphic fungus and causal agent of paracoccidioidomycosis. Epidemiological data shows that it is mainly concentrated in Central and South America countries, with most registered cases in Colombia, Brazil, and Venezuela. The histopathological similarity with others fungal infection makes the diagnosis of P. brasiliensis more complicated. Therefore, the aim of this work was to find a positive and negative test for P. brasiliensis using gold nanoprobes as a new tool for P. brasiliensis detection. Gold nanoparticles were synthesized by reduction of gold chloride with sodium citrate. The results of this procedure is a wine-red solution with a maximum absorption in the range of ~520-530nm. A specific P. brasiliensis sequence of oligonucleotide was bonded to the nanoparticles, which maintained the wine-red color. The color changes from red to blue for negative diagnostic and is unchanged for a positive test. The H-bond interaction of DNA with the complementary DNA keeps strands together and forms double helical structure, maintaining the colloid stability. However, for non-complimentary DNA sequence the nanoprobes merge into a cluster, changing the light absorption.

  7. DNA polymorphism sensitive impedimetric detection on gold-nanoislands modified electrodes.

    Science.gov (United States)

    Bonanni, Alessandra; Pividori, Maria Isabel; del Valle, Manel

    2015-05-01

    Nanocomposite materials are being increasingly used in biosensing applications as they can significantly improve biosensor performance. Here we report the use of a novel impedimetric genosensor based on gold nanoparticles graphite-epoxy nanocomposite (nanoAu-GEC) for the detection of triple base mutation deletion in a cystic-fibrosis (CF) related human DNA sequence. The developed platform consists of chemisorbing gold nano-islands surrounded by rigid, non-chemisorbing, and conducting graphite-epoxy composite. The ratio of the gold nanoparticles in the composite was carefully optimized by electrochemical and microscopy studies. Such platform allows the very fast and stable thiol immobilization of DNA probes on the gold islands, thus minimizing the steric and electrostatic repulsion among the DNA probes and improving the detection of DNA polymorphism down to 2.25fmol by using electrochemical impedance spectroscopy. These findings are very important in order to develop new and renewable platforms to be used in point-of-care devices for the detection of biomolecules. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Label-free aptamer-based colorimetric detection of mercury ions in aqueous media using unmodified gold nanoparticles as colorimetric probe

    Energy Technology Data Exchange (ETDEWEB)

    Li, Li; Li, Baoxin; Qi, Yingying; Jin, Yan [Shaanxi Normal University, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Xi' an (China)

    2009-04-15

    We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg{sup 2+}) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg{sup 2+} aptamer is rich in thymine (T) and readily forms T-Hg{sup 2+}-T configuration in the presence of Hg{sup 2+}. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg{sup 2+}-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg{sup 2+} concentration through a five-decade range of 1 x 10{sup -4} mol L{sup -1} to 1 x 10{sup -9} mol L{sup -1}. Even with the naked eye, we could identify micromolar Hg{sup 2+} concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg{sup 2+} over other metal cations including K{sup +}, Ba{sup 2+}, Ni{sup 2+}, Pb{sup 2+}, Cu{sup 2+}, Cd{sup 2+}, Mg{sup 2+}, Ca{sup 2+}, Zn{sup 2+}, Al{sup 3+}, and Fe{sup 3+}. The major advantages of this Hg{sup 2+} assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg{sup 2+} detection. (orig.)

  9. Radioactive colloids

    International Nuclear Information System (INIS)

    Bergqvist, L.

    1987-01-01

    Different techniques for the characterization of radioactive colloids, used in nuclear medicine, have been evaluated and compared. Several radioactive colloids have been characterized in vitro and in vivo and tested experimentally. Colloid biokinetics following interstitial or intravenous injection were evaluated with a scintillation camera technique. Lymphoscintigraphy with a Tc-99-labelled antimony sulphur colloid was performed in 32 patients with malignant melanoma in order to evaluate the technique. Based on the biokinetic results, absorbed doses in tissues and organs were calculated. The function of the reticuloendothelial system has been evaluated in rats after inoculation with tumour cells. Microfiltration and photon correlation spectroscopy were found to be suitable in determining activity-size and particle size distributions, respectively. Maximal lymph node uptake following subcutaneous injection was found to correspond to a colloid particle size between 10 and 50 nm. Lymphoscintigraphy was found to be useful in the study of lymphatic drainage from the primary tumour site in patients with malignant melanoma on the trunk. Quantitative analysis of ilio-inguinal lymph node uptake in patients with malignant melanoma on the lower extremities was, however, found to be of no value for the detection of metastatic disease in lymph nodes. High absorbed doses may be received in lymph nodes (up to 1 mGy/MBq) and at the injection site (about 10 mGy/MBq). In an experimental study it was found that the relative colloid uptake in bone marrow and spleen depended on the total number of intravenously injected particles. This may considerably affect the absorbed dose in these organs. (author)

  10. Spectrophotometric, colorimetric and visually detection of Pseudomonas aeruginosa ETA gene based gold nanoparticles DNA probe and endonuclease enzyme

    Science.gov (United States)

    Amini, Bahram; Kamali, Mehdi; Salouti, Mojtaba; Yaghmaei, Parichehreh

    2018-06-01

    Colorimetric DNA detection is preferred over other methods for clinical molecular diagnosis because it does not require expensive equipment. In the present study, the colorimetric method based on gold nanoparticles (GNPs) and endonuclease enzyme was used for the detection of P. aeruginosa ETA gene. Firstly, the primers and probe for P. aeruginosa exotoxin A (ETA) gene were designed and checked for specificity by the PCR method. Then, GNPs were synthesized using the citrate reduction method and conjugated with the prepared probe to develop the new nano-biosensor. Next, the extracted target DNA of the bacteria was added to GNP-probe complex to check its efficacy for P. aeruginosa ETA gene diagnosis. A decrease in absorbance was seen when GNP-probe-target DNA cleaved into the small fragments of BamHI endonuclease due to the weakened electrostatic interaction between GNPs and the shortened DNA. The right shift of the absorbance peak from 530 to 562 nm occurred after adding the endonuclease. It was measured using a UV-VIS absorption spectroscopy that indicates the existence of the P. aeruginosa ETA gene. Sensitivity was determined in the presence of different concentrations of target DNA of P. aeruginosa. The results obtained from the optimized conditions showed that the absorbance value has linear correlation with concentration of target DNA (R: 0.9850) in the range of 10-50 ng mL-1 with the limit detection of 9.899 ng mL-1. Thus, the specificity of the new method for detection of P. aeruginosa was established in comparison with other bacteria. Additionally, the designed assay was quantitatively applied to detect the P. aeruginosa ETA gene from 103 to 108 CFU mL-1 in real samples with a detection limit of 320 CFU mL-1.

  11. Grimsel colloid exercise

    International Nuclear Information System (INIS)

    Degueldre, C.; Longworth, G.; Vilks, P.

    1989-11-01

    The Grimsel Colloid Exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterisation step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterisation techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel Test Site between February 1 and 13, 1988 and the participating groups produced colloid samples using the following methods: 1. Cross-flow ultrafiltration with production of membranes loaded with colloids. 2. Tangential diaultrafiltration and production of colloid concentrates. 3. Filtrates produced by each group. 4. Unfiltered water was also collected by PSI in glass bottles, under controlled anaerobic conditions, and by the other sampling groups in various plastic bottles. In addition, on-line monitoring of pH, χ, [O-2] and T of the water and of [O-2] in the atmosphere of the sampling units was carried out routinely. All samples were shipped according to the CoCo Club scheme for characterisation, with emphasis on the size distribution. The exercise differentiates the colloid samples produced on site from those obtained after transfer of the fluid samples to the laboratories. The colloid concentration and size distribution can be determined by scanning electron microscopy (SEM), gravimetry (GRAV), chemical analysis of fluid samples after micro/ultrafiltration (MF/UF) and by transmission single particle counting (PC). The colloid concentration can also be evaluated by transmission electron microscopy (TEM), static and dynamic light scattering (SLS,DLS) and by laser-induced photoacoustic spectroscopy (LPAS). The results are discussed on the basis of the detection limit, lateral resolution and counting conditions of the technique (precision) as well as sample preparation, artefact production and measurement optimisation (accuracy). A good agreement between size distribution results was

  12. Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids

    International Nuclear Information System (INIS)

    Mendes, Manuel J.; Mateus, Tiago; Lyubchyk, Andriy; Águas, Hugo; Ferreira, Isabel; Fortunato, Elvira; Martins, Rodrigo; Morawiec, Seweryn; Priolo, Francesco; Crupi, Isodiana

    2015-01-01

    The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells’ front surface formed from the deposition of material over the spherically shaped colloids. (paper)

  13. Study on gamma radiation-induced synthesis of gold nanoparticles stabilized by hyaluronan

    International Nuclear Information System (INIS)

    Dang Van Phu; Bui Duy Du

    2013-01-01

    Gold nanoparticles (AuNPs) with diameter from 4 to 10 nm were synthesized by γ-irradiation in hyaluronan (HA) solution without usage of any OH radical scavenger. The size distribution of AuNPs were determined by TEM images. The λ max (517-525 nm) of colloidal AuNPs solutions as prepared was measured by UV-Vis spectroscopy. The influence factor on the size of AuNPs particularly the concentration of Au 3+ , HA and dose rate were investigated. The colloidal solution of AuNPs/HA as synthesized was stable more than 6 months stored under ambient condition. AuNPs with the size less than 10 nm narrow size distribution stabilized by HA which is biocompatible polysaccharide can potentially be applied in biomedicine and cosmetic. (author)

  14. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    International Nuclear Information System (INIS)

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-01-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH 4 in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH 4 . The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH 4 in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO 4 and Mn. Also in the synthetic Fe colloids PO 4 , Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO 4 , SiO 4 and dissolved organic matter best match the Fe colloids from the field

  15. Colloid formation in groundwater by subsurface aeration: characterisation of the geo-colloids and their counterparts

    Energy Technology Data Exchange (ETDEWEB)

    Wolthoorn, Anke; Temminghoff, Erwin J.M.; Riemsdijk, Willem H. van

    2004-09-01

    Subsurface aeration is used to oxidise Fe in situ in groundwater to make the water potable. In a groundwater system with pH > 7, subsurface aeration results in a non-mobile Fe precipitate and mobile Fe colloids. Since originally the goal of subsurface aeration is to remove Fe in situ, the formation of non-mobile Fe precipitate is the desired result. In addition to this intended effect, subsurface aeration may also strongly enhance the microbiological removal of NH{sub 4} in the purification station. A hypothesis is that mobile Fe colloids may be the link between subsurface aeration and the positive effect on the microbiological removal of NH{sub 4}. The objective of this study is to characterise the mobile Fe colloids and to derive a synthetic substitute for the naturally formed Fe colloids in order to be able to apply the Fe colloids as a management tool to enhance the removal of NH{sub 4} in the process of producing drinking water from groundwater. At a purification station in The Netherlands natural Fe colloids from an aerated well were sampled. Furthermore, eight synthetic Fe colloids were prepared by oxidising synthetic solutions differing in elemental composition. The colloids were analysed using chemical analysis and electron microscopy (SEM and SEM-EDAX). The Fe colloids sampled in the field contained Fe, Ca, Na, PO{sub 4} and Mn. Also in the synthetic Fe colloids PO{sub 4}, Ca, Na and Mn were the most important elements next to Fe. Phosphate and dissolved organic C strongly influenced the morphology of the synthetic Fe colloids. When both the elemental composition and the morphology of the Fe colloids are taken into account, the synthetic Fe colloids formed in the synthetic solution containing Fe, Mn, PO{sub 4}, SiO{sub 4} and dissolved organic matter best match the Fe colloids from the field.

  16. Magnetic and optical holonomic manipulation of colloids, structures and topological defects in liquid crystals for characterization of mesoscale self-assembly and dynamics

    Science.gov (United States)

    Varney, Michael C. M.

    Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena encountered in atomic crystals and glasses; topics of great interest for physicists exploring a broad range of scientific, industrial and biomedical fields. The ability to accurately control particles of mesoscale size in various liquid host media is usually accomplished through optical trapping methods, which suffer limitations intrinsic to trap laser intensity and force generation. Other limitations are due to colloid properties, such as optical absorptivity, and host properties, such as viscosity, opacity and structure. Therefore, alternative and/or novel methods of colloidal manipulation are of utmost importance in order to advance the state of the art in technical applications and fundamental science. In this thesis, I demonstrate a magnetic-optical holonomic control system to manipulate magnetic and optical colloids in liquid crystals and show that the elastic structure inherent to nematic and cholesteric liquid crystals may be used to assist in tweezing of particles in a manner impossible in other media. Furthermore, I demonstrate the utility of this manipulation in characterizing the structure and microrheology of liquid crystals, and elucidating the energetics and dynamics of colloids interacting with these structures. I also demonstrate the utility of liquid crystal systems as a table top model system to probe topological defects in a manner that may lead to insights into topologically related phenomena in other fields, such as early universe cosmology, sub-atomic and high energy systems, or Skrymionic structures. I explore the interaction of colloid surface anchoring with the structure inherent in cholesteric liquid crystals, and how this affects the periodic dynamics and localization metastability of spherical colloids undergoing a "falling" motion within the sample. These so called "metastable states" cause colloidal dynamics to

  17. Visible luminescence in polyaniline/(gold nanoparticle) composites

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Renata F. S. [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil); Andrade, Cesar A. S. [Universidade Federal de Pernambuco, Departamento de Bioquimica (Brazil); Santos, Clecio G. dos [Instituto de Educacao, Ciencia e Tecnologia de Pernambuco (Brazil); Melo, Celso P. de, E-mail: celso@df.ufpe.br [Universidade Federal de Pernambuco, Pos-Graduacao em Ciencia de Materiais (Brazil)

    2013-01-15

    We describe the use of solution chemistry methods to prepare polyaniline/(gold nanoparticles)-PANI/AuNPs-composites as colloidal particles that exhibit an intense green fluorescence after excitation in the ultraviolet region. Measurements of the relative fluorescence quantum yield indicate that the intensity of the observed luminescence of these nanocomposites is a few orders of magnitude higher than the corresponding fluorescence of either the isolated polymer or the pure AuNPs. Hence, cooperative effects between the conducting polymer chains and the metallic particles must dominate the emission behavior of these materials. Transmission electron microscopy reveals the existence of metal nanoparticle aggregates with sizes in the 2-3 nm range dispersed in the polymer matrix. By implementing an experimental planning, we have been able to change the preparation parameters so as to vary in a controlled manner the intensity and the profile of the luminescence spectrum as well as the size and aggregation characteristics of the colloidal particles. We also show that when the pH of the medium is varied, the dielectric properties (such as the degree of conductivity) of the PANI/AuNPs colloidal solutions and the intensity of their luminescence change in a consistent manner. Due to the polycation nature of the doped PANI chains, we suggest that these composites may find interesting applications as fluorescent markers of biologic molecules.

  18. Lithographically patterned electrodeposition of gold, silver, and nickel nanoring arrays with widely tunable near-infrared plasmonic resonances.

    Science.gov (United States)

    Halpern, Aaron R; Corn, Robert M

    2013-02-26

    A novel low-cost nanoring array fabrication method that combines the process of lithographically patterned nanoscale electrodeposition (LPNE) with colloidal lithography is described. Nanoring array fabrication was accomplished in three steps: (i) a thin (70 nm) sacrificial nickel or silver film was first vapor-deposited onto a plasma-etched packed colloidal monolayer; (ii) the polymer colloids were removed from the surface, a thin film of positive photoresist was applied, and a backside exposure of the photoresist was used to create a nanohole electrode array; (iii) this array of nanoscale cylindrical electrodes was then used for the electrodeposition of gold, silver, or nickel nanorings. Removal of the photoresist and sacrificial metal film yielded a nanoring array in which all of the nanoring dimensions were set independently: the inter-ring spacing was fixed by the colloidal radius, the radius of the nanorings was controlled by the plasma etching process, and the width of the nanorings was controlled by the electrodeposition process. A combination of scanning electron microscopy (SEM) measurements and Fourier transform near-infrared (FT-NIR) absorption spectroscopy were used to characterize the nanoring arrays. Nanoring arrays with radii from 200 to 400 nm exhibited a single strong NIR plasmonic resonance with an absorption maximum wavelength that varied linearly from 1.25 to 3.33 μm as predicted by a simple standing wave model linear antenna theory. This simple yet versatile nanoring array fabrication method was also used to electrodeposit concentric double gold nanoring arrays that exhibited multiple NIR plasmonic resonances.

  19. Porous Gold Films Fabricated by Wet-Chemistry Processes

    Directory of Open Access Journals (Sweden)

    Aymeric Pastre

    2016-01-01

    Full Text Available Porous gold films presented in this paper are formed by combining gold electroless deposition and polystyrene beads templating methods. This original approach allows the formation of conductive films (2 × 106 (Ω·cm−1 with tailored and interconnected porosity. The porous gold film was deposited up to 1.2 μm on the silicon substrate without delamination. An original zirconia gel matrix containing gold nanoparticles deposited on the substrate acts both as an adhesion layer through the creation of covalent bonds and as a seed layer for the metallic gold film growth. Dip-coating parameters and gold electroless deposition kinetics have been optimized in order to create a three-dimensional network of 20 nm wide pores separated by 20 nm thick continuous gold layers. The resulting porous gold films were characterized by GIXRD, SEM, krypton adsorption-desorption, and 4-point probes method. The process is adaptable to different pore sizes and based on wet-chemistry. Consequently, the porous gold films presented in this paper can be used in a wide range of applications such as sensing, catalysis, optics, or electronics.

  20. High density gold nanoparticles immobilized on surface via plasma deposited APTES film for decomposing organic compounds in microchannels

    Science.gov (United States)

    Rao, Xi; Guyon, Cédric; Ognier, Stephanie; Da Silva, Bradley; Chu, Chenglin; Tatoulian, Michaël; Hassan, Ali Abou

    2018-05-01

    Immobilization of colloidal particles (e.g. gold nanoparticles (AuNps)) on the inner surface of micro-/nano- channels has received a great interest for catalysis. A novel catalytic ozonation setup using a gold-immobilized microchannel reactor was developed in this work. To anchor AuNps, (3-aminopropyl) triethoxysilane (APTES) with functional amine groups was deposited using plasma enhanced chemical vapor deposition (PECVD) process. The results clearly evidenced that PECVD processing exhibited relatively high efficiency for grafting amine groups and further immobilizing AuNPs. The catalytic activity of gold immobilized microchannel was evaluated by pyruvic acid ozonation. The decomposition rate calculated from High Performance Liquid Chromatography (HPLC) indicated a much better catalytic performance of gold in microchannel than that in batch. The results confirmed immobilizing gold nanoparticles on plasma deposited APTES for preparing catalytic microreactors is promising for the wastewater treatment in the future.

  1. Colloidal glasses

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Colloidal glasses. Glassy state is attained when system fails to reach equilibrium due to crowding of constituent particles. In molecular glasses, glassy state is reached by rapidly lowering the temperature. In colloidal glasses, glassy state is reached by increasing the ...

  2. Colloidal nematostatics

    Directory of Open Access Journals (Sweden)

    V.M. Pergamenshchik

    2010-01-01

    Full Text Available We give a review of the theory of large distance colloidal interaction via the nematic director field. The new area of nematic colloidal systems (or nematic emulsions has been guided by the analogy between the colloidal nematostatics and electrostatics. The elastic charge density representation of the colloidal nematostatics [V.M. Pergamenshchik, V.O. Uzunova, Eur. Phys. J. E, 2007, 23, 161; Phys. Rev. E, 2007, 76, 011707] develops this analogy at the level of charge density and Coulomb interaction. The analogy is shown to lie in common mathematics based on the solutions of Laplace equation. However, the 3d colloidal nematostatics substantially differs from electrostatics both in its mathematical structure and physical implications. The elastic charge is a vector fully determined by the torque exerted upon colloid, the role of Gauss' theorem is played by conservation of the torque components. Elastic multipoles consist of two tensors (dyads. Formulas for the elastic multipoles, the Coulomb-like, dipole-dipole, and quadrupole-quadrupole pair interaction potentials are derived and illustrated by particular examples. Based on the tensorial structure, we list possible types of elastic dipoles and quadrupoles. An elastic dipole is characterized by its isotropic strength, anisotropy, chirality, and its longitudinal component. An elastic quadrupole can be uniaxial and biaxial. Relation between the multipole type and its symmetry is discussed, sketches of some types of multipoles are given. Using the mirror image method of electrostatics as a guiding idea, we develop the mirror image method in nematostatics for arbitrary director tilt at the wall. The method is applied to the charge-wall and dipole-wall interaction.

  3. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Sahraoui

    2015-04-09

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  4. Colloidal Photoluminescent Amorphous Porous Silicon, Methods Of Making Colloidal Photoluminescent Amorphous Porous Silicon, And Methods Of Using Colloidal Photoluminescent Amorphous Porous Silicon

    KAUST Repository

    Chaieb, Saharoui; Mughal, Asad Jahangir

    2015-01-01

    Embodiments of the present disclosure provide for a colloidal photoluminescent amorphous porous silicon particle suspension, methods of making a colloidal photoluminescent amorphous porous silicon particle suspension, methods of using a colloidal photoluminescent amorphous porous silicon particle suspension, and the like.

  5. Wetting phenomena and interactions in phase-separate colloid-polymer mixtures

    OpenAIRE

    Wijting, W.K.

    2004-01-01

    In this last chapter I will review and integrate the findings of the previous chapters and give suggestions for further research on this topic.In chapter 2 measurements of depletion interactions by means of colloidal probe atomic force microscopy (CP-AFM) are described. We found that the behaviour of the range of the depletion interaction is roughly in agreement with predictions of Fleer et aI. The strength of the depletion interaction is not in agreement with of predictions of Tuinier et al....

  6. Gold micro- and nano-particles for surface enhanced vibrational spectroscopy of pyridostigmine bromide

    DEFF Research Database (Denmark)

    Dolgov, Leonid; Fesenko, Olena; Kavelin, Vladyslav

    2017-01-01

    Triangular gold microprisms and spherical silica nanoparticles with attached gold nano-islands were examined as an active nanostructures for the surface enhanced Raman and infrared spectroscopy. These particles were probed for the detection of pyridostigmine bromide as a safe analog of military c...

  7. Synthesis of curcumin-functionalized gold nanoparticles and cytotoxicity studies in human prostate cancer cell line

    Science.gov (United States)

    Nambiar, Shruti; Osei, Ernest; Fleck, Andre; Darko, Johnson; Mutsaers, Anthony J.; Wettig, Shawn

    2018-03-01

    Gold nanoparticles synthesized using plant extracts with medicinal properties have gained traction in recent years, especially for their use in various biomedical applications. Colloidal stability of these nanoparticles in different environments is critical to retain the expected therapeutic/diagnostic efficacy and toxicological outcome. Any change in the colloidal stability leads to dramatic changes in the physico-chemical properties of the nanoparticles such as size and surface charge, which in turn may alter the biological activity of the particles. Such changes are imminent in physiologically-relevant environment wherein interactions with different biomolecules, such as serum proteins, may modify the overall properties of the nanoparticles. In this regard, we synthesized 15 nm sized gold nanoparticles using curcumin, a plant extract from turmeric root, to evaluate cytotoxicity, uptake, and localization in human prostate cancer cells using cell-culture medium supplemented with or without fetal bovine serum (FBS). The results indicate a dramatic difference in the cytotoxicity and uptake between cells treated with curcumin-functionalized gold nanoparticles (cur-AuNPs) in cell-culture medium with and without serum. The addition of FBS to the medium not only increased the stability of the nanoparticles but also enhanced the biocompatibility (i.e. minimal cytotoxicity for a wide range of cur-AuNP concentrations). We conclude that the presence of serum proteins significantly impact the therapeutic potential of cur-AuNPs.

  8. Colloid formation during waste glass corrosion

    International Nuclear Information System (INIS)

    Mertz, C.J.; Buck, E.C.; Fortner, J.A.; Bates, J.K.

    1996-01-01

    The long-term behavior of nuclear waste glass in a geologic repository may require a technical consideration of the role of colloids in the release and transport of radionuclides. The neglect of colloidal properties in assessing the near- and far-field migration behavior of actinides may lead to significant underestimates and poor predictions of biosphere exposure from high-level waste (HLW) disposal. Existing data on colloid-facilitated transport suggests that radionuclide migration may be enhanced, but the importance of colloids is not adequately assessed. Indeed, the occurrence of radionuclide transport, attributed to colloidal species, has been reported at Mortandad Canyon, Los Alamos and at the Nevada Test Site; both unsaturated regions are similar to the proposed HLW repository at Yucca Mountain. Although some developments have been made on understanding the transport characteristics of colloids, the characterization of colloids generated from the corrosion of the waste form has been limited. Colloids are known to incorporate radionuclides either from hydrolysis of dissolved species (real colloids) or from adsorption of dissolved species onto existing groundwater colloids (pseudocolloids); however, these colloids may be considered secondary and solubility limited when compared to the colloids generated during glass alteration

  9. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  10. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin

    2012-02-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda\\'s method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  11. Gold-catalyzed aerobic epoxidation of trans-stilbene in methylcyclohexane. Part I: Design of a reference catalyst

    KAUST Repository

    Guillois, Kevin; Burel, Laurence; Tuel, Alain; Caps, Valerie

    2012-01-01

    The kinetics of the heterogeneous gold-catalyzed aerobic epoxidation of stilbene in the liquid phase has been shown to be hindered by diffusion limitations, due to the use of supports which are unsuitable to apolar reaction media. The choice of these supports is generally dictated by the ability of standard methods of preparation to stabilize highly dispersed gold nanoparticles on them. Hence, new methods need to be designed in order to produce catalytically active gold nanoparticles on hydrophobic supports in general and on passivated silicas in particular. By investigating Tsukuda's method to produce colloidal solutions of gold nanoparticles upon reduction of the triphenylphosphine gold chloride complex in solution, we found that direct reduction of AuPPh3Cl in the presence of a commercially available silica support functionalized with dimethylsiloxane, Aerosil R972, leads, in a highly reproducible and potentially scalable way, to the best catalyst ever reported for this reaction. (C) 2011 Elsevier BM. All rights reserved.

  12. A Conjugated Aptamer-Gold Nanoparticle Fluorescent Probe for Highly Sensitive Detection of rHuEPO-α

    Directory of Open Access Journals (Sweden)

    Zhaoyang Zhang

    2011-11-01

    Full Text Available We present here a novel conjugated aptamer-gold nanoparticle (Apt-AuNPs fluorescent probe and its application for specific detection of recombinant human erythropoietin-α (rHuEPO-α. In this nanobiosensor, 12 nm AuNPs function as both a nano-scaffold and a nano-quencher (fluorescent energy acceptor, on the surface of which the complementary sequences are linked (as cODN-AuNPs and pre-hybridized with carboxymethylfluorescein (FAM-labeled anti-rHuEPO-α aptamers. Upon target protein binding, the aptamers can be released from the AuNP surface and the fluorescence signal is restored. Key variables such as the length of linker, the hybridization site and length have been designed and optimized. Full performance evaluation including sensitivity, linear range and interference substances are also described. This nanobiosensor provides a promising approach for a simple and direct quantification of rHuEPO-α concentrations as low as 0.92 nM within a few hours.

  13. Colloid transport in saturated porous media: Elimination of attachment efficiency in a new colloid transport model

    Science.gov (United States)

    Landkamer, Lee L.; Harvey, Ronald W.; Scheibe, Timothy D.; Ryan, Joseph N.

