WorldWideScience

Sample records for collider final doublets

  1. New final doublets and power densities for the international linear collider small crossing angle layout

    Indian Academy of Sciences (India)

    R Appleby; P Bambade

    2007-12-01

    In this paper we use current and proposed final doublet magnet technologies to reoptimise the interaction region of the international linear collider and reduce the power losses. The result is a set of three new final doublet layouts with improved beam transport properties. The effect of localised power deposition and it's reduction using tungsten liners are considered.

  2. Study of vibrations and stabilization of linear collider final doublets at the sub-nanometer scale; Etude des vibrations et de la stabilisation a l'echelle sous-nanometrique des doublets finaux d'un collisionneur lineaire

    Energy Technology Data Exchange (ETDEWEB)

    Bolzon, B

    2007-11-15

    CLIC is one of the current projects of high energy linear colliders. Vertical beam sizes of 0.7 nm at the time of the collision and fast ground motion of a few nanometers impose an active stabilization of the final doublets at a fifth of nanometer above 4 Hz. The majority of my work concerned vibrations and active stabilization study of cantilever and slim beams in order to be representative of the final doublets of CLIC. In a first part, measured performances of different types of vibration sensors associated to an appropriate instrumentation showed that accurate measurements of ground motion are possible from 0.1 Hz up to 2000 Hz on a quiet site. Also, electrochemical sensors answering a priori the specifications of CLIC can be incorporated in the active stabilization at a fifth of nanometer. In a second part, an experimental and numerical study of beam vibrations enabled to validate the efficiency of the numerical prediction incorporated then in the simulation of the active stabilization. Also, a study of the impact of ground motion and of acoustic noise on beam vibrations showed that an active stabilization is necessary at least up to 1000 Hz. In a third part, results on the active stabilization of a beam at its two first resonances are shown down to amplitudes of a tenth of nanometer above 4 Hz by using in parallel a commercial system performing passive and active stabilization of the clamping. The last part is related to a study of a support for the final doublets of a linear collider prototype in phase of finalization, the ATF2 prototype. This work showed that relative motion between this support and the ground is below imposed tolerances (6 nm above 0.1 Hz) with appropriate boundary conditions. (author)

  3. Exploring collider signatures of the inert Higgs doublet model

    Science.gov (United States)

    Datta, Amitava; Ganguly, Nabanita; Khan, Najimuddin; Rakshit, Subhendu

    2017-01-01

    We revisit the multilepton (m l )+ ET+X signatures of the inert doublet model (IDM) of dark matter in future LHC experiments for m =3 , 4 and simulate, for the first time, the m =5 case. Here X stands for any number of jets. We illustrate these signals with benchmark points consistent with the usual constraints like unitarity, perturbativity, the precision electroweak data, the observed dark matter relic density of the Universe and, most importantly, the stringent LHC constraints from the post-Higgs (h ) discovery era like the measured Mh and the upper bound on the invisible width of h decay, which were not included in earlier analyses of multilepton signatures. We find that if the IDM is embedded in a grand desert scenario so that the unitarity constraint holds up to a very high scale, the whole of the highly restricted parameter space allowed by the above constraints can be probed at the LHC via the 3 l signal for an integrated luminosity ˜3000 fb-1 . On the other hand, if any new physics shows up at a scale ˜10 TeV , only a part of the enlarged allowed parameter space can be probed. The 4 l and 5 l signals can help to discriminate among different IDM scenarios as and when sufficient integrated luminosity accumulates.

  4. Exploring collider signatures of the inert Higgs doublet model

    CERN Document Server

    Datta, Amitava; Khan, Najimuddin; Rakshit, Subhendu

    2016-01-01

    We revisit the multilepton ($ml$) + ${E\\!\\!\\!\\!/_T}$ signatures of the Inert Doublet Model of dark matter in future LHC experiments for m = 3,4 and simulate, for the first time, the m = 5 case. In addition to the usual constraints like unitarity, perturbativity, the precision electroweak data, the observed dark matter relic density of the universe, we take into account the stringent constraints from the post Higgs ($h$) discovery era like the measured $m_h$ and the upper bound on the width of $h$ decay which were not included in the earlier analyses. We find that the IDM model embedded in a grand dessert scenario so that the unitarity constraint holds up to a very high scale, the entire parameter space allowed by the above constraints can be probed by the LHC via the $3l$ for an integrated luminosity $\\sim 3000$ fb$^{-1}$. On the other hand if any new physics shows up at a scale $\\sim$ 10 TeV only a part of the enlarged allowed parameter space can be probed. The $4l$ and $5l$ signals can help to discriminate ...

  5. Lightest Higgs boson production at photon colliders in the two Higgs doublet model type III

    CERN Document Server

    Martínez, R; Rodríguez, José Alberto; 10.1103/PhysRevD.72.035017

    2005-01-01

    The branching ratios of the lightest CP-even Higgs boson h/sup 0/ are calculated in the framework of the general two higgs doublet model. Different scenarios are presented taking into account constraints on the flavor changing neutral currents factors obtained in previous works. Plausible scenarios where appear flavor changing processes at tree level like bs and tc are analyzed for relevant parameters. The loop-induced Higgs couplings to photon pairs can be tested with a photon collider. The number of events of h/sup 0/ as a resonance in photon colliders are calculated taking into account its corresponding background signal at TESLA, CLIC, and NLC.

  6. Higgs boson pair production at the Photon Linear Collider in the two Higgs doublet model

    CERN Document Server

    Asakawa, Eri; Kanemura, Shinya; Okada, Yasuhiro; Tsumura, Koji

    2009-01-01

    We calculate the cross section of the lightest Higgs boson pair production at the Photon Linear Collider in the two Higgs doublet model. We focus on the scenario in which the lightest Higgs boson has the standard model like couplings to gauge bosons. We take into account the one-loop correction to the $hhh$ coupling as well as additional one-loop diagrams due to charged bosons to the $\\gamma\\gamma \\to hh$ helicity amplitudes. We discuss the impact of these corrections on the $hhh$ coupling measurement at the Photon Linear Collider.

  7. Advances in the Design of the SuperB Final Doublet

    Energy Technology Data Exchange (ETDEWEB)

    Paoloni, E.; Carmignani, N.; Pilo, F.; /Pisa U. /INFN, Pisa; Bettoni, S.; /CERN; Fabbricatore, P.; Farinon, S.; Musenich, R.; /INFN, Genoa; Bosi, F.; /INFN, Pisa; Biagini, M.E.; Raimondi, P.; /Frascati; Sullivan, M.; /SLAC

    2012-04-26

    SuperB is an asymmetric energy e{sup +}e{sup -} collider operating at the {Upsilon}(4S) peak with a design peak luminosity of 10{sup 36} Hz/cm{sup 2} to be built in Italy in the very near future. The design luminosity is almost a factor hundred higher than that of the present generation comparable facilities. To get the design luminosity a novel collision scheme, the so called 'large Piwinski angle with crab waist', has been designed. The scheme requires a short focus final doublet to reduce the vertical beta function down to {beta}*{sub y} = 0.2mm at the interaction point (IP). The final doublet will be composed by a set of permanent and superconducting (SC) quadrupoles. The SC quadrupole doublets QD0/QF1 will be placed as close to the IP as possible. This layout is critical because the space available for the doublets is very small. An advanced design of the quadrupole has been developed, based on the so-called helical coil concept. The paper discusses the design concept, the construction and the results of test of a model of the superconducting quadrupole based on NbTi technology. Future developments are also presented.

  8. The Electron/Muon Specific Two Higgs Doublet Model at e+ e- Colliders

    OpenAIRE

    Johansen, Aria R.; Sher, Marc

    2015-01-01

    Recently, Kajiyama, Okada and Yagyu (KOY) proposed an electron/muon specific two Higgs doublet model. In this model, an S3 symmetry suppresses flavor changing neutral currents instead of a Z2 symmetry. In the "Type I" version of the model, the heavy Higgs bosons have a greatly enhanced coupling to electrons and muons. KOY studied the phenomenology of the heavy Higgs bosons at the LHC. In this paper, the phenomenology at electron-positron colliders is studied. For the heavy Higgs mass range be...

  9. Scrutinizing h(125) in Two Higgs Doublet Models at the LHC, ILC, and Muon Collider

    CERN Document Server

    Barger, Vernon; Logan, Heather E; Shaughnessy, Gabe

    2013-01-01

    The discovery at the LHC of a scalar particle with properties that are so far consistent with the SM Higgs boson is one of the most important advances in the history of particle physics. The challenge of future collider experiments is to determine whether its couplings will show deviations from the SM Higgs, as this would indicate new physics at the TeV scale, and also to probe the flavor structure of the Yukawa couplings. As a benchmark alternative to the SM Higgs, we consider a generic two Higgs doublet model (2HDM) and analyze the precision to which the LHC14, an ILC250, 500, 1000 GeV and a 125 GeV Muon Collider (MC) can determine the gauge and Yukawa couplings. We allow for correlations among the couplings. We include the impact of a Higgs total width measurement, indirectly at the LHC and ILC and by a direct scan at the MC. We also discuss pattern relations among the couplings that can test for singlet or doublet Higgs extensions of 2HDMs.

  10. High-scale validity of a two-Higgs-doublet scenario: Predicting collider signals

    Science.gov (United States)

    Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup

    2017-08-01

    It is possible to ameliorate the Higgs vacuum stability problem by switching over to two-Higgs-doublet models (2HDM), ensuring a stable electroweak vacuum up to the Planck scale, even though the top quark mass may be on the high side. However, the simultaneous requirements of perturbative unitarity, and also compatibility with collider and flavor data, constrain the parameter space severely. We investigate the collider signals answering to the regions allowed by such constraints. In particular, the near degeneracy of the neutral heavy scalar and the pseudoscalar is a feature that is probed. The LHC allows distinguishability of these two states, together with signal significance of at least 3 σ , in its high-luminosity run. While e+e- colliders may have rather low event rates, muon colliders, cashing in on the principle of radiative return, can probe 2HDM scenarios with (pseudo)scalar masses up to TeV or so, though with the price of losing distinction between the C P -even and -odd states.

  11. Final Muon Emittance Exchange in Vacuum for a Collider

    CERN Document Server

    Summers, Don; Cremaldi, Lucien; Hart, Terry; Oliveros, Sandra; Perera, Lalith; Wu, Wanwei; Neuffer, David

    2015-01-01

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 microseconds, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a sho...

  12. Final Muon Emittance Exchange in Vacuum for a Collider

    Energy Technology Data Exchange (ETDEWEB)

    Summers, Don [Univ. of Mississippi, Oxford, MS (United States); Acosta, John [Univ. of Mississippi, Oxford, MS (United States); Cremaldi, Lucien [Univ. of Mississippi, Oxford, MS (United States); Hart, Terry [Univ. of Mississippi, Oxford, MS (United States); Oliveros, Sandra [Univ. of Mississippi, Oxford, MS (United States); Perera, Lalith [Univ. of Mississippi, Oxford, MS (United States); Wu, Wanwei [Univ. of Mississippi, Oxford, MS (United States); Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-05-07

    We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low β region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 μs, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.

  13. Associated production of Higgs at linear collider in the inert Higgs Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Arhrib, Abdesslam [Universite Abdelmalek Essaadi, Departement de Mathematique, Faculte des Sciences et Techniques, B. 416, Tangier (Morocco); Institute of Physics, Academia Sinica, Nankang, Taipei (China); Benbrik, Rachid [Faculte Polydisciplinaire de Safi, MSISM team, Departement de Physique, Sidi Bouzid, B.P. 4162, Safi (Morocco); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Cadi Ayyad University, LPHEA, FSSM, B.P. 2390, Marrakech (Morocco); Yuan, Tzu-Chiang [Institute of Physics, Academia Sinica, Nankang, Taipei (China)

    2014-05-15

    We study the correlation between the Standard Model Higgs decay h → γγ and h → Zγ in the Inert Higgs Doublet Model. It is found that these two one-loop-induced decays are positively correlated, with the latter channel having slightly smaller branching ratio than the former one. At the Linear Collider, we study the interplay of the off-shell extension of these two amplitudes that contributed significantly to the associated production of the Higgs boson with a photon in the process e{sup +}e{sup -} → γh and with an electron in the process e{sup -}γ → e{sup -}h in the s and t channels, respectively, via both γ and Z exchange for each process. (orig.)

  14. The Electron/Muon Specific Two Higgs Doublet Model at e+ e- Colliders

    CERN Document Server

    Johansen, Aria R

    2015-01-01

    Recently, Kajiyama, Okada and Yagyu (KOY) proposed an electron/muon specific two Higgs doublet model. In this model, an S3 symmetry suppresses flavor changing neutral currents instead of a Z2 symmetry. In the "Type I" version of the model, the heavy Higgs bosons have a greatly enhanced coupling to electrons and muons. KOY studied the phenomenology of the heavy Higgs bosons at the LHC. In this paper, the phenomenology at electron-positron colliders is studied. For the heavy Higgs mass range between 150 and 210 GeV, bounds from LEP-200 are stronger than those from the LHC. The model allows for the interesting possibility that muon pair production at the ILC can be mediated by s-channel Higgs exchange. This requires an energy scan. The scanning rate and necessary resolution are discussed.

  15. Collider and dark matter searches in the inert doublet model from Peccei-Quinn symmetry

    Science.gov (United States)

    Alves, Alexandre; Camargo, Daniel A.; Dias, Alex G.; Longas, Robinson; Nishi, Celso C.; Queiroz, Farinaldo S.

    2016-10-01

    Weakly Interacting Massive Particles (WIMPs) and axions are arguably the most compelling dark matter candidates in the literature. Could they coexist as dark matter particles? More importantly, can they be incorporated in a well motivated framework in agreement with experimental data? In this work, we show that this two component dark matter can be realized in the Inert Doublet Model in an elegant and natural manner by virtue of the spontaneous breaking of a Peccei-Quinn U(1) P Q symmetry into a residual {Z}_2 symmetry. The WIMP stability is guaranteed by the {Z}_2 symmetry and a new dark matter component, the axion, arises. There are two interesting outcomes: (i) vector-like quarks needed to implement the Peccei-Quinn symmetry in the model may act as a portal between the dark sector and the SM fields with a supersymmetry-type phenomenology at colliders; (ii) two-component Inert Doublet Model re-opens the phenomenologically interesting 100-500 GeV mass region. We show that the model can successfully realize a two component dark matter framework and at the same time avoid low and high energy physics constraints such as monojet and dijet plus missing energy, as well as indirect and direct dark matter detection bounds.

  16. Collider and dark matter searches in the inert doublet model from Peccei-Quinn symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Alexandre [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo,Diadema-SP, 09972-270 (Brazil); Camargo, Daniel A.; Dias, Alex G. [Universidade Federal do ABC, Centro de Ciências Naturais e Humanas,09210-580, Santo André-SP (Brazil); Longas, Robinson [Instituto de Física, Universidad de Antioquia,Calle 70 No. 52-21, Medellín (Colombia); Nishi, Celso C. [Universidade Federal do ABC, Centro de Matemática, Computação e Cognição Naturais,09210-580, Santo André-SP (Brazil); Queiroz, Farinaldo S. [Max-Planck-Institut fur Kernphysik,Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-10-04

    Weakly Interacting Massive Particles (WIMPs) and axions are arguably the most compelling dark matter candidates in the literature. Could they coexist as dark matter particles? More importantly, can they be incorporated in a well motivated framework in agreement with experimental data? In this work, we show that this two component dark matter can be realized in the Inert Doublet Model in an elegant and natural manner by virtue of the spontaneous breaking of a Peccei-Quinn U(1){sub PQ} symmetry into a residual ℤ{sub 2} symmetry. The WIMP stability is guaranteed by the ℤ{sub 2} symmetry and a new dark matter component, the axion, arises. There are two interesting outcomes: (i) vector-like quarks needed to implement the Peccei-Quinn symmetry in the model may act as a portal between the dark sector and the SM fields with a supersymmetry-type phenomenology at colliders; (ii) two-component Inert Doublet Model re-opens the phenomenologically interesting 100–500 GeV mass region. We show that the model can successfully realize a two component dark matter framework and at the same time avoid low and high energy physics constraints such as monojet and dijet plus missing energy, as well as indirect and direct dark matter detection bounds.

  17. Final focus systems for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, R.A.

    1987-11-01

    The final focus system of a linear collider must perform two primary functions, it must focus the two opposing beams so that their transverse dimensions at the interaction point are small enough to yield acceptable luminosity, and it must steer the beams together to maintain collisions. In addition, the final focus system must transport the outgoing beams to a location where they can be recycled or safely dumped. Elementary optical considerations for linear collider final focus systems are discussed, followed by chromatic aberrations. The design of the final focus system of the SLAC Linear Collider (SLC) is described. Tuning and diagnostics and steering to collision are discussed. Most of the examples illustrating the concepts covered are drawn from the SLC, but the principles and conclusions are said to be generally applicable to other linear collider designs as well. 26 refs., 17 figs. (LEW)

  18. Final Cooling for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Acosta Castillo, John Gabriel [Univ. of Mississippi, Oxford, MS (United States)

    2017-05-01

    To explore the new energy frontier, a new generation of particle accelerators is needed. Muon colliders are a promising alternative, if muon cooling can be made to work. Muons are 200 times heavier than electrons, so they produce less synchrotron radiation, and they behave like point particles. However, they have a short lifetime of 2.2 $\\mathrm{\\mu s}$ and the beam is more difficult to cool than an electron beam. The Muon Accelerator Program (MAP) was created to develop concepts and technologies required by a muon collider. An important effort has been made in the program to design and optimize a muon beam cooling system. The goal is to achieve the small beam emittance required by a muon collider. This work explores a final ionization cooling system using magnetic quadrupole lattices with a low enough $\\beta^{\\star} $ region to cool the beam to the required limit with available low Z absorbers.

  19. Discriminators of 2 Higgs Doublets at the LHC14, ILC and MuonCollider(125): A Snowmasss White Paper

    CERN Document Server

    Barger, Vernon; Logan, Heather E; Shaughnessy, Gabe

    2013-01-01

    The historic LHC discovery of the 125 GeV particle with properties that closely resemble the Standard Model (SM) Higgs boson verifies our understanding of electroweak symmetry breaking, but solidifies the need for a resolution to the hierarchy problem. Many extensions of the SM that address the hierarchy problem contain a non-minimal Higgs sector. Therefore, as a benchmark alternative to the SM Higgs mechanism, we study a general 2 Higgs doublet model (2HDM-G) framework for evaluating future sensitivity to Higgs couplings. We study how well it can be distinguished from the SM Higgs boson by future measurements at LHC14, ILC (250, 500,1000 GeV) and a Muon Collider (125 GeV). Additionally, our study bears on singlet Higgs extensions of two Higgs doublet models through predicted coupling relationships.

  20. Improved final doublet designs for the ILC baseline small crossing angle scheme

    CERN Document Server

    Appleby, R

    2006-01-01

    The ILC baseline consists of two interaction regions, one with a 20mrad crossing angle and the other with a 2mrad crossing angle. It is known that the outgoing beam losses in the final doublet and subsequent extraction line are larger in the 2mrad than in the 20mrad layout. In this work, we exploit NbTi and Nb$_3$Sn superconducting magnet technologies to redesign and optimise the final doublet, with the aim of providing satisfactory outgoing disrupted beam power losses in this region. We present three new final doublet layouts, specifically optimised for the 500 GeV and the 1 TeV machines.

  1. Linear collider IR and final focus introduction

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.; Burke, D.

    1991-09-01

    The Linear Collider subgroup of the Accelerator Physics working group concerned itself with all aspects of the Next Linear Collider (NLC) design from the end of the accelerating structure to and through the interaction region. Within this region are: (1) a collimation section, (2) muon protection (of the detector from the collimator), (3) final focus system, (4) interaction point physics, and (5) detector masking from synchrotron radiation and beam-beam pair production. These areas of study are indicated schematically in Fig. 1. The parameters for the Next Linear Collider are still in motion, but attention has settled on a handful of parameter sets. Energies under consideration vary from 0.5 to 1.5 TeV in the center of mass, and luminosities vary from 10{sup 33} to 10{sup 34} cm{sup {minus}2}s{sup {minus}1}. To be concrete we chose as a guide for our studies the parameter sets labeled F and G, Table 1 from Palmer. These cover large and small crossing angle cases and 0.4 m to 1.8 m of free length at the interaction point.

  2. Higgs Strahlung at the Large Hadron Collider in the 2-Higgs-Doublet Model

    CERN Document Server

    Harlander, Robert V; Zirke, Tom

    2014-01-01

    We present a calculation of all relevant contributions to associated production of a Higgs boson with a weak gauge boson in the 2-Higgs-Doublet Model (2HDM) at the LHC, $pp \\rightarrow V\\phi$, with $\\phi\\in\\{h,H^0,A\\}$ and $V\\in\\{W,Z\\}$. While for the $W\\phi$ mode, this mostly amounts to a simple rescaling of the SM cross section, the $Z\\phi$ cross section depends on several 2HDM parameters. The ratio $\\sigma^{W\\phi}/\\sigma^{Z\\phi}$, for which we present the currently most complete SM prediction, therefore appears to be a sensitive probe of possible New Physics effects. We study its numerical dependence on the top and bottom Yukawa couplings. Furthermore, we consider the $W\\phi/Z\\phi$ ratio in exemplary 2HDM scenarios. Analogous studies for other 2HDM scenarios will become possible with an upcoming version of the program vh@nnlo which incorporates the 2HDM effects.

  3. Final focus designs for crab waist colliders

    Science.gov (United States)

    Bogomyagkov, A.; Levichev, E.; Piminov, P.

    2016-12-01

    The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DA Φ NE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DA Φ NE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  4. Final focus designs for crab waist colliders

    CERN Document Server

    AUTHOR|(CDS)2084369; Levichev, Evgeny; Piminov, Pavel

    2016-01-01

    The crab waist collision scheme promises significant luminosity gain. The successful upgrade of the DA$\\Phi$NE collider proved the principle of crab waist collision and increased luminosity 3 times. Therefore, several new projects try to implement the scheme. The paper reviews interaction region designs with the crab waist collision scheme for already existent collider DA$\\Phi$NE and SuperKEKB, presently undergoing commissioning, for the projects of SuperB in Italy, CTau in Novosibirsk and FCC-ee at CERN.

  5. Novel final focus design for future linear colliders.

    Science.gov (United States)

    Raimondi, P; Seryi, A

    2001-04-23

    The length, complexity, and cost of the present final focus designs for linear colliders grow very quickly with the beam energy. In this Letter, a novel final focus system is presented and compared with the one proposed for the Next Linear Collider (NLC Zeroth-Order Design Report, edited by T. O. Raubenheimer, SLAC Report No. 474, 1996). This new design has fewer optical elements and is much shorter, nonetheless achieving better chromatic properties. Moreover, the new system is more suitable for operation over a larger energy range.

  6. Budgeting and control of the mechanical noise in the International Linear Collider final focus system

    Science.gov (United States)

    Tshilumba, D.; Oriunno, M.; Markiewicz, T.; Collette, C.

    2014-06-01

    In this paper, we present a simplified vibration model of the silicon detector (SiD), where the final doublet (QD0) is captured inside the detector and the penultimate magnet (QF1) is inside the machine tunnel. Ground motion spectra measured at the detector hall at SLAC have been used together with a spectrum of the technical noise on the detector. The model predicts that the maximum level of rms (root mean square) vibration seen by QD0 is well below the capture range of the interaction point (IP) feedback system available in the ILC. With the addition of an active stabilization system on QD0, it is also possible to get closer to the stability requirements of the compact linear collider (CLIC). These results can have important implications for CLIC.

  7. Budgeting and control of the mechanical noise in the International Linear Collider final focus system

    Directory of Open Access Journals (Sweden)

    D. Tshilumba

    2014-06-01

    Full Text Available In this paper, we present a simplified vibration model of the silicon detector (SiD, where the final doublet (QD0 is captured inside the detector and the penultimate magnet (QF1 is inside the machine tunnel. Ground motion spectra measured at the detector hall at SLAC have been used together with a spectrum of the technical noise on the detector. The model predicts that the maximum level of rms (root mean square vibration seen by QD0 is well below the capture range of the interaction point (IP feedback system available in the ILC. With the addition of an active stabilization system on QD0, it is also possible to get closer to the stability requirements of the compact linear collider (CLIC. These results can have important implications for CLIC.

  8. Probing LINEAR Collider Final Focus Systems in SuperKEKB

    CERN Document Server

    Thrane, Paul Conrad Vaagen

    2017-01-01

    A challenge for future linear collider final focus systems is the large chromaticity produced by the final quadrupoles. SuperKEKB will be correcting high levels of chromaticity using the traditional scheme which has been also proposed for the CLIC FFS. We present early simulation results indicating that lowering β*у in the SuperKEKB Low Energy Ring might be possible given on-axis injection and low bunch current, opening the possibility of testing chromaticity correction beyond FFTB level, similar to ILC and approaching that of CLIC. CLIC – Note – 1077

  9. COLLIDE

    CERN Multimedia

    2017-01-01

    Howie Day, Collide, Based on the original parody "Collide" by USLHC, inspired by the original song "Collide" written by Howie Day and Kevin Griffin. Re-record Produced by Mike Denneen Engineered by Patrick DiCenso -Vocals, Guitars, Keyboards- Howie Day -Guitar Patrick DiCenso -Bass- Ed Valuskas -Drums- Dave Brophy

  10. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  11. Optimising charged Higgs boson searches at the Large Hadron Collider across bb¯W± final states

    Directory of Open Access Journals (Sweden)

    Stefano Moretti

    2016-09-01

    Full Text Available In the light of the most recent data from Higgs boson searches and analyses, we re-assess the scope of the Large Hadron Collider in accessing heavy charged Higgs boson signals in bb¯W± final states, wherein the contributing channels can be H+→tb¯, hW±, HW± and AW±. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode bg→tH−+c.c., the dominant one over the range MH±≥480 GeV, as dictated by b→sγ constraints. Prospects of detection are found to be significant for various Run 2 energy and luminosity options.

  12. Optimising charged Higgs boson searches at the Large Hadron Collider across b b bar W± final states

    Science.gov (United States)

    Moretti, Stefano; Santos, Rui; Sharma, Pankaj

    2016-09-01

    In the light of the most recent data from Higgs boson searches and analyses, we re-assess the scope of the Large Hadron Collider in accessing heavy charged Higgs boson signals in b b bar W± final states, wherein the contributing channels can be H+ → t b bar , hW±, HW± and AW±. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode bg → tH- +c.c., the dominant one over the range MH± ≥ 480 GeV, as dictated by b → sγ constraints. Prospects of detection are found to be significant for various Run 2 energy and luminosity options.

  13. Optimising Charged Higgs Boson Searches at the Large Hadron Collider Across $b\\bar b W^\\pm$ Final States

    CERN Document Server

    Moretti, Stefano; Sharma, Pankaj

    2016-01-01

    In the light of the most recent data from Higgs boson searches and analyses, we re-assess the scope of the Large Hadron Collider in accessing heavy charged Higgs boson signals in $b\\bar b W^\\pm$ final states, wherein the contributing channels can be $H^+\\to t\\bar b$, $hW^\\pm, HW^\\pm$ and $AW^\\pm$. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode $bg\\to tH^-$ + c.c., the dominant one over the range $M_{H^\\pm}\\ge 480$ GeV, as dictated by $b\\to s\\gamma$ constraints. Prospects of detection are found to be significant for various Run 2 energy and luminosity options.

  14. Expanded studies of linear collider final focus systems at the Final Focus Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Tenenbaum, P.G.

    1995-12-01

    In order to meet their luminosity goals, linear colliders operating in the center-of-mass energy range from 3,50 to 1,500 GeV will need to deliver beams which are as small as a few Manometers tall, with x:y aspect ratios as large as 100. The Final Focus Test Beam (FFTB) is a prototype for the final focus demanded by these colliders: its purpose is to provide demagnification equivalent to those in the future linear collider, which corresponds to a focused spot size in the FFTB of 1.7 microns (horizontal) by 60 manometers (vertical). In order to achieve the desired spot sizes, the FFTB beam optics must be tuned to eliminate aberrations and other errors, and to ensure that the optics conform to the desired final conditions and the measured initial conditions of the beam. Using a combination of incoming-beam diagnostics. beam-based local diagnostics, and global tuning algorithms, the FFTB beam size has been reduced to a stable final size of 1.7 microns by 70 manometers. In addition, the chromatic properties of the FFTB have been studied using two techniques and found to be acceptable. Descriptions of the hardware and techniques used in these studies are presented, along with results and suggestions for future research.

  15. A tevatron collider beauty factory. [Final report, 1980--1992

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    This document which is labeled a final report consists of several different items. The first is a proposal for a detector to be developed for beauty physics. The detector is proposed for the Fermilab Tevatron, and would be designed to measure mixing reactions, rare decay modes, and even CP violation in hadron collider beauty production. The general outline of the work proposed is given, and an estimate of the time to actually design the detector is presented, along with proposed changes to the Tevatron to accommodate the system. A preliminary report on an experiment to verify a reported observation of a 17 keV neutrino in tritium decay is presented. The present results in the decay spectra actually show a depression below expected levels, which is not consistent with a massive neutrino. Additional interest has been shown in finishing an electrostatic beta spectrometer which was started several years previously. The instrument uses hemispherical electrostatic electric fields to retard electrons emitted in tritium decay, allowing measurement of integral spectra. The design goal has a 5 eV energy resolution, which may be achievable. A new PhD student is pursuing this experiment. Also the report contains a proposal for additional work in the field of non-perturbative quantum field theory by the theoretical group at OU. The work which is proposed will be applied to electroweak and strong interactions, as well as to quantum gravitational phenomena.

  16. Vibration Stabilization of a Mechanical Model of a X-Band Linear Collider Final Focus Magnet

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Josef; Chang, Allison; Decker, Valentin; Doyle, Eric; Eriksson, Leif; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Partridge, Richard; Seryi, Andrei; /SLAC

    2006-09-28

    The small beam sizes at the interaction point of a X-band linear collider require mechanical stabilization of the final focus magnets at the nanometer level. While passive systems provide adequate performance at many potential sites, active mechanical stabilization is useful if the natural or cultural ground vibration is higher than expected. A mechanical model of a room temperature linear collider final focus magnet has been constructed and actively stabilized with an accelerometer based system.

  17. Beam dynamics in the final focus section of the future linear collider

    CERN Document Server

    AUTHOR|(SzGeCERN)739431; TOMAS, Rogelio

    The exploration of new physics in the ``Tera electron-Volt''~(TeV) scale with precision measurements requires lepton colliders providing high luminosities to obtain enough statistics for the particle interaction analysis. In order to achieve design luminosity values, linear colliders feature nanometer beam spot sizes at the Interaction~Point~(IP).\\par In addition to several effects affecting the luminosity, three main issues to achieve the beam size demagnification in the Final Focus Section (FFS) of the accelerator are the chromaticity correction, the synchrotron radiation effects and the correction of the lattice errors.\\par This thesis considers two important aspects for linear colliders: push the limits of linear colliders design, in particular the chromaticity correction and the radiation effects at 3~TeV, and the instrumentation and experimental work on beam stabilization in a test facility.\\par The current linear collider projects, CLIC~\\cite{CLICdes} and ILC~\\cite{ILCdes}, have lattices designed using...

  18. 2005 Final Report: New Technologies for Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Peter McIntyre; Al McInturff

    2005-12-31

    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

  19. 2005 Final Report: New Technologies for Future Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Peter McIntyre; Al McInturff

    2005-12-31

    This document presents an annual report on our long-term R&D grant for development of new technology for future colliders. The organizing theme of our development is to develop a compact high-field collider dipole, utilizing wind-and-react Nb3Sn coil fabrication, stress man-agement, conductor optimization, bladder preload, and flux plate suppression of magnetization multipoles. The development trail for this new technology began over four years ago with the successful testing of TAMU12, a NbTi model in which we put to a first test many of the construction details of the high-field design. We have built TAMU2, a mirror-geometry dipole containing a single coil module of the 3-module set required for the 14 Tesla design. This first Nb3Sn model was built using ITER conductor which carries much less current than high-performance conductor but enables us to prove in practice our reaction bake and impregnation strategies with ‘free’ su-perconductor. TAMU2 has been shipped to LBNL for testing. Work is beginning on the construction of TAMU3, which will contain two coil modules of the 14 Tesla design. TAMU3 has a design field of 13.5 Tesla and will enable us to fully evaluate the issues of stress management that will be important to the full design. With the completion of TAMU2 and the construction of TAMU3 the Texas A&M group ‘comes of age’ in the family of superconducting magnet R&D laboratories. We have completed the phase of developing core technologies and fixtures and entered the phase of building and testing a succession of model dipoles that each build incrementally upon a proven core design.

  20. CERN celebrating the Lowering of the final detector element for large Hadron Collider

    CERN Multimedia

    2008-01-01

    In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERNs Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration.

  1. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  2. Compressing the Inert Doublet Model

    CERN Document Server

    Blinov, Nikita; Morrissey, David E; de la Puente, Alejandro

    2015-01-01

    The Inert Doublet Model relies on a discrete symmetry to prevent couplings of the new scalars to Standard Model fermions. This stabilizes the lightest inert state, which can then contribute to the observed dark matter density. In the presence of additional approximate symmetries, the resulting spectrum of exotic scalars can be compressed. Here, we study the phenomenological and cosmological implications of this scenario. We derive new limits on the compressed Inert Doublet Model from LEP, and outline the prospects for exclusion and discovery of this model at dark matter experiments, the LHC, and future colliders.

  3. ATF2 for Final Focus Test Beam for Future Linear Colliders

    Science.gov (United States)

    Kuroda, S.; ATF2 Collaboration

    2016-04-01

    In future linear colliders, extremely small beam size is required at collision point for high luminosity. For example, it is of order of nanometer in ILC(International Linear Collider). ATF2 is a project at ATF(Accelerator Test Facility) in KEK which demonstrates performance of final focus system experimentally. ATF2 beam line is a prototype of ILC final focus system where the local chromaticity correction scheme is adopted. The optics is basically the same and the natural chromaticity, too. Thus the tolerance of magnet alignment and field error is similar for both of the beam lines. We report here observation of small beam size of about 45nm there. We also report plan for smaller beam size with higher beam intensity.

  4. Final Cooling For a High-luminosity High-Energy Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, D.; Sayed, H.; Hart, T.; Summers, D.

    2015-05-01

    The final cooling system for a high-energy high-luminosity heavy lepton collider requires reduction of the transverse emittance εt by an order of magnitude to ~0.00003 m (rms, N), while allowing longitudinal emittance εL to increase to ~0.1m. In the present baseline approach, this is obtained by transverse cooling of low-energy muons within a sequence of high-field solenoids with low-frequency rf systems. Recent studies of such systems are presented. Since the final cooling steps are mostly emittance exchange, a variant form of that final system can be obtained by a round to flat transform in x-y, with transverse slicing of the enlarged flat transverse dimension followed by longitudinal recombination of the sliced bunchlets. Other variants are discussed. More explicit emittance exchange can greatly reduce the cost of a final cooling system.

  5. Collide Geneva - Final presentation by artist Cassandre Poirier-Simon (short version)

    CERN Multimedia

    2017-01-01

    On 25 April, 2017, Arts at CERN invited people to the Centre d'Art Contemporain Genève, for the final Presentation of the artist Cassandre Poirier-Simon, winner of the Collide Geneva Award. Established in 2011, Arts at CERN is the official arts programme engaging with art at the cutting edge of scientific research. It offers a whole series of activities around arts and science at CERN, with a clear focus on four artistic research residencies and 3 special visits per year (Collide, Accelerate and Guest Artists). Cassandre Poirier-Simon won the prize Collide Geneva 2016 with Arts at CERN and did her residency from November 2016 to January 2017. She is a designer working in the field of digital writing. During her residency at CERN she was supported with the guide and partnership of Maria Dimou, CERN IT Department, as scientific partner. Also, during this period the Arts at CERN team curated and coordinated visits to experiments, encounters and conversations with scientists, engineers and staff at CERN. The COL...

  6. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago (main); Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  7. International workshop on final focus and interaction regions of next generation linear colliders: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-11-01

    The first day of the workshop was devoted to four plenary ``issues`` talks, one for each working group: Beam-Beam Interaction, Detector, Hardware, and Optical Design. The last day was devoted to plenary talks summarizing the activities of the working groups. Each of the three remaining days there,was a short morning plenary devoted to a brief summary of the preceding day and an announcement of planned working group discussions for that day. The transparencies for the ``issues`` and ``summary`` talks are included in this volume, along with some remarks from the working group chairpersons. Very briefly, the beam-beam group continued to address the quantitative study of QED induced backgrounds, and attempted to better understand the nature and prevalence of QCD millijets. The detector group attempted to identify the impact on masking and detector design of the beam-beam backgrounds, the synchrotron radiation induced backgrounds from beam halos and muon backgrounds produced primarily in collimators. Nanosecond timing elements needed in conjunction with multi-bunch operation were discussed. The hardware group addressed the problem of magnet design and support, especially the final doublet magnets suspended within the detector environment, and instrumentation issues, such as high resolution beam position monitors. The optics group discussed new final focus system ideas, collimator design, and improvement of beamline tolerances. If you were not here to participate, we hope that this volume will help you in your orientation to these problems.

  8. International workshop on final focus and interaction regions of next generation linear colliders: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The first day of the workshop was devoted to four plenary issues'' talks, one for each working group: Beam-Beam Interaction, Detector, Hardware, and Optical Design. The last day was devoted to plenary talks summarizing the activities of the working groups. Each of the three remaining days there,was a short morning plenary devoted to a brief summary of the preceding day and an announcement of planned working group discussions for that day. The transparencies for the issues'' and summary'' talks are included in this volume, along with some remarks from the working group chairpersons. Very briefly, the beam-beam group continued to address the quantitative study of QED induced backgrounds, and attempted to better understand the nature and prevalence of QCD millijets. The detector group attempted to identify the impact on masking and detector design of the beam-beam backgrounds, the synchrotron radiation induced backgrounds from beam halos and muon backgrounds produced primarily in collimators. Nanosecond timing elements needed in conjunction with multi-bunch operation were discussed. The hardware group addressed the problem of magnet design and support, especially the final doublet magnets suspended within the detector environment, and instrumentation issues, such as high resolution beam position monitors. The optics group discussed new final focus system ideas, collimator design, and improvement of beamline tolerances. If you were not here to participate, we hope that this volume will help you in your orientation to these problems.

  9. Design optimization of the International Linear Collider Final Focus System with a long L*

    CERN Document Server

    Plassard, Fabien

    This Master's Thesis work has been done in the Aerospace Engineering master's programme framework and carried out at the European Organization for Nuclear Research (CERN). It was conducted under the 500 GeV e-e+ International Linear Collider (ILC) study and focused on the design and performance optimization of the Final Focus System (FFS). The purpose of the final focus system of the future linear colliders (ILC and CLIC) is to demagnify the beam to the required transverse size at the interaction point (IP). The FFS is designed for a flat-beam in a compact way based on a local chromaticity correction which corrects both horizontal and vertical chromaticities simultaneously. An alternative FFS configuration based on the traditional scheme with two dedicated chromatic correction sections for horizontal and vertical chromaticities and a long L * option has been developed. A longer free space between the last quadrupole and the IP allows to place the last quadrupole on a stable ground, with fewer engineering ...

  10. Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Sayed, H. [Brookhaven; Hart, T. [Mississippi U.; Summers, D. [Mississippi U.

    2015-12-03

    A high-energy muon collider scenario require a “final cooling” system that reduces transverse emittance by a factor of ~10 while allowing longitudinal emittance increase. The baseline approach has low-energy transverse cooling within high-field solenoids, with strong longitudinal heating. This approach and its recent simulation are discussed. Alternative approaches which more explicitly include emittance exchange are also presented. Round-to-flat beam transform, transverse slicing, and longitudinal bunch coalescence are possible components of an alternative approach. Wedge-based emittance exchange could provide much of the required transverse cooling with longitudinal heating. Li-lens and quadrupole focusing systems could also provide much of the required final cooling.

  11. Single- and multi-photon final states with missing energy at e sup + e sup - colliders

    CERN Document Server

    Montagna, G; Nicrosini, O; Piccinini, F

    1999-01-01

    The search for new physics in single- and multi-photon final states with large missing energy at LEP and future e sup + e sup - colliders requires precise predictions for the Standard Model irreducible background. While at LEP1 the theoretical situation is under control, going to LEP2 (and beyond) some improvements are necessary. To approach the aimed O(1%) theoretical accuracy, the tree-level matrix elements for the processes e sup + e sup - -> nu nu-barn gamma, with n=1, 2, 3, are exactly computed in the Standard Model, including the possibility of anomalous couplings for single-photon production. Due to the presence of observed photons in the final state, particular attention is paid to the treatment of higher-order QED corrections. Comparisons with existing calculations are shown and commented on. An improved version of the event generator NUNUGPV is presented.

  12. Optical tuning in the arcs and final focus sections of the Stanford Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bambade, P.S.

    1989-03-01

    In this thesis, we present the experimental tuning procedures developed for the Arcs and for the Final Focus Section of the Stanford Linear Collider (SLC). Such tuning is necessary to maximize the luminosity, by minimizing the beam size at the interaction point, and to reduce backgrounds in the experiment. In the final Focus Section, the correction strategy must result from the principles of the optical design, which is based on cancellations between second order aberrations, and on the ability to measure micron-size beams typical of the SLC. In the Arcs, the corrections were designed after the initial commissioning, to make the system more error-tolerant, through a modification in the optical design, and to enable adjustments of the beam phase-space a the injection to the Final Focus System, through a harmonic perturbation technique inspired from circular accelerators. Although the overall optimization of the SLC is not entirely finished, an almost optimal set-up has been achieved for the optics of the Arcs and of the Final Focus Section. Beams with transverse sizes close to the nominal ones, of a few microns, have been obtained at the interaction point. We present and discuss our results and the optical limits to the present performance. 24 refs., 25 figs., 2 tabs.

  13. Final-focus systems for multi-TeV linear colliders

    Directory of Open Access Journals (Sweden)

    Hector Garcia Morales

    2014-10-01

    Full Text Available In Phys. Rev. Lett. 86, 3779 (2001, a compact final focus system (FFS was presented. This scheme was compared to the nonlocal chromatic correction FFS concluding with the superiority of the local system. Nevertheless, the sensitivity of the system to errors and its mitigation was missing in the comparison. In this paper, an extended comparison of the Compact Linear Collider local FFS and an improved nonlocal FFS is presented at 3 TeV and 500 GeV. We demonstrate that, at high energies, luminosity delivered by the ideal machine is no longer the most important figure of merit but the recovered luminosity after tuning with imperfections, where the improved traditional scheme shows a better performance. This result might have an important relevance also for ILC at 1 TeV.

  14. Final focus system for TLC

    Energy Technology Data Exchange (ETDEWEB)

    Oide, K.

    1988-11-01

    A limit of the chromaticity correction for the final focus system of a TeV Linear Collider (TLC) is investigated. As the result, it becomes possible to increase the aperture of the final doublet with a small increase of the horizontal US function. The new optics design uses a final doublet of 0.5 mm half-aperture and 1.4 T pole-tip field. The length of the system is reduced from 400 m to 200 m by several optics changes. Tolerances for various machine errors with this optics are also studied. 5 refs., 7 figs., 2 tabs.

  15. Mono-everything: Combined limits on dark matter production at colliders from multiple final states

    NARCIS (Netherlands)

    Zhou, N.; Berge, D.; Whiteson, D.

    2013-01-01

    Searches for dark matter production at particle colliders are complementary to direct-detection and indirect-detection experiments and especially powerful for small masses, mχ<100  GeV. An important collider dark matter signature is due to the production of a pair of these invisible particles with t

  16. Mono-everything: Combined limits on dark matter production at colliders from multiple final states

    NARCIS (Netherlands)

    Zhou, N.; Berge, D.; Whiteson, D.

    2013-01-01

    Searches for dark matter production at particle colliders are complementary to direct-detection and indirect-detection experiments and especially powerful for small masses, mχ<100  GeV. An important collider dark matter signature is due to the production of a pair of these invisible particles with t

  17. Design and higher order optimisation of final focus systems for linear colliders

    OpenAIRE

    Marín Lacoma, Eduardo

    2012-01-01

    The accelerator and particle physics communities are considering a lepton Linear Collider LC as the most appropriate machine to carry out high precision particle physics research in the TeV energy regime. The Compact Linear Collider CLIC and the International Linear Collider ILC are the two proposals for the future e+e- LC. Both designs achieve a luminosity L above 10^(34) cm-2 s-1 at the interaction point IP, satisfying the particle physics requirements. The LC consists of different syste...

  18. Effective theory for electroweak doublet dark matter

    Science.gov (United States)

    Dedes, A.; Karamitros, D.; Spanos, V. C.

    2016-11-01

    We perform a detailed study of an effective field theory which includes the standard model particle content extended by a pair of Weyl fermionic SU(2) doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for dark matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable d =4 operators, and nonrenormalizable d =5 operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of dark matter. We find that a weakly interacting dark matter particle with a mass nearby the electroweak scale, and thus observable at the LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  19. Effective Theory for Electroweak Doublet Dark Matter

    CERN Document Server

    Dedes, Athanasios; Spanos, Vassilis C

    2016-01-01

    We perform a detailed study of an effective field theory which includes the Standard Model particle content extended by a pair of Weyl fermionic SU(2)-doublets with opposite hypercharges. A discrete symmetry guarantees that a linear combination of the doublet components is stable and can act as a candidate particle for Dark Matter. The dark sector fermions interact with the Higgs and gauge bosons through renormalizable $d=4$ operators, and non-renormalizable $d=5$ operators that appear after integrating out extra degrees of freedom above the TeV scale. We study collider, cosmological and astrophysical probes for this effective theory of Dark Matter. We find that a WIMP with a mass nearby to the electroweak scale, and thus observable at LHC, is consistent with collider and astrophysical data only when fairly large magnetic dipole moment transition operators with the gauge bosons exist, together with moderate Yukawa interactions.

  20. SiD Linear Collider Detector R&D, DOE Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E. [Univ. of Oregon, Eugene, OR (United States); Demarteau, Marcel [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-05-15

    The Department of Energy’s Office of High Energy Physics supported the SiD university detector R&D projects in FY10, FY11, and FY12 with no-cost extensions through February, 2015. The R&D projects were designed to advance the SiD capabilities to address the fundamental questions of particle physics at the International Linear Collider (ILC): • What is the mechanism responsible for electroweak symmetry breaking and the generation of mass? • How do the forces unify? • Does the structure of space-time at small distances show evidence for extra dimensions? • What are the connections between the fundamental particles and forces and cosmology? Silicon detectors are used extensively in SiD and are well-matched to the challenges presented by ILC physics and the ILC machine environment. They are fast, robust against machine-induced background, and capable of very fine segmentation. SiD is based on silicon tracking and silicon-tungsten sampling calorimetry, complemented by powerful pixel vertex detection, and outer hadronic calorimetry and muon detection. Radiation hard forward detectors which can be read out pulse by pulse are required. Advanced calorimetry based on a particle flow algorithm (PFA) provides excellent jet energy resolution. The 5 Tesla solenoid is outside the calorimeter to improve energy resolution. PFA calorimetry requires fine granularity for both electromagnetic and hadronic calorimeters, leading naturally to finely segmented silicon-tungsten electromagnetic calorimetry. Since silicon-tungsten calorimetry is expensive, the detector architecture is compact. Precise tracking is achieved with the large magnetic field and high precision silicon microstrips. An ancillary benefit of the large magnetic field is better control of the e⁺e⁻ pair backgrounds, permitting a smaller radius beampipe and improved impact parameter resolution. Finally, SiD is designed with a cost constraint in mind. Significant advances and new capabilities have been made and

  1. Singlet-Doublet Dark Matter

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Timothy; /SLAC /Michigan U., MCTP; Kearney, John; Pierce, Aaron; /Michigan U., MCTP; Tucker-Smith, David; /Williams Coll.

    2012-02-15

    In light of recent data from direct detection experiments and the Large Hadron Collider, we explore models of dark matter in which an SU(2){sub L} doublet is mixed with a Standard Model singlet. We impose a thermal history. If the new particles are fermions, this model is already constrained due to null results from XENON100. We comment on remaining regions of parameter space and assess prospects for future discovery. We do the same for the model where the new particles are scalars, which at present is less constrained. Much of the remaining parameter space for both models will be probed by the next generation of direct detection experiments. For the fermion model, DeepCore may also play an important role.

  2. Final Report - The Decline and Fall of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  3. Final Report for the UNIVERSITY-BASED DETECTOR RESEARCH AND DEVELOPMENT FOR THE INTERNATIONAL LINEAR COLLIDER

    Energy Technology Data Exchange (ETDEWEB)

    Brau, James E [Univ. of Oregon

    2013-04-22

    The U.S Linear Collider Detector R&D program, supported by the DOE and NSF umbrella grants to the University of Oregon, made significant advances on many critical aspects of the ILC detector program. Progress advanced on vertex detector sensor development, silicon and TPC tracking, calorimetry on candidate technologies, and muon detection, as well as on beamline measurements of luminosity, energy, and polarization.

