WorldWideScience

Sample records for collective potential energy

  1. Alternative Forms of Energy Production and Political Reconfigurations: The Sociology of Alternative Energies as a Study of Collective Reorganization Potential

    International Nuclear Information System (INIS)

    Rumpala, Yannick

    2013-01-01

    Energy choices that are made in a society are also political choices. This article aims to study the extent to which these choices can be reoriented by technological developments related to renewable energies, thus contributing to a redistribution of possibilities and to social reorganization. Three steps are proposed to show that while the development of alternative energies depends on technological advances, it can, in this process, also reveal political potentials: 1) the first step clarifies the theoretical arguments that can be deployed in favour of an approach in terms of 'technological potentialism'; 2) the second step extends this approach by identifying a set of potentials linked to renewable energies and the model that could take shape through these alternative forms; 3) the third step examines how these potentials could find ways of being updated

  2. Collecting and Analyzing At-Sea and Coastal Avian Data to Assess Potential Effects of Offshore Renewable Energy Development

    Science.gov (United States)

    Pereksta, D. M.

    2016-02-01

    The prospect of renewable energy development off the coasts of the United States has led to a scramble for data needs on potentially affected resources, particularly those related to avian species. The potential effects from renewable energy development to avian species are complex and varied including collision, displacement, barrier effects, and attraction. As the lead Federal agency for renewable energy development on the Federal outer continental shelf (OCS), the Bureau of Ocean Energy Management (BOEM) has initiated, in coordination with other agencies and partners, the collection and synthesizing of existing data, identification of data gaps, development and funding of studies to fill those gaps, and creation of products for assessing risk to birds from structures at sea. Through the Environmental Studies Program, BOEM collects a wide range of environmental information to provide an improved understanding of offshore ecosystems, a baseline for assessing cumulative effects, and the scientific basis for development of regulatory measures to mitigate adverse impacts. With broad-scale assessments of suitable areas for wind, wave, and tidal energy production offshore, the challenge has been to collect and compile information quickly and at as large a scale as possible. Assessing what we know, what we can predict, and how can we assess risk has led BOEM to develop and collaborate on a variety of studies including baseline data assessments, at-sea surveys, predictive modeling of seabird distribution and abundance, vulnerability and risk assessments, and technology testing for efficient ways to inventory birds on the OCS. These are being applied in both the Atlantic and Pacific, including the Main Hawaiian Islands, to provide for assessments of potential effects and data needs early in the planning process at regional and local scales with the goal of designing and implementing projects that will minimize effects to avian species to the greatest extent practicable.

  3. Energy collection via Piezoelectricity

    International Nuclear Information System (INIS)

    Kumar, Ch Naveen

    2015-01-01

    In the present days, wireless data transmission techniques are commonly used in electronic devices. For powering them connection needs to be made to the power supply through wires else power may be supplied from batteries. Batteries require charging, replacement and other maintenance efforts. So, some alternative methods need to be developed to keep the batteries full time charged and to avoid the need of any consumable external energy source to charge the batteries. Mechanical energy harvesting utilizes piezoelectric components where deformations produced by different means are directly converted to electrical charge via piezoelectric effect. The proposed work in this research recommends Piezoelectricity as a alternate energy source. The motive is to obtain a pollution-free energy source and to utilize and optimize the energy being wasted. Current work also illustrates the working principle of piezoelectric crystal and various sources of vibration for the crystal. (paper)

  4. The potential of renewable energy

    International Nuclear Information System (INIS)

    Piot, M.

    2007-01-01

    This article presents and comments on definitions of the potential of renewable forms of energy and, in a second part, takes a look at the potentials mentioned in the energy perspectives published by the Swiss Federal Office of Energy (SFOE). The following potentials are looked at: technical potential, ecological potential, economic potential, exploitable and expected potentials, technical, economic and ecological expansion potentials, potential of particular technologies in Switzerland, exploitable and expected expansion potential. Four scenarios for expansion potential are briefly described

  5. Equal Potential: A Collective Fraud.

    Science.gov (United States)

    Gottfredson, Linda S.

    2000-01-01

    Critiques the College Board's report, "Reaching the Top," asserting that it illustrates collective fraud in the social sciences, which sustains an egalitarian fiction that intelligence is clustered equally across all human populations. Suggests that while the report omits certain popular falsehoods, it also omits crucial truths about…

  6. Solar energy collection by antennas

    Energy Technology Data Exchange (ETDEWEB)

    Corkish, R.; Green, M.A.; Puzzer, T. [University of New South Wales, Sydney (Australia). Centre for Advanced Silicon Photovoltaics and Photonics

    2002-12-01

    The idea of collecting solar electromagnetic radiation with antenna-rectifier (rectenna) structures was proposed three decades ago but has not yet been achieved. The idea has been promoted as having potential to achieve efficiency approaching 100% but thermodynamic considerations imply a lower limit of 85.4% for a non-frequency-selective rectenna and 86.8% for one with infinite selectivity, assuming maximal concentration in each case. This paper reviews the history and technical context of solar rectennas and discusses the major issues: thermodynamic efficiency limits, rectifier operation at optical frequencies, harmonics production and electrical noise. (author)

  7. Wind energy potential in India

    International Nuclear Information System (INIS)

    Rangarajan, S.

    1995-01-01

    Though located in the tropics, India is endowed with substantial wind resources because of its unique geographical location which gets fully exposed to both the south-west and north-east monsoon winds. The westerly winds of the south-west monsoons provide bulk of the wind potential. Areas with mean annual wind speed exceeding 18 k mph and areas with mean annual power density greater than 140 W/m 2 have been identified using the wind data collected by the wind monitoring project funded by the Ministry of Non-conventional Energy Sources (MNES). Seasonal variations in wind speed at selected locations are discussed as also the frequency distribution of hourly wind speed. Annual capacity factors for 250 kW wind electric generators have been calculated for several typical locations. A good linear correlation has been found between mean annual wind speed and mean annual capacity factor. A method is described for assessing wind potential over an extended region where adequate data is available. It is shown that the combined wind energy potential over five selected areas of limited extent in Gujarat, Andhra Pradesh and Tamil Nadu alone amounts to 22,000 MW under the assumption of 20 per cent land availability for installing wind farms. For a higher percentage of land availability, the potential will be correspondingly higher. (author). 12 refs., 6 figs., 3 tabs

  8. Collecting Solar Energy. Solar Energy Education Project.

    Science.gov (United States)

    O'Brien, Alexander

    This solar energy learning module for use with junior high school students offers a list of activities, a pre-post test, job titles, basic solar energy vocabulary, and diagrams of solar energy collectors and installations. The purpose is to familiarize students with applications of solar energy and titles of jobs where this knowledge could be…

  9. Wind energy potential in Bulgaria

    International Nuclear Information System (INIS)

    Shtrakov, Stanko Vl.

    2009-01-01

    In this study, wind characteristic and wind energy potential in Bulgaria were analyzed using the wind speed data. The wind energy potential at different sites in Bulgaria has been investigated by compiling data from different sources and analyzing it using a software tool. The wind speed distribution curves were obtained by using the Weibull and Rayleigh probability density functions. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve. A technical and economic assessment has been made of electricity generation from three wind turbines having capacity of (60, 200, and 500 kW). The yearly energy output capacity factor and the electrical energy cost of kWh produced by the three different turbines were calculated

  10. The potential of biogas energy

    International Nuclear Information System (INIS)

    Acaroglu, M.; Hepbasli, A.; Kocar, G.

    2005-01-01

    Biogas technology has been known about for a long time, but in recent years the interest in it has significantly increased, especially due to the higher costs and the rapid depletion of fossil fuels as well as their environmental considerations. The main objective of the present study is to investigate the potential of biogas energy in the 15 European Union (EU) countries and in Turkey, which is seeking admission to the EU and is trying to meet EU environmental standards. Biogas energy potential of the 15 EU countries is estimated to be about 800 PJ. Besides this, Turkey's annual animal waste potential is obtained to be about 11.81 million tons with a biogas energy equivalent of 53.6 PJ. It is expected that this study will be helpful in developing highly applicable and productive planning for energy policies towards the optimum utilization of biogas energy. (author)

  11. The potential of renewable energies

    International Nuclear Information System (INIS)

    Glubrecht, H.

    1998-01-01

    If one compares the progress in research and development of renewable energy applications with the finding which has been granted to these activities during the 23 years after the first oil shock, one cannot but be very impressed. It is indicated in this paper hoe comprehensive the potential of renewable energy is. One should take into account that the methods described form a broad interdisciplinary field in contrast to fossil and nuclear technologies. From technical point of view the present and future energy demand can be met by the broad spectrum of renewable energies in combination with energy conservation. Many of these techniques are already economically competitive: solar architecture, wind energy, hydropower, low temperature heat production, photovoltaic for remote areas, various types of biomass application, geothermal energy although not exactly renewable. The future of renewable energies will depend on opening markets for these techniques

  12. Nuclear energy: potentiality and implications

    International Nuclear Information System (INIS)

    Bahgat, Gawdat

    2008-01-01

    After a discussion about a broad definition of energy security and about the main challenges facing a potential nuclear renaissance, the article analyses how the European Union and the United States have addressed these challenges. There is no doubt that nuclear power will remain an important component of global energy mix, but it should not be seen as a panacea to the flows in the global energy markets [it

  13. World potential of renewable energies

    Energy Technology Data Exchange (ETDEWEB)

    Dessus, B; Devin, B; Pharabod, F

    1991-07-01

    A comprehensive analysis, region by region, of the actually accessible renewable energies at a given horizon, is presented. The same methodology as the one employed to derive ``proven fossil energy reserves`` from ``energy resources`` is adopted, in which resources are defined by quantitative information on physical potential, while reserves take into account technical and economical accessibility. As renewable resources are fluctuating with time and are diluted in space and not readily transportable or storeable, it is necessary to consider the presence of populations or activities near enough to be able to profit by these diluted and volatile energies.

  14. Energy intensities: Prospects and potential

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the previous chapter, the author described how rising activity levels and structural change are pushing toward higher energy use in many sectors and regions, especially in the developing countries. The extent to which more activity leads to greater energy use will depend on the energy intensity of end-use activities. In this chapter, the author presents an overview of the potential for intensity reductions in each sector over the next 10-20 years. It is not the author's intent to describe in detail the various technologies that could be employed to improve energy efficiency, which has been done by others (see, for example, Lovins ampersand Lovins, 1991; Goldembert et al., 1987). Rather, he discusses the key factors that will shape future energy intensities in different parts of the world, and gives a sense for the changes that could be attained if greater attention were given to accelerate efficiency improvement. The prospects for energy intensities, and the potential for reduction, vary among sectors and parts of the world. In the majority of cases, intensities are tending to decline as new equipment and facilities come into use and improvements are made on existing stocks. The effect of stock turnover will be especially strong in the developing countries, where stocks are growing at a rapid pace, and the Former East Bloc, where much of the existing industrial plant will eventually be retired and replaced with more modern facilities. While reductions in energy intensity are likely in most areas, there is a large divergence between the technical and economic potential for reducing energy intensities and the direction in which present trends are moving. In the next chapter, the author presents scenarios that illustrate where trends are pointing, and what could be achieved if improving energy efficiency were a focus of public policies. 53 refs., 4 figs., 2 tabs

  15. Assessment of triton potential energy

    International Nuclear Information System (INIS)

    Friar, J.L.; Payne, G.L.

    1995-01-01

    An assessment is made of the dominant features contributing to the triton potential energy, with the objective of understanding qualitatively their origins and sensitivities. Relativistic effects, short-range repulsion, and OPEP dominance are discussed. A determination of the importance of various regions of nucleon-nucleon separation is made numerically. (author)

  16. The potential of renewable energy

    Energy Technology Data Exchange (ETDEWEB)

    1990-03-01

    On June 27 and 28, 1989, the US Department of Energy (DOE) national laboratories were convened to discuss plans for the development of a National Energy Strategy (NES) and, in particular, the analytic needs in support of NES that could be addressed by the laboratories. As a result of that meeting, interlaboratory teams were formed to produce analytic white papers on key topics, and a lead laboratory was designated for each core laboratory team. The broad-ranging renewables assignment is summarized by the following issue statement from the Office of Policy, Planning and Analysis: to what extent can renewable energy technologies contribute to diversifying sources of energy supply What are the major barriers to greater renewable energy use and what is the potential timing of widespread commercialization for various categories of applications This report presents the results of the intensive activity initiated by the June 1989 meeting to produce a white paper on renewable energy. Scores of scientists, analysts, and engineers in the five core laboratories gave generously of their time over the past eight months to produce this document. Their generous, constructive efforts are hereby gratefully acknowledged. 126 refs., 44 figs., 32 tabs.

  17. Potential energy function of CN-

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Polák, Rudolf

    2008-01-01

    Roč. 248, č. 1 (2008), s. 77-80 ISSN 0022-2852 R&D Projects: GA MŠk LC512; GA AV ČR IAA400550511; GA AV ČR IAA400400504 Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z40400503 Keywords : potential energy curve * fundamental transition * spectroscopic constants Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.636, year: 2008

  18. Worldwide potential of wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Flavin, C

    1982-01-01

    A well-documented discussion is presented dealing with the worldwide potential of wind energy as a source of electrical and mechanical power. It is pointed out that 2% of the solar insolation is converted to wind kinetic energy; it is constantly renewed and nondepletable. Efficiency of windmills are discussed (20 to 40%) and payback periods of less than 5 years are cited. Effects of wind velocity and site location are described. Wind pumps are reviewed and the need for wind pumps, particularly in the developing countries is stressed. The generation of electricity by windmills using small turbines is reviewed and appears promising in areas with wind velocities greater than 12 mi/hr. The development of large windmills and groups of windmills (windfarms) for large scale electrical power is discussed, illustrated, and reviewed (offshore sites included). Environmental and safety problems are considered as well as the role of electrical utilities, government support and research activities. It is concluded that the potential contribution of wind energy is immense and that mechanical windmills may become one of the most important renewable technologies. Electrical generating potential is estimated at 20 to 30% of electrical needs. International programs are discussed briefly. 57 references. (MJJ)

  19. Potential energy center site investigations

    International Nuclear Information System (INIS)

    Savage, W.F.

    1977-01-01

    Past studies by the AEC, NRC, NSF and others have indicated that energy centers have certain advantages over dispersed siting. There is the need, however, to investigate such areas as possible weather modifications due to major heat releases, possible changes in Federal/state/local laws and institutional arrangements to facilitate implementation of energy centers, and to assess methods of easing social and economic pressures on a surrounding community due to center construction. All of these areas are under study by ERDA, but there remains the major requirement for the study of a potential site to yield a true assessment of the energy center concept. In this regard the Division of Nuclear Research and Applications of ERDA is supporting studies by the Southern and Western Interstate Nuclear Boards to establish state and utility interest in the concept and to carry out screening studies of possible sites. After selection of a final site for center study , an analysis will be made of the center including technical areas such as heat dissipation methods, water resource management, transmission methods, construction methods and schedules, co-located fuel cycle facilities, possible mix of reactor types, etc. Additionally, studies of safeguards, the interaction of all effected entities in the siting, construction, licensing and regulation of a center, labor force considerations in terms of local impact, social and economic changes, and financing of a center will be conducted. It is estimated that the potential site study will require approximately two years

  20. PC database for high energy preprint collections

    International Nuclear Information System (INIS)

    Haymaker, R.

    1985-06-01

    We describe a microcomputer database used by the high energy group to keep track of preprints in our collection. It is used as a supplement to the SLAC-SPIRES database to retrieve preprints on hand. This was designed as a low overhead system for a small group

  1. Photovoltaic energy potential of Quebec

    International Nuclear Information System (INIS)

    Royer, J.; Thomas, R.

    1993-01-01

    Results are presented from a study concerning the potential of photovoltaic (PV) energy in Quebec to the year 2010. The different PV applications which are or will be economically viable in Quebec for the study period are identified and evaluated in comparison with the conventional energy sources used for these applications. Two penetration scenarios are proposed. One considers little change at the level of policies established for commercialization of PV sources, and the other considers certain measures which accelerate the implementation of PV technology in certain niches. While the off-grid market is already motivated to adopt PV technology for economic reasons, it is forecast that all encouragement from lowering costs would accelerate PV sales, offering a larger purchasing power to all interested parties. Above all, lowered PV costs would open up the network market. Photovoltaics would have access to a much larger market, which will accelerate changes in the very nature of the industry and bring with it new reductions in the costs of producing PV systems. 5 refs., 1 fig., 7 tabs

  2. Scheme of energy collective services; Schema de services collectifs de l'energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The scheme of collective energy services aims at facilitating and valorizing the contribution of the national organizations to the national energy plan and to the durable development of the country. The scheme comprises three main goals: defining the exploitation goals of local renewable energy resources and the goals of rational energy uses which can contribute to the national energy independence, to the security of supplies and to the abatement of the greenhouse effect; evaluating the foreseeable energy needs of regions and their energy production potentiality, their energy saving possibilities and their energy transportation needs; and finally, determining the conditions in which the government and the national organizations will be able to favor the energy saving actions and the production and use of renewable energies taking into account their impact on employment and their long-term financial consequences. This document is organized in five parts: 1 - status, stakes and perspectives: energy demand perspectives at the 2010-2020 vista, potentialities of energy saving and renewable energy sources development, implication of the international commitment of France in the fight against greenhouse effect; 2 - action means for new measures: buildings and accommodations, transportation sector, industry sector, mastery of electricity demand, development of renewable energy sources, decentralized energy production, energy storage, transport and distribution, economic tools and public means of sustain; 3 - follow up of the scheme of energy collective services; 4 - analysis of regional contributions; 5 - appendixes and maps. (J.S.)

  3. Exactly solvable energy-dependent potentials

    International Nuclear Information System (INIS)

    Garcia-Martinez, J.; Garcia-Ravelo, J.; Pena, J.J.; Schulze-Halberg, A.

    2009-01-01

    We introduce a method for constructing exactly-solvable Schroedinger equations with energy-dependent potentials. Our method is based on converting a general linear differential equation of second order into a Schroedinger equation with energy-dependent potential. Particular examples presented here include harmonic oscillator, Coulomb and Morse potentials with various types of energy dependence.

  4. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  5. Biowaste energy potential in Kenya

    NARCIS (Netherlands)

    Nzila, C.; DeWulf, J.; Spanjers, H.; Kiriamiti, H.; Langenhove, H.

    2010-01-01

    Energy affects all aspects of national development. Hence the current global energy crisis demands greater attention to new initiatives on alternative energy sources that are renewable, economically feasible and sustainable. The agriculture-dependent developing countries in Africa can mitigate the

  6. Residential Energy Efficiency Potential: Texas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Texas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oregon single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Pennsylvania single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Tennessee single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Nevada single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Nebraska

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Nebraska single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Washington

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Washington single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Alabama

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-15

    Energy used by Alabama single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Maryland

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Maryland single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Minnesota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Minnesota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Florida

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Florida single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wisconsin single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Maine

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Maine single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-17

    Energy used by Georgia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Missouri

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Missouri single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Utah single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Idaho single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arizona single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Residential Energy Efficiency Potential: Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  5. Residential Energy Efficiency Potential: Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kentucky single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Kansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Louisiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: Iowa

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Iowa single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: Wyoming

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by Wyoming single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Illinois single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Delaware single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: Arkansas

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Arkansas single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: Montana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Montana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Mississippi single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Residential Energy Efficiency Potential: Michigan

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Michigan single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  16. Residential Energy Efficiency Potential: Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Colorado single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  17. Residential Energy Efficiency Potential: Connecticut

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by Connecticut single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  18. Residential Energy Efficiency Potential: Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Indiana single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  19. Residential Energy Efficiency Potential: California

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by California single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  20. Residential Energy Efficiency Potential: Vermont

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-22

    Energy used by Vermont single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  1. Residential Energy Efficiency Potential: Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-21

    Energy used by Massachusetts single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  2. Residential Energy Efficiency Potential: Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Ohio single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  3. Residential Energy Efficiency Potential: Oklahoma

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Oklahoma single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  4. Renewable energy costs, potentials, barriers: Conceptual issues

    International Nuclear Information System (INIS)

    Verbruggen, Aviel; Fischedick, Manfred; Moomaw, William; Weir, Tony; Nadai, Alain; Nilsson, Lars J.; Nyboer, John; Sathaye, Jayant

    2010-01-01

    Renewable energy can become the major energy supply option in low-carbon energy economies. Disruptive transformations in all energy systems are necessary for tapping widely available renewable energy resources. Organizing the energy transition from non-sustainable to renewable energy is often described as the major challenge of the first half of the 21st century. Technological innovation, the economy (costs and prices) and policies have to be aligned to achieve full renewable energy potentials, and barriers impeding that growth need to be removed. These issues are also covered by IPCC's special report on renewable energy and climate change to be completed in 2010. This article focuses on the interrelations among the drivers. It clarifies definitions of costs and prices, and of barriers. After reviewing how the third and fourth assessment reports of IPCC cover mitigation potentials and commenting on definitions of renewable energy potentials in the literature, we propose a consistent set of potentials of renewable energy supplies.

  5. Using Public Participation to Improve MELs Energy Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, Iris (Hoi Ying); Kloss, Margarita; Brown, Rich; Meier, Alan

    2014-03-11

    Miscellaneous Electric Loads (MELs) have proliferated in the last decade, and comprise an increasing share of building energy consumption. Because of the diversity of MELs and our lack of understanding about how people use them, large-scale data collection is needed to inform meaningful energy reduction strategies. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. This study assessed the reliability and accuracy of crowdsourced data, by recruiting over 20 volunteers (from the 2012 Lawrence Berkeley Lab, Open House event) to test our crowdsourcing protocol. The protocol asked volunteers to perform the following tasks for three test products with increasing complexity - record power meter and product characteristics, identify all power settings available, and report the measured power. Based on our collected data and analysis, we concluded that volunteers performed reasonably well for devices with functionalities with which they are familiar, and might not produce highly accurate field measurements for complex devices. Accuracy will likely improve when participants are measuring the power used by devices in their home which they know how to operate, by providing more specific instructions including instructional videos. When integrated with existing programs such as the Home Energy Saver tool, crowdsourcing data collection from individual homeowners has the potential to generate a substantial amount of information about MELs energy use in homes.

  6. Potential of renewable and alternative energy sources

    Science.gov (United States)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  7. Energy efficiency: potentials and profits

    International Nuclear Information System (INIS)

    Sigaud, J.B.

    2011-01-01

    In this work, Jean-Marie Bouchereau (ADEME) has presented a review of the energy efficiency profits in France during the last 20 years and the prospects from now to 2020. Then, Geoffrey Woodward (TOTAL) and Sebastien Huchette (AXENS) have recalled the stakes involved in the energy efficiency of the upstream and downstream sectors respectively and presented examples of advances approaches illustrated by concrete cases of applications. (O.M.)

  8. Using Public Participation to Improve MELs Energy Data Collection

    Energy Technology Data Exchange (ETDEWEB)

    Kloss, Margarita; Cheung, Iris [Hoi; Brown, Richard; Meier, Alan

    2014-08-11

    Miscellaneous and electronic loads (MELs) comprise an increasing share of building energy consumption. Large-scale data collection is needed to inform meaningful energy reduction strategies because of the diversity of MELs and our lack of understanding about how people use them. Traditional methods of data collection, however, usually incur high labor and metering equipment expenses. As an alternative, this paper investigates the feasibility of crowdsourcing data collection to satisfy at least part of the data collection needs with acceptable accuracy. We assessed the reliability and accuracy of crowd-sourced data by recruiting 18 volunteers and testing our crowdsourcing protocol. The protocol asked volunteers to perform measurement tasks for three MELs devices of increasing complexity 1) record power meter and MELs product characteristics, 2) identify and measure all power modes available, and 3) report the measured power. Volunteers performed reasonably well for devices with functionalities with which they were familiar, but many could not correctly identify all available power modes in complex devices. Accuracy may improve when participants measure the power used by familiar devices in their home, or by providing more specific instructions, e.g. videos. Furthermore, crowdsourcing data collection from individual homeowners has the potential to generate valuable information about MELs energy use in homes when integrated with existing programs such as Home Energy Saver and Building America.

  9. Energy potential of Finnish peatlands

    Energy Technology Data Exchange (ETDEWEB)

    Virtanen, K. (Geological Survey of Finland, Kuopio (Finland)); Valpola, S. (Geological Survey of Finland, Kokkola (Finland)), e-mail: kimmo.virtanen@gtk.fi, e-mail: samu.valpola@gtk.fi

    2011-07-01

    One-third of the Finnish land area is covered by mires and peat. GTK has investigated 2.0 million ha of the 9.3 million ha area covered by mires in Finland. According to the EU Commission, the broadly-based Finnish energy economy, with various energy sources, is the best in the EU. As a fuel, peat fulfils the goals of the EU energy policy in Finland well: it is local, its availability is good and the price is stable. The use of peat also enhances national security. At present, peat is used in around one hundred larger applications that co-generate electricity and heat. In Finland, the development of mires has led to several mire complex types and three main types: raised bogs in Southern Finland, aapa mires in Ostrobothnia and Lapland, and palsa mires in Northern Lapland. Peat layers are deepest in southern Finland and partly in the southern Finnish Lake area, the Region of North Karelia and in the area of central Lapland. The mean depth of geological mires is 1.41 m and the thickest drilled peat is 12.3 m. According to peat investigations, the national peat reserve totals 69.3 billion m3 in situ (peatlands larger than 20 hectares). The dry solids of peat are estimated at 6.3 billion tones. Sphagnum peat accounts for 54% and Carex peat for 45% of feasible peat reserves. Peatlands that are technically suitable for the peat industry cover a total area of 1.2 million ha and contain 29.6 billion m3 of peat in situ. Slightly humified peat suitable for horticultural and environmental use totals 5.9 billion m3 in situ. The energy peat reserve is 23.7 billion m3 in situ and its energy content is 12 800 TWh. (orig.)

  10. Potential energy savings and thermal comfort

    DEFF Research Database (Denmark)

    Jensen, Karsten Ingerslev; Rudbeck, Claus Christian; Schultz, Jørgen Munthe

    1996-01-01

    The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed.......The simulation results on the energy saving potential and influence on indoor thermal comfort by replacement of common windows with aerogel windows as well as commercial low-energy windows are described and analysed....

  11. Potential of natural energy sources

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J D; Glanville, R; Gliddon, B J; Harrison, P L; Hotchkiss, R C; Hughes, E M; Swift-Hook, D T; Wright, J K

    1976-01-01

    Apart from fossil fuels and nuclear energy, five main alternative sources of power for electricity generation are: the sun, the wind, the waves, the tides, and the heat inside the earth. Each has been examined for its relevance to the energy situation in Britain and in particular to the CEGB's requirements as an electrical utility. None emerges from the analysis as directly competitive with nuclear power, provided that nuclear fulfills present expectations. As an insurance against unforeseen delays in the nuclear program, however, one or two of the options may well be worth closer consideration, particularly wave power, for which Britain is favorably placed. The best immediate prospect for using solar energy falls outside the province of the CEGB, in the area of domestic water heating. Wind power, despite the windiness of the British Isles, suffers in practice from a low load factor, which would greatly inflate the capital cost. Geothermal power in Britain, geologically one of the most stable parts of the world, appears to be available only at depths too great to be presently attractive for electricity generation. Finally, tidal power, although technically available in limited amounts, again suffers from high capital costs. (auth)

  12. Energy conservation potential in Taiwanese textile industry

    International Nuclear Information System (INIS)

    Hong, Gui-Bing; Su, Te-Li; Lee, Jenq-Daw; Hsu, Tsung-Chi; Chen, Hua-Wei

    2010-01-01

    Since Taiwan lacks sufficient self-produced energy, increasing energy efficiency and energy savings are essential aspects of Taiwan's energy policy. This work summarizes the energy savings implemented by 303 firms in Taiwan's textile industry from the on-line Energy Declaration System in 2008. It was found that the total implemented energy savings amounted to 46,074 ton of oil equivalent (TOE). The energy saving was equivalent to 94,614 MWh of electricity, 23,686 kl of fuel oil and 4887 ton of fuel coal. It represented a potential reduction of 143,669 ton in carbon dioxide emissions, equivalent to the annual carbon dioxide absorption capacity of a 3848 ha plantation forest. This study summarizes energy-saving measures for energy users and identifies the areas for making energy saving to provide an energy efficiency baseline.

  13. Energy potential of agricultural crops in Kosovo

    International Nuclear Information System (INIS)

    Sahiti, Naser; Sfishta, Avni; Gramatikov, Plamen

    2015-01-01

    Primary energy mix in Kosovo with 98 % consisting of lignite and only 2 % of water is far from portfolio of primary energy sources which could contribute to a sustainable and environmental friendly energy supply of the country. In order to improve the situation, government is supporting activities in favor of upgrading of electricity production capacities based on Renewable Energy Sources. Corresponding action plans and feed in tariffs are already in place. However, prior to any investment, one needs specific results on available potential. Current study provides results of the analysis of Kosovo potential for energy production by using of agricultural crops. Study is based on national statistics on available agricultural crops in Kosovo and provides results on biomass potential of crops, corresponding energy potential and an assessment of financial cost of energy produced.

  14. Geothermal Energy Potential in Western United States

    Science.gov (United States)

    Pryde, Philip R.

    1977-01-01

    Reviews types of geothermal energy sources in the western states, including hot brine systems and dry steam systems. Conversion to electrical energy is a major potential use of geothermal energy, although it creates environmental disruptions such as noise, corrosion, and scaling of equipment. (AV)

  15. Assessment of wind energy potential in China

    Institute of Scientific and Technical Information of China (English)

    Zhu Rong; Zhang De; Wang Yuedong; Xing Xuhuang; Li Zechun

    2009-01-01

    China wind atlas was made by numerical simulation and the wind energy potential in China was calculated. The model system for wind energy resource assessment was set up based on Canadian Wind Energy Simulating Toolkit (WEST) and the simulating method was as follows. First, the weather classes were obtained depend on meteorological data of 30 years. Then, driven by the initial meteorological field produced by each weather class, the meso-scale model ran for the distribution of wind energy resources according each weather class condition one by one. Finally, averaging all the modeling output weighted by the occurrence frequency of each weather class, the annual mean distribution of wind energy resources was worked out. Compared the simulated wind energy potential with other results from several ac-tivities and studies for wind energy resource assessment, it is found that the simulated wind energy potential in mainland of China is 3 times that from the second and the third investigations for wind energy resources by CMA, and is similar to the wind energy potential obtained by NREL in Solar and Wind Energy Resource Assessment (SWERA) project. The simulated offshore wind energy potential of China seems smaller than the true value. According to the simulated results of CMA and considering lots of limited factors to wind energy development, the final conclusion can be obtained that the wind energy availability in China is 700~1 200 GW, in which 600~1 000 GW is in mainland and 100~200 GW is on offshore, and wind power will become the important part of energy composition in future.