    2013-01-01

    A colloid transport model is introduced that is conceptually simple yet captures the essential features of colloid transport and retention in saturated porous media when colloid retention is dominated by the secondary minimum because an electrostatic barrier inhibits substantial deposition in the primary minimum. This model is based on conventional colloid filtration theory (CFT) but eliminates the empirical concept of attachment efficiency. The colloid deposition rate is computed directly from CFT by assuming all predicted interceptions of colloids by collectors result in at least temporary deposition in the secondary minimum. Also, a new paradigm for colloid re-entrainment based on colloid population heterogeneity is introduced. To accomplish this, the initial colloid population is divided into two fractions. One fraction, by virtue of physiochemical characteristics (e.g., size and charge), will always be re-entrained after capture in a secondary minimum. The remaining fraction of colloids, again as a result of physiochemical characteristics, will be retained “irreversibly” when captured by a secondary minimum. Assuming the dispersion coefficient can be estimated from tracer behavior, this model has only two fitting parameters: (1) the fraction of the initial colloid population that will be retained “irreversibly” upon interception by a secondary minimum, and (2) the rate at which reversibly retained colloids leave the secondary minimum. These two parameters were correlated to the depth of the Derjaguin-Landau-Verwey-Overbeek (DLVO) secondary energy minimum and pore-water velocity, two physical forces that influence colloid transport. Given this correlation, the model serves as a heuristic tool for exploring the influence of physical parameters such as surface potential and fluid velocity on colloid transport.

  14. EDITORIAL: Colloidal dispersions in external fields Colloidal dispersions in external fields

    Science.gov (United States)

    Löwen, Hartmut

    2012-11-01

    , Ojeda-Lopez M A and Arauz-Lara J L 2012 J. Phys. Condens. Matter 24 464126 [31]Leferink op Reinink A B G M, van den Pol E, Byelov D V, Petukhov A V and Vroege G J 2012 J. Phys. Condens. Matter 24 464127 [32]Taylor S L, Evans R and Royall C P 2012 J. Phys. Condens. Matter 24 464128 [33]Toner J, Tu Y H and Ramaswamy S 2012 J. Phys. Condens. Matter 24 464110 [34]Schmitz R and Dünweg B 2005 J. Phys. Condens. Matter 318 170 [35]Cates M E 2012 Rep. Prog. Phys. 75 042601 [36]Tarama M and Ohta T 2012 J. Phys. Condens. Matter 24 464129 [37]Wensink H H and Löwen H 2012 J. Phys. Condens. Matter 24 464130 Colloidal dispersions in external fields contents Colloidal dispersions in external fieldsHartmut Löwen Depletion induced clustering in mixtures of colloidal spheres and fd-virusD Guu, J K G Dhont, G A Vliegenthart and M P Lettinga Advanced rheological characterization of soft colloidal model systemsS Gupta, S K Kundu, J Stellbrink, L Willner, J Allgaier and D Richter Conformational and dynamical properties of ultra-soft colloids in semi-dilute solutions under shear flowSunil P Singh, Dmitry A Fedosov, Apratim Chatterji, Roland G Winkler and Gerhard Gompper Transient dynamics in dense colloidal suspensions under shear: shear rate dependenceM Laurati, K J Mutch, N Koumakis, J Zausch, C P Amann, A B Schofield, G Petekidis, J F Brady, J Horbach, M Fuchs and S U Egelhaaf Force-induced diffusion in microrheologyCh J Harrer, D Winter, J Horbach, M Fuchs and Th Voigtmann Micro-macro-discrepancies in nonlinear microrheology: I. Quantifying mechanisms in a suspension of Brownian ellipsoidsRyan J DePuit and Todd M Squires Micro-macro discrepancies in nonlinear microrheology: II. Effect of probe shapeRyan J DePuit and Todd M Squires Viscosity of electrolyte solutions: a mode-coupling theoryClaudio Contreras-Aburto and Gerhard Nägele Electro-kinetics of charged-sphere suspensions explored by integral low-angle super-heterodyne laser Doppler velocimetryThomas Palberg, Tetyana K

  15. Vibrational spectroscopy as a probe to rapidly detect, identify, and characterize micro-organisms

    Science.gov (United States)

    Sockalingum, Ganesh D.; Lamfarraj, Hasnae; Beljebbar, Abdelilah; Pina, Patrick; Delavenne, Marc; Witthuhn, Fabienne; Allouch, Pierre; Manfait, Michel

    1999-04-01

    Fast and exact identification of a great number of microorganisms is becoming a serious challenge. Differentiation and identification of microorganisms is today mainly achieved by the use of a variety of distinct techniques based on morphological, serological aspects and a set of biochemical test. Vibrational spectroscopic techniques can be complementary and useful methods in this field due to their rapidity, 'fingerprinting' capabilities, and the molecular information that they can provide. Using SERS at Ag colloids, we have conducted pilot studies to rapidly detect and identify bacterial clinical strains. Using a Raman microspectrometer equipped with a He/Ne laser, a first attempt to record SERS spectra was made on colloidal solutions. Spectra were of good quality but not very reproducible due to the movement of the microorganisms. Strains were then put in presence of Ag colloids and direct on-plate analysis was performed. Spectra were more reproducible, with diminished fluorescence, and reveal characteristic cellular-level information. Different growth conditions and colloid preparations have been tested. Pseudomonas aeruginosa and Escherichia coli clinical strains, responsible for nosocomial infections, have been our first test samples. An attempt has also been made to record SERS data from gold colloids in view of future measurement in the near-IR. Spectroscopic data are compared with ATR-FTIR results.

  16. Magnetic Assisted Colloidal Pattern Formation

    Science.gov (United States)

    Yang, Ye

    Pattern formation is a mysterious phenomenon occurring at all scales in nature. The beauty of the resulting structures and myriad of resulting properties occurring in naturally forming patterns have attracted great interest from scientists and engineers. One of the most convenient experimental models for studying pattern formation are colloidal particle suspensions, which can be used both to explore condensed matter phenomena and as a powerful fabrication technique for forming advanced materials. In my thesis, I have focused on the study of colloidal patterns, which can be conveniently tracked in an optical microscope yet can also be thermally equilibrated on experimentally relevant time scales, allowing for ground states and transitions between them to be studied with optical tracking algorithms. In particular, I have focused on systems that spontaneously organize due to particle-surface and particle-particle interactions, paying close attention to systems that can be dynamically adjusted with an externally applied magnetic or acoustic field. In the early stages of my doctoral studies, I developed a magnetic field manipulation technique to quantify the adhesion force between particles and surfaces. This manipulation technique is based on the magnetic dipolar interactions between colloidal particles and their "image dipoles" that appear within planar substrate. Since the particles interact with their own images, this system enables massively parallel surface force measurements (>100 measurements) in a single experiment, and allows statistical properties of particle-surface adhesion energies to be extracted as a function of loading rate. With this approach, I was able to probe sub-picoNewton surface interactions between colloidal particles and several substrates at the lowest force loading rates ever achieved. In the later stages of my doctoral studies, I focused on studying patterns formed from particle-particle interaction, which serve as an experimental model of

  17. UZ Colloid Transport Model

    International Nuclear Information System (INIS)

    McGraw, M.

    2000-01-01

    The UZ Colloid Transport model development plan states that the objective of this Analysis/Model Report (AMR) is to document the development of a model for simulating unsaturated colloid transport. This objective includes the following: (1) use of a process level model to evaluate the potential mechanisms for colloid transport at Yucca Mountain; (2) Provide ranges of parameters for significant colloid transport processes to Performance Assessment (PA) for the unsaturated zone (UZ); (3) Provide a basis for development of an abstracted model for use in PA calculations

  18. LONG-TERM COLLOID MOBILIZATION AND COLLOID-FACILITATED TRANSPORT OF RADIONUCLIDES IN A SEMI-ARID VADOSE ZONE

    Energy Technology Data Exchange (ETDEWEB)

    Markus Flury; James B. Harsh; Fred Zhang; Glendon W. Gee; Earl D. Mattson; Peter C. L

    2012-08-01

    The main purpose of this project was to improve the fundamental mechanistic understanding and quantification of long-term colloid mobilization and colloid-facilitated transport of radionuclides in the vadose zone, with special emphasis on the semi-arid Hanford site. While we focused some of the experiments on hydrogeological and geochemical conditions of the Hanford site, many of our results apply to colloid and colloid-facilitated transport in general. Specific objectives were (1) to determine the mechanisms of colloid mobilization and colloid-facilitated radionuclide transport in undisturbed Hanford sediments under unsaturated flow, (2) to quantify in situ colloid mobilization and colloid-facilitated radionuclidetransport from Hanford sediments under field conditions, and (3) to develop a field-scale conceptual and numerical model for colloid mobilization and transport at the Hanford vadose zone, and use that model to predict long-term colloid and colloid- facilitated radionuclide transport. To achieve these goals and objectives, we have used a combination of experimental, theoretical, and numerical methods at different spatial scales, ranging from microscopic investigationsof single particle attachment and detachment to larger-scale field experiments using outdoor lysimeters at the Hanford site. Microscopic and single particle investigations provided fundamental insight into mechanisms of colloid interactions with the air-water interface. We could show that a moving air water interface (such as a moving water front during infiltration and drainage) is very effective in removing and mobilizing particles from a stationary surface. We further demonstrated that it is particularly the advancing air-water interface which is mainly responsible for colloid mobilization. Forces acting on the colloids calculated from theory corroborated our experimental results, and confirm that the detachment forces (surface tension forces) during the advancing air-water interface

  19. Development of gold nanoparticle radiotracers for investigating multiphase system in process industries

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Jaafar Abdullah; Engku Fahmi Engku Chik; Noraishah Othman

    2010-01-01

    This paper describes the development of colloidal 197 Au-SiO 2 with core-shell structure nanoparticle radiotracers. Using conventional citrate-reduction method, gold nanoparticles were prepared from its corresponding metal salts in aqueous solution then coated with uniform shells of amorphous silica via a sol-gel reaction. This target material of radiotracer application used to investigate multiphase system in process industries without disturbing the system operation. The citrate-reduction-based method provides gold nanoparticles with higher concentration and narrow size distribution. By using transmission electron microscopy (TEM), the resultant of particle size and silica coatings could be varied from tens to several hundred of nanometers by controlling the catalyzer and precipitation time. 197 Au-SiO 2 core-shell nano structure is good to prevent the particles from getting conglomerate resulting in a big mass. In addition, silica surface offer very good chances that make the hydrophobicity behavior on the gold nanoparticles. EDXRF spectrum has proven that 197 Au-SiO 2 core-shell nanoparticles sample consists purely of a gold and silica particles. (author)

  20. Scavenger receptor-mediated endocytosis by sinusoidal cells in rat bone marrow

    International Nuclear Information System (INIS)

    Geoffroy, J.S.

    1987-01-01

    Endocytosis of serum albumin by sinusoidal endothelial cells in rat bone marrow was investigated initially at the ultrastructural level with subsequent biochemical investigation of the specificity mediating this event. Bovine serum albumin adsorbed to 20nm colloidal gold particles (AuBSA) was chosen as the electron microscopic probe. Morphological data strongly suggested that a receptor was involved in uptake of AuBSA. Confirmation of receptor involvement in the uptake of AuBSA by marrow sinusoidal endothelial cells was achieved utilizing an in situ isolated hind limb perfusion protocol in conjunction with unlabeled, radiolabeled, and radio-/colloidal gold labeled probes. The major findings of competition and saturation experiments were: (1) endocytosis of AuBSA was mediated by a receptor for modified/treated serum albumin; (2) endocytosis of formaldehyde-treated serum albumin was mediated by a binding site which may be the same or closely related to the site responsible for the uptake of AuBSA; and (3) endocytosis of native untreated albumin was not mediated by receptor and probably represents fluid-phase pinocitosis

  1. Photopyroelectric Techniques for thermo-optical characterization of gold nano-particles

    International Nuclear Information System (INIS)

    Chávez-Sandoval, B E; Balderas-López, J A; Padilla-Bernal, G; Moreno-Rivera, M A; Franco-Hernández, M O; Martínez-Jiménez, A; García-Franco, F

    2015-01-01

    Since the first methodology, proposed by Turkevich, to produce gold nanoparticles (AuNPs), improvements have been made as to allow better controllability in their size and shape. These two parameters play important role for application of gold nanoparticles since they determine their optical and thermal properties. Two photopyroelectric techniques for the measurement of the thermal diffusivity and the optical absorption coefficient for nano-particles are introduced. These thermo-physical properties were measured for the colloidal systems at different nano-particle's sizes and, for optical properties, at three different wavelengths (405 nm, 488 nm and 532 nm). No significant difference, on thermal properties, was found in the range of nano-particles' sizes studied in this work; in opposition optical properties shown more sensitive to this parameter

  2. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    Science.gov (United States)

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  3. Colloid migration in fractured media

    International Nuclear Information System (INIS)

    Hunt, J.R.

    1989-01-01

    Field studies at the Nevada Test Site by researchers at Lawrence Livermore National Laboratory have demonstrated that radionuclides are being transported by colloidal material suspended in groundwater. This observation is counter to most predictions from contaminant transport models because the models assume adsorbed species are immobile. The purpose of this research is to quantify the transport processes for colloidal materials and develop the mechanistic understanding necessary to predict radionuclide transport in fractured media. There were three areas of investigation during this year that have addressed these issues: chemical control of colloid deposition on clean mineral surfaces, colloid accumulation on fracture surfaces, and the influence of deposited colloids on colloid and tracer migration. 7 refs

  4. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    International Nuclear Information System (INIS)

    Kim, J.J.; Longworth, G.; Hasler, S.E.; Gardiner, M.; Fritz, P.; Klotz, D.; Lazik, D.; Wolf, M.; Geyer, S.; Alexander, J.L.; Read, D.; Thomas, J.B.

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ( 2 H, 3 H, 13 C, 14 C, 18 O, 34 S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  5. Colloid migration in groundwaters: Geochemical interactions of radionuclides with natural colloids. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.J. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Delakowitz, B. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Zeh, P. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Probst, T. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Lin, X. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ehrlicher, U. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Schauer, C. [Technische Univ. Muenchen, Garching (Germany). Inst. fuer Radiochemie; Ivanovich, M. [AEA Environment and Energy, Harwell (United Kingdom); Longworth, G. [AEA Environment and Energy, Harwell (United Kingdom); Hasler, S.E. [AEA Environment and Energy, Harwell (United Kingdom); Gardiner, M. [AEA Decommissioning and Radwaste, Harwell (United Kingdom); Fritz, P. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Klotz, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Lazik, D. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Wolf, M. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Geyer, S. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany); Alexander, J.L. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Read, D. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom); Thomas, J.B. [Atkins (W.S.) Engineering Sciences, Epsom (United Kingdom)

    1994-08-01

    In this joint research programme the significance of groundwater colloids in far field radionuclide migration has been studied. The characterization, quantification and theoretical interpretation of colloid-borne transport phenomena for radionuclides were the main objectives of this research programme. Groundwaters, colloids and sediments were sampled from aquifer system overlying a saltdome in the Gorleben area in northern Germany and were characterized by various analytical methods (ICP-MS, ICP-AES, neutron activation analysis (NAA), DOC-Analyser, HPIC, potentiometric titration). Different natural isotopes ({sup 2}H, {sup 3}H, {sup 13}C, {sup 14}C, {sup 18}O, {sup 34}S, U/Th decay series) were determined and their ratios were compared with one another in the order to ascertain the provenance of the groundwater colloids. The investigated groundwaters contain substantial amounts of colloids mainly composed of humic and fulvic acids loaded with various metal ions. The chemical interaction of radionuclide ions of various oxidation states (Am, Eu, for M(III), Th, Pu for M(IV), Np for M(V) and U for M(VI)) with groundwater colloids was investigated in order to elucidate the colloid facilitated migration behaviour of actinides in a given aquifer system. Transport process studies with generated pseudocolloids of radionuclides in various oxidation states were undertaken in scaled column experiments, pre-equilibrated with colloid rich Gorleben groundwater. A modelling programme was developed to predict chemical transport of radionuclides in the presence of humic colloids using a modified version of the CHEMTARD code. Modelling predictions have generated acceptable results for Eu, Am and U and poorer agreement between experimental and modelling results for Th and Np as a result of more limited data. (orig.)

  6. Colloidal Stability of Gold Nanoparticles Coated with Multithiol-Poly(ethylene glycol) Ligands: Importance of Structural Constraints of the Sulfur Anchoring Groups

    Science.gov (United States)

    2013-08-13

    order: monothiol < flexible dithiol < constrained dithiol < disulfide. The present study indicates that the colloidal stability of thiolated ligand...protein/ polymer - negatively charged AuNP) and hydrophobic adsorption (hydrophobic protein pockets - AuNP).1, 20 Each mechanism will also be...colloidal stability has been significantly improved by preparing a relatively thicker shell with polymers or polyelectrolytes such as poly(N-vinyl-2

  7. Liquid crystal boojum-colloids

    International Nuclear Information System (INIS)

    Tasinkevych, M; Silvestre, N M; Telo da Gama, M M

    2012-01-01

    Colloidal particles dispersed in a liquid crystal (LC) lead to distortions of the director field. The distortions are responsible for long-range effective colloidal interactions whose asymptotic behaviour is well understood. The short-distance behaviour depends on the structure and dynamics of the topological defects nucleated near the colloidal particles and a full nonlinear theory is required to describe it. Spherical colloidal particles with strong planar degenerate anchoring nucleate a pair of antipodal surface topological defects, known as boojums. We use the Landau-de Gennes theory to resolve the mesoscopic structure of the boojum cores and to determine the pairwise colloidal interactions. We compare the results in three (3D) and two (2D) spatial dimensions for spherical and disc-like colloidal particles, respectively. The corresponding free energy functionals are minimized numerically using finite elements with adaptive meshes. Boojums are always point-like in 2D, but acquire a rather complex structure in 3D, which depends on the combination of the anchoring potential, the radius of the colloid, the temperature and the LC elastic anisotropy. We identify three types of defect cores in 3D that we call single, double and split-core boojums, and investigate the associated structural transitions. The split-core structure is favoured by low temperatures, strong anchoring and small twist to splay or bend ratios. For sufficiently strong anchoring potentials characterized by a well-defined uniaxial minimum, the split-core boojums are the only stable configuration. In the presence of two colloidal particles, we observe substantial re-arrangements of the inner defects in both 3D and 2D. These re-arrangements lead to qualitative changes in the force-distance profile when compared to the asymptotic quadrupole-quadrupole interaction. In line with the experimental results, the presence of the defects prevents coalescence of the colloidal particles in 2D, but not in 3D

  8. Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization

    Science.gov (United States)

    Sujitha, Mohanan V.; Kannan, Soundarapandian

    2013-02-01

    This study reports the biological synthesis of gold nanoparticles by the reduction of HAuCl4 by using citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) juice extract as the reducing and stabilizing agent. A various shape and size of gold nanoparticles were formed when the ratio of the reactants were altered with respect to 1.0 mM chloroauric acid solution. The gold nanoparticles obtained were characterized by UV-visible spectra, transmission electron microscopy (TEM) and X-ray diffraction (XRD). TEM studies showed the particles to be of various shapes and sizes and particle size ranges from 15 to 80 nm. Selected-area electron diffraction (SAED) pattern confirmed fcc phase and crystallinity of the particles. The X-ray diffraction analysis revealed the distinctive facets (1 1 1, 2 0 0, 2 2 0 and 2 2 2 planes) of gold nanoparticles. Dynamic light scattering (DLS) studies revealed that the average size for colloid gp3 of C. limon, C. reticulata and C. sinensis are 32.2 nm, 43.4 nm and 56.7 nm respectively. The DLS graph showed that the particles size was larger and more polydispersed compared to the one observed by TEM due to the fact that the measured size also includes the bio-organic compounds enveloping the core of the Au NPs. Zeta potential value for gold nanoparticles obtained from colloid gp3 of C. limon, C. reticulata and C. sinensis are -45.9, -37.9 and -31.4 respectively indicating the stability of the synthesized nanoparticles. Herein we propose a novel, previously unexploited method for the biological syntheses of polymorphic gold nanoparticles with potent biological applications.

  9. Rapid colorimetric assay for detection of Listeria monocytogenes in food samples using LAMP formation of DNA concatemers and gold nanoparticle-DNA probe complex

    Science.gov (United States)

    Wachiralurpan, Sirirat; Sriyapai, Thayat; Areekit, Supatra; Sriyapai, Pichapak; Augkarawaritsawong, Suphitcha; Santiwatanakul, Somchai; Chansiri, Kosum

    2018-04-01

    ABSTRACT Listeria monocytogenes is a major foodborne pathogen of global health concern. Herein, the rapid diagnosis of L. monocytogenes has been achieved using loop-mediated isothermal amplification (LAMP) based on the phosphatidylcholine-phospholipase C gene (plcB). Colorimetric detection was then performed through the formation of DNA concatemers and a gold nanoparticle/DNA probe complex (GNP/DNA probe). The overall detection process was accomplished within approximately 1 h with no need for complicated equipment. The limits of detection for L. monocytogenes in the forms of purified genomic DNA and pure culture were 800 fg and 2.82 CFU mL-1, respectively. No cross reactions were observed from closely related bacteria species. The LAMP-GNP/DNA probe assay was applied to the detection of 200 raw chicken meat samples and compared to routine standard methods. The data revealed that the specificity, sensitivity and accuracy were 100%, 90.20% and 97.50%, respectively. The present assay was 100% in conformity with LAMP-agarose gel electrophoresis assay. Five samples that were negative by both assays appeared to have the pathogen at below the level of detection. The assay can be applied as a rapid direct screening method for L. monocytogenes.

  10. [History of gold--with danish contribution to tuberculosis and rheumatoid arthritis].

    Science.gov (United States)

    Norn, Svend; Permin, Henrik; Kruse, Poul R; Kruse, Edith

    2011-01-01

    Gold has a long history as a therapeutic agent, first as gold particles and colloidal gold, then as a soluble salt made by the alchemists, and potable gold was recommended almost as a panacea against different diseases. Gold compounds were introduced in the treatment of tuberculosis, based initially on the reputation of Robert Koch, who found gold cyanide effective against Mycobacterium tuberculosis in cultures. Although several investigations of gold salts showed no convincing effect in experimental tuberculosis in guinea pigs, the idea of using gold compounds as chemotherapy was furthermore encouraged from the work of Paul Ehrlich with arsenicals. The enthusiasm and the craving desperately for a remedy for tuberculosis forced Danish physicians, in the mid-1920s to treat tuberculosis with Sanocrysin (gold sodium thiosulfate). Professor Holger Møllgaard, in collaboration with the clinicians the professors Knud Secher and Knud Faber, was the theoretical promoter of the project. He recommended sanocrysin-antiserum therapy, since sanocrysin caused serious reactions in tuberculosis animals, possible by releasing toxins from tubercle bacilli "killed" by sanocrysin. However the enthusiastic response to sanocrysin in Europe declined along by controlled trials and reports on toxicity in the 1930s. The belief that rheumatoid arthritis was a form of tuberculosis caused a renaissance in chrysotherapy. In France Jacques Forestier obtained encouraging results in the treatment of rheumatoid arthritis with myochrysine and other gold salts, and he pointed out the disease modifying effect of chrysotherapy. In Denmark Knud Secher, who was the clinical initiator of Sanocrysin therapy in tuberculosis, now became the founder of chrysotherapy in rheumatoid arthritis. Although new potential agents are now taking over in the treatment of arthritis, it is still believed, that there is a place for the chrysotherapy. However a new future for gold, in the form of nanoparticles, appears on

  11. The golden age: gold nanoparticles for biomedicine†

    Science.gov (United States)

    Dreaden, Erik C.; Alkilany, Alaaldin M.; Huang, Xiaohua; Murphy, Catherine J.; El-Sayed, Mostafa A.

    2018-01-01

    Gold nanoparticles have been used in biomedical applications since their first colloidal syntheses more than three centuries ago. However, over the past two decades, their beautiful colors and unique electronic properties have also attracted tremendous attention due to their historical applications in art and ancient medicine and current applications in enhanced optoelectronics and photovoltaics. In spite of their modest alchemical beginnings, gold nanoparticles exhibit physical properties that are truly different from both small molecules and bulk materials, as well as from other nanoscale particles. Their unique combination of properties is just beginning to be fully realized in range of medical diagnostic and therapeutic applications. This critical review will provide insights into the design, synthesis, functionalization, and applications of these artificial molecules in biomedicine and discuss their tailored interactions with biological systems to achieve improved patient health. Further, we provide a survey of the rapidly expanding body of literature on this topic and argue that gold nanotechnology-enabled biomedicine is not simply an act of ‘gilding the (nanomedicinal) lily’, but that a new ‘Golden Age’ of biomedical nanotechnology is truly upon us. Moving forward, the most challenging nanoscience ahead of us will be to find new chemical and physical methods of functionalizing gold nanoparticles with compounds that can promote efficient binding, clearance, and biocompatibility and to assess their safety to other biological systems and their long-term term effects on human health and reproduction (472 references). PMID:22109657

  12. Colloids in Biotechnology

    CERN Document Server

    Fanun, Monzer

    2010-01-01

    Colloids have come a long way from when Thomas Graham coined the term colloid to describe 'pseudo solutions'. This book enables scientists to close the gap between extensive research and translation into commercial options in biomedicine and biotechnology. It covers biosurfactants and surface properties, phase behavior, and orientational change of surfactant mixtures with peptides at the interface. It also covers adsorption of polymers and biopolymers on the surface and interface, discusses colloidal nanoparticles and their use in biotechnology, and delves into bioadhesion and microencapsulati

  13. Accuracy of probing attachment levels using a new computerized cemento-enamel junction probe.

    Science.gov (United States)

    Deepa, R; Prakash, Shobha

    2012-01-01

    The assessment of clinical attachment level (CAL) represents the gold standard for diagnosing and monitoring periodontal disease. The aim of the present study was to evaluate the performance of the newly introduced cemento-enamel junction (CEJ) probe in detecting CAL, using CEJ as a fixed reference point, and to compare the CEJ probe with the Florida stent probe (FSP) as well as with a standard manual probe, University of North Carolina-15 (UNC-15). Three examiners recorded the probing attachment level in 384 sites in case group (chronic periodontitis), and in 176 sites, in control group (healthy periodontal status), using the three probes. Subjects included both the sexes and ranged from 35 to 45 years. The experimental design was structured to balance the intra- and inter-examiner consistency at the same site during the two visits. CEJ probe showed higher intra-and inter-examiner consistency over both FSP and UNC-15 in both the case and control groups. Frequency distribution of differences of various magnitudes of repeated measurements ≤1 mm was in the higher range of 86.8% to 87.5% for CEJ probe. The FSP was more reproducible than UNC-15 in detecting relative attachment level (RAL). CEJ automated probe was found to have greatest potential for accuracy and consistency in detecting CAL than FSP and UNC-15. The automated probes appeared to be more reproducible than manual probes.

  14. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles.