  4. Exclusive vector meson photoproduction at the LHC and a future circular collider: A closer look on the final state

    Science.gov (United States)

    da Silveira, G. Gil; Gonçalves, V. P.; Jaime, M. M.

    2017-02-01

    Over the past years, the LHC experiments have reported experimental evidence for processes associated to photon-photon and photon-hadron interactions, showing their potential to investigate the production of low- and high-mass systems in exclusive events. In the particular case of the photoproduction of vector mesons, the experimental study of this final state is expected to shed light on the description of the QCD dynamics at small values of the Bjorken-x variable. In this paper, we extend previous studies for the exclusive J /Ψ and ϒ photoproduction in p p collisions based on the nonlinear QCD dynamics by performing a detailed study of the final-state distributions that can be measured experimentally at the LHC and at a future circular collider. Predictions for the rapidity and transverse momentum distributions of the vector mesons and of final-state dimuons are presented for p p collisions at √{s }=7 , 13, and 100 TeV.

  5. Search for Heavy Higgs bosons in lepton + jets final state with the ATLAS detector at the Large Hadron Collider

    CERN Document Server

    Chang, Paulo Irvin Ang; The ATLAS collaboration

    2017-01-01

    A search for the Heavy Higgs in lepton + jets final state is presented. The heavy Higgs bosons are produced in an associated production to take into account the interference with the SM tt events, and are analyzed in lepton + jets final state. The analysis uses 36.47/fb of pp collision data collected by the ATLAS detector in the Large Hadron Collider at 13 TeV center of mass energy. The analysis takes advantage of the high jet multiplicity of the signal events, and the different kinematics of the Higgs’ final states to distinguish signal from background events. The Boosted Decision Tree(BDT) was used as a classifier to further increase the discriminating power between the signal and background events. The discriminating power of the BDT is observed to be directly proportional to the Higgs mass.

  6. Measuring Masses in Semi-Invisible Final States at Electron-Positron Colliders

    CERN Document Server

    Xiang, Qian-Fei; Yan, Qi-Shu; Yin, Peng-Fei; Yu, Zhao-Huan

    2016-01-01

    Mass measurement of a particle whose decay products including invisible particles is a challenging task at colliders. For a new physics model involving a dark matter candidate $N$ and a $Z_2$ symmetry that stabilizes it, a typical new process $e^+e^-$ colliders is pair production $e^+e^- \\to Y\\bar{Y}$ followed by decay processes $Y\\to aN$ and $\\bar{Y}\\to b\\bar{N}$, where $a$ and $b$ are visible but $N$ is invisible. In this work, we propose a new method to measure the physical masses in this topology by making use of the kinematic equations given by momentum-energy conservation and on-shell conditions. For each event, the solvability of these equations determines a limited region in the trial $m_Y$-$m_N$ plane. The edge of this region can be used to define two variables $m_Y^{\\mathrm{edge}}$ and $m_N^{\\mathrm{edge}}$, whose distributions are utilized to derive the measurement values of $m_Y$ and $m_N$. The measurement deviation is also estimated after including detector effects and background contamination.

  7. Discovery potential of Higgs boson pair production through final states at a 100 TeV collider

    Science.gov (United States)

    Zhao, Xiaoran; Li, Qiang; Li, Zhao; Yan, Qi-Shu

    2017-02-01

    We explore the discovery potential of Higgs pair production at a 100 TeV collider via full leptonic mode. The same mode can be explored at the LHC when Higgs pair production is enhanced by new physics. We examine two types of fully leptonic final states and propose a partial reconstruction method, which can reconstruct some useful kinematic observables. It is found that the m T2 variable determined by this reconstruction method and the reconstructed visible Higgs mass are crucial to discriminate the signal and background events. It is also noticed that a new variable, denoted as Δm, which is defined as the mass difference of two possible combinations, is very useful as a discriminant. To examine the detector effects, we consider seven detector setups for a 100 TeV collider and investigate the changes in the sensitivity, and we find that lepton isolation and the minimal lepton P t cut are crucial in order to reduce the integrated luminosity. Supported by Natural Science Foundation of China (11175251, 11305179, 11675185, 11475180, 11575005) The work of Q. Li and Q.S. Yan is partially supported by CAS Center for Excellence in Particle Physics (CCEPP), X. Zhao is partially supported by the European Union as part of the FP7 Marie Curie Initial Training Network MCnetITN (PITN-GA-2012-315877).

  8. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Gianluca Valentino

    2017-08-01

    Full Text Available During Long Shutdown 1, 18 Large Hadron Collider (LHC collimators were replaced with a new design, in which beam position monitor (BPM pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β^{*} and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  9. Final implementation, commissioning, and performance of embedded collimator beam position monitors in the Large Hadron Collider

    Science.gov (United States)

    Valentino, Gianluca; Baud, Guillaume; Bruce, Roderik; Gasior, Marek; Mereghetti, Alessio; Mirarchi, Daniele; Olexa, Jakub; Redaelli, Stefano; Salvachua, Belen; Valloni, Alessandra; Wenninger, Jorg

    2017-08-01

    During Long Shutdown 1, 18 Large Hadron Collider (LHC) collimators were replaced with a new design, in which beam position monitor (BPM) pick-up buttons are embedded in the collimator jaws. The BPMs provide a direct measurement of the beam orbit at the collimators, and therefore can be used to align the collimators more quickly than using the standard technique which relies on feedback from beam losses. Online orbit measurements also allow for reducing operational margins in the collimation hierarchy placed specifically to cater for unknown orbit drifts, therefore decreasing the β* and increasing the luminosity reach of the LHC. In this paper, the results from the commissioning of the embedded BPMs in the LHC are presented. The data acquisition and control software architectures are reviewed. A comparison with the standard alignment technique is provided, together with a fill-to-fill analysis of the measured orbit in different machine modes, which will also be used to determine suitable beam interlocks for a tighter collimation hierarchy.

  10. Collider Bounds on Indirect Dark Matter Searches: The $WW$ Final State

    CERN Document Server

    Lopez, Nicolas; Cotta, Randel; Frate, Meghan; Zhou, Ning; Whiteson, Daniel

    2014-01-01

    We describe an effective theory of interaction between pairs of dark matter particles (denoted $\\chi$) and pairs of $W$ bosons. Such an interaction could accommodate $\\chi\\bar{\\chi}\\rightarrow WW$ processes, which are a major focus of indirect dark matter experiments, as well as $pp \\rightarrow W\\rightarrow W\\chi\\bar{\\chi}$ processes, which would predict excesses at the LHC in the $W$+MET final-state. We reinterpret an ATLAS $W$+MET analysis in the hadronic mode and translate the bounds to the space of indirect detection signals. We also reinterpret the $W$+MET analysis in terms of graviton theory through the processes $W\\rightarrow WG$ and $Z\\rightarrow ZG$ in which $G$ is invisible. Finally, the final state is interpreted in terms of a $W'$ model where $W'\\rightarrow WZ$, where $W$ decays hadronically and $Z$ decays to neutrinos.

  11. A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

    CERN Document Server

    Carli, Tancredi; Cooper-Sarkar, Amanda; Gwenlan, Claire; Salam, Gavin P; Siegert, Frank; Starovoitov, Pavel; Sutton, Mark

    2010-01-01

    A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cro...

  12. First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, Jahred A.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Alvarez Gonzalez, B.; /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, Dante E.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, Alberto; /Frascati; Antos, Jaroslav; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.

    2009-05-01

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W,Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb{sup -1} of integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 {+-} 239(stat) {+-} 144(syst) diboson candidate events and measure a cross section {sigma}(p{bar p} {yields} VV + X) of 18.0 {+-} 2.8(stat) {+-} 2.4(syst) {+-} 1.1(lumi) pb, in agreement with the expectations of the standard model.

  13. First observation of vector boson pairs in a hadronic final state at the tevatron collider.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-08-28

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb(-1) of integrated luminosity of pp[over ] collisions at sqrt[s] = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 + or - 239(stat) + or - 144(syst) diboson candidate events and measure a cross section sigma(pp[over ]-->VV + X) of 18.0 + or - 2.8(stat) + or - 2.4(syst) + or -1.1(lumi) pb, in agreement with the expectations of the standard model.

  14. Origins of inert Higgs doublets

    Directory of Open Access Journals (Sweden)

    Thomas W. Kephart

    2016-05-01

    Full Text Available We consider beyond the standard model embedding of inert Higgs doublet fields. We argue that inert Higgs doublets can arise naturally in grand unified theories where the necessary associated Z2 symmetry can occur automatically. Several examples are discussed.

  15. Partially composite two-Higgs doublet model

    Indian Academy of Sciences (India)

    Dong-Won Jung

    2007-11-01

    In the extra dimensional scenarios with gauge fields in the bulk, the Kaluza-Klein (KK) gauge bosons can induce Nambu-Jona-Lasinio (NJL) type attractive four-fermion interactions, which can break electroweak symmetry dynamically with accompanying composite Higgs fields. We consider a possibility that electroweak symmetry breaking (EWSB) is triggered by both a fundamental Higgs and a composite Higgs arising in a dynamical symmetry breaking mechanism induced by a new strong dynamics. The resulting Higgs sector is a partially composite two-Higgs doublet model with specific boundary conditions on the coupling and mass parameters originating at a compositeness scale . The phenomenology of this model is discussed including the collider phenomenology at LHC and ILC.

  16. Collider Signatures of Flavorful Higgs Bosons

    CERN Document Server

    Altmannshofer, Wolfgang; Gori, Stefania; Lotito, Matteo; Martone, Mario; Tuckler, Douglas

    2016-01-01

    Motivated by our limited knowledge of the Higgs couplings to first two generation fermions, we analyze the collider phenomenology of a class of two Higgs doublet models (2HDMs) with a non-standard Yukawa sector. One Higgs doublet is mainly responsible for the masses of the weak gauge bosons and the third generation fermions, while the second Higgs doublet provides mass for the lighter fermion generations. The characteristic collider signatures of this setup differ significantly from well-studied 2HDMs with natural flavor conservation, flavor alignment, or minimal flavor violation. New production mechanisms for the heavy scalar, pseudoscalar, and charged Higgs involving second generation quarks can become dominant. The most interesting decay modes include H/A -> cc, tc, {\\mu}{\\mu}, {\\tau}{\\mu} and H+ -> cb, cs, {\\mu}{\

  17. Masses of a Fourth Generation with Two Higgs Doublets

    CERN Document Server

    Bellantoni, Leo; Heckman, Jonathan J; Ramirez-Homs, Enrique

    2012-01-01

    We use sampling techniques to find robust constraints on the masses of a possible fourth sequential fermion generation from electroweak oblique variables. We find that in the case of a light (115 GeV) Higgs from a single electroweak symmetry breaking doublet, inverted mass hierarchies are possible for both quarks and leptons, but a mass splitting more than M(W) in the quark sector is unlikely. We also find constraints in the case of a heavy (600 GeV) Higgs in a single doublet model. As recent data from the Large Hadron Collider hints at the existence of a resonance at 124.5 GeV and a single Higgs doublet at that mass is inconsistent with a fourth fermion generation, we examine a type II two Higgs doublet model. In this model, there are ranges of parameter space where the Higgs sector can potentially counteract the effects of the fourth generation. Even so, we find that such scenarios produce qualitatively similar fermion mass distribtions.

  18. Fat Branes, Orbifolds and Doublet-Triplet Splitting

    CERN Document Server

    Haba, N; Haba, Naoyuki; Maru, Nobuhito

    2003-01-01

    A simple higher dimensional mechanism of the doublet-triplet splitting is presented in a five dimensional supersymmetric SU(5) GUT on S^1/Z_2. The splitting of multiplets is realized by a VEV of the adjoint chiral superfield which breaks SU(5) gauge symmetry. Depending on the sign of the VEV, zero mode Higgs doublets and triplets are localized on the either side of the fixed points. The mass splitting is realized due to the difference of magnitudes of the overlap with a brane localized or a bulk singlet field. No unnatural fine-tuning of parameters is needed. The proton stability is ensured by locality {em without symmetries}. As well as a conventional mass splitting solution, it is shown that the weak scale Higgs triplet is consistent with the proton stability. This result might provide an alternative signature of GUT in future collider experiments.

  19. ATLAS diboson excesses from the stealth doublet model

    Directory of Open Access Journals (Sweden)

    Wei Chao

    2016-02-01

    Full Text Available The ATLAS Collaboration has reported excesses in diboson invariant mass searches of new resonances around 2 TeV, which might be a prediction of new physics around that mass range. We interpret these results in the context of a modified stealth doublet model where the extra Higgs doublet has a Yukawa interaction with the first generation quarks, and show that the heavy CP-even Higgs boson can naturally explain the excesses in the WW and ZZ channels with a small Yukawa coupling, ξ∼0.15, and a tiny mixing angle with the SM Higgs boson, α∼0.05. Furthermore, the model satisfies constraints from colliders and electroweak precision measurements.

  20. Muon colliders

    Science.gov (United States)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  1. Muon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley Lab., CA (United States); Skrinsky, A. [BINP, RU-630090 Novosibirsk (Russian Federation)] [and others

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  2. Linear collider development at SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, J.

    1993-08-01

    Linear collider R&D at SLAC comprises work on the present Stanford Linear Collider (SLC) and work toward the next linear collider (NLC). Recent SLC developments are summarized. NLC studies are divided into hardware-based and theoretical. We report on the status of the NLC Test Accelerator (NLCTA) and the final focus test beam (FFTB), describe plans for ASSET, an installation to measure accelerator structure wakefields, and mention IR design developments. Finally we review recent NLC theoretical studies, ending with the author`s view of next linear collider parameter sets.

  3. Perturbative Unitarity Bounds in Composite 2-Higgs Doublet Models

    CERN Document Server

    De Curtis, Stefania; Yagyu, Kei; Yildirim, Emine

    2016-01-01

    We study bounds from perturbative unitarity in a Composite 2-Higgs Doublet Model (C2HDM) based on the spontaneous breakdown of a global symmetry $SO(6)\\to SO(4)\\times SO(2)$ at the compositeness scale $f$. The eight pseudo Nambu-Goldstone Bosons (pNGBs) emerging from such a dynamics are identified as two isospin doublet Higgs fields. We calculate the $S$-wave amplitude for all possible 2-to-2-body elastic (pseudo)scalar boson scatterings at energy scales $\\sqrt{s}$ reachable at the Large Hadron Collider (LHC) and beyond it, including the longitudinal components of weak gauge boson states as the corresponding pNGB states. In our calculation, the Higgs potential is assumed to have the same form as that in the Elementary 2-Higgs Doublet Model (E2HDM) with a discrete $Z_2$ symmetry, which is expected to be generated at the one-loop level via the Coleman-Weinberg (CW) mechanism. We find that the $S$-wave amplitude matrix can be block-diagonalized with maximally $2\\times 2$ submatrices in a way similar to the E2HDM...

  4. Ion Colliders

    CERN Document Server

    Fischer, W

    2014-01-01

    High-energy ion colliders are large research tools in nuclear physics to study the Quark-Gluon-Plasma (QGP). The range of collision energy and high luminosity are important design and operational considerations. The experiments also expect flexibility with frequent changes in the collision energy, detector fields, and ion species. Ion species range from protons, including polarized protons in RHIC, to heavy nuclei like gold, lead and uranium. Asymmetric collision combinations (e.g. protons against heavy ions) are also essential. For the creation, acceleration, and storage of bright intense ion beams, limits are set by space charge, charge change, and intrabeam scattering effects, as well as beam losses due to a variety of other phenomena. Currently, there are two operating ion colliders, the Relativistic Heavy Ion Collider (RHIC) at BNL, and the Large Hadron Collider (LHC) at CERN.

  5. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  6. Interference contributions to gluon initiated heavy Higgs production in the two-Higgs-doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Nicolas [DESY, Hamburg (Germany); Universitaet Zuerich, Physik-Institut, Zuerich (Switzerland); Liebler, Stefan; Weiglein, Georg [DESY, Hamburg (Germany)

    2016-03-15

    We discuss the production of a heavy neutral Higgs boson of a CP-conserving two-Higgs-doublet model in gluon fusion and its decay into a four-fermion final state, gg(→ VV) → e{sup +}e{sup -}μ{sup +}μ{sup -}/e{sup +}e{sup -}ν{sub l} anti ν{sub l}. We investigate the interference contributions to invariant mass distributions of the four-fermion final state and other relevant kinematical observables. The relative importance of the different contributions is quantified for the process in the on-shell approximation, gg → ZZ. We show that interferences of the heavy Higgs with the light Higgs boson and background contributions are essential for a correct description of the differential cross section. Even though they contribute below O(10%) to those heavy Higgs signal cross sections, to which the experiments at the Large Hadron Collider were sensitive in its first run, we find that they are sizable in certain regions of the parameter space that are relevant for future heavy Higgs boson searches. In fact, the interference contributions can significantly enhance the experimental sensitivity to the heavy Higgs boson. (orig.)

  7. Interference contributions to gluon initiated heavy Higgs production in the Two-Higgs-Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Greiner, Nicolas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zuerich Univ. (Switzerland). Physik-Inst.; Liebler, Stefan; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-03-15

    We discuss the production of a heavy neutral Higgs boson of a CP-conserving Two-Higgs-Doublet Model in gluon fusion and its decay into a four-fermion final state, gg(→VV)→e{sup +}e{sup -}π{sup +}π{sup -}/e{sup +}e{sup -}ν{sub l} anti ν{sub l}. We investigate the interference contributions to invariant mass distributions of the four-fermion final state and other relevant kinematical observables. The relative importance of the different contributions is quantified for the process in the on-shell approximation, gg→ZZ. We show that interferences of the heavy Higgs with the light Higgs boson and background contributions are essential for a correct description of the differential cross section. Even though they contribute below O(10%) to those heavy Higgs signal cross sections, to which the experiments at the Large Hadron Collider were sensitive in its first run, we find that they are sizeable in certain regions of the parameter space that are relevant for future heavy Higgs boson searches. In fact, the interference contributions can significantly enhance the experimental sensitivity to the heavy Higgs boson.

  8. Doublet method for very fast autocoding

    Directory of Open Access Journals (Sweden)

    Berman Jules J

    2004-09-01

    Full Text Available Abstract Background Autocoding (or automatic concept indexing occurs when a software program extracts terms contained within text and maps them to a standard list of concepts contained in a nomenclature. The purpose of autocoding is to provide a way of organizing large documents by the concepts represented in the text. Because textual data accumulates rapidly in biomedical institutions, the computational methods used to autocode text must be very fast. The purpose of this paper is to describe the doublet method, a new algorithm for very fast autocoding. Methods An autocoder was written that transforms plain-text into intercalated word doublets (e.g. "The ciliary body produces aqueous humor" becomes "The ciliary, ciliary body, body produces, produces aqueous, aqueous humor". Each doublet is checked against an index of doublets extracted from a standard nomenclature. Matching doublets are assigned a numeric code specific for each doublet found in the nomenclature. Text doublets that do not match the index of doublets extracted from the nomenclature are not part of valid nomenclature terms. Runs of matching doublets from text are concatenated and matched against nomenclature terms (also represented as runs of doublets. Results The doublet autocoder was compared for speed and performance against a previously published phrase autocoder. Both autocoders are Perl scripts, and both autocoders used an identical text (a 170+ Megabyte collection of abstracts collected through a PubMed search and the same nomenclature (neocl.xml, containing over 102,271 unique names of neoplasms. In side-by-side comparison on the same computer, the doublet method autocoder was 8.4 times faster than the phrase autocoder (211 seconds versus 1,776 seconds. The doublet method codes 0.8 Megabytes of text per second on a desktop computer with a 1.6 GHz processor. In addition, the doublet autocoder successfully matched terms that were missed by the phrase autocoder, while the

  9. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  10. Search for Supersymmetry in final states with three leptons and missing transverse energy with the ATLAS detector at the Large Hadron Collider

    CERN Document Server

    Santoyo Castillo, Itzebelt

    The ATLAS experiment at the Large Hadron Collider has collected an unprecedented amount of data in the 3 years of data taking since its start. In this document I will dis- cuss the results of the analysis I performed during my PhD at the university of Sussex for the search of Supersymmetry in events with three leptons (electron/muon/tau) and missing transverse energy in the final state. The search is performed on the full dataset collected by the experiment in 2012, at a centre-of-mass energy of 8 TeV. These results are interpreted in SUSY models with chargino-neutralino pair production via decays involving sleptons, staus, gauge bosons and the newly discovered Higgs boson. These results presen- ted improve on previous searches performed at ATLAS in three lepton final states with only electrons and muons. Special focus will be given to the optimisation process of Su- persymmetry signal with respect to the SM background, and the statistical interpretation of the results obtained with this search.

  11. Doublet-Triplet Splitting and Fat Branes

    CERN Document Server

    Maru, N

    2001-01-01

    We consider the doublet-triplet splitting problem in supersymmetric SU(5) grand unified theory in five dimensions where the fifth dimension is non-compact. We point out that an unnatural fine-tuning of parameters in order to obtain the light Higgs doublets is not required due to the exponential suppression of the overlap of the wave functions.

  12. Symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, I P

    2012-01-01

    We report the recent progress in understanding of symmetries which can be implemented in the scalar sector of electroweak symmetry breaking models with several Higgs doublets. In particular we present the list of finite reparametrization symmetry groups which can appear in the three-Higgs-doublet models.

  13. Doublet vs. FODO structure: beam dynamics and layout

    CERN Document Server

    Eshraqi, M; CERN. Geneva. BE Department

    2010-01-01

    A FoDo (singlet) structure is designed for the CERN Superconducting Proton LINAC. This architecture is compared to the baseline (doublet) architecture of SPL on the basis of its beam dynamics performance and the required investment. The sensitivity of both layouts to quadrupole gradient errors and misalignment is checked and a correction scheme for beam steering is proposed. Finally a single quad beam dilution scheme is studied and designed for the pilot beam dump.

  14. Luminosity performance studies of the compact linear collider with intra-train feedback system at the interaction point

    Energy Technology Data Exchange (ETDEWEB)

    Resta-Lopez, J; Burrows, P N; Christian, G, E-mail: j.restalopez@physics.ox.ac.u [John Adams Institute for Accelerator Science, Oxford University, Oxford, OX1 3RH (United Kingdom)

    2010-09-15

    To achieve the design luminosity at future linear colliders, control of beam stability at the sub-nanometre level at the interaction point will be necessary. Any source of beam motion which results in relative vertical offsets of the two beams at the interaction point may significantly reduce the luminosity from the nominal value. Beam-based intra-train feedback systems located in the interaction region are foreseen to correct the relative beam-beam offset and thus to steer the two beams into collision. These feedback systems must be capable of acting within the bunch train. In addition, these feedback systems might considerably help to relax the tight stability tolerances required for the final doublet magnets. For the Compact Linear Collider (CLIC), the extremely short nominal bunch spacing (0.5 ns) and very short nominal pulse duration (156 ns) make the intra-train feedback implementation technically very challenging. In this paper the conceptual design of an intra-train feedback system for the CLIC interaction point is described. Results of luminosity performance simulations are presented and discussed for different scenarios of ground motion. We also show how the intra-train feedback system can help to relax the very tight tolerances of the vertical vibration on the CLIC final doublet quadrupoles.

  15. Radiative corrections to the Triple Higgs Coupling in the Inert Higgs Doublet Model

    CERN Document Server

    Arhrib, Abdesslam; Falaki, Jaouad El; Jueid, Adil

    2015-01-01

    We investigate the implication of the recent discovery of a Higgs-like particle in the first phase of the LHC Run 1 on the Inert Higgs Doublet Model (IHDM). The determination of the Higgs couplings to SM particles and its intrinsic properties will get improved during the new LHC Run 2 starting this year. The new LHC Run 2 would also shade some light on the triple Higgs coupling. Such measurement is very important in order to establish the details of the electroweak symmetry breaking mechanism. Given the importance of the Higgs couplings both at the LHC and $e^+e^-$ Linear Collider machines, accurate theoretical predictions are required. We study the radiative corrections to the triple Higgs coupling $hhh$ and to $hZZ$, $hWW$ couplings in the context of the IHDM. By combining several theoretical and experimental constraints on parameter space, we show that extra particles might modify the triple Higgs coupling near threshold regions. Finally, we discuss the effect of these corrections on the double Higgs produ...

  16. Radiative corrections to the triple Higgs coupling in the inert Higgs doublet model

    Science.gov (United States)

    Arhrib, Abdesslam; Benbrik, Rachid; El Falaki, Jaouad; Jueid, Adil

    2015-12-01

    We investigate the implication of the recent discovery of a Higgs-like particle in the first phase of the LHC Run 1 on the Inert Higgs Doublet Model (IHDM). The determination of the Higgs couplings to SM particles and its intrinsic properties will get improved during the new LHC Run 2 starting this year. The new LHC Run 2 would also shade some light on the triple Higgs coupling. Such measurement is very important in order to establish the details of the electroweak symmetry breaking mechanism. Given the importance of the Higgs couplings both at the LHC and e + e - Linear Collider machines, accurate theoretical predictions are required. We study the radiative corrections to the triple Higgs coupling hhh and to hZZ, hW W couplings in the context of the IHDM. By combining several theoretical and experimental constraints on parameter space, we show that extra particles might modify the triple Higgs coupling near threshold regions. Finally, we discuss the effect of these corrections on the double Higgs production signal at the e + e - LC and show that they can be rather important.

  17. On the connectivity anisotropy in fluvial Hot Sedimentary Aquifers and its influence on geothermal doublet performance

    DEFF Research Database (Denmark)

    Willems, Cees J.L.; Nick, Hamid; Donselaar, Marinus E.

    2017-01-01

    This study finds that the geothermal doublet layout with respect to the paleo flow direction in fluvial sedimentary reservoirs could significantly affect pump energy losses. These losses can be reduced by up to 10% if a doublet well pair is oriented parallel to the paleo flow trend compared...... Cretaceous Nieuwerkerk Formation in the West Netherlands Basin. Finally, this study emphasizes the importance of detailed facies architecture modelling for the assessment of both risks and production strategies in Hot Sedimentary Aquifers....

  18. Collisional broadening of alkali doublets by helium perturbers

    CERN Document Server

    Mullamphy, D F T; Peach, G; Venturi, V; Whittingham, I B

    2006-01-01

    We report results for the Lorentzian profiles of the Li I, Na I and K I doublets and the Na I subordinate doublet broadened by helium perturbers for temperatures up to 3000 K They have been obtained from a fully quantum-mechanical close-coupling description of the colliding atoms, the Baranger theory of line shapes and new ab initio potentials for the alkali-helium interaction. For all lines except the 769.9 nm K I line, the temperature dependence of the widths over the range 70 < T < 3000 K is accurately represented by the power law form w=aT^b with 0.37 < b < 0.43. The 769.9 K I line has this form for 500 < T < 3000 K with b = 0.49. Although the shifts have a more complex temperature dependence, they all have the general feature of increasing with temperature above T=500 K apart from the 769.9 K I line whose shift decreases with temperature.

  19. LHC Phenomenology of Composite 2-Higgs Doublet Models

    CERN Document Server

    De Curtis, Stefania; Yagyu, Kei; Yildirim, Emine

    2016-01-01

    We investigate the phenomenology of Composite 2-Higgs Doublet Models (C2HDMs) of various Yukawa types based on the global symmetry breaking $SO(6)\\to SO(4)\\times SO(2)$. The kinetic term and the Yukawa Lagrangian are constructed in terms of the pseudo Nambu-Goldstone Boson (pNGB) matrix and a 6-plet of fermions under $SO(6)$. The scalar potential is assumed to be the same as that of the Elementary 2-Higgs Doublet Model (E2HDM) with a softly-broken discrete $Z_2$ symmetry. We then discuss the phenomenological differences between the E2HDM and C2HDM by focusing on the deviations from Standard Model (SM) couplings of the discovered Higgs state ($h$) as well as on the production cross sections and Branching Ratios (BRs) at the Large Hadron Collider (LHC) of extra Higgs bosons. We find that, even if the same deviation in the $hVV$ ($V=W,Z$) coupling is assumed in both scenarios, there appear significant differences between E2HDM and C2HDM from the structure of the Yukawa couplings, so that production and decay fea...

  20. Fitting the Two-Higgs-Doublet model of type II

    CERN Document Server

    Eberhardt, Otto

    2014-01-01

    We present the current status of the Two-Higgs-Doublet model of type II. Taking into account all available relevant information, we exclude at $95$% CL sizeable deviations of the so-called alignment limit, in which all couplings of the light CP-even Higgs boson $h$ are Standard-Model-like. While we can set a lower limit of $240$ GeV on the mass of the pseudoscalar Higgs boson at $95$% CL, the mass of the heavy CP-even Higgs boson $H$ can be even lighter than $200$ GeV. The strong constraints on the model parameters also set limits on the triple Higgs couplings: the $hhh$ coupling in the Two-Higgs-Doublet model of type II cannot be larger than in the Standard Model, while the $hhH$ coupling can maximally be $2.5$ times the size of the Standard Model $hhh$ coupling, assuming an $H$ mass below $1$ TeV. The selection of benchmark scenarios which maximize specific effects within the allowed regions for further collider studies is illustrated for the $H$ branching fraction to fermions and gauge bosons. As an exampl...

  1. Unraveling supersymmetry at future colliders

    Indian Academy of Sciences (India)

    Xerxes Tata

    2004-02-01

    After a quick review of the current limits on sparticle masses, we outline the prospects for their discovery at future colliders. We then proceed to discuss how precision measurements of sparticle masses can provide information about how SM suprpartners acquire their masses. Finally, we examine how we can proceed to establish whether or not any new physics discovered in the future is supersymmetry, and describe how we might zero in on the framework of SUSY breaking. In this connection, we review sparticle mass measurements at future colliders, and point out that some capabilities of experiments at $e^{+}e^{-}$ linear colliders may have been over-stated in the literture.

  2. Higgs properties in the Stealth Doublet Model

    Directory of Open Access Journals (Sweden)

    Wouda Glenn

    2013-11-01

    Full Text Available I present a model with two scalar doublets and a softly broken ℤ2 symmetry, where only one of the doublets gets a vacuum expectation value and couples to fermions at tree-level. The softly broken ℤ2 symmetry leads to interesting phenomenology such as mixing between the two doublets and a charged scalar H± which can be light and dominantly decays into Hγ. The model can also naturally reproduce an enhanced γγ signal of the newly observed Higgs boson at the LHC with mass 125 GeV.

  3. Vacuum stability in neutrinophilic Higgs doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Haba, Naoyuki [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Horita, Tomohiro, E-mail: tomohiro@het.phys.sci.osaka-u.ac.jp [Department of Physics, Osaka University, Toyonaka, Osaka 560-0043 (Japan)

    2011-11-03

    A neutrinophilic Higgs model has tiny vacuum expectation value (VEV), which can naturally explain tiny masses of neutrinos. There is a large energy scale hierarchy between a VEV of the neutrinophilic Higgs doublet and that of usual standard model-like Higgs doublet. In this Letter we at first analyze vacuum structures of Higgs potential in both supersymmetry (SUSY) and non-SUSY neutrinophilic Higgs models, and next investigate a stability of this VEV hierarchy against radiative corrections. We will show that the VEV hierarchy is stable against radiative corrections in both Dirac neutrino and Majorana neutrino scenarios in both SUSY and non-SUSY neutrinophilic Higgs doublet models.

  4. Searches for heavy Higgs bosons in two-Higgs-doublet models and for $t→ch$ decay using multilepton and diphoton final states in $pp$ collisions at 8 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Daci, Nadir; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Dobur, Didar; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Léonard, Alexandre; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Crucy, Shannon; Dildick, Sven; Fagot, Alexis; Garcia, Guillaume; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Nuttens, Claude; Pagano, Davide; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Mora Herrera, Clemencia; Pol, Maria Elena; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Aleksandrov, Aleksandar; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Song; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Murumaa, Marion; Raidal, Martti; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Filipovic, Nicolas; Florent, Alice; Granier de Cassagnac, Raphael; Mastrolorenzo, Luca; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Regnard, Simon; Salerno, Roberto; Sauvan, Jean-Baptiste; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Bouvier, Elvire; Brochet, Sébastien; Carrillo Montoya, Camilo Andres; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sabes, David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Heister, Arno; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Garay Garcia, Jasone; Geiser, Achim; Gunnellini, Paolo; Hauk, Johannes; Hempel, Maria; Horton, Dean; Jung, Hannes; Kalogeropoulos, Alexis; Kasemann, Matthias; Katsas, Panagiotis; Kieseler, Jan; Kleinwort, Claus; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Nayak, Aruna; Novgorodova, Olga; Nowak, Friederike; Ntomari, Eleni; Perrey, Hanno; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Saxena, Pooja; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Seitz, Claudia; Spannagel, Simon; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Erfle, Joachim; Garutti, Erika; Goebel, Kristin; Görner, Martin; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Poehlsen, Jennifer; Pöhlsen, Thomas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Frensch, Felix; Giffels, Manuel; Hartmann, Frank; Hauth, Thomas; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Mozer, Matthias Ulrich; Müller, Thomas; Nürnberg, Andreas; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Psallidas, Andreas; Topsis-Giotis, Iasonas; Agapitos, Antonis; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Manjit; Mittal, Monika; Nishu, Nishu; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Sharma, Varun; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Banerjee, Sudeshna; Bhowmik, Sandeep; Chatterjee, Rajdeep Mohan; Dewanjee, Ram Krishna; Dugad, Shashikant; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Goldouzian, Reza; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Ferro, Fabrizio; Lo Vetere, Maurizio; Robutti, Enrico; Tosi, Silvano; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Gerosa, Raffaele; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Di Guida, Salvatore; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dall'Osso, Martino; Dorigo, Tommaso; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Salvini, Paola; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Finco, Linda; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kropivnitskaya, Anna; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Sakharov, Alexandre; Son, Dong-Chul; Kim, Tae Jeong; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Byounghoon; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Reucroft, Steve; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michał; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Gavrilenko, Mikhail; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Ekmedzic, Marko; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Pérez Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Albajar, Carmen; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Benaglia, Andrea; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Dobson, Marc; Dordevic, Milos; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Glege, Frank; Guida, Roberto; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Marrouche, Jad; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Treille, Daniel; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wardle, Nicholas; Wöhri, Hermine Katharina; Wollny, Heiner; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Rebane, Liis; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Theofilatos, Konstantinos; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Ronga, Frederic Jean; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Tzeng, Yeng-Ming; Wilken, Rachel; Asavapibhop, Burin; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Bilin, Bugra; Bilmis, Selcuk; Gamsizkan, Halil; Karapinar, Guler; Ocalan, Kadir; Sekmen, Sezen; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Vardarlı, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Dunne, Patrick; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Hall, Geoffrey; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mathias, Bryn; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Lawson, Philip; Richardson, Clint; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Berry, Edmund; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Lander, Richard; Miceli, Tia; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Rakness, Gregory; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Ivova Rikova, Mirena; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Olmedo Negrete, Manuel; Shrinivas, Amithabh; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Klein, Daniel; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Welke, Charles; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bradmiller-Feld, John; Campagnari, Claudio; Danielson, Thomas; Dishaw, Adam; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Incandela, Joe; Justus, Christopher; Mccoll, Nickolas; Richman, Jeffrey; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Iiyama, Yutaro; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Chu, Jennifer; Dittmer, Susan; Eggert, Nicholas; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Skinnari, Louise; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hanlon, Jim; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kreis, Benjamin; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Sexton-Kennedy, Elizabeth; Sharma, Seema; Soha, Aron; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitbeck, Andrew; Whitmore, Juliana; Yang, Fan; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Carver, Matthew; Cheng, Tongguang; Curry, David; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Field, Richard D; Fisher, Matthew; Furic, Ivan-Kresimir; Hugon, Justin; Konigsberg, Jacobo; Korytov, Andrey; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Haytmyradov, Maksat; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Rahmat, Rahmat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Bruner, Christopher; Gray, Julia; Kenny III, Raymond Patrick; Malek, Magdalena; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Skhirtladze, Nikoloz; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Knowlton, Dan; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Zhang, Jinzhong; Hahn, Kristan Allan; Kubik, Andrew; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Driga, Olga; Elmer, Peter; Hebda, Philip; Hunt, Adam; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Barnes, Virgil E; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Hu, Zhen; Jha, Manoj; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Khukhunaishvili, Aleko; Petrillo, Gianluca; Vishnevskiy, Dmitry; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Craig, Nathaniel; Duggan, Daniel; Evans, Jared; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Salur, Sevil; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Rose, Anthony; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Lin, Chuanzhe; Neu, Christopher; Wood, John; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Friis, Evan; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Lazaridis, Christos; Levine, Aaron; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Vuosalo, Carl; Woods, Nathaniel

    2014-12-23

    Searches are presented for heavy scalar ($\\mathrm{H}$) and pseudoscalar ($\\mathrm{A}$) Higgs bosons posited in the two doublet model (2HDM) extensions of the standard model (SM). These searches are based on a data sample of $\\mathrm{p}\\mathrm{p}$ collisions collected with the CMS experiment at the LHC at a center-of-mass energy of $\\sqrt{s} = 8~\\mathrm{TeV}$ and corresponding to an integrated luminosity of $19.5~\\mathrm{fb}^{-1}$. The decays $\\mathrm{H} \\rightarrow \\mathrm{h} \\mathrm{h}$ and $\\mathrm{A} \\rightarrow \\mathrm{Z} \\mathrm{h}$, where $\\mathrm{h}$ denotes an SM-like Higgs boson, lead to events with three or more isolated charged leptons or with a photon pair accompanied by one or more isolated leptons. The search results are presented in terms of the $\\mathrm{H}$ and $\\mathrm{A}$ production cross sections times branching fractions and are further interpreted in terms of 2HDM parameters. We place 95% CL cross section upper limits of approximately $7~\\mathrm{pb}$ on $\\sigma \\mathcal{B}$ for $\\mathrm{H...

  5. Aspects of Z boson production at higher orders at hadron colliders

    Science.gov (United States)

    Gavin, Ryan D.

    Electroweak gauge boson production is a critical component of physics studies performed at hadron colliders. It serves as a 'standard candle' at the Large Hadron Collider (LHC). In this thesis, various aspects of Z boson production at hadron colliders are considered. We introduce an improved version of the simulation code FEWZ ( Fully Exclusive W and Z Production) for hadron collider production of lepton pairs through the Drell-Yan process at next-to-next-to-leading-order in quantum chromodynamics (QCD). The program is fully differential in the phase space of leptons and additional hadronic radiation. We discuss improvements in performance and user customization through phase-space constraints and predefined histograms, illustrating the new features by presenting numerous phenomenological results for LHC physics. Considering new physics effects to electroweak gauge boson production at hadron colliders, we study the supersymmetric QCD corrections to dilepton production with an associated jet at the LHC. We investigate these effects to the integrated cross section and the kinematic distributions of the final state leptons and jet. Electroweak gauge bosons are intimately related to electroweak symmetry breaking, which is achieved in the Standard Model (SM) by the Higgs boson, a scalar particle. Extending the SM scalar sector with new color-octet scalars, we investigate the phenomenology of (8, 2)1/2 doublets by studying their properties and production mechanisms at the LHC. Studying these color-octet scalars provides a window to the underlying Yukawa structure of the scalar sector. We discuss the discovery potential of color-octet scalars at the LHC and their implications on adjoint SU(5) grand unified theories.

  6. Automatic extraction of candidate nomenclature terms using the doublet method

    Directory of Open Access Journals (Sweden)

    Berman Jules J

    2005-10-01

    nomenclature. Results A 31+ Megabyte corpus of pathology journal abstracts was parsed using the doublet extraction method. This corpus consisted of 4,289 records, each containing an abstract title. The total number of words included in the abstract titles was 50,547. New candidate terms for the nomenclature were automatically extracted from the titles of abstracts in the corpus. Total execution time on a desktop computer with CPU speed of 2.79 GHz was 2 seconds. The resulting output consisted of 313 new candidate terms, each consisting of concatenated doublets found in the reference nomenclature. Human review of the 313 candidate terms yielded a list of 285 terms approved by a curator. A final automatic extraction of duplicate terms yielded a final list of 222 new terms (71% of the original 313 extracted candidate terms that could be added to the reference nomenclature. Conclusion The doublet method for automatically extracting candidate nomenclature terms can be used to quickly find new terms from vast amounts of text. The method can be immediately adapted for virtually any text and any nomenclature. An implementation of the algorithm, in the Perl programming language, is provided with this article.

  7. A new viable region of the inert doublet model

    CERN Document Server

    Lopez-Honorez, Laura

    2010-01-01

    The inert doublet model, a minimal extension of the Standard Model by a second Higgs doublet, is one of the simplest and most attractive scenarios that can explain the dark matter. In this paper, we demonstrate the existence of a new viable region of the inert doublet model featuring dark matter masses between Mw and about 160 GeV. Along this previously overlooked region of the parameter space, the correct relic density is obtained thanks to cancellations between different diagrams contributing to dark matter annihilation into gauge bosons (W+W- and ZZ). First, we explain how these cancellations come about and show several examples illustrating the effect of the parameters of the model on the cancellations themselves and on the predicted relic density. Then, we perform a full scan of the new viable region and analyze it in detail by projecting it onto several two-dimensional planes. Finally, the prospects for the direct and the indirect detection of inert Higgs dark matter within this new viable region are st...

  8. Feedback systems for linear colliders

    CERN Document Server

    Hendrickson, L; Himel, Thomas M; Minty, Michiko G; Phinney, N; Raimondi, Pantaleo; Raubenheimer, T O; Shoaee, H; Tenenbaum, P G

    1999-01-01

    Feedback systems are essential for stable operation of a linear collider, providing a cost-effective method for relaxing tight tolerances. In the Stanford Linear Collider (SLC), feedback controls beam parameters such as trajectory, energy, and intensity throughout the accelerator. A novel dithering optimization system which adjusts final focus parameters to maximize luminosity contributed to achieving record performance in the 1997-98 run. Performance limitations of the steering feedback have been investigated, and improvements have been made. For the Next Linear Collider (NLC), extensive feedback systems are planned as an intregal part of the design. Feedback requiremetns for JLC (the Japanese Linear Collider) are essentially identical to NLC; some of the TESLA requirements are similar but there are significant differences. For NLC, algorithms which incorporate improvements upon the SLC implementation are being prototyped. Specialized systems for the damping rings, rf and interaction point will operate at hi...

  9. SSC [Superconducting Super Collider] Project: Technical Training for the Future of Texas. Navarro College/Dallas Community College District. Final Report for Year One.

    Science.gov (United States)

    Orsak, Charles; McGlohen, Patti J.

    The Superconducting Super Collider Laboratory (SSCL) is a national lab for research on the fundamental forces and constituents of the universe. A major part of the research will involve an oval ring 54 miles in circumference through which superconducting magnets will steer two beams of protons in opposite directions. In response to the…

  10. Muon muon collider: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-18

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup {minus}2} s{sup {minus}1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice--the authors believe--to allow them to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring which has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design.

  11. High-scale validity of a two Higgs doublet scenario: metastability included

    CERN Document Server

    Chakrabarty, Nabarun

    2016-01-01

    We make an attempt to identify regions in a Type II Two-Higgs Doublet Model, which correspond to a metastable electroweak vacuum with lifetime larger than the age of the universe. We analyse scenarios which retain perturbative unitarity up to Grand unification and Planck scales. Each point in the parameter space is restricted using Data from the Large Hadron Collider (LHC) as well as flavor and precision electroweak constraints. We find that substantial regions of the parameter space are thus identified as corresponding to metastability, which compliment the allowed regions for absolute stability, for top quark mass at the high as well as low end of its currently allowed range. Thus, a two-Higgs doublet scenario with the electroweak vacuum, either stable or metastable, can sail through all the way up to the Planck scale without facing any contradictions.

  12. CP violating Two-Higgs-Doublet Model: constraints and LHC predictions

    Energy Technology Data Exchange (ETDEWEB)

    Keus, Venus [Department of Physics and Helsinki Institute of Physics,University of Helsinki, Gustaf Hallstromin katu 2, FIN-00014 (Finland); School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Yagyu, Kei [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2016-04-08

    Two-Higgs-Doublet Models (2HDMs) are amongst the simplest extensions of the Standard Model. Such models allow for tree-level CP Violation (CPV) in the Higgs sector. We analyse a class of CPV 2HDM (of Type-I) in which only one of the two Higgs doublets couples to quarks and leptons, avoiding dangerous Flavour Changing Neutral Currents. We provide an up to date and comprehensive analysis of the constraints and Large Hadron Collider (LHC) predictions of such a model. Of immediate interest to the LHC Run 2 is the golden channel where all three neutral Higgs bosons are observed to decay into gauge boson pairs, WW and ZZ, providing a smoking gun signature of the CPV 2HDM.

  13. High-scale validity of a two-Higgs-doublet scenario: metastability included

    Energy Technology Data Exchange (ETDEWEB)

    Chakrabarty, Nabarun; Mukhopadhyaya, Biswarup [Harish-Chandra Research Institute, Regional Centre for Accelerator-based Particle Physics, Allahabad (India)

    2017-03-15

    We identify regions in a Type-II two-Higgs-doublet model which correspond to a metastable electroweak vacuum with lifetime larger than the age of the universe. We analyse scenarios which retain perturbative unitarity up to grand unification and Planck scales. Each point in the parameter space is restricted using data from the Large Hadron Collider (LHC) as well as flavour and precision electroweak constraints. We find that substantial regions of the parameter space are thus identified as corresponding to metastability, which complement the allowed regions for absolute stability, for top quark mass at the high as well as low end of its currently allowed range. Thus, a two-Higgs-doublet scenario with the electroweak vacuum, either stable or metastable, can sail through all the way up to the Planck scale without facing any contradiction. (orig.)

  14. CP Violating Two-Higgs-Doublet Model: Constraints and LHC Predictions

    CERN Document Server

    Keus, Venus; Moretti, Stefano; Yagyu, Kei

    2015-01-01

    Two-Higgs-Doublet Models (2HDMs) are amongst the simplest extensions of the Standard Model. Such models allow for tree-level CP Violation (CPV) in the Higgs sector. We analyse a class of CPV 2HDM (of Type-I) in which only one of the two Higgs doublets couples to quarks and leptons, avoiding dangerous Flavour Changing Neutral Currents. We provide an up to date and comprehensive analysis of the constraints and Large Hadron Collider (LHC) predictions of such a model. Of immediate interest to the LHC Run 2 is the golden channel where all three neutral Higgs bosons are observed to decay into gauge boson pairs, $WW$ and $ZZ$, providing a smoking gun signature of the CPV 2HDM.

  15. Structural insights into microtubule doublet interactions inaxonemes

    Energy Technology Data Exchange (ETDEWEB)

    Downing, Kenneth H.; Sui, Haixin

    2007-06-06

    Coordinated sliding of microtubule doublets, driven by dynein motors, produces periodic beating of the axoneme. Recent structural studies of the axoneme have used cryo-electron tomography to reveal new details of the interactions among some of the multitude of proteins that form the axoneme and regulate its movement. Connections among the several sets of dyneins, in particular, suggest ways in which their actions may be coordinated. Study of the molecular architecture of isolated doublets has provided a structural basis for understanding the doublet's mechanical properties that are related to the bending of the axoneme, and has also offered insight into its potential role in the mechanism of dynein activity regulation.

  16. The Half-composite Two Higgs Doublet Model and the Relaxion

    CERN Document Server

    Antipin, Oleg

    2015-01-01

    We study a new confining gauge theory with fermions in a vectorial representation under the SM gauge group that allows for Yukawa interactions with the Higgs. If the fermion masses are smaller than the confinement scale this realizes a type I two Higgs doublet model where a composite Higgs mixes with the elementary Higgs. This class of models interpolates between an elementary and a composite Higgs and has interesting phenomenology with potentially observables effects in collider physics, EDMs and SM couplings but very weak bounds from indirect searches. The very same framework can be used to realize the cosmological relaxation of the electro-weak scale recently discussed in the literature.

  17. The half-composite two Higgs doublet model and the relaxion

    Science.gov (United States)

    Antipin, Oleg; Redi, Michele

    2015-12-01

    We study a new confining gauge theory with fermions in a vectorial representation under the SM gauge group that allows for Yukawa interactions with the Higgs. If the fermion masses are smaller than the confinement scale this realizes a type I two Higgs doublet model where a composite Higgs mixes with the elementary Higgs. This class of models interpolates between an elementary and a composite Higgs and has interesting phenomenology with potentially observable effects in collider physics, EDMs and SM couplings but very weak bounds from indirect searches. The very same framework can be used to realize the cosmological relaxation of the electro-weak scale recently discussed in the literature.