  16. The Wind Energy Potential of Kurdistan, Iran

    Science.gov (United States)

    Arefi, Farzad; Moshtagh, Jamal; Moradi, Mohammad

    2014-01-01

    In the current work by using statistical methods and available software, the wind energy assessment of prone regions for installation of wind turbines in, Qorveh, has been investigated. Information was obtained from weather stations of Baneh, Bijar, Zarina, Saqez, Sanandaj, Qorveh, and Marivan. The monthly average and maximum of wind speed were investigated between the years 2000–2010 and the related curves were drawn. The Golobad curve (direction and percentage of dominant wind and calm wind as monthly rate) between the years 1997–2000 was analyzed and drawn with plot software. The ten-minute speed (at 10, 30, and 60 m height) and direction (at 37.5 and 10 m height) wind data were collected from weather stations of Iranian new energy organization. The wind speed distribution during one year was evaluated by using Weibull probability density function (two-parametrical), and the Weibull curve histograms were drawn by MATLAB software. According to the average wind speed of stations and technical specifications of the types of turbines, the suitable wind turbine for the station was selected. Finally, the Divandareh and Qorveh sites with favorable potential were considered for installation of wind turbines and construction of wind farms. PMID:27355042

  17. Storying energy consumption: Collective video storytelling in energy efficiency social marketing.

    Science.gov (United States)

    Gordon, Ross; Waitt, Gordon; Cooper, Paul; Butler, Katherine

    2018-05-01

    Despite calls for more socio-technical research on energy, there is little practical advice to how narratives collected through qualitative research may be melded with technical knowledge from the physical sciences such as engineering and then applied in energy efficiency social action strategies. This is despite established knowledge in the environmental management literature about domestic energy use regarding the utility of social practice theory and narrative framings that socialise everyday consumption. Storytelling is positioned in this paper both as a focus for socio-technical energy research, and as one potential practical tool that can arguably enhance energy efficiency interventions. We draw upon the literature on everyday social practices, and storytelling, to present our framework called 'collective video storytelling' that combines scientific and lay knowledge about domestic energy use to offer a practical tool for energy efficiency management. Collective video storytelling is discussed in the context of Energy+Illawarra, a 3-year cross-disciplinary collaboration between social marketers, human geographers, and engineers to target energy behavioural change within older low-income households in regional NSW, Australia. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Canadian wind energy technical and market potential

    International Nuclear Information System (INIS)

    Templin, R.J.; Rangli, R.S.

    1992-01-01

    The current status of wind energy technology in Canada is reviewed, the technical potential of wind energy in Canada is estimated, and the economic market potential is assessed under several scenarios over about the next 25 years. The technical potential is seen to be large, with applications to water pumping on farms, the coupling of wind turbines to diesel-electric systems in remote communities where fuel costs are high, and the supply of electricity to main power grids. The main-grid application has greatest technical potential, but it cannot be economically exploited under the present utility buyback rate structure for intermittent power sources. A change in government policy toward market development of renewable energy sources, such as is already taking place in several European countries, would greatly increase market potential, decrease emissions of CO 2 and SO 2 , and benefit the Canadian wind energy industry. 2 figs., 1 tab

  19. Wave Energy Potential in the Latvian EEZ

    Science.gov (United States)

    Beriņš, J.; Beriņš, J.; Kalnačs, J.; Kalnačs, A.

    2016-06-01

    The present article deals with one of the alternative forms of energy - sea wave energy potential in the Latvian Exclusice Economic Zone (EEZ). Results have been achieved using a new method - VEVPP. Calculations have been performed using the data on wave parameters over the past five years (2010-2014). We have also considered wave energy potential in the Gulf of Riga. The conclusions have been drawn on the recommended methodology for the sea wave potential and power calculations for wave-power plant pre-design stage.

  20. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  1. Energy development potential: An analysis of Brazil

    International Nuclear Information System (INIS)

    Perobelli, Fernando Salgueiro; Oliveira, Caio Cézar Calheiros de

    2013-01-01

    This paper develops an indicator for the energy development potential (EDP) of 27 Brazilian states. This indicator uses data on a state's infrastructure and its supply of and demand for energy. The indicator measures the data for three periods: the first part of the 1990s, which is a period of low economic growth; the first part of the 2000s, which is a period of high economic growth but with a historical crisis in the Brazilian energy sector; and 2009–2011, which is a period of economic growth after the energy crisis. Using a factor analysis, we are able to identify three factors for EDP. They are the demand for energy, the supply of renewable energy, and the supply of nonrenewable energy. We use these factors to classify the Brazilian states according to their EDP and to perform an exploratory spatial data analysis (ESDA) by using the Moran indicators and the local indicators of spatial association (LISA). - Highlights: • This paper deals with the spatial dimension of the Brazilian energy sector. • We construct an index of the energy development potential for Brazilian states. • Energy issues are defined over time and space, thus have spatial dimensions. • The spatial results show that there are two well-defined spatial patterns

  2. 77 FR 46089 - Agency Information Collection Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR...

    Science.gov (United States)

    2012-08-02

    ... Activities; Proposed Collection; Comment Request; EPA's ENERGY STAR Program in the Commercial and Industrial... this action are participants in EPA's ENERGY STAR Program in the Commercial and Industrial Sectors. Title: Information Collection Activities Associated with EPA's ENERGY STAR Program in the Commercial and...

  3. Energy audit: potential of energy - conservation in Jordanian ceramic industry

    International Nuclear Information System (INIS)

    Adas, H.; Taher, A.

    2005-01-01

    This paper represents the findings of the preliminary energy-audits performed by the Rational Use of Energy Division at the National Energy Research Center (NERC), as well as the findings of a detailed energy-audit carried out in the largest Ceramic plant in Jordan (Jordan Ceramic industries).These studies were preceded by a survey of the ceramic factories in Jordan. The survey was carried out in 1997. The performed preliminary energy-audits showed that an average saving-potential in most of theses plants is about 25 % of the total energy-bills in these plants, which constitutes a considerable portion of the total production-cost. This fact was verified through the detailed energy-audit performed by NERC team for the largest Ceramic Plant in Jordan in June 2003, which showed an energy-saving potential of about 30 %. This saving can be achieved by some no-cost or low-cost measures, in addition to some measures that need reasonable investments with an average pay-back period of about two years. This detailed energy-audit covered electrical systems, refrigeration systems, compressed-air systems, and kilns. The results of the detailed energy-audit can be disseminated to other Ceramic plant, because of the similarity in the production process between these plants and the plant where the detailed energy-audit was carried out. (author)

  4. Assessment of the energy recovery potentials of solid waste ...

    African Journals Online (AJOL)

    Otoigiakih

    The main attributes of waste as a fuel are water content, calorific value, and burnable content. The study was conducted to evaluate the energy recovery potential of solid waste generated in. Akosombo. A total of twelve (12) samples were collected from the township in December, 2012 (dry month) and May, 2013 (Wet ...

  5. 78 FR 29749 - Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension

    Science.gov (United States)

    2013-05-21

    ... DEPARTMENT OF ENERGY Office of Energy Efficiency and Renewable Energy; Agency Information Collection Extension AGENCY: Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE..., DC 20503 And to Mr. Dana O'Hara, Office of Energy Efficiency and Renewable Energy (EE- 2G), U.S...

  6. Biomass energy potential in Brazil. Country study

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, J [Biomass Users Network-Brazil Regional Office, Sao Paulo (Brazil)

    1995-12-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author`s knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author) 115 refs, figs, tabs

  7. Biomass energy potential in Brazil. Country study

    International Nuclear Information System (INIS)

    Moreira, J.

    1995-01-01

    The present paper was prepared as a country study about the biomass potential for energy production in Brazil. Information and analysis of the most relevant biomass energy sources and their potential are presented in six chapters. Ethanol fuel, sugar-cane bagasse, charcoal, vegetable oil, firewood and other biomass-derived fuels are the objects of a historical review, in addition to the presentation of state-of-the-art technologies, economic analysis and discussion of relevant social and environmental issues related to their production and use. Wherever possible, an evaluation, from the available sources of information and based on the author's knowledge, is performed to access future perspectives of each biomass energy source. Brazil is a country where more than half of the energy consumed is provided from renewable sources of energy, and biomass provides 28% of the primary energy consumption. Its large extension, almost all located in the tropical and rainy region, provides an excellent site for large-scale biomass production, which is a necessity if biomass is to be used to supply a significant part of future energy demand. Even so, deforestation has occurred and is occurring in the country, and the issue is discussed and explained as mainly the result of non-energy causes or the use of old and outdated technologies for energy production. (author)

  8. Centrifugal potential energy : an astounding renewable energy concept

    Energy Technology Data Exchange (ETDEWEB)

    Oduniyi, I.A. [Aled Conglomerate Nigeria Ltd., Lagos (Nigeria)

    2010-07-01

    A new energy concept known as centrifugal potential energy was discussed. This new energy concept is capable of increasing the pressure, temperature and enthalpy of a fluid, without having to apply work or heat transfer to the fluid. It occurs through a change in the centrifugal potential energy of the flowing fluid in a rotating frame of reference or a centrifugal force field, where work is performed internally by the centrifugal weight of the fluid. This energy concept has resulted in new energy equations, such as the Rotational Frame Bernoulli's Equation for liquids and the Rotational Frame Steady-Flow Energy Equation for gases. Applications of these equations have been incorporated into the design of centrifugal field pumps and compressors. Rather than compressing a fluid with a physical load transfer, these devices can compress a fluid via the effect of centrifugal force applied to the object. A large amount of energy is therefore produced when this high pressure compressed working fluid expands in a turbine. When water is used as the working fluid, it could reach renewable energy densities in the range of 25-100 kJ/kg of water. When atmospheric air is used, it could reach energy densities in the range of 500-1,500 kJ/kg of air.

  9. Energy dependence of nonlocal optical potentials

    Science.gov (United States)

    Lovell, A. E.; Bacq, P.-L.; Capel, P.; Nunes, F. M.; Titus, L. J.

    2017-11-01

    Recently, a variety of studies have shown the importance of including nonlocality in the description of reactions. The goal of this work is to revisit the phenomenological approach to determining nonlocal optical potentials from elastic scattering. We perform a χ2 analysis of neutron elastic scattering data off 40Ca, 90Zr, and 208Pb at energies E ≈5 -40 MeV, assuming a Perey and Buck [Nucl. Phys. 32, 353 (1962), 10.1016/0029-5582(62)90345-0] or Tian et al. [Int. J. Mod. Phys. E 24, 1550006 (2015), 10.1142/S0218301315500068] nonlocal form for the optical potential. We introduce energy and asymmetry dependencies in the imaginary part of the potential and refit the data to obtain a global parametrization. Independently of the starting point in the minimization procedure, an energy dependence in the imaginary depth is required for a good description of the data across the included energy range. We present two parametrizations, both of which represent an improvement over the original potentials for the fitted nuclei as well as for other nuclei not included in our fit. Our results show that, even when including the standard Gaussian nonlocality in optical potentials, a significant energy dependence is required to describe elastic-scattering data.

  10. Woody biomass energy potential in 2050

    International Nuclear Information System (INIS)

    Lauri, Pekka; Havlík, Petr; Kindermann, Georg; Forsell, Nicklas; Böttcher, Hannes; Obersteiner, Michael

    2014-01-01

    From a biophysical perspective, woody biomass resources are large enough to cover a substantial share of the world's primary energy consumption in 2050. However, these resources have alternative uses and their accessibility is limited, which tends to decrease their competitiveness with respect to other forms of energy. Hence, the key question of woody biomass use for energy is not the amount of resources, but rather their price. In this study we consider the question from the perspective of energy wood supply curves, which display the available amount of woody biomass for large-scale energy production at various hypothetical energy wood prices. These curves are estimated by the Global Biosphere Management Model (GLOBIOM), which is a global partial equilibrium model of forest and agricultural sectors. The global energy wood supply is estimated to be 0–23 Gm 3 /year (0–165 EJ/year) when energy wood prices vary in a range of 0–30$/GJ (0–216$/m 3 ). If we add household fuelwood to energy wood, then woody biomass could satisfy 2–18% of world primary energy consumption in 2050. If primary forests are excluded from wood supply then the potential decreases up to 25%. - highlights: • We examine woody biomass energy potential by partial equilibrium model of forest and agriculture sectors. • It is possible to satisfy 18% (or 14% if primary forests are excluded) of the world's primary energy consumption in 2050 by woody biomass. • To achieve this would require an extensive subsidy/tax policy and would lead to substantial higher woody biomass prices compared to their current level

  11. Spatial mapping of renewable energy potential

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandra, T.V. [Centre for Sustainable Technologies, Indian Institute of Science, Bangalore (India); Energy Research Group, CES RNO 215, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India); Shruthi, B.V. [Energy Research Group, CES RNO 215, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2007-09-15

    An energy resource that is renewed by nature and whose supply is not affected by the rate of consumption is often termed as renewable energy. The need to search for renewable, alternate and non-polluting sources of energy assumes top priority for self-reliance in the regional energy supply. This demands an estimation of available energy resources spatially to evolve better management strategies for ensuring sustainability of resources. The spatial mapping of availability and demand of energy resources would help in the integrated regional energy planning through an appropriate energy supply-demand matching. This paper discusses the application of Geographical Information System (GIS) to map the renewable energy potential talukwise in Karnataka State, India. Taluk is an administrative division in the federal set-up in India to implement developmental programmes like dissemination of biogas, improved stoves, etc. Hence, this paper focuses talukwise mapping of renewable energy (solar, wind, bioenergy and small hydroenergy) potential for Karnataka using GIS. GIS helps in spatial and temporal analyses of the resources and demand and also aids as Decision Support System while implementing location-specific renewable energy technologies. Regions suitable for tapping solar energy are mapped based on global solar radiation data, which provides a picture of the potential. Coastal taluks in Uttara Kannada have higher global solar radiation during summer (6.31 kWh/m{sup 2}), monsoon (4.16 kWh/m{sup 2}) and winter (5.48 kWh/m{sup 2}). Mapping of regions suitable for tapping wind energy has been done based on wind velocity data, and it shows that Chikkodi taluk, Belgaum district, has higher potential during summer (6.06 m/s), monsoon (8.27 m/s) and winter (5.19 m/s). Mysore district has the maximum number of small hydropower plants with a capacity of 36 MW. Talukwise computation of bioenergy availability from agricultural residue, forest, horticulture, plantation and livestock

  12. Potential future waste-to-energy systems

    OpenAIRE

    Thorin, Eva; Guziana, Bozena; Song, Han; Jääskeläinen, Ari; Szpadt, Ryszard; Vasilic, Dejan; Ahrens, Thorsten; Anne, Olga; Lõõnik, Jaan

    2012-01-01

    This report discusses potential future systems for waste-to-energy production in the Baltic Sea Region, and especially for the project REMOWE partner regions, the County of Västmanland in Sweden, Northern Savo in Finland, Lower Silesia in Poland, western part of Lithuania and Estonia. The waste-to-energy systems planned for in the partner regions are combustion of municipal solid waste (MSW) and solid recovered fuels from household and industry as well as anaerobic digestion of sewage sludge ...

  13. Calculation of transportation energy for biomass collection

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, G.; Takekura, K.; Kato, H.; Kobayashi, Y.; Yakushido, K. [National Agricultural Research Center, Tsukuba, Ibaraki (Japan)

    2010-07-01

    This paper reported on a study at a rice straw facility in Japan that produces bioethanol. Simulation modeling and calculations methods were used to examine the characteristics of field-to-facility transportation. Fuel consumption was found to be influenced by the conversion rate from straw to ethanol, the quantity of straw collected, and the ratio of the field area to that around the facility. Standard conditions were assumed based on reported data and actual observations for 15 ML/yr ethanol production, 0.3 kL output of ethanol from 1 t dry straw, 53.6 day/yr working days, 2.7 t truck load capacity, and 0.128 as the ratio of field to the area around the facility. According to calculations, a quantity of 50 kt dry straw requires 2.78 L of fuel to transport 1 t of dry straw, 109.5 trucks, and a 19.1 km collection area radius. The fuel consumption for transportation was found to be proportional to the quantity of straw to the 0.5 power, but inversely proportional to the ratio of field to the 0.5 power. The rate of increase in the number of trucks needed to collect straw increases with the decrease in the ratio of the field to area surface around the facility.

  14. Vibration Energy Harvesting Potential for Turbomachinery Applications

    Directory of Open Access Journals (Sweden)

    Adrian STOICESCU

    2018-03-01

    Full Text Available The vibration energy harvesting process represents one of the research directions for increasing power efficiency of electric systems, increasing instrumentation nodes autonomy in hard to reach locations and decreasing total system mass by eliminating cables and higher-power adapters. Research based on the possibility of converting vibration energy into useful electric energy is used to evaluate the potential of its use on turbomachinery applications. Aspects such as the structure and characteristics of piezoelectric generators, harvesting networks, their setup and optimization, are considered. Finally, performance test results are shown using piezoelectric systems on a turbine engine.

  15. Potential Energy Curve of N2 Revisited

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír; Xiangzhu, L.; Paldus, J.

    2011-01-01

    Roč. 76, č. 4 (2011), s. 327-341 ISSN 0010-0765 R&D Projects: GA MŠk LC512; GA ČR GAP208/11/0436 Institutional research plan: CEZ:AV0Z40550506 Keywords : reduced multireference coupled-cluster method * reduced potential curve method * nitrogen molecule potential energy curves Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.283, year: 2011

  16. Energy efficiency potential study for New Brunswick

    International Nuclear Information System (INIS)

    1992-05-01

    The economic and environmental impacts associated with economically attractive energy savings identified in each of four sectors in New Brunswick are analyzed. The results are derived through a comparison of two potential future scenarios. The frozen efficiency scenario projects what future energy expenditures would be if no new energy efficiency initiatives are introduced. The economic potential scenario projects what those expenditures would be if all economically attractive energy efficiency improvements were gradually implemented over the next 20 years. Energy related emissions are estimated under scenarios with and without fuel switching. The results show, for example, that New Brunswick's energy related CO 2 emissions would be reduced by ca 5 million tonnes in the year 2000 under the economic potential scenario. If fuel switching is adopted, an additional 1 million tonnes of CO 2 emissions could be saved in the year 2000 and 1.6 million tonnes in 2010. The economic impact analysis is restricted to efficiency options only and does not consider fuel switching. Results show the effect of the economic potential scenario on employment, government revenues, and intra-industry distribution of employment gains and losses. The employment impact is estimated as the equivalent of the creation of 2,424 jobs annually over 1991-2010. Government revenues would increase by ca $24 million annually. The industries benefitting most from energy efficiency improvements would be those related to construction, retail trade, finance, real estate, and food/beverages. Industries adversely affected would be the electric power, oil, and coal sectors. 2 figs., 37 tabs

  17. Natural gas decompression energy recovery: Energy savings potential in Italy

    International Nuclear Information System (INIS)

    Piatti, A.; Piemonte, C.; Rampini, E.; Vatrano, F.; Techint SpA, Milan; ENEA, Rome

    1992-01-01

    This paper surveyed the natural gas distribution systems employed in the Italian civil, industrial and thermoelectric sectors to identify those installations which can make use of gas decompression energy recovery systems (consisting of turbo-expanders or alternative expanders) to economically generate electric power. Estimates were then made of the total amount of potential energy savings. The study considered as eligible for energy savings interventions only those plants with a greater than 5,000 standard cubic meter per hour plant capacity. It was evaluated that, with suitable decompression equipment installed at 50 key installations (33 civil, 15 industrial), about 200 GWh of power could be produced annually, representing potential savings of about 22,000 petroleum equivalent tonnes of energy. A comparative analysis was done on three investment alternatives involving inputs of varying amounts of Government financial assistance

  18. Correlation energy generating potentials for molecular hydrogen

    International Nuclear Information System (INIS)

    Sharma, B.S.; Thakkar, A.J.

    1985-01-01

    A variety of local correlation energy functionals are currently in use. All of them depend, to some extent, on modeling the correlation energy of a homogeneous electron fluid. Since atomic and molecular charge densities are neither uniform nor slowly varying, it is important to attempt to use known high accuracy wave functions to learn about correlation energy functionals appropriate to such systems. We have extended the definition of the correlation energy generating potentials V/sub c/ introduced by Ros. A charge density response to correlation has been allowed for by inclusion of an electron--nuclear component V/sup e/n/sub c/ in addition to the electron--electron component V/sup e/e/sub c/. Two different definitions of V/sup e/n/sub c/ are given. We present the first calculations of V/sub c/ for a molecular system: H 2 . The results show that V/sup e/n/sub c/, in either definition, is by no means negligible. Moreover, V/sup e/e/sub c/ and both forms of V/sup e/n/sub c/ show significant nonlocal dependence on the charge density. Calculations with ten different model correlation energy functionals show that none of them is particularly sensitive to the charge density. However, they are quite sensitive to the parametrization of the electron fluid correlation energy. The schemes which include self-interaction corrections (SIC) are found to be superior to those of Kohn--Sham type. The correlation energy generating potentials implied by the SIC type and empirical correlation energy functionals are found to correspond roughly to averages of one of the accurate potentials

  19. Energy from streaming current and potential

    NARCIS (Netherlands)

    Olthuis, Wouter; Schippers, Bob; Eijkel, Jan C.T.; van den Berg, Albert

    2005-01-01

    It is investigated how much energy can be delivered by a streaming current source. A streaming current and subsequent streaming potential originate when double layer charge is transported by hydrodynamic flow. Theory and a network model of such a source is presented and initial experimental results

  20. Energy Transfer in Scattering by Rotating Potentials

    Indian Academy of Sciences (India)

    Quantum mechanical scattering theory is studied for time-dependent Schrödinger operators, in particular for particles in a rotating potential. Under various assumptions about the decay rate at infinity we show uniform boundedness in time for the kinetic energy of scattering states, existence and completeness of wave ...

  1. Potential energy surface of alanine polypeptide chains

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Yakubovich, Alexander V.; Solov'yov, Andrey V.

    2006-01-01

    The multidimensional potential energy surfaces of the peptide chains consisting of three and six alanine (Ala) residues have been studied with respect to the degrees of freedom related to the twist of these molecules relative to the peptide backbone (these degrees of freedom are responsible...

  2. Storage of energies - Translating potential into actions

    International Nuclear Information System (INIS)

    Signoret, Stephane; Mary, Olivier; Petitot, Pauline; Dejeu, Mathieu; De Santis, Audrey

    2015-01-01

    In this set of articles, a first one evokes issues discussed during a colloquium held in Paris by the European association for storage of energy, the possibilities mentioned about energy storage development in the French bill project for energy transition, and the importance of non-interconnected areas in the development of energy storage. A second article proposes an overview of developments and advances in energy storage in California which adopted suitable laws. The German situation is then briefly described: needs are still to be defined and a road map has been published in 2014, as technologies are expensive and the legal framework is still complex. The next article outlines the conditions of development of the power-to-gas sector (as a process of valorisation of excess electricity). An article gives an overview of technological developments in the field of electrochemical energy storage (batteries). The results of the PEPS study (a study on the potential of energy storage) in Europe are commented. An interview with a member of the French BRGM (Bureau of Mines) outlines the major role which underground storage could play in energy transition. The Seti project for an intelligent thermal energy storage and a better use of renewable energies is then presented. An article comments how to use foodstuff cold to make consumption cut-offs. A last article comments how superconductors could be used in the future for batteries. Few examples are briefly presented: a molten salt-based storage by Areva, a local production of green hydrogen in France, an innovating project of solar energy storage in Switzerland, and the Toucan solar plant in French Guyana

  3. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho......-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain...

  4. A GIS methodology to identify potential corn stover collection locations

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Monica A. [Department of Community and Regional Planning, 583 College of Design, Iowa State University, Ames, IA 50011-3095 (United States); Anderson, Paul F. [Department of Landscape Architecture, 481 College of Design, Iowa State University, Ames, IA 50011 (United States); Department of Agronomy, 481 College of Design, Iowa State University, Ames, IA 50011 (United States)

    2008-12-15

    In this study, we use geographic information systems technology to identify potential locations in a Midwestern region for collection and storage of corn stover for use as biomass feedstock. Spatial location models are developed to identify potential collection sites along an existing railroad. Site suitability analysis is developed based on two main models: agronomic productivity potential and environmental costs. The analysis includes the following steps: (1) elaboration of site selection criteria; (2) identification of the study region and service area based on transportation network analysis; (3) reclassification of input spatial layers based on common scales; (4) overlaying the reclassified spatial layers with equal weights to generate the two main models; and (5) overlaying the main models using different weights. A pluralistic approach is adopted, presenting three different scenarios as alternatives for the potential locations. Our results suggest that there is a significant subset of potential sites that meet site selection criteria. Additional studies are needed to evaluate potential sites through field visits, assess economic and social costs, and estimate the proportion of corn producers willing to sell and transport corn stover to collection facilities. (author)

  5. Review of Turkey's renewable energy potential

    International Nuclear Information System (INIS)

    Ozgur, M. Arif

    2008-01-01

    The use of renewable energy has a long history. Biomass, for instance, has been used for heating and cooking, while wind has been used in the irrigation of fields and to drive windmills for centuries. Although Turkey has many energy resources, all of these with the exception of coal and hydropower, cannot meet the total energy demand. Turkey has been importing resources to meet this deficit. These resources have become increasingly expensive and also have undesirably high emissions ratings. Turkey has an extensive shoreline and mountains and is rich in renewable energy potential. The share of renewables on total electricity generation is 29.63% while that of natural gas is 45% for the year 2006. The projection prepared for the period between 2006 and 2020 aims an annual growth of 8% for the total electricity generation. According to this projection, it is expected that renewables will have a share about 23.68% with a decrease of 5.95% while natural gas will have a share about 33.38% for 2020. This paper presents the present state of world renewable energy sources and then looks in detail at the potential resources available in Turkey. Energy politics are also considered. (author)

  6. Energy independent optical potentials: construction and limitations

    International Nuclear Information System (INIS)

    Hussein, M.S.; Moniz, E.J.

    1983-11-01

    Properties of the energy-independent potential U sup(-) which is wave-function-equivalent to the usual optical potential U(E) are constructed and examined. A simple procedure is presented for constructing U sup(-) in the uniform medium, and physical examples are discussed. The general result for finite systems, a recursive expansion in powers of U(E), is used to investigate the multiple scattering expansion of U sup(-); the energy-independent potential is found to have serious short-comings for direct microscopic construction or phenomenological parametrization. The microscopic theory, as exemplified here by the multiple scattering approach, does not lead to a reliable approximation scheme. Phenomenological approaches to U sup(-) are unattractive because the physics does not guide the parametrization effectively: the structure of the nonlocality is not tied directly to the dynamics; Im U sup(-) changes sign; different elements of the physics, separate in U(E), are completely entangled in U sup(-). (Author) [pt

  7. Energy potential of the modified excess sludge

    Directory of Open Access Journals (Sweden)

    Zawieja Iwona

    2017-01-01

    Full Text Available On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4, it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  8. Energy potential of the modified excess sludge

    Science.gov (United States)

    Zawieja, Iwona

    2017-11-01

    On the basis of the SCOD value of excess sludge it is possible to estimate an amount of energy potentially obtained during the methane fermentation process. Based on a literature review, it has been estimated that from 1 kg of SCOD it is possible to obtain 3.48 kWh of energy. Taking into account the above methane and energy ratio (i.e. 10 kWh/1Nm3 CH4), it is possible to determine the volume of methane obtained from the tested sludge. Determination of potential energy of sludge is necessary for the use of biogas as a source of power generators as cogeneration and ensure the stability of this type of system. Therefore, the aim of the study was to determine the energy potential of excess sludge subjected to the thermal and chemical disintegration. In the case of thermal disintegration, test was conducted in the low temperature 80°C. The reagent used for the chemical modification was a peracetic acid, which in an aqueous medium having strong oxidizing properties. The time of chemical modification was 6 hours. Applied dose of the reagent was 1.0 ml CH3COOOH/L of sludge. By subjecting the sludge disintegration by the test methods achieved an increase in the SCOD value of modified sludge, indicating the improvement of biodegradability along with a concomitant increase in their energy potential. The obtained experimental production of biogas from disintegrated sludge confirmed that it is possible to estimate potential intensity of its production. The SCOD value of 2576 mg O2/L, in the case of chemical disintegration, was obtained for a dose of 1.0 ml CH3COOH/L. For this dose the pH value was equal 6.85. In the case of thermal disintegration maximum SCOD value was 2246 mg O2/L obtained at 80°C and the time of preparation 6 h. It was estimated that in case of thermal disintegration as well as for the chemical disintegration for selected parameters, the potential energy for model digester of active volume of 5L was, respectively, 0.193 and 0,118 kWh.

  9. Collective Decision Making as the Actualization of Decision Potential

    Directory of Open Access Journals (Sweden)

    Andrej Ule

    2009-12-01

    Full Text Available This paper presents some characteristics and dilemmas of collective decision making. Collective decision making could be presented as the process of successive crystallization of dominant alternatives under the influence of different decision contexts from primary given decision potentials. This process is presented as the many-phased process of the acting of contextually dependent “energizing factors” of the collective decision making on the “attractiveness matrix” of outcomes of collective decisions. The attractiveness matrix determines the attractiveness for each alternative of decision, and the most attractive alternative in the given situation presents the rational decision in the given situation. In the final phase of decision making holds a context which gets a simplified attractiveness matrix. It corresponds to the common decision for one of the alternatives.

  10. The potentials of biomass as renewable energy

    International Nuclear Information System (INIS)

    Edens, J.J.

    1994-01-01

    Biomass is a term used in the context of energy to define a range of products derived from photosynthesis. Annually large amounts of solar energy is stored in the leaves, stems and branches of plants. Of the various renewable sources of energy, biomass is thus unique in that it represents stored solar energy. In addition it is the only source of carbon, and it may be converted into convenient solid, liquid and gaseous fuels. Biomass, principally in the form of wood, is humankind's oldest form of energy, and has been used to fuel both domestic and industrial activities. Traditional use has been, through direct combustion, a process still used extensively in many parts of the world. Biomass is a renewable and indigenous resource that requires little or no foreign exchange. But it is a dispersed, labor-intensive and land requiring source of energy and may avoid or reduce problems of waste disposal. We'll try to assess the potential contribution of biomass to the future world energy supply. 4 refs., 6 tabs

  11. Microscopic optical potential at medium energies

    International Nuclear Information System (INIS)

    Malecki, A.

    1979-01-01

    The problems concerning a microscopic optical model for the elastic nuclear collisions at medium energies are discussed. We describe the method for constructing the optical potential which makes use of the particular properties of quantum scattering in the eikonal limit. The resulting potential is expressed in terms of the nuclear wave functions and the nucleon-nucleon scattering amplitudes. This potential has a dynamic character since by including the effects of multiple scattering it allows for the possibility of intermediate excitations of the projectile and target nuclei. The use of the potential in the exact wave equation accounts for the most important mechanisms present in the collisions between composite particles. The microscopic optical model was successfully applied in the analysis of elastic scattering of protons and α-particles on atomic nuclei in the energy range of 300-1000 MeV/nucleon. The dynamic optical potential in this case represents a considerable improvement over the eikonal Glauber model and the static optical potential of Watson. The possibilities to extend the microscopic description of the proton-nucleus interaction by considering the spin dependence of the elementary amplitude and the Majorana exchange effects were investigated. (author)

  12. Wave energy potential in Galicia (NW Spain)

    DEFF Research Database (Denmark)

    Iglesias, Gregorio; López, Mario; Carballo, Rodrigo

    2009-01-01

    Wave power presents significant advantages with regard to other CO2-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very...... harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996 - 2005. Taking into account the results of this assessment along with other relevant considerations such as the location...