    Science.gov (United States)

    Liu, Yanyan; Li, Hongchang; Guo, Bin; Wei, Lijuan; Chen, Bo; Zhang, Youyu

    2017-05-15

    Herein we report a novel switch-off fluorescent probe for highly selective determination of uric acid (UA) based on the inner filter effect (IFE), by using poly-(vinylpyrrolidone)-protected gold nanoparticles (PVP-AuNPs) and chondroitin sulfate-stabilized gold nanoclusters (CS-AuNCs) as the IFE absorber/fluorophore pair. In this IFE-based fluorometric assay, the newly designed CS-AuNCs were explored as an original fluorophore and the hydrogen peroxide (H 2 O 2 ) -driven formed PVP-AuNPs can be a powerful absorber to influence the excitation of the fluorophore, due to the complementary overlap between the absorption band of PVP-AuNPs and the emission band of CS-AuNCs. Under the optimized conditions, the extent of the signal quenching depends linearly on the H 2 O 2 concentration in the range of 1-100μM (R 2 =0.995) with a detection limit down to 0.3μM. Based on the H 2 O 2 -dependent fluorescence IFE principle, we further developed a new assay strategy to enable selective sensing of UA by using a specific uricase-catalyzed UA oxidation as the in situ H 2 O 2 generator. The proposed uricase-linked IFE-based assay exhibited excellent analytical performance for measuring UA over the concentration ranging from 5 to 100μM (R 2 =0.991), and can be successfully applied to detection of UA as low as 1.7μM (3σ) in diluted human serum samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    Science.gov (United States)

    Gatea, Florentina; Teodor, Eugenia Dumitra; Seciu, Ana-Maria; Covaci, Ovidiu Ilie; Mănoiu, Sorin; Lazăr, Veronica; Radu, Gabriel Lucian

    2015-07-01

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  16. Antitumour, antimicrobial and catalytic activity of gold nanoparticles synthesized by different pH propolis extracts

    Energy Technology Data Exchange (ETDEWEB)

    Gatea, Florentina; Teodor, Eugenia Dumitra, E-mail: eu-teodor@yahoo.com [National Institute for Biological Sciences, Centre of Bioanalysis (Romania); Seciu, Ana-Maria [National Institute for Biological Sciences, Cellular and Molecular Biology Department (Romania); Covaci, Ovidiu Ilie [SARA Pharm Solutions (Romania); Mănoiu, Sorin [National Institute for Biological Sciences, Cellular and Molecular Biology Department (Romania); Lazăr, Veronica [University of Bucharest, Faculty of Biology (Romania); Radu, Gabriel Lucian [University “Politehnica” Bucharest, Faculty of Applied Chemistry and Materials Science (Romania)

    2015-07-15

    The Romanian propolis was extracted in five different media, respectively, in water (pH 6.8), glycine buffer (pH 2.5), acetate buffer (pH 5), phosphate buffer (pH 7.4) and carbonate buffer (pH 9.2). The extracts presented different amounts of flavonoids and phenolic acids, increasing pH leading to higher concentrations of active compounds. Five variants of gold nanoparticles suspensions based on different pH Romanian propolis aqueous extracts were successfully synthesized. The obtained nanoparticles presented dimensions between 20 and 60 nm in dispersion form and around 18 nm in dried form, and different morphologies (spherical, hexagonal, triangular). Fourier transform infrared spectroscopy proved the attachment of organic compounds from propolis extracts to the colloidal gold suspensions and X-ray diffraction certified that the suspensions contain metallic gold. The obtained propolis gold nanoparticles do not exhibit any antibacterial or antifungal activity, but presented different catalytic activities and toxicity on tumour cells.

  17. Radio-active colloids in the functional exploration of the reticulo-endothelium system

    International Nuclear Information System (INIS)

    Chivot, J.J.

    1967-03-01

    A historical review describes the reticulo-endothelial system (R.E.S.) and aims at defining it and at explaining its operation. The methods used for its examination and the colloids utilized are considered. The author has been led to prepare a special type of colloid: an albuminous complex containing radio-iodine, 'C.A. 131 I', whose method of preparation and physical and biological examination are described. A human albumin, having a known optical density in solution, is heated until a change in the optical density indicates that an aggregation of the proteinic molecules has occurred. The denatured protein is iodated with 131 I. Electrophoretic, ultracentrifuge and autoradiographic controls are then carried out. This atoxic and metabolisable preparation of biological origin is compared with the better defined colloidal gold which serves as reference. C.A. 131 I is injected into mice. It is shown by radioactivity measurements, auto-radiographies on sections of the whole animal, and anthropo-gamma-metric detections that a high concentration occurs in the S.R.E. of the liver. These static results are only of limited importance however compared to those obtained from an in vivo study of the phenomenon. The author records the changes in the radioactivity of the blood derived from the carotid artery using a well-scintillator. He obtains directly a curve of the radioactivity of blood having a decreasing exponential form; the mathematical expression describing this curve is given. The biological half-life T 1/2 of the colloid in the blood is a measure of its phagocytosis by the S.R.E. cells. A supplementary check is provided by the direct recording of the hepatic activity using a suitably collimated exterior detector. A curve of increasing-exponential form is obtained and its parameters are corollary to the preceding curve. These tests carried out on guinea-pigs and rats make it possible to give to the S.R.E. a phagocytic index which is characteristic of its state of

  18. Probing Interfacial Friction and Dissipation in Granular Gold­ Nickel Alloys with a Quartz Crystal Oscillator in an External Magnetic Field

    Science.gov (United States)

    Stevens, K. M.; Krim, J.

    2015-03-01

    We present here a quartz crystal microbalance study of two-phase gold nickel alloys whose internal granular properties are probed by exposure to a fluctuating external magnetic field. The work is motivated by prior studies demonstrating that granular two-phase materials exhibited lower friction and wear than solid solution alloys with identical compositions. In particular, we report a ``flexing'' effect which appears when an external magnetic field is applied, and is manifested as a decrease in the magnitude of oscillation amplitude that is synchronized with the applied field; the effect is not seen on the complimentary solid solution samples. The effect is consistent with internal interfacial friction between nickel and gold grains, indicating a degree of freedom which may decrease friction even in the absence of an external magnetic field. This is supported through analysis of energy dissipation in the system, using the Butterworth­-Van Dyke equivalent circuit model. Data and interpretation are also presented that rule out alternate explanations such as giant magnetoresistance and/or other resistive phenomenon within the film. Funding provided by NSF DMR0805204. Thanks to L. Pan for sample preparation.

  19. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Science.gov (United States)

    Di Bucchianico, Sebastiano; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-05-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  20. One-dimensional self-assembly of gold nanoparticles for tunable surface plasmon resonance properties

    International Nuclear Information System (INIS)

    Yang Yong; Matsubara, Shigemasha; Nogami, Masayuki; Shi Jianlin; Huang Weiming

    2006-01-01

    The localized surface plasmon resonance (LSPR) is a collective oscillation of the nanoparticle conduction electrons. LSPR excitation in silver and gold nanoparticles produces strong extinction and scattering spectra that in recent years have been used for important sensing and spectroscopy applications. Tuning the optoelectronic properties by controlling coupled SP modes in metals is one of the major challenges in the area of metal nanomaterials. Here we develop a simple method to fabricate linear-chainlike aggregates of gold nanoparticles (so-called nanochains), tuning the linear optical properties in a wide wavelength range from visible to the near infrared. The aggregation behaviour and linear self-assembly mechanism of citrate-stabilized gold colloids as provoked by the addition of cetyltrimethylammonium bromide (CTAB) are also analysed. The CTAB with appropriate concentration serves as the 'glue' that can link the {100} facets of two neighbour Au NPs, which leads to an anisotropic distribution of the residual surface charge, and this extrinsic electric dipole formation is responsible for the linear organization of the gold NPs into short chains

  1. Synthesis and characterization of core-shell Fe3O4-gold-chitosan nanostructure

    Directory of Open Access Journals (Sweden)

    Salehizadeh Hossein

    2012-01-01

    Full Text Available Abstract Background Fe3O4-gold-chitosan core-shell nanostructure can be used in biotechnological and biomedical applications such as magnetic bioseparation, water and wastewater treatment, biodetection and bioimaging, drug delivery, and cancer treatment. Results Magnetite nanoparticles with an average size of 9.8 nm in diameter were synthesized using the chemical co-precipitation method. A gold-coated Fe3O4 monotonous core-shell nanostructure was produced with an average size of 15 nm in diameter by glucose reduction of Au3+ which is then stabilized with a chitosan cross linked by formaldehyde. The results of analyses with X-ray diffraction (XRD, Fourier Transformed Infrared Spectroscopy (FTIR, Transmission Electron Microscopy (TEM, and Atomic Force Microscopy (AFM indicated that the nanoparticles were regularly shaped, and agglomerate-free, with a narrow size distribution. Conclusions A rapid, mild method for synthesizing Fe3O4-gold nanoparticles using chitosan was investigated. A magnetic core-shell-chitosan nanocomposite, including both the supermagnetic properties of iron oxide and the optical characteristics of colloidal gold nanoparticles, was synthesized.

  2. Atomically Precise Nanocluster Assemblies Encapsulating Plasmonic Gold Nanorods.

    Science.gov (United States)

    Chakraborty, Amrita; Fernandez, Ann Candice; Som, Anirban; Mondal, Biswajit; Natarajan, Ganapati; Paramasivam, Ganesan; Lahtinen, Tanja; Häkkinen, Hannu; Nonappa, Nonappa; Pradeep, Thalappil

    2018-04-01

    We present the self-assembled structures of atomically precise, ligand-protected noble metal nanoclusters leading to encapsulation of plasmonic gold nanorods (GNRs). Unlike highly sophisticated DNA nanotechnology, our approach demonstrates a strategically simple hydrogen bonding-directed self-assembly of nanoclusters leading to octahedral nanocrystals encapsulating GNRs. Specifically, we use the p-mercaptobenzoic acid (pMBA) protected atomically precise nanocluster, Na4[Ag44(pMBA)30] and pMBA functionalized GNRs. High resolution transmission and scanning transmission electron tomographic reconstructions suggest that the geometry of the GNR surface is responsible for directing the assembly of silver nanoclusters via H-bonding leading to octahedral symmetry. Further, use of water dispersible gold nanoclusters, Au~250(pMBA)n and Au102(pMBA)44 also formed layered shells encapsulating GNRs. Such cluster assemblies on colloidal particles present a new category of precision hybrids with diverse possibilities. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Facile synthesis of chondroitin sulfate-stabilized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: weilixj8510@163.com [School of Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan 450002 (China); Li Xin; Su Hui; Zhao Shiju; Li Yanyun; Hu Jiandong [School of Science, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, Henan 450002 (China)

    2011-02-15

    A facile and simple method for the synthesis of biocompatible gold nanoparticles (AuNPs) at room temperature has been developed by using sodium borohydride as the reducing agent and employing an inexpensive water-soluble chondroitin sulfate (CS) biopolymer as the stabilizing agent. The as-prepared AuNPs were characterized with ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). Additionally, the stability of AuNPs in aqueous solution was investigated as a function of the electrolyte sodium chloride concentration. The experimental results showed that even high sodium chloride concentration (1 M) also did not destabilize the colloidal gold solution. So it could be speculated that the high stability of AuNPs should be attributed to the electrostatic repulsion and steric hindrance between the AuNPs stabilized by CS molecules, which wrapped around the surface of as-prepared AuNPs and prevented their agglomeration, and simultaneously improve biocompatibility of AuNPs as well.

  4. Facile synthesis of chondroitin sulfate-stabilized gold nanoparticles

    International Nuclear Information System (INIS)

    Li Wei; Li Xin; Su Hui; Zhao Shiju; Li Yanyun; Hu Jiandong

    2011-01-01

    A facile and simple method for the synthesis of biocompatible gold nanoparticles (AuNPs) at room temperature has been developed by using sodium borohydride as the reducing agent and employing an inexpensive water-soluble chondroitin sulfate (CS) biopolymer as the stabilizing agent. The as-prepared AuNPs were characterized with ultraviolet-visible (UV-vis) spectroscopy and transmission electron microscopy (TEM). Additionally, the stability of AuNPs in aqueous solution was investigated as a function of the electrolyte sodium chloride concentration. The experimental results showed that even high sodium chloride concentration (1 M) also did not destabilize the colloidal gold solution. So it could be speculated that the high stability of AuNPs should be attributed to the electrostatic repulsion and steric hindrance between the AuNPs stabilized by CS molecules, which wrapped around the surface of as-prepared AuNPs and prevented their agglomeration, and simultaneously improve biocompatibility of AuNPs as well.

  5. Soluble Supercapacitors: Large and Reversible Charge Storage in Colloidal Iron-Doped ZnO Nanocrystals.

    Science.gov (United States)

    Brozek, Carl K; Zhou, Dongming; Liu, Hongbin; Li, Xiaosong; Kittilstved, Kevin R; Gamelin, Daniel R

    2018-05-09

    Colloidal ZnO semiconductor nanocrystals have previously been shown to accumulate multiple delocalized conduction-band electrons under chemical, electrochemical, or photochemical reducing conditions, leading to emergent semimetallic characteristics such as quantum plasmon resonances and raising prospects for application in multielectron redox transformations. Here, we demonstrate a dramatic enhancement in the capacitance of colloidal ZnO nanocrystals through aliovalent Fe 3+ -doping. Very high areal and volumetric capacitances (33 μF cm -2 , 233 F cm -3 ) are achieved in Zn 0.99 Fe 0.01 O nanocrystals that rival those of the best supercapacitors used in commercial energy-storage devices. The redox properties of these nanocrystals are probed by potentiometric titration and optical spectroscopy. These data indicate an equilibrium between electron localization by Fe 3+ dopants and electron delocalization within the ZnO conduction band, allowing facile reversible charge storage and removal. As "soluble supercapacitors", colloidal iron-doped ZnO nanocrystals constitute a promising class of solution-processable electronic materials with large charge-storage capacity attractive for future energy-storage applications.

  6. Highly Tunable Complementary Micro/Submicro-Nanopatterned Surfaces Combining Block Copolymer Self-Assembly and Colloidal Lithography.

    Science.gov (United States)

    Chang, Tongxin; Du, Binyang; Huang, Haiying; He, Tianbai

    2016-08-31

    Two kinds of large-area ordered and highly tunable micro/submicro-nanopatterned surfaces in a complementary manner were successfully fabricated by elaborately combining block copolymer self-assembly and colloidal lithography. Employing a monolayer of polystyrene (PS) colloidal spheres assembled on top as etching mask, polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) or polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) micelle films were patterned into micro/submicro patches by plasma etching, which could be further transferred into micropatterned metal nanoarrays by subsequent metal precursor loading and a second plasma etching. On the other hand, micro/submicro-nanopatterns in a complementary manner were generated via preloading a metal precursor in initial micelle films before the assembly of PS colloidal spheres on top. Both kinds of micro/submicro-nanopatterns showed good fidelity at the micro/submicroscale and nanoscale; meanwhile, they could be flexibly tuned by the sample and processing parameters. Significantly, when the PS colloidal sphere size was reduced to 250 nm, a high-resolution submicro-nanostructured surface with 3-5 metal nanoparticles in each patch or a single-nanoparticle interconnected honeycomb network was achieved. Moreover, by applying gold (Au) nanoparticles as anchoring points, micronanopatterned Au arrays can serve as a flexible template to pattern bovine serum albumin (BSA) molecules. This facile and cost-effective approach may provide a novel platform for fabrication of micropatterned nanoarrays with high tunability and controllability, which are promising in the applications of biological and microelectronic fields.

  7. Bulk and interfacial stresses in suspensions of soft and hard colloids

    International Nuclear Information System (INIS)

    Truzzolillo, D; Roger, V; Dupas, C; Cipelletti, L; Mora, S

    2015-01-01

    We explore the influence of particle softness and internal structure on both the bulk and interfacial rheological properties of colloidal suspensions. We probe bulk stresses by conventional rheology, by measuring the flow curves, shear stress versus strain rate, for suspensions of soft, deformable microgel particles and suspensions of near hard-sphere-like silica particles. A similar behaviour is seen for both kinds of particles in suspensions at concentrations up to the random close packing volume fraction, in agreement with recent theoretical predictions for sub-micron colloids. Transient interfacial stresses are measured by analyzing the patterns formed by the interface between the suspensions and their solvent, due to a generalized Saffman–Taylor hydrodynamic instability. At odds with the bulk behaviour, we find that microgels and hard particle suspensions exhibit vastly different interfacial stress properties. We propose that this surprising behaviour results mainly from the difference in particle internal structure (polymeric network for microgels versus compact solid for the silica particles), rather than softness alone. (paper)

  8. Synthesis, Structure, Stability and Redispersion of Gold-based Nanoparticles

    Science.gov (United States)

    Tiruvalam, Ram Chandra

    Nanoscale gold has been shown to possess an intriguing combination of unexpected optical, photochemical and catalytic properties. The ability to control the size, shape, morphology, composition and dispersion of gold-based nanostructures is key to optimizing their performance for nanotechnology applications. The advanced electron microscopy studies described in this thesis analyze three important aspects of gold and gold-palladium alloy nanoparticles: namely, (i) the ability to synthesize gold nanoparticles of controlled size and shape in an aqueous medium; (ii) the colloidal preparation of designer gold-palladium alloys for selective oxidation catalysis; and (iii) the ability to disperse gold as finely and homogeneously as possible on a metal oxide or carbon support. The ability to exploit the nanoscale properties of gold for various engineering applications often depends on our ability to control size and shape of the nanoscale entity by careful manipulation of the synthesis parameters. We have explored an aqueous based synthesis route, using oleylamine as both a reductant and surfactant, for preparing gold nanostructures. By systematically varying synthesis parameters such as oleylamine concentration, reaction temperature, and aging time it is possible to identify processing regimens that generate Au nanostructures having either pseudo-spherical, faceted polyhedral, nanostar or wire shaped morphologies. Furthermore, by quenching the reaction partway through it is possible to create a class of metastable Au-containing structures such as nanocubes, nanoboxes and nanowires. Possible formation mechanisms for these gold based nano-objects are discussed. There is a growing interest in using supported bimetallic AuPd alloy nanoparticles for selective oxidation reactions. In this study, a systematic series of size controlled AuPd bimetallic particles have been prepared by colloidal synthesis methods. Particles having random alloy structures, as well as `designer

  9. Colloidal paradigm in supercapattery electrode systems

    Science.gov (United States)

    Chen, Kunfeng; Xue, Dongfeng

    2018-01-01

    Among decades of development, electrochemical energy storage systems are now sorely in need of a new design paradigm at the nano size and ion level to satisfy the higher energy and power demands. In this review paper, we introduce a new colloidal electrode paradigm for supercapattery that integrates multiple-scale forms of matter, i.e. ion clusters, colloidal ions, and nanosized materials, into one colloid system, coupled with multiple interactions, i.e. electrostatic, van der Waals forces, and chemical bonding, thus leading to the formation of many redox reactive centers. This colloidal electrode not only keeps the original ionic nature in colloidal materials, but also creates a new attribute of high electroactivity. Colloidal supercapattery is a perfect application example of the novel colloidal electrode, leading to higher specific capacitance than traditional electrode materials. The high electroactivity of the colloidal electrode mainly comes from the contribution of exposed reactive centers, owing to the confinement effect of carbon and a binder matrix. Systematic and thorough research on the colloidal system will significantly promote the development of fundamental science and the progress of advanced energy storage technology.

  10. Coating of AFM probes with aquatic humic and non-humic NOM to study their adhesion properties

    KAUST Repository

    Aubry, Cyril; Gutié rrez, Leonardo A.; Croue, Jean-Philippe

    2013-01-01

    -coated colloidal probes. AFM-generated force-distance curves were analyzed to elucidate the nature and mechanisms of these interacting forces. Electrostatics and steric interactions were important contributors to repulsive forces during approach, although

  11. Liquid crystal colloids

    CERN Document Server

    Muševič, Igor

    2017-01-01

    This book brings together the many concepts and discoveries in liquid crystal colloids contributed over the last twenty years and scattered across numerous articles and book chapters. It provides both a historical overview of the development of the field and a clear perspective on the future applications in photonics. The book covers all phenomena observed in liquid crystal colloids with an emphasis on experimental tools and applications of topology in condensed matter, as well as practical micro-photonics applications. It includes a number of spectacular manifestations of new topological phenomena not found or difficult to observe in other systems. Starting from the early works on nematic colloids, it explains the basics of topological defects in ordered media, charge and winding, and the elastic forces between colloidal particles in nematics. Following a detailed description of experimental methods, such as optical tweezing and particle tracking, the book eases the reader into the theoretical part, which de...

  12. Liquid Crystal Colloids

    Science.gov (United States)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  13. Mercury adsorption to gold nanoparticle and thin film surfaces

    Science.gov (United States)

    Morris, Todd Ashley

    Mercury adsorption to gold nanoparticle and thin film surfaces was monitored by spectroscopic techniques. Adsorption of elemental mercury to colloidal gold nanoparticles causes a color change from wine-red to orange that was quantified by UV-Vis absorption spectroscopy. The wavelength of the surface plasmon mode of 5, 12, and 31 nm gold particles blue-shifts 17, 14, and 7.5 nm, respectively, after a saturation exposure of mercury vapor. Colorimetric detection of inorganic mercury was demonstrated by employing 2.5 nm gold nanoparticles. The addition of low microgram quantities of Hg 2+ to these nanoparticles induces a color change from yellow to peach or blue. It is postulated that Hg2+ is reduced to elemental mercury by SCN- before and/or during adsorption to the nanoparticle surface. It has been demonstrated that surface plasmon resonance spectroscopy (SPRS) is sensitive to mercury adsorption to gold and silver surfaces. By monitoring the maximum change in reflectivity as a function of amount of mercury adsorbed to the surface, 50 nm Ag films were shown to be 2--3 times more sensitive than 50 nm Au films and bimetallic 15 nm Au/35 nm Ag films. In addition, a surface coverage of ˜40 ng Hg/cm2 on the gold surface results in a 0.03° decrease in the SPR angle of minimum reflectivity. SPRS was employed to follow Hg exposure to self-assembled monolayers (SAMs) on Au. The data indicate that the hydrophilic or hydrophobic character of the SAM has a significant effect on the efficiency of Hg penetration. Water adsorbed to carboxylic acid end group of the hydrophilic SAMs is believed to slow the penetration of Hg compared to methyl terminated SAMs. Finally, two protocols were followed to remove mercury from gold films: immersion in concentrated nitric acid and thermal annealing up to 200°C. The latter protocol is preferred because it removes all of the adsorbed mercury from the gold surface and does not affect the morphology of the gold surface.

  14. Injectable Colloidal Gold for Use in Intrafractional 2D Image-Guided Radiation Therapy

    DEFF Research Database (Denmark)

    Jølck, Rasmus Irming; Rydhog, Jonas S.; Christensen, Anders Nymark

    2015-01-01

    radio-opacity, which allows for marker-based image guidance in 2D and 3D X-ray imaging during radiation therapy. This is achieved by surface-engineering gold nanoparticles to be highly compatible with a carbohydrate-based gelation matrix. The new fiducial marker is investigated in mice where...

  15. Study of tryptophan assisted synthesis of gold nanoparticles by combining UV-Vis, fluorescence, and SERS spectroscopy

    International Nuclear Information System (INIS)

    Iosin, Monica; Baldeck, Patrice; Astilean, Simion

    2010-01-01

    We developed a rapid and non-toxic method for the preparation of colloidal gold nanoparticles (GNPs) by using tryptophan (Trp) as reducing/stabilizing agent. We show that the temperature has a major influence on the kinetics of gold ion reduction and the crystal growth, higher temperatures favoring the synthesis of anisotropic nanoparticles (triangles and hexagons). The as-synthesized nanostructures were characterized by UV-Vis absorption spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), fluorescence, and surface-enhanced Raman scattering (SERS) spectroscopy. The UV-Vis measurements confirmed that temperature is a critical factor in the synthesis process, having a major effect on the shape of the synthesized GNPs. Moreover, fluorescence spectroscopy was able to monitor the quenching of the Trp fluorescence during the in situ synthesis of GNPs. Using Trp as molecular analyte to evaluate the SERS efficiency of as-prepared GNPs at different temperatures, we demonstrated that the Raman enhancement of the synthesized gold nanoplates is higher than that of the gold spherical nanoparticles.

  16. Driving dynamic colloidal assembly using eccentric self-propelled colloids

    OpenAIRE

    Ma, Zhan; Lei, Qun-li; Ni, Ran

    2017-01-01

    Designing protocols to dynamically direct the self-assembly of colloidal particles has become an important direction in soft matter physics because of the promising applications in fabrication of dynamic responsive functional materials. Here using computer simulations, we found that in the mixture of passive colloids and eccentric self-propelled active particles, when the eccentricity and self-propulsion of active particles are high enough, the eccentric active particles can push passive coll...

  17. Colloidal Au-enhanced surface plasmon resonance imaging: application in a DNA hybridization process

    International Nuclear Information System (INIS)

    Manera, M G; Spadavecchia, J; Taurino, A; Rella, R

    2010-01-01

    The detection of the DNA hybridization mechanism using monodispersed gold nanoparticles as labels is an interesting alternative to increase the sensitivity of the SPR imaging technique. DNA-modified Au nanoparticles (DNA-Au NPs) containing single-stranded (ss) portions of DNA were prepared by monitoring their monolayer formation by UV–vis spectroscopy. The hybridization process between specific thio-oligonucleotides immobilized on the DNA–Au NPs and the corresponding complementary strands is reported and compared with the traditional hybridization process on properly self-assembled thin gold films deposited on glass substrates. A remarkable signal amplification is observed, following the incorporation of colloidal Au into a SPR biosensing experiment, resulting in an increased SPR response to DNA–DNA interactions. In particular Fusarium thiolated DNA (5'HS poly(T) 15 ATC CCT CAA AAA CTG CCG CT-3) and trichothecenes complementary DNA (5'-AGC GGC AGT TTT TGA GGG AT-3') sequences have been explored due to their possible application to agro-industry for the control of food quality

  18. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  19. Influence of the synthesis conditions of gold nanoparticles on the structure and architectonics of dipeptide composites

    Energy Technology Data Exchange (ETDEWEB)

    Loskutov, Alexander I., E-mail: ailoskutov@yandex.ru [Moscow State Technological University STANKIN (Russian Federation); Guskova, Olga A. [Leibniz Institute of Polymer Research Dresden (Germany); Grigoriev, Sergey N.; Oshurko, Vadim B. [Moscow State Technological University STANKIN (Russian Federation); Tarasiuk, Aleksei V. [Russian Academy of Medical Sciences, FSBI “Zakusov Institute of Pharmacology” (Russian Federation); Uryupina, Olga Ya. [Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry (Russian Federation)

    2016-08-15

    A wide variety of peptides and their natural ability to self-assemble makes them very promising candidates for the fabrication of solid-state devices based on nano- and mesocrystals. In this work, we demonstrate an approach to form peptide composite layers with gold nanoparticles through in situ reduction of chloroauric acid trihydrate by dipeptide and/or dipeptide/formaldehyde mixture in the presence of potassium carbonate at different ratios of components. Appropriate composition of components for the synthesis of highly stable gold colloidal dispersion with particle size of 34–36 nm in dipeptide/formaldehyde solution is formulated. Infrared spectroscopy results indicate that dipeptide participates in the reduction process, conjugation with gold nanoparticles and the self-assembly in 2D, which accompanied by changing peptide chain conformations. The structure and morphology of the peptide composite solid layers with gold nanoparticles on gold, mica and silica surfaces are characterized by atomic force microscopy. In these experiments, the flat particles, dendrites, chains, mesocrystals and Janus particles are observed depending on the solution composition and the substrate/interface used. The latter aspect is studied on the molecular level using computer simulations of individual peptide chains on gold, mica and silica surfaces.

  20. Glass/Jamming Transition in Colloidal Aggregation

    Science.gov (United States)

    Segre, Philip N.; Prasad, Vikram; Weitz, David A.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have studied colloidal aggregation in a model colloid plus polymer system with short-range attractive interactions. By varying the colloid concentration and the strength of the attraction, we explored regions where the equilibrium phase is expected to consist of colloidal crystallites in coexistance with colloidal gas (i.e. monomers). This occurs for moderate values of the potential depth, U approximately equal to 2-5 kT. Crystallization was not always observed. Rather, over an extended sub-region two new metastable phases appear, one fluid-like and one solid-like. These were examined in detail with light scattering and microscopy techniques. Both phases consist of a near uniform distribution of small irregular shaped clusters of colloidal particles. The dynamical and structural characteristics of the ergodic-nonergodic transition between the two phases share much in common with the colloidal hard sphere glass transition.

  1. Nonlinear optical probe of biopolymer adsorption on colloidal particle surface: poly-L-lysine on polystyrene sulfate microspheres.