  18. Gauge coupling unification with extra Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Junpei [Research Center for Higher Education, Health Sciences University of Hokkaido (Japan)

    2016-06-15

    Gauge coupling unification is studied within the framework where there are extra Higgs doublets and E{sub 6} exotic fields. Supersymmetric models and nonsupersymmetric models are investigated, and a catalog of models with gauge coupling unification is presented. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. A Three Doublet Lepton-Specific Model

    CERN Document Server

    Merchand, Marco

    2016-01-01

    In the lepton-specific version of two Higgs doublet models, a discrete symmetry is used to couple one Higgs, $\\Phi_2$, to quarks and the other, $\\Phi_1$, to leptons. The symmetry eliminates tree level flavor changing neutral currents (FCNC). Motivated by strong constraints on such currents in the quark sector from meson-antimeson mixing, and by hints of $h \\to \\mu\\tau$ in the lepton sector, we study a simple three Higgs doublet model in which one doublet couples to quarks and the other two to leptons. Unlike most other studies of three Higgs doublet models, we impose no flavor symmetry and just use a $Z_2$ symmetry to constrain the Yukawa couplings. We present the model and discuss the various mixing angles. Constraining the parameters to be consistent with observations of the Higgs boson at the LHC, we study the properties of the charged Higgs boson(s) in the model, focusing on the case in which the charged Higgs is above the top threshold. It is found that one can have the branching fraction of the charged ...

  20. Parabola-doublet aplanat becomes anastigmatic when second doublet is inserted near focus.

    Science.gov (United States)

    Blakley, Rick

    2004-08-01

    A doublet of choice glasses may be located in the converging focal cone of the infinity-focused parabola to yield an aplanatic telescope or camera. The resulting angular field is limited by high astigmatism but is significantly larger than that of the coma-limited parabola. The spherical and chromatic aberrations are so well corrected and the coma so well balanced that the doublet may be used unaltered with a parabola of arbitrary focal length and speed with excellent results for the unvignetted rays. A second doublet nearer to the focus and designed independently of the first corrects the system's astigmatism while preserving its aplanaticism. It may also be designed for flattening the field. This arrangement may allow for greater flexibility in the placing of optical elements than does Wynne's triplet for modest-aperture systems. Equations are presented for choosing candidate glasses for the first doublet from the very limited manifold of solving glasses.

  1. Future colliders at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Tsesmelis, E. [CERN, Geneva (Switzerland)

    2010-07-15

    Following an outline of the Large Hadron Collider, this paper will analyze CERN's scientific plans for high-energy colliders for the years to come. The immediate plans include the upgrades to the Large Hadron Collider and its injectors. This may be followed by a linear electron-positron collider, the Compact Linear Collider. This paper describes the design of these future colliders at CERN, all of which have a unique value to add to experimental particle physics. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  2. Benchmarks for Higgs Pair Production and Heavy Higgs Searches in the Two-Higgs-Doublet Model of Type II

    CERN Document Server

    Baglio, Julien; Nierste, Ulrich; Wiebusch, Martin

    2014-01-01

    The search for additional Higgs particles and the exact measurements of Higgs (self-)couplings is a major goal of future collider experiments. In this paper we investigate the possible sizes of new physics signals in these searches in the context of the $CP$-conserving two-Higgs doublet model of type II. Using current constraints from flavour, electroweak precision, and Higgs signal strength data, we determine the allowed sizes of the triple Higgs couplings and the branching fractions of the heavy Higgs bosons into lighter Higgs bosons. Identifying the observed Higgs resonance with the light $CP$-even 2HDM Higgs boson $h$, we find that the $hhh$ coupling cannot exceed its SM value, but can be reduced by a factor of 0.56 at the 2 $\\sigma$ level. The branching fractions of the heavy neutral Higgs bosons $H$ and $A$ into two-fermion or two-vector-boson final states can be reduced by factors of 0.4 and 0.01, respectively, if decays into lighter Higgs boson are possible and if the mass of the decaying Higgs is bel...

  3. Three-loop Neutrino Mass Model with Doubly Charged Particles from Iso-Doublets

    CERN Document Server

    Okada, Hiroshi

    2016-01-01

    We propose a new type of a three-loop induced neutrino mass model with dark matter candidates which are required for the neutrino mass generation. The smallness of neutrino masses can be naturally explained without introducing super heavy particles, namely, much heavier than a TeV scale and quite small couplings as compared to the gauge couplings. We find that as a bonus, the anomaly of the muon anomalous magnetic moment can simultaneously be explained by loop effects of new particles. In our model, there are doubly charged scalar bosons and leptons from isospin doublet fields which give characteristic collider signatures. In particular, the doubly charged scalar bosons can decay into the same sign dilepton with its chirality of both right-handed or left- and right-handed. This can be a smoking gun signature to identify our model and be useful to distinguish other models with doubly charged scalar bosons at collider experiments.

  4. Higgs boson pair production at a photon-photon collision in the two Higgs doublet model

    CERN Document Server

    Asakawa, Eri; Kanemura, Shinya; Okada, Yasuhiro; Tsumura, Koji

    2008-01-01

    We calculate the cross section of Higgs boson pair production at a photon collider in the two Higgs doublet model. We focus on the scenario in which the lightest CP even Higgs boson ($h$) has the standard model like couplings to the gauge bosons. We take into account the one-loop correction to the $hhh$ coupling as well as additional one-loop diagrams due to charged Higgs bosons to the $\\gamma\\gamma\\to hh$ helicity amplitudes. It is found that the full cross section can be enhanced by both these effects to a considerable level. We discuss the impact of these corrections on the $hhh$ coupling measurement at the photon collider.

  5. Whither colliders after the Large Hadron Collider?

    Indian Academy of Sciences (India)

    Rolf-Dieter Heuer

    2012-11-01

    This paper presents options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy as well as upgrades to the LHC (luminosity and energy) and to its injectors. This may be complemented by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and by the International Linear Collider, by a high-energy electron– proton machine, the LHeC, and/or by a muon collider. This contribution describes the various future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining the key messages for the way forward.

  6. On the scalar potential of two-Higgs doublet models

    CERN Document Server

    Chakraborty, Indrani

    2015-01-01

    We perform a detailed analysis of the Two-Higgs Doublet Model (2HDM) potential. At the tree-level, the potential may accommodate more than one minima, one of them being the electroweak (EW) minimum where the universe lives. The parameter space allowed after the data from the Large Hadron Collider (LHC) came in almost excludes those cases where the EW vacuum is shallower than the second minimum. We extend the analysis by including terms in the 2HDM potential that break the $Z_2$ symmetry of the potential by dimension-4 operators and show that the conclusions remain unchanged. Furthermore, a one-loop analysis of the potential is performed for both cases, namely, where the $Z_2$ symmetry of the potential is broken by dimension-2 or dimension-4 operators. For quantitative analysis, we show our results for the Type-II 2HDM, qualitative results remaining the same for other 2HDMs. We find that the nature of the vacua from the tree-level analysis does not change; the EW vacuum still remains deeper.

  7. Light charged Higgs boson scenario in 3-Higgs doublet models

    CERN Document Server

    Akeroyd, A G; Yagyu, Kei; Yildirim, Emine

    2016-01-01

    The constraints from the measurements of the $B\\to X_s\\gamma$ decay rate on the parameter space of 3-Higgs Doublet Models (3HDMs), where all the doublets have non-zero vacuum expectation values, are studied at the next-to-leading order in QCD. In order to naturally avoid the presence of flavour changing neutral currents at the tree level, we impose two softly-broken discrete $Z_2$ symmetries. This gives rise to five independent types of 3HDMs that differ in their Yukawa couplings. We show that in all these 3HDMs (including the case of type-II-like Yukawa interactions) both masses of the two charged Higgs bosons $m_{H_1^\\pm}$ and $m_{H_2^\\pm}$ can be smaller than the top mass $m_t$ while complying with the constraints from $B\\to X_s\\gamma$. As an interesting phenomenological consequence, the branching ratios of the charged Higgs bosons decay into the $cb$ final states can be as large as $80\\%$ when their masses are taken to be below $m_t$ in two of the five 3HDMs (named as Type-Y and Type-Z). This light charge...

  8. Classical scale invariance in the inert doublet model

    CERN Document Server

    Plascencia, Alexis D

    2015-01-01

    The inert doublet model (IDM) is a minimal extension of the Standard Model (SM) that can account for the dark matter in the universe. Naturalness arguments motivate us to study whether the model can be embedded into a theory with dynamically generated scales. In this work we study a classically scale invariant version of the IDM with a minimal hidden sector, which has a $U(1)_{\\text{CW}}$ gauge symmetry and a complex scalar $\\Phi$. The mass scale is generated in the hidden sector via the Coleman-Weinberg (CW) mechanism and communicated to the two Higgs doublets via portal couplings. Since the CW scalar remains light, acquires a vacuum expectation value and mixes with the SM Higgs boson, the phenomenology of this construction can be modified with respect to the traditional IDM. We analyze the impact of adding this CW scalar and the $Z'$ gauge boson on the calculation of the dark matter relic density and on the spin-independent nucleon cross section for direct detection experiments. Finally, by studying the RG ...

  9. Effective Field Theory with Two Higgs Doublets

    CERN Document Server

    Crivellin, Andreas; Procura, Massimiliano

    2016-01-01

    In this article we extend the effective field theory framework describing new physics effects to the case where the underlying low-energy theory is a Two-Higgs-Doublet model. We derive a complete set of independent operators up to dimension six assuming a $Z_2$-invariant CP-conserving Higgs potential. The effects on Higgs and gauge boson masses, mixing angles in the Higgs sector as well as couplings to fermions and gauge bosons are computed. At variance with the case of a single Higgs doublet, we find that pair production of SM-like Higgses, arising through dimension-six operators, is not fixed by fermion-fermion-Higgs couplings and can therefore be sizable.

  10. Photon collider Higgs factories

    CERN Document Server

    Telnov, V I

    2014-01-01

    The discovery of the Higgs boson (and still nothing else) have triggered appearance of many proposals of Higgs factories for precision measurement of the Higgs properties. Among them there are several projects of photon colliders (PC) without e+e- in addition to PLC based on e+e- linear colliders ILC and CLIC. In this paper, following a brief discussion of Higgs factories physics program I give an overview of photon colliders based on linear colliders ILC and CLIC, and of the recently proposed photon-collider Higgs factories with no e+e- collision option based on recirculation linacs in ring tunnels.

  11. Hadron Colliders and Hadron Collider Physics Symposium

    Directory of Open Access Journals (Sweden)

    Denisov D.

    2013-05-01

    Full Text Available This article summarizes main developments of the hadron colliders and physics results obtained since their inception around forty years ago. The increase in the collision energy of over two orders of magnitude and even larger increases in luminosity provided experiments with unique data samples. Developments of full acceptance detectors, particle identification and analysis methods provided fundamental discoveries and ultra-precise measurements which culminated in the completion and in depth verification of the Standard Model. Hadron Collider Physics symposium provided opportunities for those working at hadron colliders to share results of their research since 1979 and helped greatly to develop the field of particle physics.

  12. Prospective results for vector-boson fusion-mediated Higgs-boson searches in the four lepton final state at the High Luminosity Large Hadron Collider

    CERN Document Server

    The ATLAS collaboration

    2016-01-01

    The High Luminosity Large Hadron Collider is expected to be completed and operational in the second half of 2026, and will necessitate substantial upgrades to the ATLAS inner tracker detector. The impact of increased tracking coverage in the forward direction was investigated in terms of the separation of vector-boson fusion and gluon fusion-mediated Higgs-boson decays to four leptons in association with two jets. For an analysis dominated by statistical uncertainty, with vector-boson fusion production events treated as signal on top of gluon fusion background, the extension of tracking from pseudorapidity $|\\eta| < 2.7$ to $|\\eta| < 4.0$ improved the prospective vector-boson fusion discovery significance by 16%, while the relative uncertainty on the signal strength $\\Delta\\mu/\\mu$ was reduced by 6%.

  13. Searching for dark matter at colliders

    Science.gov (United States)

    Richard, Francois; Arcadi, Giorgio; Mambrini, Yann

    2015-04-01

    Dark Matter (DM) detection prospects at future colliders are reviewed under the assumption that DM particles are fermions of the Majorana or Dirac type. Although the discussion is quite general, one will keep in mind the recently proposed candidate based on an excess of energetic photons observed in the center of our Galaxy with the Fermi-LAT satellite. In the first part we will assume that DM interactions are mediated by vector bosons, or . In the case of -boson Direct Detection limits force only axial couplings with the DM. This solution can be naturally accommodated by Majorana DM but is disfavored by the GC excess. Viable scenarios can be instead found in the case of mediator. These scenarios can be tested at colliders through ISR events, . A sensitive background reduction can be achieved by using highly polarized beams. In the second part scalar particles, in particular Higgs particles, have been considered as mediators. The case of the SM Higgs mediator is excluded by limits on the invisible branching ratio of the Higgs. On the contrary particularly interesting is the case in which the DM interactions are mediated by the pseudoscalar state in two Higgs-doublet model scenarios. In this last case the main collider signature is.

  14. Search for Long-Lived Neutral Particles in Final States with a Muon and Multi-Track Displaced Vertex with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Loh, Chang Wei

    This work presents the result of a search for a new long-lived neutral particle decaying into a muon and charged hadrons in proton-proton collisions at a centre-of-mass energy of 7 TeV with a total integrated luminosity of 4.4 inverse femtobarn, using the ATLAS detector located at the Large Hadron Collider (LHC). Many extensions to the current Standard Model of particle physics predict the existence of such new particles, including the neutralino in an R-parity violating supersymmetry scenario. In this search, a set of selection criteria has been established to be sensitive to this kind of signal, in addition to evaluating the background in a data-driven manner. No excess of events above the expected background is observed with the collected data and limits are set on the squark pair production cross section, multiplied by the branching ratio for a squark to decay, via a long-lived neutralino, to a muon and charged hadrons, as a function of the neutralino lifetime. In addition, we present a study on two-trac...

  15. The development of colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1997-03-01

    During the period of the 50`s and the 60`s colliders were developed. Prior to that time there were no colliders, and by 1965 a number of small devices had worked, good understanding had been achieved, and one could speculate, as Gersh Budker did, that in a few years 20% of high energy physics would come from colliders. His estimate was an under-estimate, for now essentially all of high energy physics comes from colliders. The author presents a brief review of that history: sketching the development of the concepts, the experiments, and the technological advances which made it all possible.

  16. Muon collider design

    Science.gov (United States)

    Palmer, R.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A.; Caspi, S.; P., Chen; W-H., Cheng; Y., Cho; Cline, D.; Courant, E.; Fernow, R.; Gallardo, J.; Garren, A.; Gordon, H.; Green, M.; Gupta, R.; Hershcovitch, A.; Johnstone, C.; Kahn, S.; Kirk, H.; Kycia, T.; Y., Lee; Lissauer, D.; Luccio, A.; McInturff, A.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; K-Y., Ng; Noble, R.; Norem, J.; Norum, B.; Oide, K.; Parsa, Z.; Polychronakos, V.; Popovic, M.; Rehak, P.; Roser, T.; Rossmanith, R.; Scanlan, R.; Schachinger, L.; Silvestrov, G.; Stumer, I.; Summers, D.; Syphers, M.; Takahashi, H.; Torun, Y.; Trbojevic, D.; Turner, W.; van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Willis, W.; Winn, D.; Wurtele, J.; Zhao, Y.

    1996-11-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity \\mu^+ \\mu^- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Detector background, polarization, and nonstandard operating conditions are discussed.

  17. Doublet-singlet model and unitarity

    Science.gov (United States)

    Cynolter, G.; Kovács, J.; Lendvai, E.

    2016-12-01

    We study the renormalizable singlet-doublet fermionic extension of the Standard Model (SM). In this model, the new vector-like fermions couple to the gauge bosons and to the Higgs via new Yukawa couplings that allow for nontrivial mixing in the new sector, providing a stable, neutral dark matter candidate. Approximate analytic formulae are given for the mass spectrum around the blind spots, where the dark matter candidate coupling to h or Z vanishes. We calculate the two particle scattering amplitudes in the model, impose the perturbative unitarity constraints and establish bounds on the Yukawa couplings.

  18. Doublet-singlet model and unitarity

    CERN Document Server

    Cynolter, G; Lendvai, E

    2016-01-01

    We study the renormalizable singlet-doublet fermionic extension of the Standard Model. In this model, the new vector-like fermions couple to the gauge bosons and to the Higgs via new Yukawa couplings, that allow for nontrivial mixing in the new sector, providing a stable, neutral dark matter candidate. Approximate analytic formulae are given for the mass spectrum around the blind spots, where the dark matter candidate coupling to $h$ or $Z$ vanishes. We calculate the two particle scattering amplitudes in the model, impose the perturbative unitarity constraints and establish bounds on the Yukawa couplings.

  19. Illuminating new electroweak states at hadron colliders

    Science.gov (United States)

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  20. Illuminating New Electroweak States at Hadron Colliders

    CERN Document Server

    Ismail, Ahmed; Shuve, Brian

    2016-01-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  1. Yukawa textures or dark doublets from Two Higgs Doublet Models with $Z_3$ symmetry

    CERN Document Server

    Aranda, Alfredo; Noriega-Papaqui, Roberto; Vaquera-Araujo, Carlos A

    2014-01-01

    The effect of $Z_3$ symmetry on the general Two Higgs Doublet Model is explored. Of particular interest is the question of what can a $Z_3$ symmetry do beyond the usual case with $Z_2$. There are two independent scenarios that give some interesting results: first, by giving non-trivial charges to the Standard Model fermions, it is possible to use the $Z_3$ symmetry of the scalar potential to generate potentially useful Yukawa textures. This is not possible with $Z_2$. A series of possibilities is presented where their viability is addressed and a specific example in the quark sector is given for concreteness. The second venue of interest is in the area of inert doublets. It is shown that by considering the Standard Model plus two additional inert doublet scalars, i.e. a Dark Two Higgs Doublet Model, together with $Z_3$, a scenario can be obtained that differs from the $Z_2$ case. Some general comments are presented on the potentially interesting phenomenology of such model.

  2. Collider Bounds on Lee-Wick Higgs Bosons

    CERN Document Server

    Alvarez, Ezequiel; Zurita, José

    2011-01-01

    We study the constraints on the Lee-Wick Higgs sector arising from direct collider searches. We work in an effective-field theory framework, where all of the Lee-Wick partners are integrated out, with the sole exception of the Lee-Wick Higgs bosons. The resulting theory is a two-Higgs doublet model where the second doublet has wrong-sign kinetic and mass terms. We include the bounds coming from direct Higgs searches at both LEP and Tevatron using the code HiggsBounds, and show the currently excluded parameter space. We also analyze the prospects of LHC Run-I, finding that with a total integrated luminosity of 5 fb $^{-1}$ and a center-of-mass energy of 7 TeV, most of the parameter space for the SM-like CP-even Higgs will be probed.

  3. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  4. Extra dimensions at particle colliders

    Energy Technology Data Exchange (ETDEWEB)

    Dvergsnes, Erik Wolden

    2004-08-01

    This thesis consists of an introduction where we consider different aspects of theories involving extra dimensions, together with four research publications (Papers I-IV) attached at the end. The introductional chapters should serve as background material for better understanding the models on which the articles are based. In Chap. 4 we also present some plots not included in the papers. The topic of Papers I-III is graviton induced Bremsstrahlung. In Paper I we consider the contribution to this process from graviton exchange through gluon-gluon fusion at the LHC, compared to the QED background. Only final-state radiation is considered in Paper I, whereas in Paper II we extend this work to include also the quark-antiquark annihilation with graviton exchange, as well as initial-state radiation for both graviton and Standard Model exchange. Paper III is a study of graviton-induced Bremsstrahlung at e{sup +}e{sup -} colliders, including both initial- and final-state radiation. Paper IV is devoted to a study of the center-edge asymmetry at hadron colliders, an asymmetry which previously had been studied for e{sup +}e{sup -} colliders. The center-edge asymmetry can be used as a method of distinguishing between spin-1 and spin-2 exchange, something which will be of major importance if a signal is observed.

  5. Neutrino signature of inert doublet dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Sarah [Technische Hochschule Aachen (Germany). Inst. fuer Theoretische Physik E; Univ. Libre de Bruxelles (Belgium). Service de Physique Theorique; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2009-11-15

    In the framework of the Inert Doublet Model and extensions, the signature of neutrinos from dark matter annihilation in the Earth, the Sun and at the Galactic centre is presented. The model contains an extra Higgs doublet, a neutral component of which is chosen as dark matter candidate. There are three distinct mass ranges for which consistency both with WMAP abundance and direct searches can be obtained: a low (4-8 GeV), a middle (60-70 GeV) and a high (500-1500 GeV) WIMP mass range. The first case is of interest as we showed that the model can at the same time give the correct WMAP abundance and account for the positive DAMA results without contradicting other direct searches. We present how capture in the Sun can further constrain this scenario using Super-Kamiokande data. Indirect detection through neutrinos is challenging for the middle and high mass ranges. For the former, the presence of the so-called 'iron resonance' gives rise to larger neutrino fluxes for WIMP masses around 60-70 GeV since capture by the Earth is enhanced. The addition of light right-handed Majorana neutrinos to the particle content of the model further increases the signal since it opens a direct annihilation channel into mono-energetic neutrinos. Neutrinos from the Galactic centre might be detected for heavy WIMPs if the dark matter density at the Galactic centre is substantially boosted. (orig.)

  6. Tempered two-Higgs-doublet model

    Science.gov (United States)

    Grzadkowski, B.; Osland, P.

    2010-12-01

    We discuss the phenomenological consequences of requiring the cancellation of quadratic divergences up to the leading two-loop order within the two-Higgs-doublet model. Taking into account existing experimental constraints, allowed regions in the parameter space, permitting the cancellation, are determined. A degeneracy between masses of scalar bosons is observed for tan⁡β≳40. The possibility for CP violation in the scalar potential is discussed and regions of tan⁡β-MH± with a substantial amount of CP violation are determined. In order to provide a source for dark matter in a minimal manner, a scalar gauge singlet is introduced and discussed. The model allows to ameliorate the little hierarchy problem by lifting the minimal scalar Higgs-boson mass and by suppressing the quadratic corrections to scalar masses. The cutoff originating from the naturality arguments is therefore lifted from ˜0.6TeV in the standard model to ≳2.5TeV in two-Higgs-doublet model depending on the mass of the lightest scalar.

  7. Vacuum stability and supersymmetry at high scales with two Higgs doublets

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.; Buchmueller, W.; Voigt, A.; Weiglein, G. [DESY Hamburg (Germany); Bruemmer, F. [Montpellier Univ. (France). Lab. Univers et Particules de Montpellier

    2016-02-15

    We investigate the stability of the electroweak vacuum for two-Higgs doublet models with a supersymmetric UV completion. The supersymmetry breaking scale is taken to be of the order of the grand unification scale. We first study the case where all superpartners decouple at this scale. We show that contrary to the Standard Model with one Higgs doublet, matching to the supersymmetric UV completion is possible if the low-scale model contains two Higgs doublets. In this case vacuum stability and experimental constraints point towards low values of tanβFinally, if all gauginos are also given electroweak-scale masses (split supersymmetry with two Higgs doublets), the model cannot be matched to supersymmetry at very high scales when requiring a 125 GeV Higgs. Light neutral and charged higgsinos therefore emerge as a promising signature of a supersymmetric UV completion of the Standard Model at the grand unification scale.

  8. Search for Microscopic Black Holes in Multi-Jet Final-States using Multiple Single-Jet Triggers with ATLAS Detector with 8 TeV Proton-Proton Collisions at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00286292

    Higher dimensional microscopic black holes may be produced in particle accelerators at high energies which will emit a high multiplicity of Standard Model (SM) particles via thermal decay. This thesis documents a search for higher dimensional microscopic black holes in multi-jet final-states using six single-jet triggers with the ATLAS detector with 8 TeV proton-proton collisions at the Large Hadron Collider. The ATLAS 2012 data corresponds to a total integrated luminosity of 20.3 fb-1. The background topology in this search consists of all multi-jet final-states from all SM processes. Quantum Chromodynamics (QCD) processes contribute maximally to the SM multi-jet final-states and dominate this background topology. The invariant mass (M) and scalar sum of transverse momenta of all jets (HT) in events are used as analysis variables. The M and HT distributions for ATLAS data are consistent with QCD predictions of two well known hadronization models (PYTHIA8 and HERWIG++) for each single-jet trigger. Counting ex...

  9. A very light CP-odd scalar in the Two-Higgs-Doublet Model

    CERN Document Server

    Larios, F; Yuan, C P; CERN. Geneva

    2001-01-01

    We show that a general two-Higgs-doublet model (THDM) with a very light CP-odd scalar (A) can be compatible with the rho parameter, Br(b --> s\\gamma), R_b, A_b, (g-2) of muon, Br(Upsilon --> A gamma), and the direct search via the Yukawa process at LEP. For its mass around 0.2 GeV, the muon (g-2) and Br(Upsilon --> A \\gamma) data require tan(beta) to be about 1. Consequently, A can behave like a fermiophobic CP-odd scalar and predominantly decay into a photon pair ("gamma gamma"), which registers in detectors of high energy collider experiments as a single photon signature when the momentum of A is large. We compute the partial decay width of Z --> A A A and the production rate of f \\bar{f} --> Z A A --> Z +"gamma gamma", f^' {\\bar f} --> W^{\\pm} A A --> W^\\pm + "gamma gamma" and f \\bar f --> H^+ H^- --> W^+ W^- A A --> W^+ W^- + "gamma gamma" at high energy colliders such as LEP, Tevatron, LHC, and future Linear Colliders. Other production mechanisms of a light A, such as gg --> h --> AA --> "gamma gamma", a...

  10. Chiral doublet bands and energy-level crossing

    Institute of Scientific and Technical Information of China (English)

    QI Bin; MENG Jie; ZHANG Shuang-Quan; WANG Shou-Yu; PENG Jing

    2009-01-01

    Different definitions for chiral doublet bands based on excitation energies, B(E2) and B(M1) respectively are discussed in the triaxial particle rotor model. For the ideal chiral geometry, the selection rules of the electromagnetic transitions in different band definitions are illustrated. It is also shown that the energy-level crossings between chiral doublet bands may occur.

  11. The possible mass region for shears bands and chiral doublets

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Frauendorf, S.

    1998-03-01

    The Tilted Axis Cranking (TAC) theory is reviewed. The recent progress of TAC for triaxial deformed nuclei is reported. More emphasis has been paid to the new discovered phenomena - chiral doublets and their explanation. The possible mass region for the shears bands and chiral doublets and their experimental signature are discussed. (author)

  12. Muon Muon Collider: Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J.C.; Palmer, R.B.; /Brookhaven; Tollestrup, A.V.; /Fermilab; Sessler, A.M.; /LBL, Berkeley; Skrinsky, A.N.; /Novosibirsk, IYF; Ankenbrandt, C.; Geer, S.; Griffin, J.; Johnstone, C.; Lebrun, P.; McInturff, A.; Mills, Frederick E.; Mokhov, N.; Moretti, A.; Neuffer, D.; Ng, K.Y.; Noble, R.; Novitski, I.; Popovic, M.; Qian, C.; Van Ginneken, A. /Fermilab /Brookhaven /Wisconsin U., Madison /Tel Aviv U. /Indiana U. /UCLA /LBL, Berkeley /SLAC /Argonne /Sobolev IM, Novosibirsk /UC, Davis /Munich, Tech. U. /Virginia U. /KEK, Tsukuba /DESY /Novosibirsk, IYF /Jefferson Lab /Mississippi U. /SUNY, Stony Brook /MIT /Columbia U. /Fairfield U. /UC, Berkeley

    2012-04-05

    A feasibility study is presented of a 2 + 2 TeV muon collider with a luminosity of L = 10{sup 35} cm{sup -2}s{sup -1}. The resulting design is not optimized for performance, and certainly not for cost; however, it does suffice - we believe - to allow us to make a credible case, that a muon collider is a serious possibility for particle physics and, therefore, worthy of R and D support so that the reality of, and interest in, a muon collider can be better assayed. The goal of this support would be to completely assess the physics potential and to evaluate the cost and development of the necessary technology. The muon collider complex consists of components which first produce copious pions, then capture the pions and the resulting muons from their decay; this is followed by an ionization cooling channel to reduce the longitudinal and transverse emittance of the muon beam. The next stage is to accelerate the muons and, finally, inject them into a collider ring wich has a small beta function at the colliding point. This is the first attempt at a point design and it will require further study and optimization. Experimental work will be needed to verify the validity of diverse crucial elements in the design. Muons because of their large mass compared to an electron, do not produce significant synchrotron radiation. As a result there is negligible beamstrahlung and high energy collisions are not limited by this phenomena. In addition, muons can be accelerated in circular devices which will be considerably smaller than two full-energy linacs as required in an e{sup +} - e{sup -} collider. A hadron collider would require a CM energy 5 to 10 times higher than 4 TeV to have an equivalent energy reach. Since the accelerator size is limited by the strength of bending magnets, the hadron collider for the same physics reach would have to be much larger than the muon collider. In addition, muon collisions should be cleaner than hadron collisions. There are many detailed particle

  13. Partially Natural Two Higgs Doublet Models

    CERN Document Server

    Draper, Patrick; Ruderman, Joshua T

    2016-01-01

    It is possible that the electroweak scale is low due to the fine-tuning of microscopic parameters, which can result from selection effects. The experimental discovery of new light fundamental scalars other than the Standard Model Higgs boson would seem to disfavor this possibility, since generically such states imply parametrically worse fine-tuning with no compelling connection to selection effects. We discuss counterexamples where the Higgs boson is light because of fine-tuning, and a second scalar doublet is light because a discrete symmetry relates its mass to the mass of the Standard Model Higgs boson. Our examples require new vectorlike fermions at the electroweak scale, and the models possess a rich electroweak vacuum structure. The mechanism that we discuss does not protect a small CP-odd Higgs mass in split or high-scale supersymmetry-breaking scenarios of the MSSM due to an incompatibility between the discrete symmetries and holomorphy.

  14. Tuned Two-Higgs-Doublet Model

    CERN Document Server

    Grzadkowski, Bohdan

    2010-01-01

    We consider a Two-Higgs-Doublet Model (2HDM) constrained by the condition that assures cancellation of quadratic divergences up to the leading two-loop order. Regions in the parameter space consistent with existing experimental constraints and with the cancellation condition are determined. The possibility for CP violation in the scalar potential is discussed and regions of \\tan_\\beta-M_{H^\\pm} with substantial amount of CP violation are found. The model allows to ameliorate the little hierarchy problem by lifting the minimal scalar Higgs boson mass and by suppressing the quadratic corrections to scalar masses. The cutoff originating from the naturality arguments is therefore lifted from ~0.6 TeV in the Standard Model to ~2.5 TeV in the 2HDM, depending on the mass of the lightest scalar.

  15. Electromagnetic transitions in multiple chiral doublet bands

    CERN Document Server

    Jia, Hui; Wang, Shou-Yu; Wang, Shuo; Liu, Chen

    2016-01-01

    Multiple chiral doublet bands (M$\\chi$D) in the $80$, 130 and $190$ mass regions are studied by the model of $\\gamma$=90$^{\\circ}$ triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting the suitable basis, the calculated wave functions are explicitly exhibited to be symmetric under the operator $\\hat{A}$, which is defined as rotation by $90^{\\circ}$ about 3-axis with the exchange of valance proton and neutron. We found that both $M1$ and $E2$ transitions are allowed between the levels with different values of $A$, while are forbidden between the levels with same values of $A$. Such a selection rule holds true for M$\\chi$D in different mass regions.

  16. A Search for Massive Resonances in Final States with Boosted Top-Antitop Pairs Decaying into a Lepton and Jets with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00348133

    In this thesis, a search for new elementary particles decaying to a top-antitop pair (t¯t) is presented. Massive new particles that preferentially decay to top quarks are predicted by a number of theoretical models that have been proposed to address various open questions in the currently established Standard Model of Particle Physics, in particular those related to the Higgs mechanism through which elementary particles acquire mass. The search is conducted in proton-proton collision data collected by the ATLAS experiment at the Large Hadron Collider, located at CERN, the European Laboratory for Particle Physics. The integrated luminosity of the dataset, which was collected in 2012, is 20.3 fb−1. This is the first and only search for new particles in t¯t final states that uses the full ATLAS dataset collected in collisions at the centre-of-mass energy sqrt(s)= 8 TeV. The search focuses on t¯t ! (W+b)(W−¯b) final states in which one W boson decays into an electron or muon and the corresponding (anti)ne...

  17. Universal doublet-singlet Higgs couplings and phenomenology at the CERN Large Hadron Collider

    CERN Document Server

    Bhattacharyya, Gautam; Nandi, S

    2008-01-01

    We consider a minimal extension of the Standard Model where a real, gauge singlet scalar field is added to the standard spectrum. Introducing the Ansatz of universality of scalar couplings, we are led to a scenario which has a set of very distinctive and testable predictions: (i) the mixing between the SM Higgs and the new state is near maximal, (ii) the ratio of the two Higgs mass eigenstates is fixed ($\\sim \\sqrt{3}$), (iii) the decay modes of each of the two eigenstates are Standard Model like. We also study how electroweak precision tests constrain this scenario. We predict the lighter Higgs to lie in the range of 114 and 145 GeV, and hence the heavier one between 198 and 250 GeV. The predictions of the model can be tested at the upcoming LHC.

  18. Towards future circular colliders

    Science.gov (United States)

    Benedikt, Michael; Zimmermann, Frank

    2016-09-01

    The Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN) presently provides proton-proton collisions at a center-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics program will extend through the second half of the 2030's. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ˜100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCCee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3 S n superconductor, for the FCC-hh hadron collider, and a highly-efficient superconducting radiofrequency system for the FCC-ee lepton collider. Following the FCC concept, the Institute of High Energy Physics (IHEP) in Beijing has initiated a parallel design study for an e + e - Higgs factory in China (CEPC), which is to be succeeded by a high-energy hadron collider (SPPC). At present a tunnel circumference of 54 km and a hadron collider c.m. energy of about 70 TeV are being considered. After a brief look at the LHC, this article reports the motivation and the present status of the FCC study, some of the primary design challenges and R&D subjects, as well as the emerging global collaboration.

  19. Search for a low-mass neutral Higgs boson with suppressed couplings to fermions using events with multiphoton final states

    Science.gov (United States)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2016-06-01

    A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via p p ¯→H±hf→W*hfhf→4 γ +X , where H± is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2 fb-1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV /c2 are excluded at 95% Bayesian credibility.

  20. Radiative seesaw: Warm dark matter, collider and lepton flavour violating signals

    CERN Document Server

    Sierra, D Aristizabal; Restrepo, D; Suematsu, Daijiro; Zapata, Oscar

    2008-01-01

    Extending the standard model with three right-handed neutrinos ($N_k$) and a second Higgs doublet ($\\eta$), odd under the discrete parity symmetry $Z_2$, Majorana neutrino masses can be generated at 1-loop order. In the resulting model, the lightest stable particle, either a boson or a fermion, might be a dark matter candidate. Here we assume a specific mass spectrum ($M_1\\ll M_2 < M_3 < m_\\eta$) and derive its consequences for dark matter and collider phenomenology. We show that (i) the lightest right-handed neutrino is a warm dark matter particle that can give a $\\sim$10% contribution to the dark matter density; (ii) several decay branching ratios of the charged scalar can be predicted from measured neutrino data. Especially interesting is that large lepton flavour violating rates in muon and tau final states are expected. Finally, we derive upper bounds on the right-handed neutrino Yukawa couplings from the current experimental limit on $Br(\\mu\\to e\\gamma)$.

  1. Status of the Inert Doublet Model of dark matter after Run-1 of the LHC

    CERN Document Server

    Goudelis, Andreas

    2015-01-01

    The Inert Doublet Model (IDM) is one of the simplest extensions of the Standard Model that can provide a viable dark matter (DM) candidate. Despite its simplicity, it predicts a versatile phenomenology both for cosmology and for the Large Hadron Collider. We briefly summarize the status of searches for IDM dark matter in direct DM detection experiments and the LHC, focusing on the impact of the latter on the model parameter space. In particular, we discuss the consequences of the Higgs boson discovery as well as those of searches for dileptons accompanied by missing transverse energy during the first LHC Run and comment on the prospects of probing some of the hardest to test regions of the IDM parameter space during the 13 TeV Run.

  2. CP-violating phenomenology of flavor conserving two Higgs doublet models

    Science.gov (United States)

    Inoue, Satoru; Ramsey-Musolf, Michael J.; Zhang, Yue

    2014-06-01

    We analyze the constraints on CP-violating, flavor conserving two Higgs doublet models implied by measurements of Higgs boson properties at the Large Hadron Collider (LHC) and by the nonobservation of permanent electric dipole moments (EDMs) of molecules, atoms, and neutrons. We find that the LHC and EDM constraints are largely complementary, with the LHC studies constraining the mixing between the neutral CP-even states and the EDMs probing the effect of mixing between the CP-even and CP-odd scalars. Presently, the most stringent constraints are implied by the nonobservation of the ThO molecule EDM signal. Future improvements in the sensitivity of neutron and diamagnetic atom EDM searches could yield competitive or even more severe constraints. We analyze the quantitative impact of hadronic and nuclear theory uncertainties on the interpretation of the latter systems and conclude that these uncertainties cloud the impact of projected improvements in the corresponding experimental sensitivities.

  3. Search for The Standard Model Higgs Boson in the four lepton final state by the D0 experiment at Run II of the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Diego [Northern Illinois Univ., DeKalb, IL (United States)

    2013-01-01

    This dissertation presents a measurement of Z boson pair production in p¯p collisions at 1.96 TeV with 9.6 fb-1 to 9.8 fb-1 of D0 data. We examine the final states eeee, eeμμ, and μμμμ. Based on selected data, the measured cross section in the mass region M(Z/γ*) > 30 GeV is σ(p¯p → Z/γ* Z/γ*) = 1.26+0.44 -0.36 (stat)+0.17 -0.15 (syst) ± 0.08 (lumi) pb.

  4. Linear collider: a preview

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, H.

    1981-11-01

    Since no linear colliders have been built yet it is difficult to know at what energy the linear cost scaling of linear colliders drops below the quadratic scaling of storage rings. There is, however, no doubt that a linear collider facility for a center of mass energy above say 500 GeV is significantly cheaper than an equivalent storage ring. In order to make the linear collider principle feasible at very high energies a number of problems have to be solved. There are two kinds of problems: one which is related to the feasibility of the principle and the other kind of problems is associated with minimizing the cost of constructing and operating such a facility. This lecture series describes the problems and possible solutions. Since the real test of a principle requires the construction of a prototype I will in the last chapter describe the SLC project at the Stanford Linear Accelerator Center.

  5. Two Higgs bi-doublet left-right model with spontaneous P and CP violation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A left-right symmetric model with two Higgs bi-doublet is shown to be a consistent model for both spontaneous P and CP violation. The flavor changing neutral cur- rents can be suppressed by the mechanism of approximate global U(1) family symmetry. The constraints from neural K meson mass difference ΔmK are calcu- lated and it is demonstrated that a right-handed gauge boson W2 contribution in box-diagrams with mass well below 1 TeV is allowed due to a cancelation caused by a light-charged Higgs boson with a mass range of 150-300 GeV. The W2 con- tribution to εK can be suppressed from an appropriate choice of additional CP phases appearing in the right-handed Cabbibo-Kobayashi-Maskawa matrix. The model is also found to be fully consistent with B0 mass difference ΔmB and the mixing induced CP violation sin2βJ/ψ , which is usually difficult for the model with only one Higgs bi-doublet. The new physics beyond the standard model can be directly searched at the colliders LHC and ILC.

  6. Two Higgs bi-doublet left-right model with spontaneous P and CP violation

    Institute of Scientific and Technical Information of China (English)

    WU YueLiang; ZHOU YuFeng

    2008-01-01

    A left-right symmetric model with two Higgs bi-doublet is shown to be a consistent model for both spontaneous P and CP violation.The flavor changing neutral cur-rents can be suppressed by the mechanism of approximate global U(1) family symmetry.The constraints from neural K meson mass difference △mK are calcu-lated and it is demonstrated that a right-handed gauge boson W2 contribution in box-diagrams with mass well below 1 TeV is allowed due to a cancelation caused by a light-charged Higgs boson with a mass range of 150-300 GeV.The W2 contribution to εK can be suppressed from an appropriate choice of additional CP phases appearing in the right-handed Cabbibo-Kobayashi-Maskawa matrix.The model is also found to be fully consistent with B0 mass difference △mB and the mixing induced CP violation sin2βJ/ψ,which is usually difficult for the model with only one Higgs bi-doublet.The new physics beyond the standard model can be directly searched at the colliders LHC and ILC.

  7. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The interna...

  8. Towards Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2016-01-01

    The Large Hadron Collider (LHC) at CERN presently provides proton-proton collisions at a centre-of-mass (c.m.) energy of 13 TeV. The LHC design was started more than 30 years ago, and its physics programme will extend through the second half of the 2030’s. The global Future Circular Collider (FCC) study is now preparing for a post-LHC project. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh) in a new ∼100 km tunnel. It also includes the design of a high-luminosity electron-positron collider (FCC-ee) as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detectors, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on $Nb_3Sn$ superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton c...

  9. Future Circular Colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Zimmermann, Frank

    2015-01-01

    In response to a request from the 2013 Update of the European Strategy for Particle Physics, the global Future Circular Collider (FCC) study is preparing the foundation for a next-generation large-scale accelerator infrastructure in the heart of Europe. The FCC study focuses on the design of a 100-TeV hadron collider (FCC-hh), to be accommodated in a new ∼100 km tunnel near Geneva. It also includes the design of a high-luminosity electron-positron collider (FCC-ee), which could be installed in the same tunnel as a potential intermediate step, and a lepton-hadron collider option (FCC-he). The scope of the FCC study comprises accelerators, technology, infrastructure, detector, physics, concepts for worldwide data services, international governance models, and implementation scenarios. Among the FCC core technologies figure 16-T dipole magnets, based on Nb3Sn superconductor, for the FCC-hh hadron collider, and a highly efficient superconducting radiofrequency system for the FCC-ee lepton collider. The internat...

  10. Modelling and transmission-line calculations of the final superconducting dipole and quadrupole chains of CERN's LHC collider methods and results

    CERN Document Server

    Dahlerup-Petersen, K

    2001-01-01

    Summary form only given, as follows. A long chain of superconducting magnets represents a complex load impedance for the powering and turns into a complex generator during the energy extraction. Detailed information about the circuit is needed for the calculation of a number of parameters and features, which are of vital importance for the choice of powering and extraction equipment and for the prediction of the circuit performance under normal and fault conditions. Constitution of the complex magnet chain impedance is based on a synthesized, electrical model of the basic magnetic elements. This is derived from amplitude and phase measurements of coil and ground impedances from d.c. to 50 kHz and the identification of poles and zeros of the impedance and transfer functions. An electrically compatible RLC model of each magnet type was then synthesized by means of a combination of conventional algorithms. Such models have been elaborated for the final, 15-m long LHC dipole (both apertures in series) as well as ...

  11. Supersymmetry status and phenomenology at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Alexander Belyaev

    2009-01-01

    Large Hadron Collider (LHC) has a great chance to finally reveal supersymmetry which remains a compelling theory for over 30 years in spite of lack of its discovery. It might be around the corner the present LHC era with sensitive dark matter search experiments and international linear collider hopefully coming up in the near future.

  12. The International Linear Collider

    CERN Document Server

    Barish, Barry

    2013-01-01

    In this article, we describe the key features of the recently completed technical design for the International Linear Collider (ILC), a 200-500 GeV linear electron-positron collider (expandable to 1 TeV) that is based on 1.3 GHz superconducting radio-frequency (SCRF) technology. The machine parameters and detector characteristics have been chosen to complement the Large Hadron Collider physics, including the discovery of the Higgs boson, and to further exploit this new particle physics energy frontier with a precision instrument. The linear collider design is the result of nearly twenty years of R&D, resulting in a mature conceptual design for the ILC project that reflects an international consensus. We summarize the physics goals and capability of the ILC, the enabling R&D and resulting accelerator design, as well as the concepts for two complementary detectors. The ILC is technically ready to be proposed and built as a next generation lepton collider, perhaps to be built in stages beginning as a Hig...

  13. The development of colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sessler, A.M.

    1993-02-01

    Don Kerst, Gersh Budker, and Bruno Touschek were the individuals, and the motivating force, which brought about the development of colliders, while the laboratories at which it happened were Stanford, MURA, the Cambridge Electron Accelerator, Orsay, Frascati, CERN, and Novosibirsk. These laboratories supported, during many years, this rather speculative activity. Of course, many hundreds of physicists contributed to the development of colliders but the men who started it, set it in the right direction, and forcefully made it happen, were Don, Gersh, and Bruno. Don was instrumental in the development of proton-proton colliders, while Bruno and Gersh spearheaded the development of electron-positron colliders. In this brief review of the history, I will sketch the development of the concepts, the experiments, and the technological developments which made possible the development of colliders. It may look as if the emphasis is on theoretical concepts, but that is really not the case, for in this field -- the physics of beams -- the theory and experiment go hand in hand; theoretical understanding and advances are almost always motivated by the need to explain experimental results or the desire to construct better experimental devices.

  14. Low scale thermal leptogenesis in neutrinophilic Higgs doublet models

    CERN Document Server

    Haba, Naoyuki

    2011-01-01

    It is well-known that leptogenesis in low energy scale is difficult in the conventional Type-I seesaw mechanism with hierarchical right-handed neutrino masses. We show that in a class of two Higgs doublet model, where one Higgs doublet generates masses of quarks and charged leptons whereas the other Higgs doublet with a tiny vacuum expectation value generates neutrino Dirac masses, large Yukawa couplings lead to a large enough CP asymmetry of the right-handed neutrino decay. Thermal leptogenesis suitably works at low energy scale as keeping no enhancement of lepton number violating wash out effects. We will also point out that thermal leptogenesis works well without confronting gravitino problem in a supersymmetric neutrinophilic Higgs doublet model with gravity mediated supersymmetry breaking. Neutralino dark matter and baryon asymmetry generation by thermal leptogenesis are easily compatible in our setup.

  15. Higgcision in the Two-Higgs Doublet Models

    CERN Document Server

    Cheung, Kingman; Tseng, Po-Yan

    2013-01-01

    We perform global fits to general two-Higgs doublet models (2HDMs) with generalized couplings using the most updated data from ATLAS, CMS, and Tevatron. We include both scenarios with CP-conserving and CP-violating couplings. By relaxing the requirement on the discrete symmetries that are often imposed on the Yukawa couplings, we try to see which of the 2HDMs is preferred. We found that (i) Higgcision in 2HDMs can be performed efficiently by using only 4 parameters including the charged Higgs contributions to the Higgs couplings to two photons, (ii) the differences among various types of 2HDMs are very small with respect to the chi-square fits, (iii) $\\tan\\beta$ is constrained to be small, (iv) the $p$-values for various fits in 2HDMs are worse than that of the standard model. Finally, we put emphasis on our findings that future precision measurements of the Higgs coupling to the scalar top-quark bilinear ($C_u^S$) and $\\tan\\beta$ may endow us with the discriminating power among various types of 2HDMs especia...

  16. Exotic leptons at future linear colliders

    CERN Document Server

    Biondini, S

    2014-01-01

    Doubly charged excited leptons determine a possible signature for physics beyond the standard model at the present Large Hadron Collider. These exotic states are introduced in extended isospin multiplets and they can be treated either within gauge or contact effective interactions or a mixture of those. In this paper we study the production and the corresponding signatures of doubly charged leptons at the forthcoming linear colliders and we focus on the electron-electron beam setting. In the framework of gauge interactions, the interference between the $t$ and $u$ channel is evaluated that has been neglected so far. A pure leptonic final state is considered ($e^{-} \\, e^{-} \\rightarrow e^{-} \\, e^{-} \\, \

  17. Photon collider beam simulation with CAIN

    Indian Academy of Sciences (India)

    Aleksander Filip Żarnecki

    2007-11-01

    The CAIN simulation program was used to study the outgoing beam profile for the photon collider at ILC. The main aim of the analysis was to verify the feasibility of the photon linear collider running with 20 mrad electron beam crossing angle. The main problem is the distorted electron beam, which has to be removed from the interaction region. It is shown that with a new design of the final dipole, it should be possible to avoid large energy losses at the face of the magnet.

  18. Sixth international workshop on linear colliders. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Urakawa, Junji [ed.

    1995-08-01

    The sixth international workshop on linear colliders (LC95) was held by KEK at Tsukuba Center for Institute. In the workshop 8 parallel working group were organized: WG1 (beam sources and injection linacs), WG2 (damping rings and bunch compressors), WG3 (a: RF sources and structures, b: superconducting cavities, c: two beam accelerators), WG4 (beam dynamics in main linacs), WG5 (final focus and integration regions), WG6 (beam instrumentation), WG7 (overall parameters and construction techniques), WG8 (gamma-gamma collider and miscellaneous). This issue compiles materials which were used in the workshop. (J.P.N.).