  13. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  14. In Search of the Wind Energy Potential

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik

    2017-01-01

    The worldwide advancement of wind energy is putting high demands on a number of underlying technologies such as wind turbine aerodynamics, structural dynamics, gearbox design, electrical grid connections, and so on. As wind is the only fuel for wind power plants, naturally, wind......-meteorology and wind-climatology are essential for any utilization of wind energy. This is what we are concerned about here with a view on what has happened in wind energy potential assessments in the last 25 years where the utilization of wind turbines in national power supply has accelerated and what...... is the perspective for future improvements of the assessment methods. We take as the starting point the methodology of The European Wind Atlas [I. Troen and E. L. Petersen, European Wind Atlas (Risø National Laboratory, Roskilde, Denmark, 1989)]. From there to the global wind atlas methodology [J. Badger et al...

  15. Energy Savings Potential of Radiative Cooling Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Alvine, Kyle J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-11-30

    Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energy’s (DOE’s) Building Technologies Program (BTP), conducted a study to estimate, through simulation, the potential cooling energy savings that could be achieved through novel approaches to capturing free radiative cooling in buildings, particularly photonic ‘selective emittance’ materials. This report documents the results of that study.

  16. Wave energy potential in Galicia (NW Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, G.; Lopez, M.; Carballo, R.; Castro, A. [University of Santiago de Compostela, Hydraulic Engineering, E.P.S., Campus Universitario s/n, 27002 Lugo (Spain); Fraguela, J.A. [University of A Coruna, E.P.S., Campus de Esteiro s/n, Ferrol (Spain); Frigaard, P. [University of Aalborg, Sohngaardsholmsvej 57, DK 9000 (Denmark)

    2009-11-15

    Wave power presents significant advantages with regard to other CO{sub 2}-free energy sources, among which the predictability, high load factor and low visual and environmental impact stand out. Galicia, facing the Atlantic on the north-western corner of the Iberian Peninsula, is subjected to a very harsh wave climate; in this work its potential for energy production is assessed based on three-hourly data from a third generation ocean wave model (WAM) covering the period 1996-2005. Taking into account the results of this assessment along with other relevant considerations such as the location of ports, navigation routes, and fishing and aquaculture zones, an area is selected for wave energy exploitation. The transformation of the offshore wave field as it propagates into this area is computed by means of a nearshore wave model (SWAN) in order to select the optimum locations for a wave farm. Two zones emerge as those with the highest potential for wave energy exploitation. The large modifications in the available wave power resulting from relatively small changes of position are made apparent in the process. (author)

  17. The wind energy potential in Argentina

    International Nuclear Information System (INIS)

    Alvarez, P

    2005-01-01

    The wind energy are increasing its contribution to large scale electricity generation in many countries.The high technical maturity reached by modern wind turbines returns it viable and competitive in many regions, specially in those where a suitable legal framework stimulates the generation from renewable sources of energy.As this regard, the objective of this report is to demonstrate that, far from being limited to provide energy to remote, dispersed or geographically isolated sites not served by conventional networks, the wind energy has fully potential to supply a pretty relevant part of the electrical consumption of the great urban centers located in those zones of the country favored with this resource.For it, two preliminary estimations has done: the total 'windy' surface area in geographic proximity of the high voltage lines and electrical substations of the Argentine System of Interconnection (SADI) able 'to be seeded' with wind turbines, and the total electrical energy feasible of being generated from them.The paper supposes the exclusion of important non apt areas by virtue of strictly geographic, economic or environmental considerations.Even so, the result of the final calculation is extraordinarily high and promissory: if only 4% of the total surface of the contiguous land areas (in a maximum radius of 62 km) to the high voltage transmission system (in which the annual mean wind speed surpasses the 5.55 m/s) would be filled with power wind turbines, the annual average energy produced by them would be equivalent to 89% of the estimated national electrical consumption for year 2013.The usable wind potential in favorable technical conditions for commercial generation rounds this way around 40,000 MW, that would report an annual average energy of 100,000 GWh, occupying an area near 5000 km 2 .The total wind energy potential is (of course) considerably greater. Anyway, given the random nature of the wind and the consequent characteristics of not firm power

  18. Energy saving potential in existing industrial compressors

    International Nuclear Information System (INIS)

    Vittorini, Diego; Cipollone, Roberto

    2016-01-01

    The Compressed Air Sector accounts for a mean 10% worldwide electricity consumption, which ensures about its importance, when energy saving and CO_2 emissions reduction are in question. Since the compressors alone account for 15% overall industry electricity consumption, it appears vital to pay attention to machine performances. The paper presents an overview of present compressor technology and focuses on saving directions for screw and sliding vanes machines, according to data provided by the Compressed Air and Gas Institute and PNEUROP. Data were processed to obtain consistency with fixed reference pressures and organized as a function of main operating parameters. Each sub-term, contributing to the overall efficiency (adiabatic, volumetric, mechanical, electric, organic), was considered separately: the analysis showed that the thermodynamic improvement during compression achievable by splitting the compression in two stages, with a lower compression ratio, opens the way to significantly reduce the energy specific consumption. - Highlights: • Compressors technology overview in industrial compressed air systems. • Market compressors efficiency baseline definition. • Energy breakdown and evaluation of main efficiency terms. • Assessment of air cooling-related energy saving potential. • Energy specific consumption reduction through dual stage compression.

  19. Geothermal energy in Yugoslavia, potentials and applications

    International Nuclear Information System (INIS)

    Boreli, F.; Paradjanin, Lj.; Stankovic, Srb.

    2002-01-01

    This paper promotes the use of Geothermal energy (GTE) in Serbia, and argues that while GTE is both a viable and environmentally friendly energy source, as demonstrated elsewhere in the world, there is also a multitude of opportunities in this region, and the local knowledge and capabilities required for implementing the GTE plants. First, a general introduction to GTE in is given. The basis of GTE is the thermal energy accumulated in fluids and rocks masses in the Earth's Crust. The main GTE advantage compared to the traditional energy sources like thermo-electric plants is the absence of environmental deterioration, however GTE also has advantages compared to other NARES, as the GT sources are permanently available and independent of weather conditions. Worldwide energy potential of GTE is huge, as the reduction of Earth Crust temperature for just 0.1 deg. C would give enough Energy to produce Electrical Energy, at the present dissipation level, for the next 15,000 years. An overview of the regions in Yugoslavia which have a high GTE potential is given. There are two distinct regions with higher GTE values in Serbia: the first is a part of the South Panonian basin including Vojvodina, with Macva and Yu-part along Danube and Morava rivers. This is a sedimental part of the Tercier's Panonic Sea 'Parathetis', with partial depression and Backa subsupression, and is well investigated due to oil and gas holeboring. The second region includes Central and Southern part of Serbia, south from the Panonia basin, with pretercier's and tercier's magmatic volcanic intrusions, which produce a very high and stable thermal flux. This Region is rich in GT-warm water springs with stable yields, and includes 217 locations with 970 natural springs with temperature above 20 deg. C. These compare very favorably with international locations where GTE is exploited. GTE can be used for Electric Energy production using corresponding heat pump systems, for house heating and warm water

  20. WIND SPEED AND ENERGY POTENTIAL ANALYSES

    Directory of Open Access Journals (Sweden)

    A. TOKGÖZLÜ

    2013-01-01

    Full Text Available This paper provides a case study on application of wavelet techniques to analyze wind speed and energy (renewable and environmental friendly energy. Solar and wind are main sources of energy that allows farmers to have the potential for transferring kinetic energy captured by the wind mill for pumping water, drying crops, heating systems of green houses, rural electrification's or cooking. Larger wind turbines (over 1 MW can pump enough water for small-scale irrigation. This study tried to initiate data gathering process for wavelet analyses, different scale effects and their role on wind speed and direction variations. The wind data gathering system is mounted at latitudes: 37° 50" N; longitude 30° 33" E and height: 1200 m above mean sea level at a hill near Süleyman Demirel University campus. 10 minutes average values of two levels wind speed and direction (10m and 30m above ground level have been recorded by a data logger between July 2001 and February 2002. Wind speed values changed between the range of 0 m/s and 54 m/s. Annual mean speed value is 4.5 m/s at 10 m ground level. Prevalent wind

  1. Renewable energy. The power and the potential

    Energy Technology Data Exchange (ETDEWEB)

    1988-01-01

    In late 1985, the Public Advisory Committees to the Environmental Council of Alberta began working toward a draft conservation strategy for Alberta. A prospectus was published and meetings and workshops held, the goal being a conservation strategy in place by 1992. This report is one of a series of discussion papers on relevant sectors such as agriculture, fish and wildlife, tourism, and energy production. This report focuses on the present and potential economic significance of renewable energy resources, excluding hydro power, and their capability to meet Alberta's demand. Renewable energy sources discussed include solar, wind, geothermal, biomass, and energy from waste, with economic significance and demand projections for each, as well as their interactions with conventional sources. Their use in low-temperature space heating, industrial process heat, liquid fuels, and electricity is also detailed. Current legislative and regulatory requirements for each of the renewables is given, as well as an attempt at policy formulation to deal with the use of renewables as a whole. 4 figs.

  2. Development potential of wind energy in Turkey

    Directory of Open Access Journals (Sweden)

    İsmet Akova

    2011-07-01

    energy potential, as part of the renewable energy sources of Turkey, are highly important and each of these two sources has the technical potential to cover the electric production in 2008. The recent increase in the number of wind energy power stations can be related to the preparation of Turkish Wind Atlas, the preparation of legal arrangements to support private sector entrepreneurs and the rise in oil prices. Wind energy power stations are active in Marmara, Aegean region and the Mediterreanean region witnessing more constant and strong winds and are anticipated to be founded in other geographical regions as well in the future.

  3. Offshore wind energy potential in China

    DEFF Research Database (Denmark)

    Hong, Lixuan; Möller, Bernd

    2011-01-01

    and economic costs. However, the influence of tropical cyclone risks on these regions and detailed assessments at regional or local scale are worth of further discussions. Nevertheless, the models and results provide a foundation for a more comprehensive regional planning framework that would address......This paper investigates available offshore wind energy resources in China’s exclusive economic zone (EEZ) with the aid of a Geographical Information System (GIS), which allows the influence of technical, spatial and economic constraints on offshore wind resources being reflected in a continuous...... space. Geospatial supply curves and spatial distribution of levelised production cost (LPC) are developed, which provide information on the available potential of offshore wind energy at or below a given cost, and its corresponding geographical locations. The GIS-based models also reflect the impacts...

  4. The Wind Energy Potential of Iceland

    DEFF Research Database (Denmark)

    Nawri, Nikolai; Petersen, Guðrún Nína; Björnsson, Halldór

    2014-01-01

    Downscaling simulations performed with theWeather Research and Forecasting (WRF) model were used to determine the large-scale wind energy potential of Iceland. Local wind speed distributions are represented by Weibull statistics. The shape parameter across Iceland varies between 1.2 and 3...... is higher by 100 e700 W m_2 than that of offshore winds. Based on these results, 14 test sites were selected for more detailed analyses using the Wind Atlas Analysis and Application Program (WAsP). © 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license...

  5. Theoretical studies of potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Harding, L.B. [Argonne National Laboratory, IL (United States)

    1993-12-01

    The goal of this program is to calculate accurate potential energy surfaces (PES) for both reactive and nonreactive systems. To do this the electronic Schrodinger equation must be solved. Our approach to this problem starts with multiconfiguration self-consistent field (MCSCF) reference wavefunctions. These reference wavefunctions are designed to be sufficiently flexible to accurately describe changes in electronic structure over a broad range of geometries. Electron correlation effects are included via multireference, singles and doubles configuration interaction (MRSDCI) calculations. With this approach, the authors are able to provide useful predictions of the energetics for a broad range of systems.

  6. The electric energy potential of landfill biogas in Brazil

    International Nuclear Information System (INIS)

    Mambeli Barros, Regina; Tiago Filho, Geraldo Lúcio; Silva, Tiago Rodrigo da

    2014-01-01

    The increases in a country's energy capacity are related to its gross domestic product (GDP). In Brazil, increases in income and the consumption of goods and services have led to an increase in the generation of solid waste (SW), which is sent to landfills as a method of treatment and final disposal. The purpose of this study was to facilitate an increase in energy generation from renewable resources, specifically from landfills via thermal biogas plants, and the research was divided into two phases. The first phase involved the assessment of the potential population size contributing to the landfill, which could result in the installation of a financially viable enterprise to generate electricity in Brazil. Next, an estimate of the costs associated with the generation and collection of solid waste in Brazil was predicted by GDP prognoses, the latter being in accordance with the National Energy Balance (Balanço Energético Nacional – BEN) plan created by the Mines and Energy Ministry of Brazil (Ministério de Minas e Energia do Brasil – MME). The net present value (NPV) and internal rate of return (IRR) of each enterprise scenario was used in the first stage to assess the plan's financial viability. In the second stage, estimation curves such as logistics, decreasing rate of growth, and logarithmic curves were used to establish relationships between the generation scenarios and the projected collection of SW and projected GDP. Thus, a range of possible landfill biogas/methane generation values and installed energy capacities were created, considering the extreme maximum and minimum values. These values were related to the energy sources from residual fuels reported by BEN. The results demonstrated that such values still represented a small percentage (0.00020% in 2010 and 0.44496–0.81042% in 2030) of the projected energy generation from residual fuels. Thus, an urgent need was identified to formulate policies that would encourage landfills as a

  7. Quadrupole collective dynamics from energy density functionals: Collective Hamiltonian and the interacting boson model

    International Nuclear Information System (INIS)

    Nomura, K.; Vretenar, D.; Niksic, T.; Otsuka, T.; Shimizu, N.

    2011-01-01

    Microscopic energy density functionals have become a standard tool for nuclear structure calculations, providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic applications, this framework has to be extended to account for collective correlations related to restoration of symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196 Pt, calculated with a microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition probabilities for the ground-state bands and the γ-vibration bands are compared to the corresponding sequences of experimental states.

  8. An Integrative STEM Aproach to Teaching Solar Energy Collection

    Science.gov (United States)

    Hughes, Bill; Mona, Lynn; Stout, Heath; Bierly, Mike; McAninch, Steve

    2015-01-01

    "Against the backdrop of the daunting carbon-neutral energy needs of our global future, the largest gap between our present use of solar energy and its enormous undeveloped potential defines a compelling imperative for science and technology in the 21st century" (Lewis & Norcera 2006). Concurrently, the United States educational…

  9. Solar system for exploitation of the whole collected energy

    Science.gov (United States)

    Ciamberlini, C.; Francini, F.; Longobardi, G.; Piattelli, M.; Sansoni, P.

    2003-09-01

    An innovative architecture for the exploitation of the whole collected solar energy is described. A sun pointing optical concentrator focuses the received energy, containing the part of the required solar spectrum, in a low loss optical fibre transmission line. The optical panel is small in size and able to follow the sun in order to collect the maximum of its energy. The support is flat, 5 mm thick and includes four optical concentrators. The efficiency of the optical system depends on the optical configuration and on the material utilised for the optical components. Single commercial connector to the fixed fibres connects the fibre optics' four free ends. The energy is therefore properly transported to any user's end with an easy installation. The system was experimented for lightening, during the day, dissipated in a dark load in order to produce heat in some equipment and for photovoltaic applications. The total efficiency of the system was between 68% and 72%. Once the solar energy reaches the end of the transmission line, it can be addressed to the required utilisation by means of an optical switch, which redirects the sunlight towards the desired applicator. This procedure allows utilising the 100% of the sun-collected energy. Since the size of the panel was small, it can be placed, on the roof, on the garden, on the window-sill, on the field and on all sides exposed to sunlight.

  10. Geothermal Energy: Delivering on the Global Potential

    Directory of Open Access Journals (Sweden)

    Paul L. Younger

    2015-10-01

    Full Text Available Geothermal energy has been harnessed for recreational uses for millennia, but only for electricity generation for a little over a century. Although geothermal is unique amongst renewables for its baseload and renewable heat provision capabilities, uptake continues to lag far behind that of solar and wind. This is mainly attributable to (i uncertainties over resource availability in poorly-explored reservoirs and (ii the concentration of full-lifetime costs into early-stage capital expenditure (capex. Recent advances in reservoir characterization techniques are beginning to narrow the bounds of exploration uncertainty, both by improving estimates of reservoir geometry and properties, and by providing pre-drilling estimates of temperature at depth. Advances in drilling technologies and management have potential to significantly lower initial capex, while operating expenditure is being further reduced by more effective reservoir management—supported by robust models—and increasingly efficient energy conversion systems (flash, binary and combined-heat-and-power. Advances in characterization and modelling are also improving management of shallow low-enthalpy resources that can only be exploited using heat-pump technology. Taken together with increased public appreciation of the benefits of geothermal, the technology is finally ready to take its place as a mainstream renewable technology, exploited far beyond its traditional confines in the world’s volcanic regions.

  11. Computed potential energy surfaces for chemical reactions

    Science.gov (United States)

    Walch, Stephen P.

    1988-01-01

    The minimum energy path for the addition of a hydrogen atom to N2 is characterized in CASSCF/CCI calculations using the (4s3p2d1f/3s2p1d) basis set, with additional single point calculations at the stationary points of the potential energy surface using the (5s4p3d2f/4s3p2d) basis set. These calculations represent the most extensive set of ab initio calculations completed to date, yielding a zero point corrected barrier for HN2 dissociation of approx. 8.5 kcal mol/1. The lifetime of the HN2 species is estimated from the calculated geometries and energetics using both conventional Transition State Theory and a method which utilizes an Eckart barrier to compute one dimensional quantum mechanical tunneling effects. It is concluded that the lifetime of the HN2 species is very short, greatly limiting its role in both termolecular recombination reactions and combustion processes.

  12. Two-body potentials in the collective model

    International Nuclear Information System (INIS)

    Draayer, J.P.; Rosensteel, G.; Arizona State Univ., Tempe

    1982-01-01

    The question, 'How well can a 1+2-body shell-model interaction represent a many-body potential.', is addressed by optimally expanding the (1+2+3)-body potential β 3 cos 3γ and the (1+2+3+4)-body potential β 4 of the Bohr-Mottelson collective model in terms of (1+2)-body operators. It is found that the correlation of β 4 with its approximation is greater than 97% throughout the sd shell. Although β 3 cos 3γ is also well approximated in the first half of the sd shell where it has more than 80% correlation with its approximation, the correlation drops abruptly at 28 Si to 50% and remains low in the second half of the shell. The approximations are primarily sums of the various components of the quadrupole-quadrupole interaction connecting different major oscillator shells. The results suggest that axially-symmetric deformation can be represented by simple (1+2)-body operators, whereas asymmetric shapes require non-simple 3-body terms. (orig.)

  13. Thermal solar energy. Collective domestic hot water installations

    International Nuclear Information System (INIS)

    Garnier, Cedric; Chauvet, Chrystele; Fourrier, Pascal

    2016-01-01

    This brochure, edited by ADEME, the French office for energy management and sustainable development, gives a basic outlook on the way to complete the installation of a collective domestic water solar heating system. After some recall of what is solar energy, the thermal solar technology and the energy savings it may induce, this document presents the main hydraulic configurations of a solar heating system with water storage, the dimensioning of a solar water heating system and its cost estimation, the installation and the commissioning of the system, the monitoring and maintenance operations

  14. Brazilian waste potential: energy, environmental, social and economic benefits

    International Nuclear Information System (INIS)

    Oliveira, L.B.; Rosa, L.P.

    2003-01-01

    The potential energy that could be produced from solid wastes in Brazil tops 50 TWh. Equivalent to some 17% of the nation's total power consumption at costs that are competitive with more traditional options, this would also reduce greenhouse gases emissions. Moreover, managing wastes for energy generation purposes could well open up thousands of jobs for unskilled workers. Related to power generation and conservation, energy use requires discussions on the feasibility of each energy supply option, and comparison between alternatives available on the market. Power conservation is compared to projects implemented by the Federal Government, while power generation is rated against thermo-power plants fired by natural gas running on a combined cycle system. Although the operating costs of selective garbage collection for energy generation are higher than current levels, the net operating revenues of this scheme reach some US$ 4 billion/year. This underpins the feasibility of garbage management being underwritten by energy uses and avoided environmental costs. The suggested optimization of the technical, economic, social and environmental sustainability of the expansion of Brazil's power sector consists of compatibilizing the use of fossil and renewable fuels, which is particularly relevant for hybrid thermo-power plants with null account on greenhouse gases emissions

  15. Potential of renewable energy systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO2 emitting country in the world. In this case...... system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy...... system. The conclusion is that China’s domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system...

  16. Potential of renewable energy systems in China

    International Nuclear Information System (INIS)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad; Zhang, Xiliang

    2011-01-01

    Along with high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand. In 2009, China has become both the largest energy consumer and CO 2 emitting country in the world. In this case, the inappropriate energy consumption structure should be changed. As an alternative, a suitable infrastructure for the implementation of renewable energy may serve as a long-term sustainable solution. The perspective of a 100% renewable energy system has been analyzed and discussed in some countries previously. In this process, assessment of domestic renewable energy sources is the first step. Then appropriate methodologies are needed to perform energy system analyses involving the integration of more sustainable strategies. Denmark may serve as an example of how sustainable strategies can be implemented. The Danish system has demonstrated the possibility of converting into a 100% renewable energy system. This paper discusses the perspective of renewable energy in China firstly, and then analyses whether it is suitable to adopt similar methodologies applied in other countries as China approaches a renewable energy system. The conclusion is that China's domestic renewable energy sources are abundant and show the possibility to cover future energy demand; the methodologies used to analyse a 100% renewable energy system are applicable in China. Therefore, proposing an analysis of a 100% renewable energy system in China is not unreasonable. (author)

  17. Energy potential of region and its quantitative assessment

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrovna Kovalenko

    2013-09-01

    Full Text Available The purpose of the article is the development of the concept of the energy potential of the region (EPR, the analysis of the existing structure of relationships for the EPR elements in Ukraine and improvement of a quantitative assessment of energy potential of the region (country. The methods of an assessment of the existing condition of energy potential of the territory are the subject matter of the research. As a result of the analysis of concept’s definitions of energy potential of the region, it has further development and included the consumer potential of energy resources and capacity of management. The structure of relationships between elements of energy potential is developed for the Ukraine region. The new economic indicator — the realized energy potential is offered for an EPR assessment. By means of this indicator, the assessment of energy potential for the different countries of the world and a number of Ukraine areas of is performed.

  18. Alaska's renewable energy potential.

    Energy Technology Data Exchange (ETDEWEB)

    2009-02-01

    This paper delivers a brief survey of renewable energy technologies applicable to Alaska's climate, latitude, geography, and geology. We first identify Alaska's natural renewable energy resources and which renewable energy technologies would be most productive. e survey the current state of renewable energy technologies and research efforts within the U.S. and, where appropriate, internationally. We also present information on the current state of Alaska's renewable energy assets, incentives, and commercial enterprises. Finally, we escribe places where research efforts at Sandia National Laboratories could assist the state of Alaska with its renewable energy technology investment efforts.

  19. Nuclear three-body problem and energy-dependent potentials

    International Nuclear Information System (INIS)

    Abdurakhmanov, A.; Akhmadkhodzhaev, B.; Zubarev, A.L.; Irgaziev, B.F.

    1985-01-01

    Energy-dependent potentials in the three-body problem are being considered. Three-particle equations for the case of pairing energy-dependent potentials are generalized and the problems related to this ambiguous generalization are investigated. In terms of the equations obtained the tritium binding energy and vertex coupling constants (Tdn) and (Tdν) are evaluated. The binding energy and, especially, coupling constants are shown to be sensitive to a shape of the energy-dependent potential

  20. Role and potential of renewable energy and energy efficiency for global energy supply

    Energy Technology Data Exchange (ETDEWEB)

    Krewitt, Wolfram; Nienhaus, Kristina [German Aerospace Center e.V. (DLR), Stuttgart (Germany); Klessmann, Corinna; Capone, Carolin; Stricker, Eva [Ecofys Germany GmbH, Berlin (Germany); Graus, Wina; Hoogwijk, Monique [Ecofys Netherlands BV, Utrecht (Netherlands); Supersberger, Nikolaus; Winterfeld, Uta von; Samadi, Sascha [Wuppertal Institute for Climate, Environment and Energy GmbH, Wuppertal (Germany)

    2009-12-15

    The analysis of different global energy scenarios in part I of the report confirms that the exploitation of energy efficiency potentials and the use of renewable energies play a key role in reaching global CO2 reduction targets. An assessment on the basis of a broad literature research in part II shows that the technical potentials of renewable energy technologies are a multiple of today's global final energy consumption. The analysis of cost estimates for renewable electricity generation technologies and even long term cost projections across the key studies in part III demonstrates that assumptions are in reasonable agreement. In part IV it is shown that by implementing technical potentials for energy efficiency improvements in demand and supply sectors by 2050 can be limited to 48% of primary energy supply in IEA's ''Energy Technology Perspectives'' baseline scenario. It was found that a large potential for cost-effective measures exists, equivalent to around 55-60% of energy savings of all included efficiency measures (part V). The results of the analysis on behavioural changes in part VI show that behavioural dimensions are not sufficiently included in energy scenarios. Accordingly major research challenges are revealed. (orig.)

  1. Energy-harvesting potential of automobile suspension

    Science.gov (United States)

    Múčka, Peter

    2016-12-01

    This study is aimed quantify dissipated power in a damper of automobile suspension to predict energy harvesting potential of a passenger car more accurately. Field measurements of power dissipation in a regenerative damper are still rare. The novelty is in using the broad database of real road profiles, a 9 degrees-of-freedom full-car model with real parameters, and a tyre-enveloping contact model. Results were presented as a function of road surface type, velocity and road roughness characterised by International Roughness Index. Results were calculated for 1600 test sections of a total length about 253.5 km. Root mean square of a dissipated power was calculated from 19 to 46 W for all four suspension dampers and velocity 60 km/h and from 24 to 58 W for velocity 90 km/h. Results were compared for a full-car model with a tyre-enveloping road contact, full-car and quarter-car models with a tyre-road point contact. Mean difference among three models in calculated power was a few per cent.

  2. Solar-energy potential in Turkey

    International Nuclear Information System (INIS)

    Soezen, Adnan; Arcaklioglu, Erol; Oezalp, Mehmet; Kanit, E. Galip

    2005-01-01

    In this study, a new formula based on meteorological and geographical data was developed to determine the solar-energy potential in Turkey using artificial neural-networks (ANNs). Scaled conjugate gradient (SCG) and Levenberg-Marquardt (LM) learning algorithms and a logistic sigmoid transfer function were used in the network. Meteorological data for the last four years (2000 → 2003) from 18 cities (Bilecik, Kirsehir, Akhisar, Bingoel, Batman, Bodrum, Uzunkoeprue, Sile, Bartin, Yalova, Horasan, Polatli, Malazgirt, Koeycegiz, Manavgat, Doertyol, Karatas and Birecik) spread over Turkey were used as data in order to train the neural network. Meteorological and geographical data (latitude, longitude, altitude, month, mean sunshine duration, and mean temperature) were used in the input layer of the network. Solar radiation is the output layer. One-month test data for each city was used, and these months data were not used for training. The results show that the maximum mean absolute percentage error (MAPE) was found to be 3.448% and the R 2 value 0.9987 for Polatli. The best approach was found for Kirsehir (MAPE=1.2257, R 2 =0.9998). The MAPE and R 2 for the testing data were 3.3477 and 0.998534, respectively. The ANN models show greater accuracy for evaluating solar-resource possibilities in regions where a network of monitoring stations has not been established in Turkey. This study confirms the ability of the ANN to predict solar-radiation values precisely

  3. HIGH ENERGY PHYSICS POTENTIAL AT MUON COLLIDERS

    International Nuclear Information System (INIS)

    PARSA, Z.

    2000-01-01

    In this paper, high energy physics possibilities and future colliders are discussed. The μ + μ - collider and experiments with high intensity muon beams as the stepping phase towards building Higher Energy Muon Colliders (HEMC) are briefly reviewed and encouraged

  4. Renewable Energy Potential for New Mexico

    Science.gov (United States)

    RE-Powering America's Land: Renewable Energy on Contaminated Land and Mining Sites was presented by Penelope McDaniel, during the 2008 Brown to Green: Make the Connection to Renewable Energy workshop.

  5. Residential Energy Efficiency Potential: South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  6. Residential Energy Efficiency Potential: South Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by South Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  7. Residential Energy Efficiency Potential: West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-27

    Energy used by West Virginia single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  8. Residential Energy Efficiency Potential: New York

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New York single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  9. Residential Energy Efficiency Potential: New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by New Mexico single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  10. Residential Energy Efficiency Potential: North Dakota

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Dakota single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  11. Residential Energy Efficiency Potential: New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Jersey single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  12. Residential Energy Efficiency Potential: New Hampshire

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-16

    Energy used by New Hampshire single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  13. Residential Energy Efficiency Potential: North Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by North Carolina single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  14. Residential Energy Efficiency Potential: Rhode Island

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Eric J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-02

    Energy used by Rhode Island single-family homes that can be saved through cost-effective improvements. Prepared by Eric Wilson and Noel Merket, NREL, and Erin Boyd, U.S. Department of Energy Office of Energy Policy and Systems Analysis.

  15. Renewable energy - its potential and limitations

    International Nuclear Information System (INIS)

    Read, W.R.

    1990-01-01

    Several renewable energy options are discussed, namely solar energy, passive solar systems, photovoltaics, wind energy and biomass. Although technical feasibility has been shown for various systems, there has been slow growth in their implementation. Some aspects of this slow growth are in the domains of economic viability, long term reliability, the training of operators and installers, public perception and education and govenmental attitudes. It is estimated that the increased use of renewable energy depends on several factors which include government policies, funding, energy conservation, pricing policies, reliable commercial products, public education and adequate training. 11 refs

  16. Energy savings potential from energy-conserving irrigation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wilfert, G.L.; Patton, W.P.; Harrer, B.J.; Clark, M.A.

    1982-11-01

    This report systematically compares, within a consistent framework, the technical and economic characteristics of energy-conserving irrigation systems with those of conventional irrigation systems and to determine total energy savings. Levelized annual costs of owning and operating both energy-conserving and conventional irrigation systems have been developed and compared for all 17 states to account for the differences in energy costs and irrigation conditions in each state. Market penetration of energy-conserving systems is assessed for those systems having lower levelized annual costs than conventional systems performing the same function. Annual energy savings were computed by matching the energy savings per system with an assumed maximum market penetration of 100 percent in those markets where the levelized annual costs of energy-conserving systems are lower than the levelized annual costs of conventional systems.