    Science.gov (United States)

    Eckenrode, Heather M; Dai, Hai-Lung

    2004-10-12

    A nonlinear optical technique--second harmonic generation (SHG)--has been applied to characterize the adsorption of poly-L-lysine on micrometer size polystyrene particles, whose surface is covered with negatively charged sulfonate groups, in aqueous solutions. Adsorption behavior of the biopolymer with two chain lengths (14 and 75 amino acid units; PL14 and PL75) has been examined. Centrifugation experiments were also performed to support the adsorption measurements made using SHG. The adsorption free energies of the two polymers PL75 and PL14 are determined as -16.57 and -14.40 kcal/mol, respectively. The small difference in the adsorption free energies of the two chain lengths, however, leads to dramatic difference in the concentration needed for saturated surface coverage: nearly 50 times higher concentration is needed for the smaller polymer. Under acidic colloidal conditions, polylysine is found to adsorb in a relatively flat conformation on the surface. The surface area that each polylysine molecule occupies is nearly 1 order of magnitude larger than the size of the molecule in its extended form. The low adsorption density is likely a result from Coulombic repulsion between the positive charges on the amino acid units of PL. The measurements demonstrate the utility of SHG as an efficient and sensitive experimental approach for measuring adsorption characteristics of bio/macromolecules on colloidal particles and define surface and colloidal conditions for achieving maximum surface coverage of a widely used biopolymer. Copyright 2004 American Chemical Society

  2. Surface-enhanced Raman scattering of the adsorption of pesticide endosulfan on gold nanoparticles.

    Science.gov (United States)

    Hernández-Castillo, M I; Zaca-Morán, O; Zaca-Morán, P; Orduña-Diaz, A; Delgado-Macuil, R; Rojas-López, M

    2015-01-01

    The absorption of pesticide endosulfan on the surface of gold nanoparticles results from the formation of micrometric structures (1-10 μm) with irregular shape because of the aggregation of individual particles. Such aggregation of gold nanoparticles after absorption of pesticide shows a surface-enhanced Raman scattering (SERS) spectrum, whose intensity depends on the concentration of endosulfan. In addition, the discoloration of the colloidal solution and a diminishing of the intensity of the surface plasmon resonance absorption from individual particles were observed by UV-visible spectroscopy. At the same time, a second band between 638 and 700 nm confirms the formation of aggregates of gold nanoparticles as the concentration of endosulfan increases. Finally, we used the SERS intensity of the S-O stretching vibration at 1239 cm(-1) from the SO3 group as a measure of concentration of pesticide endosulfan. This method could be used to estimate the level of pollution in water by endosulfan in a simple and practical form.

  3. Gold Nanoparticle Conjugation Enhances the Antiacanthamoebic Effects of Chlorhexidine

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Anwar, Ayaz; Shah, Muhammad Raza

    2015-01-01

    Acanthamoeba keratitis is a serious infection with blinding consequences and often associated with contact lens wear. Early diagnosis, followed by aggressive topical application of drugs, is a prerequisite in successful treatment, but even then prognosis remains poor. Several drugs have shown promise, including chlorhexidine gluconate; however, host cell toxicity at physiologically relevant concentrations remains a challenge. Nanoparticles, subcolloidal structures ranging in size from 10 to 100 nm, are effective drug carriers for enhancing drug potency. The overall aim of the present study was to determine whether conjugation with gold nanoparticles enhances the antiacanthamoebic potential of chlorhexidine. Gold-conjugated chlorhexidine nanoparticles were synthesized. Briefly, gold solution was mixed with chlorhexidine and reduced by adding sodium borohydride, resulting in an intense deep red color, indicative of colloidal gold-conjugated chlorhexidine nanoparticles. The synthesis was confirmed using UV-visible spectrophotometry that shows a plasmon resonance peak of 500 to 550 nm, indicative of gold nanoparticles. Further characterization using matrix-assisted laser desorption ionization-mass spectrometry showed a gold-conjugated chlorhexidine complex at m/z 699 ranging in size from 20 to 100 nm, as determined using atomic force microscopy. To determine the amoebicidal and amoebistatic effects, amoebae were incubated with gold-conjugated chlorhexidine nanoparticles. For controls, amoebae also were incubated with gold and silver nanoparticles alone, chlorhexidine alone, neomycin-conjugated nanoparticles, and neomycin alone. The findings showed that gold-conjugated chlorhexidine nanoparticles exhibited significant amoebicidal and amoebistatic effects at 5 μM. Amoebicidal effects were observed by parasite viability testing using a Trypan blue exclusion assay and flow-cytometric analysis using propidium iodide, while amoebistatic effects were observed using growth

  4. The SERS and TERS effects obtained by gold droplets on top of Si nanowires.

    Science.gov (United States)

    Becker, M; Sivakov, V; Andrä, G; Geiger, R; Schreiber, J; Hoffmann, S; Michler, J; Milenin, A P; Werner, P; Christiansen, S H

    2007-01-01

    We show that hemispherical gold droplets on top of silicon nanowires when grown by the vapor-liquid-solid (VLS) mechanism, can produce a significant enhancement of Raman scattered signals. Signal enhancement for a few or even just single gold droplets is demonstrated by analyzing the enhanced Raman signature of malachite green molecules. For this experiment, trenches (approximately 800 nm wide) were etched in a silicon-on-insulator (SOI) wafer along crystallographic directions that constitute sidewalls ({110} surfaces) suitable for the growth of silicon nanowires in directions with the intention that the gold droplets on the silicon nanowires can meet somewhere in the trench when growth time is carefully selected. Another way to realize gold nanostructures in close vicinity is to attach a silicon nanowire with a gold droplet onto an atomic force microscopy (AFM) tip and to bring this tip toward another gold-coated AFM tip where malachite green molecules were deposited prior to the measurements. In both experiments, signal enhancement of characteristic Raman bands of malachite green molecules was observed. This indicates that silicon nanowires with gold droplets atop can act as efficient probes for tip-enhanced Raman spectroscopy (TERS). In our article, we show that a nanowire TERS probe can be fabricated by welding nanowires with gold droplets to AFM tips in a scanning electron microscope (SEM). TERS tips made from nanowires could improve the spatial resolution of Raman spectroscopy so that measurements on the nanometer scale are possible.

  5. Distribution of cesium between colloid-rock phases-establishment of experimental system and investigation of Cs distribution between colloid and rock

    International Nuclear Information System (INIS)

    Nakata, Kotaro

    2006-01-01

    Distribution and re-distribution of cesium between 3-phases (colloid, rock and water) was investigated. Analcite and bentonite colloid ware used as colloid phase and muscovite was used as rock phase. Before investigating the distribution between 3-phases, sorption and desorption behavior of Cs on analcite colloid, bentonite colloid and muscovite was investigated. It was found some fraction of Cs sorbed irreversibly on analcite colloid, while Cs sorbed reversibly on bentonite colloid. The experimental system was established for assessment of the distribution of nuclides between 3-phases by using combination of membrane filter and experimental cell. Since colloid and muscovite were separated by membrane filter, sorption of colloid on muscovite could be prevented and we could obtain distribution of Cs as ion. The distribution of Cs between 3-phases were obtained by this experimental system. Furthermore, re-distribution experiment was also carried out by using this system. After 7 days contact of colloid with Cs, distribution of sorbed Cs on colloid to liquid or muscovite phase was investigated. Comparing sorption and desorption isotherm with the distribution of Cs between 3-phases, it was found that Kd value of colloid (ratio of Cs concentration in liquid phase to amount of sorbed Cs on colloid phase) estimated in 2-phases (water and colloid) is different from that in 3-phases. Furthermore, in the case of analcite colloid, Kd value of colloid obtained in 3-phases distribution experiment was different from that obtained in re-distribution experiment. This is considered because of the irreversibility of Cs sorption on analcite colloid. Thus, it was found distribution of Cs in 3-phases was not predictable from sorption and desorption isotherm or Kd value of 2-phases (water-rock, water-colloid). (author)

  6. A short textbook of colloid chemistry

    CERN Document Server

    Jirgensons, B

    1962-01-01

    A Short Textbook of Colloid Chemistry, Second Revised Edition details the factual aspect of colloid chemistry that includes the basic facts, established empirical and mathematical relationships, and practical applications. The chapters of the title are organized into two parts. In the first part, the text discusses the general concepts of colloid chemistry, such as the history and scope, basic terms, and basic methods in experiment with colloids. Part Two covers the technical aspect of colloid chemistry, such as the optical properties, electrical properties, and viscosity. The book will be of

  7. Measurement of the Four-Point Susceptibility of an Out-of-Equilibrium Colloidal Solution of Nanoparticles Using Time-Resolved Light Scattering

    DEFF Research Database (Denmark)

    Maggi, Claudio; Di Leonardo, Ricardo; ruocco, giancarlo

    2012-01-01

    The spatial fluctuations of the dynamics of a colloidal system composed of nanoparticles are probed by a novel experimental setup, which combines homodyne and heterodyne dynamic light scattering focused onto a micron-sized volume via a microscope objective. The technique is used to measure the four-point...

  8. Filtration of polydispersed colloids

    International Nuclear Information System (INIS)

    Nuttall, H.E.

    1988-01-01

    In this study, the dynamic microscopic form of the population balance model is applied to the problem of polydispersed particle capture in one spatial diffusion. This mathematical modeling approach can be applied to the difficult and potentially important problem of particulate (radiocolloid) transport in the groundwater surrounding a nuclear waste disposal site. To demonstrate the population balance methodology, the equations were developed and used to investigate transport and capture of polydispersed colloids in packed columns. Modeling simulations were compared to experimental column data. The multidimensional form of the population balance equation was used to analyze the transport and capture of polydispersed colloids. A numerical model was developed to describe transport of polydispersed colloids through a one-dimensional porous region. The effects of various size distributions were investigated in terms of capture efficiency. For simulating the column data, it was found by trial and error that as part of the population balance model a linear size dependent filtration function gave a good fit to the measured colloid concentration profile. The effects of constant versus size dependent filtration coefficients were compared and the differences illustrated by the calculated colloid profile within the column. Also observed from the model calculations was the dramatically changing liquid-phase colloid-size distribution which was plotted as a function of position down the column. This modeling approach was excellent for describing and understanding microscopic filtration in porous media

  9. Gas-Stabilizing Gold Nanocones for Acoustically Mediated Drug Delivery.

    Science.gov (United States)

    Mannaris, Christophoros; Teo, Boon M; Seth, Anjali; Bau, Luca; Coussios, Constantin; Stride, Eleanor

    2018-04-25

    The efficient penetration of drugs into tumors is a major challenge that remains unmet. Reported herein is a strategy to promote extravasation and enhanced penetration using inertial cavitation initiated by focused ultrasound and cone-shaped gold nanoparticles that entrap gas nanobubbles. The cones are capable of initiating inertial cavitation under pressures and frequencies achievable with existing clinical ultrasound systems and of promoting extravasation and delivery of a model large therapeutic molecule in an in vitro tissue mimicking flow phantom, achieving penetration depths in excess of 2 mm. Ease of functionalization and intrinsic imaging capabilities provide gold with significant advantages as a material for biomedical applications. The cones show neither cytotoxicity in Michigan Cancer Foundation (MCF)-7 cells nor hemolytic activity in human blood at clinically relevant concentrations and are found to be colloidally stable for at least 5 d at 37 °C and several months at 4 °C. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  11. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  12. Colloid remediation in groundwater by polyelectrolyte capture

    International Nuclear Information System (INIS)

    Nuttall, H.E.; Rao, S.; Jain, R.

    1992-01-01

    This paper describes an ongoing study to characterize groundwater colloids, to understand the geochemical factors affecting colloid transport in groundwater, and to develop an in-situ colloid remediation process. The colloids and suspended particulate matter used in this study were collected from a perched aquifer site that has radiation levels several hundred times the natural background and where previous researchers have measured and reported the presence of radiocolloids containing plutonium and americium. At this site, radionuclides have spread over several kilometers. Inorganic colloids collected from water samples are characterized with respect to concentration, mineralogy, size distribution, electrophoretic mobility (zeta potential), and radioactivity levels. Presented are the methods used to investigate the physiochemical factors affecting colloid transport and the preliminary analytical results. Included below are a description of a colloid transport model and the corresponding computational code, water analyses, characterization of the inorganic colloids, and a conceptual description of a process for in-situ colloid remediation using the phenomenon of polyelectrolyte capture

  13. Towards thiol functionalization of vanadium pentoxide nanotubes using gold nanoparticles

    International Nuclear Information System (INIS)

    Lavayen, V.; O'Dwyer, C.; Cardenas, G.; Gonzalez, G.; Sotomayor Torres, C.M.

    2007-01-01

    Template-directed synthesis is a promising route to realize vanadate-based 1-D nanostructures, an example of which is the formation of vanadium pentoxide nanotubes and associated nanostructures. In this work, we report the interchange of long-chained alkyl amines with alkyl thiols. This reaction was followed using gold nanoparticles prepared by the Chemical Liquid Deposition (CLD) method with an average diameter of ∼0.9nm and a stability of ∼85 days. V 2 O 5 nanotubes (VOx-NTs) with lengths of ∼2μm and internal hollow diameters of 20-100nm were synthesized and functionalized in a Au-acetone colloid with a nominal concentration of ∼4x10 -3 mol dm -3 . The interchange reaction with dodecylamine is found only to occur in polar solvents and incorporation of the gold nanoparticles is not observed in the presence of n-decane

  14. Basic electrochemical properties of sputtered gold film electrodes

    International Nuclear Information System (INIS)

    Libansky, Milan; Zima, Jiri; Barek, Jiri; Reznickova, Alena; Svorcik, Vaclav; Dejmkova, Hana

    2017-01-01

    Gold nanolayers made by sputtering of pure gold (physical vapour deposition) are commonly used for many biophysical and material applications. However, the use of sputtering method for fabrication of working electrodes for electroanalytical purposes is less common. This paper focuses on the testing and characterization of sputtered working roughened gold nanostructured film electrodes, which fall into category of upcoming desirable new generation of nanostructured gold working electrodes. Gold nanostructured films (80 nm thin) were sputtered onto 50 μm thin PTFE substrates with three different types of treatment: pristine, plasma treated, and plasma treated and subsequently spontaneously grafted with biphenyl-4,4′-dithiol. The characterization of gold nanostructured film electrodes was carried out by examination of the electrode reaction of standard redox probes (ferrocyanide/ferricyanide, hydroquinone/benzoquinone) in different types of supporting electrolytes (BR buffers of various pH, KCl, KNO 3 , H 2 SO 4 ), by exploration of the electrode surface by scanning electron microscopy, by atomic force microscopy accompanied by elementary analysis and contact angle measurements. The testing of electrodes was complemented by an attempt to calculate their real surface areas from Randles-Sevcik equation. All results were compared to conventional bulk gold electrode. The practical applicability of the nanostructured gold electrodes as sensors for the determination of environmental pollutants was verified by voltammetric determination of hydroquinone as a model electrochemically oxidisable organic environmental pollutant.

  15. Clusters in attractive colloids

    Energy Technology Data Exchange (ETDEWEB)

    Coniglio, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Arcangelis, L de [Dipartimento di Ingegneria dell' Informazione and CNISM II Universita di Napoli, Aversa (CE) (Italy); Candia, A de [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Gado, E Del [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Fierro, A [Dipartimento di Scienze Fisiche, Universita di Napoli ' Federico II' , Complesso Universitario di Monte Sant' Angelo, via Cintia 80126 Naples (Italy); Sator, N [Laboratoire de Physique Theorique de la Matiere Condensee, Universite Pierre et Marie Curie-Paris6, UMR (CNRS) 7600 Case 121, 4 Place Jussieu 75252 Paris Cedex 05 (France)

    2006-09-13

    We discuss how the anomalous increase of the viscosity in colloidal systems with short-range attraction can be related to the formation of long-living clusters. Based on molecular dynamics and Monte Carlo numerical simulations of different models, we propose a similar picture for colloidal gelation at low and intermediate volume fractions. On this basis, we analyze the distinct role played by the formation of long-living bonds and the crowding of the particles in the slow dynamics of attractive colloidal systems.

  16. Grimsel colloid exercise, an international intercomparison exercise on the sampling and characterization of groundwater colloids

    International Nuclear Information System (INIS)

    Degueldre, C.

    1990-01-01

    The Grimsel colloid exercise was an intercomparison exercise which consisted of an in situ sampling phase followed by a colloid characterization step. The goal of this benchmark exercise, which involved 12 laboratories, was to evaluate both sampling and characterization techniques with emphasis on the colloid specific size distribution. The sampling phase took place at the Grimsel test site between 1 and 13 February 1988 and the participating groups produced colloid samples using various methods. This work was carried out within the Community COCO Club, as a component of the Mirage project (second phase)

  17. Circular magnetoplasmonic modes in gold nanoparticles.

    Science.gov (United States)

    Pineider, Francesco; Campo, Giulio; Bonanni, Valentina; Fernández, César de Julián; Mattei, Giovanni; Caneschi, Andrea; Gatteschi, Dante; Sangregorio, Claudio

    2013-10-09

    The quest for efficient ways of modulating localized surface plasmon resonance is one of the frontiers in current research in plasmonics; the use of a magnetic field as a source of modulation is among the most promising candidates for active plasmonics. Here we report the observation of magnetoplasmonic modes on colloidal gold nanoparticles detected by means of magnetic circular dichroism (MCD) spectroscopy and provide a model that is able to rationalize and reproduce the experiment with unprecedented qualitative and quantitative accuracy. We believe that the steep slope observed at the plasmon resonance in the MCD spectrum can be very efficient in detecting changes in the refractive index of the surrounding medium, and we give a simple proof of principle of its possible implementation for magnetoplasmonic refractometric sensing.

  18. Colloid-Associated Radionuclide Concentration Limits: ANL

    International Nuclear Information System (INIS)

    Mertz, C.

    2000-01-01

    The purpose and scope of this report is to describe the analysis of available colloidal data from waste form corrosion tests at Argonne National Laboratory (ANL) to extract characteristics of these colloids that can be used in modeling their contribution to the source term for sparingly soluble radioelements (e.g., Pu). Specifically, the focus is on developing a useful description of the following waste form colloid characteristics: (1) composition, (2) size distribution, and (3) quantification of the rate of waste form colloid generation. The composition and size distribution information are intended to support analysis of the potential transport of the sparingly soluble radionuclides associated with the waste form colloids. The rate of colloid generation is intended to support analysis of the waste form colloid-associated radionuclide concentrations. In addressing the above characteristics, available data are interpreted to address mechanisms controlling colloid formation and stability. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M and O 2000). Because the end objective is to support the source term modeling we have organized the conclusions into two categories: (1) data analysis conclusions and (2) recommendations for colloid source term modeling. The second category is included to facilitate use of the conclusions from the data analysis in the abstraction of a colloid source term model. The data analyses and conclusions that are presented in this report are based on small-scale laboratory tests conducted on a limited number of waste glass compositions and spent fuel types

  19. Colloid transport in dual-permeability media

    Science.gov (United States)

    Leij, Feike J.; Bradford, Scott A.

    2013-07-01

    It has been widely reported that colloids can travel faster and over longer distances in natural structured porous media than in uniform structureless media used in laboratory studies. The presence of preferential pathways for colloids in the subsurface environment is of concern because of the increased risks for disease caused by microorganisms and colloid-associated contaminants. This study presents a model for colloid transport in dual-permeability media that includes reversible and irreversible retention of colloids and first-order exchange between the aqueous phases of the two regions. The model may also be used to describe transport of other reactive solutes in dual-permeability media. Analytical solutions for colloid concentrations in aqueous and solid phases were obtained using Laplace transformation and matrix decomposition. The solutions proved convenient to assess the effect of model parameters on the colloid distribution. The analytical model was used to describe effluent concentrations for a bromide tracer and 3.2- or 1-μm-colloids that were observed after transport through a composite 10-cm long porous medium made up of a cylindrical lens or core of sand and a surrounding matrix with sand of a different grain size. The tracer data were described very well and realistic estimates were obtained for the pore-water velocity in the two flow domains. An accurate description was also achieved for most colloid breakthrough curves. Dispersivity and retention parameters were typically greater for the larger 3.2-μm-colloids while both reversible and irreversible retention rates tended to be higher for the finer sands than the coarser sand. The relatively small sample size and the complex flow pattern in the composite medium made it difficult to reach definitive conclusions regarding transport parameters for colloid transport.

  20. Colloid properties in groundwaters from crystalline formations

    International Nuclear Information System (INIS)

    Degueldre, C.A.

    1994-09-01

    Colloids are present in all groundwaters. The role they may play in the migration of safety-relevant radionuclides in the geosphere therefore must be studied. Colloid sampling and characterisation campaigns have been carried out in Switzerland. On the bases of the results from studies in the Grimsel area, Northern Switzerland and the Black Forest, as well as those obtained by other groups concerned with crystalline waters, a consistent picture is emerging. The groundwater colloids in crystalline formations are predominantly comprised of phyllosilicates and silica originating from the aquifer rock. Under constant hydrogeochemical conditions, the colloid concentration is not expected to exceed 100 ng.ml -1 when the calcium concentration is greater than 10 -4 . However, under transient chemical or physical conditions, such as geothermal or tectonic activity, colloid generation may be enhanced and the colloid concentration may reach 10 μg.ml -1 or more, if both the calcium and sodium concentrations are low. In the Nagra Crystalline Reference Water the expected colloid concentration is -1 . This can be compared, for example, to a colloid concentration of about 10 ng.ml -1 found in Zurzach water. The small colloid concentration in the reference water is a consequence of an attachment factor for clay colloids (monmorillonite) close to 1. A model indicates that at pH 8, the nuclide partition coefficients between water and colloid (K p ) must be smaller than 10 7 ml.g -1 if sorption takes place by surface complexation on colloids, = AIOH active groups forming the dominant sorption sites. This pragmatic model is based on the competition between the formation of nuclide hydroxo complexes in solution and their sorption on colloids. Experimental nuclide sorption data on colloids are compared with those obtained by applying this model. For a low colloid concentration, a sorption capacity of the order of 10 -9 M and reversible surface complexation, their presence in the

  1. Preparation and use of recombinant protein G-gold complexes as markers in double labelling immunocytochemistry

    DEFF Research Database (Denmark)

    Balslev, Y; Hansen, Gert Helge

    1989-01-01

    Recombinant protein G (RPG) was conjugated to colloidal gold particles and used for immunocytochemistry. In this report, the preparation of RPG-gold conjugates (RPGG) and the application of these conjugates in spot blot tests and in double immunolabelling are described. The immunolabelling...... was performed on ultracryosections of pig small intestine using antibodies directed against aminopeptidase N and sucrase-isomaltase. The labelling efficiency of RPGG was compared to that of protein A-gold conjugates (PAG) in different compartments of the enterocyte. Quantification showed that the labelling...... intensity was dependent on the size of the marker as well as on the kind of protein used for complex formation. The distributions for RPGG and PAG were respectively: for the 12 nm particles, 10.3 and 6.2 particles/micron of length of microvillar membrane, 3.5 and 1.0 particles/micron2 of Golgi profile and 5...

  2. Ultrafast Non-thermal Response of Plasmonic Resonance in Gold Nanoantennas

    Science.gov (United States)

    Soavi, Giancarlo; Valle, Giuseppe Della; Biagioni, Paolo; Cattoni, Andrea; Longhi, Stefano; Cerullo, Giulio; Brida, Daniele

    Ultrafast thermalization of electrons in metal nanostructures is studied by means of pump-probe spectroscopy. We track in real-time the plasmon resonance evolution, providing a tool for understanding and controlling gold nanoantennas non-linear optical response.

  3. Fabricating colloidal crystals and construction of ordered nanostructures

    Directory of Open Access Journals (Sweden)

    Sun Zhiqiang

    2006-01-01

    Full Text Available AbstractColloidal crystals of polymeric or inorganic microspheres are of extensive interest due to their potential applications in such as sensing, optics, photonic bandgap and surface patterning. The article highlights a set of approaches developed in our group, which are efficient to prepare colloidal crystals with ordered voids, patterned colloidal crystals on non-planar surfaces, heterogeneous colloidal crystals of different building blocks, colloidal crystals composed of non-spherical polyhedrons, and colloidal crystals of non-close-packed colloidal microspheres in particular. The use of these colloidal crystals as templates for different microstructures range from nanoscale to micron-scale is also summarized.

  4. Fluorescence-Guided Probes of Aptamer-Targeted Gold Nanoparticles with Computed Tomography Imaging Accesses for in Vivo Tumor Resection.

    Science.gov (United States)

    Li, Cheng-Hung; Kuo, Tsung-Rong; Su, Hsin-Jan; Lai, Wei-Yun; Yang, Pan-Chyr; Chen, Jinn-Shiun; Wang, Di-Yan; Wu, Yi-Chun; Chen, Chia-Chun

    2015-10-28

    Recent development of molecular imaging probes for fluorescence-guided surgery has shown great progresses for determining tumor margin to execute the tissue resection. Here we synthesize the fluorescent gold nanoparticles conjugated with diatrizoic acid and nucleolin-targeted AS1411 aptamer. The nanoparticle conjugates exhibit high water-solubility, good biocompatibility, visible fluorescence and strong X-ray attenuation for computed tomography (CT) contrast enhancement. The fluorescent nanoparticle conjugates are applied as a molecular contrast agent to reveal the tumor location in CL1-5 tumor-bearing mice by CT imaging. Furthermore, the orange-red fluorescence emitting from the conjugates in the CL1-5 tumor can be easily visualized by the naked eyes. After the resection, the IVIS measurements show that the fluorescence signal of the nanoparticle conjugates in the tumor is greatly enhanced in comparison to that in the controlled experiment. Our work has shown potential application of functionalized nanoparticles as a dual-function imaging agent in clinical fluorescence-guided surgery.

  5. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.

    Science.gov (United States)

    Xie, Xiaoji; Xu, Wei; Liu, Xiaogang

    2012-09-18

    The discovery of the DNA-mediated assembly of gold nanoparticles was a great moment in the history of science; this understanding and chemical control enabled the rational design of functional nanomaterials as novel probes in biodetection. In contrast with conventional probes such as organic dyes, gold nanoparticles exhibit high photostability and unique size-dependent optical properties. Because of their high extinction coefficients and strong distance dependent optical properties, these nanoparticles have emerged over the past decade as a promising platform for rapid, highly sensitive colorimetric assays that allow for the visual detection of low concentrations of metal ions, small molecules, and biomacromolecules. These discoveries have deepened our knowledge of biological phenomena and facilitated the development of many new diagnostic and therapeutic tools. Despite these many advances and continued research efforts, current nanoparticle-based colorimetric detection systems still suffer from several drawbacks, such as limited sensitivity and selectivity. This Account describes the recent development of colorimetric assays based on protein enzyme-assisted gold nanoparticle amplification. The benefits of such detection systems include significantly improved detection sensitivity and selectivity. First, we discuss the general design of enzyme-modified nanoparticle systems in colorimetric assays. We show that a quantitative understanding of the unique properties of different enzymes is paramount for effective biological assays. We then examine the assays for nucleic acid detection based on different types of enzymes, including endonucleases, ligases, and polymerases. For each of these assays, we identify the underlying principles that contribute to the enhanced detection capability of nanoparticle systems and illustrate them with selected examples. Furthermore, we demonstrate that the combination of gold nanoparticles and specific enzymes can probe enzyme dynamics

  6. Orange pectin mediated growth and stability of aqueous gold and silver nanocolloids

    International Nuclear Information System (INIS)

    Nigoghossian, Karina; Santos, Molíria V. dos; Barud, Hernane S.; Silva, Robson R. da; Rocha, Lucas A.; Caiut, José M.A.; Assunção, Rosana M.N. de; Spanhel, Lubomir; Poulain, Marcel; Messaddeq, Younes; Ribeiro, Sidney J.L.