  19. COLLIDE Pro Helvetia Award

    CERN Document Server

    2016-01-01

    The COLLIDE Pro Helvetia Award is run in partnership with Pro Helvetia, giving the opportunity to Swiss artists to do research at CERN for three months.   From left to right: Laura Perrenoud, Marc Dubois and Simon de Diesbach. The photo shows their VR Project, +2199. Fragment.In are the winning artists of COLLIDE Pro Helvetia. They came to CERN for two months in 2015, and will now continue their last month in the laboratory. Fragment.In is a Swiss based interaction design studio. They create innovative projects, interactive installations, video and game design. Read more about COLLIDE here.

  20. Inert Doublet Model with a 125 GeV Higgs

    CERN Document Server

    Krawczyk, Maria; Swiezewska, Bogumila

    2013-01-01

    A 125 GeV Higgs-like particle discovered at the LHC in 2012 has properties expected for it in the Standard Model (SM), with a possible enhancement in the two-photon channel. Such SM-like Higgs scenario can be realized within the Inert Doublet Model (IDM) - a version of the Two Higgs Doublet Model with an exact discrete D (Z_2-type) symmetry. In this model one SU(2) doublet plays the role of the SM Higgs doublet with one SM-like Higgs boson. The second doublet has no vacuum expectation value and does not interact with fermions. Among four scalars constituting this D-odd doublet the lightest one is stable, being if neutral a good DM candidate with the right relic density. In this paper an analysis of the two-photon Higgs decay rate in IDM, respecting theoretical and other experimental constraints, is presented. The enhancement in the two-photon channel is possible only if invisible channels are closed, with the enhancement R_{\\gamma \\gamma}>1.2 for masses of DM and charged scalars below 154 GeV. The temperature...

  1. G2HDM : Gauged Two Higgs Doublet Model

    CERN Document Server

    Huang, Wei-Chih; Yuan, Tzu-Chiang

    2015-01-01

    A novel model embedding the two Higgs doublets in the popular two Higgs doublet models into a doublet of a non-abelian gauge group $SU(2)_H$ is presented. The Standard Model $SU(2)_L$ right-handed fermion singlets are paired up with new heavy fermions to form $SU(2)_H$ doublets, while $SU(2)_L$ left-handed fermion doublets are singlets under $SU(2)_H$. Distinctive features of this anomaly-free model are: (1) Electroweak symmetry breaking is induced from spontaneous symmetry breaking of $SU(2)_H$ via its triplet vacuum expectation value; (2) One of the Higgs doublet can be inert, with its neutral component being a dark matter candidate as protected by the $SU(2)_H$ gauge symmetry instead of a discrete $Z_2$ symmetry in the usual case; (3) Unlike Left-Right Symmetric Models, the complex gauge fields $(W_1^{\\prime}\\mp i W_2^{\\prime})$ (along with other complex scalar fields) associated with the $SU(2)_H$ do not carry electric charges, while the third component $W^{\\prime}_3$ can mix with the hypercharge $U(1)_Y$...

  2. Status of the Inert Doublet Model and the role of multileptons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Michael [Univ. Libre de Bruxelles (Belgium). Service de Physique Theorique; Rydbeck, Sara [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lopez-Honorez, Laura [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lundstroem, Erik [AlbaNova Univ., Stockholm (Sweden). The Oskar Klein Centre

    2012-06-15

    A possible feature of the Inert Doublet Model (IDM) is to provide a dark matter candidate together with an alteration of both direct and indirect collider constraints that allow for a heavy Higgs boson. We study the IDM in light of recent results from Higgs searches at the Large Hadron Collider (LHC) in combination with dark matter direct-detection limits from the XENON experiment. We ask under what conditions the IDM can still accommodate a heavy Higgs boson. We find that IDM scenarios with a Higgs boson in the mass range 160 to 600 GeV are ruled out only when all experimental constraints are combined. For models explaining only a fraction of the DM the limits are weakened, and IDMs with a heavy Higgs are allowed. We discuss the prospects for future detection of such IDM scenarios in the four-lepton plus missing energy channel at the LHC. This signal can show up in the first year of running at {radical}(s)=14 TeV, and we present detector-level studies for a few benchmark models. (orig.)

  3. Status of the Inert Doublet Model and the role of multileptons at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Michael [Univ. Libre de Bruxelles (Belgium). Service de Physique Theorique; Rydbeck, Sara [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Lopez-Honorez, Laura [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Lundstroem, Erik [AlbaNova Univ., Stockholm (Sweden). The Oskar Klein Centre

    2012-06-15

    A possible feature of the Inert Doublet Model (IDM) is to provide a dark matter candidate together with an alteration of both direct and indirect collider constraints that allow for a heavy Higgs boson. We study the IDM in light of recent results from Higgs searches at the Large Hadron Collider (LHC) in combination with dark matter direct-detection limits from the XENON experiment. We ask under what conditions the IDM can still accommodate a heavy Higgs boson. We find that IDM scenarios with a Higgs boson in the mass range 160 to 600 GeV are ruled out only when all experimental constraints are combined. For models explaining only a fraction of the DM the limits are weakened, and IDMs with a heavy Higgs are allowed. We discuss the prospects for future detection of such IDM scenarios in the four-lepton plus missing energy channel at the LHC. This signal can show up in the first year of running at {radical}(s)=14 TeV, and we present detector-level studies for a few benchmark models. (orig.)

  4. Higgs pair productions in the CP-violating two-Higgs-doublet model

    Science.gov (United States)

    Bian, Ligong; Chen, Ning

    2016-09-01

    In this work, we study the SM-like Higgs pair productions in the framework of the general CP-violating two-Higgs-doublet model. Several constraints are imposed to the model sequentially, including the SM-like Higgs boson signal fits, the precise measurements of the electric dipole moments, the perturbative unitarity and stability bounds to the Higgs potential, and the most recent LHC searches for the heavy Higgs bosons. We show how the CP-violating mixing angles are related to the Higgs cubic self couplings in this setup. Based on these constraints, we suggest benchmark models for the future high-energy collider searches for the Higgs pair productions. The e + e - colliders operating at √{s} = (500 GeV, 1 TeV) are capable of measuring the Higgs cubic self couplings of the benchmark models directly. Afterwards, we estimate the cross sections of the resonance contributions to the Higgs pair productions for the benchmark models at the future LHC and SppC/Fcc-hh runs. Other possible decay modes for the heavy Higgs bosons are also discussed.

  5. Collide@CERN Geneva

    CERN Document Server

    CERN. Geneva; Kieffer, Robert; Blas Temino, Diego; Bertolucci, Sergio; Mr. Decelière, Rudy; Mr. Hänni, Vincent

    2014-01-01

    CERN, the Republic and Canton of Geneva, and the City of Geneva are delighted to invite you to “Collide@CERN Geneva Music”. Come to the public lecture about collisions between music and particle physics by the third winners of Collide@CERN Geneva, Vincent Hänni & Rudy Decelière, and their scientific inspiration partners, Diego Blas and Robert Kieffer. The event marks the beginning of their residency at CERN, and will be held at the CERN Globe of Science and Innovation on 16 October 2014 at 19.00. Doors will open at 18.30.

  6. Muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley National Lab., CA (United States); Skrinsky, A. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki

    1996-03-01

    The possibility of muon colliders was introduced by Skrinsky et al., Neuffer, and others. More recently, several workshops and collaboration meetings have greatly increased the level of discussion. In this paper we present scenarios for 4 TeV and 0.5 TeV colliders based on an optimally designed proton source, and for a lower luminosity 0.5 TeV demonstration based on an upgraded version of the AGS. It is assumed that a demonstration version based on upgrades of the FERMILAB machines would also be possible. 53 refs., 25 figs., 8 tabs.

  7. Doublets and other allied well patterns

    Energy Technology Data Exchange (ETDEWEB)

    Brigham, W.E.

    1997-06-01

    Whenever a liquid is injected into an infinite reservoir containing liquid with the same flow properties, the equations of flow are well known. The pressures in such a system vary over time and distance (radius) in ways that depend on the formation and liquid flow properties. Such equations are well known--they form the basis for the voluminous well-testing literature in petroleum engineering and ground water hydrology. Suppose there are two wells--one an injector and one a producer--with identical rates. The behavior of this system can be calculated using superposition; which merely means that the results can be added independently of each other. When this is done, the remarkable result is that after a period of time there is a region that approaches steady state flow. Thereafter, the pressures and flow velocities in this region stay constant. The size of this region increases with time. This ``steady state`` characteristic can be used to solve a number of interesting and useful problems, both in heat transfer and in fluid flow. The heat transfer problems can be addressed because the equations are identical in form. A number of such problems are solved herein for doublet systems. In addition, concepts are presented to help solve other cases that flow logically from the problems solved herein. It is not necessary that only two wells be involved. It turns out that any time the total injection and production are equal, the system approaches steady state. This idea is also addressed in these notes. A number of useful multiwell cases are addressed to present the flavor of such solutions.

  8. Large Hadron Collider slideshow shows future of physics

    CERN Multimedia

    Kramer, S E

    2007-01-01

    "The European organization for Nuclear Research (CERN) has been building the Large Hadron Collider for many years, but it's finally taking shape and prepping to operate at full power in 2008." (1/2 page)

  9. Collider signatures of hylogenesis

    Science.gov (United States)

    Demidov, S. V.; Gorbunov, D. S.; Kirpichnikov, D. V.

    2015-02-01

    We consider collider signatures of the hylogenesis—a variant of the antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  10. Collider signatures of Hylogenesis

    CERN Document Server

    Demidov, S V; Kirpichnikov, D V

    2014-01-01

    We consider collider signatures of the hylogenesis --- a variant of antibaryonic dark matter model. We obtain bounds on the model parameters from results of the first LHC run. Also we suggest several new channels relevant for probing the antibaryonic dark matter at LHC.

  11. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  12. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  13. The Large Hadron Collider

    CERN Multimedia

    Wright, Alison

    2007-01-01

    "We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)

  14. Toponium at hadronic colliders

    Energy Technology Data Exchange (ETDEWEB)

    Finjord, J. (Bern Univ. (Switzerland)); Girardi, G.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Mery, P. (European Organization for Nuclear Research, Geneva (Switzerland))

    1982-05-27

    We calculate hadronic toponium production by specific diagrams obeying colour conservation and charge conjugation. The resulting rates, though lower than those calculated using semi-local duality arguments are encouraging and may allow for toponium discovery at hadronic colliders currently in development.

  15. Tevatron's complex collider cousins

    CERN Multimedia

    Fischer, W

    2004-01-01

    Letter referring to Schwarzschild's story "Disappointing performance and tight budgets confront Fermilab with tough decisions" and contesting that the Tevatron is not the most complex accelerator operating. They use the examples of CERN's SPS collider, HERA at DESY and the RHIC at Brookhaven (1/4 page)

  16. When stars collide

    NARCIS (Netherlands)

    Glebbeek, E.; Pols, O.R.

    2007-01-01

    When two stars collide and merge they form a new star that can stand out against the background population in a star cluster as a blue straggler. In so called collision runaways many stars can merge and may form a very massive star that eventually forms an intermediate mass blackhole. We have perfor

  17. Introductory Lectures on Collider Physics

    Science.gov (United States)

    Tait, Tim M. P.; Wang, Lian-Tao

    2013-12-01

    These are elementary lectures about collider physics. They are aimed at graduate students who have some background in computing Feynman diagrams and the Standard Model, but assume no particular sophistication with the physics of high energy colliders.

  18. High luminosity muon collider design

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.; Gallardo, J.

    1996-10-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should be regarded as complementary. Parameters are given of 4 TeV high luminosity {mu}{sup +}{mu}{sup {minus}} collider, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders.

  19. International linear collider reference design report

    Energy Technology Data Exchange (ETDEWEB)

    Aarons, G.

    2007-06-22

    The International Linear Collider will give physicists a new cosmic doorway to explore energy regimes beyond the reach of today's accelerators. A proposed electron-positron collider, the ILC will complement the Large Hadron Collider, a proton-proton collider at the European Center for Nuclear Research (CERN) in Geneva, Switzerland, together unlocking some of the deepest mysteries in the universe. With LHC discoveries pointing the way, the ILC -- a true precision machine -- will provide the missing pieces of the puzzle. Consisting of two linear accelerators that face each other, the ILC will hurl some 10 billion electrons and their anti-particles, positrons, toward each other at nearly the speed of light. Superconducting accelerator cavities operating at temperatures near absolute zero give the particles more and more energy until they smash in a blazing crossfire at the centre of the machine. Stretching approximately 35 kilometres in length, the beams collide 14,000 times every second at extremely high energies -- 500 billion-electron-volts (GeV). Each spectacular collision creates an array of new particles that could answer some of the most fundamental questions of all time. The current baseline design allows for an upgrade to a 50-kilometre, 1 trillion-electron-volt (TeV) machine during the second stage of the project. This reference design provides the first detailed technical snapshot of the proposed future electron-positron collider, defining in detail the technical parameters and components that make up each section of the 31-kilometer long accelerator. The report will guide the development of the worldwide R&D program, motivate international industrial studies and serve as the basis for the final engineering design needed to make an official project proposal later this decade.

  20. Dilepton constraints in the Inert Doublet Model from Run 1 of the LHC

    CERN Document Server

    Belanger, G; Goudelis, A; Herrmann, B; Kraml, S; Sengupta, D

    2015-01-01

    Searches in final states with two leptons plus missing transverse energy, targeting supersymmetric particles or invisible decays of the Higgs boson, were performed during Run 1 of the LHC. Recasting the results of these analyses in the context of the Inert Doublet Model (IDM) using MadAnalysis 5, we show that they provide constraints on inert scalars that significantly extend previous limits from LEP. Moreover, these LHC constraints allow to test the IDM in the limit of very small Higgs-inert scalar coupling, where the constraints from direct detection of dark matter and the invisible Higgs width vanish.

  1. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  2. Accelerators, Colliders, and Snakes

    Science.gov (United States)

    Courant, Ernest D.

    2003-12-01

    The author traces his involvement in the evolution of particle accelerators over the past 50 years. He participated in building the first billion-volt accelerator, the Brookhaven Cosmotron, which led to the introduction of the "strong-focusing" method that has in turn led to the very large accelerators and colliders of the present day. The problems of acceleration of spin-polarized protons are also addressed, with discussions of depolarizing resonances and "Siberian snakes" as a technique for mitigating these resonances.

  3. Why Large Hadron Collider?

    Indian Academy of Sciences (India)

    D P Roy

    2011-05-01

    I discuss LHC physics in the historical perspective of the progress in particle physics. After a recap of the Standard Model (SM) of particle physics, I discuss the high energy colliders leading up to LHC and their role in the discovery of these SM particles. Then I discuss the two main physics issues of LHC, i.e. Higgs mechanism and supersymmetry. I briefly touch upon Higgs and SUSY searches at LHC along with their cosmological implications.

  4. Muon Collider Progress: Accelerators

    CERN Document Server

    Zisman, Michael S

    2011-01-01

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 \\times 10^34 cm^-2s^-1. Secondly, the beam is initially produce...

  5. Singlet scalar Dark Matter in Dark Two Higgs Doublet Model

    CERN Document Server

    Gaitan, R; de Oca, J H Montes

    2014-01-01

    We consider the case of the Dark Two Higgs Doublet Model (D2HDM) where a $U(1)'$ symmetry group and an extra Higgs doublet are added to the Standard Model. This model leads to a gauge singlet particle as an interesting Dark Matter (DM) candidate. We obtain phenomenological constraints to the parameter space of the model considering the one necessary to produce the correct density of thermal relic dark matter $\\Omega h^2$. We find a relation between the masses of the DM matter candidate $m_S$ and $m_{Z'}$ that satisfy the relic density for given values of $\\tan\\beta$.

  6. Candidates for chiral doublet bands in 136Nd

    Science.gov (United States)

    Mergel, E.; Petrache, C. M.; Lo Bianco, G.; Hübel, H.; Domscheit, J.; Roßbach, D.; Schönwaßer, G.; Nenoff, N.; Neußer, A.; Görgen, A.; Becker, F.; Bouchez, E.; Houry, M.; Hürstel, A.; Le Coz, Y.; Lucas, R.; Theisen, Ch.; Korten, W.; Bracco, A.; Blasi, N.; Camera, F.; Leoni, S.; Hannachi, F.; Lopez-Martens, A.; Rejmund, M.; Gassmann, D.; Reiter, P.; Thirolf, P. G.; Astier, A.; Buforn, N.; Meyer, M.; Redon, N.; Stezowski, O.

    The even-even nucleus 136Nd was studied via in-beam γ-ray spectroscopy using the 16O + 125Te reaction at 100 MeV and the EUROBALL array. One new dipole band was observed. Together with a previously identified dipole band, whose position in the level scheme is revised, the new band forms a doublet structure similar to the recently observed chiral bands in the odd-odd neighboring nuclei. This would be the first case of a chiral doublet in an even-even nucleus.

  7. Towards systematic exploration of multi-Higgs-doublet models

    CERN Document Server

    Ivanov, I P

    2015-01-01

    Conservative bSM models with rich scalar sector, such as multi-Higgs-doublet models, can easily accommodate the SM-like properties of the 125 GeV scalar observed at the LHC. Possessing a variety of bSM signals, they are worth investigating in fuller detail. Systematic study of these models is hampered by the highly multi-dimensional parameter space and by mathematical challenges. I outline some directions along which multi-Higgs-doublet models in the vicinity of a large discrete symmetry can be systematically explored.

  8. Two Higgs doublet models with an $S_3$ symmetry

    CERN Document Server

    Cogollo, D

    2016-01-01

    We study all implementations of the $S_3$ symmetry in the two Higgs doublet model with quarks, consistent with non-zero quark masses and a Cabibbo-Kobayashi-Maskawa (CKM) matrix which is not block diagonal. We study the impact of the various soft-breaking terms and vacuum expectation values, and find an interesting relation between $\\alpha$ and $\\beta$. We also show that, in this minimal setting, only two types of assignments are possible: either all field sectors are in singlets or all field sectors have a doublet.

  9. Challenges for highest energy circular colliders

    CERN Document Server

    Benedikt, M; Wenninger, J; Zimmermann, F

    2014-01-01

    A new tunnel of 80–100 km circumference could host a 100 TeV centre-of-mass energy-frontier proton collider (FCC-hh/VHE-LHC), with a circular lepton collider (FCCee/TLEP) as potential intermediate step, and a leptonhadron collider (FCC-he) as additional option. FCC-ee, operating at four different energies for precision physics of the Z, W, and Higgs boson and the top quark, represents a significant push in terms of technology and design parameters. Pertinent R&D efforts include the RF system, topup injection scheme, optics design for arcs and final focus, effects of beamstrahlung, beam polarization, energy calibration, and power consumption. FCC-hh faces other challenges, such as high-field magnet design, machine protection and effective handling of large synchrotron radiation power in a superconducting machine. All these issues are being addressed by a global FCC collaboration. A parallel design study in China prepares for a similar, but smaller collider, called CepC/SppC.

  10. Future Accelerators, Muon Colliders, and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Richard A Carrigan, Jr.

    2001-12-19

    Particle physics is driven by five great topics. Neutrino oscillations and masses are now at the fore. The standard model with extensions to supersymmetry and a Higgs to generate mass explains much of the field. The origins of CP violation are not understood. The possibility of extra dimensions has raised tantalizing new questions. A fifth topic lurking in the background is the possibility of something totally different. Many of the questions raised by these topics require powerful new accelerators. It is not an overstatement to say that for some of the issues, the accelerator is almost the experiment. Indeed some of the questions require machines beyond our present capability. As this volume attests, there are parts of the particle physics program that have been significantly advanced without the use of accelerators such as the subject of neutrino oscillations and many aspects of the particle-cosmology interface. At this stage in the development of physics, both approaches are needed and important. This chapter first reviews the status of the great accelerator facilities now in operation or coming on within the decade. Next, midrange possibilities are discussed including linear colliders with the adjunct possibility of gamma-gamma colliders, muon colliders, with precursor neutrino factories, and very large hadron colliders. Finally visionary possibilities are considered including plasma and laser accelerators.

  11. Evidence for a parity doublet Delta(1920)P33 and Delta(1940)D33 from gammap-->ppi;{0}eta.

    Science.gov (United States)

    Horn, I; Anisovich, A V; Anton, G; Bantes, R; Bartholomy, O; Beck, R; Beloglazov, Yu; Bogendörfer, R; Castelijns, R; Crede, V; Ehmanns, A; Ernst, J; Fabry, I; Flemming, H; Fösel, A; Fuchs, M; Funke, Chr; Gothe, R; Gridnev, A; Gutz, E; Höffgen, St; Hössl, J; Junkersfeld, J; Kalinowsky, H; Klein, F; Klempt, E; Koch, H; Konrad, M; Kopf, B; Krusche, B; Langheinrich, J; Löhner, H; Lopatin, I; Lotz, J; Matthäy, H; Menze, D; Messchendorp, J; Metag, V; Nikonov, V A; Novinski, D; Ostrick, M; van Pee, H; Sarantsev, A V; Schmidt, C; Schmieden, H; Schoch, B; Suft, G; Sumachev, V; Szczepanek, T; Thoma, U; Walther, D; Weinheimer, Chr

    2008-11-14

    Evidence is reported for the existence of a parity doublet of Delta resonances with total angular momentum J=3/2 from photoproduction of the ppi;{0}eta final state. The two parity partners Delta(1920)P33 and Delta(1940)D33 make significant contributions to the reaction. Cascades of resonances into Delta(1232)eta, N(1535)pi, and Na0(980) are clearly observed.

  12. Dense Matter and Neutron Stars in Parity Doublet Models

    CERN Document Server

    Schramm, S; Negreiros, R; Steinheimer, J

    2011-01-01

    We investigate the properties of dense matter and neutron stars. In particular we discuss model calculations based on the parity doublet picture of hadronic chiral symmetry. In this ansatz the onset of chiral symmetry restoration is reflected by the degeneracy of baryons and their parity partners. In this approach we also incorporate quarks as degrees of freedom to be able to study hybrid stars.

  13. s-particle doublets in certain light nuclei

    NARCIS (Netherlands)

    Bilaniuk, O.M.; French, J.B.

    1960-01-01

    The splitting of an s-particle doublet in B11 is examined to see what information it gives about the effective 1p-2s shell model interaction and it is concluded that the small splitting is explainable by an interaction whose spin dependence is primarily of s1 · s2t1 · t2 nature. Certain other s-doub

  14. The influence of reservoir heterogeneities on geothermal doublet performance

    NARCIS (Netherlands)

    Doddema, Leon

    2012-01-01

    SUMMARY The current main problem with deep geothermal energy in the Netherlands is the uncertainty in terms of attainable flow rate and life time. The goal of this research is therefore modeling a geothermal doublet in a heterogeneous reservoir, using a

  15. The influence of reservoir heterogeneities on geothermal doublet performance

    NARCIS (Netherlands)

    Doddema, Leon

    2012-01-01

    SUMMARY The current main problem with deep geothermal energy in the Netherlands is the uncertainty in terms of attainable flow rate and life time. The goal of this research is therefore modeling a geothermal doublet in a heterogeneous reservoir, using a

  16. The Big Collider

    CERN Multimedia

    Barna-Alper Productions Inc. Toronto

    2005-01-01

    The Large Hadron Collider is a gigantic particle-smasher, designed to discover the origins of the universe. Awe-inspiring in vision and scope, it’s also the most expensive physics experiment in history with a price-tag of 4 billion dollars.Documentary series "Mega builders" : a fast-paced, character-driven show that focuses on the world’s biggest and most intriguing engineering challenges – the projects that are making history, and the people who are making it happen.

  17. Hadron-hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  18. Muon colliders and neutrino factories

    Energy Technology Data Exchange (ETDEWEB)

    Geer, S.; /Fermilab

    2010-09-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate {Omicron}(10{sup 21}) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  19. Muon colliders and neutrino factories

    CERN Document Server

    Geer, S

    2012-01-01

    Over the last decade there has been significant progress in developing the concepts and technologies needed to produce, capture and accelerate O(1021) muons/year. This development prepares the way for a new type of neutrino source (Neutrino Factory) and a new type of very high energy lepton-antilepton collider (Muon Collider). This article reviews the motivation, design and R&D for Neutrino Factories and Muon Colliders.

  20. Detector for a linear collider

    CERN Document Server

    Mnich, J

    2003-01-01

    The proposals under discussion for a new e^{+}e^{-} linear collider with centre-of-mass energies around 1 TeV include designs for large detectors with unprecedented performances in energy, momentum and position resolution. These very stringent requirements are dictated by the precision measurements aimed at this collider to complement the exploratory experiments at the Large Hadron Collider. Here a status report on detector R&D projects for the liner collider is given focused on the technologies under study for the vertex detector, the large tracking chamber and the calorimeters.

  1. Production of Light Higgs Pairs in 2-Higgs Doublet Models via the Higgs-strahlung Process at the LHC

    CERN Document Server

    Moretti, M; Piccinini, F; Pittau, R; Rathsman, J

    2010-01-01

    At the Large Hadron Collider, we prove the feasibility to detect pair production of the lightest CP-even Higgs boson h of a Type II 2-Higgs Doublet Model through the process q \\bar q' --> Vhh (Higgs-strahlung, V=W+-,Z), in presence of two h --> b \\bar b decays. We also show that, through such production and decay channels, one has direct access to the following Higgs self-couplings, thus enabling one to distinguish between a standard and the Supersymmetric version of the above model: lambda_(Hhh) -- which constrains the form of the Higgs potential -- as well as lambda_(W+- H+- h) and lambda_(Z A h) -- which are required by gauge invariance. Unfortunately, such claims cannot be extended to the Minimal Supersymmetric Standard Model, where the extraction of the same signals is impossible.

  2. Maverick dark matter at colliders

    Science.gov (United States)

    Beltrán, Maria; Hooper, Dan; Kolb, Edward W.; Krusberg, Zosia A. C.; Tait, Tim M. P.

    2010-09-01

    Assuming that dark matter is a weakly interacting massive particle (WIMP) species X produced in the early Universe as a cold thermal relic, we study the collider signal of pp or pbar{p} rightarrow bar{X}X + jets and its distinguishability from standard-model background processes associated with jets and missing energy. We assume that the WIMP is the sole particle related to dark matter within reach of the LHC — a “maverick” particle — and that it couples to quarks through a higher dimensional contact interaction. We simulate the WIMP final-state signal Xbar{X} + jets and dominant standard-model (SM) background processes and find that the dark-matter production process results in higher energies for the colored final state partons than do the standard-model background processes. As a consequence, the detectable signature of maverick dark matter is an excess over standard-model expectations of events consisting of large missing transverse energy, together with large leading jet transverse momentum and scalar sum of the transverse momenta of the jets. Existing Tevatron data and forthcoming LHC data can constrain (or discover!) maverick dark matter.

  3. Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings

    Science.gov (United States)

    Kanemura, Shinya; Kikuchi, Mariko; Sakurai, Kodai

    2016-12-01

    We evaluate radiative corrections to the Higgs boson couplings in the inert doublet model, in which the lightest component of the Z2 odd scalar doublet field can be a dark matter candidate. The one-loop contributions to the h V V , h f f , and h h h couplings are calculated in the on-shell scheme, where h is the Higgs boson with the mass 125 GeV, V represents a weak gauge boson, and f is a fermion. We investigate how the one-loop corrected Higgs boson couplings can be deviated from the predictions in the standard model under the constraints from perturbative unitarity and vacuum stability in the scenario where the model can explain current dark matter data. When the mass of the dark matter is slightly above a half of the Higgs boson mass, it would be difficult to test the model by the direct search experiments for dark matter. We find that in such a case the model can be tested at future collider experiments by either the direct search of heavier inert particles or precision measurements of the Higgs boson couplings.

  4. Testing the dark matter scenario in the inert doublet model by future precision measurements of the Higgs boson couplings

    CERN Document Server

    Kanemura, Shinya; Sakurai, Kodai

    2016-01-01

    We evaluate radiative corrections to the Higgs boson couplings in the inert doublet model, in which the lightest component of the $Z_2^{}$ odd scalar doublet field can be a dark matter candidate. The one-loop contributions to the $hVV$, $hff$ and $hhh$ couplings are calculated in the on-shell scheme, where $h$ is the Higgs boson with the mass 125 GeV, $V$ represents a weak gauge boson and $f$ is a fermion. We investigate how the one-loop corrected Higgs boson couplings can be deviated from the predictions in the standard model under the constraints from perturbative unitarity and vacuum stability in the scenario where the model can explain current dark matter data. When the mass of the dark matter is slightly above a half of the Higgs boson mass, it would be difficult to test the model by the direct search experiments for dark matter. We find that in such a case the model can be tested at future collider experiments by either the direct search of heavier inert particles or precision measurements of the Higgs ...

  5. Ultrawideband doublet pulse generation based on nonlinear polarization rotation of an elliptically polarized beam and its distribution over a fiber/wireless link.

    Science.gov (United States)

    Chang, You Min; Lee, Junsu; Lee, Ju Han

    2010-09-13

    Proposed herein is an alternative photonic scheme for the generation of a doublet UWB pulse, which is based on the nonlinear polarization rotation of an elliptically polarized probe beam. The proposed scheme is a modified optical-fiber Kerr shutter that uses an elliptically polarized probe beam together with a linearly polarized control beam. Through theoretical analysis, it was shown that the optical-fiber-based Kerr shutter is capable of producing an ideal transfer function for the successful conversion of input Gaussian pulses into doublet pulses under special elliptical polarization states of the probe beam. An experimental verification was subsequently carried out to verify the working principle. Finally, the system performance of the generated UWB doublet pulses was assessed by propagating them over a 25-km-long standard single-mode fiber link, followed by wireless transmission. Error-free transmission was successfully achieved.

  6. Light A physics in the lepton-specific two-Higgs doublet model

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We examine various direct and indirect constraints on the lepton-specific two-Higgs doublet model and discuss its phenomenology at colliders in the allowed parameter space.The constraints we consider come from the precision electroweak data,the direct search for Higgs boson,the muon anomalous magnetic moment,as well as some theoretical consistency requirements.We find that in the allowed parameter space the CP-odd Higgs boson A is rather light (m A < 30 GeV with 95% possibility),which is composed dominantly by the leptonic Higgs and decays dominantly into τ + τ;while the SM-like Higgs boson h (responsible largely for electroweak symmetry breaking) decays dominantly in the mode h → AA → 4τ with a large decay width,which will make the Higgs discovery more difficult at the LHC.Whereas,this scenario predicts rare Z decays Z → AAA and Z →τ + τA with their branching ratios ranging from 10-8 to 10-and 10-5 to 10-4 respectively,which may be accessible at the GigaZ option of the ILC.

  7. Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC

    Directory of Open Access Journals (Sweden)

    P. Poulose

    2017-02-01

    Full Text Available In this study of the Inert Doublet Model (IDM, we propose that the dijet + missing transverse energy channel at the Large Hadron Collider (LHC will be an effective way of searching for the scalar particles of the IDM. This channel receives contributions from gauge boson fusion, and t-channel production, along with contributions from H+ associated production. We perform the analysis including study of the Standard Model (SM background with assumed systematic uncertainty, and optimise the selection criteria employing suitable cuts on the kinematic variables to maximise the signal significance. We find that with high luminosity option of the LHC, this channel has the potential to probe the IDM in the mass range of up to about 400 GeV, which is not accessible through other leptonic channels. In a scenario with light dark matter of mass about 65 GeV, charged Higgs in the mass range of around 200 GeV provides the best possibility with a signal significance of about 2σ at an integrated luminosity of about 3000 fb−1.

  8. On the Doublet Formation in the Flocculation Process of the Yeast Cells

    CERN Document Server

    Stan, S; Stan, Silvia; Despa, Florin

    2000-01-01

    The combination of single cells to form doublets is regarded as the rate-limiting step of flocculation and requires the presence of surface proteins in active form. The process of activation of the flocculation proteins of yeast cells is described in the frame of the autocrine interaction regime (Cantrell, D. A. and Smith, K. A., 1984, Science 224, 1312-1316). The influence of several effectors (the cell efficiency to use sugars, the calcium content in the external medium and the probability that free cells collide each other under thermal motion conditions) on the initial rate of flocculation and on the fraction of remaining free cells in the steady state is briefly discussed in the paper. The present model offers an useful tool for further quantitative investigations in this topic. Also, it indicates qualitatively a way in which the regulation of flocculation might be controlled at the level of the expression of cell-surface activation abilities. Keywords: flocculation; yeast; autocrine binding; lectin hypo...

  9. Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC

    Science.gov (United States)

    Poulose, P.; Sahoo, Shibananda; Sridhar, K.

    2017-02-01

    In this study of the Inert Doublet Model (IDM), we propose that the dijet + missing transverse energy channel at the Large Hadron Collider (LHC) will be an effective way of searching for the scalar particles of the IDM. This channel receives contributions from gauge boson fusion, and t-channel production, along with contributions from H+ associated production. We perform the analysis including study of the Standard Model (SM) background with assumed systematic uncertainty, and optimise the selection criteria employing suitable cuts on the kinematic variables to maximise the signal significance. We find that with high luminosity option of the LHC, this channel has the potential to probe the IDM in the mass range of up to about 400 GeV, which is not accessible through other leptonic channels. In a scenario with light dark matter of mass about 65 GeV, charged Higgs in the mass range of around 200 GeV provides the best possibility with a signal significance of about 2σ at an integrated luminosity of about 3000 fb-1.

  10. Radiative corrections to the Yukawa couplings in two Higgs doublet models

    CERN Document Server

    Kikuchi, Mariko

    2014-01-01

    A pattern of deviations in coupling constants of Standard Model (SM)-like Higgs boson from their SM predictions indicates characteristics of an extended Higgs sector. In particular, Yukawa coupling constants can deviate in different patterns in four types of Two Higgs Doublet Models (THDMs) with a softly-broken Z_2 symmetry. We can discriminate types of THDMs by measuring the pattern of these deviations. We calculate Yukawa coupling constants of the SM-like Higgs boson with radiative corrections in all types of Yukawa interactions in order to compare to future precision data at the International Linear Collider (ILC). We perform numerical computations of scale factors, and evaluate differences between the Yukawa couplings in THDMs and those of the SM at the one-loop level. We find that scale factors in different types of THDMs do not overlap each other even in the case with maximum radiative corrections if gauge couplings are different from the SM predictions large enough to be measured at the ILC. Therefore,...

  11. Exploring the Inert Doublet Model through the dijet plus missing transverse energy channel at the LHC

    CERN Document Server

    Poulose, P; Sridhar, K

    2016-01-01

    In this study of the Inert Doublet Model (IDM), we propose that the dijet + missing transverse energy channel at the Large Hadron Collider will be an effective way of searching for the scalar particles of the IDM. This channel receives contributions from gauge boson fusion, and $t-$channel production, along with contributions from $H^+$ associated production. We find that, for $\\sqrt{s} =13$ TeV with moderate luminosity, this channel has the potential to probe the IDM in the mass range of up to about 150 GeV, complementing other leptonic channel searches. We perform the analysis including study of the Standard Model (SM) background, and optimise the selection criteria employing suitable cuts on the kinematic variables to maximise the signal significance. In a scenario with light dark matter of mass about 65 GeV, charged Higgs in the intermediate mass range of around 150 GeV could be probed with a luminosity of about 500 fb$^{-1}$, whereas higher masses around 200 and 300 GeV require about 1 and 2 ab$^{-1}$ lu...

  12. Delta r in the Two-Higgs-Doublet Model at full one loop level -- and beyond

    CERN Document Server

    Lopez-Val, David

    2012-01-01

    After the recent discovery of a Higgs-like boson particle at the CERN LHC-collider, it becomes more necessary than ever to prepare ourselves for identifying its standard or non-standard nature. The Electroweak parameter Delta r relating the values of the gauge boson masses [MW,MZ] and the Fermi constant [G_F] is the traditional observable encoding high precision information of the electroweak physics at the quantum level. In this work we present a complete quantitative study of Delta r in the framework of the general (unconstrained) Two-Higgs-Doublet Model (2HDM). First of all we report on a systematic analysis of Delta r at the full one loop level in the general 2HDM, which to our knowledge was missing in the literature. Thereby we extract a theoretical prediction for the mass of the W-boson in this model, taking MZ, \\alpha_{em} and G_F as experimental inputs. We find typical corrections leading to mass shifts $\\delta MW \\sim 20-40 MeV$ which help to improve the agreement with the experimentally measured val...

  13. Luminosity Spectrum Reconstruction at Linear Colliders

    CERN Document Server

    Poss, Stéphane

    2014-01-01

    A good knowledge of the luminosity spectrum is mandatory for many measurements at future e+e- colliders. As the beam-parameters determining the luminosity spectrum cannot be measured precisely, the luminosity spectrum has to be measured through a gauge process with the detector. The measured distributions, used to reconstruct the spectrum, depend on Initial State Radiation, cross-section, and Final State Radiation. To extract the basic luminosity spectrum, a parametric model of the luminosity spectrum is created, in this case the spectrum at the 3 TeV Compact Linear Collider (CLIC). The model is used within a reweighting technique to extract the luminosity spectrum from measured Bhabha event observables, taking all relevant effects into account. The centre-of-mass energy spectrum is reconstructed within 5% over the full validity range of the model. The reconstructed spectrum does not result in a significant bias or systematic uncertainty in the exemplary physics benchmark process of smuon pair production.

  14. Test of QCD at colliders

    CERN Document Server

    Shimizu, Shima; The ATLAS collaboration

    2016-01-01

    The ATLAS and CMS collaborations measure QCD processes in a wide kinematic range using proton--proton colliding data at the Large Hadron Collider (LHC). A variety of recent results is presented. The results provide validation of the current understanding of QCD, such as the proton structure and interactions and radiations of partons.

  15. Heavy Neutrinos at Future Colliders

    CERN Document Server

    Dev, P S Bhupal

    2016-01-01

    We discuss the current status and future prospects of heavy neutrino searches at the energy frontier, which might play an important role in vindicating the simplest seesaw paradigm as the new physics responsible for neutrino mass generation. After summarizing the current search limits and potential improvements at hadron colliders, we highlight the unparalleled sensitivities achievable in the clean environment of future lepton colliders.

  16. Challenges in future linear colliders

    CERN Document Server

    Chattopadhyay, S

    2002-01-01

    For decades, electron-positron colliders have been complementing proton-proton colliders. But the circular LEP, the largest e/sup -/e /sup +/ collider, represented an energy limit beyond which energy losses to synchrotron radiation necessitate moving to e/sup -/e/sup + / linear colliders (LCs), thereby raising new challenges for accelerator builders. Japanese-American, German, and European collaborations have presented options for the "Future Linear Collider " (FLC). Key accelerator issues for any FLC option are the achievement of high enough energy and luminosity. Damping rings, taking advantage of the phenomenon of synchrotron radiation, have been developed as the means for decreasing beam size, which is crucial for ensuring a sufficiently high rate of particle-particle collisions. Related challenges are alignment and stability in an environment where even minute ground motion can disrupt performance, and the ability to monitor beam size. The technical challenges exist within a wider context of socioeconomi...

  17. CERN balances linear collider studies

    CERN Multimedia

    ILC Newsline

    2011-01-01

    The forces behind the two most mature proposals for a next-generation collider, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC) study, have been steadily coming together, with scientists from both communities sharing ideas and information across the technology divide. In a support of cooperation between the two, CERN in Switzerland, where most CLIC research takes place, recently converted the project-specific position of CLIC Study Leader to the concept-based Linear Collider Study Leader.   The scientist who now holds this position, Steinar Stapnes, is charged with making the linear collider a viable option for CERN’s future, one that could include either CLIC or the ILC. The transition to more involve the ILC must be gradual, he said, and the redefinition of his post is a good start. Though not very much involved with superconducting radiofrequency (SRF) technology, where ILC researchers have made significant advances, CERN participates in many aspect...

  18. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  19. Discrete symmetries in the three-Higgs-doublet model

    CERN Document Server

    Ivanov, I P

    2012-01-01

    N-Higgs-doublet models (NHDM) are among the most popular examples of electroweak symmetry breaking mechanisms beyond the Standard Model. Discrete symmetries imposed on the NHDM scalar potential play a pivotal role in shaping the phenomenology of the model, and various symmetry groups have been studied so far. However, in spite of all efforts, the classification of finite Higgs-family symmetry groups realizable in NHDM for any N>2 is still missing. Here, we solve this problem for the three-Higgs-doublet model. Using recently found realizable abelian groups and applying Burnside's theorem and other group-theoretic tools, we find the full list of finite symmetry groups of Higgs-family transformations which are realizable in the scalar sector of 3HDM.

  20. A Three Higgs Doublet Model for Fermion Masses

    Science.gov (United States)

    Chao, Wei

    2016-09-01

    In this paper we propose a possible explanation to the Fermion mass hierarchy problem by fitting the type-II seesaw mechanism into the Higgs doublet sector, such that their vacuum expectation values are hierarchal. We extend the Standard Model with two extra Higgs doublets as well as a spontaneously broken UX (1) gauge symmetry. All the fermion Yukawa couplings except that of the top quark are of O}(10-2) in our model. Constraints on the parameter space of the model from low energy processes are studied. Besides, the lightest one of the neutral fermion fields, which is introduced to cancel the anomalies of the U(1)X gauge symmetry can be the cold dark matter candidate. We investigate its signature in the dark matter direct detection. Supported in part by the Wisconsin Alumni Research Foundation

  1. 3D-Simulation Studies of SNS Ring Doublet Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.G.; Tsoupas N.; Venturini, M.

    2005-05-05

    The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublemagnets with large aperture of R=15.1 cm an relatively short iron-to-iron distance of 51.4 cm. These quads have much extended fringe field, and magnetic interferences among them in the doublet assemblies is not avoidable. Though each magnet in the assemblies has been individually mapped to high accuracy of lower than 0.01 percent level, the experimental data including the magnetic interference effect will not be available. We have performed 3D computing simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data for the SNS commissioning and operation.

  2. A simple model for doublet bands in doubly odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinaga, N. [Saitama University, Department of Physics, Saitama City (Japan); Higashiyama, K. [Chiba Institute of Technology, Department of Physics, Narashino, Chiba (Japan); University of Tokyo, Department of Physics, Hongo, Tokyo (Japan)

    2006-11-15

    Nuclear structure of doublet bands in doubly odd nuclei with mass A {proportional_to} 130 is investigated within the framework of a simple model where the even-even core couples with a neutron and a proton in intruder orbitals through a quadrupole-quadrupole interaction. The model reproduces quite well the energy levels of doublet bands and electromagnetic transitions. The staggering of the ratios B(M1;I{yields}I-1)/B(E2;I{yields}I-2) of the yrast bands turns out to be described by the chopsticks-like motion of two angular momenta of the unpaired neutron and the unpaired proton when they are weakly coupled with the core. (orig.)

  3. A search for close-mass lepton doublet

    Energy Technology Data Exchange (ETDEWEB)

    Riles, J.K.

    1989-04-01

    Described is a search for a heavy charged lepton with an associated neutrino of nearly the same mass, together known as a close-mass lepton doublet. The search is conducted in e/sup +/e/sup/minus// annihilation data taken with the Mark II detector at a center-of-mass energy of 29 GeV. In order to suppress contamination from conventional two-photon reactions, the search applies a novel, radiative-tagging technique. Requiring the presence of an isolated, energetic photon allows exploration for lepton doublets with a mass splitting smaller than that previously accessible to experiment. No evidence for such a new lepton has been found, enabling limits to be placed on allowed mass combinations. Mass differences as low as 250-300 MeV are excluded for charged lepton masses up to 10 GeV. 78 refs., 64 figs., 8 tabs.

  4. Discovery of the Higgs boson, measurements of Higgs boson properties, and search for high mass beyond the Standard Model scalar particle in the diphoton final state with the ATLAS detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00336678

    With 4.8~$\\rm{fb}^{-1}$ of proton-proton collision data collected at $\\sqrt{s}=7~\\rm{TeV}$ in 2011, and 5.9~$\\rm{fb}^{-1}$ collected at $\\sqrt{s}=8~\\rm{TeV}$ in 2012 by the ATLAS detector at the Large Hadron Collider, an excess of 4.5 standard deviations from the background-only hypothesis is observed near 126.5~GeV in the diphoton invariant mass spectra. Along with the excesses observed in the $H \\rightarrow ZZ^{(*)}\\rightarrow \\ell\\ell\\ell\\ell$ and $H \\rightarrow WW^{(*)}\\rightarrow \\ell\

  5. Singlet-Doublet model: dark matter searches and LHC constraints

    Energy Technology Data Exchange (ETDEWEB)

    Calibbi, Lorenzo [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Service de Physique Théorique, Université Libre de Bruxelles,C.P. 225, B-1050, Brussels (Belgium); Mariotti, Alberto; Tziveloglou, Pantelis [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel,and International Solvay Institutes,Pleinlaan 2, B-1050 Brussels (Belgium)

    2015-10-19

    The Singlet-Doublet model of dark matter is a minimal extension of the Standard Model with dark matter that is a mixture of a singlet and a non-chiral pair of electroweak doublet fermions. The stability of dark matter is ensured by the typical parity symmetry, and, similar to a ‘Bino-Higgsino’ system, the extra matter content improves gauge coupling unification. We revisit the experimental constraints on the Singlet-Doublet dark matter model, combining the most relevant bounds from direct (spin independent and spin dependent) and indirect searches. We show that such comprehensive analysis sets strong constraints on a large part of the 4-dimensional parameter space, closing the notorious ‘blind-spots’ of spin independent direct searches. Our results emphasise the complementarity of direct and indirect searches in probing dark matter models in diverse mass scale regimes. We also discuss the LHC bounds on such scenario, which play a relevant role in the low mass region of the dark matter candidate.

  6. Singlet-Doublet Model: Dark matter searches and LHC constraints

    CERN Document Server

    Calibbi, Lorenzo; Tziveloglou, Pantelis

    2015-01-01

    The Singlet-Doublet model of dark matter is a minimal extension of the Standard Model with dark matter that is a mixture of a singlet and a non-chiral pair of electroweak doublet fermions. The stability of dark matter is ensured by the typical parity symmetry, and, similar to a "Bino-Higgsino" system, the extra matter content improves gauge coupling unification. We revisit the experimental constraints on the Singlet-Doublet dark matter model, combining the most relevant bounds from direct (spin independent and spin dependent) and indirect searches. We show that such comprehensive analysis sets strong constraints on a large part of the 4-dimensional parameter space, closing the notorious "blind-spots" of spin independent direct searches. Our results emphasise the complementarity of direct and indirect searches in probing dark matter models in diverse mass scale regimes. We also discuss the LHC bounds on such scenario, which play a relevant role in the low mass region of the dark matter candidate.

  7. Charged Higgs Boson Searches at the LHC via Multiple $b\\bar bW^\\pm$ Final States

    CERN Document Server

    Moretti, Stefano; Sharma, Pankaj

    2016-01-01

    We review the prospects of the Large Hadron Collider in accessing heavy charged Higgs boson signals in $b\\bar b W^\\pm$ final states, wherein the contributing channels can be $H^+\\to t\\bar b$, $hW^\\pm$, $HW^\\pm$ and $AW^\\pm$. In particular, we devise a selection strategy which optimizes their global yield. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode $bg\\to tH^-$ + c.c., the dominant one over the range $M_{H^\\pm}\\ge 480$ GeV, as dictated by $b\\to s\\gamma$ constraints. Possibilities of detection are found to be significant for various Run 2 energies and luminosities.

  8. Physics at Future Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, Thomas G.

    2002-08-07

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  9. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  10. Physics at future hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    U. Baur et al.

    2002-12-23

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  11. Advanced Concepts for Electron-Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Yaroslav Derbenev

    2002-08-01

    A superconducting energy recovery linac (ERL) of 5 to 10 GeV was proposed earlier as an alternative to electron storage rings to deliver polarized electron beam for electron-ion collider (EIC). To enhance the utilization efficiency of electron beam from a polarized source, it is proposed to complement the ERL by circulator ring (CR) wherein the injected electrons undergo up to 100 revolutions colliding with the ion beam. In this way, electron injector and linac operate in pulsed current (beam energy recovery) regime of a relatively low average current, while the polarization is still easily delivered and preserved. To make it also easier delivering and manipulating the proton and light ion polarization, twisted (figure 8) synchrotrons are proposed for heavy particle booster and collider ring. Same type of beam orbit can be used then for electron circulator. Electron cooling (EC) of the ion beam is considered an inevitable component of high luminosity EIC (1033/s. cm2 or above). It is recognized that EC also gives a possibility to obtain very short ion bunches, that allows much stronger final focusing. At the same time, short bunches make feasible the crab crossing (and traveling focus for ion beam) at collision points, hence, allow maximizing the collision rate. As a result, one can anticipate the luminosity increase by one or two orders of magnitude.

  12. QCD at collider energies

    Science.gov (United States)

    Nicolaidis, A.; Bordes, G.