  17. User behaviour impact on energy savings potential

    DEFF Research Database (Denmark)

    Rose, Jørgen

    2014-01-01

    and the residents' behaviour and if these defaults do not reflect actual circumstances, it can result in non-realisation of expected energy savings. Furthermore, a risk also exists that residents' behaviour change after the energy upgrading, e.g. to obtain improved comfort than what was possible before......, 3) Domestic hot water consumption and 4) Air change rate. Based on the analysis, a methodology is established that can be used to make more realistic and accurate predictions of expected energy savings associated with energy upgrading taking into account user behaviour....... the upgrading and this could lead to further discrepancies between the calculated and the actual energy savings. This paper presents an analysis on how residents’ behaviour and the use of standard assumptions may influence expected energy savings. The analysis is performed on two typical single-family houses...

  18. Renewable energy potential in Southern Africa: conference proceedings

    International Nuclear Information System (INIS)

    1986-01-01

    This conference, held in Cape Town from 8-10 September 1986, consist of many papers discussing the renewalble energy potential in Southern Africa. The papers delivered at the conference include topics such as wind energy, ocean energy, hydroelectric resources, solar resources, wave energy, agroforestry, fuelwood, hydrogen energy and the production of energy from biomass. Several papers were delivered on solar water heating and one on nuclear vs renewable energy

  19. Renewable Energy in Reunion: Potentials and Outlook

    International Nuclear Information System (INIS)

    Baddour, Julien; Percebois, Jacques

    2011-01-01

    Renewable, environmentally friendly and evenly distributed across the globe, renewable energy (RES for Renewable Energy Resources) is an excellent means of taking up the global energy challenge, i.e. enabling developing countries in the south to make progress without harming the environment. Since it is particularly well suited to an island territory's character and local needs, RE is also an excellent tool that could enable France's overseas Departments and Territories to reduce their energy dependence, preserve their environment and ensure their sustainable development. In Reunion, RES benefit from marked political support and from a very favourable financial and institutional environment, which has allowed the Reunion region to become a national pioneer in the realm of thermal energy and photovoltaics. Nonetheless, RES are not a panacea as they are subject to a number of flaws. It is currently expensive and uncompetitive, intermittent and insufficiently powerful, and not always available to keep up with demand. This explains why RES cannot aspire to be a complete substitute for fossil fuels. The two energy systems complement one another to meet the region's total energy needs. This article also highlights the negative consequences of the support measures for RES (inflated costs and negative prices on the electricity markets) and underscores the need for a complementary energy policy in pricing electricity, as well as effecting energy savings, which must remain our priority. (authors)

  20. The Potential of Heat Collection from Solar Radiation in Asphalt Solar Collectors in Malaysia

    Science.gov (United States)

    Beddu, Salmia; Talib, Siti Hidayah Abdul; Itam, Zarina

    2016-03-01

    The implementation of asphalt solar collectors as a means of an energy source is being widely studied in recent years. Asphalt pavements are exposed to daily solar radiation, and are capable of reaching up to 70°C in temperature. The potential of harvesting energy from solar pavements as an alternative energy source in replace of non-renewable energy sources prone to depletion such as fuel is promising. In Malaysia, the sun intensity is quite high and for this reason, absorbing the heat from sun radiation, and then utilizing it in many other applications such as generating electricity could definitely be impressive. Previous researches on the different methods of studying the effect of heat absorption caused by solar radiation prove to be quite old and inaffective. More recent findings, on the otherhand, prove to be more informative. This paper focuses on determining the potential of heat collection from solar radiation in asphalt solar collectors using steel piping. The asphalt solar collector model constructed for this research was prepared in the civil engineering laboratory. The hot mixed asphalt (HMA) contains 10% bitumen mixed with 90% aggregates of the total size of asphalt. Three stainless steel pipes were embedded into the interior region of the model according to the design criteria, and then put to test. Results show that harvesting energy from asphalt solar collectors proves highly potential in Malaysia due its the hot climate.

  1. Energy conservation potential of surface modification technologies

    Energy Technology Data Exchange (ETDEWEB)

    Le, H.K.; Horne, D.M.; Silberglitt, R.S.

    1985-09-01

    This report assesses the energy conservation impact of surface modification technologies on the metalworking industries. The energy conservation impact of surface modification technologies on the metalworking industries is assessed by estimating their friction and wear tribological sinks and the subsequent reduction in these sinks when surface modified tools are used. Ion implantation, coatings, and laser and electron beam surface modifications are considered.

  2. Potential for Geothermal Energy in Myanmar

    International Nuclear Information System (INIS)

    Khin Soe Moe

    2010-12-01

    Geothermal energy is energy obtained by tapping the heat of the earth itself from kilometers deep into the earth's crust in some places of world. It is power extracted from heat stored in the earth. It is a renewable energy source because the heat is continuously produced inside the earth. Geothermal energy originates from the heat retained within the Earth's core since the orginal formation of the planet, from radioactive decay of minerals, and from solar energy absorbed at the surface. Most high temperature geothermal heat is harvested in regions close to tectonic plate boundaries where volcanic activity rises up to the surface of the Earth. It is one of the best renewable sources of energy and is capable of maintaining its temperature. The heating cost is very low. It uses less electricity and 75 per cent more efficient than the oil furnace and 48 per cent more efficient than the gas furnace. The energy is not only used for heating a place but also for cooling down the site. It generates uniform energy and creates no sound pollution. Maintenance cost is very cheap. The life of the underground piping is more than 50 year.

  3. Saving energy for the data collection point in WBAN network

    Science.gov (United States)

    Nguyen-Duc, Toan; Kamioka, Eiji

    2017-11-01

    Wireless sensor networking (WSN) has been rapidly developed and become essential in various domains including health care systems. Such systems use WSN to collect real-time medical sensed data, aiming at improving the patient safety. For instance, patients suffered from adverse events, i.e., cardiac or respiratory arrests, are monitored so as to prevent them from getting harm. Sensors are placed on, in or near the patients' body to continuously collect sensing data such as the electrocardiograms, blood oxygenation, breathing, and heart rate. In this case, the sensors form a subcategory of WSN called wireless body area network (WBAN). In WBAN, sensing data are sent to one or more data collection points called personal server (PS). The role of PS is important since it forwards sensed data, to a medical server via a Bluetooth/WLAN connection in real time to support storage of information and real-time diagnosis, the device can also issue a notification of an emergency status. Since PS is a battery-based device, when its battery is empty, it will disconnect the sensed medical data with the rest network. To best of our knowledge, very few studies that focus on saving energy for the PS. To this end, this work investigates the trade-off between energy consumption for wireless communication and the amount of sensing data. An energy consumption model for wireless communication has been proposed based on direct measurement using real testbed. According to our findings, it is possible to save energy for the PS by selecting suitable wireless technology to be used based on the amount of data to be transmitted.

  4. Excited collective states of nuclei within Bohr Hamiltonian with Tietz-Hua potential

    Energy Technology Data Exchange (ETDEWEB)

    Chabab, M.; El Batoul, A.; Lahbas, A.; Oulne, M. [Cadi Ayyad University, High Energy Physics and Astrophysics Laboratory, Faculty of Sciences Semlalia, Marrakesh (Morocco); Hamzavi, M. [University of Zanjan, Department of Physics, Zanjan (Iran, Islamic Republic of)

    2017-07-15

    In this paper, we present new analytical solutions of the Bohr Hamiltonian problem that we derived with the Tietz-Hua potential, here used for describing the β-part of the nuclear collective potential plus that of the harmonic oscillator for the γ-part. Also, we proceed to a systematic comparison of the numerical results obtained with this kind of β-potential with others which are widely used in such a framework as well as with the experiment. The calculations are carried out for energy spectra and electromagnetic transition probabilities for γ-unstable and axially symmetric deformed nuclei. In the same frame, we show the effect of the shape flatness of the β-potential beyond its minimum on transition rates calculations. (orig.)

  5. Energy saving potential of energy services - experimentation on the life cycle of energy conversion equipment

    International Nuclear Information System (INIS)

    Dupont, M.

    2006-12-01

    Energy efficiency services are growing in Europe but their role is still limited. In order to evaluate the potential, we focused first of all on policy, economical and environmental mechanisms that support their development. European natural gas and electricity markets, that are now almost wholly de-regulated, are analysed and compared to their historical structure. By introducing uncertainty on energy prices, this new deal translates better the real energy costs. Energy performance contracts (EPC) limit the impact of these uncertainties on the customer energy bills by guaranteeing a financial result. As a result of the modelling of these contracts, namely operation and maintenance ones, we prove that they transfer technical and financial risks from building owners to energy service companies (ESCO) making energy saving measures easier and less expensive at the same time. These contracts are relatively widespread for heating or compressed-air processes but remain marginal for air-conditioning systems. So new methods were needed to guarantee on the long terms the efficiency of air-conditioning systems demand (1) to master the process and its performances and (2) to be able to determine precisely the energy saving potential and its realisation costs. A detailed energy audit is thus necessary for which we propose a guidance. Conclusions of audits carried out prove that energy saving potential is mainly located in equipment management and control. These optimizations are not always carried out because of a lack of contractual incentive and due to the weaknesses of audit methods. Through the involvement of an independent expert, the mandatory and regular inspection of air-conditioning systems may allow to verify and guide such practices. A three-step analysis procedure has been developed in order to maximize the inspection potential and to get higher benefits from service contracts. (author)

  6. Analysis of collective excitations of rapidly rotating nuclei in an oscillator potential

    International Nuclear Information System (INIS)

    Akbarov, A.; Ignatyuk, A.V.; Mikhailov, I.N.; Molina, K.L.; Nazmitdinov, R.G.; Janssen, D.

    1981-01-01

    The spectrum of positive-parity collective excitations is analyzed in the random phase approximation for a wide range of angular momenta. The Hamiltonian of the model is taken in the form of a spherical harmonic-oscillator potential and isoscalar quadrupole forces. This model permits a description of the known data on the position of a giant quadrupole resonance for small spins and allows the variation of the resonance characteristics to be followed as the spin increases. It is shown that as the rotation velocity increases the energy of one of the branches of the resonance decreases to zero while the state remains strongly collectivized. The model also reproduces the low energy vibration mode which is related to the precession mode. The excitation energy and the B(E2) factor corresponding to this mode differ considerably from the estimates obtained in the rigid rotator model

  7. Free-energy coarse-grained potential for C60

    International Nuclear Information System (INIS)

    Edmunds, D. M.; Tangney, P.; Vvedensky, D. D.; Foulkes, W. M. C.

    2015-01-01

    We propose a new deformable free energy method for generating a free-energy coarse-graining potential for C 60 . Potentials generated from this approach exhibit a strong temperature dependence and produce excellent agreement with benchmark fully atomistic molecular dynamics simulations. Parameter sets for analytical fits to this potential are provided at four different temperatures

  8. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph; Farooq, Aamir; Ghaffour, NorEddine

    2012-01-01

    . Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a

  9. Opportunistic Sensor Data Collection with Bluetooth Low Energy

    Directory of Open Access Journals (Sweden)

    Sergio Aguilar

    2017-01-01

    Full Text Available Bluetooth Low Energy (BLE has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.

  10. Opportunistic Sensor Data Collection with Bluetooth Low Energy.

    Science.gov (United States)

    Aguilar, Sergio; Vidal, Rafael; Gomez, Carles

    2017-01-23

    Bluetooth Low Energy (BLE) has gained very high momentum, as witnessed by its widespread presence in smartphones, wearables and other consumer electronics devices. This fact can be leveraged to carry out opportunistic sensor data collection (OSDC) in scenarios where a sensor node cannot communicate with infrastructure nodes. In such cases, a mobile entity (e.g., a pedestrian or a vehicle) equipped with a BLE-enabled device can collect the data obtained by the sensor node when both are within direct communication range. In this paper, we characterize, both analytically and experimentally, the performance and trade-offs of BLE as a technology for OSDC, for the two main identified approaches, and considering the impact of its most crucial configuration parameters. Results show that a BLE sensor node running on a coin cell battery can achieve a lifetime beyond one year while transferring around 10 Mbit/day, in realistic OSDC scenarios.

  11. Data collection from energy certificates. Experiences and analysis. Synthesis report

    Energy Technology Data Exchange (ETDEWEB)

    Loga, Tobias; Diefenbach, Nikolaus (eds.); Popiolek, Malgorzata; Panek, Aleksander [Narodowa Agencja Poszanowania Energii S.A. (NAPE), Warsaw (Poland); Cohen, Robert [Energy for Sustainable Development Ltd (ESD), Overmoor (GB)] (and others)

    2008-03-15

    Apart from the described bottom-up approach DATAMINE also aims at drawing general conclu-sions concerning monitoring with the help of energy certificates. Of course 12 projects simultane-ously being carried out in 12 EU countries bring up the question if there is a way for a common analysis of the collected data or at least for a common understanding of the data from different projects. Against that background a harmonised data structure with 255 data fields was defined. The ''philosophy'' of this approach was as follows: Each project partner could use his own data structure and carry out his analysis in an individual way according to the objectives and conditions of his individual model project. But at the end he had to translate his data base in the harmonised data structure and to deliver it to the project coordinator IWU who collect all data in a common evaluation data base. This will make possible a cross-country comparison of the collected data - taking into consideration that because of the different types of energy certificates neither all data fields of the data structure can be filled in by the model projects nor will a comparison of all model projects be possible. So the harmonised data structure can be seen as a simplified ''common lan-guage'' that facilitates an understanding of data bases from different projects. A detailed descrip-tion of the data structure among with other general results from the first DATAMINE workpackages which were carried out before the model projects is given in the DATAMINE synthesis report ''Con-cepts for Data Collection and Analysis'' from December 2006 which is also available on the project website. (orig.)

  12. Solar-thermal-energy collection/storage-pond system

    Science.gov (United States)

    Blahnik, D.E.

    1982-03-25

    A solar thermal energy collection and storage system is disclosed. Water is contained, and the water surface is exposed directly to the sun. The central part of an impermeable membrane is positioned below the water's surface and above its bottom with a first side of the membrane pointing generally upward in its central portion. The perimeter part of the membrane is placed to create a watertight boundary separating the water into a first volume which is directly exposable to the sun and which touches the membranes first side, and a second volumn which touches the membranes second side. A salt is dissolved in the first water volume.

  13. Energy potential in the food industry; Store energipotensialer i naeringsmiddelindustrien

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, E; Risberg, T M; Mydske, H J; Helgerud, H E

    2007-07-01

    The food industry is one of the most power consuming industries (excluding the heavy industry) and has large potential for reducing the energy consumption. This report explains the most energy efficient measures and if the injunctions are followed

  14. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M. (Dansk Energi Analyse A/S, Frederiksberg (Denmark)); Langkilde, G.; Olesen, Bjarne W. (Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark)); Moerck, O. (Cenergia Energy Consultants, Herlev (Denmark)); Sundman, O. (DONG Energy, Copenhagen (Denmark)); Engelund Thomsen, K. (Aalborg Univ., SBi, Hoersholm (Denmark))

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  15. Energy performance contracting - energy saving potential of selected energy conservation measures (ECM)

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, M [Dansk Energi Analyse A/S, Frederiksberg (Denmark); Langkilde, G; Olesen, Bjarne W [Technical Univ. of Denmark, ICIEE, Kgs. Lyngby (Denmark); Moerck, O [Cenergia Energy Consultants, Herlev (Denmark); Sundman, O [DONG Energy, Copenhagen (Denmark); Engelund Thomsen, K [Aalborg Univ., SBi, Hoersholm (Denmark)

    2008-09-15

    This report has been developed under the research project 'Etablering af grundlag for energitjenester i Danmark' (project number: ENS-33031-0185) under the Danish research programme - EFP. The objective of this project has been to contribute to the utilisation of the large potential for energy conservations in the building sector within the public, industry and service sectors through the development of a better basis for decision making for both the Energy Service Companies (ESCOes) and the building owners. The EU directive on Energy Service Contracting points at the buildings as the area where the biggest potential market for energy services and energy efficiency improvements are. The EFP-project has two parts: (1) A Danish part and (2) participation in the international cooperation project 'Holistic Assesment Tool-Kit on Energy Efficient Retrofit Measures for Government Buildings (EnERGo)', Annex 46 under the IEA R and D program 'Energy Conservation In Buildings And Community Systems' (ECBCS). This report describes the Danish contributions to the IEA projects subtask B, which has a primary objective to develop a database of energy conservation measures (ECM) with descriptions and performance characteristics of these. (au)

  16. Solar Energy: Potential Powerhouse for Jobs

    Science.gov (United States)

    McCallion, Tom

    1976-01-01

    Components of solar energy systems are described, the development of the solar industry discussed, and implications are drawn for employment opportunities in industries (which may expand into new, solar-related areas) and in the professions, from law to sales, upon the advent of solar heating. (AJ)

  17. Energy transfer in scattering by rotating potentials

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Quantum mechanical scattering theory is studied for time-dependent. Schrödinger ... the energy transferred to a particle by collision with a rotating blade. Keywords. ..... terms of the unitary group for some time-independent generator. This will ...

  18. Radiant energy collection and conversion apparatus and method

    Science.gov (United States)

    Hunt, A.J.

    The apparatus for collecting radiant energy and converting to alternate energy forms includes a housing having an interior space and a radiation transparent window allowing solar radiation to be received in the interior space of the housing. Means are provided for passing a stream of fluid past the window and for injecting radiation absorbent particles in said fluid stream. The particles absorb the radiation and because of their very large surface area, quickly release the heat to the surrounding fluid stream. The fluid stream particle mixture is heated until the particles vaporize. The fluid stream is then allowed to expand in, for example, a gas turbine to produce mechanical energy. In an aspect of the present invention properly sized particles need not be vaporized prior to the entrance of the fluid stream into the turbine, as the particles will not damage the turbine blades. In yet another aspect of the invention, conventional fuel injectors are provided to inject fuel into the fluid stream to maintain the proper temperature and pressure of the fluid stream should the source of radiant energy be interrupted. In yet another aspect of the invention, an apparatus is provided which includes means for providing a hot fluid stream having hot particles disbursed therein which can radiate energy, means for providing a cooler fluid stream having cooler particles disbursed therein, which particles can absorb radiant energy and means for passing the hot fluid stream adjacent the cooler fluid stream to warm the cooler fluid and cooler particles by the radiation from the hot fluid and hot particles.

  19. The potential of (waste)water as energy carrier

    International Nuclear Information System (INIS)

    Frijns, Jos; Hofman, Jan; Nederlof, Maarten

    2013-01-01

    Graphical abstract: Energy input and potential output of the Dutch communal water cycle. Highlights: ► Municipal wastewater is a large carrier of chemical and thermal energy. ► The recovery of chemical energy from wastewater can be maximised by digestion. ► The potential of thermal energy recovery from wastewater is huge. ► Underground thermal energy storage is a rapidly developing renewable energy source. - Abstract: Next to energy efficiency improvements in the water sector, there is a need for new concepts in which water is viewed as a carrier of energy. Municipal wastewater is a potential source of chemical energy, i.e. organic carbon that can be recovered as biogas in sludge digestion. The recovery of chemical energy can be maximised by up-concentration of organic carbon and maximised sludge digestion or by source separation and anaerobic treatment. Even more so, domestic wastewater is a source of thermal energy. Through warm water conservation and heat recovery, for example with shower heat exchangers, substantial amounts of energy can be saved and recovered from the water cycle. Water can also be an important renewable energy source, i.e. as underground thermal energy storage. These systems are developing rapidly in the Netherlands and their energy potential is large.

  20. Comparing energy levels in isotropic and anisotropic potentials

    Energy Technology Data Exchange (ETDEWEB)

    Pikovski, Alexander, E-mail: alexander.pikovski@colorado.edu

    2015-11-06

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  1. Comparing energy levels in isotropic and anisotropic potentials

    International Nuclear Information System (INIS)

    Pikovski, Alexander

    2015-01-01

    Qualitative information about the quantized energy levels of a system can be of great value. We study the relationship between the bound-state energies of an anisotropic potential and those of its spherical average. It is shown that the two ground-state energies satisfy an inequality, and there is a similar inequality for the first excited states. - Highlights: • Quantized energy levels in an arbitrary non-central potential are studied. • We derive inequalities between energies in a potential and its spherical average. • The results hold in three and two dimensions for any ground state and, with additional symmetry requirements for the first excited state.

  2. Realizing the potential of nuclear energy

    International Nuclear Information System (INIS)

    Walske, C.

    1982-01-01

    The future of nuclear power, just as the future of America, can be viewed with optimism. There is hope in America's record of overcoming obstacles, but growth is essential for that hope to be realized. Despite the downturn in energy demand made possible by conservation, we will need a 35% growth in total energy for new workers and production. Electricity generated by nuclear or coal can make US production more cost-competitive, and it can power mass-transit systems, electric heat pumps, and communications and information systems. Changes in electricity and gross national product (GNP) have been more closely in step since 1973 than have total energy and GNP. The nuclear power units now under construction will add 80,000 megawatts to the 56,000 now on line. It is important to note that, while utilities are cancelling plans for nuclear plants, they aren't ordering new coal plants, which shows the impact of the high cost of money. Interest rates must come down and public-relations efforts to sell electricity must improve to change the situation. Although capital shortages are real, waste disposal is a problem of perception that was politically induced because the government failed to provide a demonstration of safety as the French are doing. Streamlined regulatory and insurance procedures can help to justify optimism in the nuclear option. 4 figures

  3. Energy Savings Potential and Research & Development Opportunities for Commercial Refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2009-09-01

    This study documents the energy consumption of commercial refrigeration equipment (CRE) in the U.S. and evaluated the energy savings potential of various technologies and energy efficiency measures that could be applied to such equipment. The study provided an overview of CRE applications, assessed the energy-savings potential of CRE in the U.S., outline key barriers to adoption of energy-savings technologies, and recommended opportunities for advanced energy saving technology research. The study was modeled after an earlier 1996 report by Arthur D. Little, Inc., and updated key information, examined more equipment types, and outlined long-term research and development opportunities.

  4. Characterization of secondary electron collection for energy recovery from high energy ions with a magnetic field

    International Nuclear Information System (INIS)

    Hagihara, Shota; Wada, Takayuki; Nakamoto, Satoshi; Takeno, Hiromasa; Yasaka, Yasuyoshi; Furuyama, Yuichi; Taniike, Akira

    2015-01-01

    A traveling wave direct energy converter (TWDEC) is expected to be used as an energy recovery device for fast protons produced during the D- 3 He nuclear fusion reaction. Some protons, however, are not fully decelerated and pass through the device. A secondary electron direct energy converter (SEDEC) was proposed as an additional device to recover the protons passing through a TWDEC. In our previous study, magnetic field was applied for efficient secondary electron (SE) collection, but the SEs were reflected close to the collector due to the magnetic mirror effect and the collection was degraded. Herein, a new arrangement of magnets is proposed to be set away from the collector, and experiments in various conditions are performed. An appropriate arrangement away from the collector resulted in the improvement of SE collection. (author)

  5. Renewable energy resources in Pakistan: status, potential and information systems

    International Nuclear Information System (INIS)

    Khan, A.M.

    1991-01-01

    This paper provides some details regarding the characteristic properties, potential and assessment of renewable energy compared with other forms of energy sources. It gives status of renewable energy sources in Pakistan. It also lights about the agencies providing technical information regarding renewable energy in Pakistan as well as suggestions and recommendations for the development of these resources, and over view the present status of renewable energy sources. (author)

  6. World status of geothermal energy use: past and potential

    International Nuclear Information System (INIS)

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  7. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    Science.gov (United States)

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  8. Zeta-function approach to Casimir energy with singular potentials

    International Nuclear Information System (INIS)

    Khusnutdinov, Nail R.

    2006-01-01

    In the framework of zeta-function approach the Casimir energy for three simple model system: single delta potential, step function potential and three delta potentials are analyzed. It is shown that the energy contains contributions which are peculiar to the potentials. It is suggested to renormalize the energy using the condition that the energy of infinitely separated potentials is zero which corresponds to subtraction all terms of asymptotic expansion of zeta-function. The energy obtained in this way obeys all physically reasonable conditions. It is finite in the Dirichlet limit, and it may be attractive or repulsive depending on the strength of potential. The effective action is calculated, and it is shown that the surface contribution appears. The renormalization of the effective action is discussed

  9. Optimisation of logistics processes of energy grass collection

    Science.gov (United States)

    Bányai, Tamás.

    2010-05-01

    The collection of energy grass is a logistics-intensive process [1]. The optimal design and control of transportation and collection subprocesses is a critical point of the supply chain. To avoid irresponsible decisions by right of experience and intuition, the optimisation and analysis of collection processes based on mathematical models and methods is the scientific suggestible way. Within the frame of this work, the author focuses on the optimisation possibilities of the collection processes, especially from the point of view transportation and related warehousing operations. However the developed optimisation methods in the literature [2] take into account the harvesting processes, county-specific yields, transportation distances, erosion constraints, machinery specifications, and other key variables, but the possibility of more collection points and the multi-level collection were not taken into consideration. The possible areas of using energy grass is very wide (energetically use, biogas and bio alcohol production, paper and textile industry, industrial fibre material, foddering purposes, biological soil protection [3], etc.), so not only a single level but also a multi-level collection system with more collection and production facilities has to be taken into consideration. The input parameters of the optimisation problem are the followings: total amount of energy grass to be harvested in each region; specific facility costs of collection, warehousing and production units; specific costs of transportation resources; pre-scheduling of harvesting process; specific transportation and warehousing costs; pre-scheduling of processing of energy grass at each facility (exclusive warehousing). The model take into consideration the following assumptions: (1) cooperative relation among processing and production facilties, (2) capacity constraints are not ignored, (3) the cost function of transportation is non-linear, (4) the drivers conditions are ignored. The

  10. Bandwidth Study on Energy Use and Potential Energy Savings Opportunities in U.S. Petroleum Refining

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. petroleum refining. The study relies on multiple sources to estimate the energy used in nine individual process areas, representing 68% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  11. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Chemical Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. chemical manufacturing. The study relies on multiple sources to estimate the energy used in the production of 74 individual chemicals, representing 57% of sector-wide energy consumption. Energy savings opportunities for individual chemicals and for 15 subsectors of chemicals manufacturing are based on technologies currently in use or under development; these potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  12. physico-chemical properties and energy potential of wood wastes

    African Journals Online (AJOL)

    user

    were performed to assess the energy characteristics of the collected wood .... Methods. Wood processing activities were physically observed for. 6 days/wk at the sawmills for 15weeks. ..... [10] Oladeji, J T “Fuel characterization of briquettes.

  13. The potential of new renewable energy sources in Switzerland

    International Nuclear Information System (INIS)

    Dietrich, P.; Kaiser, T.; Wokaun, A.

    2010-01-01

    This article presents and discusses the results of an evaluation made by the so-called 'Swiss Energy Trialogue' ETS on the potential offered by new renewable energy sources in Switzerland. The evaluation forecasts an important contribution to Swiss energy supply by renewable energy sources by the year 2050. The authors are of the opinion that, in spite of a considerable increase in the offers of renewable energy and the full use of energy saving potential, a discrepancy will exist between estimates of energy needs and the actual energy available from renewable resources if large-scale power generation facilities are not built. Activities proposed by the Swiss government are discussed and analysed. In particular, possible contributions to be made by renewable energy sources are examined. Suggestions made by ETS concerning possible courses of action are discussed

  14. Development of technique for diagnostics of social reserves of development of collective labour potential

    OpenAIRE

    Голубєв, Станіслав Миколайович

    2015-01-01

    The problems of diagnostics of social reserves of the collective labour potential are considered in the article. The aim of this study is to develop diagnostic techniques of social reserves of the collective labour potential in the work and the essence of the concept of "social reserves" as a subject of study of economics and their features in the study of collective labour potential. The use of these reserves can increase the efficiency of the labour collective processes by improving coopera...

  15. An assessement of global energy resource economic potentials

    International Nuclear Information System (INIS)

    Mercure, Jean-François; Salas, Pablo

    2012-01-01

    This paper presents an assessment of global economic energy potentials for all major natural energy resources. This work is based on both an extensive literature review and calculations using natural resource assessment data. Economic potentials are presented in the form of cost-supply curves, in terms of energy flows for renewable energy sources, or fixed amounts for fossil and nuclear resources, with strong emphasis on uncertainty, using a consistent methodology that allow direct comparisons to be made. In order to interpolate through available resource assessment data and associated uncertainty, a theoretical framework and a computational methodology are given based on statistical properties of different types of resources, justified empirically by the data, and used throughout. This work aims to provide a global database for natural energy resources ready to integrate into models of energy systems, enabling to introduce at the same time uncertainty over natural resource assessments. The supplementary material provides theoretical details and tables of data and parameters that enable this extensive database to be adapted to a variety of energy systems modelling frameworks. -- Highlights: ► Global energy potentials for all major energy resources are reported. ► Theory and methodology for calculating economic energy potentials is given. ► An uncertainty analysis for all energy economic potentials is carried out.

  16. Potential energy landscapes of elemental and heterogeneous chalcogen clusters

    International Nuclear Information System (INIS)

    Mauro, John C.; Loucks, Roger J.; Balakrishnan, Jitendra; Varshneya, Arun K.

    2006-01-01

    We describe the potential energy landscapes of elemental S 8 , Se 8 , and Te 8 clusters using disconnectivity graphs. Inherent structures include both ring and chain configurations, with rings especially dominant in Se 8 . We also map the potential energy landscapes of heterogeneous Se n (S,Te) 8-n clusters, which offer insights into the structure of heterogeneous chalcogen glasses

  17. Research on potential user identification model for electric energy substitution

    Science.gov (United States)

    Xia, Huaijian; Chen, Meiling; Lin, Haiying; Yang, Shuo; Miao, Bo; Zhu, Xinzhi

    2018-01-01

    The implementation of energy substitution plays an important role in promoting the development of energy conservation and emission reduction in china. Energy service management platform of alternative energy users based on the data in the enterprise production value, product output, coal and other energy consumption as a potential evaluation index, using principal component analysis model to simplify the formation of characteristic index, comprehensive index contains the original variables, and using fuzzy clustering model for the same industry user’s flexible classification. The comprehensive index number and user clustering classification based on constructed particle optimization neural network classification model based on the user, user can replace electric potential prediction. The results of an example show that the model can effectively predict the potential of users’ energy potential.

  18. Collective mass and zero-point energy in the generator-coordinate method

    International Nuclear Information System (INIS)

    Fiolhais, C.

    1982-01-01

    The aim of the present thesis if the study of the collective mass parameters and the zero-point energies in the GCM framework with special regards to the fission process. After the derivation of the collective Schroedinger equation in the framework of the Gaussian overlap approximation the inertia parameters are compared with those of the adiabatic time-dependent Hartree-Fock method. Then the kinetic and the potential zero-point energy occurring in this formulation are studied. Thereafter the practical application of the described formalism is discussed. Then a numerical calculation of the GCM mass parameter and the zero-point energy for the fission process on the base of a two-center shell model with a pairing force in the BCS approximation is presented. (HSI) [de

  19. Applications of maximally concentrating optics for solar energy collection

    Science.gov (United States)

    O'Gallagher, J.; Winston, R.