    2015-01-01

    Graphical abstract: - Highlights: • Pectin from orange was used as stabilizer of Ag, Au and Ag–Au nanoparticles. • Sodium citrate, oxalic acid or pectin were used as reducing agents. • Colloids spanning all visible region were obtained depending on Ag/Au-ratio and pH. • Pectin is a highly efficient stabilizer of nanocolloidal solutions for years. - Abstract: The role of orange based pectin in the nucleation and growth of silver and gold nanoparticles is addressed. Pectin is a complex polysaccharide found in fruits such as oranges, lemons, passion fruits or apples. It displays smooth and hairy chain regions containing hydroxyl-, ester-, carboxylate- and eventually amine groups that can act as surface ligands interacting under various pH conditions more or less efficiently with growing nanometals. Here, a high methoxy pectin (>50% esterified) was used as a stabilizer/reducing agent in the preparation of gold, silver and silver–gold nanoparticles. Commercial pectin (CP) and pectin extracted from orange bagasse (OP) were used. Optionally, trisodium citrate or oxalic acid we used to reduce AgNO 3 and HAuCl 4 in aqueous environment. Characterization methods included UV–vis absorption spectroscopy, transmission electron microscopy, electron diffraction and energy-dispersive X-ray spectroscopy. The results show that under different pH conditions, pectin and reducing agents allow producing various nanostructures shapes (triangles, spheres, rods, octahedrons and decahedrons) often with high polydispersity and sizes ranging between 5 nm and 30 nm. In addition, depending on Ag/Au-ratio and pH, the surface plasmon bands can be continuously shifted between 410 nm and 600 nm. Finally, pectin seems to be a highly efficient stabilizer of the colloidal systems that show a remarkable stability and unchanged optical spectral response even after five years

  7. Orange pectin mediated growth and stability of aqueous gold and silver nanocolloids

    Energy Technology Data Exchange (ETDEWEB)

    Nigoghossian, Karina; Santos, Molíria V. dos; Barud, Hernane S.; Silva, Robson R. da [Institute of Chemistry, São Paulo State University – UNESP, 14801-970 Araraquara, SP (Brazil); Rocha, Lucas A. [Departamento de Quimica, Universidade de Franca, Franca, SP (Brazil); Caiut, José M.A. [Departamento de Química, FFCLRP, USP, Ribeirão Preto, SP (Brazil); Assunção, Rosana M.N. de [Faculdade de Ciências Integradas do Pontal, Universidade Federal de Uberlândia, 38302-000 Ituiutaba, MG (Brazil); Spanhel, Lubomir [CEITEC-Central European Institute of Technology, Masaryk University Brno (Czech Republic); Institute of Chemical Sciences, University of Rennes 1, Campus Beaulieu, 35 042 Rennes (France); Poulain, Marcel [Institute of Chemical Sciences, University of Rennes 1, Campus Beaulieu, 35 042 Rennes (France); Messaddeq, Younes [Institute of Chemistry, São Paulo State University – UNESP, 14801-970 Araraquara, SP (Brazil); Ribeiro, Sidney J.L., E-mail: sidney@iq.unesp.br [Institute of Chemistry, São Paulo State University – UNESP, 14801-970 Araraquara, SP (Brazil)

    2015-06-30

    Graphical abstract: - Highlights: • Pectin from orange was used as stabilizer of Ag, Au and Ag–Au nanoparticles. • Sodium citrate, oxalic acid or pectin were used as reducing agents. • Colloids spanning all visible region were obtained depending on Ag/Au-ratio and pH. • Pectin is a highly efficient stabilizer of nanocolloidal solutions for years. - Abstract: The role of orange based pectin in the nucleation and growth of silver and gold nanoparticles is addressed. Pectin is a complex polysaccharide found in fruits such as oranges, lemons, passion fruits or apples. It displays smooth and hairy chain regions containing hydroxyl-, ester-, carboxylate- and eventually amine groups that can act as surface ligands interacting under various pH conditions more or less efficiently with growing nanometals. Here, a high methoxy pectin (>50% esterified) was used as a stabilizer/reducing agent in the preparation of gold, silver and silver–gold nanoparticles. Commercial pectin (CP) and pectin extracted from orange bagasse (OP) were used. Optionally, trisodium citrate or oxalic acid we used to reduce AgNO{sub 3} and HAuCl{sub 4} in aqueous environment. Characterization methods included UV–vis absorption spectroscopy, transmission electron microscopy, electron diffraction and energy-dispersive X-ray spectroscopy. The results show that under different pH conditions, pectin and reducing agents allow producing various nanostructures shapes (triangles, spheres, rods, octahedrons and decahedrons) often with high polydispersity and sizes ranging between 5 nm and 30 nm. In addition, depending on Ag/Au-ratio and pH, the surface plasmon bands can be continuously shifted between 410 nm and 600 nm. Finally, pectin seems to be a highly efficient stabilizer of the colloidal systems that show a remarkable stability and unchanged optical spectral response even after five years.

  8. Design and synthesis of magnetic nanoparticles with gold shells for single particle optical tracking

    Science.gov (United States)

    Lim, Jitkang

    The design, synthesis, and characterization of iron oxide core, gold shell nanoparticles are studied in this thesis. Firstly, nanoparticles with 18 +/- 1.7 nm diameter iron oxide cores with ˜5 nm thick gold shells were synthesized via a new seed-mediated electroless deposition method. The nanoparticles were superparamagnetic at room temperature and could be reversibly collected by a permanent magnet. These nanoparticles displayed a sharp localized surface plasmon resonance peak at 605 nm, as predicted by scattering theory, and their large scattering cross-section allowed them to be individually resolved in darkfield optical microscopy while undergoing Brownian motion in aqueous suspension. Later, commercially available 38 +/- 3.8 nm diameter spherical iron oxide nanoparticles (from Ocean Nanotech, Inc) were employed to make core-shell particles. These particles were decorated with cationic poly(diallyldimethylammonium chloride) (PDDA) which further promotes the attachment of small gold clusters. After gold seeding, the average hydrodynamic diameter of the core-shell particles is 172 +/- 65.9 nm. The magnetophoretic motion of these particles was guided by a piece of magnetized mu-metal. Individual particle trajectories were observed by darkfield optical microscopy. The typical magnetophoretic velocity achieved was within the range of 1--10 mum/sec. Random walk analysis performed on these particles while undergoing Brownian motion confirmed that individual particles were indeed being imaged. The particle size variation within the observed sample obtained through random walk analysis was within the size distribution obtained by dynamic light scattering. When the current to the solenoid used to magnetize the mu-metal was turned off, all the collected core-shell particles were readily redispersed by diffusion back into the surrounding environment. A Peclet number analysis was performed to probe the convective motion of nanospheres and nanorods under the influence of

  9. Ulex europaeus agglutinin-I binding to dental primary afferent projections in the spinal trigeminal complex combined with double immunolabeling of substance P and GABA elements using peroxidase and colloidal gold.

    Science.gov (United States)

    Matthews, M A; Hoffmann, K D; Hernandez, T V

    1989-01-01

    Ulex europaeus agglutinin I (UEA-I) is a plant lectin with an affinity for L-fucosyl residues in the chains of lactoseries oligosaccharides associated with medium- and smaller-diameter dorsal root ganglion neurons and their axonal processes. These enter Lissauer's tract and terminate within the superficial laminae of the spinal cord overlapping projections known to have a nociceptive function. This implies that the surface coatings of neuronal membranes may have a relationship with functional modalities. The present investigation further examined this concept by studying a neuronal projection with a nociceptive function to determine whether fucosyl-lactoseries residues were incorporated in its primary afferent terminals. Transganglionic transport of horseradish peroxidase (HRP) following injection into tooth pulp chambers was employed to demonstrate dental pulp terminals in the trigeminal spinal complex, while peroxidase and fluorescent tags were used concomitantly to stain for UEA-I. Double immunolabeling for substance P (SP) and gamma-aminobutyric acid (GABA) using peroxidase and colloidal gold allowed a comparison of the distribution of a known excitatory nociceptive transmitter with that of UEA-I binding in specific subnuclei. Synaptic interrelationships between UEA-I positive dental pulp primary afferent inputs and specific inhibitory terminals were also examined. SP immunoreactivity occurred in laminae I and outer lamina II (IIo) of subnucleus caudalis (Vc) and in the ventrolateral and lateral marginal region of the caudal half of subnucleus interpolaris (Vi), including the periobex area in which Vi is slightly overlapped on its lateral aspect by cellular elements of Vc. The adjacent interstitial nucleus (IN) also showed an intense immunoreactivity for this peptide antibody. UEA-I binding displayed a similar distribution pattern in both Vc and Vi, but extended into lamina IIi and the superficial part of Lamina III in Vc. Dental pulp terminals were found to

  10. Zepto-molar electrochemical detection of Brucella genome based on gold nanoribbons covered by gold nanoblooms

    Science.gov (United States)

    Rahi, Amid; Sattarahmady, Naghmeh; Heli, Hossein

    2015-12-01

    Gold nanoribbons covered by gold nanoblooms were sonoelectrodeposited on a polycrystalline gold surface at -1800 mV (vs. AgCl) with the assistance of ultrasound and co-occurrence of the hydrogen evolution reaction. The nanostructure, as a transducer, was utilized to immobilize a Brucella-specific probe and fabrication of a genosensor, and the process of immobilization and hybridization was detected by electrochemical methods, using methylene blue as a redox marker. The proposed method for detection of the complementary sequence, sequences with base-mismatched (one-, two- and three-base mismatches), and the sequence of non-complementary sequence was assayed. The fabricated genosensor was evaluated for the assay of the bacteria in the cultured and human samples without polymerase chain reactions (PCR). The genosensor could detect the complementary sequence with a calibration sensitivity of 0.40 μA dm3 mol-1, a linear concentration range of 10 zmol dm-3 to 10 pmol dm-3, and a detection limit of 1.71 zmol dm-3.

  11. Quantitative uptake of colloidal particles by cell cultures

    Energy Technology Data Exchange (ETDEWEB)

    Feliu, Neus [Department of Physics, Philipps University Marburg, Marburg (Germany); Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Hühn, Jonas; Zyuzin, Mikhail V.; Ashraf, Sumaira; Valdeperez, Daniel; Masood, Atif [Department of Physics, Philipps University Marburg, Marburg (Germany); Said, Alaa Hassan [Department of Physics, Philipps University Marburg, Marburg (Germany); Physics Department, Faculty of Science, South Valley University (Egypt); Escudero, Alberto [Department of Physics, Philipps University Marburg, Marburg (Germany); Instituto de Ciencia de Materiales de Sevilla, CSIC — Universidad de Sevilla, Seville (Spain); Pelaz, Beatriz [Department of Physics, Philipps University Marburg, Marburg (Germany); Gonzalez, Elena [Department of Physics, Philipps University Marburg, Marburg (Germany); University of Vigo, Vigo (Spain); Duarte, Miguel A. Correa [University of Vigo, Vigo (Spain); Roy, Sathi [Department of Physics, Philipps University Marburg, Marburg (Germany); Chakraborty, Indranath [Department of Chemistry, University of Illinois at Urbana Champaign, Urbana, IL (United States); Lim, Mei L.; Sjöqvist, Sebastian [Department for Clinical Science, Intervention and Technology (CLINTEC),Karolinska Institutet, Stockholm (Sweden); Jungebluth, Philipp [Department of Thoracic Surgery, Thoraxklinik, Heidelberg University, Heidelberg (Germany); Parak, Wolfgang J., E-mail: wolfgang.parak@physik.uni-marburg.de [Department of Physics, Philipps University Marburg, Marburg (Germany); CIC biomaGUNE, San Sebastian (Spain)

    2016-10-15

    The use of nanotechnologies involving nano- and microparticles has increased tremendously in the recent past. There are various beneficial characteristics that make particles attractive for a wide range of technologies. However, colloidal particles on the other hand can potentially be harmful for humans and environment. Today, complete understanding of the interaction of colloidal particles with biological systems still remains a challenge. Indeed, their uptake, effects, and final cell cycle including their life span fate and degradation in biological systems are not fully understood. This is mainly due to the complexity of multiple parameters which need to be taken in consideration to perform the nanosafety research. Therefore, we will provide an overview of the common denominators and ideas to achieve universal metrics to assess their safety. The review discusses aspects including how biological media could change the physicochemical properties of colloids, how colloids are endocytosed by cells, how to distinguish between internalized versus membrane-attached colloids, possible correlation of cellular uptake of colloids with their physicochemical properties, and how the colloidal stability of colloids may vary upon cell internalization. In conclusion three main statements are given. First, in typically exposure scenarios only part of the colloids associated with cells are internalized while a significant part remain outside cells attached to their membrane. For quantitative uptake studies false positive counts in the form of only adherent but not internalized colloids have to be avoided. pH sensitive fluorophores attached to the colloids, which can discriminate between acidic endosomal/lysosomal and neutral extracellular environment around colloids offer a possible solution. Second, the metrics selected for uptake studies is of utmost importance. Counting the internalized colloids by number or by volume may lead to significantly different results. Third, colloids

  12. Pore water colloid properties in argillaceous sedimentary rocks

    Energy Technology Data Exchange (ETDEWEB)

    Degueldre, Claude, E-mail: c.degueldre@lancaster.ac.uk [Engineering Department, University of Lancaster, LA1 4YW Lancaster (United Kingdom); ChiAM & Institute of Environment, University of Geneva, 1211 Genève 4, Swizerland (Switzerland); Earlier, NES, Paul Scherrer Institute, 5232 Villigen (Switzerland); Cloet, Veerle [NAGRA, Hardstrasse 73, 5430 Wettingen (Switzerland)

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  13. Radio-active colloids in the functional exploration of the reticulo-endothelium system; Les colloides radioactifs dans l'exploration fonctionnelle du systeme reticulo-endothelial

    Energy Technology Data Exchange (ETDEWEB)

    Chivot, J J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-01

    A historical review describes the reticulo-endothelial system (R.E.S.) and aims at defining it and at explaining its operation. The methods used for its examination and the colloids utilized are considered. The author has been led to prepare a special type of colloid: an albuminous complex containing radio-iodine, 'C.A. {sup 131}I', whose method of preparation and physical and biological examination are described. A human albumin, having a known optical density in solution, is heated until a change in the optical density indicates that an aggregation of the proteinic molecules has occurred. The denatured protein is iodated with {sup 131}I. Electrophoretic, ultracentrifuge and autoradiographic controls are then carried out. This atoxic and metabolisable preparation of biological origin is compared with the better defined colloidal gold which serves as reference. C.A.{sup 131}I is injected into mice. It is shown by radioactivity measurements, auto-radiographies on sections of the whole animal, and anthropo-gamma-metric detections that a high concentration occurs in the S.R.E. of the liver. These static results are only of limited importance however compared to those obtained from an in vivo study of the phenomenon. The author records the changes in the radioactivity of the blood derived from the carotid artery using a well-scintillator. He obtains directly a curve of the radioactivity of blood having a decreasing exponential form; the mathematical expression describing this curve is given. The biological half-life T 1/2 of the colloid in the blood is a measure of its phagocytosis by the S.R.E. cells. A supplementary check is provided by the direct recording of the hepatic activity using a suitably collimated exterior detector. A curve of increasing-exponential form is obtained and its parameters are corollary to the preceding curve. These tests carried out on guinea-pigs and rats make it possible to give to the S.R.E. a phagocytic index which is characteristic of its

  14. 无铅、砷金红粉彩颜料的呈色机理%Colouration Mechanism of Lead and Arsenic Free Gold Ruby Famille-Rose Pigments

    Institute of Scientific and Technical Information of China (English)

    曹春娥; 卢希龙; 陈云霞; 沈华荣; 洪琛; 余峰

    2011-01-01

    The phase composition and micro-morphology of lead and arsenic free gold ruby famille-rose pigments before and after decoration firing were investigated by X-ray diffractometer,transmission electron microscope,and energy dispersive X-ray spectro-scope.The colorimetric and spectral analysis of the as-prepared samples was carried out using spectrophotometer to investigate the colouration mechanism of the pigments.The effect of the schedule of decoration firing on size of the colloidal gold particles was ana-lyzed.The results indicate that a large amount of colloidal gold particles with size of 20–30 nm are well dispersed in the glassy phase,appearing a ruby color,which is due to the strong absorption of green light of about 520 nm wavelength caused by the localized sur-face plasmon resonance of colloidal gold particles under visible light radiation.There was no clear dissolution and/or new phase forming reaction between Purple of Cassius and frit after decoration firing.The decoration firing schedule had little effect on the size of colloidal gold particles%采用X射线衍射、透射电子显微镜和能谱仪等研究了无铅、砷金红粉彩颜料彩烤前后的物相组成与显微形貌,用分光测色仪对样品进行色度及光谱分析,研究了其呈色机理,并探讨了彩烤制度对金胶粒子大小的影响。结果表明:无铅、砷金红颜料彩烤后呈红紫色是由于在光波作用下,金胶粒子产生局域表面等离子体共振,强烈吸收波长520 nm左右的绿色光所致。颜料彩烤后,大量粒径在20~30 nm的金胶粒子均匀分散于玻璃相中,色剂紫金泥与熔剂之间没有产生明显的溶解和生成新相,彩烤制度对金胶粒子大小影响不明显

  15. Modulating the physicochemical and structural properties of gold-functionalized protein nanotubes through thiol surface modification.

    Science.gov (United States)

    Carreño-Fuentes, Liliana; Plascencia-Villa, Germán; Palomares, Laura A; Moya, Sergio E; Ramírez, Octavio T

    2014-12-16

    Biomolecules are advantageous scaffolds for the synthesis and ordering of metallic nanoparticles. Rotavirus VP6 nanotubes possess intrinsic affinity to metal ions, a property that has been exploited to synthesize gold nanoparticles over them. The resulting nanobiomaterials have unique properties useful for novel applications. However, the formed nanobiomaterials lack of colloidal stability and flocculate, limiting their functionality. Here we demonstrate that it is possible to synthesize thiol-protected gold nanoparticles over VP6 nanotubes, which resulted in soluble nanobiomaterials. With this strategy, it was possible to modulate the size, colloidal stability, and surface plasmon resonance of the synthesized nanoparticles by controlling the content of the thiolated ligands. Two types of water-soluble ligands were tested, a small linear ligand, sodium 3-mercapto-1-propanesulfonate (MPS), and a bulky ligand, 5-mercaptopentyl β-D-glucopyranoside (GlcC5SH). The synthesized nanobiomaterials had a higher stability in suspension, as determined by Z-potential measurements. To the extent of our knowledge, this is the first time that a rational strategy is developed to modulate the particular properties of metal nanoparticles in situ synthesized over a protein bioscaffold through thiol coating, achieving a high spatial and structural organization of nanoparticles in a single integrative hybrid structure.

  16. Gold Nanoparticles in Photonic Crystals Applications: A Review.

    Science.gov (United States)

    Venditti, Iole

    2017-01-24

    This review concerns the recently emerged class of composite colloidal photonic crystals (PCs), in which gold nanoparticles (AuNPs) are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR) realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  17. Gold Nanoparticles in Photonic Crystals Applications: A Review

    Directory of Open Access Journals (Sweden)

    Iole Venditti

    2017-01-01

    Full Text Available This review concerns the recently emerged class of composite colloidal photonic crystals (PCs, in which gold nanoparticles (AuNPs are included in the photonic structure. The use of composites allows achieving a strong modification of the optical properties of photonic crystals by involving the light scattering with electronic excitations of the gold component (surface plasmon resonance, SPR realizing a combination of absorption bands with the diffraction resonances occurring in the body of the photonic crystals. Considering different preparations of composite plasmonic-photonic crystals, based on 3D-PCs in presence of AuNPs, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tunable functionality of these crystals. Several chemical methods for fabrication of opals and inverse opals are presented together with preparations of composites plasmonic-photonic crystals: the influence of SPR on the optical properties of PCs is also discussed. Main applications of this new class of composite materials are illustrated with the aim to offer the reader an overview of the recent advances in this field.

  18. Magnetic Gold Nanoparticle-Labeled Heparanase Monoclonal Antibody and its Subsequent Application for Tumor Magnetic Resonance Imaging

    Science.gov (United States)

    Li, Ning; Jie, Meng-Meng; Yang, Min; Tang, Li; Chen, Si-Yuan; Sun, Xue-Mei; Tang, Bo; Yang, Shi-Ming

    2018-04-01

    Heparanase (HPA) is ubiquitously expressed in various metastatic malignant tumors; previous studies have demonstrated that HPA was a potential tumor-associated antigen (TAA) for tumor immunotherapy. We sought to evaluate the feasibility of HPA as a common TAA for magnetic resonance imaging (MRI) of tumor metastasis and its potential application in tumor molecular imaging. We prepared a targeted probe based on magnetic gold nanoparticles coupled with an anti-HPA antibody for the specific detection of HPA by MRI. The specificity of the targeted probe was validated in vitro by incubation of the probe with various tumor cells, and the probe was able to selectively detect HPA (+) cells. We found the probes displayed significantly reduced signal intensity in several tumor cells, and the signal intensity decreased significantly after the targeted probe was injected in tumor-bearing nude mice. In the study, we demonstrated that the HPA&GoldMag probe had excellent physical and chemical properties and immune activities and could specifically target many tumor cell tissues both in vitro and in vivo. This may provide an experimental base for molecular imaging of tumor highly expressing heparanase using HPA mAbs.

  19. Effect of concentration of imperata cylindrica L leaf extraction synthesis process of gold nanoparticles

    International Nuclear Information System (INIS)

    Iwan Syahjoko Saputra; Yoki Yulizar; Sudirman

    2018-01-01

    Gold Nanoparticles (Gold NPs) successful was performed using HAuCl 4 precursor as Au 3+ ion source with 7 x 10 -4 M concentration. There search aims to knows effect of concentration variation of Imperata cylindrica L leaf extract on synthesis process of gold nanoparticles. There search used of green synthesis method. Colloid of nanoparticles which is formed in analyzed using UV - Vis Spectrophotometer, FT-IR Spectroscopy, PSA, PZC, XRD and TEM. The results of synthesis showed the best concentration of Imperata cilyndrica L leaf extract at 3.46 %, happen a shift of wave length at UV-Vis from 216 nm to 530 nm with 1.779 absorbance value. The PSA analysis showed a particle size of 51.87 nm and a PZC value of -19.2 mV. The result of FT - IR indicated a shift of wave number in the hydroxyl group from 3354 cm -1 to 3390 cm -1 and showed a interaction of hydroxyl group at imperata cylindrica L leaf extract with Au 3+ ion. TEM analysis shows the morphology of Gold NPs that spherical shape with a particle size of 20 nm. XRD calculation results show crystallite size of gold nano particles is 15.47 nm. (author)

  20. A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging

    Energy Technology Data Exchange (ETDEWEB)

    Zhan Qiuqiang; Qian Jun; Li Xin; He Sailing, E-mail: qianjun@coer.zju.edu.cn [Centre for Optical and Electromagnetic Research, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou 310058 (China)

    2010-02-05

    Mesoporous encapsulation of gold nanorods (GNRs) in a silica shell of controllable thickness (4.5-25.5 nm) was realized through a single-step coating method without any intermediary coating. The dependence of localized surface plasmon resonance (LSPR) extinction spectra of the coated GNRs on the thickness of the silica shell was investigated with both simulation and experiments, which agreed well with each other. It was found that cetyltrimethyl ammonium bromide (CTAB) molecules, which act as surfactants for the GNRs and dissociate in the solution, greatly affect the silica coating. Mesoporous silica-encapsulated GNRs were also shown to be highly biocompatible and stable in bio-environments. Based on LSPR enhanced scattering, mesoporous silica-encapsulated GNRs were utilized for dark field scattering imaging of cancer cells. Biomolecule-conjugated mesoporous silica-encapsulated GNRs were specifically taken up by cancer cells in vitro, justifying their use as effective optical probes for early cancer diagnosis. Mesoporous silica can also be modified with functional groups and conjugated with certain biomolecules for specific labeling on mammalian cells as well as carrying drugs or biomolecules into biological cells.

  1. Tuning size and sensing properties in colloidal gold nanostars.

    Science.gov (United States)

    Barbosa, Silvia; Agrawal, Amit; Rodríguez-Lorenzo, Laura; Pastoriza-Santos, Isabel; Alvarez-Puebla, Ramón A; Kornowski, Andreas; Weller, Horst; Liz-Marzán, Luis M

    2010-09-21

    Gold nanostars are multibranched nanoparticles with sharp tips, which display extremely interesting plasmonic properties but require optimization. We present a systematic investigation of the influence of different parameters on the size, morphology, and monodispersity of Au nanostars obtained via seeded growth in concentrated solutions of poly(vinylpyrrolidone) in N,N-dimethylformamide. Controlled prereduction of Au(3+) to Au(+) was found to influence monodispersity (narrower plasmon bands), while the [HAuCl(4)]/[seed] molar ratio significantly affects the morphology and tip plasmon resonance frequency. We also varied the size of the seeds (2-30 nm) and found a clear influence on the final nanostar dimensions as well as on the number of spikes, while synthesis temperature notably affects the morphology of the particles, with more rounded morphologies formed above 60 °C. This rounding effect allowed us to confirm the importance of sharp tips on the optical enhancing behavior of these nanoparticles in surface-enhanced raman scattering (SERS). Additionally, the sensitivity toward changes in the local refractive index was found to increase for larger nanostars, though lower figure of merit (FOM) values were obtained because of the larger polydispersity.

  2. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies.

    Science.gov (United States)

    Vogel, Nicolas; Utech, Stefanie; England, Grant T; Shirman, Tanya; Phillips, Katherine R; Koay, Natalie; Burgess, Ian B; Kolle, Mathias; Weitz, David A; Aizenberg, Joanna

    2015-09-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal's curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies--potentially as more efficient mimics of structural color as it occurs in nature.

  3. Color from hierarchy: Diverse optical properties of micron-sized spherical colloidal assemblies

    Science.gov (United States)

    Vogel, Nicolas; Utech, Stefanie; England, Grant T.; Shirman, Tanya; Phillips, Katherine R.; Koay, Natalie; Burgess, Ian B.; Kolle, Mathias; Weitz, David A.; Aizenberg, Joanna

    2015-01-01

    Materials in nature are characterized by structural order over multiple length scales have evolved for maximum performance and multifunctionality, and are often produced by self-assembly processes. A striking example of this design principle is structural coloration, where interference, diffraction, and absorption effects result in vivid colors. Mimicking this emergence of complex effects from simple building blocks is a key challenge for man-made materials. Here, we show that a simple confined self-assembly process leads to a complex hierarchical geometry that displays a variety of optical effects. Colloidal crystallization in an emulsion droplet creates micron-sized superstructures, termed photonic balls. The curvature imposed by the emulsion droplet leads to frustrated crystallization. We observe spherical colloidal crystals with ordered, crystalline layers and a disordered core. This geometry produces multiple optical effects. The ordered layers give rise to structural color from Bragg diffraction with limited angular dependence and unusual transmission due to the curved nature of the individual crystals. The disordered core contributes nonresonant scattering that induces a macroscopically whitish appearance, which we mitigate by incorporating absorbing gold nanoparticles that suppress scattering and macroscopically purify the color. With increasing size of the constituent colloidal particles, grating diffraction effects dominate, which result from order along the crystal’s curved surface and induce a vivid polychromatic appearance. The control of multiple optical effects induced by the hierarchical morphology in photonic balls paves the way to use them as building blocks for complex optical assemblies—potentially as more efficient mimics of structural color as it occurs in nature. PMID:26290583

  4. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    International Nuclear Information System (INIS)

    Bucchianico, Sebastiano Di; Migliore, Lucia; Marsili, Paolo; Vergari, Chiara; Giammanco, Francesco; Giorgetti, Emilia

    2015-01-01

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions

  5. Cyto- and genotoxicity assessment of Gold nanoparticles obtained by laser ablation in A549 lung adenocarcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Bucchianico, Sebastiano Di [Karolinska Institutet, Institute of Environmental Medicine (Sweden); Migliore, Lucia [University of Pisa, Department of Translational Research and New Technologies in Medicine and Surgery, Division of Medical Genetics (Italy); Marsili, Paolo [Institute of Complex Systems (ISC-CNR) (Italy); Vergari, Chiara [Plasma Diagnostics and Technologies s.r.l. (Italy); Giammanco, Francesco [University of Pisa, Department of Physics “E. Fermi” (Italy); Giorgetti, Emilia, E-mail: emilia.giorgetti@fi.isc.cnr.it [Institute of Complex Systems (ISC-CNR) (Italy)

    2015-05-15

    Gold nanoparticles have attracted enormous interest in biomedical applications, based on their unique optical properties. However, their toxicity on human tissues is still an open issue. Beyond the potential intrinsic toxicity of nanostructured gold, a non-negligible contribution of stabilizers or reaction by-products related to current wet chemical synthesis procedures can be expected. Aimed at isolating gold contribution from that of any other contaminant, we produced colloidal suspensions of Gold nanoparticles having average size <10 nm in deionized water or acetone by pulsed laser ablation, that permits preparation of uncoated and highly stable Gold nanoparticles in pure solvents. Subsequently, we investigated the role of surface chemistry, size, and dispersivity of synthesized Gold nanoparticles in exerting toxicity in a cell model system of deep respiratory tract, representing the main route of exposure to NPs, namely adenocarcinoma epithelial A549 cells. Gold nanoparticles prepared in water showed no particular signs of cytotoxicity, cytostasis, and/or genotoxicity as assessed by MTT colorimetric viability test and Cytokinesis-block micronucleus cytome assay up to concentrations of the order of 5 μg/mL. In contrast, Gold nanoparticles produced in pure acetone and then transferred into deionized water showed impaired cell viability, apoptosis responses, micronuclei, and dicentric chromosomes induction as well as nuclear budding, as a function of the amount of surface contaminants like amorphous carbon and enolate ions.