    1986-05-01

    We examine available experimental distributions of transverse energy and transverse momentum, obtained at the CERN pp¯ collider, in the context of quantum chromodynamics. We consider the following. (i) The hadronic transverse energy released during W+/- production. This hadronic transverse energy is made out of two components: a soft component which we parametrize using minimum-bias events and a semihard component which we calculate from QCD. (ii) The transverse momentum of the produced W+/-. If the transverse momentum (or the transverse energy) results from a single gluon jet we use the formalism of Dokshitzer, Dyakonov, and Troyan, while if it results from multiple-gluon emission we use the formalism of Parisi and Petronzio. (iii) The relative transverse momentum of jets. While for W+/- production quarks play an essential role, jet production at moderate pT and present energies is dominated by gluon-gluon scattering and therefore we can study the Sudakov form factor of the gluon. We suggest also how through a Hankel transform of experimental data we can have direct access to the Sudakov form factors of quarks and gluons.

  13. When Black Holes Collide

    Science.gov (United States)

    Baker, John

    2010-01-01

    Among the fascinating phenomena predicted by General Relativity, Einstein's theory of gravity, black holes and gravitational waves, are particularly important in astronomy. Though once viewed as a mathematical oddity, black holes are now recognized as the central engines of many of astronomy's most energetic cataclysms. Gravitational waves, though weakly interacting with ordinary matter, may be observed with new gravitational wave telescopes, opening a new window to the universe. These observations promise a direct view of the strong gravitational dynamics involving dense, often dark objects, such as black holes. The most powerful of these events may be merger of two colliding black holes. Though dark, these mergers may briefly release more energy that all the stars in the visible universe, in gravitational waves. General relativity makes precise predictions for the gravitational-wave signatures of these events, predictions which we can now calculate with the aid of supercomputer simulations. These results provide a foundation for interpreting expect observations in the emerging field of gravitational wave astronomy.

  14. Phenomenology of the Inert (2+1) and (4+2) Higgs Doublet Models

    CERN Document Server

    Keus, Venus; Moretti, Stefano

    2014-01-01

    We make a phenomenological study of a model with two inert doublets plus one Higgs doublet (I(2+1)HDM) which is symmetric under a Z$_2$ group, preserved after Electro-Weak Symmetry Breaking (EWSB) by the vacuum alignment $(0,0,v)$. This model may be regarded as an extension to the model with one inert doublet plus one Higgs doublet (I(1+1)HDM), by the addition of an extra inert scalar doublet. The neutral fields from the two inert doublets provide a viable Dark Matter (DM) candidate which is stabilised by the conserved $Z_2$ symmetry. We study the new Higgs decay channels offered by the scalar fields from the extra doublets and their effect on the Standard Model (SM) Higgs couplings, including a new decay channel into photon(s) plus missing energy, which distinguishes the I(2+1)HDM from the I(1+1)HDM. Motivated by Supersymmetry, which requires an even number of doublets, we then extend this model into a model with four inert doublets plus two Higgs doublets (I(4+2)HDM) and study the phenomenology of the model...

  15. Physicists dream of supersized collider

    Science.gov (United States)

    Hao, Cindy

    2015-12-01

    Particle physicists in China are hopeful that the Chinese government will allocate 1 billion yuan (about £104m) to design what would be the world's largest particle accelerator - the Circular Electron Positron Collider (CEPC).

  16. Stable massive particles at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fairbairn, M.; /Stockholm U.; Kraan, A.C.; /Pennsylvania U.; Milstead, D.A.; /Stockholm U.; Sjostrand, T.; /Lund U.; Skands, P.; /Fermilab; Sloan, T.; /Lancaster U.

    2006-11-01

    We review the theoretical motivations and experimental status of searches for stable massive particles (SMPs) which could be sufficiently long-lived as to be directly detected at collider experiments. The discovery of such particles would address a number of important questions in modern physics including the origin and composition of dark matter in the universe and the unification of the fundamental forces. This review describes the techniques used in SMP-searches at collider experiments and the limits so far obtained on the production of SMPs which possess various colour, electric and magnetic charge quantum numbers. We also describe theoretical scenarios which predict SMPs, the phenomenology needed to model their production at colliders and interactions with matter. In addition, the interplay between collider searches and open questions in cosmology such as dark matter composition are addressed.

  17. Bottomonium production in hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brenner Mariotto, C. [Universidade de Caxias do Sul, RS (Brazil). Centro de Ciencias Exatas e Tecnologia]. E-mail: mariotto@if.ufrgs.br; Gay Ducati, M.B. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas em Altas Energias; Ingelman, G. [Uppsala Univ. (Sweden). High Energy Physics

    2004-07-01

    Production of bottomonium in hadronic collisions is studied in the framework of the soft colour approach. We report some results for production of {upsilon} in the Tevatron and predictions for the future Large Hadron Collider (LHC). (author)

  18. [New technology for linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    McIntyre, P.M.

    1992-08-12

    This report discusses the following topics on research of microwave amplifiers for linear colliders: Context in current microwave technology development; gated field emission for microwave cathodes; cathode fabrication and tests; microwave cathode design using field emitters; and microwave localization.

  19. Prospects for Future Collider Physics

    CERN Document Server

    Ellis, John

    2016-01-01

    One item on the agenda of future colliders is certain to be the Higgs boson. What is it trying to tell us? The primary objective of any future collider must surely be to identify physics beyond the Standard Model, and supersymmetry is one of the most studied options. it Is supersymmetry waiting for us and, if so, can LHC Run 2 find it? The big surprise from the initial 13-TeV LHC data has been the appearance of a possible signal for a new boson X with a mass ~750 GeV. What are the prospects for future colliders if the X(750) exists? One of the most intriguing possibilities in electroweak physics would be the discovery of non-perturbative phenomena. What are the prospects for observing sphalerons at the LHC or a future collider?

  20. Probing Charged Higgs Boson Couplings at the FCC-hh Collider

    CERN Document Server

    Cakir, I T; Saygin, H; Senol, A; Cakir, O

    2015-01-01

    Many of the new physics models predicts a light Higgs boson similar to the Higgs boson of the Standard Model (SM) and also extra scalar bosons. Beyond the search channels for a SM Higgs boson, the future collider experiments will explore additional channels that are specific to extended Higgs sectors. We study the charged Higgs boson production within the framework of two Higgs doublet models (THDM) in the proton-proton collisions at the FCC-hh collider. With an integrated luminosity of 500 fb$^{-1}$ at very high energy frontier, we obtain a significant coverage of the parameter space and distinguish the charged Higgs-top-bottom interaction within the THDM or other new physics models with charged Higgs boson mass up to 1 TeV.

  1. Sfermion production at photon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. E-mail: michael.klasen@desy.de

    2001-10-11

    We calculate total and differential cross-sections for sfermion production in e{sup +}e{sup -} annihilation and in photon-photon collisions with arbitrary photon polarization. The total cross-section at a polarized photon collider is shown to be larger than the e{sup +}e{sup -} annihilation cross-section up to the kinematic limit of the photon collider.

  2. Polarized Electrons for Linear Colliders

    CERN Document Server

    Clendenin, J E; Garwin, E L; Kirby, R E; Luh, D A; Maruyama, T; Prescott, C Y; Sheppard, J C; Turner, J; Prepost, R

    2005-01-01

    Future electron-positron linear colliders require a highly polarized electron beam with a pulse structure that depends primarily on whether the acceleration utilizes warm or superconducting rf structures. The International Linear Collider (ILC) will use cold structures for the main linac. It is shown that a dc-biased polarized photoelectron source such as successfully used for the SLC can meet the charge requirements for the ILC micropulse with a polarization approaching 90%.

  3. A Complete Scheme for a Muon Collider

    CERN Document Server

    Palmer, Robert B; Fernow, Richard C; Gallardo, Juan Carlos; Kirk, Harold G; Alexahin, Yuri; Neuffer, David; Kahn, Stephen Alan; Summers, Don J

    2007-01-01

    A complete scheme for production, cooling, acceleration, and ring for a 1.5 TeV center of mass muon collider is presented, together with parameters for two higher energy machines. The schemes starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Six dimensional cooling in long-period helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids.

  4. SUSY Without Prejudice at Linear Colliders

    CERN Document Server

    Rizzo, Thomas G

    2008-01-01

    We explore the physics of the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters are chosen so to satisfy all existing experimental and theoretical constraints assuming that the WIMP is the lightest neutralino. We scan this parameter space twice using both flat and log priors and compare the results which yield similar conclusions. Constraints from both LEP and the Tevatron play an important role in obtaining our final model samples. Implications for future TeV-scale $e^+e^-$ linear colliders(LC) are discussed.

  5. Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals

    Science.gov (United States)

    Drozd, Aleksandra; Grzadkowski, Bohdan; Gunion, John F.; Jiang, Yun

    2016-10-01

    We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.

  6. Isospin-violating dark-matter-nucleon scattering via 2-Higgs-doublet-model portals

    CERN Document Server

    Drozd, Aleksandra; Gunion, John F; Jiang, Yun

    2015-01-01

    We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.

  7. Isospin-violating dark-matter-nucleon scattering via two-Higgs-doublet-model portals

    Energy Technology Data Exchange (ETDEWEB)

    Drozd, Aleksandra [Theoretical Particle Physics and Cosmology Group, Physics Department, King’s College London,London WC2R 2LS (United Kingdom); Grzadkowski, Bohdan [Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Gunion, John F. [Department of Physics, University of California,Davis, CA 95616 (United States); Jiang, Yun [Department of Physics, University of California,Davis, CA 95616 (United States); NBIA and Discovery Center, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100, Copenhagen (Denmark)

    2016-10-24

    We show that in a multi-Higgs model in which one Higgs fits the LHC 125 GeV state, one or more of the other Higgs bosons can mediate DM-nucleon interactions with maximal DM isospin violation being possible for appropriate Higgs-quark couplings, independent of the nature of DM. We then consider the explicit example of a Type II two-Higgs-doublet model, identifying the h or H as the 125 GeV state while the H or h, respectively, mediates DM-nucleon interactions. Finally, we show that if a stable scalar, S, is added then it can be a viable light DM candidate with correct relic density while obeying all direct and indirect detection limits.

  8. Search for Charged Higgs Bosons at LEP in General Two Higgs Doublet Models

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M

    2004-01-01

    A search for pair-produced charged Higgs bosons was performed in the data collected by the DELPHI detector at LEP II at centre-of-mass energies from 189 GeV to 209 GeV. Five different final states, tau+ nu_tau tau- anti-nu_tau, c sbar cbar s, c sbar tau- anti-nu_tau, W* A W* A and W* A tau- anti-nu_tau were considered, accounting for the major expected decays in type I and type II Two Higgs Doublet Models. No significant excess of data compared to the expected Standard Model processes was observed. The existence of a charged Higgs boson with mass lower than 76.7 GeV/c^2 (type I) or 74.4 GeV/c^2 (type II) is excluded at the 95% confidence level, for a wide range of the model parameters. Model independent cross-section limits have also been calculated.

  9. Gauged Two Higgs Doublet Model confronts the LHC 750 GeV diphoton anomaly

    Science.gov (United States)

    Huang, Wei-Chih; Tsai, Yue-Lin Sming; Yuan, Tzu-Chiang

    2016-08-01

    In light of the recent 750 GeV diphoton anomaly observed at the LHC, we study the possibility of accommodating the deviation from the standard model prediction based on the recently proposed Gauged Two Higgs Doublet Model. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group SU(2)H, while the standard model SU(2)L right-handed fermion singlets are paired up with new heavy fermions to form SU(2)H doublets, and SU(2)L left-handed fermion doublets are singlets under SU(2)H. An SU(2)H scalar doublet, which provides masses to the new heavy fermions as well as the SU(2)H gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the new fermions circulating the triangle loops to account for the deviation from the standard model prediction.

  10. Gauged Two Higgs Doublet Model confronts the LHC 750 GeV diphoton anomaly

    Directory of Open Access Journals (Sweden)

    Wei-Chih Huang

    2016-08-01

    Full Text Available In light of the recent 750 GeV diphoton anomaly observed at the LHC, we study the possibility of accommodating the deviation from the standard model prediction based on the recently proposed Gauged Two Higgs Doublet Model. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group SU(2H, while the standard model SU(2L right-handed fermion singlets are paired up with new heavy fermions to form SU(2H doublets, and SU(2L left-handed fermion doublets are singlets under SU(2H. An SU(2H scalar doublet, which provides masses to the new heavy fermions as well as the SU(2H gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the new fermions circulating the triangle loops to account for the deviation from the standard model prediction.

  11. Gauged Two Higgs Doublet Model confronts the LHC 750 GeV di-photon anomaly

    CERN Document Server

    Huang, Wei-Chih; Yuan, Tzu-Chiang

    2015-01-01

    In light of the recent 750 GeV di-photon anomaly observed at the LHC, we check the possibility of accommodating the deviation from the Standard Model~(SM) prediction based on the Gauged Two Higgs Doublet Model, which has been proposed lately. The model embeds two Higgs doublets into a doublet of a non-abelian gauge group $SU(2)_H$, while the SM $SU(2)_L$ right-handed fermion singlets are paired up with new heavy fermions to form $SU(2)_H$ doublets, and $SU(2)_L$ left-handed fermion doublets are singlets under $SU(2)_H$. An $SU(2)_H$ scalar doublet, which provides a mass to the new heavy fermions as well as the $SU(2)_H$ gauge bosons, can be produced via gluon fusion and subsequently decays into two photons with the help of the new fermions to account for the deviation from the SM prediction.

  12. Abelian symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, Igor P; Vdovin, Evgeny

    2012-01-01

    Classifying symmetry groups which can be implemented in the scalar sector of a model with $N$ Higgs doublets is a difficult and an unsolved task for $N>2$. Here, we make the first step towards this goal by classifying the Abelian symmetry groups. We describe a strategy that identifies all Abelian groups which can be realized as symmetry groups of the NHDM scalar potential. We give examples of the use of this strategy in 3HDM and 4HDM and prove several statements for arbitrary $N$.

  13. Competing Kondo Effects in Non-Kramers Doublet Systems

    OpenAIRE

    Kusunose, Hiroaki

    2016-01-01

    In non-Kramers Kondo systems with a quadrupolar degrees of freedom, an ordinary magnetic Kondo effect can compete with the quadrupolar Kondo effect. We discuss such competition keeping Pr$T_{2}$Zn$_{20}$ ($T$=Ir, Rh) and Pr$T_{2}$Al$_{20}$ ($T$=V, Ti) in mind, where the $\\Gamma_{3}$ non-Kramers crystalline-electric-field (CEF) doublet ground state is realized in Pr$^{3+}$ ion with $(4f)^{2}$ configuration under cubic symmetry. The quadrupolar Kondo effect can be described by the two-channel K...

  14. (1)-covariant gauge for the two-Higgs doublet model

    Indian Academy of Sciences (India)

    C G Honorato; J J Toscano

    2009-12-01

    A (1)-covariant gauge for the two-Higgs doublet model based on BRST (Becchi–Rouet–Stora–Tyutin) symmetry is introduced. This gauge allows one to remove a significant number of nonphysical vertices appearing in conventional linear gauges, which greatly simplifies the loop calculations, since the resultant theory satisfies QED-like Ward identities. The presence of four ghost interactions in these types of gauges and their connection with the BRST symmetry are stressed. The Feynman rules for those new vertices that arise in this gauge, as well as for those couplings already present in the linear gauge but that are modified by this gauge-fixing procedure, are presented.

  15. Wafer-level fabrication of arrays of glass lens doublets

    Science.gov (United States)

    Passilly, Nicolas; Perrin, Stéphane; Albero, Jorge; Krauter, Johann; Gaiffe, Olivier; Gauthier-Manuel, Ludovic; Froehly, Luc; Lullin, Justine; Bargiel, Sylwester; Osten, Wolfgang; Gorecki, Christophe

    2016-04-01

    Systems for imaging require to employ high quality optical components in order to dispose of optical aberrations and thus reach sufficient resolution. However, well-known methods to get rid of optical aberrations, such as aspherical profiles or diffractive corrections are not easy to apply to micro-optics. In particular, some of these methods rely on polymers which cannot be associated when such lenses are to be used in integrated devices requiring high temperature process for their further assembly and separation. Among the different approaches, the most common is the lens splitting that consists in dividing the focusing power between two or more optical components. In here, we propose to take advantage of a wafer-level technique, devoted to the generation of glass lenses, which involves thermal reflow in silicon cavities to generate lens doublets. After the convex lens sides are generated, grinding and polishing of both stack sides allow, on the first hand, to form the planar lens backside and, on the other hand, to open the silicon cavity. Nevertheless, silicon frames are then kept and thinned down to form well-controlled and auto-aligned spacers between the lenses. Subsequent accurate vertical assembly of the glass lens arrays is performed by anodic bonding. The latter ensures a high level of alignment both laterally and axially since no additional material is required. Thanks to polishing, the generated lens doublets are then as thin as several hundreds of microns and compatible with micro-opto-electro-systems (MOEMS) technologies since they are only made of glass and silicon. The generated optical module is then robust and provide improved optical performances. Indeed, theoretically, two stacked lenses with similar features and spherical profiles can be almost diffraction limited whereas a single lens characterized by the same numerical aperture than the doublet presents five times higher wavefront error. To demonstrate such assumption, we fabricated glass

  16. Neutron electric dipole momento in two-Higgs-doublet model

    CERN Document Server

    Hayashi, T; Matsuda, M; Tanimoto, M; Hayashi, T; Koide, Y; Matsuda, M; Tanimoto, M

    1994-01-01

    The effect of the "chromo-electric" dipole moment on the electric dipole moment(EDM) of the neutron is studied in the two-Higgs-doublet model. The Weinberg's operator O_{3g}=GG\\t G and the operator O_{qg}=\\bar q\\sigma\\t Gq are both investigated in the cases of \\tan\\b\\gg 1, \\tan\\b\\ll 1 and \\tan\\b\\simeq 1. The neutron EDM is considerably reduced due to the destructive contribution with two light Higgs scalars exchanges.

  17. Biochemical characterization of tektins from sperm flagellar doublet microtubules

    OpenAIRE

    1987-01-01

    Tektins, protein components of stable protofilaments from sea urchin sperm flagellar outer doublet microtubules (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22), are separable by preparative SDS PAGE into 47-, 51-, and 55-kD equimolar components. High resolution two-dimensional tryptic peptide mapping reveals 63-67% coincidence among peptides of the 51-kD tektin chain and its 47- and 55-kD counterparts, greater than 70% coincidence between the 47- and 55-kD tektins, but little ...

  18. Molecular architecture of axonemal microtubule doublets revealedby cryo-electron tomography

    Energy Technology Data Exchange (ETDEWEB)

    Sui, Haixin; Downing, Kenneth H.

    2006-05-22

    The axoneme, which forms the core of eukaryotic flagella and cilia, is one of the largest macromolecular machines with a structure that is largely conserved from protists to mammals. Microtubule doublets are structural components of axonemes containing a number of proteins besides tubulin, and are usually found in arrays of nine doublets arranged around two singlet microtubules. Coordinated sliding of adjacent doublets, which involves a host of other proteins in the axoneme, produces periodic beating movements of the axoneme. We have obtained a 3D density map of intact microtubule doublets using cryo-electron tomography and image averaging. Our map, with a resolution of about 3 nm, provides insights into locations of particular proteins within the doublets and the structural features of the doublets that define their mechanical properties. We identify likely candidates for several of these non-tubulin components of the doublets. This work offers novel insight on how tubulin protofilaments and accessory proteins attach together to form the doublets and provides a structural basis for understanding doublet function in axonemes.

  19. EIB lends EUR 300 million for CERN's major collider

    CERN Document Server

    2002-01-01

    "The European Investment Bank (EIB) is lending EUR 300 million to finance the final phase of construction of the Large Hadron Collider (LHC) at CERN, the European Organization for Nuclear Research. The EIB loan will also help to finance the instrumentation to record and analyse the high-energy particle collisions at the LHC" (1 page).

  20. Characterizing Invisible Electroweak Particles through Single-Photon Processes at High Energy $e^+e^-$ Colliders

    CERN Document Server

    Choi, Seong Youl; Kalinowski, Jan; Rolbiecki, Krzysztof; Wang, Xing

    2015-01-01

    We explore the scenarios where the only accessible new states at the electroweak scale consist of a pair of color-singlet electroweak particles, whose masses are degenerate at the tree level and split only by electroweak symmetry breaking at the loop level. For the sake of illustration, we consider a supersymmetric model and study the following three representative cases with the lower-lying states as (a) two spin-1/2 Higgsino SU(2)$_L$ doublets, (b) a spin-1/2 wino SU(2)$_L$ triplet and (c) a spin-0 left-handed slepton SU(2)$_L$ doublet. Due to the mass-degeneracy, those lower-lying electroweak states are difficult to observe at the LHC and rather challenging to detect at the $e^+ e^-$ collider as well. We exploit the pair production in association with a hard photon radiation in high energy $e^+ e^-$ collisions. If kinematically accessible, such single-photon processes at $e^+e^-$ colliders with polarized beams enable us to characterize each scenario by measuring the energy and scattering angle of the assoc...

  1. Phenomenology of a Higgs triplet model at future $e^{+}e^{-}$ colliders

    CERN Document Server

    Blunier, Sylvain; Díaz, Marco Aurelio; Koch, Benjamin

    2016-01-01

    In this work, we investigate the prospects of future $e^{+}e^{-}$ colliders in testing a Higgs triplet model with a scalar triplet and a scalar singlet under $SU(2)$. The parameters of the model are fixed so that the lightest $CP-$even state corresponds to the Higgs particle observed at the LHC at around $125$ GeV. This study investigates if the second heaviest $CP-$even, the heaviest $CP-$odd and the singly charged states can be observed at existing and future colliders by computing their accessible production and decay channels. In particular, the LHC is not well equipped to produce a Higgs boson which is not mainly doublet-like, so we turn our focus to lepton colliders. We find distinctive features of this model in cases when the second heaviest $CP-$even Higgs is triplet-like, singlet-like or a mixture. These features could distinguish the model from other scenarios at future $e^{+}e^{-}$ colliders.

  2. Spinning Janus doublets driven in uniform ac electric fields

    Science.gov (United States)

    Boymelgreen, Alicia; Yossifon, Gilad; Park, Sinwook; Miloh, Touvia

    2014-01-01

    We provide an experimental proof of concept for a robust, continuously rotating microstructure—consisting of two metallodielectric (gold-polystyrene) Janus particles rigidly attached to each other—which is driven in uniform ac fields by asymmetric induced-charge electro-osmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for nonlinear electrokinetics. A simple kinematic rigid body model is used to predict the paths and doublet velocities (angular and linear) based on their relative orientations with good agreement.

  3. Vacuum Topology of the Two Higgs Doublet Model

    CERN Document Server

    Battye, Richard A; Pilaftsis, Apostolos

    2011-01-01

    We perform a systematic study of generic accidental Higgs-family and CP symmetries that could occur in the two-Higgs-doublet-model potential, based on a Majorana scalar-field formalism which realizes a subgroup of GL(8,C). We derive the general conditions of convexity and stability of the scalar potential and present analytical solutions for two non-zero neutral vacuum expectation values of the Higgs doublets for a typical set of six symmetries, in terms of the gauge-invariant parameters of the theory. By means of a homotopy-group analysis, we identify the topological defects associated with the spontaneous symmetry breaking of each symmetry, as well as the massless Goldstone bosons emerging from the breaking of the continuous symmetries. We find the existence of domain walls from the breaking of Z_2, CP1 and CP2 discrete symmetries, vortices in models with broken U(1)_PQ and CP3 symmetries and a global monopole in the SO(3)_HF-broken model. The spatial profile of the topological defect solutions is studied i...

  4. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katsouleas, Thomas C. [Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering; Sahai, Aakash A. [Imperial College, London (United Kingdom). Dept. of Physics

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of the laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.

  5. A Complete Scheme of Ionization Cooling for a Muon Collider

    CERN Document Server

    Palmer, Robert B; Fernow, Richard C; Gallardo, Juan Carlos; Kirk, Harold G; Alexahin, Yuri; Neuffer, David; Kahn, Stephen Alan; Summers, Don

    2007-01-01

    A complete scheme for production and cooling a muon beam for three specified muon colliders is presented. Parameters for these muon colliders are given. The scheme starts with the front end of a proposed neutrino factory that yields bunch trains of both muon signs. Emittance exchange cooling in slow helical lattices reduces the longitudinal emittance until it becomes possible to merge the trains into single bunches, one of each sign. Further cooling in all dimensions is applied to the single bunches in further slow helical lattices. Final transverse cooling to the required parameters is achieved in 50 T solenoids using high Tc superconductor at 4 K. Preliminary simulations of each element are presented.

  6. Beam-Based Nonlinear Optics Corrections in Colliders

    CERN Document Server

    Pilat, Fulvia Caterina; Malitsky, Nikolay; Ptitsyn, Vadim

    2005-01-01

    A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, which gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 3 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non linear correction techniques.

  7. Prospects for collider searches for dark matter with heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Artoni, Giacomo [Brandeis Univ., Waltham, MA (United States); Lin, Tongyan [Univ. of Chicago, IL (United States). Kavli Inst. for Cosmological Physics (KICP); Penning, Bjoern [Univ. of Chicago, IL (United States); Univ. of Chicago, IL (United States). Enrico Fermi Inst.; Sciolla, Gabriella [Brandeis Univ., Waltham, MA (United States); Venturini, Alessio [Brandeis Univ., Waltham, MA (United States)

    2013-08-05

    We present projections for future collider searches for dark matter produced in association with bottom or top quarks. Such production channels give rise to final states with missing transverse energy and one or more b-jets. Limits are given assuming an effective scalar operator coupling dark matter to quarks, where the dedicated analysis discussed here improves significantly over a generic monojet analysis. We give updated results for an anticipated high-luminosity LHC run at 14 TeV and for a 33 TeV hadron collider.

  8. Collider to use cold technology

    CERN Document Server

    Cartlidge, Edwin

    2004-01-01

    The International Linear Collider (ILC) is being developed for use by particle physicists to make detailed studies of the Higgs boson and many other new particles. The two technologies for the ILC use different types of cavities to accelerate electrons and positrons. The German technology involves superconducting cavities operating at 2 K, whereas the approach proposed by the US and Japan relied on copper cavities that would be run at room temperature. However, due to the huge cost of the linear collider the physicists selected only one. Following evaluation of limitations of each cavity, the physicists opted for the superconducting approach. Assuming that the design work is completed on time, and if funding agencies and politicians can agree on where to build the collider, construction of the machine could start by 2010. (Edited abstract).

  9. The collider of the future?

    CERN Multimedia

    CERN Audiovisual Service

    2009-01-01

    Why are two studies for one linear collider being conducted in parallel? This is far from a duplication of effort or a waste of resources, since the two studies reflect a complementary strategy aimed at providing the best technology for future physics. On Friday 12 June CERN hosted the first joint meeting between CLIC and ILC, which led to a host of good results and important decisions. The International Linear Collider (ILC) and Compact Linear Collider (CLIC) studies both call for cutting-edge technologies. At first glance they may appear to be in competition, but they are in fact complementary and have a common objective – namely to propose a design , as soon as possible and at the lowest possible cost, for the linear accelerator best suited to taking over the baton of physics research at the high-energy frontier after the LHC.

  10. Physics beyond Colliders Kickoff Workshop

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kickoff workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  11. Workshop on Physics Beyond Colliders

    CERN Document Server

    2016-01-01

    The aim of the workshop is to explore the opportunities offered by the CERN accelerator complex and infrastructure to get new insights into some of today's outstanding questions in particle physics through projects complementary to high-energy colliders and other initiatives in the world. The focus is on fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that may require different types of experiments. The kick-off workshop is intended to stimulate new ideas for such projects, for which we encourage the submission of abstracts.

  12. Free Electron Laser for Gamma-Gamma Collider at a Low-Energy Option of International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Saldin, Evgeny; Schneidmiller, Evgeny; Yurkov, Mikhail; /DESY; Seryi, Andrei; /SLAC

    2009-10-30

    Different scenarios of a start-up with International Linear Collider (ILC) are under discussion at the moment in the framework of the Global Design Effort (GDE). One of them assumes construction of the ILC in stages from some minimum CM energy up to final target of 500 GeV CM energy. Gamma-gamma collider with CM energy of 180GeV is considered as a candidate for the first stage of the facility. In this report we present conceptual design of a free electron laser as a source of primary photons for the first stage of ILC.

  13. Disambiguating Seesaw Models using Invariant Mass Variables at Hadron Colliders

    CERN Document Server

    Dev, P S Bhupal; Mohapatra, Rabindra N

    2015-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we dis...

  14. Symmetric Achromatic Low-Beta Collider Interaction Region Design Concept

    Energy Technology Data Exchange (ETDEWEB)

    Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Johnson, Rolland P. [Muons, Inc., Batavia, IL (United States)

    2013-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCB?s placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chromaticity compensation scheme.

  15. Symmetric achromatic low-beta collider interaction region design concept

    CERN Document Server

    Morozov, V S; Lin, F; Johnson, R P

    2012-01-01

    We present a new symmetry-based concept for an achromatic low-beta collider interaction region design. A specially-designed symmetric Chromaticity Compensation Block (CCB) induces an angle spread in the passing beam such that it cancels the chromatic kick of the final focusing quadrupoles. Two such CCBs placed symmetrically around an interaction point allow simultaneous compensation of the 1st-order chromaticities and chromatic beam smear at the IP without inducing significant 2nd-order aberrations to the particle trajectory. We first develop an analytic description of this approach and explicitly formulate 2nd-order aberration compensation conditions at the interaction point. The concept is next applied to develop an interaction region design for the ion collider ring of an electron-ion collider. We numerically evaluate performance of the design in terms of momentum acceptance and dynamic aperture. The advantages of the new concept are illustrated by comparing it to the conventional distributed-sextupole chr...

  16. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  17. Muon-muon and other high energy colliders

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Gallardo, J.C. [Brookhaven National Lab., Upton, NY (United States). Center for Accelerator Physics

    1997-02-01

    The first section looks at the high energy physics advantages, disadvantages and luminosity requirements of hadron, of lepton and photon-photon colliders for comparison. The second section discusses the physics considerations for the muon collider. The third section covers muon collider components. The fourth section is about the intersection region and detectors. In the fifth section, the authors discuss modifications to enhance the muon polarization`s operating parameters with very small momentum spreads, operations at energies other than the maximum for which the machine is designed, and designs of machines for different maximum energies. The final section discusses a Research and Development plan aimed at the operation of a 0.5 TeV demonstration machine by the year 2010, and of the 4 TeV machine by the year 2020.

  18. Chromaticity correction for a muon collider optics

    Energy Technology Data Exchange (ETDEWEB)

    Alexahin, Y.; Gianfelice-Wendt, E.; Kapin, V.; /Fermilab

    2011-03-01

    Muon Collider (MC) is a promising candidate for the next energy frontier machine. However, in order to obtain peak luminosity in the 10{sup 34} cm{sup 2}s{sup -1} range the collider lattice designmust satisfy a number of stringent requirements. In particular the expected large momentum spread of the muon beam and the very small {beta}* call for a careful correction of the chromatic effects. Here we present a particular solution for the interaction region (IR) optics whose distinctive feature is a three-sextupole local chromatic correction scheme. The scheme may be applied to other future machines where chromatic effects are expected to be large. The expected large muon energy spread requires the optics to be stable over a wide range of momenta whereas the required luminosity calls for {beta}* in the mm range. To avoid luminosity degradation due to hour-glass effect, the bunch length must be comparatively small. To keep the needed RF voltage within feasible limits the momentum compaction factor must be small over the wide range of momenta. A low {beta}* means high sensitivity to alignment and field errors of the Interaction Region (IR) quadrupoles and large chromatic effects which limit the momentum range of optics stability and require strong correction sextupoles, which eventually limit the Dynamic Aperture (DA). Finally, the ring circumference should be as small as possible, luminosity being inversely proportional to the collider length. A promising solution for a 1.5 TeV center of mass energy MC with {beta}* = 1 m in both planes has been proposed. This {beta}* value has been chosen as a compromise between luminosity and feasibility based on the magnet design and energy deposition considerations. The proposed solution for the IR optics together with a new flexible momentum compaction arc cell design allows to satisfy all requirements and is relatively insensitive to the beam-beam effect.

  19. Multiple chiral doublet candidate nucleus $^{105}$Rh in a relativistic mean-field approach

    CERN Document Server

    Li, Jian; Meng, J; 10.1103/PhysRevC.83.037301

    2011-01-01

    Following the reports of two pairs of chiral doublet bands observed in $^{105}$Rh, the adiabatic and configuration-fixed constrained triaxial relativistic mean-field (RMF) calculations are performed to investigate their triaxial deformations with the corresponding configuration and the possible multiple chiral doublet (M$\\chi$D) phenomenon. The existence of M$\\chi$D phenomenon in $^{105}$Rh is highly expected.

  20. Doublet Production in the Development of Medieval and Modern Spanish: New Approaches to Phonolexical Duplication

    Science.gov (United States)

    Haney, Darren W.

    2011-01-01

    This dissertation offers new approaches to an old and well-known problem in the study of the development of Romance varieties: duplicate lexis or doublets. Traditional analyses of duplication are narrow in scope both in what qualifies as a doublet (the popular/learned opposition has dominated, to the exclusion of other pairs) and in channels of…

  1. Doublet Production in the Development of Medieval and Modern Spanish: New Approaches to Phonolexical Duplication

    Science.gov (United States)

    Haney, Darren W.

    2011-01-01

    This dissertation offers new approaches to an old and well-known problem in the study of the development of Romance varieties: duplicate lexis or doublets. Traditional analyses of duplication are narrow in scope both in what qualifies as a doublet (the popular/learned opposition has dominated, to the exclusion of other pairs) and in channels of…

  2. Three-Higgs-doublet models: symmetries, potentials and Higgs boson masses

    Energy Technology Data Exchange (ETDEWEB)

    Keus, Venus [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Department of Physics, Royal Holloway, University of London,Egham Hill, Egham TW20 0EX (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom); King, Stephen F. [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Moretti, Stefano [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom); Particle Physics Department, Rutherford Appleton Laboratory,Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2014-01-13

    We catalogue and study three-Higgs-doublet models in terms of all possible allowed symmetries (continuous and discrete, Abelian and non-Abelian), where such symmetries may be identified as flavour symmetries of quarks and leptons. We analyse the potential in each case, and derive the conditions under which the vacuum alignments (0,0,v), (0,v,v) and (v,v,v) are minima of the potential. For the alignment (0,0,v), relevant for dark matter models, we calculate the corresponding physical Higgs boson mass spectrum. Motivated by supersymmetry, we extend the analysis to the case of three up-type Higgs doublets and three down-type Higgs doublets (six doublets in total). Many of the results are also applicable to flavon models where the three Higgs doublets are replaced by three electroweak singlets.

  3. Physics at the Fermilab Collider

    Energy Technology Data Exchange (ETDEWEB)

    Shochet, M.J. [Univ. of Chicago, Chicago, IL (United States)

    1994-09-01

    The CDF and D0 experiments at the Fermilab Tevatron Collider have produced many results from the search for the top quark, the study of both the electroweak and strong interactions, the production and decay of b quarks, and the search for new high mass objects. A sample of recently obtained results are presented.

  4. Working group report: Collider Physics

    Indian Academy of Sciences (India)

    Sunanda Banerjee; Rohini M Godbole; Sreerup Raychaudhuri; Ben Allanach; Sunanda Banerjee; Satyaki Bhattacharyya; Debajyoti Choudhury; Siba Prasad Das; Anindya Datta; Rohini M Godbole; Monoranjan Guchait; Sabine Kraml; Gobinda Majumdar; David Miller; Margarete Mühlleitner; Nobuchika Okada; Maxim Perelstein; Santosh K Rai; Sreerup Raychaudhuri; Saurabh D Rindani; D P Roy; K Sridhar; Rishikesh Vaidya; D Zeppenfeld

    2006-10-01

    This is summary of the activities of the working group on collider physics in the IXth Workshop on High Energy Physics Phenomenology (WHEPP-9) held at the Institute of Physics, Bhubaneswar, India in January 2006. Some of the work subsequently done on these problems by the subgroups formed during the workshop is included in this report.

  5. B physics at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  6. Electroweak results from hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Marcel Demarteau

    1999-09-02

    A very brief summary of recent electroweak results from hadron colliders is given. The emphasis is placed on inclusive W{sup {+-}} and Z{sup 0} production, the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings.

  7. Fast Timing for Collider Detectors

    CERN Document Server

    CERN. Geneva

    2017-01-01

    Advancements in fast timing particle detectors have opened up new possibilities to design collider detectors that fully reconstruct and separate event vertices and individual particles in the time domain. The applications of these techniques are considered for the physics at HL-LHC.

  8. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  9. Design flaw could delay collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "A magnet for the Large Hadron Collider (LHC) failed during a key test at the European particle physics laboratory CERN last week. Physicists and engineers will have to repair the damaged manget and retrofil others to correct the underlying design flaw.."(1 page)

  10. The collider of the future?

    CERN Multimedia

    2009-01-01

    Why are two studies for one linear collider being conducted in parallel? This is far from a duplication of effort or a waste of resources, since the two studies reflect a complementary strategy aimed at providing the best technology for future physics. On Friday 12 June CERN hosted the first joint meeting between CLIC, ILC and the CERN management.

  11. World lays groundwork for future linear collider

    CERN Multimedia

    Feder, Toni

    2010-01-01

    "New physics from the Large Hadron Collider can best be explored with a large lepton collider; realizing one will require mobilizing accelerator and particle physicists, funding agencies, and politicians" (3 pages)

  12. Two Higgs doublet models augmented by a scalar colour octet

    Science.gov (United States)

    Cheng, Li; Valencia, German

    2016-09-01

    The LHC is now studying in detail the couplings of the Higgs boson in order to determine if there is new physics. Many recent studies have examined the available fits to Higgs couplings from the perspective of constraining two Higgs doublet models (2HDM). In this paper we extend those studies to include constraints on the one loop couplings of the Higgs to gluons and photons. These couplings are particularly sensitive to the existence of new coloured particles that are hard to detect otherwise and we use them to constrain a 2HDM augmented with a colour-octet scalar, a possibility motivated by minimal flavour violation. We first study theoretical constraints on this model and then compare them with LHC measurements.

  13. Leptonic Precision Test of Leptophilic Two-Higgs-Doublet Model

    CERN Document Server

    Chun, Eung Jin

    2016-01-01

    The type X (lepton-specific) two-Higgs-doublet model at large $\\tan\\beta$ becomes leptophilic and thus allows a light pseudoscalar $A$ accommodating the observed muon g-2 deviation without conflicting with various hadronic constraints. On the other hand, it is strongly constrained by leptonic precision observables such as lepton universality test in the neutral and charged currents. Treating all the lepton universality data in a consistent way, we show how the current data constrain the parameter space of $m_A$ and $\\tan\\beta$ for given degenerate masses of heavy Higgs bosons $H$ and $H^\\pm$. While no overlapping region is found at $1\\sigma$, a sizable region is still viable at $2\\sigma$ for $H/H^\\pm$ masses at around 200$\\sim$400 GeV.

  14. Abelian symmetries in multi-Higgs-doublet models

    CERN Document Server

    Ivanov, Igor P; Vdovin, Evgeny

    2011-01-01

    N-Higgs-doublet models (NHDM) are a popular framework to construct electroweak symmetry breaking mechanisms beyond the Standard model. Usually, one builds an NHDM scalar sector which is invariant under a certain symmetry group. Although several such groups have been used, no general analysis of symmetries possible in the NHDM scalar sector exists. Here, we describe a strategy that identifies all abelian groups which are realizable as symmetry groups of the NHDM Higgs potential. We consider both the groups of Higgs-family transformations only and the groups which also contain generalized CP transformations. We illustrate this strategy with the examples of 3HDM and 4HDM and prove several statements for arbitrary N.

  15. Controlled flavour changing neutral couplings in two Higgs Doublet models

    Science.gov (United States)

    Alves, Joao M.; Botella, Francisco J.; Branco, Gustavo C.; Cornet-Gomez, Fernando; Nebot, Miguel

    2017-09-01

    We propose a class of two Higgs doublet models where there are flavour changing neutral currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models, one can have simultaneously FCNC in the up and down sectors, in contrast to the situation encountered in the renormalisable and minimal flavour violating 2HDM models put forward by Branco et al. (Phys Lett B 380:119, 1996). The intensity of FCNC is analysed and it is shown that in this class of models one can respect all the strong constraints from experiment without unnatural fine-tuning. It is pointed out that the additional sources of flavour and CP violation are such that they can enhance significantly the generation of the Bbaryon asymmetry of the Universe, with respect to the standard model.

  16. Top-bottom doublet in the sphaleron background

    CERN Document Server

    Moreno, J M; Quirós, Mariano

    1995-01-01

    We consider the top-bottom doublet in the background of the sphaleron for the realistic case of large non-degeneracy of fermion masses, in particular m_b=5 GeV and m_t=175 GeV. We propose an axially symmetric (r,\\theta)-dependent ansatz for fermion fields and investigate the effects of the non-degeneracy on them. The exact solution is described, with an error less than 0.01\\%, by a set of ten radial functions. We also propose an approximate solution, in the m_b/m_t\\rightarrow 0 limit, with an error {\\cal O}(m_b/m_t). We have found that the effects of non-degeneracy provide a \\theta-dependence typically \\sim 10\\%.

  17. Emulsion sheet doublets as interface trackers for the OPERA experiment

    CERN Document Server

    Anokhina, A.; Ariga, A.; Arrabito, L.; Autiero, D.; Badertscher, A.; Bay, F.; Greggio, F.Bersani; Bertolin, A.; Besnier, M.; Bick, D.; Bozza, C.; Brugiere, T.; Brugnera, R.; Brunetti, G.; Buontempo, S.; Carrara, E.; Cazes, A.; Chaussard, L.; Chernyavsky, M.; Chiarella, V.; Chon-Sen, N.; Chukanov, A.; Consiglio, L.; Cozzi, M.; Cuha, V.; Dal Corso, F.; D'Amato, G.; D'Ambrosio, N.; De Lellis, G.; Declais, Y.; De Serio, M.; Di Capua, F.; Di Ferdinando, D.; Di Giovanni, A.; Di Marco, N.; Di Troia, C.; Dmitrievski, S.; Dominjon, A.; Dracos, Marcos; Duchesneau, D.; Dusini, S.; Ebert, J.; Egorov, O.; Enikeev, R.; Ereditato, Antonio; Esposito, L.S.; Favier, J.; Felici, G.; Ferber, T.; Fini, R.; Frekers, D.; Fukuda, T.; Galkin, V.I.; Galkin, V.A.; Garfagnini, A.; Giacomelli, G.; Giorgini, M.; Goellnitz, C.; Goldberg, J.; Golubkov, D.; Gornushkin, Y.; Grella, G.; Grianti, F.; Guler, M.; Gusev, G.; Gustavino, C.; Hagner, Caren; Hara, T.; Hierholzer, M.; Hiramatsu, S.; Hoshino, Kaoru; Ieva, M.; Jakovcic, K.; Janicsko Csathy, J.; Janutta, B.; Jollet, C.; Juget, F.; Kawai, T.; Kazuyama, M.; Kim, S.H.; Knuesel, J.; Kodama, K.; Komatsu, M.; Kose, U.; Kreslo, I.; Laktineh, I.; Lazzaro, C.; Lenkeit, J.; Ljubicic, A.; Longhin, Andrea; Lutter, G.; Manai, K.; Mandrioli, G.; Marotta, A.; Marteau, J.; Matsuo, T.; Matsuoka, H.; Mauri, N.; Meisel, F.; Meregaglia, A.; Messina, M.; Migliozzi, P.; Mikado, S.; Miyamoto, S.; Monacelli, Piero; Morishima, Kunihiro; Moser, U.; Muciaccia, Maria Teresa; Naganawa, N.; Naka, T.; Nakamura, M.; Nakamura, T.; Nakano, T.; Nikitina, V.; Niwa, K.; Nonoyama, Y.; Ogawa, S.; Osedlo, V.; Ossetski, D.; Paoloni, A.; Park, B.D.; Park, I.G.; Pastore, A.; Patrizii, L.; Pennacchio, E.; Pessard, H.; Pilipenko, V.; Pistillo, C.; Polukhina, N.; Pozzato, M.; Pretzl, Klaus P.; Publichenko, P.; Pupilli, F.; Roganova, T.; Rosa, G.; Rostovtseva, I.; Rubbia, A.; Russo, A.; Ryazhskaya, O.; Ryzhikov, D.; Sato, O.; Sato, Y.; Saveliev, V.; Sazhina, G.; Schembri, A.; Scotto Lavina, L.; Shibuya, H.; Simone, S.; Sioli, Max; Sirignano, C.; Sirri, G.; Song, J.S.; Spinetti, M.; Stanco, L.; Starkov, N.; Stipcevic, M.; Strauss, T.; Strolin, Paolo Emilio; Sugonyaev, V.; Taira, Y.; Takahashi, S.; Tenti, M.; Terranova, F.; Tezuka, I.; Tioukov, V.; Tolun, P.; Tsarev, V.; Tufanli, S.; Ushida, N.; Vilain, P.; Vladimirov, M.; Votano, L.; Vuilleumier, J.L.; Wilquet, G.; Wonsak, B.; Wurtz, J.; Yoon, C.S.; Yoshida, J.; Zaitsev, Y.; Zemskova, S.; Zghiche, Amina; Zimmermann, R.

    2008-01-01

    New methods for efficient and unambiguous interconnection between electronic counters and target units based on nuclear photographic emulsion films have been developed. The application to the OPERA experiment, that aims at detecting oscillations between mu neutrino and tau neutrino in the CNGS neutrino beam, is reported in this paper. In order to reduce background due to latent tracks collected before installation in the detector, on-site large-scale treatments of the emulsions ("refreshing") have been applied. Changeable Sheet (CSd) packages, each made of a doublet of emulsion films, have been designed, assembled and coupled to the OPERA target units ("ECC bricks"). A device has been built to print X-ray spots for accurate interconnection both within the CSd and between the CSd and the related ECC brick. Sample emulsion films have been extensively scanned with state-of-the-art automated optical microscopes. Efficient track-matching and powerful background rejection have been achieved in tests with electronic...

  18. Two Higgs doublet models augmented by a scalar color octet

    CERN Document Server

    Cheng, Li

    2016-01-01

    The LHC is now studying in detail the couplings of the Higgs boson in order to determine if there is new physics. Many recent studies have examined the available fits to Higgs couplings from the perspective of constraining two Higgs doublet models (2HDM). In this paper we extend those studies to include constraints on the one loop couplings of the Higgs to gluons and photons. These couplings are particularly sensitive to the existence of new colored particles that are hard to detect otherwise and we use them to constrain a 2HDM augmented with a color-octet scalar, a possibility motivated by minimal flavor violation. We first study theoretical constraints on this model and then compare them with LHC measurements.

  19. Parity-doublet representation of Majorana fermions and neutron oscillation

    CERN Document Server

    Fujikawa, Kazuo

    2016-01-01

    We present a parity-doublet theorem for the representation of the intrinsic parity of Majorana fermions, which is expected to be useful also in condensed matter physics, and it is illustrated to provide a criterion of neutron-antineutron oscillation in a BCS-like effective theory with $\\Delta B=2$ baryon number violating terms. The CP violation in the present effective theory causes no direct CP violating effects in the oscillation itself, which is demonstrated by the exact solution, although it influences the neutron electric dipole moment in the leading order of small $\\Delta B=2$ parameters. An analogue of Bogoliubov transformation, which preserves P and CP, is crucial in the analysis.

  20. Spinning Janus doublets driven in uniform AC electric fields

    CERN Document Server

    Boymelgreen, Alicia; Park, Sinwook; Miloh, Touvia

    2013-01-01

    We provide an experimental proof-of-concept for a robust, continuously rotating microstructure - consisting of two metallodielectric (gold-polystyrene)Janus particles rigidly attached to each other - which is driven in uniform ac fields by asymmetric induced-charge electroosmosis. The pairs (doublets) are stabilized on the substrate surface which is parallel to the plane of view and normal to the direction of the applied electric field. We find that the radius of orbit and angular velocity of the pair are predominantly dependent on the relative orientations of the interfaces between the metallic and dielectric hemispheres and that the electrohydrodynamic particle-particle interactions are small. Additionally, we verify that both the angular and linear velocities of the pair are proportional to the square of the applied field which is consistent with the theory for non-linear electrokinetics. A simple kinematic rigid body model is used to predict the paths and double velocities (angular and linear) based on th...

  1. A two-Higgs-doublet model facing experimental hints

    Directory of Open Access Journals (Sweden)

    Crivellin Andreas

    2016-01-01

    Full Text Available Physics beyond the Standard Model has so far eluded our experimental probes. Nevertheless, a number of interesting anomalies have accumulated that can be taken as hints towards new physics: BaBar, Belle, and LHCb have found deviations of approximately 3:8σ in B → Dτν and B → D*τν; the anomalous magnetic moment of the muon differs by about 3σ from the theoretic prediction; the branching ratio for τ → μνν is about 2σ above the Standard Model expectation; and CMS and ATLAS found hints for a non-zero decay rate of h → μτ at 2.6σ. Here we consider these processes within a lepton-specific two-Higgs doublet model with additional non-standard Yukawa couplings and show how (and which of these excesses can be accommodated.