    1985-11-01

    A new family of optical concentrators based on a general nonimaging design principle for maximizing the geometric concentration, C, for radiation within a given acceptance half angle ±θα has been developed. The maximum limit exceeds by factors of 2 to 10 that attainable by systems using focusing optics. The wide acceptance angles permitted using these techniques have several unique advantages for solar concentrators including the elimination of the diurnal tracking requirement at intermediate concentrations (up to ˜10x), collection of circumsolar and some diffuse radiation, and relaxed tolerances. Because of these advantages, these types of concentrators have applications in solar energy wherever concentration is desired, e.g. for a wide variety of both thermal and photovoltaic uses. The basic principles of nonimaging optical design are reviewed. Selected configurations for thermal collector applications are discussed and the use of nonimaging elements as secondary concentrators is illustrated in the context of higher concentration applications.

  20. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  1. Estimating the energy saving potential of telecom operators in China

    International Nuclear Information System (INIS)

    Yang, Tian-Jian; Zhang, Yue-Jun; Huang, Jin; Peng, Ruo-Hong

    2013-01-01

    A set of models are employed to estimate the potential of total energy saved of productions and segmented energy saving for telecom operators in China. During the estimation, the total energy saving is divided into that by technology and management, which are derived from technical reform and progress, and management control measures and even marketing respectively, and the estimating methodologies for energy saving potential of each segment are elaborated. Empirical results from China Mobile indicate that, first, the technical advance in communications technology accounts for the largest proportion (70%–80%) of the total energy saved of productions in telecom sector of China. Second, technical reform brings about 20%–30% of the total energy saving. Third, the proportions of energy saving brought by marketing and control measures appear relatively smaller, just less than 3%. Therefore, China's telecom operators should seize the opportunity of the revolution of communications network techniques in recent years to create an advanced network with lower energy consumption

  2. Future bio-energy potential under various natural constraints

    International Nuclear Information System (INIS)

    Vuuren, Detlef P. van; Vliet, Jasper van; Stehfest, Elke

    2009-01-01

    Potentials for bio-energy have been estimated earlier on the basis of estimates of potentially available land, excluding certain types of land use or land cover (land required for food production and forests). In this paper, we explore how such estimates may be influenced by other factors such as land degradation, water scarcity and biodiversity concerns. Our analysis indicates that of the original bio-energy potential estimate of 150, 80 EJ occurs in areas classified as from mild to severe land degradation, water stress, or with high biodiversity value. Yield estimates were also found to have a significant impact on potential estimates. A further 12.5% increase in global yields would lead to an increase in bio-energy potential of about 50%. Changes in bio-energy potential are shown to have a direct impact on bio-energy use in the energy model TIMER, although the relevant factor is the bio-energy potential at different cost levels and not the overall potential.

  3. If the renewable energy saves a collective memory

    Energy Technology Data Exchange (ETDEWEB)

    Ratiba Wided, Biara; Boumediene, Touati [Laboratory of energy in Arid Zones, Faculty of Science and Technology, University of Bechar (Algeria)], email: halilouwided@yahoo.fr, email: btouatidz@yahoo.fr

    2011-07-01

    This paper presents a strategy of using renewable energies (solar and ground water in particular), to create a climate of well-being in the southern part of the Algerian Sahara, a vast territory, where nodal points are disparate and isolated, and where the electrification of houses and infrastructure is very difficult, if not virtually impossible. These oases are home to people with a particular culture and a rich literature which are unfortunately at risk of extinction. To protect this heritage requires that a balance be struck between the preservation of a historical and cultural identity and the improvement of the living conditions of the people in the oases, to which they are attached; this means pleasant temperatures, controlled humidity levels and abundant natural lighting. This requires providing renewable energy for the people, whether to supply drinking water or irrigation for farming and palm culture. Better integrating these people into their surrounding contexts would help stabilize them, safeguard their vernacular heritage, and facilitate transmission of their collective memory.

  4. Transverse momentum in high-energy nuclear collisions: Collective expansion

    International Nuclear Information System (INIS)

    Wang, X.; Hwa, R.C.

    1987-01-01

    Hadron production in the central region in high-energy nuclear collisions is investigated. The hydrodynamical expansion of a locally thermalized system is studied for both the cases with and without phase transition. The case with phase transition is considered by using a sound-velocity function c/sub s/(T) parametrized to fit the energy density determined in a lattice gauge calculation. The effect of a transverse rarefaction wave is included in the calculation of the temperature profile of the expanding fluid. The transverse-momentum distribution of hadrons is calculated by collecting all the hadrons produced when the hadron gas is cooled down to a freeze-out temperature at different times in the expansion. Fluctuation in initial temperature and radius is allowed due to variation in impact parameter. On the basis of a study of the thermalization process in the parton model we impose a constraint on the initial temperature and the thermalization time, the simultaneous variation of both of which gives rise to a relationship between the average transverse momentum and rapidity density. We have found that there is no so-called ''plateau'' region in that relationship. The implication on the diagnostics of a quark-gluon plasma is discussed

  5. Leveraging the fullest potential of scientific collections through digitisation.

    Directory of Open Access Journals (Sweden)

    Roger Charles Baird

    2010-10-01

    Full Text Available Access to digitised specimen data is a vital means to distribute information and in turn create knowledge. Pooling the accessibility of specimen and observation data under common standards and harnessing the power of distributed datasets places more and more information and the disposal of a globally dispersed work force, which would otherwise carry on its work in relative isolation, and with limited profile and impact. Citing a number of higher profile national and international projects, it is argued that a globally coordinated approach to the digitisation of a critical mass of scientific specimens and specimen-related data is highly desirable and required, to maximize the value of these collections to civil society and to support the advancement of our scientific knowledge globally.

  6. Potential for energy-conserving capital equipment in UK industries

    Energy Technology Data Exchange (ETDEWEB)

    Fawkes, S D

    1986-01-01

    A summary is given of recent research into the potential for energy-conserving capital equipment in UK industries. The research had significant findings regarding the feasibility of achieving low-energy scenarios. It also stressed the importance of site specific factors in inhibiting incremental technical change such as that common in energy-conservation investments, developed a soft systems model of energy-management activities and investigated current progress and management styles in the brewing, malting, distilling and dairy sectors.

  7. Energy efficiency improvement potentials for the cement industry in Ethiopia

    International Nuclear Information System (INIS)

    Tesema, Gudise; Worrell, Ernst

    2015-01-01

    The cement sector is one of the fast growing economic sectors in Ethiopia. In 2010, it consumed 7 PJ of primary energy. We evaluate the potential for energy savings and CO_2 emission reductions. We start by benchmarking the energy performance of 8 operating plants in 2010, and 12 plants under construction. The benchmarking shows that the energy intensity of local cement facilities is high, when compared to the international best practice, indicating a significant potential for energy efficiency improvement. The average electricity intensity and fuel intensity of the operating plants is 34% and 36% higher. For plants under construction, electricity use is 36% and fuel use 27% higher. We identified 26 energy efficiency measures. By constructing energy conservation supply curves, the energy-efficiency improvement potential is assessed. For the 8 operating plants in 2010, the cost-effective energy savings equal 11 GWh electricity and 1.2 PJ fuel, resulting in 0.1 Mt CO_2 emissions reduction. For the 20 cement plants expected to be in operation by 2020, the cost-effective energy saving potentials is 159 GWh for electricity and 7.2 PJ for fuel, reducing CO_2 emissions by about 0.6 Mt. We discuss key barriers and recommendations to realize energy savings. - Highlights: • The cement sector in Ethiopia is growing rapidly, using mainly imported fuels. • Benchmarking demonstrates a significant potential for energy efficiency improvement. • A large part of the energy efficiency potential can be achieved cost-effectively. • Ethiopia should ban the construction of obsolete vertical shaft kilns.

  8. Energy potential through agricultural biomass using geographical information system - A case study of Punjab

    International Nuclear Information System (INIS)

    Singh, Jagtar; Panesar, B.S.; Sharma, S.K.

    2008-01-01

    Agricultural biomass has immense potential for power production in an Indian state like Punjab. A judicious use of biomass energy could potentially play an important role in mitigating environmental impacts of non-renewable energy sources particularly global warming and acid rain. But the availability of agricultural biomass is spatially scattered. The spatial distribution of this resource and the associate costs of collection and transportation are major bottlenecks for the success of biomass energy conversion facilities. Biomass, being scattered and loose, has huge collection and transportation costs, which can be reduced by properly planning and locating the biomass collection centers for biomass-based power plants. Before planning the collection centers, it is necessary to evaluate the biomass, energy and collection cost of biomass in the field. In this paper, an attempt has been made to evaluate the spatial potential of biomass with geographical information system (GIS) and a mathematical model for collection of biomass in the field has been developed. The total amount of unused agricultural biomass is about 13.73 Mt year -1 . The total power generation capacity from unused biomass is approximately 900 MW. The collection cost in the field up to the carrier unit is US$3.90 t -1 . (author)

  9. Innovative Basis of Research of Energy-Efficient Potential and Effectiveness of Renewable Energy Sources

    OpenAIRE

    Hasanov Seymur Latif oglu; Hasanov Elnur Latif oglu

    2018-01-01

    In recent years, countries of the world have been trying to attract new energy sources (wind, sun, biogas, waves, drainage, non-conventional energy sources such as hydroelectric power of small rivers) in their fuel-energy balance. Azerbaijan has renewable natural resources, favorable for its energy-efficient potential, according to the amount of sunny and windy days. In this article was given total information about renewable energy potential of Azerbaijan Republic. In this article we use inf...

  10. 78 FR 59661 - Revision of a Currently Approved Information Collection for the State Energy Program

    Science.gov (United States)

    2013-09-27

    ... the final version of the information collection request. The Department of Energy (DOE) invites public... information collection requests a revision and three-year extension of its State Energy Program, OMB Control...

  11. A snapshot of geothermal energy potential and utilization in Turkey

    International Nuclear Information System (INIS)

    Erdogdu, Erkan

    2009-01-01

    Turkey is one of the countries with significant potential in geothermal energy. It is estimated that if Turkey utilizes all of her geothermal potential, she can meet 14% of her total energy need (heat and electricity) from geothermal sources. Therefore, today geothermal energy is an attractive option in Turkey to replace fossil fuels. Besides, increase in negative effects of fossil fuels on the environment has forced many countries, including Turkey, to use renewable energy sources. Also, Turkey is an energy importing country; more than two-thirds of her energy requirement is supplied by imports. In this context, geothermal energy appears to be one of the most efficient and effective solutions for sustainable energy development and environmental pollution prevention in Turkey. Since geothermal energy will be used more and more in the future, its current potential, usage, and assessment in Turkey is the focus of the present study. The paper not only presents a review of the potential and utilization of the geothermal energy in Turkey but also provides some guidelines for policy makers. (author)

  12. Assessing the Potential for Renewable Energy on Public Lands

    Energy Technology Data Exchange (ETDEWEB)

    2003-02-01

    This report represents an initial activity of the Bureau of Land Managements (BLM) proposed National Energy Policy Implementation Plan: identify and evaluate renewable energy resources on federal lands and any limitations on accessing them. Ultimately, BLM will prioritize land-use planning activities to increase industrys development of renewable energy resources. These resources include solar, biomass, geothermal, water, and wind energy. To accomplish this, BLM and the Department of Energys National Renewable Energy Laboratory (NREL) established a partnership to conduct an assessment of renewable energy resources on BLM lands in the western United States. The objective of this collaboration was to identify BLM planning units in the western states with the highest potential for private-sector development of renewable resources. The assessment resulted in the following findings: (1) 63 BLM planning units in nine western states have high potential for one or more renewable energy technologies; and (2) 20 BLM planning units in seven western states have high potential for power production from three or more renewable energy sources. This assessment report provides BLM with information needed to prioritize land-use planning activities on the basis of potential for the development of energy from renewable resources.

  13. Modelling piezoelectric energy harvesting potential in an educational building

    International Nuclear Information System (INIS)

    Li, Xiaofeng; Strezov, Vladimir

    2014-01-01

    Highlights: • Energy harvesting potential of commercialized piezoelectric tiles is analyzed. • The parameters which will affect the energy harvesting efficiency are determined. • The potential could cover 0.5% of the total energy usage of the library building. • A simplified evaluation indicator is proposed to test the considered paving area. - Abstract: In this paper, potential application of a commercial piezoelectric energy harvester in a central hub building at Macquarie University in Sydney, Australia is examined and discussed. Optimization of the piezoelectric tile deployment is presented according to the frequency of pedestrian mobility and a model is developed where 3.1% of the total floor area with the highest pedestrian mobility is paved with piezoelectric tiles. The modelling results indicate that the total annual energy harvesting potential for the proposed optimized tile pavement model is estimated at 1.1 MW h/year. This potential energy generation may be further increased to 9.9 MW h/year with a possible improvement in piezoelectric energy conversion efficiency integrated into the system. This energy harvesting potential would be sufficient to meet close to 0.5% of the annual energy needs of the building. The study confirms that locating high traffic areas is critical for optimization of the energy harvesting efficiency, as well as the orientation of the tile pavement significantly affects the total amount of the harvested energy. A Density Flow evaluation is recommended in this study to qualitatively evaluate the piezoelectric power harvesting potential of the considered area based on the number of pedestrian crossings per unit time

  14. The potential of solar energy in the Netherlands

    International Nuclear Information System (INIS)

    Sinke, W.C.; De Geus, A.C.

    1993-01-01

    Solar energy in the Netherlands is not yet a well-known phenomenon. Still, the potential of solar energy to save or generate energy is large. Several forms of solar energy, as well as its possibilities and limitations, are introduced in this article. Attention is paid to active and passive thermal solar energy, and photovoltaic solar energy. Also the involvement of different parties in introducing solar energy is discussed. The next 10-20 years will be characterized by large-scale practical experiments and market introduction. The application of solar energy should be taken into account when planning urban areas. It is expected that ongoing developments in all fields of solar energy will result in a considerable improvement of the price/performance ratio and many new possibilities. 4 figs., 4 ills., 14 refs

  15. The economics of wind energy. Collection of papers for discussions

    International Nuclear Information System (INIS)

    Vihriaelae, H.

    1995-01-01

    This publication contains the proceedings of EWEA Special Topic Conference '95 on the economics of wind energy, held in Helsinki, Finland, on 5-7 September, 1995. The programme consisted of panel discussions and poster presentations on National Programmes and Operational Experience of Wind Energy, Grid Issues and Avoided Direct Costs of Wind Energy, Avoided External Costs of Wind Energy, The Role of Wind Energy in Future Energy Supply and Technical Innovations of Wind Energy

  16. The economics of wind energy. Collection of papers for discussions

    Energy Technology Data Exchange (ETDEWEB)

    Vihriaelae, H [ed.

    1996-12-31

    This publication contains the proceedings of EWEA Special Topic Conference `95 on the economics of wind energy, held in Helsinki, Finland, on 5-7 September, 1995. The programme consisted of panel discussions and poster presentations on National Programmes and Operational Experience of Wind Energy, Grid Issues and Avoided Direct Costs of Wind Energy, Avoided External Costs of Wind Energy, The Role of Wind Energy in Future Energy Supply and Technical Innovations of Wind Energy

  17. The economics of wind energy. Collection of papers for discussions

    Energy Technology Data Exchange (ETDEWEB)

    Vihriaelae, H. [ed.

    1995-12-31

    This publication contains the proceedings of EWEA Special Topic Conference `95 on the economics of wind energy, held in Helsinki, Finland, on 5-7 September, 1995. The programme consisted of panel discussions and poster presentations on National Programmes and Operational Experience of Wind Energy, Grid Issues and Avoided Direct Costs of Wind Energy, Avoided External Costs of Wind Energy, The Role of Wind Energy in Future Energy Supply and Technical Innovations of Wind Energy

  18. Potential energy surfaces for nucleon exchanging in dinuclear systems

    International Nuclear Information System (INIS)

    Li Jianfeng; Xu Hushan; Li Wenfei; Zuo Wei; Li Junqing; Wang Nan; Zhao Enguang

    2003-01-01

    The experimental measurements have provided the evidence that the suppression of fusion cross-section caused by quasi-fission is very important for the synthesis of super-heavy nuclei by heavy ion collisions. The potential energy surface due to the nucleon transfer in the collision process is the driven potential, which governs the nucleon transfer, so that governs the competition between the fusion and quasi-fission. The dinuclear system potential energy surface also gives the information about the optimum projectile-target combination, as well as the optimum excitation energy for the synthesis of super-heavy nuclei by heavy ion collisions

  19. San Jose, California: Evaluating Local Solar Energy Generation Potential (City Energy: From Data to Decisions)

    Energy Technology Data Exchange (ETDEWEB)

    Office of Strategic Programs, Strategic Priorities and Impact Analysis Team

    2017-09-29

    This fact sheet "San Jose, California: Evaluating Local Solar Energy Generation Potential" explains how the City of San Jose used data from the U.S. Department of Energy's Cities Leading through Energy Analysis and Planning (Cities-LEAP) and the State and Local Energy Data (SLED) programs to inform its city energy planning. It is one of ten fact sheets in the "City Energy: From Data to Decisions" series.

  20. Theoretical potential and utilization of renewable energy in Afghanistan

    Directory of Open Access Journals (Sweden)

    Gul Ahmad Ludin

    2016-12-01

    Full Text Available Nowadays, renewable energy is gaining more attention than other resources for electricity generation in the world. For Afghanistan that has limited domestic production of electric power and is more dependent on the unstable imported power from neighboring countries which pave the way to raise the cost of energy and increased different technical and economic problems. The employment of renewable energy would not only contribute to the independence of energy supply but also can achieve the socio-economic benefits for the country which is trying to rebuild its energy sector with a focus on sustainable energy for its population. From a theoretical point of view, there is a considerable potential of renewable energies such as solar energy, wind power, hydropower, biomass and geothermal energy available in the country. However, despite the presence of widespread non-agricultural and non-residential lands, these resources have not been deployed efficiently. This paper assesses the theoretical potential of the aforementioned types of renewable energies in the country. The study indicates that deployment of renewable energies can not only supplement the power demand but also will create other opportunities and will enable a sustainable energy base in Afghanistan.

  1. Potential of Tidal Plants and Offshore Energy Storage in India

    International Nuclear Information System (INIS)

    Lemperiere, F.

    2008-01-01

    After a discussion of the future needs of electric power in India, the author discusses the perspectives offered by different possible sources of electric energy in this country: coal, hydro, nuclear, wind, solar. These two last ones seem very promising. In order to solve the intermittency problem raised by wind and solar energy, the author discusses and assesses the needs, potentials and costs of energy storage. Then, he evokes the opportunities and possible sites for the development of tidal energy, proposes a schedule of investments for energy

  2. US land use and energy policy: assessing potential conflicts

    Energy Technology Data Exchange (ETDEWEB)

    Dowall, D E

    1980-03-01

    The author identifies areas of potential conflict between land-use planning and energy policy. Conflicts center on the rate and intensity of land use, location of land-using activities, and the diversity and interaction of these activities. A range of regulations affecting land use and energy planning are presented and areas of policy choice are indicated. Three energy programs (decentralized technologies, energy-conserving land-use planning, and energy facility siting) are used to illustrate land-use-planning issues. The policy research needed for conflict resolution is also outlined. 36 references.

  3. The potential of renewable sources of energy in Austria

    International Nuclear Information System (INIS)

    Faninger, G.

    1991-11-01

    Besides hydropower and biomass, solar energy and biomass are candidates for renewable sources of energy. The demand for biomass, solar energy and ambient heat has been rising in all spheres: from 6.8% in 1983 to about 10% in 1990. The development of the market for solar and heat pump systems is continuing its positive tendency. It is expected, that solar as well as heat pump technologies could provide substantial contribution to the energy supply in Austria. The technical usable potential of renewable sources of energy in Austria is analysed. (author)

  4. Valence bond model potential energy surface for H4

    International Nuclear Information System (INIS)

    Silver, D.M.; Brown, N.J.

    1980-01-01

    Potential energy surfaces for the H 4 system are derived using the valence bond procedure. An ab initio evaluation of the valence bond energy expression is described and some of its numerical properties are given. Next, four semiempirical evaluations of the valence bond energy are defined and parametrized to yield reasonable agreement with various ab initio calculations of H 4 energies. Characteristics of these four H 4 surfaces are described by means of tabulated energy minima and equipotential contour maps for selected geometrical arrangements of the four nuclei

  5. Renewable energy potential from biomass residues in Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Said, N.; Zamorano, M. [Civil Engineering Dept., Univ. of Granada, Campus de Fuentenueva, Granada (Spain); El-Shatoury, S.A. [Botany Dept., Faculty of Sciences, Suez Canal Univ., Ismailia (Egypt)

    2012-11-01

    Egypt has been one of the developing countries following successful programs for the development of renewable energy resources, with special emphasis on solar, wind and biomass. Utilization of biomass as a source of energy is important from energetic as well as environmental viewpoint. Furthermore, Egypt produces millions of biomass waste every year causing pollution and health problems. So, the incorporation of biomass with other renewable energy will increase the impact of solving energy and environmental problem. There is a good potential for the utilization of biomass energy resources in Egypt. Four main types of biomass energy sources are included in this study: agricultural residues, municipal solid wastes, animal wastes and sewage sludge. Analysis of the potential biomass resource quantity and its theoretical energy content has been computed according to literature review. The agriculture crop residue represents the main source of biomass waste with a high considerable amount of the theoretical potential energy in Egypt. Rice straw is considered one of the most important of such residue due to its high amount and its produced energy through different conversion techniques represent a suitable candidate for crop energy production in Egypt.

  6. Potential contribution of biomass to the sustainable energy development

    International Nuclear Information System (INIS)

    Demirbas, M. Fatih; Balat, Mustafa; Balat, Havva

    2009-01-01

    Biomass is a renewable energy source and its importance will increase as national energy policy and strategy focuses more heavily on renewable sources and conservation. Biomass is considered the renewable energy source with the highest potential to contribute to the energy needs of modern society for both the industrialized and developing countries worldwide. The most important biomass energy sources are wood and wood wastes, agricultural crops and their waste byproducts, municipal solid waste, animal wastes, waste from food processing, and aquatic plants and algae. Biomass is one potential source of renewable energy and the conversion of plant material into a suitable form of energy, usually electricity or as a fuel for an internal combustion engine, can be achieved using a number of different routes, each with specific pros and cons. Currently, much research has been focused on sustainable and environmental friendly energy from biomass to replace conventional fossil fuels. The main objective of the present study is to investigate global potential and use of biomass energy and its contribution to the sustainable energy development by presenting its historical development.

  7. Defining The Energy Saving Potential of Architectural Design

    DEFF Research Database (Denmark)

    Naboni, Emanuele; Malcangi, Antonio; Zhang, Yi

    2015-01-01

    Designers, in response to codes or voluntary " green building " programs, are increasingly concerned with building energy demand reduction, but they are not fully aware of the energy saving potential of architectural design. According to literature, building form, construction and material choices...... on sustainable design: " Design With Climate " by Olgyay (1963), which discussed strategies for climate-adapted architecture, and Lechner´s " Heating, Cooling and Lighting " (1991), on how to reduce building energy needs by as much as 60 – 80 percent with proper architectural design decisions. Both books used...... behaviour. The research shows the best solution for each of the climates and compares them with Olgyay´s findings. Finally, for each climate the energy saving potential is defined and then compared to Lechner's conclusions. Defining The Energy Saving Potential of Architectural Design (PDF Download Available...

  8. Potential environmental effects of the leading edge hydrokinetic energy technology.

    Science.gov (United States)

    2017-05-01

    The Volpe Center evaluated potential environmental challenges and benefits of the ARPA-E funded research project, Marine Hydrokinetic Energy Harvesting Using Cyber-Physical Systems, led by Brown University. The Leading Edge research team develo...

  9. Design of optical antenna for solar energy collection

    International Nuclear Information System (INIS)

    Gallo, Michele; Mescia, Luciano; Losito, Onofrio; Bozzetti, Michele; Prudenzano, Francesco

    2012-01-01

    In this paper, an antenna array is designed in order to transform the thermal energy, provided by the Sun and re-emitted from the Earth, in electricity. The proposed antenna array is constituted by four square spirals of gold printed on a low cost dielectric substrate. A microstrip line, embedded into the substrate, is used to feed the array and to collect the thermal radiation. The dispersive behavior of gold at infrared frequencies has been taken into account through the Lorentz–Drude model. Simulations have been conducted in order to investigate the behavior of the antenna array illuminated by a circularly polarized plane wave with an amplitude chosen according to the Stefan–Boltzmann radiation law. An output current of about 3.8 μA has been simulated at 28.3 THz, i.e. at the frequency of the Earth emitted radiation. Moreover, these infrared antennas could be coupled with other components to obtain direct rectification of infrared radiation. As a consequence, these structures further optimized could be a promising alternative to the conventional photovoltaic solar cells.

  10. EIA's Role in Energy Data Collection, With Some Notes on Water Data

    Science.gov (United States)

    Leckey, T. J.

    2017-12-01

    The U.S. Energy Information Administration (EIA) is the statistical and analytical agency within the U.S. Department of Energy. EIA collects, analyzes, and disseminates independent and impartial energy information to promote sound policymaking, efficient markets, and public understanding of energy and its interaction with the economy and the environment. EIA conducts a comprehensive data collection program that covers the full spectrum of energy sources, end uses, and energy flows. This presentation will describe EIA's authority to collect energy data, report on the range of energy areas currently collected by EIA, discuss some areas where energy information and water issues intersect, and describe the relatively few areas where EIA does collect a small amount of water data. The presentation will conclude with some thoughts about necessary components for effective collection of water data at the federal level.

  11. Exploring the transition potential of renewable energy communities

    NARCIS (Netherlands)

    Doci, G.; Vasileiadou, E.

    Renewable energy communities are grassroots initiatives that invest in ‘clean energy’ in order to meet consumption needs and environmental goals and thereby – often unwittingly – conduce to the spread of renewables. Our aim in the present study is to explore the potential of renewable energy

  12. 7Li breakup polarization potential at near barrier energies

    International Nuclear Information System (INIS)

    Lubian, J. . E-mail lubian@if.uff.br; Correa, T.; Paes, B.; Figueira, J.M.; Abriola, D.; Fernandez Niello, J.O.; Arazi, A.; Capurro, O.A.; de Barbara, E.; Marti, G.V.; Martinez Heinmann, D.; Negri, A.E.; Pacheco, A.J.; Padron, I.; Gomes, P.R.S.

    2007-01-01

    Inelastic and one neutron transfer cross sections at energies around the Coulomb barrier were used to derive dynamic polarization potential (DPP) for the 7 Li + 27 Al system. The DPP due to breakup, obtained in a simple way, indicates that its real part is repulsive at near barrier energies

  13. Li breakup polarization potential at near barrier energies

    International Nuclear Information System (INIS)

    Lubian, F. J.; Correa, T.; Gomes, P.R.S.; Paes, B; Figueira, J. M.; Abriola, D.; Fernandez, J. O.; Capurro, O. A.; Marti, G.V.; Martinez, D.; Heimann; Negri, A.; Pacheco, A. J.; Padron, I.

    2007-01-01

    Inelastic and one neutron transfer cross sections at energies around the Coulomb barrier were used to derive dynamic polarization potential (DPP) for the 7 Li + 27 Al system. The DPP due to breakup, obtained in a simple way, indicates that its real part is repulsive at nearbarrier energies. (Author)

  14. Valorization of potentials of wind energy in Montenegro

    Directory of Open Access Journals (Sweden)

    Vujadinović Radoje V.

    2017-01-01

    Full Text Available Investments in energy sector are usually long term processes both in construction and exploitation phase, and therefore require many conditions to be satisfied, mostly from legislative and technical sector. While the legislative can change in accordance with economy activities in the country, technical data (on-site measurements which are the main base for energy facility design, need to be reliable as much as possible. Wind energy has a significant global potential which exceeds the world’s electrical energy consumptions. This paper presents the estimation of wind energy potentials in Montenegro, based on all previous available studies in this field. The wind energy potential in Montenegro is based on a combination of 3-D numerical simulations of wind fields on the entire territory, and comprehensive on-site measurements. The preliminary studies show that there is a potential of areas with high and mean values of a capacity factor about 400 MW, and annual production of 900 GWh of electric energy. The share of wind parks in the total installed power in Montenegro is planned to be about 8%, while an adequate ratio of wind parks in an annual production from renewable sources (large hydro power plants are included here is estimated to be 11.4%. The paper presents the current state of art in the field of building of wind parks in Montenegro. A particular attention was paid to the legislation framework and strategic documents in the energy area in Montenegro.

  15. Geospatial Analysis of Renewable Energy Technical Potential on Tribal Lands

    Energy Technology Data Exchange (ETDEWEB)

    Doris, E.; Lopez, A.; Beckley, D.

    2013-02-01

    This technical report uses an established geospatial methodology to estimate the technical potential for renewable energy on tribal lands for the purpose of allowing Tribes to prioritize the development of renewable energy resources either for community scale on-tribal land use or for revenue generating electricity sales.

  16. Potential Effects of Domestic Energy on the Health of Women ...

    African Journals Online (AJOL)

    Objective: To highlight the various potential health problems women and others exposed to gases/substances emitted from domestic sources of energy are at risk of. A review of the literature on the health problems associated with use of various forms of energy fuels was done. Review: Not much literature has emanated ...

  17. Directory of Energy Data Collection Forms: Forms in use as of October 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    This is the twentieth edition of the Directory of Energy Collection Data Forms, an authoritative listing of selected public use forms currently used as basic energy information gathering tools by the Department of Energy.

  18. Energy literacy in Alberta : a collective challenge : discussion and framework

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.

    2010-03-15

    The actions needed to advance energy literacy in Alberta were discussed. Advancing Energy Literacy in Alberta (AELA) is a process that supports the objectives of Alberta's energy strategy through the development of a multi-stakeholder process that will lead to better energy information, education and outreach initiatives for the province's large and diverse audience. Advancing energy literacy is in the interest of the energy community and the economic well being of the province. Strategies for launching an energy literacy program were also discussed. tabs.

  19. Dark energy exponential potential models as curvature quintessence

    International Nuclear Information System (INIS)

    Capozziello, S; Cardone, V F; Piedipalumbo, E; Rubano, C

    2006-01-01

    It has been recently shown that, under some general conditions, it is always possible to find a fourth-order gravity theory capable of reproducing the same dynamics as a given dark energy model. Here, we discuss this approach for a dark energy model with a scalar field evolving under the action of an exponential potential. In the absence of matter, such a potential can be recovered from a fourth-order theory via a conformal transformation. Including the matter term, the function f(R) entering the generalized gravity Lagrangian can be reconstructed according to the dark energy model

  20. Scenarios of energy demand and efficiency potential for Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Tzvetanov, P.; Ruicheva, M.; Denisiev, M.