  6. Colloid mobilization and transport during capillary fringe fluctuations.

    Science.gov (United States)

    Aramrak, Surachet; Flury, Markus; Harsh, James B; Zollars, Richard L

    2014-07-01

    Capillary fringe fluctuations due to changing water tables lead to displacement of air-water interfaces in soils and sediments. These moving air-water interfaces can mobilize colloids. We visualized colloids interacting with moving air-water interfaces during capillary fringe fluctuations by confocal microscopy. We simulated capillary fringe fluctuations in a glass-bead-filled column. We studied four specific conditions: (1) colloids suspended in the aqueous phase, (2) colloids attached to the glass beads in an initially wet porous medium, (3) colloids attached to the glass beads in an initially dry porous medium, and (4) colloids suspended in the aqueous phase with the presence of a static air bubble. Confocal images confirmed that the capillary fringe fluctuations affect colloid transport behavior. Hydrophilic negatively charged colloids initially suspended in the aqueous phase were deposited at the solid-water interface after a drainage passage, but then were removed by subsequent capillary fringe fluctuations. The colloids that were initially attached to the wet or dry glass bead surface were detached by moving air-water interfaces in the capillary fringe. Hydrophilic negatively charged colloids did not attach to static air-bubbles, but hydrophobic negatively charged and hydrophilic positively charged colloids did. Our results demonstrate that capillary fringe fluctuations are an effective means for colloid mobilization.

  7. Colloidal phytosterols: synthesis, characterization and bioaccessibility

    NARCIS (Netherlands)

    Rossi, L.; Seijen ten Hoorn, J.W.M.; Melnikov, S.M.; Velikov, K.P.

    2010-01-01

    We demonstrate the synthesis of phytosterol colloidal particles using a simple food grade method based on antisolvent precipitation in the presence of a non-ionic surfactant. The resulting colloidal particles have a rod-like shape with some degree of crystallinity. The colloidal dispersions display

  8. Gold tailings as a source of waterborne uranium contamination of ...

    African Journals Online (AJOL)

    driniev

    2004-04-02

    Apr 2, 2004 ... Dissolved uranium (U) from the tailings deposits of various gold mines in South Africa has .... tivity), probes for measuring hydro-chemical (pH, Eh), physical ... Due to the pumping scheme, rain events in the catchment do not.

  9. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    International Nuclear Information System (INIS)

    Nedyalkov, N.N.; Imamova, S.E.; Atanasov, P.A.; Toshkova, R.A.; Gardeva, E.G.; Yossifova, L.S.; Alexandrov, M.T.; Obara, M.

    2011-01-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  10. Interaction of gold nanoparticles with nanosecond laser pulses: Nanoparticle heating

    Science.gov (United States)

    Nedyalkov, N. N.; Imamova, S. E.; Atanasov, P. A.; Toshkova, R. A.; Gardeva, E. G.; Yossifova, L. S.; Alexandrov, M. T.; Obara, M.

    2011-04-01

    Theoretical and experimental results on the heating process of gold nanoparticles irradiated by nanosecond laser pulses are presented. The efficiency of particle heating is demonstrated by in-vitro photothermal therapy of human tumor cells. Gold nanoparticles with diameters of 40 and 100 nm are added as colloid in the cell culture and the samples are irradiated by nanosecond pulses at wavelength of 532 nm delivered by Nd:YAG laser system. The results indicate clear cytotoxic effect of application of nanoparticle as more efficient is the case of using particles with diameter of 100 nm. The theoretical analysis of the heating process of nanoparticle interacting with laser radiation is based on the Mie scattering theory, which is used for calculation of the particle absorption coefficient, and two-dimensional heat diffusion model, which describes the particle and the surrounding medium temperature evolution. Using this model the dependence of the achieved maximal temperature in the particles on the applied laser fluence and time evolution of the particle temperature is obtained.

  11. CMOS Compatibility of a Micromachining Process Developed for Semiconductor Neural Probe

    National Research Council Canada - National Science Library

    An, S

    2001-01-01

    .... Test transistor patterns generated using standard CMOS fabrication line were exposed to a post-CMOS probe making process including dielectric deposition, gold metalization and the dry etching step...

  12. Physical aging and structural recovery in a colloidal glass subjected to volume-fraction jump conditions

    Science.gov (United States)

    Peng, Xiaoguang; McKenna, Gregory B.

    2016-04-01

    Three important kinetic phenomena have been cataloged by Kovacs in the investigation of molecular glasses during structural recovery or physical aging. These are responses to temperature-jump histories referred to as intrinsic isotherms, asymmetry of approach, and memory effect. Here we use a thermosensitive polystyrene-poly (N -isopropylacrylamide)-poly (acrylic acid) core-shell particle-based dispersion as a colloidal model and by working at a constant number concentration of particles we use temperature changes to create volume-fraction changes. This imposes conditions similar to those defined by Kovacs on the colloidal system. We use creep experiments to probe the physical aging and structural recovery behavior of colloidal glasses in the Kovacs-type histories and compare the results with those seen in molecular glasses. We find that there are similarities in aging dynamics between molecular glasses and colloidal glasses, but differences also persist. For the intrinsic isotherms, the times teq needed for relaxing or evolving into the equilibrium (or stationary) state are relatively insensitive to the volume fraction and the values of teq are longer than the α -relaxation time τα at the same volume fraction. On the other hand, both of these times grow at least exponentially with decreasing temperature in molecular glasses. For the asymmetry of approach, similar nonlinear behavior is observed for both colloidal and molecular glasses. However, the equilibration time teq is the same for both volume-fraction up-jump and down-jump experiments, different from the finding in molecular glasses that it takes longer for the structure to evolve into equilibrium for the temperature up-jump condition than for the temperature down-jump condition. For the two-step volume-fraction jumps, a memory response is observed that is different from observations of structural recovery in two-step temperature histories in molecular glasses. The concentration dependence of the dynamics

  13. Improving colloidal properties of quantum dots with combined silica and polymer coatings for in vitro immuofluorenscence assay

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bingbo [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Xing Da [South China Normal University, MOE Key Laboratory of Laser Life Science (China); Lin Chao; Guo Fangfang; Zhao Peng [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China); Wen Xuejun [Clemson University, Clemson-MUSC Bioengineering Program, Department of Bioengineering (United States); Bao Zhihao, E-mail: zbao@tongji.edu.cn; Shi Donglu [Tongji University, Institute for Advanced Materials and Nano Biomedicine (China)

    2011-06-15

    Semiconductor quantum dots (QDs) are promising fluorescence probes for immuofluorescence assay in the biological applications. However, water solubilization and non-specific binding are two critical issues to be addressed for the practical uses. Here, we reported a new type of QDs with combined silica and polymer coating. QDs with excellent colloidal properties were prepared via carboxylation of the amino groups on the surface of silica-coated QDs by reacting with multi-carboxyl poly (acrylic acid) (PAA). Hydrodynamic size of PAA-functionalized silica-coated QDs was around 40 nm. They were highly fluorescent (about 47.8% quantum yield). No precipitate of QDs was observed after 3 month storage at 4 Degree-Sign C. When cancer cells (HeLa) were used, the functionalized QDs exhibited little or no non-specific cellular binding. The results from in vitro experiments indicated that PAA-functionalized silica-coated QDs-antibody bioconjugates had excellent antigen-capture ability and exhibited little or no non-specific binding to polystyrene spheres which were used to immobilize the antigen for immuoflurescence assay. The PAA-functionalized silica-coated QDs with improved colloidal properties could serve as excellent alternative fluorescent probes for biodetection.

  14. Colloid migration in porous media

    International Nuclear Information System (INIS)

    Hunt, J.R.; McDowell-Boyer; Sitar, N.

    1985-01-01

    Retention of radionuclides for long periods near waste repositories depends upon multiple barriers, one of which is adsorption to immobile solid surfaces. Since small particles and colloidal matter have high adsorption capacities per unit mass and can be mobile in subsurface flows, colloidal transport of waste components requires analysis. Theories for predicting colloid migration through porous media have been developed in the filtration literature. The applicability of filtration theories for predicting particle and colloid transport. Emphasis is on suspended matter much smaller than pore sizes, where physical and chemical forces control migration rather than size dependent physical straining. In general, experimentally verifiable theories exist for particle filtration by clean media, and a sensitivity analysis is possible on particle and media properties and fluid flow rate. When particle aggregates accumulate within pores, media permeability decreases, resulting in flow field alteration and possible radionuclide isolation. An analysis of the limited experimental data available indicates that present theories cannot predict long-term colloid transport when permeability reduction occurs. The coupling of colloid attachment processes and the hydrologic flow processes requires more extensive laboratory field research than has currently been carried out. An emphasis on the fundamental mechanisms is necessary to enhance long-term predictability

  15. Cancer nanomedicine: gold nanoparticle mediated combined cancer therapy

    Science.gov (United States)

    Yang, C.; Bromma, Kyle; Chithrani, B. D.

    2018-02-01

    Recent developments in nanotechnology has provided new tools for cancer therapy and diagnosis. Among other nanomaterial systems, gold nanoparticles are being used as radiation dose enhancers and anticancer drug carriers in cancer therapy. Fate of gold nanoparticles within biological tissues can be probed using techniques such as TEM (transmission electron microscopy) and SEM (Scanning Electron Microscopy) due to their high electron density. We have shown for the first time that cancer drug loaded gold nanoparticles can reach the nucleus (or the brain) of cancer cells enhancing the therapeutic effect dramatically. Nucleus of the cancer cells are the most desirable target in cancer therapy. In chemotherapy, smart delivery of highly toxic anticancer drugs through packaging using nanoparticles will reduce the side effects and improve the quality and care of cancer patients. In radiation therapy, use of gold nanoparticles as radiation dose enhancer is very promising due to enhanced localized dose within the cancer tissue. Recent advancement in nanomaterial characterization techniques will facilitate mapping of nanomaterial distribution within biological specimens to correlate the radiobiological effects due to treatment. Hence, gold nanoparticle mediated combined chemoradiation would provide promising tools to achieve personalized and tailored cancer treatments in the near future.

  16. Simulation of bentonite colloid migration through granite

    International Nuclear Information System (INIS)

    Rosicka, Dana; Hokr, Milan

    2012-01-01

    Document available in extended abstract form only. Full text of publication follows: Colloidal bentonite particles generate at the interface of buffer and host rock in spent nuclear fuel repository due to an erosion process and migrate through granite by the water flow. Stability of these colloids and their migration possibilities have been studied on account of radionuclide transport possibility as colloid could carry adsorbed radionuclides in groundwater through granite. That is why a simulation of bentonite colloid migration in the surrounding of a repository might be requested. According to chemical condition as ionic strength and pH, the colloidal particles coagulate into clusters and that influence the migration of particles. The coagulation kinetics of natural bentonite colloids were experimentally studied in many articles, for example by light scattering techniques. We created a model of coagulation of bentonite colloids and simulation of a chosen experiment with use of the multicomponent reactive transport equation. The coagulation model describes clustering of particles due to attractive van der Waals forces as result of collision of particles due to heat fluctuation and different velocity of particles during sedimentation and velocity gradient of water flow. Next, the model includes influence of repulsive electrostatic forces among colloidal particles leading to stability of particles provided high surface charge of colloids. In the model, each group of clusters is transported as one solution component and the kinetics of coagulation are implemented as reactions between the components: a shift of particles among groups of particles with similar migration properties, according to size of the clusters of colloids. The simulation of migration of bentonite colloid through granite using the coagulation model was calibrated according to experiment results. On the basis of the simulation, one can estimate the basic processes that occur during bentonite colloid

  17. Wave oscillations in colloid oxyhydrates wave oscillations in colloid oxyhydrates

    CERN Document Server

    Sucharev, Yuri I

    2010-01-01

    The importance of coherent chemistry, that is, the chemistry of periodic oscillatory processes, is increasing at a rapid rate in specific chemical disciplines. While being perfectly understood and highly developed in the fields of physical chemistry, chemical physics and biological chemistry, the periodic developmental paradigm of processes and phenomena still remains poorly developed and misunderstood in classical inorganic chemistry and related branches, such as colloid chemistry. The probability is that we miss subtle colloid chemical phenomena that could be of utmost importance if taken into consideration when catalysis or adsorption is involved. The author here reveals all of the astonishing vistas that periodic wave paradigms open up to researchers in certain colloid chemical systems, and will doubtless stimulate researchers to look at them in a new light.Review from Book News Inc.: Coherent chemistry, the chemistry of periodical oscillatory processes, is well established in physical chemistry, chemical...

  18. Self-Assembly of Faceted Colloidal Particles

    NARCIS (Netherlands)

    Gantapara, A.P.

    2015-01-01

    A colloidal dispersion consists of insoluble microscopic particles that are suspended in a solvent. Typically, a colloid is a particle for which at least one of its dimension is within the size range of a nanometer to a micron. Due to collisions with much smaller solvent molecules, colloids perform

  19. Electronic structure of the gold/Bi2Sr2CaCu2O8 and gold/EuBa2Cu3O7-δ interfaces as studied by photoemission spectroscopy

    International Nuclear Information System (INIS)

    Dessau, D.S.; Shen, Z.; Wells, B.O.; Spicer, W.E.; List, R.S.; Arko, A.J.; Bartlett, R.J.; Fisk, Z.; Cheong, S.; Mitzi, D.B.; Kapitulnik, A.; Schirber, J.E.

    1990-01-01

    High-resolution photoemission has been used to probe the electronic structure of the gold/Bi 2 Sr 2 CaCu 2 O 8 and gold/EuBa 2 Cu 3 O 7-δ interface formed by a low-temperature (20 K) gold evaporation on cleaved high quality single crystals. We find that the metallicity of the EuBa 2 Cu 3 O 7-δ substrate in the near surface region (∼5 A) is essentially destroyed by the gold deposition, while the near surface region of Bi 2 Sr 2 CaCu 2 O 8 remains metallic. This has potentially wide ranging consequences for the applicability of the different types of superconductors in real devices

  20. Towards biocompatible vaccine delivery systems: interactions of colloidal PECs based on polysaccharides with HIV-1 p24 antigen.

    Science.gov (United States)

    Drogoz, Alexandre; Munier, Séverine; Verrier, Bernard; David, Laurent; Domard, Alain; Delair, Thierry

    2008-02-01

    This work reports on the interactions of a model protein (p24, the capside protein of HIV-1 virus) with colloids obtained from polyelectrolyte complexes (PECs) involving two polysaccharides: chitosan and dextran sulfate (DS). The PECs were elaborated by a one-shot addition of default amounts of one counterpart to the polymer in excess. Depending on the nature of the excess polyelectrolyte, the submicrometric colloid was either positively or negatively charged. HIV-1 capsid p24 protein was chosen as antigen, the ultrapure form, lipopolysaccharide-free (endotoxin-, vaccine grade) was used in most experiments, as the level of purity of the protein had a great impact on the immobilization process. p24 sorption kinetics, isotherms, and loading capacities were investigated for positively and negatively charged particles of chitosans and dextran sulfates differing in degrees of polymerization (DP) or acetylation (DA). Compared with the positive particles, negatively charged colloids had higher binding capacities, faster kinetics, and a better stability of the adsorbed p24. Capacities up to 600 mg x g(-1) (protein-colloid) were obtained, suggesting that the protein interacted within the shell of the particles. Small-angle X-rays scattering experiments confirmed this hypothesis. Finally, the immunogenicity of the p24-covered particles was assessed for vaccine purposes in mice. The antibody titers obtained with immobilized p24 was dose dependent and in the same range as for Freund's adjuvant, a gold standard for humoral responses.

  1. Fluorescent Gold Nanoprobes for the Sensitive and Selective Detection for Hg2+

    Directory of Open Access Journals (Sweden)

    Chai Fang

    2010-01-01

    Full Text Available Abstract A simple, cost-effective yet rapid and sensitive sensor for on-site and real-time Hg2+ detection based on bovine serum albumin functionalized fluorescent gold nanoparticles as novel and environmentally friendly fluorescent probes was developed. Using this probe, aqueous Hg2+ can be detected at 0.1 nM in a facile way based on fluorescence quenching. This probe was also applied to determine the Hg2+ in the lake samples, and the results demonstrate low interference and high sensitivity.

  2. Saturated Zone Colloid-Facilitated Transport

    International Nuclear Information System (INIS)

    Wolfsberg, A.; Reimus, P.

    2001-01-01

    The purpose of the Saturated Zone Colloid-Facilitated Transport Analysis and Modeling Report (AMR), as outlined in its Work Direction and Planning Document (CRWMS MandO 1999a), is to provide retardation factors for colloids with irreversibly-attached radionuclides, such as plutonium, in the saturated zone (SZ) between their point of entrance from the unsaturated zone (UZ) and downgradient compliance points. Although it is not exclusive to any particular radionuclide release scenario, this AMR especially addresses those scenarios pertaining to evidence from waste degradation experiments, which indicate that plutonium and perhaps other radionuclides may be irreversibly attached to colloids. This report establishes the requirements and elements of the design of a methodology for calculating colloid transport in the saturated zone at Yucca Mountain. In previous Total Systems Performance Assessment (TSPA) analyses, radionuclide-bearing colloids were assumed to be unretarded in their migration. Field experiments in fractured tuff at Yucca Mountain and in porous media at other sites indicate that colloids may, in fact, experience retardation relative to the mean pore-water velocity, suggesting that contaminants associated with colloids should also experience some retardation. Therefore, this analysis incorporates field data where available and a theoretical framework when site-specific data are not available for estimating plausible ranges of retardation factors in both saturated fractured tuff and saturated alluvium. The distribution of retardation factors for tuff and alluvium are developed in a form consistent with the Performance Assessment (PA) analysis framework for simulating radionuclide transport in the saturated zone. To improve on the work performed so far for the saturated-zone flow and transport modeling, concerted effort has been made in quantifying colloid retardation factors in both fractured tuff and alluvium. The fractured tuff analysis used recent data

  3. Biological Atomic Force Microscopy for Imaging Gold-Labeled Liposomes on Human Coronary Artery Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Ana-María Zaske

    2013-01-01

    Full Text Available Although atomic force microscopy (AFM has been used extensively to characterize cell membrane structure and cellular processes such as endocytosis and exocytosis, the corrugated surface of the cell membrane hinders the visualization of extracellular entities, such as liposomes, that may interact with the cell. To overcome this barrier, we used 90 nm nanogold particles to label FITC liposomes and monitor their endocytosis on human coronary artery endothelial cells (HCAECs in vitro. We were able to study the internalization process of gold-coupled liposomes on endothelial cells, by using AFM. We found that the gold-liposomes attached to the HCAEC cell membrane during the first 15–30 min of incubation, liposome cell internalization occurred from 30 to 60 min, and most of the gold-labeled liposomes had invaginated after 2 hr of incubation. Liposomal uptake took place most commonly at the periphery of the nuclear zone. Dynasore monohydrate, an inhibitor of endocytosis, obstructed the internalization of the gold-liposomes. This study showed the versatility of the AFM technique, combined with fluorescent microscopy, for investigating liposome uptake by endothelial cells. The 90 nm colloidal gold nanoparticles proved to be a noninvasive contrast agent that efficiently improves AFM imaging during the investigation of biological nanoprocesses.

  4. Photofragmentation of colloidal solutions of gold nanoparticles under femtosecond laser pulses in IR and visible ranges

    International Nuclear Information System (INIS)

    Danilov, P A; Zayarnyi, D A; Ionin, A A; Kudryashov, S I; Makarov, S V; Rudenko, A A; Saraeva, I N; Yurovskikh, V I; Lednev, V N; Pershin, S M

    2015-01-01

    The specific features of photofragmentation of sols of gold nanoparticles under focused femtosecond laser pulses in IR (1030 nm) and visible (515 nm) ranges is experimentally investigated. A high photofragmentation efficiency of nanoparticles in the waist of a pulsed laser beam in the visible range (at moderate radiation scattering) is demonstrated; this efficiency is related to the excitation of plasmon resonance in nanoparticles on the blue shoulder of its spectrum, in contrast to the regime of very weak photofragmentation in an IR-laser field of comparable intensity. Possible mechanisms of femtosecond laser photofragmentation of gold nanoparticles are discussed. (extreme light fields and their applications)

  5. Active structuring of colloidal armour on liquid drops

    Science.gov (United States)

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-06-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.

  6. An Aptamer Bio-barCode (ABC) assay using SPR, RNase H, and probes with RNA and gold-nanorods for anti-cancer drug screening.

    Science.gov (United States)

    Loo, Jacky Fong-Chuen; Yang, Chengbin; Tsang, Hing Lun; Lau, Pui Man; Yong, Ken-Tye; Ho, Ho Pui; Kong, Siu Kai

    2017-10-07

    With modifications to an ultra-sensitive bio-barcode (BBC) assay, we have developed a next generation aptamer-based bio-barcode (ABC) assay to detect cytochrome-c (Cyto-c), a cell death marker released from cancer cells, for anti-cancer drug screening. An aptamer is a short single-stranded DNA selected from a synthetic DNA library that is capable of binding to its target with high affinity and specificity based on its unique DNA sequence and 3D structure after folding. Similar to the BBC assay, Cyto-c is captured by a micro-magnetic particle (MMP) coated with capturing antibodies (Ab) and an aptamer specifically against Cyto-c to form sandwich structures ([MMP-Ab]-[Cyto-c]-[Aptamer]). After washing and melting, our aptamers, acting as a DNA bio-barcode, are released from the sandwiches and hybridized with the probes specially designed for RNase H for surface plasmon resonance (SPR) sensing. In an aptamer-probe duplex, RNase H digests the RNA in the probe and releases the intact aptamer for another round of hybridization and digestion. With signal enhancement effects from gold-nanorods (Au-NRs) on probes for SPR sensing, the detection limit was found to be 1 nM for the aptamer and 80 pM for Cyto-c. Without the time-consuming DNA amplification steps by PCR, the detection process of this new ABC assay can be completed within three hours. As a proof-of-concept, phenylarsine oxide was found to be a potent agent to kill liver cancer cells with multi-drug resistance at the nano-molar level. This approach thus provides a fast, sensitive and robust tool for anti-cancer drug screening.

  7. Thermophoretic torque in colloidal particles with mass asymmetry

    Science.gov (United States)

    Olarte-Plata, Juan; Rubi, J. Miguel; Bresme, Fernando

    2018-05-01

    We investigate the response of anisotropic colloids suspended in a fluid under a thermal field. Using nonequilibrium molecular dynamics computer simulations and nonequilibrium thermodynamics theory, we show that an anisotropic mass distribution inside the colloid rectifies the rotational Brownian motion and the colloids experience transient torques that orient the colloid along the direction of the thermal field. This physical effect gives rise to distinctive changes in the dependence of the Soret coefficient with colloid mass, which features a maximum, unlike the monotonic increase of the thermophoretic force with mass observed in homogeneous colloids.

  8. Characterization of colloids in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.; Buckau, G.; Klenze, R.

    1987-07-01

    Natural colloids in the Gorleben aquifer systems have been investigated as for their chemical composition, quantification and size distribution. Humic substances appear to be the major organic materials in these groundwaters, generating humic colloids which are analysed to be humic acid (and fulvic acid) loaded with a large number of trace heavy metal ions. These metal ions include natural homologues of actinides and some fission products in trivalent, tetravalent and hexavalent state. Concentrations of trivalent and tetravalent heavy metal ions are linearly correlated with the dissolved organic carbon (DDC) concentration in different groundwaters. The DOC is found to be present as humic colloids. The Am 3+ ions introduced in such a groundwater readily undergo the generation of its pseudocolloids through sorption or ion exchange reactions with humic colloids. The chemical behaviour of Am(III), being similar to the trivalent metal ions, e.g. Fe 3+ , REE etc. found in natural colloids, has been investigated by laser induced photoacoustic spectroscopy (LPAS). Groundwaters from Ispra, Markham Clinton and Felslabor Grimsel. Bidistilled water and one of Gorleben groundwaters, Gohy 1011, are taken for the purpose of comparison. This groundwater contains the least amount of natural colloids of all Gorleben groundwaters hitherto investigated. An indirect quantification is made by comparison of the LPAS results with experiment from Latex solution. (orig./IRB)

  9. Pore water colloid properties in argillaceous sedimentary rocks.

    Science.gov (United States)

    Degueldre, Claude; Cloet, Veerle

    2016-11-01

    The focus of this work is to evaluate the colloid nature, concentration and size distribution in the pore water of Opalinus Clay and other sedimentary host rocks identified for a potential radioactive waste repository in Switzerland. Because colloids could not be measured in representative undisturbed porewater of these host rocks, predictive modelling based on data from field and laboratory studies is applied. This approach allowed estimating the nature, concentration and size distributions of the colloids in the pore water of these host rocks. As a result of field campaigns, groundwater colloid concentrations are investigated on the basis of their size distribution quantified experimentally using single particle counting techniques. The colloid properties are estimated considering data gained from analogue hydrogeochemical systems ranging from mylonite features in crystalline fissures to sedimentary formations. The colloid concentrations were analysed as a function of the alkaline and alkaline earth element concentrations. Laboratory batch results on clay colloid generation from compacted pellets in quasi-stagnant water are also reported. Experiments with colloids in batch containers indicate that the size distribution of a colloidal suspension evolves toward a common particle size distribution independently of initial conditions. The final suspension size distribution was found to be a function of the attachment factor of the colloids. Finally, calculations were performed using a novel colloid distribution model based on colloid generation, aggregation and sedimentation rates to predict under in-situ conditions what makes colloid concentrations and size distributions batch- or fracture-size dependent. The data presented so far are compared with the field and laboratory data. The colloid occurrence, stability and mobility have been evaluated for the water of the considered potential host rocks. In the pore water of the considered sedimentary host rocks, the clay

  10. Colloid-facilitated radionuclide transport: a regulatory perspective

    Science.gov (United States)

    Dam, W. L.; Pickett, D. A.; Codell, R. B.; Nicholson, T. J.

    2001-12-01

    What hydrogeologic-geochemical-microbial conditions and processes affect migration of radionuclides sorbed onto microparticles or native colloid-sized radionuclide particles? The U.S. Nuclear Regulatory Commission (NRC) is responsible for protecting public health, safety, and the environment at numerous nuclear facilities including a potential high-level nuclear waste disposal site. To fulfill these obligations, NRC needs to understand the mechanisms controlling radionuclide release and transport and their importance to performance. The current focus of NRC staff reviews and technical interactions dealing with colloid-facilitated transport relates to the potential nuclear-waste repository at Yucca Mountain, Nevada. NRC staff performed bounding calculations to quantify radionuclide releases available for ground-water transport to potential receptors from a Yucca Mountain repository. Preliminary analyses suggest insignificant doses of plutonium and americium colloids could be derived from spent nuclear fuel. Using surface complexation models, NRC staff found that colloids can potentially lower actinide retardation factors by up to several orders of magnitude. Performance assessment calculations, in which colloidal transport of plutonium and americium was simulated by assuming no sorption or matrix diffusion, indicated no effect of colloids on human dose within the 10,000 year compliance period due largely to long waste-package lifetimes. NRC staff have identified information gaps and developed technical agreements with the U.S. Department of Energy (DOE) to ensure sufficient information will be presented in any potential future Yucca Mountain license application. DOE has agreed to identify which radionuclides could be transported via colloids, incorporate uncertainties in colloid formation, release and transport parameters, and conceptual models, and address the applicability of field data using synthetic microspheres as colloid analogs. NRC is currently

  11. Protease-activated quantum dot probes

    International Nuclear Information System (INIS)

    Chang, Emmanuel; Miller, Jordan S.; Sun, Jiantang; Yu, William W.; Colvin, Vicki L.; Drezek, Rebekah; West, Jennifer L.