  2. Scalar sector of two-Higgs-doublet models: A minireview

    Indian Academy of Sciences (India)

    GAUTAM BHATTACHARYYA; DIPANKAR DAS

    2016-09-01

    A vast literature on the theory and phenomenology of two-Higgs-doublet models (2HDM) exists since long. However, the present situation demands a revisit of some 2HDM properties. Now that a 125 GeV scalar resonance has been discovered at the LHC, with its couplings to other particles showing increasing affinity to the Standard Model Higgs-like behaviour, the 2HDM parameter space is more squeezed than ever. We briefly review the different parametrizations of the 2HDM potential and discuss the constraints on the parameter spacearising from the unitarity and stability of the potential together with constraints from the oblique electroweak $T$ -parameter. We also differentiate the consequences of imposing a global continuous $U(1)$ symmetry on thepotential from a discrete $Z_2$ symmetry.

  3. Cosmology and Colliders

    Science.gov (United States)

    Arnowitt, R.; Arusano, A.; Dutta, B.; Kamon, T.; Kolev, N.; Simeon, P.; Toback, D.; Wagner, P.

    2007-11-01

    The SUSY signals in the dominant stau-neutralino co-annihilation region at LHC are investigated. The region is consistent with the WMAP measurement of the cold dark matter relic density as well as all other current experimental bounds within the mSUGRA framework. The signals are characterized by an existence of very low-energy tau leptons in the final state due to small mass difference (ΔM) between ˜ τ and ˜ \\chi01 (5-15 GeV). We show that for ΔM = 9 GeV and M{˜ g} = 850 GeV with 30 fb-1 of data, we can measure ΔM to 15% and M{˜ g} to 6%.

  4. Cosmological Collider Physics

    CERN Document Server

    Arkani-Hamed, Nima

    2015-01-01

    We study the imprint of new particles on the primordial cosmological fluctuations. New particles with masses comparable to the Hubble scale produce a distinctive signature on the non-gaussianities. This feature arises in the squeezed limit of the correlation functions of primordial fluctuations. It consists of particular power law, or oscillatory, behavior that contains information about the masses of new particles. There is an angular dependence that gives information about the spin. We also have a relative phase that crucially depends on the quantum mechanical nature of the fluctuations and can be viewed as arising from the interference between two processes. While some of these features were noted before in the context of specific inflationary scenarios, here we give a general description emphasizing the role of symmetries in determining the final result.

  5. P{bar P} collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Demarteau, M. [State Univ. of New York, Stony Brook, NY (United States)

    1992-04-01

    A brief introduction to {bar p}p collider physics is given. Selected results from the collider experiments at the CERN S{bar p}pS and the Tevatron collider are described. The emphasis is on experimental aspects of {bar p}p collisions. Minimum bias physics and the production of jets, Intermediate Vector Bosons and heavy flavors is reviewed. The outlook for physics at hadron colliders for the near future is briefly discussed.

  6. VINCIA for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N.; Skands, P. [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Prestel, S. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Ritzmann, M. [Nikhef, Theory Group, Amsterdam (Netherlands); CEA Saclay, Institut de Physique Theorique, Gif-sur-Yvette Cedex (France)

    2016-11-15

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2 → 3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p {sub perpendicular} {sub to} measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g → q anti q) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q{sup 2}. Recoils and kinematics are governed by exact on-shell 2 → 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α{sub s}{sup 4}) (4 jets), and for Drell-Yan and Higgs production up to O(α{sub s}{sup 3}) (V/H + 3 jets). The resulting algorithm has been made publicly available in Vincia 2.0. (orig.)

  7. VINCIA for hadron colliders

    Science.gov (United States)

    Fischer, N.; Prestel, S.; Ritzmann, M.; Skands, P.

    2016-11-01

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→ 3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p_perp measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g→ qbar{q}) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q^2. Recoils and kinematics are governed by exact on-shell 2→ 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α _s^4) (4 jets), and for Drell-Yan and Higgs production up to O(α _s^3) ( V / H + 3 jets). The resulting algorithm has been made publicly available in Vincia 2.0.

  8. Vincia for Hadron Colliders

    CERN Document Server

    Fischer, Nadine; Ritzmann, Mathias; Skands, Peter

    2016-01-01

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are $2\\to 3$ antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a $p_\\perp$ measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., $g\\to q\\bar{q}$) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of $1/Q^2$. Recoils and kinematics are governed by exact on-shell $2\\to 3$ phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to $\\mathcal{O}(\\alpha_s^4)$ (4 jets), and for Drell-Yan and Higgs production up to $\\mathcal{O}(\\alpha_s^3)$ ($V/H$ + 3 jets). The resulting algorithm ha...

  9. The 750 GeV diphoton excess and its explanation in 2-Higgs Doublet Models with a real inert scalar multiplet

    CERN Document Server

    Moretti, Stefano

    2015-01-01

    We discuss a possible explanation of the recently observed diphoton excess at around 750 GeV as seen by the ATLAS and CMS experiments at the Large Hadron Collider. We calculate the cross section of the diphoton signature in 2-Higgs Doublet Models with the addition of a real isospin scalar multiplet without a vacuum expectation value, where a neutral component of such a representation can be a dark matter candidate. We find that the branching fraction of an additional CP-even Higgs boson $H$ from the doublet fields into the diphoton mode can be significantly enhanced, by up to a factor of $10^3$, with respect to the case of the Standard Model. Such a sizable enhancement is realized due to multi-charged inert particle loops entering the $H\\to \\gamma\\gamma$ decay mode. Through this enhancement, we obtain a suitable cross section of the $gg\\to H \\to \\gamma\\gamma$ process to explain the data, i.e., ${\\cal O}(10)$ fb level, with the fixed mass of $H$ being 750 GeV.

  10. High energy particle colliders: past 20 years, next 20 years and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir D.; /Fermilab

    2012-04-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the method and the history of colliders, discuss in detail the developments over the past two decades and the directions of the R and D toward near future colliders which are currently being explored. Finally, we make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  11. High energy particle colliders: past 20 years, next 20 years and beyond

    CERN Document Server

    Shiltsev, Vladimir D

    2012-01-01

    Particle colliders for high energy physics have been in the forefront of scientific discoveries for more than half a century. The accelerator technology of the collider has progressed immensely, while the beam energy, luminosity, facility size and the cost have grown by several orders of magnitude. The method of colliding beams has not fully exhausted its potential but its pace of progress has greatly slowed down. In this paper we very briefly review the method and the history of colliders, discuss in detail the developments over the past two decades and the directions of the R&D toward near future colliders which are currently being explored. Finally, we make an attempt to look beyond the current horizon and outline the changes in the paradigm required for the next breakthroughs.

  12. Polarized proton collider at RHIC

    Science.gov (United States)

    Alekseev, I.; Allgower, C.; Bai, M.; Batygin, Y.; Bozano, L.; Brown, K.; Bunce, G.; Cameron, P.; Courant, E.; Erin, S.; Escallier, J.; Fischer, W.; Gupta, R.; Hatanaka, K.; Huang, H.; Imai, K.; Ishihara, M.; Jain, A.; Lehrach, A.; Kanavets, V.; Katayama, T.; Kawaguchi, T.; Kelly, E.; Kurita, K.; Lee, S. Y.; Luccio, A.; MacKay, W. W.; Mahler, G.; Makdisi, Y.; Mariam, F.; McGahern, W.; Morgan, G.; Muratore, J.; Okamura, M.; Peggs, S.; Pilat, F.; Ptitsin, V.; Ratner, L.; Roser, T.; Saito, N.; Satoh, H.; Shatunov, Y.; Spinka, H.; Syphers, M.; Tepikian, S.; Tominaka, T.; Tsoupas, N.; Underwood, D.; Vasiliev, A.; Wanderer, P.; Willen, E.; Wu, H.; Yokosawa, A.; Zelenski, A. N.

    2003-03-01

    In addition to heavy ion collisions (RHIC Design Manual, Brookhaven National Laboratory), RHIC will also collide intense beams of polarized protons (I. Alekseev, et al., Design Manual Polarized Proton Collider at RHIC, Brookhaven National Laboratory, 1998 [2]), reaching transverse energies where the protons scatter as beams of polarized quarks and gluons. The study of high energy polarized protons beams has been a long term part of the program at BNL with the development of polarized beams in the Booster and AGS rings for fixed target experiments. We have extended this capability to the RHIC machine. In this paper we describe the design and methods for achieving collisions of both longitudinal and transverse polarized protons in RHIC at energies up to s=500 GeV.

  13. Crab Cavities for Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Burt, G.; Ambattu, P.; Carter, R.; Dexter, A.; Tahir, I.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Beard, C.; Dykes, M.; Goudket, P.; Kalinin, A.; Ma, L.; McIntosh, P.; /Daresbury; Shulte, D.; /CERN; Jones, Roger M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Bellantoni, L.; Chase, B.; Church, M.; Khabouline, T.; Latina, A.; /Fermilab; Adolphsen, C.; Li, Z.; Seryi, Andrei; /SLAC

    2011-11-08

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  14. Crab cavities for linear colliders

    CERN Document Server

    Burt, G; Carter, R; Dexter, A; Tahir, I; Beard, C; Dykes, M; Goudket, P; Kalinin, A; Ma, L; McIntosh, P; Shulte, D; Jones, Roger M; Bellantoni, L; Chase, B; Church, M; Khabouline, T; Latina, A; Adolphsen, C; Li, Z; Seryi, Andrei; Xiao, L

    2008-01-01

    Crab cavities have been proposed for a wide number of accelerators and interest in crab cavities has recently increased after the successful operation of a pair of crab cavities in KEK-B. In particular crab cavities are required for both the ILC and CLIC linear colliders for bunch alignment. Consideration of bunch structure and size constraints favour a 3.9 GHz superconducting, multi-cell cavity as the solution for ILC, whilst bunch structure and beam-loading considerations suggest an X-band copper travelling wave structure for CLIC. These two cavity solutions are very different in design but share complex design issues. Phase stabilisation, beam loading, wakefields and mode damping are fundamental issues for these crab cavities. Requirements and potential design solutions will be discussed for both colliders.

  15. Search for a Low-Mass Neutral Higgs Boson with Suppressed Couplings to Fermions Using Events with Multiphoton Final States

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, Timo Antero [et al.

    2016-06-20

    A search for a Higgs boson with suppressed couplings to fermions, $h_f$, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via $p\\bar{p} \\to H^\\pm h_f \\to W^* h_f h_f \\to 4\\gamma + X$, where $H^\\pm$ is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96~TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2~${\\rm fb}^{-1}$. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV/$c^2$ are excluded at 95\\% Bayesian credibility.

  16. Search for a Low-Mass Neutral Higgs Boson with Suppressed Couplings to Fermions Using Events with Multiphoton Final States

    CERN Document Server

    Aaltonen, T; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Marchese, L; Deninno, M; Devoto, F; D'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Erbacher, R; Errede, S; Esham, B; Farrington, S; Ramos, J P Fernández; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; López, O González; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; da Costa, J Guimaraes; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kim, Y J; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucà, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Prokoshin, F; Pranko, A; Ptohos, F; Punzi, G; Fernández, I Redondo; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Sorin, V; Song, H; Stancari, M; Denis, R St; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W -M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2016-01-01

    A search for a Higgs boson with suppressed couplings to fermions, $h_f$, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via $p\\bar{p} \\to H^\\pm h_f \\to W^* h_f h_f \\to 4\\gamma + X$, where $H^\\pm$ is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96~TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2~${\\rm fb}^{-1}$. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV/$c^2$ are excluded at 95\\% Bayesian credibility.

  17. Search for a Low-Mass Neutral Higgs Boson with Suppressed Couplings to Fermions Using Events with Multiphoton Final States

    CERN Document Server

    Aaltonen, Timo Antero; Amidei, Dante E; Anastassov, Anton Iankov; Annovi, Alberto; Antos, Jaroslav; Apollinari, Giorgio; Appel, Jeffrey A; Arisawa, Tetsuo; Artikov, Akram Muzafarovich; Asaadi, Jonathan A; Ashmanskas, William Joseph; Auerbach, Benjamin; Aurisano, Adam J; Azfar, Farrukh A; Badgett, William Farris; Bae, Taegil; Barbaro-Galtieri, Angela; Barnes, Virgil E; Barnett, Bruce Arnold; Barria, Patrizia; Bartos, Pavol; Bauce, Matteo; Bedeschi, Franco; Behari, Satyajit; Bellettini, Giorgio; Bellinger, James Nugent; Benjamin, Douglas P; Beretvas, Andrew F; Bhatti, Anwar Ahmad; Bland, Karen Renee; Blumenfeld, Barry J; Bocci, Andrea; Bodek, Arie; Bortoletto, Daniela; Boudreau, Joseph Francis; Boveia, Antonio; Brigliadori, Luca; Bromberg, Carl Michael; Brucken, Erik; Budagov, Ioulian A; Budd, Howard Scott; Burkett, Kevin Alan; Busetto, Giovanni; Bussey, Peter John; Butti, Pierfrancesco; Buzatu, Adrian; Calamba, Aristotle; Camarda, Stefano; Campanelli, Mario; Canelli, Florencia; Carls, Benjamin; Carlsmith, Duncan L; Carosi, Roberto; Carrillo Moreno, Salvador; Casal Larana, Bruno; Casarsa, Massimo; Castro, Andrea; Catastini, Pierluigi; Cauz, Diego; Cavaliere, Viviana; Cerri, Alessandro; Cerrito, Lucio; Chen, Yen-Chu; Chertok, Maxwell Benjamin; Chiarelli, Giorgio; Chlachidze, Gouram; Cho, Kihyeon; Chokheli, Davit; Clark, Allan Geoffrey; Clarke, Christopher Joseph; Convery, Mary Elizabeth; Conway, John Stephen; Corbo, Matteo; Cordelli, Marco; Cox, Charles Alexander; Cox, David Jeremy; Cremonesi, Matteo; Cruz Alonso, Daniel; Cuevas Maestro, Javier; Culbertson, Raymond Lloyd; D'Ascenzo, Nicola; Datta, Mousumi; de Barbaro, Pawel; Demortier, Luc M; Deninno, Maria Maddalena; D'Errico, Maria; Devoto, Francesco; Di Canto, Angelo; Di Ruzza, Benedetto; Dittmann, Jay Richard; Donati, Simone; D'Onofrio, Monica; Dorigo, Mirco; Driutti, Anna; Ebina, Koji; Edgar, Ryan Christopher; Erbacher, Robin D; Errede, Steven Michael; Esham, Benjamin; Farrington, Sinead Marie; Fernández Ramos, Juan Pablo; Field, Richard D; Flanagan, Gene U; Forrest, Robert David; Franklin, Melissa EB; Freeman, John Christian; Frisch, Henry J; Funakoshi, Yujiro; Galloni, Camilla; Garfinkel, Arthur F; Garosi, Paola; Gerberich, Heather Kay; Gerchtein, Elena A; Giagu, Stefano; Giakoumopoulou, Viktoria Athina; Gibson, Karen Ruth; Ginsburg, Camille Marie; Giokaris, Nikos D; Giromini, Paolo; Glagolev, Vladimir; Glenzinski, Douglas Andrew; Gold, Michael S; Goldin, Daniel; Golossanov, Alexander; Gomez, Gervasio; Gomez-Ceballos, Guillelmo; Goncharov, Maxim T; González López, Oscar; Gorelov, Igor V; Goshaw, Alfred T; Goulianos, Konstantin A; Gramellini, Elena; Grosso-Pilcher, Carla; Guimaraes da Costa, Joao; Hahn, Stephen R; Han, Ji-Yeon; Happacher, Fabio; Hara, Kazuhiko; Hare, Matthew Frederick; Harr, Robert Francis; Harrington-Taber, Timothy; Hatakeyama, Kenichi; Hays, Christopher Paul; Heinrich, Joel G; Herndon, Matthew Fairbanks; Hocker, James Andrew; Hong, Ziqing; Hopkins, Walter Howard; Hou, Suen Ray; Hughes, Richard Edward; Husemann, Ulrich; Hussein, Mohammad; Huston, Joey Walter; Introzzi, Gianluca; Iori, Maurizio; Ivanov, Andrew Gennadievich; James, Eric B; Jang, Dongwook; Jayatilaka, Bodhitha Anjalike; Jeon, Eun-Ju; Jindariani, Sergo Robert; Jones, Matthew T; Joo, Kyung Kwang; Jun, Soon Yung; Junk, Thomas R; Kambeitz, Manuel; Kamon, Teruki; Karchin, Paul Edmund; Kasmi, Azeddine; Kato, Yukihiro; Ketchum, Wesley Robert; Keung, Justin Kien; Kilminster, Benjamin John; Kim, DongHee; Kim, Hyunsoo; Kim, Jieun; Kim, Min Jeong; Kim, Shin-Hong; Kim, Soo Bong; Kim, Young-Jin; Kim, Young-Kee; Kimura, Naoki; Kirby, Michael H; Knoepfel, Kyle James; Kondo, Kunitaka; Kong, Dae Jung; Konigsberg, Jacobo; Kotwal, Ashutosh Vijay; Kreps, Michal; Kroll, IJoseph; Kruse, Mark Charles; Kuhr, Thomas; Kurata, Masakazu; Laasanen, Alvin Toivo; Lammel, Stephan; Lancaster, Mark; Lannon, Kevin Patrick; Latino, Giuseppe; Lee, Hyun Su; Lee, Jaison; Leo, Sabato; Leone, Sandra; Lewis, Jonathan D; Limosani, Antonio; Lipeles, Elliot David; Lister, Alison; Liu, Qiuguang; Liu, Tiehui Ted; Lockwitz, Sarah E; Loginov, Andrey Borisovich; Lucchesi, Donatella; Lucà, Alessandra; Lueck, Jan; Lujan, Paul Joseph; Lukens, Patrick Thomas; Lungu, Gheorghe; Lys, Jeremy E; Lysak, Roman; Madrak, Robyn Leigh; Maestro, Paolo; Malik, Sarah Alam; Manca, Giulia; Manousakis-Katsikakis, Arkadios; Marchese, Luigi; Margaroli, Fabrizio; Marino, Christopher Phillip; Matera, Keith; Mattson, Mark Edward; Mazzacane, Anna; Mazzanti, Paolo; McNulty, Ronan; Mehta, Andrew; Mehtala, Petteri; Mesropian, Christina; Miao, Ting; Mietlicki, David John; Mitra, Ankush; Miyake, Hideki; Moed, Shulamit; Moggi, Niccolo; Moon, Chang-Seong; Moore, Ronald Scott; Morello, Michael Joseph; Mukherjee, Aseet; Muller, Thomas; Murat, Pavel A; Mussini, Manuel; Nachtman, Jane Marie; Nagai, Yoshikazu; Naganoma, Junji; Nakano, Itsuo; Napier, Austin; Nett, Jason Michael; Nigmanov, Turgun S; Nodulman, Lawrence J; Noh, Seoyoung; Norniella Francisco, Olga; Oakes, Louise Beth; Oh, Seog Hwan; Oh, Young-do; Okusawa, Toru; Orava, Risto Olavi; Ortolan, Lorenzo; Pagliarone, Carmine Elvezio; Palencia, Jose Enrique; Palni, Prabhakar; Papadimitriou, Vaia; Parker, William Chesluk; Pauletta, Giovanni; Paulini, Manfred; Paus, Christoph Maria Ernst; Phillips, Thomas J; Piacentino, Giovanni M; Pianori, Elisabetta; Pilot, Justin Robert; Pitts, Kevin T; Plager, Charles; Pondrom, Lee G; Poprocki, Stephen; Potamianos, Karolos Jozef; Pranko, Aliaksandr Pavlovich; Prokoshin, Fedor; Ptohos, Fotios K; Punzi, Giovanni; Redondo Fernández, Ignacio; Renton, Peter B; Rescigno, Marco; Rimondi, Franco; Ristori, Luciano; Robson, Aidan; Rodriguez, Tatiana Isabel; Rolli, Simona; Ronzani, Manfredi; Roser, Robert Martin; Rosner, Jonathan L; Ruffini, Fabrizio; Ruiz Jimeno, Alberto; Russ, James S; Rusu, Vadim Liviu; Sakumoto, Willis Kazuo; Sakurai, Yuki; Santi, Lorenzo; Sato, Koji; Saveliev, Valeri; Savoy-Navarro, Aurore; Schlabach, Philip; Schmidt, Eugene E; Schwarz, Thomas A; Scodellaro, Luca; Scuri, Fabrizio; Seidel, Sally C; Seiya, Yoshihiro; Semenov, Alexei; Sforza, Federico; Shalhout, Shalhout Zaki; Shears, Tara G; Shepard, Paul F; Shimojima, Makoto; Shochet, Melvyn J; Shreyber-Tecker, Irina; Simonenko, Alexander V; Sliwa, Krzysztof Jan; Smith, John Rodgers; Snider, Frederick Douglas; Song, Hao; Sorin, Maria Veronica; St Denis, Richard Dante; Stancari, Michelle Dawn; Stentz, Dale James; Strologas, John; Sudo, Yuji; Sukhanov, Alexander I; Suslov, Igor M; Takemasa, Ken-ichi; Takeuchi, Yuji; Tang, Jian; Tecchio, Monica; Teng, Ping-Kun; Thom, Julia; Thomson, Evelyn Jean; Thukral, Vaikunth; Toback, David A; Tokar, Stanislav; Tollefson, Kirsten Anne; Tomura, Tomonobu; Tonelli, Diego; Torre, Stefano; Torretta, Donatella; Totaro, Pierluigi; Trovato, Marco; Ukegawa, Fumihiko; Uozumi, Satoru; Velev, Gueorgui; Vellidis, Konstantinos; Vernieri, Caterina; Vidal Marono, Miguel; Vilar Cortabitarte, Rocio; Vizán Garcia, Jesus Manuel; Vogel, Marcelo; Volpi, Guido; Vázquez-Valencia, Elsa Fabiola; Wagner, Peter; Wallny, Rainer S; Wang, Song-Ming; Waters, David S; Wester, William Carl; Whiteson, Daniel O; Wicklund, Arthur Barry; Wilbur, Scott; Williams, Hugh H; Wilson, Jonathan Samuel; Wilson, Peter James; Winer, Brian L; Wittich, Peter; Wolbers, Stephen A; Wolfe, Homer; Wright, Thomas Roland; Wu, Xin; Wu, Zhenbin; Yamamoto, Kazuhiro; Yamato, Daisuke; Yang, Tingjun; Yang, Un-Ki; Yang, Yu Chul; Yao, Wei-Ming; Yeh, Gong Ping; Yi, Kai; Yoh, John; Yorita, Kohei; Yoshida, Takuo; Yu, Geum Bong; Yu, Intae; Zanetti, Anna Maria; Zeng, Yu; Zhou, Chen; Zucchelli, Stefano

    2016-06-20

    A search for a Higgs boson with suppressed couplings to fermions, $h_f$, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via $p\\bar{p} \\to H^\\pm h_f \\to W^* h_f h_f \\to 4\\gamma + X$, where $H^\\pm$ is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96~TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2~${\\rm fb}^{-1}$. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV/$c^2$ are excluded at 95\\% Bayesian credibility.

  18. Collective accelerator for electron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, R.J.

    1985-05-13

    A recent concept for collective acceleration and focusing of a high energy electron bunch is discussed, in the context of its possible applicability to large linear colliders in the TeV range. The scheme can be considered to be a member of the general class of two-beam accelerators, where a high current, low voltage beam produces the acceleration fields for a trailing high energy bunch.

  19. Looking For Physics Beyond The Standard Model: Searches For Charged Higgs Bosons At $e^{+}e^{-}$ Colliders

    CERN Document Server

    Kiiskinen, A P

    2004-01-01

    This thesis describes direct searches for pair production of charged Higgs bosons performed in the data collected by the DELPHI detector at the LEP collider at CERN. In addition, the possibilities to discover and study heavy charged Higgs bosons at possible future high-energy linear colliders are presented. The existence of charged Higgs bosons is predicted by many extensions of the Standard Model. A possible discovery of these particles would be a solid proof for physics beyond the Standard Model. Discovery of charged Higgs bosons, and measurement of their properties, would also provide useful information about the structure of the more general theory. New analysis methods were developed for the searches performed at LEP. A large, previously unexplored, mass range for cover but no evidence for the existence of the charged Higgs bosons was found. This allowed setting new lower mass limits for the charged Higgs boson within the framework of general two Higgs doublet models. Results have been interpreted and pr...

  20. Phenomenology of W plus or minus H plus or minus production at the CERN Large Handron Collider

    CERN Document Server

    Moretti, S

    1999-01-01

    Barrientos Bendezu' and Kniehl [hep-ph/9807480] recently suggested that $W^\\pm H^\\mp$ associated production may be a useful channel in the search for the elusive heavy charged Higgs bosons of the 2 Higgs Doublet Model at the Large Hadron Collider. We investigate the phenomenology of this mechanism in the Minimal Supersymmetric Standard Model, with special attention paid to the most likely heavy Higgs decay, $H^\\mp\\to tb\\to b\\bar b W^\\mp$, and to the irreducible background from top pair production. We find that the semi-leptonic signature `$b\\bar b W^+W^-\\to b\\bar b jj \\ell$ + missing momentum' is dominated by top-antitop events, which overwhelm the charged Higgs signal over the heavy mass range that can be probed at the CERN collider

  1. Higgs, SUSY and the Standard Model at $\\gamma\\gamma$ Colliders

    CERN Document Server

    Hagiwara, K

    2001-01-01

    In this report I surveyed physics potential of the gamma-gamma option of a Linear e+e- Collider with the following questions in mind: What new discovery can be expected at a gamma-gamma collider in addition to what will be learned at its `parent' e+e- Linear Collider? By taking account of the hard energy spectrum and polarization of colliding photons, produced by Compton back-scattering of laser light off incoming e- beams, we find that a gamma-gamma collider is most powerful when new physics appears in the neutral spin-zero channel at an invariant mass below about 80% of the c.m. energy of the colliding e-e- system. If a light Higgs boson exists, its properties can be studied in detail, and if its heavier partners or a heavy Higgs boson exists in the above mass range, they may be discovered at a gamma-gamma collider. CP property of the scalar sector can be explored in detail by making use of linear polarization of the colliding photons, decay angular correlations of final state particles, and the pattern of ...

  2. Invariants and flavour in the general Two Higgs Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Botella, F.J., E-mail: fbotella@uv.es [Departament de Física Teòrica and IFIC, Universitat de València-CSIC, E-46100, Burjassot (Spain); Branco, G.C., E-mail: gustavo.branco@cern.ch [Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Rebelo, M.N., E-mail: margarida.rebelo@cern.ch [Universidade Técnica de Lisboa, Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)

    2013-05-13

    The flavour structure of the general Two Higgs Doublet Model (2HDM) is analysed and a detailed study of the parameter space is presented, showing that flavour mixing in the 2HDM can be parametrized by various unitary matrices which arise from the misalignment in flavour space between pairs of various Hermitian flavour matrices which can be constructed within the model. This is entirely analogous to the generation of the CKM matrix in the Standard Model (SM). We construct weak basis invariants which can give insight into the physical implications of any flavour model, written in an arbitrary weak basis (WB) in the context of 2HDM. We apply this technique to two special cases, models with MFV and models with NNI structures. In both cases non-trivial CP-odd WB invariants arise in a mass power order much smaller than what one encounters in the SM, which can have important implications for baryogenesis in the framework of the general 2HDM.

  3. Higgs doublet decay as the origin of the baryon asymmetry

    CERN Document Server

    Hambye, Thomas

    2016-01-01

    We consider a question which curiously had not been properly considered so far: in the standard seesaw model what is the minimum value the mass of a right-handed (RH) neutrino must have for allowing successful leptogenesis via CP-violating decays? To answer this question requires to take into account a number of thermal effects. We show that, for low RH neutrino masses and thanks to these effects, leptogenesis turns out to proceed efficiently from the decay of the Standard Model (SM) scalar doublet components into a RH neutrino and a lepton. Such decays produce the asymmetry at low temperatures, slightly before sphaleron decoupling. If the RH neutrino has thermalized prior from producing the asymmetry, this mechanism turns out to lead to the bound $m_N>2$ GeV. If, instead, the RH neutrinos have not thermalized, leptogenesis from these decays is enhanced further and can be easily successful, even at lower scales. This Higgs-decay leptogenesis new mechanism works without requiring an interplay of flavor effects...

  4. Dark matter physics in neutrino specific two Higgs doublet model

    CERN Document Server

    Baek, Seungwon

    2016-01-01

    Although the seesaw mechanism is a natural explanation for the small neutrino masses, there are cases when the Majorana mass terms for the right-handed neutrinos are not allowed due to symmetry. In that case, if neutrino-specific Higgs doublet is introduced, neutrinos become Dirac particles and their small masses can be explained by its small VEV. We show that the same symmetry, which we assume a global $U(1)_X$, can also be used to explain the stability of dark matter. In our model, a new singlet scalar breaks the global symmetry spontaneously down to a discrete $Z_2$ symmetry. The dark matter particle, lightest $Z_2$-odd fermion, is stabilized. We discuss the phenomenology of dark matter: relic density, direct detection, and indirect detection. We find that the relic density can be explained by a novel Goldstone boson channel or by resonance channel. In the most region of parameter space considered, the direct detections is suppressed well below the current experimental bound. Our model can be further teste...

  5. Diverse rupture processes in the 2015 Peru deep earthquake doublet.

    Science.gov (United States)

    Ye, Lingling; Lay, Thorne; Kanamori, Hiroo; Zhan, Zhongwen; Duputel, Zacharie

    2016-06-01

    Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes.

  6. Neutron Electric Dipole Moment in Two Higgs Doublet Model

    CERN Document Server

    Hayashi, T; Matsuda, M; Tanimoto, M; Hayashi, Tkemi; Koide, Yoshio; Matsuda, Masahisa; Tanimoto, Morimitsu

    1994-01-01

    We study the effect of the "chromo-electric" dipole moment on the electric dipole moment(EDM) of the neutron in the two Higgs doublet model. We systematically investigate the Weinberg's operator $O_{3g}=GG\\t G$ and the operator $O_{qg}=\\bar q\\sigma\\t Gq$, in the cases of $\\tan\\b\\gg 1$, $\\tan\\b\\ll 1$ and $\\tan\\b\\simeq 1$. It is shown that $O_{sg}$ gives the main contribution to the neutron EDM compared to the other operators, and also that the contributions of $O_{ug}$ and $O_{3g}$ cancel out each other. It is pointed out that the inclusion of second lightest neutral Higgs scalar adding to the lightest one is of essential importance to estimate the neutron EDM. The neutron EDM is considerably reduced due to the destructive contribution with each other if the mass difference of the two Higgs scalars is of the order $O(50\\G)$.

  7. Muon $g-2$ in the Aligned Two Higgs Doublet Model

    CERN Document Server

    Han, Tao; Sayre, Joshua

    2015-01-01

    We study the Two-Higgs-Doublet Model with the aligned Yukawa sector (A2HDM) in light of the observed excess measured in the muon anomalous magnetic moment. We take into account the existing theoretical and experimental constraints with up-to-date values and demonstrate that a phenomenologically interesting region of parameter space exists. With a detailed parameter scan, we show a much larger region of viable parameter space in this model beyond the limiting case Type X 2HDM as obtained before. It features the existence of light scalar states with masses $3$ GeV $\\lesssim m_H^{} \\lesssim 50$ GeV, or $\\ 10$ GeV $\\lesssim m_A^{} \\lesssim 130$ GeV, with enhanced couplings to tau leptons. The charged Higgs boson is typically heavier, with $200$ GeV $ \\lesssim m^{}_{H^+} \\lesssim 630$ GeV. The surviving parameter space is forced into the CP-conserving limit by EDM constraints. Some Standard Model observables may be significantly modified, including a possible new decay mode of the SM-like Higgs boson to four taus....

  8. High energy accelerator and colliding beam user group

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    This report discusses the following topics: OPAL experiment at LEP; D{phi} experiment at Fermilab; deep inelastic muon interactions at TEV II; CYGNUS experiment; final results from {nu}{sub e}{sup {minus}e} elastic scattering; physics with CLEO detector at CESR; results from JADE at PETRA; rare kaon-decay experiment at BNL; search for top quark; and super conducting super collider activities.

  9. Could Large CP Violation Be Detected at Colliders?

    CERN Document Server

    Im, C J C; Malde, P

    1993-01-01

    We argue that CP--violation effects below a few tenths of a percent are probably undetectable at hadron and electron colliders. Thus only operators whose contributions interfere with tree--level Standard Model amplitudes are detectable. We list these operators for Standard Model external particles and some two and three body final state reactions that could show detectable effects. These could test electroweak baryogenesis scenarios.

  10. Active quadrupole stabilization for future linear particle colliders

    CERN Document Server

    Collette, Christophe; Kuzmin, Andrey; Janssens, Stef; Sylte, Magnus; Guinchard, Michael; Hauviller, Claude

    2010-01-01

    The future Compact LInear particle Collider (CLIC) under study at CERN will require to stabilize heavy electromagnets, and also to provide them some positioning capabilities. Firstly, this paper presents the concept adopted to address both requirements. Secondly, the control strategy adopted for the stabilization is studied numerically, showing that the quadrupole can be stabilized in both lateral and vertical direction. Finally, the strategy is validated experimentally on a single degree of freedom scaled test bench.

  11. Theory overview of electroweak physics at hadron colliders

    CERN Document Server

    Campbell, John M

    2016-01-01

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  12. Disambiguating seesaw models using invariant mass variables at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Dev, P.S. Bhupal [Consortium for Fundamental Physics, School of Physics and Astronomy,University of Manchester, Manchester M13 9PL (United Kingdom); Physik-Department T30d, Technische Univertität München,James-Franck-Straße 1, 85748 Garching (Germany); Kim, Doojin [Department of Physics, University of Florida,Gainesville, FL 32611 (United States); Mohapatra, Rabindra N. [Maryland Center for Fundamental Physics and Department of Physics,University of Maryland,College Park, Maryland 20742 (United States)

    2016-01-19

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same “smoking-gun” collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we discuss the future prospects of testing these scenarios at the √s=14 and 100 TeV hadron colliders.

  13. Microtubule doublets are double-track railways for intraflagellar transport trains.

    Science.gov (United States)

    Stepanek, Ludek; Pigino, Gaia

    2016-05-06

    The cilium is a large macromolecular machine that is vital for motility, signaling, and sensing in most eukaryotic cells. Its conserved core structure, the axoneme, contains nine microtubule doublets, each comprising a full A-microtubule and an incomplete B-microtubule. However, thus far, the function of this doublet geometry has not been understood. We developed a time-resolved correlative fluorescence and three-dimensional electron microscopy approach to investigate the dynamics of intraflagellar transport (IFT) trains, which carry ciliary building blocks along microtubules during the assembly and disassembly of the cilium. Using this method, we showed that each microtubule doublet is used as a bidirectional double-track railway: Anterograde IFT trains move along B-microtubules, and retrograde trains move along A-microtubules. Thus, the microtubule doublet geometry provides direction-specific rails to coordinate bidirectional transport of ciliary components.

  14. Derivative interactions and perturbative UV contributions in N Higgs doublet models

    Energy Technology Data Exchange (ETDEWEB)

    Kikuta, Yohei [KEK Theory Center, KEK, Tsukuba (Japan); The Graduate University for Advanced Studies, Department of Particle and Nuclear Physics, Tsukuba (Japan); Yamamoto, Yasuhiro [Universidad de Granada, Deportamento de Fisica Teorica y del Cosmos, Facultad de Ciencias and CAFPE, Granada (Spain)

    2016-05-15

    We study the Higgs derivative interactions on models including arbitrary number of the Higgs doublets. These interactions are generated by two ways. One is higher order corrections of composite Higgs models, and the other is integration of heavy scalars and vectors. In the latter case, three point couplings between the Higgs doublets and these heavy states are the sources of the derivative interactions. Their representations are constrained to couple with the doublets. We explicitly calculate all derivative interactions generated by integrating out. Their degrees of freedom and conditions to impose the custodial symmetry are discussed. We also study the vector boson scattering processes with a couple of two Higgs doublet models to see experimental signals of the derivative interactions. They are differently affected by each heavy field. (orig.)

  15. Product lambda-doublet ratios for the O(3P) + D2 reaction: A mechanistic imprint

    CERN Document Server

    Jambrina, P G; Aldegunde, J; Brouard, M; Aoiz, F J

    2016-01-01

    In the last decade, the development of theoretical methods have allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the $\\Lambda$-doublet states produced by chemical reactions. In particular, recent measurements of the OD($^2\\Pi$) product of the O($^3$P) + D$_2$ reaction have shown a clear preference for the $\\Pi(A')$ $\\Lambda$-doublet states, in apparent contradiction with {\\em ab initio} calculations, which predict a larger reactivity on the $A"$ potential energy surface. Here we present a method to calculate the $\\Lambda$-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental $\\Lambda$-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that...

  16. Radiative neutrino masses in the singlet-doublet fermion dark matter model with scalar singlets

    CERN Document Server

    Restrepo, Diego; Sánchez-Peláez, Marta; Zapata, Oscar; Tangarife, Walter

    2015-01-01

    When the singlet-doublet fermion dark matter model is extended with additional $Z_2$--odd real singlet scalars, neutrino masses and mixings can be generated at one-loop level. In this work, we discuss the salient features arising from the combination of the two resulting simplified dark matter models. When the $Z_2$-lightest odd particle is a scalar singlet, $\\operatorname{Br}(\\mu\\to e \\gamma)$ could be measurable provided that the singlet-doublet fermion mixing is small enough. In this scenario, also the new decay channels of vector-like fermions into scalars can generate interesting leptonic plus missing transverse energy signals at the LHC. On the other hand, in the case of doublet-like fermion dark matter, scalar coannihilations lead to an increase in the relic density which allow to lower the bound of doublet-like fermion dark matter.

  17. The Lee-Wick Extension of the Two-Higgs Doublet Model

    CERN Document Server

    Johansen, Aria R; Thrasher, Keith

    2015-01-01

    The Lee-Wick Standard Model is a highly constrained model which solves the gauge hierarchy problem at the expense of including fields with negative norm. It appears to be macroscopically causal and consistent. This model is extended by considering the two-Higgs doublet extension of the Lee-Wick model. Rewriting the Lagrangian using auxiliary fields introduces two additional doublets of Lee-Wick partners. The model is highly constrained, with only one or two additional parameters beyond that of the usual two-Higgs doublet model, and yet there are four doublets. Mass relations are established by diagonalizing the mass matrices and further constraints are established by studying results from B --> tau nu, neutral B-meson mixing, and B --> X_s gamma. The prospects of detecting evidence for this model at the LHC are discussed.

  18. Localized temporal variation of Earth's inner-core boundary from high-quality waveform doublets

    Science.gov (United States)

    Xin, Danhua

    2016-04-01

    The accurate determination of the topography of an Earth's internal boundary is difficult because of the possible trade-off with the velocity of the media above it. Here we use waveform-doublet method to map the ICB topography. A waveform doublet is a pair of earthquakes occurring at essentially the same spatial position and received by the same station with high similarity in their waveforms (Poupinet et al. 1984), which make the exact detection of the ICB topography possible. In this study, we used this method to detect temporal change of the ICB using doublets from the Western Pacific (WP) area to increase global coverage of the ICB. Compared with previous study using doublets from South Sandwich Islands (SSI) (Song and Dai, 2008), the new samples showed negligible temporal change of the ICB.

  19. Flavour constraints on the Aligned Two-Higgs-Doublet Model and CP violation

    CERN Document Server

    Tuzón, Paula

    2010-01-01

    The Aligned Two-Higgs-Doublet Model (A2HDM) describes a particular way of enlarging the scalar sector of the Standard Model, with a second Higgs doublet which is aligned to first the one in flavour space. This implies the absence of flavour-changing neutral currents at tree level and the presence of three complex parameters. Within this general approach, we analyze the charged Higgs phenomenology, including CP asymmetries in the K and B systems.

  20. Axion-Higgs interplay in the two Higgs-doublet model

    CERN Document Server

    Espriu, Domenec; Renau, Albert

    2015-01-01

    We study the Dine-Fischler-Srednicki (DFS) model in the light of the recent Higgs LHC results and electroweak precision data. The DFS model is a natural extension of the two-Higgs doublet model endowed with a Peccei-Quinn symmetry and leading to a physically acceptable axion. For generic couplings, the model reproduces the minimal Standard Model showing only tiny deviations (extreme decoupling scenario) whereas all additional degrees of freedom (with the exception of the axion) are very heavy. Recently, new corners of this model have been highlighted where it may exhibit enlarged global symmetries making the corresponding models technically natural (naturalness scenario). In some cases an additional Higgs could be present at the weak scale. In this case, the new light $0^+$ state would be accompanied by relatively light charged and neutral pseudoscalar Higgses. We will use the oblique corrections, particularly $\\Delta\\rho$, to constrain the mass spectrum in this case. As a final result, we also work out the n...

  1. The Compact Muon Solenoid Experiment at the Large Hadron Collider The Compact Muon Solenoid Experiment at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    David Delepine

    2012-02-01

    Full Text Available The Compact Muon Solenoid experiment at the CERN Large Hadron Collider will study protonproton collisions at unprecedented energies and luminosities. In this article we providefi rst a brief general introduction to particle physics. We then explain what CERN is. Thenwe describe the Large Hadron Collider at CERN, the most powerful particle acceleratorever built. Finally we describe the Compact Muon Solenoid experiment, its physics goals,construction details, and current status.El experimento Compact Muon Solenoid en el Large Hadron Collider del CERN estudiarácolisiones protón protón a energías y luminosidades sin precedente. En este artículo presentamos primero una breve introducción general a la física de partículas. Despuésexplicamos lo que es el CERN. Luego describimos el Large Hadron Collider, el más potente acelerador de partículas construido por el hombre, en el CERN. Finalmente describimos el experimento Compact Muon Solenoid, sus objetivos en física, los detalles de su construcción,y su situación presente.

  2. Colliding with a crunching bubble

    Energy Technology Data Exchange (ETDEWEB)

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  3. Muon Colliders and Neutrino Factories

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, Daniel M. [IIT, Chicago

    2015-05-29

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  4. Testing Saturation at Hadron Colliders

    CERN Document Server

    Marquet, C

    2003-01-01

    We extend the saturation models a la Golec-Biernat and Wusthoff to cross-sections of hard processes initiated by virtual-gluon probes separated by large rapidity intervals at hadron colliders. We derive their analytic expressions and apply them to physical examples, such as saturation effects for Mueller-Navelet jets. By comparison to gamma*-gamma* cross-sections we find a more abrupt transition to saturation. We propose to study observables with a potentially clear saturation signal and to use heavy vector and flavored mesons as alternative virtual-gluon probes.

  5. Muon Colliders and Neutrino Factories

    CERN Document Server

    Kaplan, Daniel M

    2014-01-01

    Muon colliders and neutrino factories are attractive options for future facilities aimed at achieving the highest lepton-antilepton collision energies and precision measurements of Higgs boson and neutrino mixing matrix parameters. The facility performance and cost depend on how well a beam of muons can be cooled. Recent progress in muon cooling design studies and prototype tests nourishes the hope that such facilities could be built starting in the coming decade. The status of the key technologies and their various demonstration experiments is summarized. Prospects "post-P5" are also discussed.

  6. Top production at hadron colliders

    Indian Academy of Sciences (India)

    Albert De Roeck

    2012-10-01

    New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including top quarks. The results are based on data samples of up to 5.4 fb-1 for the Tevatron experiments and 1.1 fb−1 for the LHC experiments.

  7. Tevatron instrumentation: boosting collider performance

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir; Jansson, Andreas; Moore, Ronald; /Fermilab

    2006-05-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches, many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for the next big machines--LHC and ILC.

  8. Standard Model Background of the Cosmological Collider

    CERN Document Server

    Chen, Xingang; Xianyu, Zhong-Zhi

    2016-01-01

    The inflationary universe can be viewed as a "Cosmological Collider" with energy of Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics Standard Model. In this paper we describe the Standard Model background of the Cosmological Collider.

  9. Prospects for Colliders and Collider Physics to the 1 PeV Energy Scale

    CERN Document Server

    King, B J

    2000-01-01

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing our progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC -- one each of e+e- and hadron colliders and three muon colliders -- and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R&D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory

  10. Minimal left-right symmetric models and new $Z'$ properties at future electron-positron colliders

    CERN Document Server

    Almeida, F M L; Martins-Simões, J A; Ponciano, J; Ramalho, A J; Wulck, S; Do Vale, M A B; Wulck, Stenio

    2004-01-01

    It was recently shown that left-right symmetric models for elementary particles can be built with only two Higgs doublets. The general consequence of these models is that the left and right fermionic sectors can be connected by a new neutral gauge boson $Z'$ having its mass as the only additional new parameter. In this paper we study the influence of the fundamental fermionic representation for this new neutral gauge boson. Signals of possible new heavy neutral gauge bosons are investigated for the future electron-positron colliders at $\\sqrt s = 500$ GeV, 1 TeV and 3 TeV. The total cross sections, forward-backward and left-right asymmetries and model differences are calculated for the process $e^+ e^- \\longrightarrow \\mu^+ \\mu^-$. Bounds on $Z'$ masses are estimated.

  11. Passive athermalization of doublets in 8-13 micron waveband

    Science.gov (United States)

    Schuster, Norbert

    2014-10-01

    Passive athermalization of lenses has become a key-technology for automotive and other outdoor applications using modern uncooled 25, 17 and 12 micron pixel pitch bolometer arrays. Typical pixel counts for thermal imaging are 384x288 (qVGA), 640x480 (VGA), and 1024x768 (XGA). Two lens arrangements (called Doublets) represent a cost effective way to satisfy resolution requirements of these detectors with F-numbers 1.4 or faster. Thermal drift of index of refraction and the geometrical changes (in lenses and housing) versus temperature defocus the initial image plane from the detector plane. The passive athermalization restricts this drop of spatial resolution in a wide temperature range (typically -40°C…+80°C) to an acceptable value without any additional external refocus. In particular, lenses with long focal lengths and high apertures claim athermalization. A careful choice of lens and housing materials and a sophistical dimensioning lead to three different principles of passivation: The Passive Mechanical Athermalization (PMA) shifts the complete lens cell, the Passive Optical and Mechanical Athermalization (POMA) shifts only one lens inside the housing, the Passive Optical Athermalization (POA) works without any mechanism. All three principles will be demonstrated for a typical narrow-field lens (HFOV about 12°) with high aperture (aperture based F-number 1.3) for the actual uncooled reference detector (17micron VGA). Six design examples using different combinations of lens materials show the impact on spatial lens resolution, on overall length, and on weight. First order relations are discussed. They give some hints for optimization solutions. Pros and cons of different passive athermalization principles are evaluated in regards of housing design, availability of materials and costing. Examples with a convergent GASIR®1-lens in front distinguish by best resolution, short overall length, and lowest weight.

  12. Competing Kondo Effects in Non-Kramers Doublet Systems

    Science.gov (United States)

    Kusunose, Hiroaki

    2016-06-01

    In non-Kramers Kondo systems with quadrupolar degrees of freedom, an ordinary magnetic Kondo effect can compete with the quadrupolar Kondo effect. We discuss such competition keeping PrT2Zn20 (T = Ir, Rh) and PrT2Al20 (T = V, Ti) in mind, where the Γ3 non-Kramers crystalline-electric-field (CEF) doublet ground state is realized in a Pr3+ ion with a (4f)2 configuration under cubic symmetry. The quadrupolar Kondo effect can be described by the two-channel Kondo model, which leads to the local non-Fermi-liquid (NFL) ground state, while the magnetic Kondo effect favors the ordinary local Fermi-liquid (FL) ground state. On the basis of the minimal extended two-channel Kondo model including the magnetic Kondo coupling as well, we investigate the competition and resulting thermodynamics, and orbital/magnetic and single-particle excitation spectra by Wilson's numerical renormalization group (NRG) method. There is a first-order transition between the NFL and FL ground states. In addition to these two states, the alternative FL state accompanied by a free magnetic spin appears in the intermediate temperature range, which eventually reaches the true NFL ground state, as a consequence of the stronger competition between the magnetic and quadrupolar Kondo effects. In this peculiar state, the magnetic susceptibility shows a Curie-like behavior, while the orbital fluctuation exhibits the FL behavior. Moreover, the single-particle spectra yield a more singular behavior. Implications to the Pr 1-2-20 systems are briefly discussed.