    1996-12-31

    The paper presents aggregated results on macroeconomic and final energy demand scenarios developed within the Bulgarian Country Study on Greenhouse Gas Emissions Mitigation, supported by US Country Studies Program. The studies in this area cover 5 main stages: (1) {open_quotes}Baseline{close_quotes} and {open_quotes}Energy Efficiency{close_quotes} socioeconomic and energy policy philosophy; (2) Modeling of macroeconomic and sectoral development till 2020; (3) Expert assessments on the technological options for energy efficiency increase and GHG mitigation in the Production, Transport and Households and Services Sectors; (4) Bottom-up modeling of final energy demand; and (5) Sectoral and overall energy efficiency potential and policy. Within the Bulgarian Country Study, the presented results have served as a basis for the final integration stage {open_quotes}Assessment of the Mitigation Policy and Measures in the Energy System of Bulgaria{close_quotes}.

  1. Synergy potential for oil and geothermal energy exploitation

    DEFF Research Database (Denmark)

    Ziabakhsh-Ganji, Zaman; Nick, Hamidreza M.; Donselaar, Marinus E.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources...... and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature...... the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%....

  2. Savings potential of ENERGY STAR (registered trademark) voluntary labeling programs

    International Nuclear Information System (INIS)

    Webber, Carrie A.; Brown, Richard E.

    1998-01-01

    In 1993 the U.S. Environmental Protection Agency (EPA) introduced ENERGY STAR (registered trademark), a voluntary labeling program designed to identify and promote energy-efficient products. Since then EPA, now in partnership with the U.S. Department of Energy (DOE), has introduced programs for more than twenty products, spanning office equipment, residential heating and cooling equipment, new homes, commercial and residential lighting, home electronics, and major appliances. We present potential energy, dollar and carbon savings forecasts for these programs for the period 1998 to 2010. Our target market penetration case represents our best estimate of future ENERGY STAR savings. It is based on realistic market penetration goals for each of the products. We also provide results under the assumption of 100% market penetration; that is, we assume that all purchasers buy ENERGY STAR-compliant products instead of standard efficiency products throughout the analysis period. Finally, we assess the sensitivity of our target penetration case forecasts to greater or lesser marketing success by EPA and DOE, lower-than-expected future energy prices, and higher or lower rates of carbon emission by electricity generators. The potential savings of ENERGY STAR are substantial. If all purchasers chose Energy Star-compliant products instead of standard efficiency products over the next 15 years, they would save more than$100 billion on their energy bills during those 15 years. (Bill savings are in 1995 dollars, discounted at a 4% real discount rate.)

  3. Analytical potential energy function for the Br + H2 system

    International Nuclear Information System (INIS)

    Kurosaki, Yuzuru

    2001-01-01

    Analytical functions with a many-body expansion for the ground and first-excited-state potential energy surfaces for the Br+H 2 system are newly presented in this work. These functions describe the abstraction and exchange reactions qualitatively well, although it has been found that the function for the ground-state potential surface is still quantitatively unsatisfactory. (author)

  4. Morphing ab initio potential energy curve of beryllium monohydride

    Czech Academy of Sciences Publication Activity Database

    Špirko, Vladimír

    2016-01-01

    Roč. 330, Dec (2016), s. 89-95 ISSN 0022-2852 Institutional support: RVO:61388963 Keywords : beryllium monohydride * potential energy function * reduced potential * homotopic morphing Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.618, year: 2016

  5. Potential reduction of energy consumption in public university library

    Science.gov (United States)

    Noranai, Z.; Azman, ADF

    2017-09-01

    Efficient electrical energy usage has been recognized as one of the important factor to reduce cost of electrical energy consumption. Various parties have been emphasized about the importance of using electrical energy efficiently. Inefficient usage of electrical energy usage lead to biggest factor increasing of administration cost in Universiti Tun Hussein Onn Malaysia. With this in view, a project the investigate potential reduction electrical energy consumption in Universiti Tun Hussein Onn Malaysia was carried out. In this project, a case study involving electrical energy consumption of Perpustakaan Tunku Tun Aminah was conducted. The scopes of this project are to identify energy consumption in selected building and to find the factors that contributing to wastage of electrical energy. The MS1525:2001, Malaysian Standard - Code of practice on energy efficiency and use of renewable energy for non-residential buildings was used as reference. From the result, 4 saving measure had been proposed which is change type of the lamp, install sensor, decrease the number of lamp and improve shading coefficient on glass. This saving measure is suggested to improve the efficiency of electrical energy consumption. Improve of human behaviour toward saving energy measure can reduce 10% from the total of saving cost while on building technical measure can reduce 90% from total saving cost.

  6. Study of the potential of wave energy in Malaysia

    Science.gov (United States)

    Tan, Wan Ching; Chan, Keng Wai; Ooi, Heivin

    2017-07-01

    Renewable energy is generally defined as energy harnessed from resources which are naturally replenished. It is an alternative to the current conventional energy sources such as natural gas, oil and coal, which are nonrenewable. Besides being nonrenewable, the harnessing of these resources generally produce by-products which could be potentially harmful to the environment. On the contrary, the generation from renewable energy does not pose environmental degradation. Some examples of renewable energy sources are sunlight, wind, tides, waves and geothermal heat. Wave energy is considered as one of the most promising marine renewable resources and is becoming commercially viable quicker than other renewable technologies at an astonishing growth rate. This paper illustrates the working principle of wave energy converter (WEC) and the availability of wave energy in Malaysia oceans. A good understanding of the behaviour of ocean waves is important for designing an efficient WEC as the characteristics of the waves in shallow and deep water are different. Consequently, wave energy converters are categorized into three categories on shore, near shore and offshore. Therefore, the objectives of this study is ought to be carried out by focusing on the formation of waves and wave characteristics in shallow as well as in deep water. The potential sites for implementation of wave energy harvesting technology in Malaysia and the wave energy available in the respective area were analysed. The potential of wave energy in Malaysia were tabulated and presented with theoretical data. The interaction between motion of waves and heave buoys for optimum phase condition by using the mass and diameter as the variables were investigated.

  7. Estimation of energy potential of agricultural enterprise biomass

    Directory of Open Access Journals (Sweden)

    Lypchuk Vasyl

    2017-01-01

    Full Text Available Bioenergetics (obtaining of energy from biomass is one of innovative directions in energy branch of Ukraine. Correct and reliable estimation of biomass potential is essential for efficient use of it. The article reveals the issue of estimation of potential of biomass, obtained from byproducts of crop production and animal breeding, which can be used for power supply of agricultural enterprises. The given analysis was carried with application of common methodological fundamentals, revealed in the estimation of production structure of agricultural enterprises, structure of land employment, efficiency of crops growing, indicators of output of main and by-products, as well as normative (standard parameters of power output of energy raw material in relation to the chosen technology of its utilization. Results of the research prove high energy potential of byproducts of crop production and animal breeding at all of the studied enterprises, which should force its practical use.

  8. Framework for State-Level Renewable Energy Market Potential Studies

    Energy Technology Data Exchange (ETDEWEB)

    Kreycik, C.; Vimmerstedt, L.; Doris, E.

    2010-01-01

    State-level policymakers are relying on estimates of the market potential for renewable energy resources as they set goals and develop policies to accelerate the development of these resources. Therefore, accuracy of such estimates should be understood and possibly improved to appropriately support these decisions. This document provides a framework and next steps for state officials who require estimates of renewable energy market potential. The report gives insight into how to conduct a market potential study, including what supporting data are needed and what types of assumptions need to be made. The report distinguishes between goal-oriented studies and other types of studies, and explains the benefits of each.

  9. Calculation of molecular free energies in classical potentials

    International Nuclear Information System (INIS)

    Farhi, Asaf; Singh, Bipin

    2016-01-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations. (paper)

  10. Exploring the potential of wind energy for a coastal state

    International Nuclear Information System (INIS)

    Yue, C.-D.; Yang, M.-H.

    2009-01-01

    Adequate recognition of the wind energy potential of coastal states may have far-reaching effects on the development of the energy systems of these countries. This study evaluates wind energy resources in Taiwan with the aid of a geographic information system (GIS), which allows local potentials and restrictions such as climate conditions, land uses, and ecological environments to be considered. The findings unveiled in this study suggest a significant role for offshore wind energy resources, which may constitute between 94% and 98% of overall wind resources in Taiwan. Total power yield from wind energy could reach between 150 and 165 TWh, which would have, respectively, accounted for between 62% and 68% of Taiwan's total power generation of 243 TWh in 2007. Based on the Taiwan's current emission factor of electricity, wind energy has the potential to reduce CO 2 emissions by between 94 and 102 million ton per year in Taiwan, which is, respectively, equivalent to 28% and 31% of the national net equivalent CO 2 emissions released in 2002. However, the challenge of managing the variability of wind power has to be addressed before the considerable contribution of wind energy to domestic energy supply and CO 2 reduction can be realized.

  11. The potential for energy production from crop residues in Zimbabwe

    Energy Technology Data Exchange (ETDEWEB)

    Jingura, R.M.; Matengaifa, R. [School of Engineering Sciences and Technology, Chinhoyi University of Technology, P. Bag 7724, Chinhoyi (Zimbabwe)

    2008-12-15

    There is increasing interest in Zimbabwe in the use of renewable energy sources as a means of meeting the country's energy requirements. Biomass provides 47% of the gross energy consumption in Zimbabwe. Energy can be derived from various forms of biomass using various available conversion technologies. Crop residues constitute a large part of the biomass available from the country's agriculture-based economy. The potential for energy production of crop residues is examined using data such as estimates of the quantities of the residues and their energy content. The major crops considered are maize, sugarcane, cotton, soyabeans, groundnuts, wheat, sorghum, fruits and forestry plantations. Quantities of residues are estimated from crop yields by using conversion coefficients for the various crops. Long-term crop yields data from 1970 to 1999 were used. Total annual residue yields for crops, fruits and forestry plantations are 7.805 Mt, 378 kt and 3.05 Mt, respectively. The crops, fruits and forestry residues have energy potential of 81.5, 4.9 and 44.3 PJ per year, respectively. This represents about 44% of the gross energy consumption in Zimbabwe. The need to balance use of crop residues for both energy purposes and other purposes such as animal feeding and soil fertility improvement is also highlighted. (author)

  12. Potential opportunities for energy savings in a Jordanian poultry company

    International Nuclear Information System (INIS)

    AlQdah, K.

    2010-01-01

    Rising concern about energy resource availability and energy prices in Jordan, cost of energy has become an issue that cannot be ignored in Jordan's industrial sector. In this study, energy auditing in a meat production factory related to poultry company was carried out. Based on the collected data and the conservation laws of energy, the performance of steam boilers, domestic hot water boilers, compressors, refrigeration systems, chillers, pumps, daily consumption of diesel and water were reviewed. The percentage of energy consumed by the refrigeration units, with respect to the total energy consumed, has been estimated. The results demonstrated a normal operation with thermal efficiency of 80.66% for the steam boiler, ability to save 18818.99 JD by installing economizer with payback period of 0.637 year and a 12.3% reduction of the energy cost achieved by reducing the blow down rate. The rate of diesel consumption was reduced by 12.87% over the last period of the study as a result of the recommendations that have been submitted to the technicians and professionals. The sum of 22223.77 JD can be saved by using heavy fuel oil instead of diesel oil. Moreover, this study demonstrated that energy saving can be considered as an ideal choice to increase profit and promote competition within the poultry industry if the company adopts all the proposals and recommendations that have been offered by this study.

  13. Current and potential utilisation of biomass energy in Fiji

    International Nuclear Information System (INIS)

    Prasad, S.

    1990-01-01

    Energy from biomass accounts for an average of 43% of the primary energy used in developing countries, with some countries totally dependent on biomass for all their energy needs. The most common use for biomass for energy is the provision of heat for cooking and heating; other uses include steam and electricity generation and crop and food drying. Fiji, a developing country, uses energy from wood and coconut wastes for cooking and copra drying. Bagasse from sugar mills is used to generate process steam as well as some 15 MW of electricity, for mill consumption and for sale to the national grid. Other, relatively small scale uses for biomass include the generation of steam and electricity for industry. This paper attempts to quantify the amount of biomass, in its various forms, available in Fiji and assesses the current potential utilisation of biomass for energy in Fiji. (author)

  14. Split kinetic energy method for quantum systems with competing potentials

    International Nuclear Information System (INIS)

    Mineo, H.; Chao, Sheng D.

    2012-01-01

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into “unperturbed” and “perturbed” terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double δ-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: ► A new basis set expansion method is proposed. ► Split kinetic energy method is proposed to solve quantum eigenvalue problems. ► Significant improvement has been obtained in converging to exact results. ► Extension of such methods is promising and discussed.

  15. Wind energy potential analysis in Al-Fattaih-Darnah

    Energy Technology Data Exchange (ETDEWEB)

    Tjahjana, Dominicus Danardono Dwi Prija, E-mail: danar1405@gmail.com; Salem, Abdelkarim Ali, E-mail: keemsalem@gmail.com; Himawanto, Dwi Aries, E-mail: dwiarieshimawanto@gmail.com [University of Sebelas Maret, Jl. Ir. Sutami No. 36 A, Surakarta, Indonesia 57126 (Indonesia)

    2016-03-29

    In this paper the wind energy potential in Al-Fattaih-Darnah, Libya, had been studied. Wind energy is very attractive because it can provide a clean and renewable energy. Due mostly to the uncertainty caused by the chaotic characteristics of wind near the earth’s surface, wind energy characteristic need to be investigated carefully in order to get consistent power generation. This investigation was based on one year wind data measured in 2003. As a result of the analysis, wind speed profile and wind energy potential have been developed. The wind energy potential of the location is looked very promising to generate electricity. The annual wind speed of the site is 8.21 m/s and the wind speed carrying maximum energy is 7.97 m/s. The annual power density of the site is classified into class 3. The Polaris P50-500 wind turbine can produce 768.39 M Wh/year and has capacity factor of 17.54%.

  16. Warm Body Temperature Facilitates Energy Efficient Cortical Action Potentials

    Science.gov (United States)

    Yu, Yuguo; Hill, Adam P.; McCormick, David A.

    2012-01-01

    The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na+ channel inactivation, resulting in a marked reduction in overlap of the inward Na+, and outward K+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37–42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code. PMID:22511855

  17. Warm body temperature facilitates energy efficient cortical action potentials.

    Directory of Open Access Journals (Sweden)

    Yuguo Yu

    Full Text Available The energy efficiency of neural signal transmission is important not only as a limiting factor in brain architecture, but it also influences the interpretation of functional brain imaging signals. Action potential generation in mammalian, versus invertebrate, axons is remarkably energy efficient. Here we demonstrate that this increase in energy efficiency is due largely to a warmer body temperature. Increases in temperature result in an exponential increase in energy efficiency for single action potentials by increasing the rate of Na(+ channel inactivation, resulting in a marked reduction in overlap of the inward Na(+, and outward K(+, currents and a shortening of action potential duration. This increase in single spike efficiency is, however, counterbalanced by a temperature-dependent decrease in the amplitude and duration of the spike afterhyperpolarization, resulting in a nonlinear increase in the spike firing rate, particularly at temperatures above approximately 35°C. Interestingly, the total energy cost, as measured by the multiplication of total Na(+ entry per spike and average firing rate in response to a constant input, reaches a global minimum between 37-42°C. Our results indicate that increases in temperature result in an unexpected increase in energy efficiency, especially near normal body temperature, thus allowing the brain to utilize an energy efficient neural code.

  18. Potential for natural evaporation as a reliable renewable energy resource.

    Science.gov (United States)

    Cavusoglu, Ahmet-Hamdi; Chen, Xi; Gentine, Pierre; Sahin, Ozgur

    2017-09-26

    About 50% of the solar energy absorbed at the Earth's surface drives evaporation, fueling the water cycle that affects various renewable energy resources, such as wind and hydropower. Recent advances demonstrate our nascent ability to convert evaporation energy into work, yet there is little understanding about the potential of this resource. Here we study the energy available from natural evaporation to predict the potential of this ubiquitous resource. We find that natural evaporation from open water surfaces could provide power densities comparable to current wind and solar technologies while cutting evaporative water losses by nearly half. We estimate up to 325 GW of power is potentially available in the United States. Strikingly, water's large heat capacity is sufficient to control power output by storing excess energy when demand is low, thus reducing intermittency and improving reliability. Our findings motivate the improvement of materials and devices that convert energy from evaporation.The evaporation of water represents an alternative source of renewable energy. Building on previous models of evaporation, Cavusoglu et al. show that the power available from this natural resource is comparable to wind and solar power, yet it does not suffer as much from varying weather conditions.

  19. Reevaluation of Turkey's hydropower potential and electric energy demand

    International Nuclear Information System (INIS)

    Yueksek, Omer

    2008-01-01

    This paper deals with Turkey's hydropower potential and its long-term electric energy demand predictions. In the paper, at first, Turkey's energy sources are briefly reviewed. Then, hydropower potential is analyzed and it has been concluded that Turkey's annual economically feasible hydropower potential is about 188 TWh, nearly 47% greater than the previous estimation figures of 128 TWh. A review on previous prediction models for Turkey's long-term electric energy demand is presented. In order to predict the future demand, new increment ratio scenarios, which depend on both observed data and future predictions of population, energy consumption per capita and total energy consumption, are developed. The results of 11 prediction models are compared and analyzed. It is concluded that Turkey's annual electric energy demand predictions in 2010, 2015 and 2020 vary between 222 and 242 (average 233) TWh; 302 and 356 (average 334) TWh; and 440 and 514 (average 476) TWh, respectively. A discussion on the role of hydropower in meeting long-term demand is also included in the paper and it has been predicted that hydropower can meet 25-35% of Turkey's electric energy demand in 2020

  20. Research on data collection key technology of smart electric energy meters

    Science.gov (United States)

    Chen, Xiangqun; Huang, Rui; Shen, Liman; Chen, Hao; Xiong, Dezhi; Xiao, Xiangqi; Mouhailiu; Renheng, Xu

    2018-02-01

    In recent years, smart electric energy meters are demand at 70 million to 90 million with the strong smart grid construction every year in China. However, there are some issues in smart electric energy meters data collection such as the interference of environment, low collection efficiency and inability to work when the power is off. In order to solve these issues above, it uses the RFID communication technology to collect the numbers and electric energy information of smart electric energy meters on the basis of the existing smart electric energy meters, and the related data collection communication experiments were made. The experimental result shows that the electric information and other data batch collection of RFID smart electric energy meters are realized in power and power off. It improves the efficiency and the overall success rate is 99.2% within 2 meters. It provides a new method for smart electric energy meters data collection.

  1. Energy conservation: policy issues and end-use scenarios of savings potential

    Energy Technology Data Exchange (ETDEWEB)

    1978-09-01

    The enclosed work is based on previous research during this fiscal year, contained in Construction of Energy Conservation Scenarios: Interim Report of Work in Progress, June 1978. Five subjects were investigated and summaries were published for each subject in separate publications. This publication summarizes policy issues on the five subjects: tradeoffs of municipal solid-waste-processing alternatives (economics of garbage collection; mechanical versus home separation of recyclables); policy barriers and investment decisions in industry (methodology for identification of potential barriers to industrial energy conservation; process of industrial investment decision making); energy-efficient recreational travel (information system to promote energy-efficient recreational travel; recreational travel; national importance and individual decision making); energy-efficient buildings (causes of litigation against energy-conservation building codes; description of the building process); and end-use energy-conservation data base and scenaerios (residential; commercial; transportation; and industrial).

  2. Wind energy potential on Malaysian Resort Islands: a case study of Tioman, Redang and Perhentian Island

    International Nuclear Information System (INIS)

    Kamaruzzaman Sopian

    2000-01-01

    Wind data collected at three east coast islands of Peninsular Malaysia namely Tioman, Redang and Perhentian Island were analyzed for the wind energy potential. The results were presented as Weibull distribution and preliminary analysis indicate that the site at Redang Island have the greatest potential with a mean power density of 85.1 w/m 2 at 10 meters above sea level. (Author)

  3. Modelling energy production by small hydro power plants in collective irrigation networks of Calabria (Southern Italy)

    Science.gov (United States)

    Zema, Demetrio Antonio; Nicotra, Angelo; Tamburino, Vincenzo; Marcello Zimbone, Santo

    2017-04-01

    The availability of geodetic heads and considerable water flows in collective irrigation networks suggests the possibility of recovery potential energy using small hydro power plants (SHPP) at sustainable costs. This is the case of many Water Users Associations (WUA) in Calabria (Southern Italy), where it could theoretically be possible to recovery electrical energy out of the irrigation season. However, very few Calabrian WUAs have currently built SHPP in their irrigation networks and thus in this region the potential energy is practically fully lost. A previous study (Zema et al., 2016) proposed an original and simple model to site turbines and size their power output as well as to evaluate profits of SHPP in collective irrigation networks. Applying this model at regional scale, this paper estimates the theoretical energy production and the economic performances of SHPP installed in collective irrigation networks of Calabrian WUAs. In more detail, based on digital terrain models processed by GIS and few parameters of the water networks, for each SHPP the model provides: (i) the electrical power output; (iii) the optimal water discharge; (ii) costs, revenues and profits. Moreover, the map of the theoretical energy production by SHPP in collective irrigation networks of Calabria was drawn. The total network length of the 103 water networks surveyed is equal to 414 km and the total geodetic head is 3157 m, of which 63% is lost due to hydraulic losses. Thus, a total power output of 19.4 MW could theoretically be installed. This would provide an annual energy production of 103 GWh, considering SHPPs in operation only out of the irrigation season. The single irrigation networks have a power output in the range 0.7 kW - 6.4 MW. However, the lowest SHPPs (that is, turbines with power output under 5 kW) have been neglected, because the annual profit is very low (on average less than 6%, Zema et al., 2016). On average each irrigation network provides an annual revenue from

  4. Communication: Fitting potential energy surfaces with fundamental invariant neural network

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Kejie; Chen, Jun; Zhao, Zhiqiang; Zhang, Dong H., E-mail: zhangdh@dicp.ac.cn [State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China. (China)

    2016-08-21

    A more flexible neural network (NN) method using the fundamental invariants (FIs) as the input vector is proposed in the construction of potential energy surfaces for molecular systems involving identical atoms. Mathematically, FIs finitely generate the permutation invariant polynomial (PIP) ring. In combination with NN, fundamental invariant neural network (FI-NN) can approximate any function to arbitrary accuracy. Because FI-NN minimizes the size of input permutation invariant polynomials, it can efficiently reduce the evaluation time of potential energy, in particular for polyatomic systems. In this work, we provide the FIs for all possible molecular systems up to five atoms. Potential energy surfaces for OH{sub 3} and CH{sub 4} were constructed with FI-NN, with the accuracy confirmed by full-dimensional quantum dynamic scattering and bound state calculations.

  5. Saturation wind power potential and its implications for wind energy.

    Science.gov (United States)

    Jacobson, Mark Z; Archer, Cristina L

    2012-09-25

    Wind turbines convert kinetic to electrical energy, which returns to the atmosphere as heat to regenerate some potential and kinetic energy. As the number of wind turbines increases over large geographic regions, power extraction first increases linearly, but then converges to a saturation potential not identified previously from physical principles or turbine properties. These saturation potentials are >250 terawatts (TW) at 100 m globally, approximately 80 TW at 100 m over land plus coastal ocean outside Antarctica, and approximately 380 TW at 10 km in the jet streams. Thus, there is no fundamental barrier to obtaining half (approximately 5.75 TW) or several times the world's all-purpose power from wind in a 2030 clean-energy economy.

  6. Establishing a Commercial Buildings Energy Data Framework for India: A Comprehensive Look at Data Collection Approaches, Use Cases and Institutions

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Maithili [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kumar, Satish [Synurja, LLC, Vienna, VA (United States); Mathew, Sangeeta [Synurja, LLC, Vienna, VA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mathew, Paul [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singh, Mohini [Synurja, LLC, Vienna, VA (United States)

    2016-10-01

    Enhancing energy efficiency of the commercial building stock is an important aspect of any national energy policy. Understanding how buildings use energy is critical to formulating any new policy that may impact energy use, underscoring the importance of credible data. Data enables informed decision making and good quality data is essential for policy makers to prioritize energy saving strategies and track implementation. Given the uniqueness of the buildings sector and challenges to collecting relevant energy data, this study characterizes various elements involved in pertinent data collection and management, with the specific focus on well-defined data requirements, appropriate methodologies and processes, feasible data collection mechanisms, and approaches to institutionalizing the collection process. This report starts with a comprehensive review of available examples of energy data collection frameworks for buildings across different countries. The review covers the U.S. experience in the commercial buildings sector, the European experience in the buildings sector and other data collection initiatives in Singapore and China to capture the more systematic efforts in Asia in the commercial sector. To provide context, the review includes a summary and status of disparate efforts in India to collect and use commercial building energy data. Using this review as a key input, the study developed a data collection framework for India with specific consideration to relevant use cases. Continuing with the framework for data collection, this study outlines the key performance indicators applicable to the use cases and their collection feasibility, as well as immediate priorities of the participating stakeholders. It also discusses potential considerations for data collection and the possible approaches for survey design. With the specific purpose of laying out the possible ways to structure and organize data collection institutionally, the study collates existing

  7. The energy issue. Demand and potentials, utilization, risks, costs

    International Nuclear Information System (INIS)

    Heinloth, K.

    1997-01-01

    Will the demand for energy be growing or decreasing in future? How are prosperity and energy consumption linked up? How can the CO 2 reduction target announced at the Earth Summit in Rio de Janeiro be achieved? What is the price for ''''benign'''' energy as compared to ''''malignant'''' energy? What is the future contribution to energy supplies that can be expected from renewable energy sources? What are the good and the evil aspects of nuclear energy? These are questions that will sooner or later concern us all, and in any case when it comes to paying the bill for our present squandering. The author Klaus Heinloth, a renown expert in this field, presents with this book a scientifically well-founded and unbiased analysis and source of information that may serve politicians as a basis for objective debates about the future energy policy. Provided with a generous grant by the Heraeus foundation, the author was free to pursue his studies and inquiries independent of industry and relevant associations, and collect, evaluate and analyse the required information. (orig./CB) [de

  8. Nudging and residential energy use. Its potential for the EPC

    OpenAIRE

    Taranu, Victoria; Verbeeck, Griet

    2015-01-01

    The implications of nudging in reducing residential energy demand and its potential for the EPC. Recently there is an increasing interest among policy makers, researchers and social marketing activists towards nudging. This approach takes into account the heuristic thinking of the individuals, who do not always act according to utility maximization principles. Current policies aiming the reduction of energy consumption include soft policies of libertarian pa...

  9. Potential benefits of selling by auction the CIP 6 energy

    International Nuclear Information System (INIS)

    Campidoglio, C.

    2000-01-01

    This paper analyses the potential benefits of selling by auction the CIP 6 energy. This would both reduce the supply shortage and the prices on the eligible market, increase competition on the contract-for-difference market, indicate a clear price to which regulated energy charges could be indexed, thus extending the auction benefits to the franchise market to avoid the reintroduction of cross-subsidies [it

  10. Jerusalem artichoke: what is its potential. [Energy crops

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, M.D.

    1979-01-01

    The agronomic potential of Jerusalem artichokes (J.A.) and the economic possibilities of commercial production of these tubers for use in fuel production is discussed. The nutrient content and the composition of reducing sugars in 6 strains of J.A. are given. Energy requirements in terms of energy resource depletion of fossil fuel to produce 1 hectare of J.A. and the theoretical yields of ethanol from J.A., sugar beet, corn, and wheat are tabulated. (DMC)

  11. He-, Ne-, and Ar-phosgene intermolecular potential energy surfaces

    DEFF Research Database (Denmark)

    Munteanu, Cristian R.; Henriksen, Christian; Felker, Peter M.

    2013-01-01

    Using the CCSD(T) model, we evaluated the intermolecular potential energy surfaces of the He-, Ne-, and Ar-phosgene complexes. We considered a representative number of intermolecular geometries for which we calculated the corresponding interaction energies with the augmented (He complex) and doub...... of the complexes, providing valuable results for future experimental investigations. Comparing our results to those previously available for other phosgene complexes, we suggest that the results for Cl2-phosgene should be revised....

  12. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  13. Wind energy potential assessment at four typical locations in Ethiopia

    Energy Technology Data Exchange (ETDEWEB)

    Bekele, Getachew; Palm, Bjoern [Department of Energy Technology, KTH, 10044 Stockholm (Sweden)

    2009-03-15

    The wind energy potential at four different sites in Ethiopia - Addis Ababa (09:02N, 38:42E), Mekele (13:33N, 39:30E), Nazret (08:32N, 39:22E), and Debrezeit (8:44N, 39:02E) - has been investigated by compiling data from different sources and analyzing it using a software tool. The results relating to wind energy potential are given in terms of the monthly average wind speed, wind speed probability density function (PDF), wind speed cumulative density function (CDF), and wind speed duration curve (DC) for all four selected sites. In brief, for measurements taken at a height of 10 m, the results show that for three of the four locations the wind energy potential is reasonable, with average wind speeds of approximately 4 m/s. For the fourth site, the mean wind speed is less than 3 m/s. This study is the first stage in a longer project and will be followed by an analysis of solar energy potential and finally the design of a hybrid standalone electric energy supply system that includes a wind turbine, PV, diesel generator and battery. (author)

  14. Collective institutional entrepreneurship and contestations in wind energy in India

    NARCIS (Netherlands)

    Jolly, Suyash; Raven, Rob|info:eu-repo/dai/nl/41331927X

    2015-01-01

    With 21,136MW of wind energy installed in 2014, India is considered a success story in terms of net installed capacity. Few existing studies on Indian wind energy have highlighted the important role of institutions, and how they stemmed from the work of advocacy groups; studies also tend to focus on

  15. Sustainable energy. Economic growth for the Netherlands with green potential

    International Nuclear Information System (INIS)

    Sijbesma, F.; Oudeman, M.

    2010-02-01

    Research of the economic potential and options for enhancing renewable energy in the Netherlands. The following research questions were addressed: What is the current and future economic value of renewable energy in the Netherlands?; What are the areas in which the Netherlands has a unique point of departure with respect to knowledge and activities?; How can the economic potential be optimally deployed? Can the opportunities be increased by making it a key area?; What are other ways are there to enhance the economic development?. [nl

  16. An adaptive interpolation scheme for molecular potential energy surfaces

    Science.gov (United States)

    Kowalewski, Markus; Larsson, Elisabeth; Heryudono, Alfa

    2016-08-01

    The calculation of potential energy surfaces for quantum dynamics can be a time consuming task—especially when a high level of theory for the electronic structure calculation is required. We propose an adaptive interpolation algorithm based on polyharmonic splines combined with a partition of unity approach. The adaptive node refinement allows to greatly reduce the number of sample points by employing a local error estimate. The algorithm and its scaling behavior are evaluated for a model function in 2, 3, and 4 dimensions. The developed algorithm allows for a more rapid and reliable interpolation of a potential energy surface within a given accuracy compared to the non-adaptive version.