    2005-01-01

    We have developed a novel nanoparticulate luminescent probe with inherent signal amplification upon interaction with a targeted proteolytic enzyme. This construct may be useful for imaging in cancer detection and diagnosis. In this system, quantum dots (QDs) are bound to gold nanoparticles (AuNPs) via a proteolytically degradable peptide sequence to non-radiatively suppress luminescence. A 71% reduction in luminescence was achieved with conjugation of AuNPs to QDs. Release of AuNPs by peptide cleavage restores radiative QD photoluminescence. Initial studies observed a 52% rise in luminescence over 47 h of exposure to 0.2 mg/mL collagenase. These probes can be customized for targeted degradation simply by changing the sequence of the peptide linker

  12. Simple colorimetric detection of doxycycline and oxytetracycline using unmodified gold nanoparticles

    Science.gov (United States)

    Li, Jie; Fan, Shumin; Li, Zhigang; Xie, Yuanzhe; Wang, Rui; Ge, Baoyu; Wu, Jing; Wang, Ruiyong

    2014-08-01

    The interaction between tetracycline antibiotics and gold nanoparticles was studied. With citrate-coated gold nanoparticles as colorimetric probe, a simple and rapid detection method for doxycycline and oxytetracycline has been developed. This method relies on the distance-dependent optical properties of gold nanoparticles. In weakly acidic buffer medium, doxycycline and oxytetracycline could rapidly induce the aggregation of gold nanoparticles, resulting in red-to-blue (or purple) colour change. The experimental parameters were optimized with regard to pH, the concentration of the gold nanoparticles and the reaction time. Under optimal experimental conditions, the linear range of the colorimetric sensor for doxycycline/oxytetracycline was 0.06-0.66 and 0.59-8.85 μg mL-1, respectively. The corresponding limit of detection for doxycycline and oxytetracycline was 0.0086 and 0.0838 μg mL-1, respectively. This assay was sensitive, selective, simple and readily used to detect tetracycline antibiotics in food products.

  13. Synthesis of a red pigment from gold nanoparticles; Sintesis de un pigmento rojo a partir de nanopartIculas de oro

    Energy Technology Data Exchange (ETDEWEB)

    Mestre, S.; Palacios, M. D.; Agut, P.

    2012-07-01

    A simple method of synthesising red pigments for ceramic glazes, based on gold nanoparticles protected by a refractory oxide capsule, was developed. Gold nanoparticles of an appropriate size were obtained by reaction in an aqueous medium between an Au(III) solution and an ammonium bromide solution, keeping the Br- concentration low during the process. The gold nanoparticles were encapsulated by adding the protective oxide in colloid form and subsequently coagulating it, alkalinising the medium. Diethylen triamine was then added to encourage the interaction between the gold nanoparticles and the oxide nanoparticles. This was followed by adding carboxymethylcellulose to raise medium viscosity, and to avoid segregation and subsequent agglomeration of the gold nanoparticles during drying. The dry residue was directly usable as a glaze pigment without requiring further thermal treatments. Three protective oxides, namely SiO{sub 2}, Al{sub 2}O{sub 3}, and SnO{sub 2}, were tested. In the three cases, pigments with a high colouring strength were obtained, which gave rise to reds of different shades in the resulting test glaze. (Author)

  14. Recommendations for plutonium colloid size determination

    International Nuclear Information System (INIS)

    Kosiewicz, S.T.

    1984-02-01

    This report presents recommendations for plutonium colloid size determination and summarizes a literature review, discussions with other researchers, and comments from equipment manufacturers. Four techniques suitable for plutonium colloid size characterization are filtration and ultrafiltration, gel permeation chromatography, diffusion methods, and high-pressure liquid chromatography (conditionally). Our findings include the following: (1) Filtration and ultrafiltration should be the first methods used for plutonium colloid size determination because they can provide the most rapid results with the least complicated experimental arrangement. (2) After expertise has been obtained with filtering, gel permeation chromatography should be incorporated into the colloid size determination program. (3) Diffusion methods can be used next. (4) High-pressure liquid chromatography will be suitable after appropriate columns are available. A plutonium colloid size characterization program with filtration/ultrafiltration and gel permeation chromatography has been initiated

  15. Emerging advances in nanomedicine with engineered gold nanostructures.

    Science.gov (United States)

    Webb, Joseph A; Bardhan, Rizia

    2014-03-07

    Gold nanostructures possess unique characteristics that enable their use as contrast agents, as therapeutic entities, and as scaffolds to adhere functional molecules, therapeutic cargo, and targeting ligands. Due to their ease of synthesis, straightforward surface functionalization, and non-toxicity, gold nanostructures have emerged as powerful nanoagents for cancer detection and treatment. This comprehensive review summarizes the progress made in nanomedicine with gold nanostructures (1) as probes for various bioimaging techniques including dark-field, one-photon and two-photon fluorescence, photothermal optical coherence tomography, photoacoustic tomography, positron emission tomography, and surface-enhanced Raman scattering based imaging, (2) as therapeutic components for photothermal therapy, gene and drug delivery, and radiofrequency ablation, and (3) as a theranostic platform to simultaneously achieve both cancer detection and treatment. Distinct from other published reviews, this article also discusses the recent advances of gold nanostructures as contrast agents and therapeutic actuators for inflammatory diseases including atherosclerotic plaque and arthritis. For each of the topics discussed above, the fundamental principles and progress made in the past five years are discussed. The review concludes with a detailed future outlook discussing the challenges in using gold nanostructures, cellular trafficking, and translational considerations that are imperative for rapid clinical viability of plasmonic nanostructures, as well as the significance of emerging technologies such as Fano resonant gold nanostructures in nanomedicine.

  16. Towards conducting inks: Polypyrrole–silver colloids

    International Nuclear Information System (INIS)

    Omastová, Mária; Bober, Patrycja; Morávková, Zuzana; Peřinka, Nikola; Kaplanová, Marie; Syrový, Tomáš; Hromádková, Jiřina; Trchová, Miroslava; Stejskal, Jaroslav

    2014-01-01

    Graphical abstract: - Highlights: • Composite colloidal particles combining conducting polymer and metal have been prepared. • Conducting colloids are suitable for printing applications. • Polypyrrole/silver colloids are prepared in a single reaction step. • The conductivity control is discussed and still needs improvement. - Abstract: The oxidation of pyrrole with silver nitrate in the presence of suitable water-soluble polymers yields composite polypyrrole–silver colloids. The polypyrrole–silver nanoparticles stabilized with poly(N-vinylpyrrolidone) have a typical size around 350 nm and polydispersity index 0.20, i.e. a moderate polydispersity in size. Similar results have been obtained with poly(vinyl alcohol) as stabilizer. The effect of stabilizer concentration on the particle size is marginal. In the present study, several types of stabilizers have been tested in addition to currently used poly(N-vinylpyrrolidone). Transmission electron microscopy and optical microscopy revealed the gemini morphology of polypyrrole and silver colloidal nanoparticles and confirmed their size and size-distribution determined by dynamic light scattering. The use of colloidal dispersions provides an efficient tool for the UV–vis and FT Raman spectroscopic characterization of polypyrrole, including the transition between polypyrrole salt and corresponding polypyrrole base. The dispersions were used for the preparation of coatings on polyethylene terephthalate foils, and the properties for polypyrrole–silver composites have been compared with those produced from polypyrrole colloids alone

  17. Gold-coated iron nanoparticles in transparent Si3N4 matrix thin films

    Science.gov (United States)

    Sánchez-Marcos, J.; Céspedes, E.; Jiménez-Villacorta, F.; Muñoz-Martín, A.; Prieto, C.

    2013-06-01

    A new method to prepare thin films containing gold-coated iron nanoparticles is presented. The ternary Fe-Au-Si3N4 system prepared by sequential sputtering has revealed a progressive variation of microstructures from Au/Fe/Au/Si3N4 multilayers to iron nanoparticles. Microstructural characterization by transmission electron microscopy, analysis of the magnetic properties and probing of the iron short-range order by X-ray absorption spectroscopy confirm the existence of a gold-coated iron nanoparticles of 1-2 nm typical size for a specific range of iron and gold contents per layer in the transparent silicon nitride ceramic matrix.

  18. TiO2 Nanoparticles as a Soft X-ray Molecular Probe

    Energy Technology Data Exchange (ETDEWEB)

    Larabell, Carolyn; Ashcroft, Jared M.; Gu, Weiwei; Zhang, Tierui; Hughes, Steven M.; Hartman, Keith B.; Hofmann, Cristina; Kanaras, Antonios G.; Kilcoyne, David A.; Le Gros, Mark; Yin, Yadong; Alivisatos, A. Paul; Larabell, Carolyn A.

    2007-06-30

    With the emergence of soft x-ray techniques for imaging cells, there is a pressing need to develop protein localization probes that can be unambiguously identified within the region of x-ray spectrum used for imaging. TiO2 nanocrystal colloids, which have a strong absorption cross-section within the "water-window" region of x-rays, areideally suited as soft x-ray microscopy probes. To demonstrate their efficacy, TiO2-streptavidin nanoconjugates were prepared and subsequently labeled microtubules polymerized from biotinylated tubulin. The microtubules were imaged using scanning transmission x-ray microscopy (STXM), and the TiO2 nanoparticle tags were specifically identified using x-ray absorption near edge spectroscopy (XANES). These experiments demonstrate that TiO2 nanoparticles are potential probes for protein localization analyses using soft x-ray microscopy.

  19. Vibrational properties of quasi-two-dimensional colloidal glasses with varying interparticle attraction.

    Science.gov (United States)

    Gratale, Matthew D; Ma, Xiaoguang; Davidson, Zoey S; Still, Tim; Habdas, Piotr; Yodh, A G

    2016-10-01

    We measure the vibrational modes and particle dynamics of quasi-two-dimensional colloidal glasses as a function of interparticle interaction strength. The interparticle attractions are controlled via a temperature-tunable depletion interaction. Specifically, the interparticle attraction energy is increased gradually from a very small value (nearly hard-sphere) to moderate strength (∼4k_{B}T), and the variation of colloidal particle dynamics and vibrations are concurrently probed. The particle dynamics slow monotonically with increasing attraction strength, and the particle motions saturate for strengths greater than ∼2k_{B}T, i.e., as the system evolves from a nearly repulsive glass to an attractive glass. The shape of the phonon density of states is revealed to change with increasing attraction strength, and the number of low-frequency modes exhibits a crossover for glasses with weak compared to strong interparticle attraction at a threshold of ∼2k_{B}T. This variation in the properties of the low-frequency vibrational modes suggests a new means for distinguishing between repulsive and attractive glass states.

  20. Quantum-size colloid metal systems

    International Nuclear Information System (INIS)

    Roldugin, V.I.

    2000-01-01

    In the review dealing with quantum-dimensional metallic colloid systems the methods of preparation, electronic, optical and thermodynamic properties of metal nanoparticles and thin films are considered, the effect of ionizing radiation on stability of silver colloid sols and existence of a threshold radiation dose affecting loss of stability being discussed. It is shown that sol stability loss stems from particles charge neutralization due to reduction of sorbed silver ions induced by radiation, which results in destruction of double electric layer on colloid particles boundary [ru

  1. FEBEX bentonite colloid stability in ground water

    Energy Technology Data Exchange (ETDEWEB)

    Seher, H.; Schaefer, T.; Geckeis, H. [Inst. fuer Nukleare Entsorgung (INE), Forschungszentrum Karlsruhe, 76021 Karlsruhe (Germany)]. e-mail: holger.seher@ine.fzk .de; Fanghaenel, T. [Ruprecht-Karls-Univ. Heidelberg, Physikalisch-Chemisches In st., D-69120 Heidelberg (Germany)

    2007-06-15

    Coagulation experiments are accomplished to identify the geochemical conditions for the stability of Febex bentonite colloids in granite ground water. The experiments are carried out by varying pH, ionic strength and type of electrolyte. The dynamic light scattering technique (photon correlation spectroscopy) is used to measure the size evolution of the colloids with time. Agglomeration rates are higher in MgCl{sub 2} and CaCl{sub 2} than in NaCl solution. Relative agglomeration rates follow approximately the Schulze-Hardy rule. Increasing agglomeration rates at pH>8 are observed in experiments with MgCl{sub 2} and CaCl{sub 2} which are, however, caused by coprecipitation phenomena. Bentonite colloid stability fields derived from the colloid agglomeration experiments predict low colloid stabilization in granite ground water taken from Aespoe, Sweden, and relatively high colloid stability in Grimsel ground water (Switzerland)

  2. Reversible end-to-end assembly of gold nanorods using a disulfide-modified polypeptide

    International Nuclear Information System (INIS)

    Walker, David A; Gupta, Vinay K

    2008-01-01

    Directing the self-assembly of colloidal particles into nanostructures is of great interest in nanotechnology. Here, reversible end-to-end assembly of gold nanorods (GNR) is induced by pH-dependent changes in the secondary conformation of a disulfide-modified poly(L-glutamic acid) (SSPLGA). The disulfide anchoring group drives chemisorption of the polyacid onto the end of the gold nanorods in an ethanolic solution. A layer of poly(vinyl pyrrolidone) is adsorbed on the positively charged, surfactant-stabilized GNR to screen the surfactant bilayer charge and provide stability for dispersion of the GNR in ethanol. For comparison, irreversible end-to-end assembly using a bidentate ligand, namely 1,6-hexanedithiol, is also performed. Characterization of the modified GNR and its end-to-end linking behavior using SSPLGA and hexanedithiol is performed using dynamic light scattering (DLS), UV-vis absorption spectroscopy and transmission electron microscopy (TEM). Experimental results show that, in a colloidal solution of GNR-SSPLGA at a pH∼3.5, where the PLGA is in an α-helical conformation, the modified GNR self-assemble into one-dimensional nanostructures. The linking behavior can be reversed by increasing the pH (>8.5) to drive the conformation of the polypeptide to a random coil and this reversal with pH occurs rapidly within minutes. Cycling the pH multiple times between low and high pH values can be used to drive the formation of the nanostructures of the GNR and disperse them in solution.

  3. Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering

    KAUST Repository

    Yue, Weisheng

    2012-10-26

    The fabrication of nanostructured substrates with precisely controlled geometries and arrangements plays an important role in studies of surface-enhanced Raman scattering (SERS). Here, we present two processes based on electron-beam lithography to fabricate gold nanostructures for SERS. One process involves making use of metal lift-off and the other involves the use of the plasma etching. These two processes allow the successful fabrication of gold nanostructures with various kinds of geometrical shapes and different periodic arrangements. 4-mercaptopyridine (4-MPy) and Rhodamine 6G (R6G) molecules are used to probe SERS signals on the nanostructures. The SERS investigations on the nanostructured substrates demonstrate that the gold nanostructured substrates have resulted in large SERS enhancement, which is highly dependent on the geometrical shapes and arrangements of the gold nanostructures. © 2012 IOP Publishing Ltd.

  4. Interface colloidal robotic manipulator

    Science.gov (United States)

    Aronson, Igor; Snezhko, Oleksiy

    2015-08-04

    A magnetic colloidal system confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters. The colloidal system exhibits locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, structures can capture, transport, and position target particles.

  5. Molecular Recognition in the Colloidal World.

    Science.gov (United States)

    Elacqua, Elizabeth; Zheng, Xiaolong; Shillingford, Cicely; Liu, Mingzhu; Weck, Marcus

    2017-11-21

    Colloidal self-assembly is a bottom-up technique to fabricate functional nanomaterials, with paramount interest stemming from programmable assembly of smaller building blocks into dynamic crystalline domains and photonic materials. Multiple established colloidal platforms feature diverse shapes and bonding interactions, while achieving specific orientations along with short- and long-range order. A major impediment to their universal use as building blocks for predesigned architectures is the inability to precisely dictate and control particle functionalization and concomitant reversible self-assembly. Progress in colloidal self-assembly necessitates the development of strategies that endow bonding specificity and directionality within assemblies. Methodologies that emulate molecular and polymeric three-dimensional (3D) architectures feature elements of covalent bonding, while high-fidelity molecular recognition events have been installed to realize responsive reconfigurable assemblies. The emergence of anisotropic 'colloidal molecules', coupled with the ability to site-specifically decorate particle surfaces with supramolecular recognition motifs, has facilitated the formation of superstructures via directional interactions and shape recognition. In this Account, we describe supramolecular assembly routes to drive colloidal particles into precisely assembled architectures or crystalline lattices via directional noncovalent molecular interactions. The design principles are based upon the fabrication of colloidal particles bearing surface-exposed functional groups that can undergo programmable conjugation to install recognition motifs with high fidelity. Modular and versatile by design, our strategy allows for the introduction and integration of molecular recognition principles into the colloidal world. We define noncovalent molecular interactions as site-specific forces that are predictable (i.e., feature selective and controllable complementary bonding partners

  6. Constructive nanolithography and nanochemistry : local probe oxidation and chemical modification

    NARCIS (Netherlands)

    Wouters, D.; Schubert, U.S.

    2003-01-01

    The possibility to prepare and use submicrometer-sized patterns in successive functionalization reactions with quaternary ammonium salts and (functional) chlorosilanes, as well as cationic gold nanoparticles, is presented. Submicrometer-sized structures were prepared by local probe oxidation of

  7. Sampling and analysis of groundwater colloids. A literature review

    International Nuclear Information System (INIS)

    Takala, M.; Manninen, P.

    2006-03-01

    The purpose of this literature study was to give basic information of colloids: their formation, colloid material, sampling and characterisation of groundwater colloids. Colloids are commonly refereed to as particles in the size range of 1 nm to 1000 nm. They are defined as a suspension of solid material in a liquid that does not appear to separate even after a long period of time. Colloids can be formed from a variety of inorganic or organic material. Inorganic colloids in natural groundwaters are formed by physical fragmentation of the host rock or by precipitation. The water chemistry strongly controls the stability of colloids. The amount of colloid particles in a solution tends to decrease with the increasing ionic strength of the solution. Increases in pH and organic material tend to increase the stability of colloids. The mobility of colloids in a porous medium is controlled mainly by groundwater movement, sedimentation, diffusion and interception. Factors controlling sampling artefacts are oxygen diffusion: leads to e.g. calcite precipitation, pumping rates and filtering techniques. Efforts to minimise artefact formation should be taken if the scope of the sampling programme is to study the colloid particles. The colloid phase size distribution can be determined by light scattering systems, laser induced break down or by single particle analysis using SEM micrographs. Elemental compositions can be analysed with EDS spectrometry from single colloid particles. Bulk compositions of the colloid phase can be analysed with e.g. ICP-MS analyser. The results of this study can be used as guidelines for groundwater colloid samplings. Recommendations for future work are listed in the conclusions of this report. (orig.)

  8. Exploring luminescence-based temperature sensing using protein-passivated gold nanoclusters

    Science.gov (United States)

    Chen, Xi; Essner, Jeremy B.; Baker, Gary A.

    2014-07-01

    We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers.We explore the analytical performance and limitations of optically monitoring aqueous-phase temperature using protein-protected gold nanoclusters (AuNCs). Although not reported elsewhere, we find that these bio-passivated AuNCs show pronounced hysteresis upon thermal cycling. This unwanted behaviour can be eliminated by several strategies, including sol-gel coating and thermal denaturation of the biomolecular template, introducing protein-templated AuNC probes as viable nanothermometers. Electronic supplementary information (ESI) available: Supplemental figures and experimental details. See DOI: 10.1039/c4nr02069c

  9. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kuo-Hao [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Lai, Sheng-Feng [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan (China); Lin, Yan-Cheng; Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan (China); Ong, Edwin B.L. [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Tan, Hui-Ru [Institute of Materials Research and Engineering, 3 Research Link, 117602 (Singapore); Tok, Eng Soon [Physics Department, National University of Singapore, 117542 (Singapore); Yang, C.S. [Center for Nanomedicine, National Health Research Institutes, Miaoli 350, Taiwan (China); Margaritondo, G. [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Hwu, Y., E-mail: phhwu@sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei 115, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 701, Taiwan (China); Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung 202, Taiwan (China)

    2015-01-15

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue.

  10. Gold nanoparticles: BSA (Bovine Serum Albumin) coating and X-ray irradiation produce variable-spectrum photoluminescence

    International Nuclear Information System (INIS)

    Lee, Kuo-Hao; Lai, Sheng-Feng; Lin, Yan-Cheng; Chou, Wu-Ching; Ong, Edwin B.L.; Tan, Hui-Ru; Tok, Eng Soon; Yang, C.S.; Margaritondo, G.; Hwu, Y.

    2015-01-01

    We show that by using different x-ray irradiation times of BSA-coated Au nanoparticles (NPs) we can change their ultraviolet-stimulated photoluminescence and shift the spectral weight over the visible spectral range. This is due to the interplay of two emission bands, one due to BSA and the other related to gold. The emission properties did not change with time over a period of several months. - Highlights: • Gold nanoparticles (Au NPs) coated with Bovine Serum Albumin (BSA) are synthesized by x-ray irradiation. • BSA coated AuNPs with ∼1 nm size show strong photoluminescence in red by UV excitation. • The blue photoluminescence of BSA increase with x-ray irradiation. • Increase x-ray irradiation time during the synthesis shift the color of the colloid from red to blue

  11. Active shape-morphing elastomeric colloids in short-pitch cholesteric liquid crystals.

    Science.gov (United States)

    Evans, Julian S; Sun, Yaoran; Senyuk, Bohdan; Keller, Patrick; Pergamenshchik, Victor M; Lee, Taewoo; Smalyukh, Ivan I

    2013-05-03

    Active elastomeric liquid crystal particles with initial cylindrical shapes are obtained by means of soft lithography and polymerization in a strong magnetic field. Gold nanocrystals infiltrated into these particles mediate energy transfer from laser light to heat, so that the inherent coupling between the temperature-dependent order and shape allows for dynamic morphing of these particles and well-controlled stable shapes. Continuous changes of particle shapes are followed by their spontaneous realignment and transformations of director structures in the surrounding cholesteric host, as well as locomotion in the case of a nonreciprocal shape morphing. These findings bridge the fields of liquid crystal solids and active colloids, may enable shape-controlled self-assembly of adaptive composites and light-driven micromachines, and can be understood by employing simple symmetry considerations along with electrostatic analogies.

  12. Clustering and self-assembly in colloidal systems

    NARCIS (Netherlands)

    Smallenburg, F.

    2012-01-01

    A colloidal dispersion consists of small particles called colloids, typically tens of nanometers to a few micrometers in size, suspended in a solvent. Due to collisions with the much smaller particles in the solvent, colloids perform Brownian motion: randomly directed movements that cause the

  13. Plasmonic Switches and Sensors Based on PANI-Coated Gold Nanostructures

    Science.gov (United States)

    Jiang, Nina

    Gold nanostructures have been received intense and growing attention due to their unique properties associated with localized surface plasmon resonance (LSPR). The frequency and strength of the LSPR are highly dependent on the dielectric properties of the surrounding environment around gold nanostructures. Such dependence offers the essential basis for the achievement of plasmonic switching and sensing. While the plasmonic response of gold nanostructures is tuned by changing their dielectric environment, the external stimuli inducing the changes in the dielectric environment will be read out through the plasmonic response of gold nanostructures. As a consequence, plasmonic sensors and switches can be engineered by integrating active media that can respond to external stimuli with gold nanostructures. In this thesis research, I have achieved the coating of polyaniline (PANI) ' a conductive polymer, on gold nanostructures, and exploited the application of the core/shell nanostructures in plasmonic switching and sensing. Large modulation of the longitudinal plasmon resonance of single gold nanorods is achieved by coating PANI shell onto gold nanorods to produce colloidal plasmonic switches. The dielectric properties of PANI shell can be tuned by changing the proton-doping levels, which allows for the modulation of the plasmonic response of gold nanorods. The coated nanorods are sparsely housed in a simple microfluidic chamber. HCl and NaOH solutions are alternately pumped through the chamber for the realization of proton doping and dedoping. The plasmonic switching behavior is examined by monitoring the single-particle scattering spectra under the proton-doped and dedoped state of PANI. The coated nanorods exhibit a remarkable switching performance, with the modulation depth and scattering peak shift reaching 10 dB and 100 nm, respectively. Electrodynamic simulations are employed to confirm the plasmon switching behavior. I have further investigated the modulation of

  14. Colloid-Facilitated Transport of Radionuclides Through The Vadose Zone

    International Nuclear Information System (INIS)

    Markus Flury; James B. Harsh; John F. McCarthy' Peter C. Lichtner; John M. Zachara

    2007-01-01

    The main purpose of this project was to advance the basic scientific understanding of colloid and colloid-facilitated Cs transport of radionuclides in the vadose zone. We focused our research on the hydrological and geochemical conditions beneath the leaking waste tanks at the USDOE Hanford reservation. Specific objectives were (1) to determine the lability and thermodynamic stability of colloidal materials, which form after reacting Hanford sediments with simulated Hanford Tank Waste, (2) to characterize the interactions between colloidal particles and contaminants, i.e., Cs and Eu, (3) to determine the potential of Hanford sediments for in situ mobilization of colloids, (4) to evaluate colloid-facilitated radionuclide transport through sediments under unsaturated flow, (5) to implement colloid-facilitated contaminant transport mechanisms into a transport model, and (6) to improve conceptual characterization of colloid-contaminant-soil interactions and colloid-facilitated transport for clean-up procedures and long-term risk assessment

  15. The physics of the colloidal glass transition.

    Science.gov (United States)

    Hunter, Gary L; Weeks, Eric R

    2012-06-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come.

  16. The physics of the colloidal glass transition

    International Nuclear Information System (INIS)

    Hunter, Gary L; Weeks, Eric R

    2012-01-01

    As one increases the concentration of a colloidal suspension, the system exhibits a dramatic increase in viscosity. Beyond a certain concentration, the system is said to be a colloidal glass; structurally, the system resembles a liquid, yet motions within the suspension are slow enough that it can be considered essentially frozen. For several decades, colloids have served as a valuable model system for understanding the glass transition in molecular systems. The spatial and temporal scales involved allow these systems to be studied by a wide variety of experimental techniques. The focus of this review is the current state of understanding of the colloidal glass transition, with an emphasis on experimental observations. A brief introduction is given to important experimental techniques used to study the glass transition in colloids. We describe features of colloidal systems near and in glassy states, including increases in viscosity and relaxation times, dynamical heterogeneity and ageing, among others. We also compare and contrast the glass transition in colloids to that in molecular liquids. Other glassy systems are briefly discussed, as well as recently developed synthesis techniques that will keep these systems rich with interesting physics for years to come. (review article)

  17. Forces between a rigid probe particle and a liquid interface. II. The general case.

    Science.gov (United States)

    Dagastine, R R; White, L R

    2002-03-15

    The semianalytic theory developed previously (Chan, D. Y. C., Dagastine, R. R., and White, L. R., J. Colloid Interface Sci. 236, 141 (2001)) to predict the force curve of an AFM measurement at a liquid interface using a colloidal probe has been expanded to incorporate a general force law with both attractive and repulsive forces. Expressions for the gradient of the force curve are developed to calculate the point at which the probe particle on the cantilever will spontaneously jump in toward the liquid interface. The calculation of the jump instability is reduced to a straightforward embroidery of the simple algorithms presented in Chan et al. In a variety of sample calculations using force laws including van der Waals, electrostatic, and hydrophobic forces for both oil/water and bubble/water interfaces, we have duplicated the general behaviors observed in several AFM investigations at liquid interfaces. The behavior of the drop as a Hookean spring and the numerical difficulties of a full numerical calculation of F(deltaX) are also discussed.