  13. Biochemical characterization of tektins from sperm flagellar doublet microtubules.

    Science.gov (United States)

    Linck, R W; Stephens, R E

    1987-04-01

    Tektins, protein components of stable protofilaments from sea urchin sperm flagellar outer doublet microtubules (Linck, R. W., and G. L. Langevin, 1982, J. Cell Sci., 58:1-22), are separable by preparative SDS PAGE into 47-, 51-, and 55-kD equimolar components. High resolution two-dimensional tryptic peptide mapping reveals 63-67% coincidence among peptides of the 51-kD tektin chain and its 47- and 55-kD counterparts, greater than 70% coincidence between the 47- and 55-kD tektins, but little obvious similarity to either alpha- or beta-tubulin. With reverse-phase HPLC on a C18 column, using 6 M guanidine-HCl solubilization and a 0.1% trifluoroacetic acid/CH3CN gradient system (Stephens, R. E., 1984, J. Cell Biol. 90:37a [Abstr.]), the relatively less hydrophobic 51-kD tektin elutes at greater than 45% CH3CN, immediately followed by the 55-kD chain. The 47-kD tektin is substantially more hydrophobic, eluting between the two tubulins. The amino acid compositions of the tektins are very similar to each other but totally distinct from tubulin chains, being characterized by a greater than 50% higher arginine plus lysine content (in good agreement with the number of tryptic peptides) and about half the content of glycine, histidine, proline, and tyrosine. The proline content correlates well with the fact that tektin filaments have twice as much alpha-helical content as tubulin. Total hydrophobic amino acid content correlates with HPLC elution times for the tektins but not tubulins. The average amino acid composition of the tektins indicates that they resemble intermediate filament proteins, as originally postulated from structural, solubility, and electrophoretic properties. Tektins have higher cysteine and tryptophan contents than desmin and vimentin, which characteristically have only one residue of each, more closely resembling certain keratins in these amino acids.

  14. High Energy Hadron Colliders - Report of the Snowmass 2013 Frontier Capabilities Hadron Collider Study Group

    CERN Document Server

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2013-01-01

    High energy hadron colliders have been the tools for discovery at the highest mass scales of the energy frontier from the SppS, to the Tevatron and now the LHC. This report reviews future hadron collider projects from the high luminosity LHC upgrade to a 100 TeV hadron collider in a large tunnel, the underlying technology challenges and R&D directions and presents a series of recommendations for the future development of hadron collider research and technology.

  15. Disentangling heavy flavor at colliders

    Science.gov (United States)

    Ilten, Philip; Rodd, Nicholas L.; Thaler, Jesse; Williams, Mike

    2017-09-01

    We propose two new analysis strategies for studying charm and beauty quarks at colliders. The first strategy is aimed at testing the kinematics of heavy-flavor quarks within an identified jet. Here, we use the SoftDrop jet-declustering algorithm to identify two subjets within a large-radius jet, using subjet flavor tagging to test the heavy-quark splitting functions of QCD. For subjets containing a J /ψ or ϒ , this declustering technique can also help probe the mechanism for quarkonium production. The second strategy is aimed at isolating heavy-flavor production from gluon splitting. Here, we introduce a new FlavorCone algorithm, which smoothly interpolates from well-separated heavy-quark jets to the gluon-splitting regime where jets overlap. Because of its excellent ability to identify charm and beauty hadrons, the LHCb detector is ideally suited to pursue these strategies, though similar measurements should also be possible at ATLAS and CMS. Together, these SoftDrop and FlavorCone studies should clarify a number of aspects of heavy-flavor physics at colliders, and provide crucial information needed to improve heavy-flavor modeling in parton-shower generators.

  16. Coherent bremsstrahlung at colliding beams

    Energy Technology Data Exchange (ETDEWEB)

    Ginzburg, I.F. (Inst. of Mathematics, Novosibirsk (Russia)); Kotkin, G.L.; Serbo, V.G. (Novosibirsk State Univ. (Russia)); Polityko, S.I. (Irkutsk State Univ. (Russia))

    1992-07-30

    We consider a new type of radiation at colliders with short bunches - coherent bremsstrahlung (CBS). CBS can be treated as radiation of the first bunch particles caused by the collective electromagnetic field of the short second bunch. A general method for the calculation of this CBS is presented. The number of CBS photons per single collision is dN{sub {gamma}}{approx equal}N{sub 0}dE{sub {gamma}}/E{sub {gamma}} in the energy range E{sub {gamma}}colliders VEPP-4M, BEPC, CESR, TRISTAN the quantity N{sub 0}{approx equal}10{sup 8} and E{sub c}{approx equal}1-100 keV. Unusual properties of CBS and the possibility of using CBS for measuring the beam parameters are discussed. (orig.).

  17. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  18. Description of Chiral Doublets in $A\\sim130$ Nuclei and the Possible Chiral Doublets in $A\\sim100$ Nuclei

    CERN Document Server

    Peng, J; Zhang, S Q

    2003-01-01

    The chiral doublets for nuclei in $A\\sim100$ and $A\\sim130$ regions have been studied with the particle-rotor model. The experimental spectra of chiral partners bands for four N=75 isotones in $A\\sim130$ region have been well reproduced by the calculation with the configuration $\\pi h_{11/2}\\otimes\

  19. Search for MSSM Higgs Bosons in Tau Final States with the D0 Detector

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Wan-Ching [Univ. of Manchester (United Kingdom)

    2010-01-01

    The cross-section times branching ratio of the Higgs boson decaying to τ+τ- final state in the Standard Model (SM) is too small to play any role in the SM Higgs boson searches. This, however, is different in the Minimal Supersymmetric Standard Model (MSSM), which predicts two Higgs doublets leading to five Higgs bosons: a pair of charged Higgs boson (H±); two neutral CP-even Higgs bosons (h,H) and a CP-odd Higgs boson (A). A search for the production of neutral Higgs bosons decaying into τ+τ- final states in p{bar p} collisions at a centre-of-mass energy of √s = 1.96 TeV is presented in this thesis. One of the two τ leptons is required to decay into a muon while the other decays hadronically. The integrated luminosity is L = 1.0-5.36 fb -1, collected by the D0 experiment at the Fermilab Tevatron Collider from 2002 to 2009 in the Run II.

  20. A search for Higgs bosons h and A of a two doublet model is performed using ALEPH; Recherche des bosons de Higgs neutres d`un modele a deux doublets avec le detecteur ALEPH au LEP

    Energy Technology Data Exchange (ETDEWEB)

    Simion, S.

    1995-04-01

    A search of Higgs bosons h and A of a two-doublet model is performed. We analyse the data collected by ALEPH till 1993, corresponding to a luminosity of 63.4 pb{sup 1} at the Z peak. The {tau}{sup +}{tau}{sup -}q anti q and b anti b b anti b final states are mainly considered. The section criteria are available, thus improving the sensitivity of the analysis. Assuming m{sub h} = m{sub A} = 45 GeV, an upper limit of O.324 pb on the {pi}{sup +}{pi}{sup -}q anti q cross section is derived. The four-b final state selection is based on b-hadron lifetime, using the two-dimensional readout from the vertex detector. We analyse 1.53 million hadronic Z`s without any evidence for a signal (313 events seen, 270+-17 expected from the background, with 24% efficiency for m{sub h} = m{sub A} = 45 GeV.). Searches for the standard Model Higgs boson are interpreted in the framework of a two-doublet model. The decay of the lightest scalar h into a AA pair is also considered. No signal is found and the regions excluded in the (m{sub h} -m{sub A}) and (m{sub A} - tan {beta}) planes of the MSSM are presented. Influence of stop mixing is discussed. Assuming m{sub top} 170 GeV, universal quark masses m{sub Q} = 1 TeV, no stop mixing, and tan {beta} > 1, a 95% lower limit on m{sub A} equal to 45.5 GeV is derived. (authors). 60 refs., 93 figs., 15 tabs.

  1. Higher order corrections to jet cross sections in hadron colliders

    CERN Document Server

    Giele, W T; Kosower, D A; Giele, Walter T.; Kosower, David A.

    1993-01-01

    We describe a general method of calculating the fully differential cross section for the production of jets at next-to-leading order in a hadron collider. This method is based on a `crossing' of next-to-leading order calculations with all partons in the final state. The method introduces universal crossing functions that allow a modular approach to next-to-leading order calculations for any process with initial state partons. These techniques are applied to the production of jets in association with a vector boson including all decay correlations of the final state observables.

  2. Signals for Majorana neutrinos in a $\\gamma \\gamma$ collider

    CERN Document Server

    Peressutti, G

    2003-01-01

    We study the possibilities to detect Majorana neutrinos in $\\gamma \\gamma$ colliders for different center of mass energies. We study the $W^\\pm W^\\pm l_j^{\\mp} l_k^{\\mp}$ ($l_j\\equiv e ,\\mu ,\\tau$) final states which are, due to leptonic number violation, a clear signature for intermediate Majorana neutrino contribution. Such a signal (final dileptons of the same sign) is not possible if the heavy neutrinos are Dirac particles. We present our results for the total cross-section as a function of the neutrino mass and the center of mass energies.

  3. Revisiting Combinatorial Ambiguities at Hadron Colliders with MT2

    CERN Document Server

    Baringer, Philip; McCaskey, Mathew; Noonan, Daniel

    2011-01-01

    We present a method to resolve combinatorial issues in multi-particle final states at hadron colliders. The use of kinematic variables such as MT2 and invariant mass significantly reduces combinatorial ambiguities in the signal, but at a cost of losing statistics. We illustrate this idea with gluino pair production leading to 4 jets $+\\met$ in the final state as well as $t\\bar{t}$ production in the dilepton channel. Compared to results in recent studies, our method provides greater efficiency with similar purity

  4. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Webb, Robert C. [Texas A& M University; Kamon, Teruki [Texas A& M University; Toback, David [Texas A& M University; Safonov, Alexei [Texas A& M University; Dutta, Bhaskar [Texas A& M University; Dimitri, Nanopoulos [Texas A& M University; Pope, Christopher [Texas A& M University; White, James [Texas A& M University

    2013-11-18

    Overview The High Energy Physics Group at Texas A&M University is submitting this final report for our grant number DE-FG02-95ER40917. This grant has supported our wide range of research activities for over a decade. The reports contained here summarize the latest work done by our research team. Task A (Collider Physics Program): CMS & CDF Profs. T. Kamon, A. Safonov, and D. Toback co-lead the Texas A&M (TAMU) collider program focusing on CDF and CMS experiments. Task D: Particle Physics Theory Our particle physics theory task is the combined effort of Profs. B. Dutta, D. Nanopoulos, and C. Pope. Task E (Underground Physics): LUX & NEXT Profs. R. Webb and J. White(deceased) lead the Xenon-based underground research program consisting of two main thrusts: the first, participation in the LUX two-phase xenon dark matter search experiment and the second, detector R&D primarily aimed at developing future detectors for underground physics (e.g. NEXT and LZ).

  5. Design of a dependable Interlock System for linear colliders

    CERN Document Server

    Nouvel, Patrice

    For high energy accelerators, the interlock system is a key part of the machine protection. The interlock principle is to inhibit the beam either on failure of critical equipment and/or on low beam quality evaluation. The dependability of such a system is the most critical parameter. This thesis presents the design of an dependable interlock system for linear collider with an application to the CLIC (Compact Linear Collider) project. This design process is based on the IEEE 1220 standard and is is divided in four steps. First, the specifications are established, with a focus on the dependability, more precisely the reliability and the availability of the system. The second step is the design proposal based on a functional analysis, the CLIC and interfaced systems architecture. Third, the feasibility study is performed, applying the concepts in an accelerator facility. Finally, the last step is the hardware verification. Its aim is to prove that the proposed design is able to reach the requirements.

  6. The Proton as Seen by the HERA Collider

    Science.gov (United States)

    Abt, Iris

    2016-10-01

    Deep-inelastic electron-proton (ep) scattering at the HERA collider has been very important in the investigation of the partonic structure of the proton. The neutral- and charged-current cross sections, measured over a large kinematic range, are one of the legacies of the first and so far only ep collider. Here I discuss the combination of H1 and ZEUS data. The HERA data alone can provide parton distribution functions (PDFs) within the framework of perturbative QCD. I also discuss the family of sets of PDFs called HERAPDF2.0 as well as the interpretation of such proton PDFs that characterize proton interactions in momentum space. I then introduce other possible applications of the precision cross sections. In addition, some measurements at HERA provide hints about spatial aspects of the proton. Finally, I present a brief discussion of the connection to nuclear physics.

  7. Towards resolving strongly-interacting dark sectors at colliders

    CERN Document Server

    Englert, Christoph; Spannowsky, Michael

    2016-01-01

    Dark sectors with strong interactions have received considerable interest. Assuming the existence of a minimally-coupled dark sector which runs to strong interactions in the infrared, we address the question whether the scaling behavior of this dark sector can be observed in missing energy signatures at present and future hadron colliders. We compare these findings to the concrete case of self-interacting dark matter and demonstrate that the energy-dependence of high momentum transfer final states can in principle be used to gain information about the UV structure of such sectors at future hadron colliders, which could complement proof-of-principle lattice investigations. We also comment on the case of dark abelian $U(1)$ theories.

  8. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  9. Error Correction for the JLEIC Ion Collider Ring

    Energy Technology Data Exchange (ETDEWEB)

    Wei, Guohui [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Pilat, Fulvia C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Nosochkov, Yuri [SLAC National Accelerator Lab., Menlo Park, CA (United States); Wang, Min-Huey [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2016-05-01

    The sensitivity to misalignment, magnet strength error, and BPM noise is investigated in order to specify design tolerances for the ion collider ring of the Jefferson Lab Electron Ion Collider (JLEIC) project. Those errors, including horizontal, vertical, longitudinal displacement, roll error in transverse plane, strength error of main magnets (dipole, quadrupole, and sextupole), BPM noise, and strength jitter of correctors, cause closed orbit distortion, tune change, beta-beat, coupling, chromaticity problem, etc. These problems generally reduce the dynamic aperture at the Interaction Point (IP). According to real commissioning experiences in other machines, closed orbit correction, tune matching, beta-beat correction, decoupling, and chromaticity correction have been done in the study. Finally, we find that the dynamic aperture at the IP is restored. This paper describes that work.

  10. Towards resolving strongly-interacting dark sectors at colliders

    Science.gov (United States)

    Englert, Christoph; Nordström, Karl; Spannowsky, Michael

    2016-09-01

    Dark sectors with strong interactions have received considerable interest. Assuming the existence of a minimally coupled dark sector which runs to strong interactions in the infrared, we address the question whether the scaling behavior of this dark sector can be observed in missing energy signatures at present and future hadron colliders. We compare these findings to the concrete case of self-interacting dark matter and demonstrate that the energy dependence of high-momentum transfer final states can in principle be used to gain information about the UV structure of hidden sectors at future hadron colliders, subject to large improvements in systematic uncertainties, which could complement proof-of-principle lattice investigations. We also comment on the case of dark Abelian U (1 ) theories.

  11. The Doublet Extension of Tensor Gauge Potentials and a Reassessment of the Non-Abelian Topological Mass Mechanism

    CERN Document Server

    Cantcheff, M Botta

    2011-01-01

    A well-defined local gauge structure for non-Abelian two-form gauge fields was introduced some years ago. This was achieved by introducing doublet group representations and doublet-assembled connections. We provide a summarized version of this formalism, in order to recall its features and applications. We also build up doublet-extended gauge-invariant actions for bosonic and fermionic matter, and discuss the appearance of novel topological quantities in these doublet-type gauge models. A partner action for higher spin fields appears in the doublet version of the fermionic matter sector. As an application of the formalism, a Chern-Simons and an Yang-Mills action in four dimensions may both be rigorously defined. We carry out this task and show that, in this doublet framework, their combination constitutes a consistent (power-counting renormalizable and unitary) non-Abelian generalization of the Cremmer-Scherk-Kalb-Ramond theory with topological mass.

  12. Last magnet in place for colossal collider

    CERN Multimedia

    Cho, Adrian

    2007-01-01

    "Workers have installed the last magnet for the world's mew highest-energy particle smasher, the Large Hadron Collider (LHC). The installation marks an important milestone; however, researchers still may not get the collider completed in time to start it up in November as planned." (1 page)

  13. The Global Future Circular Colliders Effort

    CERN Document Server

    Benedikt, Michael

    2013-01-01

    This presentation has been given during the P5 Workshop at BNL Brookhaven (US). It contains - Global Future Circular Collier Studies Overview and Status - Main challenges and R&D areas for hadron collider - Main challenges and R&D areas for lepton collider - Conclusions

  14. Possible limits of plasma linear colliders

    Science.gov (United States)

    Zimmermann, F.

    2017-07-01

    Plasma linear colliders have been proposed as next or next-next generation energy-frontier machines for high-energy physics. I investigate possible fundamental limits on energy and luminosity of such type of colliders, considering acceleration, multiple scattering off plasma ions, intrabeam scattering, bremsstrahlung, and betatron radiation. The question of energy efficiency is also addressed.

  15. Multibillion-dolalr collider plans unveiled

    CERN Multimedia

    Cartlidge, Edwin

    2007-01-01

    "Particle physicists released an outline design for the proposed International Linear Collider (ILC) at a meeting in Beijing this morning. The design details the components needed to build the 31 km-long facility and comes with and initial estimate of the collider's cost: a cool $6.5bn for the core project. (1 page)

  16. Collide@CERN: sharing inspiration

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    Late last year, Julius von Bismarck was appointed to be CERN's first "artist in residence" after winning the Collide@CERN Digital Arts award. He’ll be spending two months at CERN starting this March but, to get a flavour of what’s in store, he visited the Organization last week for a crash course in its inspiring activities.   Julius von Bismarck, taking a closer look... When we arrive to interview German artist Julius von Bismarck, he’s being given a presentation about antiprotons’ ability to kill cancer cells. The whiteboard in the room contains graphs and equations that might easily send a non-scientist running, yet as Julius puts it, “if I weren’t interested, I’d be asleep”. Given his numerous questions, he must have been fascinated. “This ‘introduction’ week has been exhilarating,” says Julius. “I’ve been able to interact ...

  17. Reconnection of Colliding Cosmic Strings

    CERN Document Server

    Hanany, A; Hanany, Amihay; Hashimoto, Koji

    2005-01-01

    For vortex strings in the Abelian Higgs model and D-strings in superstring theory, both of which can be regarded as cosmic strings, we give analytical study of reconnection (recombination, inter-commutation) when they collide, by using effective field theories on the strings. First, for the vortex strings, via a string sigma model, we verify analytically that the reconnection is classically inevitable for small collision velocity and small relative angle. Evolution of the shape of the reconnected strings provides an upper bound on the collision velocity in order for the reconnection to occur. These analytical results are in agreement with previous numerical results. On the other hand, reconnection of the D-strings is not classical but probabilistic. We show that a quantum calculation of the reconnection probability using a D-string action reproduces the nonperturbative nature of the worldsheet results by Jackson, Jones and Polchinski. The difference on the reconnection -- classically inevitable for the vortex...

  18. Collide@CERN - public lecture

    CERN Multimedia

    2012-01-01

    CERN, the Republic and Canton of Geneva and the City of Geneva are delighted to invite you to a public lecture by Gilles Jobin, first winner of the Collide@CERN Geneva Dance and Performance Artist-in-residence Prize, and his CERN inspiration partner, Joao Pequenao. They will present their work in dance and science at the Globe of Science and Innovation on Wednesday, 23 May 2012 at 7 p.m. (doors open at 6.30 p.m.).   
                                                  Programme 19:00 Opening address by - Professor Rolf-Dieter Heuer, CERN Director-General, - Ariane Koek...

  19. Collider searches for extra dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Landsberg, Greg; /Brown U.

    2004-12-01

    Searches for extra spatial dimensions remain among the most popular new directions in our quest for physics beyond the Standard Model. High-energy collider experiments of the current decade should be able to find an ultimate answer to the question of their existence in a variety of models. Until the start of the LHC in a few years, the Tevatron will remain the key player in this quest. In this paper, we review the most recent results from the Tevatron on searches for large, TeV{sup -1}-size, and Randall-Sundrum extra spatial dimensions, which have reached a new level of sensitivity and currently probe the parameter space beyond the existing constraints. While no evidence for the existence of extra dimensions has been found so far, an exciting discovery might be just steps away.

  20. A muon collider as a Higgs factory

    CERN Document Server

    Neuffer, D; Alexahin, Y; Ankenbrandt, C; Delahaye, J P

    2015-01-01

    Because muons connect directly to a standard-model Higgs particle in s-channel production, a muon collider would be an ideal device for precision measurement of the mass and width of a Higgs-like particle, and for further exploration of its production and decay properties. Parameters of a high-precision muon collider are presented and the necessary components and performance are described. An important advantage of the muon collider approach is that the spin precession of the muons will enable energy measurements at extremely high accuracy (dE/E to 10-6 or better). The collider could be a first step toward a high-luminosity multi-TeV lepton collider, and extensions toward a higher-energy higher-luminosity device are also discussed.

  1. Critical Assessment of TD-DFT for Excited States of Open-Shell Systems: I. Doublet-Doublet Transitions.

    Science.gov (United States)

    Li, Zhendong; Liu, Wenjian

    2016-01-12

    A benchmark set of 11 small radicals is set up to assess the performance of time-dependent density functional theory (TD-DFT) for the excited states of open-shell systems. Both the unrestricted (U-TD-DFT) and spin-adapted (X-TD-DFT) formulations of TD-DFT are considered. For comparison, the well-established EOM-CCSD (equation-of-motion coupled-cluster with singles and doubles) is also used. In total, 111 low-lying singly excited doublet states are accessed by all the three approaches. Taking the MRCISD+Q (multireference configuration interaction with singles and doubles plus the Davidson correction) results as the benchmark, it is found that both U-TD-DFT and EOM-CCSD perform well for those states dominated by singlet-coupled single excitations (SCSE) from closed-shell to open-shell, open-shell to vacant-shell, or closed-shell to vacant-shell orbitals. However, for those states dominated by triplet-coupled single excitations (TCSE) from closed-shell to vacant-shell orbitals, both U-TD-DFT and EOM-CCSD fail miserably due to severe spin contaminations. In contrast, X-TD-DFT provides balanced descriptions of both SCSE and TCSE. As far as the functional dependence is concerned, it is found that, when the Hartree-Fock ground state does not suffer from the instability problem, both global hybrid (GH) and range-separated hybrid (RSH) functionals perform grossly better than pure density functionals, especially for Rydberg and charge-transfer excitations. However, if the Hartree-Fock ground state is instable or nearly instable, GH and RSH tend to underestimate severely the excitation energies. The SAOP (statistically averaging of model orbital potentials) performs more uniformly than any other density functionals, although it generally overestimates the excitation energies of valence excitations. Not surprisingly, both EOM-CCSD and adiabatic TD-DFT are incapable of describing excited states with substantial double excitation characters.

  2. Strong Higgs Interactions at a Linear Collider

    CERN Document Server

    Contino, Roberto; Pappadopulo, Duccio; Rattazzi, Riccardo; Thamm, Andrea

    2014-01-01

    We study the impact of Higgs precision measurements at a high-energy and high-luminosity linear electron positron collider, such as CLIC or the ILC, on the parameter space of a strongly interacting Higgs boson. Some combination of anomalous couplings are already tightly constrained by current fits to electroweak observables. However, even small deviations in the cross sections of single and double Higgs production, or the mere detection of a triple Higgs final state, can help establish whether it is a composite state and whether or not it emerges as a pseudo-Nambu-Goldstone boson from an underlying broken symmetry. We obtain an estimate of the ILC and CLIC sensitivities on the anomalous Higgs couplings from a study of WW scattering and hh production which can be translated into a sensitivity on the compositeness scale 4\\pi f, or equivalently on the degree of compositeness \\xi=v^2/f^2. We summarize the current experimental constraints, from electroweak data and direct resonance searches, and the expected reach...

  3. Vector boson pair production at hadron colliders

    CERN Document Server

    Adamson, K L

    2002-01-01

    We calculate the contribution of gluon-gluon induced processes to vector boson pair production at hadron colliders, specifically the production of WZ, W gamma and Z gamma pairs. We calculate the tree level processes gg -> WZqq-bqr, gg -> W gamma qq-bar and gg -> Z gamma qq-bar, and the one loop process gg -> Z gamma. We use the helicity method and include the decay of the W and Z bosons into leptons in the narrow width approximation. We include anomalous triple gauge couplings in all of our vector boson pair production calculations. In order to integrate over the qq-bar final state phase space we use an extended version of the subtraction method to NNLO and cancel collinear singularities explicitly. The general subtraction terms that are obtained apply to all vector boson pair production processes. Due to the large gluon density at low x, the gluon induced terms of vector boson pair production are expected to be the dominant NNLO QCD correction, relevant at LHC energies. However, we show that due to a cancell...

  4. Optimizing integrated luminosity of future hadron colliders

    Directory of Open Access Journals (Sweden)

    Michael Benedikt

    2015-10-01

    Full Text Available The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical “beam-beam limit”, or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value for the total beam-beam tune shift or for the event pileup in the detector. Our results are illustrated by examples for the proton-proton luminosity of the existing Large Hadron Collider (LHC at its design parameters, of the High-Luminosity Large Hadron Collider (HL-LHC, and of the Future Circular Collider (FCC-hh.

  5. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    CERN Document Server

    Ivanov, I P

    2012-01-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the $Z_4$ symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM.

  6. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Igor P. [Universite de Liege, IFPA, Liege (Belgium); Sobolev Institute of Mathematics, Novosibirsk (Russian Federation); Vdovin, E. [Sobolev Institute of Mathematics, Novosibirsk (Russian Federation)

    2013-02-15

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized-CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the Z{sub 4} symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM. (orig.)

  7. Classification of finite reparametrization symmetry groups in the three-Higgs-doublet model

    Science.gov (United States)

    Ivanov, Igor P.; Vdovin, E.

    2013-02-01

    Symmetries play a crucial role in electroweak symmetry breaking models with non-minimal Higgs content. Within each class of these models, it is desirable to know which symmetry groups can be implemented via the scalar sector. In N-Higgs-doublet models, this classification problem was solved only for N=2 doublets. Very recently, we suggested a method to classify all realizable finite symmetry groups of Higgs-family transformations in the three-Higgs-doublet model (3HDM). Here, we present this classification in all detail together with an introduction to the theory of solvable groups, which play the key role in our derivation. We also consider generalized- CP symmetries, and discuss the interplay between Higgs-family symmetries and CP-conservation. In particular, we prove that presence of the ℤ4 symmetry guarantees the explicit CP-conservation of the potential. This work completes classification of finite reparametrization symmetry groups in 3HDM.

  8. Higgs boson couplings in multi-doublet models with natural flavour conservation

    Science.gov (United States)

    Yagyu, Kei

    2016-12-01

    We investigate the deviation in the couplings of the standard model (SM) like Higgs boson (h) with a mass of 125 GeV from the prediction of the SM in multi-doublet models within the framework where flavour changing neutral currents at the tree level are naturally forbidden. After we present the general expressions for the modified gauge and Yukawa couplings for h, we show the correlation between the deviation in the Yukawa coupling for the tau lepton hτ+τ- and that for the bottom quark hb b bar under the assumption of a non-zero deviation in the hVV (V = W , Z) couplings in two Higgs doublet models (2HDMs) and three Higgs doublet models (3HDMs) as simple examples. We clarify the possible allowed prediction of the deviations in the 3HDMs which cannot be explained in the 2HDMs even taking into account the one-loop electroweak corrections to the Yukawa coupling.

  9. Design and construction of an electrostatic quadrupole doublet lens for nuclear microprobe application

    Science.gov (United States)

    Manuel, Jack E.; Szilasi, Szabolcs Z.; Phillips, Dustin; Dymnikov, Alexander D.; Reinert, Tilo; Rout, Bibhudutta; Glass, Gary A.

    2017-08-01

    An electrostatic quadrupole doublet lens system has been designed and constructed to provide strong, mass-independent focusing of 1-3 MeV ions to a 1 μm2 spot size. The electrostatic doublet consists of four sets of gold electrodes deposited on quartz rods that are positioned in a precision machined rigid frame. The 38 mm electrodes are fixed in a quadrupole doublet arrangement having a bore diameter of 6.35 mm. The coating process allows uniform, 360° coverage with minimal edge defects. Determined via optical interferometry, typical surface roughness is 6 nm peak to valley. Radial and coaxial alignment of the electrodes within the frame is accomplished by using a combination of rigid and adjustable mechanical supports. Axial alignment along the ion beam is accomplished via external manipulators. COMSOL Multiphysics® v5.2 and Propagate Rays and Aberrations by Matrices (PRAM) were used to simulate ion trajectories through the system.

  10. The influence of facies heterogeneity on the doublet performance in low-enthalpy geothermal sedimentary reservoirs

    DEFF Research Database (Denmark)

    Crooijmans, R. A.; Willems, C. J L; Nick, Hamid

    2016-01-01

    A three-dimensional model is used to study the influence of facies heterogeneity on energy production under different operational conditions of low-enthalpy geothermal doublet systems. Process-based facies modelling is utilised for the Nieuwerkerk sedimentary formation in the West Netherlands Basin...... and the energy recovery rate for different discharge rates and the production temperature (Tmin) above which the doublet is working. With respect to the results, we propose a design model to estimate the life time and energy recovery rate of the geothermal doublet. The life time is estimated as a function of N....../G, Tmin and discharge rate, while the design model for the energy recovery rate is only a function of N/G and Tmin. Both life time and recovery show a positive relation with an increasing N/G. Further our results suggest that neglecting details of process-based facies modelling may lead to significant...

  11. Physiological consequences of doublet discharges on motoneuronal firing and motor unit force

    Directory of Open Access Journals (Sweden)

    Włodzimierz eMrówczyński

    2015-03-01

    Full Text Available The double discharges are observed at the onset of contractions of mammalian motor units (MUs, especially during their recruitment to strong or fast movements. Doublets lead to MU force increase and improve ability of muscles to maintain high force during prolonged contractions. In this review we discuss an ability to produce doublets by fast and slow motoneurons (MNs, their influence on the course of action potential afterhyperpolarization as well as its role in modulation of the initial stage of the firing pattern of MNs. In conclusion, a generation of doublets is an important strategy of motor control, responsible for fitting the motoneuronal firing rate to the optimal for MUs at the start of their contraction, necessary for increment of muscle force.

  12. Run scenarios for the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    M. Battaglia et al.

    2002-12-23

    We have examined how a Linear Collider program of 1000 fb{sup -1} could be constructed in the case that a very rich program of new physics is accessible at {radical}s {le} 500 GeV. We have examined possible run plans that would allow the measurement of the parameters of a 120 GeV Higgs boson, the top quark, and could give information on the sparticle masses in SUSY scenarios in which many states are accessible. We find that the construction of the run plan (the specific energies for collider operation, the mix of initial state electron polarization states, and the use of special e{sup -}e{sup -} runs) will depend quite sensitively on the specifics of the supersymmetry model, as the decay channels open to particular sparticles vary drastically and discontinuously as the underlying SUSY model parameters are varied. We have explored this dependence somewhat by considering two rather closely related SUSY model points. We have called for operation at a high energy to study kinematic end points, followed by runs in the vicinity of several two body production thresholds once their location is determined by the end point studies. For our benchmarks, the end point runs are capable of disentangling most sparticle states through the use of specific final states and beam polarizations. The estimated sparticle mass precisions, combined from end point and scan data, are given in Table VIII and the corresponding estimates for the mSUGRA parameters are in Table IX. The precision for the Higgs boson mass, width, cross-sections, branching ratios and couplings are given in Table X. The errors on the top quark mass and width are expected to be dominated by the systematic limits imposed by QCD non-perturbative effects. The run plan devotes at least two thirds of the accumulated luminosity near the maximum LC energy, so that the program would be sensitive to unexpected new phenomena at high mass scales. We conclude that with a 1 ab{sup -1} program, expected to take the first 6-7 years

  13. Run scenarios for the linear collider

    Energy Technology Data Exchange (ETDEWEB)

    M. Battaglia et al.

    2002-12-23

    We have examined how a Linear Collider program of 1000 fb{sup -1} could be constructed in the case that a very rich program of new physics is accessible at {radical}s {le} 500 GeV. We have examined possible run plans that would allow the measurement of the parameters of a 120 GeV Higgs boson, the top quark, and could give information on the sparticle masses in SUSY scenarios in which many states are accessible. We find that the construction of the run plan (the specific energies for collider operation, the mix of initial state electron polarization states, and the use of special e{sup -}e{sup -} runs) will depend quite sensitively on the specifics of the supersymmetry model, as the decay channels open to particular sparticles vary drastically and discontinuously as the underlying SUSY model parameters are varied. We have explored this dependence somewhat by considering two rather closely related SUSY model points. We have called for operation at a high energy to study kinematic end points, followed by runs in the vicinity of several two body production thresholds once their location is determined by the end point studies. For our benchmarks, the end point runs are capable of disentangling most sparticle states through the use of specific final states and beam polarizations. The estimated sparticle mass precisions, combined from end point and scan data, are given in Table VIII and the corresponding estimates for the mSUGRA parameters are in Table IX. The precision for the Higgs boson mass, width, cross-sections, branching ratios and couplings are given in Table X. The errors on the top quark mass and width are expected to be dominated by the systematic limits imposed by QCD non-perturbative effects. The run plan devotes at least two thirds of the accumulated luminosity near the maximum LC energy, so that the program would be sensitive to unexpected new phenomena at high mass scales. We conclude that with a 1 ab{sup -1} program, expected to take the first 6-7 years

  14. On the Future High Energy Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2015-09-28

    High energy particle colliders have been in the forefront of particle physics for more than three decades. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). A number of the next generation collider facilities have been proposed and are currently under consideration for the medium and far-future of accelerator-based high energy physics. In this paper we offer a uniform approach to evaluation of various accelerators based on the feasibility of their energy reach, performance potential and cost range.

  15. High Luminosity 100 TeV Proton-Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros, S. J. [Mississippi U.; Acosta, J. G. [Mississippi U.; Cremaldi, L. M. [Mississippi U.; Hart, T. L. [Mississippi U.; Summers, D. J. [Mississippi U.

    2016-10-01

    The energy scale for new physics is known to be in the multi-TeV range, signaling the potential need for a collider beyond the LHC. A $10^{34}$ cm$^{-2}$ s$^{-1}$ luminosity 100 TeV proton-antiproton collider is explored. Prior engineering studies for 233 and 270 km circumference tunnels were done for Illinois dolomite and Texas chalk signaling manageable tunneling costs. At a $p\\bar{p}$ the cross section for high mass states is of order 10x higher with antiproton collisions, where antiquarks are directly present rather than relying on gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets, because lower beam currents can produce the same rare event rates. In our design the increased momentum acceptance (11 $\\pm$ 2.6 GeV/c) in a Fermilab-like antiproton source is used with septa to collect 12x more antiprotons in 12 channels. For stochastic cooling, 12 cooling systems would be used, each with one debuncher/momentum equalizer ring and two accumulator rings. One electron cooling ring would follow. Finally antiprotons would be recycled during runs without leaving the collider ring, by joining them to new bunches with synchrotron damping.

  16. Design Study for a Staged Very Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Chao, Alex W.

    2002-02-27

    Particle physics makes its greatest advances with experiments at the highest energy. The only sure way to advance to a higher-energy regime is through hadron colliders--the Tevatron, the LHC, and then, beyond that, a Very Large Hadron Collider. At Snowmass-1996 [1], investigators explored the best way to build a VLHC, which they defined as a 100 TeV collider. The goals in this study are different. The current study seeks to identify the best and cheapest way to arrive at frontier-energy physics, while simultaneously starting down a path that will eventually lead to the highest-energy collisions technologically possible in any accelerator using presently conceivable technology. This study takes the first steps toward understanding the accelerator physics issues, the technological possibilities and the approximate cost of a particular model of the VLHC. It describes a staged approach that offers exciting physics at each stage for the least cost, and finally reaches an energy one-hundred times the highest energy currently achievable.

  17. Triple Higgs boson production at a 100 TeV proton-proton collider

    CERN Document Server

    Papaefstathiou, Andreas

    2016-01-01

    We consider triple Higgs boson production at a future 100 TeV proton-proton collider. We perform a survey of viable final states and compare and contrast triple production to Higgs boson pair production. Focussing on the $hhh \\rightarrow (b\\bar{b}) (b\\bar{b}) (\\gamma \\gamma)$ final state, we construct a baseline analysis for the Standard Model scenario and simple deformations, demonstrating that the process merits investigation in the high-luminosity phase of the future collider as a new probe of the self-coupling sector of the Higgs boson.

  18. Microscopic study of doublet bands in odd–odd A∼100 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dar, W.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Bhat, G.H., E-mail: gwhr.bhat@gmail.com [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Palit, R. [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India); Ali, R.N. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Frauendorf, S. [Department of Physics, University of Notre Dame, Notre Dame (United States)

    2015-01-15

    A systematic study of the doublet bands observed in odd–odd mass ∼100 is performed using the microscopic triaxial projected shell model approach. This mass region has depicted some novel features which are not observed in other mass regions, for instance, it has been observed that doublet bands cross diabatically in {sup 106}Ag. It is demonstrated that this unique feature is due to crossing of the two 2-quasiparticle configurations having different intrinsic structures. Further, we provide a complete set of transition probabilities for all the six-isotopes studied in this work and it is shown that the predicted transitions are in good agreement with the available experimental data.

  19. Higgs doublet as a Goldstone boson in perturbative extensions of the Standard Model

    CERN Document Server

    Bellazzini, Brando; Rychkov, Vyacheslav S; Varagnolo, Alvise

    2008-01-01

    We investigate the idea of the Higgs doublet as a pseudo-Goldstone boson in perturbative extensions of the Standard Model, motivated by the desire to ameliorate its hierarchy problem without conflict with the electroweak precision data. Two realistic supersymmetric models with global SU(3) symmetry are proposed, one for large and another for small values of tan\\beta. The two models demonstrate two different mechanisms for EWSB and the Higgs mass generation. Their experimental signatures are quite different. Our constructions show that a pseudo-Goldstone Higgs doublet in perturbative extensions is just as plausible as in non-perturbative ones.

  20. Spatial Distribution of Ground water Level Changes Induced by the 2006 Hengchun Earthquake Doublet

    OpenAIRE

    Yeeping Chia; Jessie J. Chiu; Po-Yu Chung; Ya-Lan Chang; Wen-Chi Lai; Yen-Chun Kuan

    2009-01-01

    Water-level changes were ob served in 107 wells at 67 monitoring stations in the southern coastal plain of Tai wan during the 2006 Mw 7.1 Hengchun earthquake doublet. Two consecutive coseismic changes induced by the earth quake doublet can be observed from high-frequency data. Obervations from multiple-well stations indicate that the magnitude and direction of coseismic change may vary in wells of different depths. Coseismic rises were dominant on the south east side of the costal plain; wher...

  1. Characterization of Wave Dispersion in Viscoelastic Cellular Assemblies by Doublet Mechanics

    Institute of Scientific and Technical Information of China (English)

    JIN Yan-Fang; XIONG Chun-Yang; FANG Jing; FERRARI Mauro

    2009-01-01

    Using the Voigt model, we analyze wave propagation in viscoelastic granular media with a monatomic lattice, planar simple cubic package and cubical-tetrahedral assembly within the context of doublet mechanics. Microstrains of elongation between the doublet particles are considered in the models. Wave dispersive relations are derived from dynamic equations of the particles involved in the media, and phase velocities and attenuations of the dispersive waves are obtained for the different assemblies. Variations in these dispersion characteristics are analyzed with the changes of cell interval, modulus, and wave frequency. The relations between micro-constants and macro-parameters are presented under the condition of non-scale continuity of the media.

  2. Measurements of Narrow Mg II Associated Absorption Doublets with Two Observations

    Indian Academy of Sciences (India)

    Zhi-Fu Chen; Cai-Juan Pan; Guo-Qiang Li; Wei-Rong Huang; Mu-Sheng Li

    2013-12-01

    The measurement of the variations of absorption lines over time is a good method to study the physical conditions of absorbers. In this paper, we measure the variations of the line strength of 36 narrow Mg II2796, 2803 associated absorption doublets, which are imprinted on 31 quasar spectra with two observations of the Sloan Digital Sky Survey (SDSS). The timescales of these quasar span 1.1–5.5 years at the quasar rest-frame. On these timescales, we find that these narrow Mg II associated absorption doublets are stable, with no one 2796 line showing strength variation beyond 2 times error (2).

  3. Search for a lighter Higgs boson in Two Higgs Doublet Models

    Energy Technology Data Exchange (ETDEWEB)

    Cacciapaglia, Giacomo; Deandrea, Aldo; Gascon-Shotkin, Suzanne; Corre, Solène Le; Lethuillier, Morgan [University Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, UMR5822 IPNL,4, rue E. Fermi, Villeurbanne, F-69622 (France); Tao, Junquan [Institute High Energy Physics, Chinese Academy of Sciences,P.O. Box 918, Beijing, 100049 (China)

    2016-12-15

    We consider present constraints on Two Higgs Doublet Models, both from the LHC at Run 1 and from other sources in order to explore the possibility of constraining a neutral scalar or pseudo-scalar particle lighter than the 125 GeV Higgs boson. Such a lighter particle is not yet completely excluded by present data. We show with a simplified analysis that some new constraints could be obtained at the LHC if such a search is performed by the experimental collaborations, which we therefore encourage to continue carrying out light diphoton resonance searches at √s=13 TeV in the context of Two Higgs Doublet Models.

  4. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  5. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  6. Heavy-ion performance of the LHC and future colliders

    Energy Technology Data Exchange (ETDEWEB)

    Schaumann, Michaela

    2015-04-29

    In 2008 the Large Hadron Collider (LHC) and its experiments started operation at the European Centre of Nuclear Research (CERN) in Geneva with the main aim of finding or excluding the Higgs boson. Only four years later, on the 4th of July 2012, the discovery of a Higgs-like particle was proven and first published by the two main experiments ATLAS and CMS. Even though proton-proton collisions are the main operation mode of the LHC, it also acts as an heavy-ion collider. Here, the term ''heavy-ion collisions'' refers to the collision between fully stripped nuclei. While the major hardware system of the LHC is compatible with heavy-ion operation, the beam dynamics and performance limits of ion beams are quite different from those of protons. Because of the higher mass and charge of the ions, beam dynamic effects like intra-beam scattering and radiation damping are stronger. Also the electromagnetic cross-sections in the collisions are larger, leading to significantly faster intensity decay and thus shorter luminosity lifetimes. As the production cross-sections for various physics processes under study of the experiments are still small at energies reachable with the LHC and because the heavy-ion run time is limited to a few days per year, it is essential to obtain the highest possible collision rate, i.e. maximise the instantaneous luminosity, in order to obtain enough events and therefore low statistical errors. Within this thesis, the past performance of the LHC in lead-lead (Pb-Pb) collisions, at a centre-of-mass energy of 2.76 TeV per colliding nucleon pair, is analysed and potential luminosity limitations are identified. Tools are developed to predict future performance and techniques are presented to further increase the luminosity. Finally, a perspective on the future of high energy heavy-ion colliders is given.

  7. Tapered Six-Dimensional Cooling Channel for a Muon Collider

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B.; Fernow, R.C.

    2011-03-28

    A high-luminosity muon collider requires a reduction of the six-dimensional emittance of the captured muon beam by a factor of {approx} 10{sup 6}. Most of this cooling takes place in a dispersive channel that simultaneously reduces all six phase space dimensions. We describe a tapered 6D cooling channel that should meet the requirements of a muon collider. The parameters of the channel are given and preliminary simulations are shown of the expected performance. A complete scheme for cooling a muon beam sufficiently for use in a muon collider has been previously described. This scheme uses separate 6D ionization cooling channels for the two signs of the particle charge. In each, a channel first reduces the emittance of a train of muon bunches until they can be injected into a bunch-merging system. The single muon bunches, one of each sign, are then sent through a second tapered 6D cooling channel where the transverse emittance is reduced as much as possible and the longitudinal emittance is cooled to a value below that needed for the collider. The beam can then be recombined and sent through a final cooling channel using high-field solenoids that cools the transverse emittance to the required values for the collider while allowing the longitudinal emittance to grow. This paper mainly describes the design of the 6D cooling channel before bunch merging. Cooling efficiency is conveniently measured using a parameter Q, which is defined as the rate of change of 6D emittance divided by the rate of change of the number of muons in the beam. In a given lattice Q starts off small due to losses from initial matching, then rises to a large value (Q {approx} 15 is typical for the channels discussed here), and finally falls as the emittance of the beam approaches its equilibrium value. The idea for the 6D cooling channel described here originated with the RFOFO cooling ring. This design evolved into a helical channel referred to as a 'Guggenheim' in order to avoid

  8. Physics with $e^{+} e^{-}$ linear colliders

    CERN Document Server

    Behnke, T; Zerwas, Peter M

    2002-01-01

    The physics programme is summarized for future e**+e**- linear colliders. These machines will allow us to perform precision studies of the top quark and the electroweak gauge bosons in a complementary way to the proton collider LHC. The Higgs boson can be discovered at the LHC within the entire range of canonical mass values. Lepton colliders are ideal instruments to investigate the properties of the Higgs boson and to establish essential elements of the Higgs mechanism as the fundamental mechanism for breaking the electroweak symmetries. In the area beyond the Standard Model, new particles and their interactions can be discovered and explored comprehensively. Supersymmetric particles can be searched for at the LHC with masses up to 2-3 TeV. Their properties can be determined at lepton colliders with very high precision so that the mechanism of supersymmetry breaking can be investigated experimentally and the underlying unified theory can be reconstructed. Stable extrapolations are possible up to scales near ...

  9. Physics at Hadronic Colliders (4/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  10. Physics at Hadronic Colliders (3/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  11. Physics at Hadronic Colliders (2/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  12. Physics at Hadronic Colliders (1/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  13. The collider calamity, publ. by Scientific American

    CERN Multimedia

    2006-01-01

    "For decades, the big guns of American science have been the U.S. Department of Energy's particle collider, which investigate the nature of matter by accelerating subatomic particles and smashing them together." (1 page)

  14. Optimizing integrated luminosity of future hadron colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Schulte, Daniel; Zimmermann, Frank

    2015-01-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical “beam-beam limit”), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value...

  15. Il Collisore LHC (Large Hadron Collider)

    CERN Multimedia

    Brianti, Giorgio

    2004-01-01

    In 2007, in a new Collider in the tunnel of 27km, collisions will be made between very powerful beams of protons and ions. The energies will be very high to try to catch the most tiny particle (1 page)

  16. Physics prospects at a linear + - collider

    Indian Academy of Sciences (India)

    Saurabh D Rindani

    2006-10-01

    The talk described the prospects of studying standard model parameters as well as scenarios beyond the standard model, like the minimal supersymmetric standard model, theories with extra dimensions and theories with extra neutral gauge bosons, at a future linear + - collider.

  17. Facts about real antimatter collide with fiction

    CERN Document Server

    Siegfried, Tom

    2004-01-01

    When science collides with fiction, sometimes a best seller emerges from the debris. Take Dan Brown's Angels & Demons, for instance, a murder mystery based on science at CERN, the European nuclear research laboratory outside Geneva

  18. Final Focus Test Stand final report

    CERN Document Server

    Jeremie, A; Burrows, P

    2013-01-01

    Future Linear colliders will need particle beam sizes in the nanometre range. The beam also needs to be stable all along the beam line and especially at the Final Focus section. A dedicated Final Focus test stand has been used for this study and is comprised of several sub-parts. First there is the Stabilisation/Isolation system with sensors and actuators stabilizing down to sub-nanometre level. Then the Magnet itself needs to comply with very specific design constraints. In addition to the mechanical items, the beam can be stabilized acting on the trajectory directly and Beam-based controls have been developed and tested on different accelerator facilities.

  19. Nuclear collisions at the Future Circular Collider

    Science.gov (United States)

    Armesto, N.; Dainese, A.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C. A.; van Leeuwen, M.; Wiedemann, U. A.

    2016-12-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  20. Nuclear collisions at the Future Circular Collider

    CERN Document Server

    Armesto, N; d'Enterria, D; Masciocchi, S; Roland, C; Salgado, C A; van Leeuwen, M; Wiedemann, U A

    2016-01-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  1. Photon Linear Collider Gamma-Gamma Summary

    Energy Technology Data Exchange (ETDEWEB)

    Gronberg, J

    2012-02-27

    High energy photon - photon collisions can be achieved by adding high average power short-pulse lasers to the Linear Collider, enabling an expanded physics program for the facility. The technology required to realize a photon linear collider continues to mature. Compton back-scattering technology is being developed around the world for low energy light source applications and high average power lasers are being developed for Inertial Confinement Fusion.

  2. Academic Training Lecture: Jets at Hadron Colliders

    CERN Multimedia

    PH Department

    2011-01-01

    Regular Programme 30, 31 March and 1 April  2011 from 11:00 to 12:00 -  Bldg. 40-S2-A01 - Salle Andersson Jets at Hadron Colliders by Gavin Salam These three lectures will discuss how jets are defined at hadron colliders, the physics that is responsible for the internal structure of jets and the ways in which an understanding of jets may help in searches for new particles at the LHC.

  3. Higgs and SUSY searches at future colliders

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2000-04-01

    In this talk, I discuss some aspects of Higgs searches at future colliders, particularly comparing and contrasting the capabilities of LHC and next linear collider (NLC), including the aspects of Higgs searches in supersymmetric theories. I will also discuss how the search and study of sparticles other than the Higgs can be used to give information about the parameters of the minimal supersymmetric Standard Model (MSSM).