  17. Morse potential, symmetric Morse potential and bracketed bound-state energies

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2016-01-01

    Roč. 31, č. 14 (2016), s. 1650088 ISSN 0217-7323 R&D Projects: GA ČR GA16-22945S Institutional support: RVO:61389005 Keywords : quantum bound states * special functions * Morse potential * symmetrized Morse potential * upper and lower energy estimates * computer-assisted symbolic manipulations Subject RIV: BE - Theoretical Physics Impact factor: 1.165, year: 2016

  18. Study of heavy quarkonium with energy dependent potential

    International Nuclear Information System (INIS)

    Gupta, Pramila; Mehrotra, I

    2009-01-01

    It is well known that charmonium and bottonium states can be calculated by using a nonrelativistic Schrodinger equation. The basic reasons are: 1) the mass of charm and bottom quarks is much larger than QCD scale, which makes this system free of strong normalization effects and 2) the binding energy is small compared to the mass energy ψ and γ states in terms of nonrelativistic qq system governed by more or less phenomenological potentials. In the present work we have studied mass spectra of charmonium and bottonium using the following energy dependent model in the framework of nonrelativistic Schrodinger equation

  19. Potentials and market prospects of wind energy in Vojvodina

    Directory of Open Access Journals (Sweden)

    Katić Vladimir A.

    2012-01-01

    Full Text Available The paper presents an overview of the wind energy potentials, technologies and market prospects in the Autonomous Province of Vojvodina, the region of Serbia with the most suitable location for exploitation of wind energy. The main characteristics of the region have been presented regarding wind energy and electric, road, railway and waterway infrastructure. The wind farm interconnection with the public grid is explained. The most suitable locations for the wind farms are presented, with present situation and future prospects of wind market in Vojvodina.

  20. Renewable, ethical? Assessing the energy justice potential of renewable electricity

    Directory of Open Access Journals (Sweden)

    Aparajita Banerjee

    2017-08-01

    Full Text Available Energy justice is increasingly being used as a framework to conceptualize the impacts of energy decision making in more holistic ways and to consider the social implications in terms of existing ethical values. Similarly, renewable energy technologies are increasingly being promoted for their environmental and social benefits. However, little work has been done to systematically examine the extent to which, in what ways and in what contexts, renewable energy technologies can contribute to achieving energy justice. This paper assesses the potential of renewable electricity technologies to address energy justice in various global contexts via a systematic review of existing studies analyzed in terms of the principles and dimensions of energy justice. Based on publications including peer reviewed academic literature, books, and in some cases reports by government or international organizations, we assess renewable electricity technologies in both grid integrated and off-grid use contexts. We conduct our investigation through the rubric of the affirmative and prohibitive principles of energy justice and in terms of its temporal, geographic, socio-political, economic, and technological dimensions. Renewable electricity technology development has and continue to have different impacts in different social contexts, and by considering the different impacts explicitly across global contexts, including differences between rural and urban contexts, this paper contributes to identifying and understanding how, in what ways, and in what particular conditions and circumstances renewable electricity technologies may correspond with or work to promote energy justice.

  1. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  2. Predicting the potential of energy from agricultural wastes in Malaysia

    International Nuclear Information System (INIS)

    Arifah Bahar; Ahmad Mahir Razali; Kamaruzzaman Sopian

    2000-01-01

    This paper presents the prediction of the potential of energy supply from agricultural wastes in Malaysia until the year 2005. The exponential smoothing method is used to predict the supply of energy from these resources. The prediction is based on four scenarios namely (a) business as usual, (b) increase in the plantation area by 1 % (c) increase in productivity by 1 % with no increase in plantation area and (d) decrease in plantation area of 1%. The agricultural wastes considered are from rubber, oil palm ,cocoa, paddy, coconut and pineapple resources. In Peninsular Malaysia, these resources include groundnut, sugar cane, and tapioca. Assuming an energy conversion of 30%, only three agricultural wastes can contribute as an energy supply i.e. oil palm, paddy and sugar cane wastes. The contribution of these resources to the demand of energy for Malaysia is 21% in the year 2000 and 17% in the year 2005. (Author)

  3. Potentials and policy implications of energy and material efficiency improvement

    Energy Technology Data Exchange (ETDEWEB)

    Worrell, Ernst; Levine, Mark; Price, Lynn; Martin, Nathan; van den Broek, Richard; Block, Kornelis

    1997-01-01

    There is a growing awareness of the serious problems associated with the provision of sufficient energy to meet human needs and to fuel economic growth world-wide. This has pointed to the need for energy and material efficiency, which would reduce air, water and thermal pollution, as well as waste production. Increasing energy and material efficiency also have the benefits of increased employment, improved balance of imports and exports, increased security of energy supply, and adopting environmentally advantageous energy supply. A large potential exists for energy savings through energy and material efficiency improvements. Technologies are not now, nor will they be, in the foreseeable future, the limiting factors with regard to continuing energy efficiency improvements. There are serious barriers to energy efficiency improvement, including unwillingness to invest, lack of available and accessible information, economic disincentives and organizational barriers. A wide range of policy instruments, as well as innovative approaches have been tried in some countries in order to achieve the desired energy efficiency approaches. These include: regulation and guidelines; economic instruments and incentives; voluntary agreements and actions, information, education and training; and research, development and demonstration. An area that requires particular attention is that of improved international co-operation to develop policy instruments and technologies to meet the needs of developing countries. Material efficiency has not received the attention that it deserves. Consequently, there is a dearth of data on the qualities and quantities for final consumption, thus, making it difficult to formulate policies. Available data, however, suggest that there is a large potential for improved use of many materials in industrialized countries.

  4. Map of decentralised energy potential based on renewable energy sources in Croatia

    International Nuclear Information System (INIS)

    Schneider, D. R.; Ban, M.; Duic, N.; Bogdan, Z.

    2005-01-01

    Although the Republic of Croatia is almost completely electrified there are still regions where electricity network is not in place or network capacity is insufficient. These regions usually include areas of special state care (underdeveloped, war-affected or depopulated areas), islands, and mountainous areas. However, they often have good renewable energy potential. Decentralised energy generation based on renewable energy sources (wind power, hydropower, solar energy, biomass) has potential to ensure energy supply to users in remote and often isolated rural areas (off-grid applications). Such applications will primarily be related to tourism business in mountainous, rural and island/coastal regions. Also, agriculture, wood-processing and food-processing industries will potentially be interested in application of decentralised energy generation systems, most likely those using biomass as fuel (for example cogeneration facilities, connected on-grid).(author)

  5. INDRA-GSI: Collective flow from Fermi to relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Lukasik, J.; Trautmann, W.; Begemann-Blaich, M.L.; Bittiger, R.; Gourio, D.; Le Fevre, A.; Lynen, U.; Mueller, W.F.J.; Orth, H.; Sfienti, C.; Schwarz, C.; Turzo, K. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Auger, G.; Bouriquet, B.; Chbihi, A.; Frankland, J.D.; Hudan, S.; Lopez, O. [GANIL, CEA et IN2P3-CNRS, 14 - Caen (France); Borderie, B.; Galichet, E.; Lavaud, F.; Plagnol, E. [Paris-11 Univ., Institut de Physique Nucleaire, IN2P3-CNRS, 91 - Orsay (France); Bellaize, N.; Bocage, F.; Bougault, R.; Durand, D.; Hurst, B.; Steckmeyer, J.C.; Tamain, B.; Vient, E. [Caen Univ., LPC (IN2P3-CNRS/ENSI), 14 - Caen (France); Charvet, J.L.; Dayras, R.; Legrain, R.; Nalpas, L.; Volant, C. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules, de Physique Nucleaire et de l' Instrumentation Associee (DAPNIA/SPhN), 91- Gif sur Yvette (France); Guinet, D.; Lautesse, P. [Institut de Physique Nucleaire, IN2P3-CNRS et Universite, 69 - Villeurbanne (France); Rosato, E.; Vigilante, M. [INFN, Univ. Federico II, Dipartimento di Scienze Fisiche e Sezione, Napoli (Italy); Saija, A. [Universita and INFN I, Dipartimento di Fisica dell' , Catania (Italy); Trzcinski, A.; Zwieglinski, B. [A. Soltan Institute for Nuclear Studies, Warsaw (Poland); Lukasik, J. [H. Niewodniczanski Institute of Nuclear Physics, Krakow (Poland); Galichet, E. [Conservatoire National des Arts et Metiers, 75 - Paris (France)

    2003-07-01

    Directed flow for the {sup 197}Au + {sup 197}Au reactions at incident energies between 40 and 150 A*MeV has been measured using the 4{pi} multi-detector INDRA at the GSI facility. In particular, the bombarding energy at which the elliptic flow switches from in-plane to out-of-plane enhancement has been determined to be around 100 A*MeV in good agreement with the result obtained by the FOPI Collaboration. The new data allows also to extend the experimental excitation function of v{sub 2} to lower energies. (authors)

  6. INDRA-GSI: Collective flow from Fermi to relativistic energies

    International Nuclear Information System (INIS)

    Lukasik, J.; Trautmann, W.; Begemann-Blaich, M.L.; Bittiger, R.; Gourio, D.; Le Fevre, A.; Lynen, U.; Mueller, W.F.J.; Orth, H.; Sfienti, C.; Schwarz, C.; Turzo, K.; Auger, G.; Bouriquet, B.; Chbihi, A.; Frankland, J.D.; Hudan, S.; Lopez, O.; Borderie, B.; Galichet, E.; Lavaud, F.; Plagnol, E.; Bellaize, N.; Bocage, F.; Bougault, R.; Durand, D.; Hurst, B.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Charvet, J.L.; Dayras, R.; Legrain, R.; Nalpas, L.; Volant, C.; Guinet, D.; Lautesse, P.; Rosato, E.; Vigilante, M.; Saija, A.; Trzcinski, A.; Zwieglinski, B.; Lukasik, J.; Galichet, E.

    2003-01-01

    Directed flow for the 197 Au + 197 Au reactions at incident energies between 40 and 150 A*MeV has been measured using the 4π multi-detector INDRA at the GSI facility. In particular, the bombarding energy at which the elliptic flow switches from in-plane to out-of-plane enhancement has been determined to be around 100 A*MeV in good agreement with the result obtained by the FOPI Collaboration. The new data allows also to extend the experimental excitation function of v 2 to lower energies. (authors)

  7. Global Potential of Energy Efficiency Standards and Labeling Programs

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; McNeil, Michael A.; Letschert, Virginie; de la Rue du Can, Stephane

    2008-06-15

    This report estimates the global potential reductions in greenhouse gas emissions by 2030 for energy efficiency improvements associated with equipment (appliances, lighting, and HVAC) in buildings by means of energy efficiency standards and labels (EES&L). A consensus has emerged among the world's scientists and many corporate and political leaders regarding the need to address the threat of climate change through emissions mitigation and adaptation. A further consensus has emerged that a central component of these strategies must be focused around energy, which is the primary generator of greenhouse gas emissions. Two important questions result from this consensus: 'what kinds of policies encourage the appropriate transformation to energy efficiency' and 'how much impact can these policies have'? This report aims to contribute to the dialogue surrounding these issues by considering the potential impacts of a single policy type, applied on a global scale. The policy addressed in this report is Energy Efficient Standards and Labeling (EES&L) for energy-consuming equipment, which has now been implemented in over 60 countries. Mandatory energy performance standards are important because they contribute positively to a nation's economy and provide relative certainty about the outcome (both timing and magnitudes). Labels also contribute positively to a nation's economy and importantly increase the awareness of the energy-consuming public. Other policies not analyzed here (utility incentives, tax credits) are complimentary to standards and labels and also contribute in significant ways to reducing greenhouse gas emissions. We believe the analysis reported here to be the first systematic attempt to evaluate the potential of savings from EES&L for all countries and for such a large set of products. The goal of the analysis is to provide an assessment that is sufficiently well-quantified and accurate to allow comparison and integration

  8. Fossil energy savings potential of sugar cane bio-energy systems

    DEFF Research Database (Denmark)

    Nguyen, Thu Lan T; Hermansen, John Erik; Sagisaka, Masayuki

    2009-01-01

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity...... and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while...... proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts...

  9. Impact of Weather and Occupancy on Energy Flexibility Potential of a Low-energy Building

    DEFF Research Database (Denmark)

    Zilio, Emanuele; Foteinaki, Kyriaki; Gianniou, Panagiota

    The introduction of renewable energy sources in the energy market leads to instability of the energy system itself; therefore, new solutions to increase its flexibility will become more common in the coming years. In this context the implementation of energy flexibility in buildings is evaluated...... solar radiation and the outdoor temperature appeared to have the larger impact on the thermal flexibility of the building. Specifically, the energy flexibility potential of the examined apartment can ensure its thermal autonomy up to 200 h in a typical sunny winter day......., using heat storage in the building mass. This study focuses on the influence of weather conditions and internal gains on the energy flexibility potential of a nearly-zero-energy building in Denmark. A specific six hours heating program is used to reach the scope. The main findings showed that the direct...

  10. Potential for unconventional energy sources for the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Leighton, L H; Wright, J K; Syrett, J J

    1977-01-01

    The unconventional sources considered are solar energy, wind power, wave and tidal power, and geothermal heat. Their potential contribution to energy supply in the UK is being assessed as part of a wider exercise aimed at formulating a national energy R and D strategy sufficiently robust to be valid for a wide range of possible future conditions. For each of the sources considered, the present state of knowledge of the magnitude of the potential resource base is outlined and the inherent characteristics of each are discussed in terms of environmental impact and of estimated cost relative to conventional technology. With respect to the latter, attention is drawn to the inherent variability of most of the sources, which imposes upon them a cost penalty for back-up plant and/or large scale storage is firm power is to be assured. The progress that has been made in drawing up, for each of the sources, a national R and D program compatible with the assessment of development potential is outlined, and a tentative estimate is made of the maximum credible contribution the sources could make to energy supply in the UK by the end of the century. The concluding paragraphs deal with the prospects for the next century and indicate that the long-term uncertainties on energy supply justify a determined effort to convert the most promising of the unconventional sources into the well-researched technological options that may be needed.

  11. Ternary-fragmentation-driving potential energies of 252Cf

    Science.gov (United States)

    Karthikraj, C.; Ren, Zhongzhou

    2017-12-01

    Within the framework of a simple macroscopic model, the ternary-fragmentation-driving potential energies of 252Cf are studied. In this work, all possible ternary-fragment combinations of 252Cf are generated by the use of atomic mass evaluation-2016 (AME2016) data and these combinations are minimized by using a two-dimensional minimization approach. This minimization process can be done in two ways: (i) with respect to proton numbers (Z1, Z2, Z3) and (ii) with respect to neutron numbers (N1, N2, N3) of the ternary fragments. In this paper, the driving potential energies for the ternary breakup of 252Cf are presented for both the spherical and deformed as well as the proton-minimized and neutron-minimized ternary fragments. From the proton-minimized spherical ternary fragments, we have obtained different possible ternary configurations with a minimum driving potential, in particular, the experimental expectation of Sn + Ni + Ca ternary fragmentation. However, the neutron-minimized ternary fragments exhibit a driving potential minimum in the true-ternary-fission (TTF) region as well. Further, the Q -value energy systematics of the neutron-minimized ternary fragments show larger values for the TTF fragments. From this, we have concluded that the TTF region fragments with the least driving potential and high Q values have a strong possibility in the ternary fragmentation of 252Cf. Further, the role of ground-state deformations (β2, β3, β4, and β6) in the ternary breakup of 252Cf is also studied. The deformed ternary fragmentation, which involves Z3=12 -19 fragments, possesses the driving potential minimum due to the larger oblate deformations. We also found that the ground-state deformations, particularly β2, strongly influence the driving potential energies and play a major role in determining the most probable fragment combinations in the ternary breakup of 252Cf.

  12. Scattering at zero energy for attractive homogeneous potentials

    DEFF Research Database (Denmark)

    Derezinski, Jan; Skibsted, Erik

    2009-01-01

    We compute up to a compact term the zero-energy scattering matrix for a class of potentials asymptotically behaving as −γ|x|−μ with 0 < μ < 2 and γ > 0. It turns out to be the propagator for the wave equation on the sphere at time ....

  13. Capacitive technology for energy extraction from chemical potential differences

    NARCIS (Netherlands)

    Bastos Sales, B.

    2013-01-01

    This thesis introduces the principle of Capacitive energy extraction based on Donnan Potential (CDP) to exploit salinity gradients. It also shows the fundamental characterization and improvements of CDP. An alternative application of this technology aimed at thermal gradients was tested.

  14. Density-scaling exponents and virial potential-energy correlation ...

    Indian Academy of Sciences (India)

    This paper investigates the relation between the density-scaling exponent γ and the virial potential energy correlation coefficient R at several thermodynamic state points in three dimensions for the generalized (2n, n) Lennard-Jones (LJ) system for n = 4, 9, 12, 18, as well as for the standard n = 6 LJ system in two,three, and ...

  15. Structure and potential energy function for Pu22+ ion

    International Nuclear Information System (INIS)

    Li Quan; Huang Hui; Li Daohua

    2003-01-01

    The theoretical study on Pu 2 2+ using density functional method shows that the molecular ion is metastable. Ground electronic state is 13 Σ g for Pu 2 2+ , the analytic potential energy function is in well agreement with the Z-W function, and the force constants and spectroscopic data have been worked out for the first time

  16. Polymer-enhanced energy harvesting from streaming potential

    NARCIS (Netherlands)

    Nguyen, Trieu; Xie, Yanbo; de Vreede, Lennart; van den Berg, Albert; Eijkel, Jan C.T.; Fujii, T.; Hibara, A.; Takeuchi, S.; Fukuba, T.

    2012-01-01

    In this contribution, we present the experimental results of energy conversion from the streaming potential when a polymer, polyacrylic acid (PAA) with concentration from 200 ppm to 4000 ppm in background electrolyte KCl solution was used as the working fluid. The results show that when PAA was

  17. The three body problem with energy dependent potentials

    International Nuclear Information System (INIS)

    Kim, Y.E.; McKay, C.M.; McKellar, B.H.J.

    1975-10-01

    It is shown how to generalize the three body equations of Faddeev, and of Karlsson and Zeiger, to include the case when the two body potential is energy dependent. Such generalizations will prove useful in the three nucleon problem and in three body models of nuclear reactions. (author)

  18. Potential for sustainable energy with biogas from sewage purification

    International Nuclear Information System (INIS)

    Coenen, J.; Van Gastel, M.; De Jong, K.

    2005-04-01

    Insight is given into the possibility to produce biogas from sewage purification plants in the Netherlands. Attention is paid to the estimated potential of sustainable energy from biogas, the economic effectiveness of several scenarios, the critical success factors and bottlenecks [nl

  19. Determination of wave energy potential of black sea

    NARCIS (Netherlands)

    Bingölbali, Bilal; Akpınar, Adem; van Vledder, G.P.; Lynett, P.

    2016-01-01

    This study aims to assess wave energy potential and its long-term spatial and temporal characteristics in the Black Sea within the TUBITAK research project (Akpınar et al., 2015). With this purpose, a wave model (SWAN model version 41.01 driven by the CFSR winds) over the entire Black Sea was

  20. Design tool for the thermal energy potential of asphalt pavements

    NARCIS (Netherlands)

    Loomans, M.G.L.C.; Oversloot, H.P.; Bondt, A. de; Jansen, R.; Rij, H. van

    2003-01-01

    This paper describes the development of a design tool for the calculation of the thermal energy potential of a so-called asphalt collector. Two types of numerical models have been developed and validated against experimental results from a full-scale test-site. The validation showed to be a tedious

  1. Potential energy consumption reduction of automotive climate control systems

    International Nuclear Information System (INIS)

    Nielsen, Filip; Uddheim, Åsa; Dalenbäck, Jan-Olof

    2016-01-01

    Highlights: • Twenty-on energy saving measures for vehicle interior climate were evaluated. • Few single energy saving measures could reduce the energy use significantly. • The operation of the system in intermediate conditions determines the energy use. • Required heating/cooling of passenger compartment had small effect on energy use. - Abstract: In recent years fuel consumption of passenger vehicles has received increased attention by customers, the automotive industry, regulatory agencies and academia. One area which affect the fuel consumption is climate control systems. Twenty-one energy saving measures were evaluated regarding the total energy use for vehicle interior climate using simulation. Evaluated properties were heat flow into the passenger compartment, electrical and mechanical work. The simulation model included sub models of the passenger compartment, air-handling unit, Air Conditioning (AC) system, engine and engine cooling system. A real-world representative test cycle, which included tests in cold, intermediate and warm conditions, was used for evaluation. In general, few single energy saving measures could reduce the energy use significantly. The measures with most potential were increased blower efficiency with a reduction of 46% of the electrical work and increased AC-system disengage temperature with a reduction of 27% of the mechanical work. These results show that the operation of the climate control system had a large effect on the energy use, especially compared to the required heating and cooling of the passenger compartment. As a result energy saving measures need to address how heating and cooling is generated before reducing the heat flow into the passenger compartment.

  2. How deep is the antinucleon optical potential at FAIR energies

    International Nuclear Information System (INIS)

    Gaitanos, T.; Kaskulov, M.; Lenske, H.

    2011-01-01

    The key question in the interaction of antinucleons in the nuclear medium concerns the deepness of the antinucleon-nucleus optical potential. In this work we study this task in the framework of the non-linear derivative (NLD) model which describes consistently bulk properties of nuclear matter and Dirac phenomenology of nucleon-nucleus interactions. We apply the NLD model to antinucleon interactions in nuclear matter and find a strong decrease of the vector and scalar self-energies in energy and density and thus a strong suppression of the optical potential at zero momentum and, in particular, at FAIR energies. This is in agreement with available empirical information and, therefore, resolves the issue concerning the incompatibility of G-parity arguments in relativistic mean-field (RMF) models. We conclude the relevance of our results for the future activities at FAIR.

  3. An evaluation of wind energy potential at Kati Bandar, Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Ullah, Irfan [Department of Mechanical Engineering, NWFP University of Engineering and Technology, Peshawar (Pakistan); Chaudhry, Qamar-uz-Zaman [Pakistan Meteorological Department, Sector H-8/2, Islamabad (Pakistan); Chipperfield, Andrew J. [Computational Engineering and Design Group, School of Engineering Sciences, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2010-02-15

    As a developing nation of energy-starved people, Pakistan urgently needs new sources of affordable, clean energy. Wind energy is potentially attractive because of its low environmental impact and sustainability. This work aims to investigate the wind power production potential of sites in south-eastern Pakistan. Wind speed data measured over a one-year period at a typical site on the south-east coast of Pakistan are presented. Frequency distributions of wind speed and wind power densities at three heights, seasonal variations of speed, and estimates of power likely to be produced by commercial turbines are included. The site investigated is found to be a class 4 wind power site with annual average wind speed of 7.16 m/s and power density of 414 W/m{sup 2} at 50 m height. The site is, therefore, likely to be suitable for wind farms as well as small, stand-alone systems. (author)

  4. Turkey's High Temperature Geothermal Energy Resources and Electricity Production Potential

    Science.gov (United States)

    Bilgin, Ö.

    2012-04-01

    Turkey is in the first 7 countries in the world in terms of potential and applications. Geothermal energy which is an alternative energy resource has advantages such as low-cost, clean, safe and natural resource. Geothermal energy is defined as hot water and steam which is formed by heat that accumulated in various depths of the Earth's crust; with more than 20oC temperature and which contain more than fused minerals, various salts and gases than normal underground and ground water. It is divided into three groups as low, medium and high temperature. High-temperature fluid is used in electricity generation, low and medium temperature fluids are used in greenhouses, houses, airport runways, animal farms and places such as swimming pools heating. In this study high temperature geothermal fields in Turkey which is suitable for electricity production, properties and electricity production potential was investigated.

  5. Recognising the potential for renewable energy heating and cooling

    International Nuclear Information System (INIS)

    Seyboth, Kristin; Beurskens, Luuk; Langniss, Ole; Sims, Ralph E.H.

    2008-01-01

    Heating and cooling in the industrial, commercial, and domestic sectors constitute around 40-50% of total global final energy demand. A wide range of renewable energy heating and cooling (REHC) technologies exists but they are presently only used to meet around 2-3% of total world demand (excluding from traditional biomass). Several of these technologies are mature, their markets are growing, and their costs relative to conventional heating and cooling systems continue to decline. However, in most countries, policies developed to encourage the wider deployment of renewable electricity generation, transport biofuels and energy efficiency have over-shadowed policies aimed at REHC technology deployment. This paper, based on the findings of the International Energy Agency publication Renewables for Heating and Cooling-Untapped Potential, outlines the present and future markets and compares the costs of providing heating and cooling services from solar, geothermal and biomass resources. It analyses current policies and experiences and makes recommendations to support enhanced market deployment of REHC technologies to provide greater energy supply security and climate change mitigation. If policies as successfully implemented by the leading countries were to be replicated elsewhere (possibly after modification to better suit local conditions), there would be good potential to significantly increase the share of renewable energy in providing heating and cooling services

  6. Energy storage: potential analysis is still on the way

    International Nuclear Information System (INIS)

    Signoret, Stephane; Dejeu, Mathieu; Deschaseaux, Christelle; De Santis, Audrey; Cygler, Clement; Petitot, Pauline

    2014-01-01

    A set of articles gives an overview of the status and current evolutions of the energy storage sector. The different technologies (flywheel, lithium-ion batteries, NaS or Zebra batteries, compressed air energy storage or CAES, 2. generation CAES, pump storage power plants or PSP) have different applications areas, and also different technological maturity levels. PSPs have probably the best potential nowadays, but investors must be supported. In an interview, a member of the CNRS evokes the main researches, the obstacles in the development of solar thermodynamic plants, technology transfers, and the potential of hydrogen for massive energy storage. An article outlines the need to develop the battery market. Several technological examples and experiments are then presented: Nice Grid (storage at the source level), FlyProd (energy storage by flywheel). An article then addresses the issue of heat storage, notably in a situation of energy co-generation. Researches and prototype development are then presented, the objective of which is to obtain an adiabatic CAES. The last articles address the development of hydrogen to store energy (technologies) and a first technological demonstrator

  7. Development of a Novel Food Waste Collection Kiosk and Waste-to-Energy Business Model

    Directory of Open Access Journals (Sweden)

    Matthew Franchetti

    2016-08-01

    Full Text Available The U.S. generates more than 37 million metric tons of food waste each year, and over 95% of it is disposed of at U.S. landfills. This paper describes the development of a novel food waste collection kiosk and business model called “Greenbox” that will collect and store food waste from households and restaurants with incentives for user participation to spur food waste-to-energy production in a local community. Greenbox offers a low-cost collection point to divert food waste from landfills, reduce greenhouse gases from decomposition, and aid in generating cleaner energy. A functional prototype was successfully developed by a team of engineering students and a business model was created as part of a senior design capstone course. Each Greenbox unit has the potential to reduce 275 metric tons of food waste per year, remove 1320 kg of greenhouse gases, and create 470,000 liters of methane gas while providing a payback period of 4.2 years and a rate of return of 14.9%.

  8. Purposeful Collections: Exploiting the Potential of Children's Literature in the Classroom

    Science.gov (United States)

    Boyd, Maureen; Montgomery, Lydia; Paterson, Devon; Schrag, Jolene

    2006-01-01

    Purposefully selected collections of literature can extend, contrast or illuminate an experience or perspective to effectively exploit the potential of children's literature to shape curriculum and engage student learning. This paper offers a practical framework for creating purposeful collections of literature. As an illustration of this process,…

  9. Potential of hydrogen production from wind energy in Pakistan

    International Nuclear Information System (INIS)

    Uqaili, M. A.; Harijan, K.; Memon, M.

    2007-01-01

    The transport sector consumes about 34% of the total commercial energy consumption in Pakistan. About 97% of fuel used in this sector is oil and the remaining 3% is CNG and electricity. The indigenous reserves of oil and gas are limited and the country is heavily dependent on the import of oil. The oil import bill is serious strain on the country's economy. The production, transportation and consumption of fossil fuels also degrade the environment. Therefore, it is important to explore the opportunities for clean renewable energy for long-term energy supply in the transport sector. Sindh, the second largest province of Pakistan, has about 250 km long coastline. The estimated average annual wind speed at 50 m height at almost all sites is about 6-7 m/s, indicating that Sindh has the potential to effectively utilize wind energy source for power generation and hydrogen production. A system consisting of wind turbines coupled with electrolyzers is a promising design to produce hydrogen. This paper presents an assessment of the potential of hydrogen production from wind energy in the coastal area of Sindh, Pakistan. The estimated technical potential of wind power is 386 TWh per year. If the wind electricity is used to power electrolyzers, 347.4 TWh hydrogen can be produced annually, which is about 1.2 times the total energy consumption in the transport sector of Pakistan in 2005. The substitution of oil with renewable hydrogen is essential to increase energy independence, improve domestic economies, and reduce greenhouse gas and other harmful emissions

  10. U.S. Building-Sector Energy Efficiency Potential

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Rich; Borgeson, Sam; Koomey, Jon; Biermayer, Peter

    2008-09-30

    This paper presents an estimate of the potential for energy efficiency improvements in the U.S. building sector by 2030. The analysis uses the Energy Information Administration's AEO 2007 Reference Case as a business-as-usual (BAU) scenario, and applies percentage savings estimates by end use drawn from several prior efficiency potential studies. These prior studies include the U.S. Department of Energy's Scenarios for a Clean Energy Future (CEF) study and a recent study of natural gas savings potential in New York state. For a few end uses for which savings estimates are not readily available, the LBNL study team compiled technical data to estimate savings percentages and costs of conserved energy. The analysis shows that for electricity use in buildings, approximately one-third of the BAU consumption can be saved at a cost of conserved energy of 2.7 cents/kWh (all values in 2007 dollars), while for natural gas approximately the same percentage savings is possible at a cost of between 2.5 and 6.9 $/million Btu. This cost-effective level of savings results in national annual energy bill savings in 2030 of nearly $170 billion. To achieve these savings, the cumulative capital investment needed between 2010 and 2030 is about $440 billion, which translates to a 2-1/2 year simple payback period, or savings over the life of the measures that are nearly 3.5 times larger than the investment required (i.e., a benefit-cost ratio of 3.5).

  11. Intermolecular potential energy surface and thermophysical properties of propane.

    Science.gov (United States)

    Hellmann, Robert

    2017-03-21

    A six-dimensional potential energy surface (PES) for the interaction of two rigid propane molecules was determined from supermolecular ab initio calculations up to the coupled cluster with single, double, and perturbative triple excitations level of theory for 9452 configurations. An analytical site-site potential function with 14 sites per molecule was fitted to the calculated interaction energies. To validate the analytical PES, the second virial coefficient and the dilute gas shear viscosity and thermal conductivity of propane were computed. The dispersion part of the potential function was slightly adjusted such that quantitative agreement with the most accurate experimental data for the second virial coefficient at room temperature was achieved. The adjusted PES yields values for the three properties that are in very good agreement with the best experimental data at all temperatures.

  12. Technical and Economic Potential of Distributed Energy Storages for the Integration of Renewable Energy

    DEFF Research Database (Denmark)

    Sveinbjörnsson, Dadi Þorsteinn; Trier, Daniel; Hansen, Kenneth

    Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role decentral...... indicate that sector coupling along with an intelligent choice of distributed energy storage technologies can enable the integration of large shares of fluctuating renewable energy in an energy efficient and cost-effective way.......Very high penetration of fluctuating renewable energy sources can lead to new challenges in balancing energy supply and demand in future energy systems. This work, carried out as a part of Annex 28 of the IEA ECES programme, addresses this. The aim of the study is to identify which role...... decentralised energy storages (DES) should play in integrating fluctuating renewable energy sources. The technical and economic potential for DES solutions is quantified using energy system modelling, and it is identified which DES technologies have the largest total (technical and economic) potential. For this...