  18. Kinetic arrest and glass-glass transition in short-ranged attractive colloids

    International Nuclear Information System (INIS)

    Sztucki, M.; Narayanan, T.; Belina, G.; Moussaied, A.; Pignon, F.; Hoekstra, H.

    2006-01-01

    A thermally reversible repulsive hard-sphere to sticky-sphere transition was studied in a model colloidal system over a wide volume fraction range. The static microstructure was obtained from high resolution small angle x-ray scattering, the colloid dynamics was probed by dynamic x-ray and light scattering, and supplementary mechanical properties were derived from bulk rheology. At low concentration, the system shows features of gas-liquid type phase separation. The bulk phase separation is presumably interrupted by a gelation transition at the intermediate volume fraction range. At high volume fractions, fluid-attractive glass and repulsive glass-attractive glass transitions are observed. It is shown that the volume fraction of the particles can be reliably deduced from the absolute scattered intensity. The static structure factor is modeled in terms of an attractive square-well potential, using the leading order series expansion of Percus-Yevick approximation. The ensemble-averaged intermediate scattering function shows different levels of frozen components in the attractive and repulsive glassy states. The observed static and dynamic behavior are consistent with the predictions of a mode-coupling theory and numerical simulations for a square-well attractive system

  19. Colloids from the aqueous corrosion of uranium nuclear fuel

    Science.gov (United States)

    Kaminski, M. D.; Dimitrijevic, N. M.; Mertz, C. J.; Goldberg, M. M.

    2005-12-01

    Colloids may enhance the subsurface transport of radionuclides and potentially compromise the long-term safe operation of the proposed radioactive waste repository at Yucca Mountain. Little data is available on colloid formation for the many different waste forms expected to be buried in the repository. This work expands the sparse database on colloids formed during the corrosion of metallic uranium nuclear fuel. We characterized spherical UO 2 and nickel-rich montmorilonite smectite-clay colloids formed during the corrosion of uranium metal fuel under bathtub conditions at 90 °C. Iron and chromium oxides and calcium carbonate colloids were present but were a minor population. The estimated upper concentration of the UO 2 and clays was 4 × 10 11 and 7 × 10 11-3 × 10 12 particles/L, respectively. However, oxygen eventually oxidized the UO 2 colloids, forming long filaments of weeksite K 2(UO 2) 2Si 6O 15 · 4H 2O that settled from solution, reducing the UO 2 colloid population and leaving predominantly clay colloids. The smectite colloids were not affected by oxygen. Plutonium was not directly observed within the UO 2 colloids but partitioned completely to the colloid size fraction. The plutonium concentration in the colloidal fraction was slightly higher than the value used in the viability assessment model, and does not change in concentration with exposure to oxygen. This paper provides conclusive evidence for single-phase radioactive colloids composed of UO 2. However, its impact on repository safety is probably small since oxygen and silica availability will oxidize and effectively precipitate the UO 2 colloids from concentrated solutions.

  20. Validity of Dynamic Light Scattering Method to Analyze a Range of Gold and Copper Nanoparticle Sizes Attained by Solids Laser Ablation in Liquid

    Directory of Open Access Journals (Sweden)

    Yu. V. Golubenko

    2014-01-01

    Full Text Available Nanoparticles of metals possess a whole series of features, concerned with it’s sizes, this leads to appearing or unusual electromagnetic and optical properties, which are untypical for particulates.An extended method of receiving nanoparticles by means of laser radiation is pulse laser ablation of hard targets in liquid medium.Varying the parameters of laser radiation, such as wavelength of laser radiation, energy density, etc., we can operate the size and shape of the resultant particles.The greatest trend of application in medicine have the nanoparticles of iron, copper, silver, silicon, magnesium, gold and zinc.The subject matter in this work is nanoparticles of copper and gold, received by means of laser ablation of hard targets in liquid medium.The aim of exploration, represented in the article, is the estimation of application of the dynamic light scattering method for determination of the range of nanoparticles sizes in the colloidal solution.For studying of the laser ablation process was chosen the second harmonic of Nd:YAG laser with the wavelength of 532 nm. Special attention was spared for the description of the experiment technique of receiving of nanoparticles.As the liquid medium ethanol and distillation water were used.For exploration of the received colloidal system have been used the next methods: DLS, transmission electron microscopy (TEM and scanning electron microscopy (SEM.The results of measuring by DLS method showed that colloidal solution of the copper in the ethanol is the steady system. Copper nanoparticle’s size reaches 200 nm and is staying in the same size for some time.Received system from the gold’s nanoparticles is polydisperse, unsteady and has a big range of the nanoparticle’s sizes. This fact was confirmed by means of photos, got from the TEM FEI Tecnai G2F20 + GIF and SEM Helios NanoLab 660. The range of the gold nanoparticle’s sizes is from 5 to 60 nm. So, it has been proved that the DLS method is

  1. A practical method to fabricate gold substrates for surface-enhanced Raman spectroscopy.

    Science.gov (United States)

    Tantra, Ratna; Brown, Richard J C; Milton, Martin J T; Gohil, Dipak

    2008-09-01

    We describe a practical method of fabricating surface-enhanced Raman spectroscopy (SERS) substrates based on dip-coating poly-L-lysine derivatized microscope slides in a gold colloidal suspension. The use of only commercially available starting materials in this preparation is particularly advantageous, aimed at both reducing time and the inconsistency associated with surface modification of substrates. The success of colloid deposition has been demonstrated by scanning electron microscopy (SEM) and the corresponding SERS response (giving performance comparable to the corresponding traditional colloidal SERS substrates). Reproducibility was evaluated by conducting replicate measurements across six different locations on the substrate and assessing the extent of the variability (standard deviation values of spectral parameters: peak width and height), in response to either Rhodamine 6G or Isoniazid. Of particular interest is the observation of how some peaks in a given spectrum are more susceptible to data variability than others. For example, in a Rhodamine 6G SERS spectrum, spectral parameters of the peak at 775 cm(-1) were shown to have a relative standard deviation (RSD) % of or=10%. This observation is best explained by taking into account spectral variations that arise from the effect of a chemisorption process and the local nature of chemical enhancement mechanisms, which affects the enhancement of some spectral peaks but not others (analogous to resonant Raman phenomenon).

  2. Aqueous Colloid + Polymer Depletion System for Confocal Microscopy and Rheology

    Science.gov (United States)

    Park, Nayoung; Umanzor, Esmeralda J.; Conrad, Jacinta C.

    2018-05-01

    We developed a model depletion system with colloidal particles that were refractive index- and density-matched to 80 (w/w)% glycerol in water, and characterized the effect of interparticle interactions on the structure and dynamics of non-equilibrium phases. 2,2,2-trifluoroethyl methacrylate-co-tert-butyl methacrylate copolymer particles were synthesized following Kodger et al. (Sci. Rep. 5, 14635 (2015)). Particles were dispersed in glycerol/water solutions to generate colloidal suspensions with good control over electrostatic interactions and a moderately high background viscosity of 55 mPa-s. To probe the effects of charge screening and depletion attractions on the suspension phase behavior, we added NaCl and polyacrylamide (M_w = 186 kDa) at various concentrations to particle suspensions formulated at volume fractions of phi = 0.05 and 0.3 and imaged the suspensions using confocal microscopy. The particles were nearly hard spheres at a NaCl concentration of 20 mM, but aggregated when the concentration of NaCl was further increased. Changes in the particle structure and dynamics with increasing concentration of the depletant polyacrylamide followed the trends expected from earlier experiments on depletion-driven gelation. Additionally, we measured the viscosity and corrected first normal stress difference of suspensions formulated at phi = 0.4 with and without added polymer. The solvent viscosity was suitable for rheology measurements without the onset of instabilities such as secondary flows or edge fracture. These results validate this system as an alternative to one common model system, suspensions of poly(methyl methacrylate) particles and polystyrene depletants in organic solvents, for investigating phase behavior and flow properties in attractive colloidal suspensions.

  3. Aerobic Oxidation of Benzyl Alcohol on a Strontium-Based Gold Material: Remarkable Intrinsic Basicity and Reusable Catalyst

    Directory of Open Access Journals (Sweden)

    Karla Patrícia R. Castro

    2018-02-01

    Full Text Available The development of stable and active gold catalysts has arisen as a significant strategy for oxidation of alcohols. Nano-size PVA-stabilized gold nanoparticles immobilized on Sr(OH2 by colloidal deposition presented high catalytic activity for benzyl alcohol oxidation. In 2.5 h, 2 bar of O2 and without extra-base addition, the calcined support reached 54.6% (100 °C and 67.4% (140 °C of conversion, presenting the remarkable and unexplored intrinsic basicity that strontium-based materials retain. With sub-stoichiometric K2CO3 adding, under the same catalytic conditions, the catalyst conducted the reaction with similar activity, but with excellent reusability in the process, without any gold leaching. We investigated the influence that the support synthesis method and the solvent used for the NPs stabilization have on the oxidation activity. The produced materials were fully characterized by XPS, Rietveld refinement, and TEM.

  4. Radio-active colloids in the functional exploration of the reticulo-endothelium system; Les colloides radioactifs dans l'exploration fonctionnelle du systeme reticulo-endothelial

    Energy Technology Data Exchange (ETDEWEB)

    Chivot, J.J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-03-01

    A historical review describes the reticulo-endothelial system (R.E.S.) and aims at defining it and at explaining its operation. The methods used for its examination and the colloids utilized are considered. The author has been led to prepare a special type of colloid: an albuminous complex containing radio-iodine, 'C.A. {sup 131}I', whose method of preparation and physical and biological examination are described. A human albumin, having a known optical density in solution, is heated until a change in the optical density indicates that an aggregation of the proteinic molecules has occurred. The denatured protein is iodated with {sup 131}I. Electrophoretic, ultracentrifuge and autoradiographic controls are then carried out. This atoxic and metabolisable preparation of biological origin is compared with the better defined colloidal gold which serves as reference. C.A.{sup 131}I is injected into mice. It is shown by radioactivity measurements, auto-radiographies on sections of the whole animal, and anthropo-gamma-metric detections that a high concentration occurs in the S.R.E. of the liver. These static results are only of limited importance however compared to those obtained from an in vivo study of the phenomenon. The author records the changes in the radioactivity of the blood derived from the carotid artery using a well-scintillator. He obtains directly a curve of the radioactivity of blood having a decreasing exponential form; the mathematical expression describing this curve is given. The biological half-life T 1/2 of the colloid in the blood is a measure of its phagocytosis by the S.R.E. cells. A supplementary check is provided by the direct recording of the hepatic activity using a suitably collimated exterior detector. A curve of increasing-exponential form is obtained and its parameters are corollary to the preceding curve. These tests carried out on guinea-pigs and rats make it possible to give to the S.R.E. a phagocytic index which is

  5. Dynamic Colloidal Molecules Maneuvered by Light-Controlled Janus Micromotors.

    Science.gov (United States)

    Gao, Yirong; Mou, Fangzhi; Feng, Yizheng; Che, Shengping; Li, Wei; Xu, Leilei; Guan, Jianguo

    2017-07-12

    In this work, we propose and demonstrate a dynamic colloidal molecule that is capable of moving autonomously and performing swift, reversible, and in-place assembly dissociation in a high accuracy by manipulating a TiO 2 /Pt Janus micromotor with light irradiation. Due to the efficient motion of the TiO 2 /Pt Janus motor and the light-switchable electrostatic interactions between the micromotor and colloidal particles, the colloidal particles can be captured and assembled one by one on the fly, subsequently forming into swimming colloidal molecules by mimicking space-filling models of simple molecules with central atoms. The as-demonstrated dynamic colloidal molecules have a configuration accurately controlled and stabilized by regulating the time-dependent intensity of UV light, which controls the stop-and-go motion of the colloidal molecules. The dynamic colloidal molecules are dissociated when the light irradiation is turned off due to the disappearance of light-switchable electrostatic interaction between the motor and the colloidal particles. The strategy for the assembly of dynamic colloidal molecules is applicable to various charged colloidal particles. The simulated optical properties of a dynamic colloidal molecule imply that the results here may provide a novel approach for in-place building functional microdevices, such as microlens arrays, in a swift and reversible manner.

  6. Colloidal CdSe Quantum Rings.

    Science.gov (United States)

    Fedin, Igor; Talapin, Dmitri V

    2016-08-10

    Semiconductor quantum rings are of great fundamental interest because their non-trivial topology creates novel physical properties. At the same time, toroidal topology is difficult to achieve for colloidal nanocrystals and epitaxially grown semiconductor nanostructures. In this work, we introduce the synthesis of luminescent colloidal CdSe nanorings and nanostructures with double and triple toroidal topology. The nanorings form during controlled etching and rearrangement of two-dimensional nanoplatelets. We discuss a possible mechanism of the transformation of nanoplatelets into nanorings and potential utility of colloidal nanorings for magneto-optical (e.g., Aharonov-Bohm effect) and other applications.

  7. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    International Nuclear Information System (INIS)

    Britto Hurtado, R.; Cortez-Valadez, M.; Ramírez-Rodríguez, L.P.; Larios-Rodriguez, Eduardo; Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H.; Hernández-Martínez, A.R.; Flores-Acosta, M.

    2016-01-01

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl_4 concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  8. Instant synthesis of gold nanoparticles at room temperature and SERS applications

    Energy Technology Data Exchange (ETDEWEB)

    Britto Hurtado, R. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx [CONACYT-Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Ramírez-Rodríguez, L.P. [Departamento de Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Larios-Rodriguez, Eduardo [Departamento de Ingeniería Química y Metalurgia, Universidad de Sonora, Rosales y Luis Encinas S/N, Hermosillo, Sonora (Mexico); Alvarez, Ramón A.B.; Rocha-Rocha, O.; Delgado-Beleño, Y.; Martinez-Nuñez, C.E.; Arizpe-Chávez, H. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico); Hernández-Martínez, A.R. [Centro de Física Aplicada y Tecnología Avanzada (CFATA), Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro C.P. 76130 (Mexico); Flores-Acosta, M. [Departamento de Investigación en Física, Universidad de Sonora, Apdo. Postal 5-88, 83190, Hermosillo, Sonora (Mexico)

    2016-08-06

    Nowadays, gold nanoparticles (AuNps) can be used in a variety of applications, thus efficient methods to produce them are necessary. Several methods have been proposed in this area, but NPs production time is one limitation of these approaches. In this study, we propose a high competitive method to synthesize gold colloidal nanoparticles, instantaneously, using no-toxic reducing agents. These substances allow the instantaneous synthesis at room temperature, even without magnetic stirrers, ovens or ultrasonic baths. Optic analysis showed two absorption bands, associated with surface Plasmon as function of HAuCl{sub 4} concentration. The nanoparticles synthesized have a 10–20 nm size, seen by the transmission electron microscopy (TEM). Therefore, it was possible to obtain several geometric patterns of AuNps, and the synthesis was performed reducing significantly processing time. Additionally, Mie and Fuchs theories were used to predict the location of the absorption bands linked to the plasmon surface in gold nanoparticles. The Surface Enhanced Raman Spectroscopy (SERS) effect was analyzed considering natural zeolite (Chabazite) as analyte, in order to determinate its possible application in soil analysis. - Highlights: • Cubic and spherical morphologies in AuNp. • Surface plasmon prediction in cubic and spherical AuNp. • Instant synthesis of AuNp. • SERS applications in soil analysis.

  9. Nonlinear optical response of a gold surface in the visible range: A study by two-color sum-frequency generation spectroscopy. I. Experimental determination.

    Science.gov (United States)

    Dalstein, L; Revel, A; Humbert, C; Busson, B

    2018-04-07

    We experimentally determine the effective nonlinear second-order susceptibility of gold over the visible spectral range. To reach that goal, we probe by vibrational two-color sum-frequency generation spectroscopy the methyl stretching region of a dodecanethiol self-assembled monolayer adsorbed on a gold film. The sum-frequency generation spectra show a remarkable shape reversal when the visible probe wavelength is tuned from 435 to 705 nm. After correcting from Fresnel effects, the methyl stretching vibrations serve as an internal reference, allowing to extract the dispersion of the absolute phase and relative amplitude of the effective nonlinear optical response of gold in the visible range.

  10. Formation and transport of radioactive colloids in porous media

    International Nuclear Information System (INIS)

    Chung, J.Y.; Lee, K.J.

    1993-01-01

    This paper deals with the effect of the presence of colloids in natural groundwater on radionuclide transport. The system considered here treats groundwater as a dispersing medium and colloid or finely divided solid material resulting from several different repository sources as a dispersed phase. Evaluation of the radionuclides adsorption on colloid, concepts of effective transport velocity and migration distance, and mathematical formulation of the filtration equation were driven, along with the case studies using typical parameter values of a conceptual radioactive waste repository and concentration on the effect of poly dispersed colloid on radionuclide transport. This paper also introduces the three phase analysis to treat the radionuclide transport more practically. When compared with the previously published experimental data, the modified filtration equation gives a satisfactory result. Results of the case studies show that the reduction of colloidal size enhances the corresponding colloid concentration when colloidal transport is only affected by diffusion phenomena. However, the three phase analysis shows that this trend can be reversed if the colloidal filtration becomes a dominant mechanism in the colloidal transport. Consequently, these results show that colloid could play a very important role in radionuclide transport under a repository environment

  11. In-plane conductance of thin films as a probe of surface chemical environment: Adsorbate effects on film electronic properties of indium tin oxide and gold

    Science.gov (United States)

    Swint, Amy Lynn

    Changes in the in-plane conductance of conductive thin films are observed as a result of chemical adsorption at the surface. Reaction of the indium tin oxide (ITO) surface with Bronsted acids (bases) leads to increases (decreases) in its in-plane conductance as measured by a four-point probe configuration. The conductance varies monotonically with pH suggesting that the degree of surface protonation or hydroxylation controls the surface charge density, which in turn affects the width of the n-type depletion layer, and ultimately the in-plane conductance. Measurements at constant pH with a series of tetraalkylammonium hydroxide species of varying cation size indicate that surface dipoles also affect ITO conductance by modulating the magnitude of the surface polarization. Modulating the double layer with varying aqueous salt solutions also affects ITO conductance, though not to the same degree as strong Bronsted acids and bases. Solvents of varying dielectric constant and proton donating ability (ethanol, dimethylformamide) decrease ITO conductance relative to H2O. In addition, changing solvent gives rise to thermally-derived conductance transients, which result from exothermic solvent mixing. The self-assembly of alkanethiols at the surface increases the conductance of ITO films, most likely through carrier population effects. In all cases examined the combined effects of surface charge, adsorbed dipole layer magnitude and carrier injection are responsible for altering the ITO conductance. Besides being directly applicable to the control of electronic properties, these results also point to the use of four-point probe resistance measurements in condensed phase sensing applications. Ultrasensitive conductance-based gas phase sensing of organothiol adsorption to gold nanowires is accomplished with a limit of detection in the 105 molecule range. Further refinement of the inherently low noise resistance measurement may lead to observation of single adsorption events at

  12. Conductivity maximum in a charged colloidal suspension

    Energy Technology Data Exchange (ETDEWEB)

    Bastea, S

    2009-01-27

    Molecular dynamics simulations of a charged colloidal suspension in the salt-free regime show that the system exhibits an electrical conductivity maximum as a function of colloid charge. We attribute this behavior to two main competing effects: colloid effective charge saturation due to counterion 'condensation' and diffusion slowdown due to the relaxation effect. In agreement with previous observations, we also find that the effective transported charge is larger than the one determined by the Stern layer and suggest that it corresponds to the boundary fluid layer at the surface of the colloidal particles.

  13. Formation, characterization, and stability of plutonium (IV) colloid

    International Nuclear Information System (INIS)

    Hobart, D.E.; Morris, D.E.; Palmer, P.D.; Newton, T.W.

    1989-01-01

    Plutonium is expected to be a major component of the waste element package in any high-level nuclear waste repository. Plutonium(IV) is known to form colloids under chemical conditions similar to those found in typical groundwaters. In the event of a breach of a repository, these colloids represent a source of radionuclide transport to the far-field environment, in parallel with the transport of dissolved waste element species. In addition, the colloids may decompose or disaggregate into soluble ionic species. Thus, colloids represent an additional term in determining waste element solubility limits. A thorough characterization of the physical and chemical properties of these colloids under relevant conditions is essential to assess the concentration limits and transport mechanisms for the waste elements at the proposed Yucca Mountain Repository site. This report is concerned primarily with recent results obtained by the Yucca Mountain Project (YMP) Solubility Determination Task pertaining to the characterization of the structural and chemical properties of Pu(IV) colloid. Important results will be presented which provides further evidence that colloidal plutonium(IV) is structurally similar to plutonium dioxide and that colloidal plutonium(IV) is electrochemically reactive. 13 refs., 7 figs

  14. Room temperature synthesis of an optically and thermally responsive hybrid PNIPAM-gold nanoparticle

    International Nuclear Information System (INIS)

    Morones, J. Ruben; Frey, Wolfgang

    2010-01-01

    Composites of metal nanoparticles and environmentally sensitive polymers are useful as nanoactuators that can be triggered externally using light of a particular wavelength. We demonstrate a synthesis route that is easier than grafting techniques and allows for the in situ formation of individual gold nanoparticles encapsulated by an environmentally sensitive polymer, while also providing a strong interaction between the polymer and the metal particle. We present a one-pot, room-temperature synthesis route for gold metal nanoparticles that uses poly-N-isopropyl acrylamide as the capping and stabilizing agent and ascorbic acid as the reducing agent and achieves size control similar to the most common citric acid synthesis. We show that the composite can be precipitated reversibly by temperature or light using the non-radiative decay and conversion to heat of the surface plasmon resonance of the metal nanoparticle. The precipitation is induced by the collapse of the polymer cocoon surrounding each gold nanoparticle, as can be seen by surface plasmon spectroscopy. The experiments agree with theoretical models for the heat generation in a colloidal suspension that support fast switching with low laser power densities. The synthesized composite is a simple nanosized opto-thermal switch.

  15. Active structuring of colloidal armour on liquid drops

    OpenAIRE

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Fossum, Jon Otto

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-fieldassisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a...

  16. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells.

    Science.gov (United States)

    Ackerman, G A; Wolken, K W

    1981-10-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites.

  17. Histochemical evidence for the differential surface labeling, uptake, and intracellular transport of a colloidal gold-labeled insulin complex by normal human blood cells

    International Nuclear Information System (INIS)

    Ackerman, G.A.; Wolken, K.W.

    1981-01-01

    A colloidal gold-labeled insulin-bovine serum albumin (GIA) reagent has been developed for the ultrastructural visualization of insulin binding sites on the cell surface and for tracing the pathway of intracellular insulin translocation. When applied to normal human blood cells, it was demonstrated by both visual inspection and quantitative analysis that the extent of surface labeling, as well as the rate and degree of internalization of the insulin complex, was directly related to cell type. Further, the pathway of insulin (GIA) transport via round vesicles and by tubulo-vesicles and saccules and its subsequent fate in the hemic cells was also related to cell variety. Monocytes followed by neutrophils bound the greatest amount of labeled insulin. The majority of lymphocytes bound and internalized little GIA, however, between 5-10% of the lymphocytes were found to bind considerable quantities of GIA. Erythrocytes rarely bound the labeled insulin complex, while platelets were noted to sequester large quantities of the GIA within their extracellular canalicular system. GIA uptake by the various types of leukocytic cells appeared to occur primarily by micropinocytosis and by the direct opening of cytoplasmic tubulo-vesicles and saccules onto the cell surface in regions directly underlying surface-bound GIA. Control procedures, viz., competitive inhibition of GIA labeling using an excess of unlabeled insulin in the incubation medium, preincubation of the GIA reagent with an antibody directed toward porcine insulin, and the incorporation of 125I-insulin into the GIA reagent, indicated the specificity and selectivity of the GIA histochemical procedure for the localization of insulin binding sites

  18. Formation and stability of aluminosilicate colloids by coprecipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putri, Kirana Yuniati

    2011-02-15

    Colloids are ubiquitous in natural waters. Colloid-facilitated migration is of importance in safety assessment of a nuclear waste disposal. Aluminosilicate colloids are considered to be the kernel of aquatic colloids. Their stability is affected by a number of geochemical parameters. This work aims to study qualitatively and quantitatively the stability of aluminosilicate colloids formed by coprecipitation under various geochemical conditions, i.e. pH, concentration of Al and Si metal ions, ionic strength, and omnipresent cations (Na{sup +}, Ca{sup 2+}, and Mg{sup 2+}). The work is performed by colorimetric method and laser-induced breakdown detection (LIBD). Two consecutive phase separations at 450 nm and 1 kDa are applied to separate the precipitates and colloids from the ionic species. By means of colorimetry, Si and Al can be detected down to 5.8 x10{sup -8} M and 7.4x10{sup -7} M, respectively. On the other hand, LIBD is able to quantify the colloidal size and its number density down to several ppt. Depending on the concentration of Al and Si metal ions, the formation trend of aluminosilicate colloid changes following its solubility curve. The lower the concentration, the higher the pH range in which the colloids start to emerge. Furthermore, the colloids are stable at higher Al and Si concentration and at low ionic strength. In the low pH range, cations provide different effects at low and high ionic strengths. At high ionic strength, the colloids are stable in the presence of a larger cation, while all cations exhibit similar effects at low ionic strength. However, in the high pH range, valence seems to have a stronger effect than ionic radius; colloids are more stable in the presence of monovalent cations than divalent ones. Meanwhile, XRD shows non- and/or poor crystalline structure of the aluminosilicate species. Nevertheless, results from XPS may suggest that the chemical composition (Si/Al ∼ 0.6) of the aluminosilicate precipitates is sillimanite or

  19. Radiolytic reduction reaction of colloidal silver bromide solution

    International Nuclear Information System (INIS)

    Oya, Yasuhisa; Zushi, Takehiro; Hasegawa, Kunihiko; Matsuura, Tatsuo.

    1995-01-01

    The reduction reaction of colloidal silver bromide (AgBr 3 ) 2- in nitrous oxide gas saturated solution of some alcohols: methanol, ethanol, 2-propanol and 2-methyl-2-propanol by γ-irradiation was studied spectrophotometrically in order to elucidate the mechanism of the formation of colloidal silver bromide (AgBr 3 ) 3- at ambient temperature. The amount of colloidal silver bromide formed increases in the order: i-PrOH, EtOH, MeOH. In t-BuOH, colloidal silver bromide did not form. The relative reactivities of alcohols for colloidal silver bromide was also studied kinetically. (author)

  20. Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg(2+) and oxytetracycline.

    Science.gov (United States)

    Xu, Shenghao; Li, Xiaolin; Mao, Yaning; Gao, Teng; Feng, Xiuying; Luo, Xiliang

    2016-04-01

    In this work, we present a direct one-step strategy for rapidly preparing dual ligand co-functionalized fluorescent Au nanoclusters (NCs) by using threonine (Thr) and 11-mercaptoundecanoic acid (MUA) as assorted reductants and capping agents in aqueous solution at room temperature. Fluorescence spectra, high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS), dynamic light scattering (DLS), and infrared (IR) spectroscopy were performed to demonstrate the optical properties and chemical composition of the as-prepared AuNCs. They possess many attractive features such as near-infrared emission (λem = 606 nm), a large Stoke's shift (>300 nm), high colloidal stability (pH, temperature, salt, and time stability), and water dispersibility. Subsequently, the as-prepared AuNCs were used as a versatile probe for "turn off" sensing of Hg(2+) based on aggregation-induced fluorescence quenching and for "turn-on" sensing of oxytetracycline (OTC). This assay provided good linearity ranging from 37.5 to 3750 nM for Hg(2+) and from 0.375 to 12.5 μM for OTC, with detection limits of 8.6 nM and 0.15 μM, respectively. Moreover, the practical application of this assay was further validated by detecting OTC in human serum samples.