  4. Nuclear collisions at the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N., E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Dainese, A. [INFN – Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics, Amsterdam (Netherlands); Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2016-12-15

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  5. RF pulse compression for future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, P.B.

    1995-05-01

    Future (nonsuperconducting) linear colliders will require very high values of peak rf power per meter of accelerating structure. The role of rf pulse compression in producing this power is examined within the context of overall rf system design for three future colliders at energies of 1.0--1.5 TeV, 5 TeV and 25 TeV. In order keep the average AC input power and the length of the accelerator within reasonable limits, a collider in the 1.0--1.5 TeV energy range will probably be built at an x-band rf frequency, and will require a peak power on the order of 150--200 MW per meter of accelerating structure. A 5 TeV collider at 34 GHz with a reasonable length (35 km) and AC input power (225 MW) would require about 550 MW per meter of structure. Two-beam accelerators can achieve peak powers of this order by applying dc pulse compression techniques (induction linac modules) to produce the drive beam. Klystron-driven colliders achieve high peak power by a combination of dc pulse compression (modulators) and rf pulse compression, with about the same overall rf system efficiency (30--40%) as a two-beam collider. A high gain (6.8) three-stage binary pulse compression system with high efficiency (80%) is described, which (compared to a SLED-11 system) can be used to reduce the klystron peak power by about a factor of two, or alternately, to cut the number of klystrons in half for a 1.0--1.5 TeV x-band collider. For a 5 TeV klystron-driven collider, a high gain, high efficiency rf pulse compression system is essential.

  6. Tuning of the Compact Linear Collider Beam Delivery System

    CERN Document Server

    Garcia, H; Inntjore Levinsen, Y; Latina, A; Tomas, R; Snuverink, J

    2014-01-01

    Tuning the Compact Linear Collider (CLIC) BeamDelivery System (BDS), and in particular the Final Focus (FF), is a challenging task. In simulations without misalignments, the goal is to reach 120%o f the nominal luminosity target, in order to allow for 10% loss due to static imperfections, and another 10% loss from dynamic imperfections. Various approaches have been considered to correct the magnet misalignments, including 1-1 correction, Dispersion Free Steering (DFS), and several minimization methods utilizing multipole movers. In this paper we report on the recent advancements towards a feasible tuning approach that reaches the required luminosity target.

  7. Approaches to Beam Stabilization in X-Band Linear Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Josef; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Raubenheimer, Tor; Seryi, Andrei; /SLAC; Burrow, Philip; Molloy, Stephen; White, Glen; /Queen Mary U.

    2006-09-05

    In order to stabilize the beams at the interaction point, the X-band linear collider proposes to use a combination of techniques: inter-train and intra-train beam-beam feedback, passive vibration isolation, and active vibration stabilization based on either accelerometers or laser interferometers. These systems operate in a technologically redundant fashion: simulations indicate that if one technique proves unusable in the final machine, the others will still support adequate luminosity. Experiments underway for all of these technologies have already demonstrated adequate performance.

  8. Considerations on Energy Frontier Colliders after LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shiltsev, Vladimir [Fermilab

    2016-11-15

    Since 1960’s, particle colliders have been in the forefront of particle physics, 29 total have been built and operated, 7 are in operation now. At present the near term US, European and international strategies of the particle physics community are centered on full exploitation of the physics potential of the Large Hadron Collider (LHC) through its high-luminosity upgrade (HL-LHC). The future of the world-wide HEP community critically depends on the feasibility of possible post-LHC colliders. The concept of the feasibility is complex and includes at least three factors: feasibility of energy, feasibility of luminosity and feasibility of cost. Here we overview all current options for post-LHC colliders from such perspective (ILC, CLIC, Muon Collider, plasma colliders, CEPC, FCC, HE-LHC) and discuss major challenges and accelerator R&D required to demonstrate feasibility of an energy frontier accelerator facility following the LHC. We conclude by taking a look into ultimate energy reach accelerators based on plasmas and crystals, and discussion on the perspectives for the far future of the accelerator-based particle physics. This paper largely follows previous study [1] and the presenta ion given at the ICHEP’2016 conference in Chicago [2].

  9. The Permian Rotliegend reservoir architecture of the Dutch Koekoekspolder geothermal doublet

    NARCIS (Netherlands)

    Mijnlieff, H.F.; Bloemsma, M.R.; Donselaar, M.E.; Henares, S.; Redjosentono, A.E.; Veldkamp, J.G.; Weltje, G.J.

    2014-01-01

    The Dutch Koekoekspolder geothermal doublet was drilled in 2011 targeting the Permian Rotliegendreservoir. The encountered reservoir properties were less favorable than expected pre-drill. Post-drill integrated evaluation of vintage data and the new data from the geothermal wells resulted in a refin

  10. Symmetry enriched U(1) topological orders for dipole-octupole doublets on a pyrochlore lattice

    Science.gov (United States)

    Li, Yao-Dong; Chen, Gang

    2017-01-01

    Symmetry plays a fundamental role in our understanding of both conventional symmetry breaking phases and the more exotic quantum and topological phases of matter. We explore the experimental signatures of symmetry enriched U(1) quantum spin liquids (QSLs) on the pyrochlore lattice. We point out that the Ce local moment of the newly discovered pyrochlore QSL candidate Ce2Sn2O7 , is a dipole-octupole doublet. The generic model for these unusual doublets supports two distinct symmetry enriched U(1) QSL ground states in the corresponding quantum spin ice regimes. These two U(1) QSLs are dubbed dipolar U(1) QSL and octupolar U(1) QSL. While the dipolar U(1) QSL has been discussed in many contexts, the octupolar U(1) QSL is rather unique. Based on the symmetry properties of the dipole-octupole doublets, we predict the peculiar physical properties of the octupolar U(1) QSL, elucidating the unique spectroscopic properties in the external magnetic fields. We further predict the Anderson-Higgs transition from the octupolar U(1) QSL driven by the external magnetic fields. We identify the experimental relevance with the candidate material Ce2Sn2O7 and other dipole-octupole doublet systems.

  11. Description of the Chiral Doublet Bands in 135Nd and 136Nd

    Institute of Scientific and Technical Information of China (English)

    ZHANG Da-Li; DING Bin-Gang

    2011-01-01

    The chiral doublet bands in 135 Nd and 136Nd are investigated systematically within the supersymmetry scheme including many-body interactions and possessing the SO(5)(or SU(5)) symmetry on the rotational symmetry.Quantitatively good results of the energy spectra, the energy staggering parameter as a function of the spin and the spin assignment are obtained. The calculation shows that the stronger competition between the pairing and anti-pairing effects exists in these chiral doublet bands and the SU(3) symmetry breaking more seriously exists in the stable chiral structure.%@@ The chiral doublet bands in 135 Nd and 136Nd are investigated systematically within the supersymmetry scheme including many-body interactions and possessing the SO(5)(or SU(5)) symmetry on the rotational symmetry.Quantitatively good results of the energy spectra,the energy staggering parameter as a function of the spin and the spin assignment are obtained.The calculation shows that the stronger competition between the pairing and anti-pairing effects exists in these chiral doublet bands and the SU(3) symmetry breaking more seriously exists in the stable chiral structure.

  12. Constraints on the septet-doublet mixing models from oblique parameters

    CERN Document Server

    Geng, Chao-Qiang; Yu, Yao

    2014-01-01

    The limitations of the doublet-septet mixing models by electroweak oblique parameters of $S$ and $T$ are studied. In the minimal model, the mixture of the septet and the scalar doublet in the standard model (SM) is driven by a non-Hermitian dimension-7 operator. For a smaller bare mass of the septet, $\\Delta S$ gives a stringent constraint on $\\sin\\beta$, for example, $\\sin\\beta\\lesssim 0.22$ for $M_\\eta=300\\,{\\rm GeV}$. In general, increasing $M_\\eta$ will enhance the deviation of $T$ from the SM, whereas it decreases the magnitude of $\\Delta S$ for a larger bare mass within the range $M_\\eta\\lesssim 400\\,{\\rm GeV}$. We also examine two expended models from the ordinary doublet-septet mixture pattern. One of them is based on a inert doublet-septet mixing pattern, in which there is no vacuum expectation value for the neutral component of $\\eta$, and a stable dark matter could naturally exist. For a benchmark point with $M_\\chi=250{\\rm}$ and $M_\\eta=400\\,{\\rm GeV}$ in this model, the mixing coefficient is foun...

  13. Product lambda-doublet ratios as an imprint of chemical reaction mechanism

    Science.gov (United States)

    Jambrina, P. G.; Zanchet, A.; Aldegunde, J.; Brouard, M.; Aoiz, F. J.

    2016-11-01

    In the last decade, the development of theoretical methods has allowed chemists to reproduce and explain almost all of the experimental data associated with elementary atom plus diatom collisions. However, there are still a few examples where theory cannot account yet for experimental results. This is the case for the preferential population of one of the Λ-doublet states produced by chemical reactions. In particular, recent measurements of the OD(2Π) product of the O(3P)+D2 reaction have shown a clear preference for the Π(A') Λ-doublet states, in apparent contradiction with ab initio calculations, which predict a larger reactivity on the A'' potential energy surface. Here we present a method to calculate the Λ-doublet ratio when concurrent potential energy surfaces participate in the reaction. It accounts for the experimental Λ-doublet populations via explicit consideration of the stereodynamics of the process. Furthermore, our results demonstrate that the propensity of the Π(A') state is a consequence of the different mechanisms of the reaction on the two concurrent potential energy surfaces

  14. Limit on Br(b --> sg) in two Higgs doublet models

    CERN Document Server

    Geng, C Q; Hou Wei Shu; Chao-Qiang Geng; Paul Turcotte; Wei-Shu Hou

    1994-01-01

    Using the recent CLEO measurement of Br(b\\to s \\gamma), we find that the branching ratio of b\\to s g cannot be larger than 10\\% in two Higgs doublet models. The small experimental value of Br(b\\to e\\bar{\

  15. Spin-slip structure and central peak phenomena in singlet-doublet system: Praseodymium

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1997-01-01

    A theory is given for the central peaks observed in praseodymium, which is an effective singlet-doublet System of localized spins. The dominant peak is due to induced longitudinal magnetic ordering, which can be accounted for by mode-mode coupling theory. The second, broader peak is due to an ind...

  16. Correlated four-component EPR g-tensors for doublet molecules

    DEFF Research Database (Denmark)

    Vad, M.S.; Pedersen, M.N.; Nørager, A.

    2013-01-01

    The first correlated ab initio four-component calculations of electron paramagnetic resonance (EPR) g-tensors for doublet radicals are reported. We have implemented a first-order degenerate perturbation theory approach based on the four-component Dirac-Coulomb Hamiltonian and fully relativistic c...

  17. Deformed pseudospin doublets as a fingerprint of a relativistic supersymmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A, E-mail: ami@phys.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2011-01-01

    The single-particle spectrum of deformed shell-model states in nuclei, is shown to exhibit a supersymmetric pattern. The latter involves deformed pseudospin doublets and intruder levels. The underlying supersymmetry is associated with the relativistic pseudospin symmetry of the nuclear mean-field Dirac Hamiltonian with scalar and vector potentials.

  18. Deformed Pseudospin Doublets as a Fingerprint of a Relativistic Supersymmetry in Nuclei

    CERN Document Server

    Leviatan, A

    2010-01-01

    The single-particle spectrum of deformed shell-model states in nuclei, is shown to exhibit a supersymmetric pattern. The latter involves deformed pseudospin doublets and intruder levels. The underlying supersymmetry is associated with the relativistic pseudospin symmetry of the nuclear mean-field Dirac Hamiltonian with scalar and vector potentials.

  19. Nonclassical Effects of a Four-Level Excited-Doublet Atom Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Song; XU Jing-Bo

    2006-01-01

    We adopt a dynamical algebraic method to study a four-level excited-doublet atom model and obtain the explicit expressions of the time-evolution operator and the density operator for the system. The nonclassical effects of the system, such as collapses and revivals of the atomic inversion and squeezing of the radiation field, are also discussed.

  20. Separation of the 1+/1− parity doublet in 20Ne

    Directory of Open Access Journals (Sweden)

    J. Beller

    2015-02-01

    Full Text Available The (J,T=(1,1 parity doublet in 20Ne at 11.26 MeV is a good candidate to study parity violation in nuclei. However, its energy splitting is known with insufficient accuracy for quantitative estimates of parity violating effects. To improve on this unsatisfactory situation, nuclear resonance fluorescence experiments using linearly and circularly polarized γ-ray beams were used to determine the energy difference of the parity doublet ΔE=E(1−−E(1+=−3.2(±0.7stat(−1.2+0.6sys keV and the ratio of their integrated cross sections Is,0(+/Is,0(−=29(±3stat(−7+14sys. Shell-model calculations predict a parity-violating matrix element having a value in the range 0.46–0.83 eV for the parity doublet. The small energy difference of the parity doublet makes 20Ne an excellent candidate to study parity violation in nuclear excitations.

  1. Governance of the International Linear Collider Project

    Energy Technology Data Exchange (ETDEWEB)

    Foster, B.; /Oxford U.; Barish, B.; /Caltech; Delahaye, J.P.; /CERN; Dosselli, U.; /INFN, Padua; Elsen, E.; /DESY; Harrison, M.; /Brookhaven; Mnich, J.; /DESY; Paterson, J.M.; /SLAC; Richard, F.; /Orsay, LAL; Stapnes, S.; /CERN; Suzuki, A.; /KEK, Tsukuba; Wormser, G.; /Orsay, LAL; Yamada, S.; /KEK, Tsukuba

    2012-05-31

    Governance models for the International Linear Collider Project are examined in the light of experience from similar international projects around the world. Recommendations for one path which could be followed to realize the ILC successfully are outlined. The International Linear Collider (ILC) is a unique endeavour in particle physics; fully international from the outset, it has no 'host laboratory' to provide infrastructure and support. The realization of this project therefore presents unique challenges, in scientific, technical and political arenas. This document outlines the main questions that need to be answered if the ILC is to become a reality. It describes the methodology used to harness the wisdom displayed and lessons learned from current and previous large international projects. From this basis, it suggests both general principles and outlines a specific model to realize the ILC. It recognizes that there is no unique model for such a laboratory and that there are often several solutions to a particular problem. Nevertheless it proposes concrete solutions that the authors believe are currently the best choices in order to stimulate discussion and catalyze proposals as to how to bring the ILC project to fruition. The ILC Laboratory would be set up by international treaty and be governed by a strong Council to whom a Director General and an associated Directorate would report. Council would empower the Director General to give strong management to the project. It would take its decisions in a timely manner, giving appropriate weight to the financial contributions of the member states. The ILC Laboratory would be set up for a fixed term, capable of extension by agreement of all the partners. The construction of the machine would be based on a Work Breakdown Structure and value engineering and would have a common cash fund sufficiently large to allow the management flexibility to optimize the project's construction. Appropriate contingency

  2. Experimental comparative study of doublet and triplet impinging atomization of gelled fuel based on PIV

    Science.gov (United States)

    Yang, Jian-lu; Li, Ning; Weng, Chun-sheng

    2016-10-01

    Gelled propellant is promising for future aerospace application because of its combination of the advantages of solid propellants and liquid propellants. An effort was made to reveal the atomization properties of gelled fuel by particle image velocimetry (PIV) system. The gelled fuel which was formed by gasoline and Nano-silica was atomized using a like-doublet impingement injector and an axisymmetric like-triplet impingement injector. The orifice diameter and length of the nozzle used in this work were of 0.8mm, 4.8mm, respectively. In the impinging spray process, the impingement angles were set at 90° and 120°, and the injection pressures were of 0.50MPa and 1.00MPa. The distance from the exit of the orifice to the impingement point was fixed at 9.6mm. In this study, high-speed visualization and temporal resolution particle image velocimetry techniques were employed to investigate the impingement atomization characteristics. The experimental investigation demonstrated that a long narrow high speed droplets belt formed around the axis of symmetry in the like-doublet impinging atomization area. However, there was no obvious high-speed belt with impingement angle 2θ = 90° and two high-speed belts appeared with impingement angle 2θ = 120° in the like-doublet impingement spray field. The high droplet velocity zone of the like-doublet impingement atomization symmetrically distributed around the central axis, and that of the like-triplet impingement spray deflected to the left of the central axis - opposite of injector. Although the droplets velocity distribution was asymmetry of like-triplet impingement atomization, the injectors were arranged like axisymmetric conical shape, and the cross section of spray area was similar to a circle rather than a narrow rectangle like the like-doublet impingement atomization.

  3. Phenomenology of non-minimal supersymmetric models at linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Stefano

    2015-06-15

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  4. CMS Is Finally Completed

    CERN Multimedia

    2008-01-01

    Yet another step in the completion of the Large Hadron Collider was taken yesterday morning, as the final element of the Compact Muon Solenoid was lowered nearly 100 meters bellow ground. After more than eight years of work at the world's most powerful particle accelerator, scientists hope that they will be able to start initial experiments with the LHC until the end of this year.

  5. PROSPECTS FOR COLLIDERS AND COLLIDER PHYSICS TO THE 1 PEV ENERGY SCALE

    Energy Technology Data Exchange (ETDEWEB)

    KING,B.J.

    2000-05-05

    A review is given of the prospects for future colliders and collider physics at the energy frontier. A proof-of-plausibility scenario is presented for maximizing the authors progress in elementary particle physics by extending the energy reach of hadron and lepton colliders as quickly and economically as might be technically and financially feasible. The scenario comprises 5 colliders beyond the LHC--one each of e{sup +}e{sup {minus}} and hadron colliders and three {mu}{sup +}{mu}{sup {minus}} colliders--and is able to hold to the historical rate of progress in the log-energy reach of hadron and lepton colliders, reaching the 1 PeV constituent mass scale by the early 2040's. The technical and fiscal requirements for the feasibility of the scenario are assessed and relevant long-term R and D projects are identified. Considerations of both cost and logistics seem to strongly favor housing most or all of the colliders in the scenario in a new world high energy physics laboratory.

  6. Proceedings of the international workshop on next-generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, M. (ed.)

    1988-12-01

    This report contains papers on the next-generation of linear colliders. The particular areas of discussion are: parameters; beam dynamics and wakefields; damping rings and sources; rf power sources; accelerator structures; instrumentation; final focus; and review of beam-beam interaction.

  7. International Symposium to assess present and future promise of world's most powerful particle colliders

    CERN Multimedia

    Goshaw, Alfred

    2006-01-01

    "An international group of researchers will meet May 22-26 at Duke University for this year's Hadron Collider Physics Symposium. Participants will review the latest results from what is now the world's most powerful subatomic particle smasher and review final planning for its even more powerful successor now nearing completion."

  8. Doublet discharge stimulation increases sarcoplasmic reticulum Ca2+ release and improves performance during fatiguing contractions in mouse muscle fibres.

    Science.gov (United States)

    Cheng, Arthur J; Place, Nicolas; Bruton, Joseph D; Holmberg, Hans-Christer; Westerblad, Håkan

    2013-08-01

    Double discharges (doublets) of motor neurones at the onset of contractions increase both force and rate of force development during voluntary submaximal contractions. The purpose of this study was to examine the role of doublet discharges on force and myoplasmic free [Ca(2+)] ([Ca(2+)]i) during repeated fatiguing contractions, using a stimulation protocol mimicking the in vivo activation pattern during running. Individual intact fibres from the flexor digitorum brevis muscle of mice were stimulated at 33°C to undergo 150 constant-frequency (five pulses at 70 Hz) or doublet (an initial, extra pulse at 200 Hz) contractions at 300 ms intervals. In the unfatigued state, doublet stimulation resulted in a transient (∼10 ms) approximate doubling of [Ca(2+)]i, which was accompanied by a greater force-time integral (∼70%) and peak force (∼40%) compared to constant frequency contractions. Moreover, doublets markedly increased force-time integral and peak force during the first 25 contractions of the fatiguing stimulation. In later stages of fatigue, addition of doublets increased force production but the increase in force production corresponded to only a minor portion of the fatigue-induced reduction in force. In conclusion, double discharges at the onset of contractions effectively increase force production, especially in early stages of fatigue. This beneficial effect occurs without additional force loss in later stages of fatigue, indicating that the additional energy cost induced by doublet discharges to skeletal muscle is limited.

  9. Model-Independent Description and Large Hadron Collider Implications of Suppressed Two-Photon Decay of a Light Higgs Boson

    CERN Document Server

    Phalen, D; Wells, J D; Phalen, Daniel; Thomas, Brooks; Wells, James D.

    2006-01-01

    For a Standard Model Higgs boson with mass between 115 GeV and 150 GeV, the two-photon decay mode is important for discovery at the Large Hadron Collider (LHC). We describe the interactions of a light Higgs boson in a more model-independent fashion, and consider the parameter space where there is no two-photon decay mode. We argue from generalities that analysis of the $t\\bar t h$ discovery mode outside its normally thought of range of applicability is especially needed under these circumstances. We demonstrate the general conclusion with a specific example of parameters of a type I two-Higgs doublet theory, motivated by ideas in strongly coupled model building. We then specify a complete set of branching fractions and discuss the implications for the LHC.

  10. Next-to-leading order corrections to the spin-dependent energy spectrum of hadrons from polarized top quark decay in the general two Higgs doublet model

    Directory of Open Access Journals (Sweden)

    S. Mohammad Moosavi Nejad

    2017-08-01

    Full Text Available In recent years, searches for the light and heavy charged Higgs bosons have been done by the ATLAS and the CMS collaborations at the Large Hadron Collider (LHC in proton–proton collision. Nevertheless, a definitive search is a program that still has to be carried out at the LHC. The experimental observation of charged Higgs bosons would indicate physics beyond the Standard Model. In the present work, we study the scaled-energy distribution of bottom-flavored mesons (B inclusively produced in polarized top quark decays into a light charged Higgs boson and a massless bottom quark at next-to-leading order in the two-Higgs-doublet model; t(↑→bH+→BH++X. This spin-dependent energy distribution is studied in a specific helicity coordinate system where the polarization vector of the top quark is measured with respect to the direction of the Higgs momentum. The study of these energy distributions could be considered as a new channel to search for the charged Higgs bosons at the LHC. For our numerical analysis and phenomenological predictions, we restrict ourselves to the unexcluded regions of the MSSM mH+−tan⁡β parameter space determined by the recent results of the CMS [13] and ATLAS [14] collaborations.

  11. Next-to-leading order corrections to the spin-dependent energy spectrum of hadrons from polarized top quark decay in the general two Higgs doublet model

    Science.gov (United States)

    Moosavi Nejad, S. Mohammad; Abbaspour, S.

    2017-08-01

    In recent years, searches for the light and heavy charged Higgs bosons have been done by the ATLAS and the CMS collaborations at the Large Hadron Collider (LHC) in proton-proton collision. Nevertheless, a definitive search is a program that still has to be carried out at the LHC. The experimental observation of charged Higgs bosons would indicate physics beyond the Standard Model. In the present work, we study the scaled-energy distribution of bottom-flavored mesons (B) inclusively produced in polarized top quark decays into a light charged Higgs boson and a massless bottom quark at next-to-leading order in the two-Higgs-doublet model; t (↑) → bH+ → BH+ + X. This spin-dependent energy distribution is studied in a specific helicity coordinate system where the polarization vector of the top quark is measured with respect to the direction of the Higgs momentum. The study of these energy distributions could be considered as a new channel to search for the charged Higgs bosons at the LHC. For our numerical analysis and phenomenological predictions, we restrict ourselves to the unexcluded regions of the MSSM mH+ - tan ⁡ β parameter space determined by the recent results of the CMS [13] and ATLAS [14] collaborations.

  12. Impact of a four-zero Yukawa texture on $h\\to \\gamma \\gamma$ and $\\gamma Z$ in the framework of the 2-Higgs Doublet Model Type III

    CERN Document Server

    Cordero-Cid, A; Honorato, C G; Moretti, S; Perez, M A; Rosado, A

    2013-01-01

    We study the substantial enhancement, with respect to the corresponding Standard Model rates, that can be obtained for the branching ratios of the decay channels $h \\to \\gamma \\gamma$ and $h\\to \\gamma Z$ within the framework of the 2-Higgs-Doublet Model Type III, assuming a four-zero Yukawa texture and a general Higgs potential. We show that these processes are very sensitive to the flavour pattern entering the Yukawa texture and to the triple coupling structure of the Higgs potential, both of which impact onto the aforementioned decays. We can accommodate the parameters of the model in such a way to obtain the $h \\to \\gamma \\gamma$ rates reported by the Large Hadron Collider and at the same time get a $h\\to \\gamma Z$ fraction much larger than in the Standard Model, indeed within experimental reach. We present some scenarios where this phenomenology is realised for spectrum configurations that are consistent with current constraints. We also discuss the possibility of obtaining a light charged Higgs boson com...

  13. Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models

    CERN Document Server

    Kanemura, Shinya; Machida, Naoki; Odori, Shinya; Shindou, Tetsuo

    2016-01-01

    In the composite Higgs models, originally proposed by Georgi and Kaplan, the Higgs boson is a pseudo Nambu-Goldstone boson (pNGB) of spontaneous breaking of a global symmetry. In the minimal version of such models, global SO(5) symmetry is spontaneously broken to SO(4), and the pNGBs form an isospin doublet field, which corresponds to the Higgs doublet in the Standard Model (SM). Predicted coupling constants of the Higgs boson can in general deviate from the SM predictions, depending on the compositeness parameter. The deviation pattern is determined also by the detail of the matter sector. We comprehensively study how the model can be tested via measuring single and double production processes of the Higgs boson at LHC and future electron-positron colliders. The possibility to distinguish the matter sector among the minimal composite Higgs models is also discussed. In addition, we point out differences in the cross section of double Higgs boson production from the prediction in other new physics models.

  14. Development of a Non-Magnetic Inertial Sensor for Vibration Stabilization in a Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Frisch, Josef; Decker, Valentin; Doyle, Eric; Hendrickson, Linda; Himel, Thomas; Markiewicz, Thomas; Seryi, Andrei; /SLAC; Chang, Allison; Partridge, Richard; /Brown U.

    2006-09-01

    One of the options for controlling vibration of the final focus magnets in a linear collider is to use active feedback based on accelerometers. While commercial geophysics sensors have noise performance that substantially exceeds the requirements for a linear collider, they are physically large, and cannot operate in the strong magnetic field of the detector. Conventional nonmagnetic sensors have excessive noise for this application. We report on the development of a non-magnetic inertial sensor, and on a novel commercial sensor both of which have demonstrated the required noise levels for this application.

  15. The Superconducting Super Collider: A status report

    Energy Technology Data Exchange (ETDEWEB)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning.

  16. Electron lenses for super-colliders

    CERN Document Server

    Shiltsev, Vladimir D

    2016-01-01

    This book provides a comprehensive overview of the operating principles and technology of electron lenses in supercolliders.  Electron lenses are a novel instrument for high energy particle accelerators, particularly for the energy-frontier superconducting hadron colliders, including the Tevatron, RHIC, LHC and future very large hadron colliders.  After reviewing the issues surrounding beam dynamics in supercolliders, the book offers an introduction to the electron lens method and its application.  Further chapters describe the technology behind the electron lenses which have recently been proposed, built and employed for compensation of beam-beam effects and for collimation of high-energy high-intensity beams, for compensation of space-charge effects and several other applications in accelerators. The book will be an invaluable resource for those involved in the design, construction and operation of the next generation of hadron colliders.

  17. Collider and Detector Protection at Beam Accidents

    Science.gov (United States)

    Rakhno, I. L.; Mokhov, N. V.; Drozhdin, A. I.

    2003-12-01

    Dealing with beam loss due to abort kicker prefire is considered for hadron colliders. The prefires occured at Tevatron (Fermilab) during Run I and Run II are analyzed and a protection system implemented is described. The effect of accidental beam loss in the Large Hadron Collider (LHC) at CERN on machine and detector components is studied via realistic Monte Carlo calculations. The simulations show that beam loss at an unsynchronized beam abort would result in severe heating of conventional and superconducting magnets and possible damage to the collider detector elements. A proposed set of collimators would reduce energy deposition effects to acceptable levels. Special attention is paid to reducing peak temperature rise within the septum magnet and minimizing quench region length downstream of the LHC beam abort straight section.

  18. 2009 Linear Collider Workshop of the Americas

    Energy Technology Data Exchange (ETDEWEB)

    Seidel, Sally [Univ. of New Mexico, Albuquerque, NM (United States). Dept. of Physics and Astronomy

    2009-09-29

    The 2009 Linear Collider Workshop of the Americas was held on the campus of the University of New Mexico from 29 September to 3 October, 2009. This was a joint meeting of the American Linear Collider Physics Group and the ILC Global Design Effort. Two hundred fifty people attended. The number of scientific contributions was 333. The complete agenda, with links to all of the presentations, is available at physics.unm.edu/LCWA09/. The meeting brought together international experts as well as junior scientists, to discuss the physics potential of the linear collider and advances in detector technology. The validation of detector designs was announced, and the detector design groups planned the next phase of the effort. Detector R&D teams reported on progress on many topics including calorimetry and tracking. Recent accelerator design considerations were discussed in a special session for experimentalists and theorists.

  19. Wave equations, dispersion relations, and van Hove singularities for applications of doublet mechanics to ultrasound propagation in bio- and nanomaterials

    Science.gov (United States)

    Wu, Junru; Layman, Christopher; Liu, Jun

    2004-02-01

    A fundamental mathematical framework for applications of Doublet Mechanics to ultrasound propagation in a discrete material is introduced. A multiscale wave equation, dispersion relation for longitudinal waves, and shear waves are derived. The van Hove singularities and corresponding highest frequency limits for the Mth-order wave equations of longitudinal and shear waves are determined for a widely used microbundle structure. Doublet Mechanics is applied to soft tissue and low-density polyethylene. The experimental dispersion data for soft tissue and low-density polyethylene are compared with results predicted by Doublet Mechanics and an attenuation model based on a Kramers-Kronig relation in classical continuum mechanics.

  20. Report on the international workshop on next generation linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ruth, R.D.

    1989-05-01

    Many laboratories around the world have begun vigorous research programs on a next generation linear collider (NLC). However, it has been recognized that the research towards NLC is beyond the capabilities of any one laboratory presently. This workshop was organized to begin a series of workshops that address this problem. Specifically, the main goals of the workshop were to discuss research programs of the various laboratories around the world, to identify common areas of interest in the various NLC designs, and finally to advance these programs by collaboration. The particular topics discussed briefly in this paper are: parameters, rf power, structures, final focus, beam dynamics, damping rings, and instrumentation. 2 refs., 3 figs., 6 tabs.

  1. Measurements of the Top Quark at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Cerrito, Lucio

    2007-01-01

    The authors present recent preliminary measurements of the top-antitop pair production cross section and determinations of the top quark pole mass, performed using the data collected by the CDF and D0 Collaborations at the Tevatron Collider. In the lepton plus jets final state, with semileptonic B decay, the pair production cross section has now been measured at CDF using {approx} 760 pb{sup -1} of proton-antiproton collisions at a center-of-mass energy of {radical}s = 1.96 TeV. A measurement of the production cross section has also been made with {approx} 1 fb{sup -1} of data in the all-jets final state by the CDF Collaboration. The mass of the top quark has now been measured using {approx} 1 fb{sup -1} of collision data using all decay channels of the top quark pair, yielding the most precise measurements of the top mass to date.

  2. The Next Linear Collider: NLC2001

    Energy Technology Data Exchange (ETDEWEB)

    D. Burke et al.

    2002-01-14

    Recent studies in elementary particle physics have made the need for an e{sup +}e{sup -} linear collider able to reach energies of 500 GeV and above with high luminosity more compelling than ever [1]. Observations and measurements completed in the last five years at the SLC (SLAC), LEP (CERN), and the Tevatron (FNAL) can be explained only by the existence of at least one particle or interaction that has not yet been directly observed in experiment. The Higgs boson of the Standard Model could be that particle. The data point strongly to a mass for the Higgs boson that is just beyond the reach of existing colliders. This brings great urgency and excitement to the potential for discovery at the upgraded Tevatron early in this decade, and almost assures that later experiments at the LHC will find new physics. But the next generation of experiments to be mounted by the world-wide particle physics community must not only find this new physics, they must find out what it is. These experiments must also define the next important threshold in energy. The need is to understand physics at the TeV energy scale as well as the physics at the 100-GeV energy scale is now understood. This will require both the LHC and a companion linear electron-positron collider. A first Zeroth-Order Design Report (ZDR) [2] for a second-generation electron-positron linear collider, the Next Linear Collider (NLC), was published five years ago. The NLC design is based on a high-frequency room-temperature rf accelerator. Its goal is exploration of elementary particle physics at the TeV center-of-mass energy, while learning how to design and build colliders at still higher energies. Many advances in accelerator technologies and improvements in the design of the NLC have been made since 1996. This Report is a brief update of the ZDR.

  3. Design of a High Luminosity 100 TeV Proton Antiproton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Oliveros Tuativa, Sandra Jimena [Univ. of Mississippi, Oxford, MS (United States)

    2017-04-01

    Currently new physics is being explored with the Large Hadron Collider at CERN and with Intensity Frontier programs at Fermilab and KEK. The energy scale for new physics is known to be in the multi-TeV range, signaling the need for a future collider which well surpasses this energy scale. A 10$^{\\,34}$ cm$^{-2}$ s$^{-1}$ luminosity 100 TeV proton-antiproton collider is explored with 7$\\times$ the energy of the LHC. The dipoles are 4.5\\,T to reduce cost. A proton-antiproton collider is selected as a future machine for several reasons. The cross section for many high mass states is 10 times higher in $p\\bar{p}$ than $pp$ collisions. Antiquarks for production can come directly from an antiproton rather than indirectly from gluon splitting. The higher cross sections reduce the synchrotron radiation in superconducting magnets and the number of events per bunch crossing, because lower beam currents can produce the same rare event rates. Events are also more centrally produced, allowing a more compact detector with less space between quadrupole triplets and a smaller $\\beta^{*}$ for higher luminosity. To adjust to antiproton beam losses (burn rate), a Fermilab-like antiproton source would be adapted to disperse the beam into 12 different momentum channels, using electrostatic septa, to increase antiproton momentum capture 12 times. At Fermilab, antiprotons were stochastically cooled in one Debuncher and one Accumulator ring. Because the stochastic cooling time scales as the number of particles, two options of 12 independent cooling systems are presented. One electron cooling ring might follow the stochastic cooling rings for antiproton stacking. Finally antiprotons in the collider ring would be recycled during runs without leaving the collider ring, by joining them to new bunches with snap bunch coalescence and synchrotron damping. These basic ideas are explored in this work on a future 100 TeV proton-antiproton collider and the main parameters are presented.

  4. Physics Beyond the Standard Model at Colliders

    Science.gov (United States)

    Matchev, Konstantin

    These lectures introduce the modern machinery used in searches and studies of new physics Beyond the Standard Model (BSM) at colliders. The first lecture provides an overview of the main simulation tools used in high energy physics, including automated parton-level calculators, general purpose event generators, detector simulators, etc. The second lecture is a brief introduction to low energy supersymmetry (SUSY) as a representative BSM paradigm. The third lecture discusses the main collider signatures of SUSY and methods for measuring the masses of new particles in events with missing energy.

  5. Precision Physics at the International Linear Collider

    Energy Technology Data Exchange (ETDEWEB)

    Heuer, R.-D. [Institut fuer Experimentalphysik, Hamburg University, Hamburg (Germany)

    2006-10-15

    Despite the great success of the Standard Model, many key questions in particle physics and cosmology are unanswered today. Together with the Large Hadron Collider LHC, starting in 2007, the International Linear Collider ILC as the next project planned at the high energy frontier, will play a crucial role in tackling many of these most exciting questions. The high precision achievable with experiments at the ILC will be indispensable in order to reach definite conclusions about many features of new physics expected at the TeV scale. This contribution presents prominent physics examples and describes detector challenges and the project status.

  6. SUSY CP phases and asymmetries at colliders

    CERN Document Server

    Kittel, Olaf

    2009-01-01

    In the Minimal Supersymmetric Standard Model, physical phases of complex parameters lead to CP violation. We show how triple products of particle momenta or spins can be used to construct asymmetries, that allow us to probe these CP phases. To give specific examples, we discuss the production of neutralinos at the International Linear Collider. For the Large Hadron Collider, we discuss CP asymmetries in squark decays, and in the tri-lepton signal. We find that the CP asymmetries can be as large as 60%.

  7. SUSY CP phases and asymmetries at colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, Olaf, E-mail: kittel@ugr.e [Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, E-18071 Granada (Spain)

    2009-06-01

    In the Minimal Supersymmetric Standard Model, physical phases of complex parameters lead to CP violation. We show how triple products of particle momenta or spins can be used to construct asymmetries, that allow us to probe these CP phases. To give specific examples, we discuss the production of neutralinos at the International Linear Collider (ILC). For the Large Hadron Collider (LHC), we discuss CP asymmetries in squark decays, and in the tri-lepton signal. We find that the CP asymmetries can be as large as 60%.

  8. Beam instrumentation for the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Ronald S.; Jansson, Andreas; Shiltsev, Vladimir; /Fermilab

    2009-10-01

    The Tevatron in Collider Run II (2001-present) is operating with six times more bunches and many times higher beam intensities and luminosities than in Run I (1992-1995). Beam diagnostics were crucial for the machine start-up and the never-ending luminosity upgrade campaign. We present the overall picture of the Tevatron diagnostics development for Run II, outline machine needs for new instrumentation, present several notable examples that led to Tevatron performance improvements, and discuss the lessons for future colliders.

  9. Top quark studies at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  10. Reorienting MHD colliding flows: a shock physics mechanism for generating filaments normal to magnetic fields

    Science.gov (United States)

    Fogerty, Erica; Carroll-Nellenback, Jonathan; Frank, Adam; Heitsch, Fabian; Pon, Andy

    2017-09-01

    We present numerical simulations of reorienting oblique shocks that form in the collision layer between magnetized colliding flows. Reorientation aligns post-shock filaments normal to the background magnetic field. We find that reorientation begins with pressure gradients between the collision region and the ambient medium. This drives a lateral expansion of post-shock gas, which reorients the growing filament from the outside-in (i.e. from the flow/ambient boundary, towards the colliding flows axis). The final structures of our simulations resemble polarization observations of filaments in Taurus and Serpens South, as well as the integral-shaped filament in Orion A. Given the ubiquity of colliding flows in the interstellar medium, shock reorientation may be relevant to the formation of filaments normal to magnetic fields.

  11. Reorienting MHD Colliding Flows: A Shock Physics Mechanism for Generating Filaments Normal to Magnetic Fields

    CERN Document Server

    Fogerty, Erica L; Frank, Adam; Heitsch, Fabian; Pon, Andy

    2016-01-01

    We present numerical simulations of reorienting oblique shocks that form in the collision layer between magnetized colliding flows. Reorientation aligns parsec-scale post-shock filaments normal to the background magnetic field. We find that reorientation begins with pressure gradients between the collision region and the ambient medium. This drives a lateral expansion of post-shock gas, which reorients the growing filament from the outside-in (i.e. from the flow-ambient boundary, toward the colliding flows axis). The final structures of our simulations resemble polarization observations of filaments in Taurus and Serpens South, as well as the integral-shaped filament in Orion A. Given the ubiquity of colliding flows in the interstellar medium, shock reorientation may be relevant to the formation of filaments normal to magnetic fields.

  12. The Mg 280-nm doublet as a monitor of changes in solar ultraviolet irradiance

    Science.gov (United States)

    Heath, D. F.; Schlesinger, B. M.

    1986-01-01

    Solar irradiance data gathered with the Nimbus 7 spacecraft from 1978-1985 are compared with atmospheric MG 289-nm doublet emission line data to evaluate the possibility of using the rotational line data to calculate the total solar UV input. The satellite instrumentation is described, including the calibration equipment and procedures. The spacecraft records solar irradiance once per day and the remainder of the time records irradiance scattered by the atmosphere. The measured irradiances are converted to equivalent brightness temperatures, which can be interpolated for specific layers of the atmosphere. Sample daily data are provided to illustrate the correlation between variations in the Mg-II core radiation and the soalr UV irradiance. Techniques are defined for correcting for periodic variations in instrument performance to quantify long-term solar UV radiance variations. Using the atmospheric Mg-II doublet radiation for measuring soalr UV irradiance is concluded of value for characterizing the effects of solar radiation on the atmosphere.

  13. A rotated transmission grating spectrometer for detecting spectral separation of doublet Na

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Ignatius Edi [Department of Physics Education, Sanata Dharma University, Paingan Maguwohardjo Depok Sleman, Yogyakarta 55281, Indonesia edi@usd.ac.id (Indonesia)

    2015-04-16

    Transmission gratings are usually used in a spectrometer for measuring the wavelength of light. In the common design, the position of the grating is perpendicular to the incident light. In order to increase the angular dispersion, in contrary to the common design, in this experiment the transmission grating was rotated. Due to the non-zero incident angle, the diffracted light was shifted. This rotated transmission grating spectrometer has been used to determine the separation of doublet Na. In this experiment, the diffraction angle was measured at various incident angles. The spectral separation of doublet Na was identified from the difference in the diffraction angle of two spectral lines. This spectral separation depends on the incident angle, the grating constant and the order of diffraction. As the effect of increasing the incident angle, a significant increase of the spectral separation can be achieved up to three fold.

  14. Energy splitting of the ground-state doublet in the nucleus 229Th.

    Science.gov (United States)

    Beck, B R; Becker, J A; Beiersdorfer, P; Brown, G V; Moody, K J; Wilhelmy, J B; Porter, F S; Kilbourne, C A; Kelley, R L

    2007-04-01

    The energy splitting of the 229Th ground-state doublet is measured to be 7.6+/-0.5 eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of 233U (105 muCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19-->0 keV).

  15. Energy Splitting of the Ground-State Doublet in the Nucleus Th229

    Science.gov (United States)

    Beck, B. R.; Becker, J. A.; Beiersdorfer, P.; Brown, G. V.; Moody, K. J.; Wilhelmy, J. B.; Porter, F. S.; Kilbourne, C. A.; Kelley, R. L.

    2007-04-01

    The energy splitting of the Th229 ground-state doublet is measured to be 7.6±0.5eV, significantly greater than earlier measurements. Gamma rays produced following the alpha decay of U233 (105μCi) were counted in the NASA/electron beam ion trap x-ray microcalorimeter spectrometer with an experimental energy resolution of 26 eV (FWHM). A difference technique was applied to the gamma-ray decay of the 71.82 keV level that populates both members of the doublet. A positive correction amounting to 0.6 eV was made for the unobserved interband decay of the 29.19 keV state (29.19→0keV).

  16. Ultrasound Attenuation in Biological Tissue Predicted by the Modified Doublet Mechanics Model

    Institute of Scientific and Technical Information of China (English)

    JIANG Xin; LIU Xiao-Zhou; WU Jun-Ru

    2009-01-01

    Experimental results have shown that in the megahertz frequency range the relationship between the acoustic attenuation coefficient in soft tissues and frequency is nearly linear. The classical continuum mechanics (CCM),which assumes that the material is uniform and continuous, fails to explain this relationship particularly in the high megahertz range. Doublet mechanics (DM) is a new elastic theory which takes the discrete nature of material into account. The current DM theory however does not consider the loss. We revise the doublet mechanics (DM)theory by including the loss term, and calculate the attenuation of a soft tissue as a function of frequency using the modified the DM theory (MDM). The MDM can now well explain the nearly linear relationship between the acoustic attenuation coefficient in soft tissues and frequency.

  17. Photochemistry of atomic oxygen green and red-doublet emissions in comets at larger heliocentric distances

    Science.gov (United States)

    Raghuram, Susarla; Bhardwaj, Anil

    2014-06-01

    Context. In comets, the atomic oxygen green (5577 Å) to red-doublet (6300, 6364 Å) emission intensity ratio (G/R ratio) of 0.1 has been used to confirm H2O as the parent species producing forbidden oxygen emission lines. The larger (>0.1) value of G/R ratio observed in a few comets is ascribed to the presence of higher CO2 and CO relative abundances in the cometary coma. Aims: We aim to study the effect of CO2 and CO relative abundances on the observed G/R ratio in comets observed at large (>2 au) heliocentric distances by accounting for important production and loss processes of O(1S) and O(1D) atoms in the cometary coma. Methods: Recently we have developed a coupled chemistry-emission model to study photochemistry of O(1S) and O(1D) atoms and the production of green and red-doublet emissions in comets Hyakutake and Hale-Bopp. In the present work we applied the model to six comets where green and red-doublet emissions are observed when they are beyond 2 au from the Sun. Results: The collisional quenching of O(1S) and O(1D) can alter the G/R ratio more significantly than that due to change in the relative abundances of CO2 and CO. In a water-dominated cometary coma and with significant (>10%) CO2 relative abundance, photodissociation of H2O mainly governs the red-doublet emission, whereas CO2 controls the green line emission. If a comet has equal composition of CO2 and H2O, then ~50% of red-doublet emission intensity is controlled by the photodissociation of CO2. The role of CO photodissociation is insignificant in producing both green and red-doublet emission lines and consequently in determining the G/R ratio. Involvement of multiple production sources in the O(1S) formation may be the reason for the observed higher green line width than that of red lines. The G/R ratio values and green and red-doublet line widths calculated by the model are consistent with the observation. Conclusions: Our model calculations suggest that in low gas production rate comets the G

  18. The dispersive properties of an excited-doublet four-level atomic system

    Institute of Scientific and Technical Information of China (English)

    Hu Zheng-Feng; Deng Jian-Liao; Wang Yu-Zhu

    2008-01-01

    We have investigated the dispersive properties of excited-doublet four-level atoms interacting with a weak probe field and an intense coupling laser field.We have derived an analytical expression of the dispersion relation for a general excited-doublet four-level atomic system sunject to a one-photon detuning.The numerical results demonstrate that for a typical rubidium D1 line configuration,due to the unequal dipole moments for the transitions of each ground state to double excited states,generally there exists no exact dark state in the system.Close to the two-photon resonance,the probe light can be absorbed or gained and propagate in the so-called superluminal form.This system may be used as an optical switch.

  19. Enhanced coherence of a quantum doublet coupled to Tomonaga-Luttinger liquid leads

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, Antonio, E-mail: antonio.cirillo@fisica.unipg.it [Dipartimento di Fisica, Universita di Perugia, Via A. Pascoli, I-06123, Perugia (Italy); I.N.F.N., Sezione di Perugia, Via A. Pascoli, I-06123, Perugia (Italy); Mancini, Matteo, E-mail: matteo.mancini@fisica.unipg.it [Dipartimento di Fisica, Universita di Perugia, Via A. Pascoli, I-06123, Perugia (Italy); I.N.F.N., Sezione di Perugia, Via A. Pascoli, I-06123, Perugia (Italy); Giuliano, Domenico, E-mail: domenico.giuliano@fis.unical.it [Dipartimento di Fisica, Universita della Calabria, Arcavacata di Rende I-87036, Cosenza (Italy); I.N.F.N., Gruppo Collegato di Cosenza, Arcavacata di Rende I-87036, Cosenza (Italy); Sodano, Pasquale, E-mail: pasquale.sodano@pg.infn.it [Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo ON, N2L 2Y5 (Canada); Dipartimento di Fisica, Universita di Perugia, Via A. Pascoli, I-06123, Perugia (Italy); I.N.F.N., Sezione di Perugia, Via A. Pascoli, I-06123, Perugia (Italy)

    2011-11-01

    We use boundary field theory to describe the phases accessible to a tetrahedral qubit coupled to Josephson junction chains acting as Tomonaga-Luttinger liquid leads. We prove that, in a pertinent range of the fabrication and control parameters, an attractive finite coupling fixed point emerges due to the geometry of the composite Josephson junction network. We show that this new stable phase is characterized by the emergence of a quantum doublet which is robust not only against the noise in the external control parameters (magnetic flux, gate voltage) but also against the decoherence induced by the coupling of the tetrahedral qubit with the superconducting leads. We provide protocols allowing to read and to manipulate the state of the emerging quantum doublet and argue that a tetrahedral Josephson junction network operating near the new finite coupling fixed point may be fabricated with today's technologies.

  20. Mu to e gamma in the 2 Higgs Doublet Model: an exercise in EFT

    CERN Document Server

    Davidson, Sacha

    2016-01-01

    The 2 Higgs Doublet Model (2HDM) of type III has renormalisable Lepton Flavour-Violating couplings, and its one and two-loop ("Barr-Zee") contributions to $\\mu \\to e \\gamma$ are known. In the decoupling limit, where the mass scale M of the second doublet is much greater than the electroweak scale, the model can be parametrised with an Effective Field Theory(EFT) containing dimension six operators. The $1/M^2$ terms of the exact calculation are reproduced in the EFT, provided that the four-fermion operator basis below the weak scale is enlarged with respect to the SU(2)-invariant Buchmuller-Wyler list. The two-loop "Barr-Zee" contributions are located in the EFT, showing that two-loop matching and running would be required to obtain the most important contributions, and that dimension eight operators can be numerically relevant.