  13. Study of the renewable energy potential and development in Alsace

    International Nuclear Information System (INIS)

    2016-01-01

    This report is part of a study which aimed at assessing the possibility of a renewable energy production equal to or greater than Alsace energy production between 2020 and 2050. It comprised an analysis of potentials and deadlocks for the development of each renewable energy. After an overview of renewable energy production by the end of 2012, the report addresses the different sectors (solar, biomass fuel, geothermal, heat recovery, aero-thermal, wind, hydroelectricity, methanization, agricultural fuels, transports). For each of them, it proposes assessments for the different specific technical resources and processes. Then, after a synthesis of the obtained maximum theoretical resources, it reports the development of three scenarios (a trend-based one, a maximum one, and a proactive one) while addressing each resource within them

  14. Directory of energy data collection forms. Forms in use as of October 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    This is an authoritative listing of selected public use forms currently used as basic energy information gathering tools by the Department of Energy (DOE). This directory provides an overview of DOE`s energy information collection programs for decisionmakers in Government and industry. Forms designed to collect energy information and used by the Energy Information Administration (EIA) as of October 1995 are included in this directory. For each form listed in this directory, an abstract is included that describes the form`s uses, its respondents, and the data collected. For the reader`s convenience in finding specific types of collections, several indices have been provided in this directory. A listing of the forms grouped by energy source and function begins on page 26. Beginning on page 38 are the publications derived from the collections, and on page 50, are the forms linked to general respondent categories.

  15. RUSTEC: Greening Europe's energy supply by developing Russia's renewable energy potential

    International Nuclear Information System (INIS)

    Boute, Anatole; Willems, Patrick

    2012-01-01

    The North-West of Russia is characterized by a large renewable energy resource base in geographic proximity to the EU. At the same time, EU Member States are bound by mandatory renewable energy targets which could prove to be costly to achieve in the current budgetary context and which often face strong local opposition. Directive 2009/28/EC on Renewable Energy makes it possible for Member States to achieve their targets by importing electricity produced from renewable energy sources from non-EU countries. So far, most attention has been on the Mediterranean Solar Plan or Desertec. An EU–Russia Renewable Energy Plan or RUSTEC – being based on onshore wind/biomass/hydro energy and on-land interconnection, rather than solar power and subsea lines – could present a cost-efficient and short-term complement to Desertec. This article examines the political, geopolitical, economic, social and legal challenges and opportunities of exporting “green” energy from Russia to the EU. It argues that EU–Russian cooperation in the renewable energy field would present a win-win situation: Member States could achieve their targets on the basis of Russia's renewable energy potential, while Russia could begin to develop a national renewable energy industry without risking potential price increases for domestic consumers—a concern of great political sensitivity in Russia. - Highlights: ► Russia has a huge renewable energy potential in geographic proximity to the EU. ► This potential could help the EU decarbonize its electricity supply at least cost.► EU–Russia green energy export is a win-win situation but lacks political attention.► RUSTEC could be a short-term and cost-efficient complement to Desertec. ► RUSTEC would diversify EU energy imports/Russian exports and stimulate innovation.

  16. Potential for renewable energy jobs in the Middle East

    International Nuclear Information System (INIS)

    Zwaan, Bob van der; Cameron, Lachlan; Kober, Tom

    2013-01-01

    Based on employment factors derived from a recent review of publications investigating opportunities for work associated with the diffusion of renewable energy technology, we here present an analysis of the potential for renewable energy jobs in the Middle East. We use energy system optimisation results from the regionally disaggregated TIAM-ECN model as input to our study. This integrated assessment model is utilised to inspect the energy technology requirements for meeting a stringent global climate policy that achieves a stabilisation of greenhouse gas concentrations in the atmosphere with a maximum additional radiative forcing of 2.9 W/m 2 . This climate control target implies a massive deployment of renewable energy in the Middle East, with wind and solar power accounting for approximately 60% of total electricity supply in 2050: 900 TWh of an overall level of 1525 TWh would be generated from 210 GW of installed renewable energy capacity by the middle of the century. For this pervasive renewables diffusion scenario for the Middle East we estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs, based on assumptions regarding which components of the respective wind and solar energy technologies can be manufactured in the region itself. All jobs generated through installation and O and M activities are assumed to be domestic. - Highlights: • An analysis of the potential for renewable energy jobs in the Middle East is presented. • With the TIAM-ECN model we inspect the technology requirements for meeting a radiative forcing of 2.9 W/m 2 . • Wind and solar power account for approximately 60% of total electricity supply in 2050. • We estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs. • Manufacturing jobs are assumed to be partly local, while installation and O and M jobs are all domestic

  17. Potential of forestry biomass for energy in economies in transition

    International Nuclear Information System (INIS)

    Apalovic, R.

    1995-01-01

    A rapid increase in the world's population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author)

  18. Potential of forestry biomass for energy in economies in transition

    Energy Technology Data Exchange (ETDEWEB)

    Apalovic, R [State Forest Products Research Institute and Slovak Biomass Association, Bratislava (Slovakia)

    1995-12-01

    A rapid increase in the world`s population, the gradual exhaustion of fossil fuels and serious ecological problems are making developed countries more attentive to the utilization of renewable energy sources, mainly biomass, which should form part of the global energy mix during the twenty-first century. The economies in transition have been experiencing a transformation of their political, economic and social systems and a modernization of their industry, including the energy industry. Energy supply in the transition economies is based on coal, oil, gas and nuclear power. Of the renewable sources, only hydroelectric power is utilized to any significant extent. The forest biomass resources of these economies are quantified in this paper. The economies in transition have a big potential for biomass from forestry and timber industry wastes and agricultural wastes that are not being utilized and could become a source of energy. So far, biomass is used as a source of energy in only small amounts in the wood and pulp industries and as fuelwood in forestry. The governments of some countries (the Czech Republic, Hungary and Slovakia) have energy plans through the year 2010 that aim to develop renewable energy sources. Economic, institutional, technical and other barriers to the development of renewable sources and their utilization are analysed in this paper and some remedies are proposed. In cooperation with countries such as Austria, Denmark, Sweden, Finland, the United States of America and others, which have achieved remarkable results in the utilization of biomass for energy, it would be possible for the transition economies to quickly develop the technological know-how needed to satisfy the demand for energy of approximately 350 million inhabitants. (author) 6 refs, 4 figs, 4 tabs

  19. Nuclear energy role and potential for global sustainable development

    International Nuclear Information System (INIS)

    Ujita, H.; Matsui, K.

    2006-01-01

    The long-term energy supply simulation that optimizes the energy system cost until 2100 for the world is being performed, by using the energy module of GRAPE model, where energy demand under the C02 emission constraint etc. is assumed. The model has been taken up for the trial calculation in I PCC the third report . Role and potential of nuclear energy system in the energy options is discussed here from the viewpoint of sustainable development with protecting from global warming. Taking the effort for energy conservation as major premise, carbon-sequestration for fossil fuel, renewable energy and nuclear energy should be altogether developed under the C02 constraint. Especially, fast breeder reactor will be attached importance to, as the 22nd century is approaching, due to its carbon free and resource limitless features when the nuclear generation cost is cheap as a current light water reactor level. It takes time around 30 years in order for breeding of Pu, a fast breeder reactor will begin to be introduced from around 2030. If the period for the technology establish of nuclear fuel cycle is assumed to be 30 years, it is necessary to start technical development right now. If the Kyoto Protocol, the emission constraint on only the developed countries, is extended in 21st century, it will promote the growth of nuclear power in the developed countries in the first half of the century. After 2050, the developing countries will face the shortage of uranium and plutonium. Carbon emission constraint should be covered all countries in the World not only for the developed countries but also for the developing countries. Therefore, it is important that the developing countries will use nuclear power effectively from the viewpoint of harmonization of energy growth and global environment. The policy that nuclear power is considered as Clean Development Mechanism would mitigate such global warming problems

  20. Probing potential energy curves of C2- by translational energy spectrometry

    International Nuclear Information System (INIS)

    Gupta, A.K.; Aravind, G.; Krishnamurthy, M.

    2004-01-01

    We present studies on collision induced dissociation of C 2 - with Ar at an impact energy of 15 keV. The C - fragment ion kinetic-energy release (KER) distribution is measured and is used to compute the KER in the center of mass (c.m.) frame (KER c.m. ). We employ the reflection method to deduce an effective repulsive potential-energy curve for the molecular anion that is otherwise difficult to evaluate from quantum computational methods. The nuclear wave packet of the molecular ion in the initial ground state is computed by the semiclassical WKB method using the potential-energy curve of the 2 Σ g + ground electronic state calculated by an ab initio quantum computation method. The ground-state nuclear wave packet is reflected on a parametrized repulsive potential-energy curve where the parameters are determined by fitting the measured KER c.m. with the calculated KER distribution

  1. Potential for renewable energy jobs in the Middle East

    Energy Technology Data Exchange (ETDEWEB)

    Van der Zwaan, B.; Cameron, L.; Kober, T. [Energy research Centre of the Netherlands ECN, Policy Studies, Radarweg 60, 1043 NT, Amsterdam (Netherlands)

    2013-09-15

    Based on employment factors derived from a recent review of publications investigating opportunities for work associated with the diffusion of renewable energy technology, we here present an analysis of the potential for renewable energy jobs in the Middle East. We use energy system optimisation results from the regionally disaggregated TIAM-ECN model as input to our study. This integrated assessment model is utilised to inspect the energy technology requirements for meeting a stringent global climate policy that achieves a stabilisation of greenhouse gas concentrations in the atmosphere with a maximum additional radiative forcing of 2.9 W/m{sup 2}. This climate control target implies a massive deployment of renewable energy in the Middle East, with wind and solar power accounting for approximately 60% of total electricity supply in 2050: 900 TWh of an overall level of 1525 TWh would be generated from 210 GW of installed renewable energy capacity by the middle of the century. For this pervasive renewables diffusion scenario for the Middle East we estimate a total required local work force of ultimately about 155,000 direct and 115,000 indirect jobs, based on assumptions regarding which components of the respective wind and solar energy technologies can be manufactured in the region itself. All jobs generated through installation and O and M activities are assumed to be domestic.

  2. Contracting of energy services in Switzerland. Development, effects, market potentials

    International Nuclear Information System (INIS)

    Muggli, C.; Baumgartner, W.; Kohn, L.

    1999-06-01

    The authors of this detailed report first define the contracting of energy services, this new reality of the market place, and analyse its current status in Switzerland. Contracting is mainly to be understood as the delegation of certain energy-related services by a company. The total investment for the operated energy systems considered by the study is about 120 millions USD, with an installed power of 160 MW. This market is highly unhomogeneous and is the answer to various goals. Globally, it brings a more efficient use of energy, including a more frequent involvement of renewable energy sources, along with a lower risk and significant advantages for all contractors. That is the reason for the energy policy authority to recommend contracting. The report goes on with the analysis of the factors leading the chief executives to consider contracting of energy services, or on the contrary to exclude it. The authors estimate the realistic potential market for contracting in Switzerland to 650 millions USD for the period 1999-2004. They conclude by giving recommendations which should result in an acceleration of the contracting's development on the market place

  3. Performance-based potential for residential energy efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Performance-based potential for residential energy efficiency

    2013-01-15

    Energy performance contracts (EPCs) have proven an effective mechanism for increasing energy efficiency in nearly all sectors of the economy since their introduction nearly 30 years ago. In the modern form, activities undertaken as part of an EPC are scoped and implemented by experts with specialized technical knowledge, financed by commercial lenders, and enable a facility owner to limit risk and investment of time and resources while receiving the rewards of improved energy performance. This report provides a review of the experiences of the US with EPCs and discusses the possibilities for the residential sector to utilize EPCs. Notably absent from the EPC market is the residential segment. Historically, research has shown that the residential sector varies in several key ways from markets segments where EPCs have proven successful, including: high degree of heterogeneity of energy use characteristics among and within households, comparatively small quantity of energy consumed per residence, limited access to information about energy consumption and savings potential, and market inefficiencies that constrain the value of efficiency measures. However, the combination of recent technological advances in automated metering infrastructure, flexible financing options, and the expansion of competitive wholesale electricity markets to include energy efficiency as a biddable supply-side resource present an opportunity for EPC-like efforts to successfully engage the residential sector, albeit following a different model than has been used in EPCs traditionally.(Author)

  4. Collective institutional entrepreneurship and contestations in wind energy in India

    NARCIS (Netherlands)

    Jolly, S.; Raven, R.P.J.M.

    2013-01-01

    With 19550 MW installed in 2013, India is considered a success story in terms of net installed capacity of wind power. Few existing studies on wind energy in India have highlighted the important role of institutions, and most lack a detailed account of how influential institutions came about through

  5. Portable linear-focused solar thermal energy collecting system

    Science.gov (United States)

    Miller, C. G.; Pohl, J. G. (Inventor)

    1977-01-01

    A solar heat collection system is provided by utilizing a line-focusing device that is effectively a cylindrically curved concentrator within a protected environment formed by a transparent inflatable casing. A target, such as a fluid or gas carrying conduit is positioned within or near the casing containing the concentrator, at the line focus of the concentrator. The casing can be inflated at the site of use by a low pressure air supply to form a unitary light weight structure. The collector, including casing, concentrator and target, is readily transportable and can be used either at ground level or on rooftops. The inflatable concentrator can be replaced with a rigid metal or other concentrator while maintaining the novel advantages of the whole solar heat collection system.

  6. Irradiation distribution diagrams and their use for estimating collectable energy

    International Nuclear Information System (INIS)

    Ronnelid, M.; Karlsson, B.

    1997-01-01

    A method for summarising annual or seasonal solar irradiation data in irradiation distribution diagrams, including both direct and diffuse irradiation, is outlined. The practical use of irradiation distribution diagrams is discussed in the paper. Examples are given for the calculation of collectable irradiation on flat plate collectors or trough-like concentrators like the compound parabolic concentrator (CPC), and for the calculation of overhang geometries for windows to prevent overheating of buildings. (author)

  7. Energy potential of fruit tree pruned biomass in Croatia

    Energy Technology Data Exchange (ETDEWEB)

    Bilandzija, N.; Voca, N.; Kricka, T.; Martin, A.; Jurisic, V.

    2012-11-01

    The world's most developed countries and the European Union (EU) deem that the renewable energy sources should partly substitute fossil fuels and become a bridge to the utilization of other energy sources of the future. This paper will present the possibility of using pruned biomass from fruit cultivars. It will also present the calculation of potential energy from the mentioned raw materials in order to determine the extent of replacement of non-renewable sources with these types of renewable energy. One of the results of the intensive fruit-growing process, in post pruning stage, is large amount of pruned biomass waste. Based on the calculated biomass (kg ha{sup 1}) from intensively grown woody fruit crops that are most grown in Croatia (apple, pear, apricots, peach and nectarine, sweet cherry, sour cherry, prune, walnut, hazelnut, almond, fig, grapevine, and olive) and the analysis of combustible (carbon 45.55-49.28%, hydrogen 5.91-6.83%, and sulphur 0.18-0.21%) and non-combustible matters (oxygen 43.34-46.6%, nitrogen 0.54-1.05%, moisture 3.65-8.83%, ashes 1.52-5.39%) with impact of lowering the biomass heating value (15.602-17.727 MJ kg{sup 1}), the energy potential of the pruned fruit biomass is calculated at 4.21 PJ. (Author) 31 refs.

  8. Canada's renewable energy resources. An assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constituted a preliminary step in determining which sources, technologies and applications may be appropriate in Canada, and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind and biomass), as well as waves, thermal gradients and sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts and state-of-the-art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four case studies: residential solar space and water heating, photovoltaics, residential, a 200 kW wind generator, and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability and implementation. 319 refs., 18 figs., 94 tabs.

  9. Canada's renewable energy resources: an assessment of potential

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, P; Argue, R; Argue, R; Burrell, T; Hathaway, G

    1976-04-01

    Rising costs of conventional, frontier, and nuclear energy production and the prospect of future shortages have prompted a resurgence of interest in alternative, renewable energy technologies. This study constitutes a preliminary step in determining which sources, technologies, and applications may be appropriate in Canada and when and under what conditions they might be technically and economically viable. Principal sources of renewable energy (solar radiation, wind, and biomass), as well as waves, thermal gradients and, sensible heat sources are reviewed to establish, in general terms, their significance in the Canadian context. Next, the technical characteristics, efficiency, costs, impacts, and state of the art of sixteen harnessing or conversion technologies are presented as an information base upon which to build an assessment of potential. A method of comparing the life cost of a renewable energy system to that of the likely conventional alternative is proposed and applied in cases where adequate technical and economic data are available. A variety of different economic assumptions are also outlined under which the renewable systems would be cost competitive. This costing methodology is applied in detail to four Case Studies: solar space and water heating--residential; photovoltaics--residential; wind generator--200 kW; and anaerobic digestion of livestock wastes. Finally, the potential for renewable energy approaches in Canada is explored and evaluated from three perspectives: technical viability, economic viability, and implementation.

  10. Residential energy efficiency: Progress since 1973 and future potential

    Science.gov (United States)

    Rosenfeld, Arthur H.

    1985-11-01

    Today's 85 million U.S. homes use 100 billion of fuel and electricity (1150/home). If their energy intensity (resource energy/ft2) were still frozen at 1973 levels, they would use 18% more. With well-insulated houses, need for space heat is vanishing. Superinsulated Saskatchewan homes spend annually only 270 for space heat, 150 for water heat, and 400 for appliances, yet they cost only 2000±1000 more than conventional new homes. The concept of Cost of Conserved Energy (CCE) is used to rank conservation technologies for existing and new homes and appliances, and to develop supply curves of conserved energy and a least cost scenario. Calculations are calibrated with the BECA and other data bases. By limiting investments in efficiency to those whose CCE is less than current fuel and electricity prices, the potential residential plus commercial energy use in 2000 AD drops to half of that estimated by DOE, and the number of power plants needed drops by 200. For the whole buildings sector, potential savings by 2000 are 8 Mbod (worth 50B/year), at an average CCE of 10/barrel.

  11. Regional energy system optimization - Potential for a regional heat market

    International Nuclear Information System (INIS)

    Karlsson, Magnus; Gebremedhin, Alemayehu; Klugman, Sofia; Henning, Dag; Moshfegh, Bahram

    2009-01-01

    Energy supply companies and industrial plants are likely to face new situations due to, for example, the introduction of new energy legislation, increased fuel prices and increased environmental awareness. These new prerequisites provide companies with new challenges but also new possibilities from which to benefit. Increased energy efficiency within companies and increased cooperation between different operators are two alternatives to meet the new conditions. A region characterized by a high density of energy-intensive processes is used in this study to find the economic potential of connecting three industrial plants and four energy companies, within three local district heating systems, to a regional heat market, in which different operators provide heat to a joint district heating grid. Also, different investment alternatives are studied. The results show that the economical potential for a heat market amounts to between 5 and 26 million EUR/year with payback times ranging from two to eleven years. However, the investment costs and the net benefit for the total system need to be allotted to the different operators, as they benefit economically to different extents from the introduction of a heat market. It is also shown that the emissions of CO 2 from the joint system would decrease compared to separate operation of the systems. However, the valuation of CO 2 emissions from electricity production is important as the difference of emitted CO 2 between the accounting methods exceeds 650 kton/year for some scenarios

  12. Enhanced solar energy collection in porphyrin based photoconversion schemes

    Science.gov (United States)

    Gust, D.; Moore, T. A.

    1983-02-01

    A series of carotenoporphyrins whose conformations varied from folded (with the carotenoid (PI)-electron system stacked over that of the porphyrin) to extended (with the two chromophores widely separated) were studied. The conformations were determined by high resolution proton NMR studies. Laser flash spectroscopy revealed triplet energy transfer from porphyrin to carotenoid. Three distinct pathways for such transfer were discovered: (1) static through space transfer which does not require significant intramolecular motions; (2) dynamic through space transfer mediated by intramolecular motions; (3) triplet transfer mediated by the chemical bonds joining the chromophores. pulse radiolysis and fluorescence quenching of these ethers and related carotenoporphyrins revealed electron transfer in the systems. It is demonstrated that the natural carotenoid functions of photoprotection from singlet oxygen damage and antenna function can be mimicked by synthetic molecules, and therefore, in principle can be applied to artificial solar energy conversion systems.

  13. Mashreq Arab interconnected power system potential for economic energy trading

    International Nuclear Information System (INIS)

    Al-Shehri, A.M.; El-Amin, I.M.; Opoku, G.; Al-Baiyat, S.A.; Zedan, F.M.

    1994-01-01

    The Mashreq Arab countries covered in this study are Bahrain, Egypt, Jordan, Lebanon, Oman, Qatar, Saudi Arabia, Syria, the United Arab Emirates, and Yemen. A feasibility study for the interconnection of the electrical networks of the Mashreq Arab countries, sponsored by the Arab Fund, was completed in June 1992. Each country is served by one utility except Saudi Arabia, which is served by four major utilities and some smaller utilities serving remote towns and small load centers. The major utilities are the Saudi consolidated electric Company in the Eastern Province (SCECO East), SCECO Center, SCECO West, and SCECO South. These are the ones considered in this study. The Mashreq Arab region has a considerable mix of energy resources. Egypt and Syria have some limited amounts of hydropower resources, and the Arabian Gulf region is abundant in fossil fuel reserves. Owing to the differences in energy production costs, a potential exists for substantial energy trading between electric utilities in the region. The major objective of this project is to study the feasibility of electric energy trading between the Mashreq Arab countries. The basis, assumptions, and methodologies on which this energy trading study is based relate to the results and conclusions arising out of the previous study, power plant characteristics and costs, assumptions on economic parameters, rules for economy energy exchange, etc. This paper presents the basis, methodology, and major findings of the study

  14. Data Network Equipment Energy Use and Savings Potential in Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Lanzisera, Steven; Nordman, Bruce; Brown, Richard E.

    2010-06-09

    Network connectivity has become nearly ubiquitous, and the energy use of the equipment required for this connectivity is growing. Network equipment consists of devices that primarily switch and route Internet Protocol (IP) packets from a source to a destination, and this category specifically excludes edge devices like PCs, servers and other sources and sinks of IP traffic. This paper presents the results of a study of network equipment energy use and includes case studies of networks in a campus, a medium commercial building, and a typical home. The total energy use of network equipment is the product of the stock of equipment in use, the power of each device, and their usage patterns. This information was gathered from market research reports, broadband market penetration studies, field metering, and interviews with network administrators and service providers. We estimate that network equipment in the USA used 18 TWh, or about 1percent of building electricity, in 2008 and that consumption is expected to grow at roughly 6percent per year to 23 TWh in 2012; world usage in 2008 was 51 TWh. This study shows that office building network switches and residential equipment are the two largest categories of energy use consuming 40percent and 30percent of the total respectively. We estimate potential energy savings for different scenarios using forecasts of equipment stock and energy use, and savings estimates range from 20percent to 50percent based on full market penetration of efficient technologies.

  15. The Dilemmas of Energy: Essential energy services and potentially fatal risks

    Science.gov (United States)

    Perkins, J. H.

    2018-01-01

    During their evolution, humans have made three energy transitions, each marked by the adoption of new ways of procuring energy with attendant changes in lifestyle. Modern civilization arose in the Third Energy Transition, and its major sources of energy come from coal, oil, gas, uranium, and hydropower. Unfortunately, despite its incalculable benefits, the Third Transition can’t provide sustainable energy services for the indefinite future. Climate change is the most serious problem. Criteria and standards for each of the currently available, nine primary energy sources indicate the potential feasibility of replacing most or all uses of coal, oil, gas, and uranium with hydropower, solar, wind, biomass, and geothermal. This is the Fourth Energy Transition, promotion of which is strongly supported by considerations of sustainability.

  16. Evaluation of global onshore wind energy potential and generation costs.

    Science.gov (United States)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J; Clarke, Leon

    2012-07-17

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance, land suitability factors, cost assumptions, and explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of the world energy needs, although this potential varies substantially by region and with assumptions such as on what types of land can be used to site wind farms. Total global economic wind potential under central assumptions, that is, intermediate between optimistic and pessimistic, is estimated to be approximately 119.5 petawatt hours per year (13.6 TW) at less than 9 cents/kWh. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly wind speed (varying by -70% to +450% at less than 9 cents/kWh), land suitability (by -55% to +25%), turbine density (by -60% to +80%), and cost and financing options (by -20% to +200%), many of which have important policy implications. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  17. Construction of molecular potential energy curves by an optimization method

    Science.gov (United States)

    Wang, J.; Blake, A. J.; McCoy, D. G.; Torop, L.

    1991-01-01

    A technique for determining the potential energy curves for diatomic molecules from measurements of diffused or continuum spectra is presented. It is based on a numerical procedure which minimizes the difference between the calculated spectra and the experimental measurements and can be used in cases where other techniques, such as the conventional RKR method, are not applicable. With the aid of suitable spectral data, the associated dipole electronic transition moments can be simultaneously obtained. The method is illustrated by modeling the "longest band" of molecular oxygen to extract the E 3Σ u- and B 3Σ u- potential curves in analytical form.

  18. The potential impact of hydrogen energy use on the atmosphere

    Science.gov (United States)

    van Ruijven, B. J.; Lamarque, J. F.; van Vuuren, D. P.; Kram, T.; Eerens, H.

    2009-04-01

    Energy models show very different trajectories for future energy systems (partly as function of future climate policy). One possible option is a transition towards a hydrogen-based energy system. The potential impact of such hydrogen economy on atmospheric emissions is highly uncertain. On the one hand, application of hydrogen in clean fuel cells reduces emissions of local air pollutants, like SOx and NOx. On the other hand, emissions of hydrogen from system leakages are expected to change the atmospheric concentrations and behaviour (see also Price et al., 2007; Sanderson et al., 2003; Schultz et al., 2003; Tromp et al., 2003). The uncertainty arises from several sources: the expected use of hydrogen, the intensity of leakages and emissions, and the atmospheric chemical behaviour of hydrogen. Existing studies to the potential impacts of a hydrogen economy on the atmosphere mostly use hydrogen emission scenarios that are based on simple assumptions. This research combines two different modelling efforts to explore the range of impacts of hydrogen on atmospheric chemistry. First, the potential role of hydrogen in the global energy system and the related emissions of hydrogen and other air pollutants are derived from the global energy system simulation model TIMER (van Vuuren, 2007). A set of dedicated scenarios on hydrogen technology development explores the most pessimistic and optimistic cases for hydrogen deployment (van Ruijven et al., 2008; van Ruijven et al., 2007). These scenarios are combined with different assumptions on hydrogen emission factors. Second, the emissions from the TIMER model are linked to the NCAR atmospheric model (Lamarque et al., 2005; Lamarque et al., 2008), in order to determine the impacts on atmospheric chemistry. By combining an energy system model and an atmospheric model, we are able to consistently explore the boundaries of both hydrogen use, emissions and impacts on atmospheric chemistry. References: Lamarque, J.-F., Kiehl, J. T

  19. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Hacke, P.; Spataru, S.

    2014-08-01

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevated stress temperature, their use to determine the maximum power at 25 degrees C standard test conditions (STC), and distribution statistics for determining degradation rates as a function of stress level. The semi-continuous data obtained by this method clearly show degradation curves of the maximum power, including an incubation phase, rates and extent of degradation, precise time to failure, and partial recovery. Stress tests were performed on crystalline silicon modules at 85% relative humidity and 60 degrees C, 72 degrees C, and 85 degrees C. Activation energy for the mean time to failure (1% relative) of 0.85 eV was determined and a mean time to failure of 8,000 h at 25 degrees C and 85% relative humidity is predicted. No clear trend in maximum degradation as a function of stress temperature was observed.

  20. Synthesis and Characterization of Metal-Organic Frameworks (MOFs) for Photon Collection and Energy Transfer

    Science.gov (United States)

    So, Monica C.

    Projected global energy demand is widely believed to reach 30 TW by 2050. Currently, fossil fuels collectively represent over 80% of our total energy supply, while only 10% come from renewable sources. To meet future demands, however, we must maximize our use of renewable resources while minimizing our dependence on fossil fuels. While there are many sources of renewable energy, solar energy is one of the most abundant; in fact, the sun delivers up to 67 TW of power annually, which exceeds the projected energy demand in 2050. While there are multiple ways to convert sunlight to electricity, organic photovoltaics (OPVs) has the shortest energy payback time; this is the time required for the PV module to generate the equivalent amount of energy that originally was used to manufacture the PV module. OPVs show promise for light-to-electrical energy conversion with the best performing cells having power conversion efficiencies of 8%, but the theoretical maximum is at 32%. If efficiencies can be increased to even a fraction of the way to ˜16%, OPVs would be more cost-competitive with their inorganic counterparts. However, there are four major challenges in improving OPV performance. These include (a) poor light harvesting, due to a limited range of absorbance of visible light, (b) inefficient exciton splitting into holes and electrons, due to the limited diffusion length of excitons (typically ca. 10 nm), (c) increased recombination of separated charges at the donor/acceptor interface, and (d) inefficient collection of charges at the active layer/electrode interface (i.e. partial electrical shorting). OPVs constructed from conventional materials and architectures involve conflicting design requirements; this makes it impossible to address all four problems simultaneously. The projects described in this dissertation involve the design, synthesis, and characterization of a new class of OPV materials that have the potential to overcome the problems with conventional cells

  1. Energy Saving Potential by Utilizing Natural Ventilation under Warm Conditions

    DEFF Research Database (Denmark)

    Oropeza-Perez, Ivan; Østergaard, Poul Alberg

    2014-01-01

    The objective of this article is to show the potential of natural ventilation as a passive cooling method within the residential sector of countries which are located in warm conditions using Mexico as a case study. The method is proposed as performing, with a simplified ventilation model, thermal......–airflow simulations of 27 common cases of dwellings (considered as one thermal zone) based on the combination of specific features of the building design, occupancy and climate conditions. The energy saving potential is assessed then by the use of a new assessment method suitable for large-scale scenarios using...... the actual number of air-conditioned dwellings distributed among the 27 cases. Thereby, the energy saving is presented as the difference in the cooling demand of the dwelling during one year without and with natural ventilation, respectively. Results indicate that for hot-dry conditions, buildings with high...

  2. Energy Perspectives In Switzerland: The Potential Of Nuclear Power

    International Nuclear Information System (INIS)

    Foskolos, K.; Hardegger, P.

    2005-01-01

    In 2004, discussions were started in Switzerland concerning future of energy supply, including domestic electricity generation. On behalf of the Federal Office of Energy, PSI undertook a study to evaluate the potential of future nuclear technologies, covering electricity demand, with a time horizon up to 2050. It has been shown that nuclear power plants (NPPs) of the Third Generation, similar to the ones currently under construction in several other countries, built on the existing nuclear sites in Switzerland, have the potential to replace, at competitive costs, the existing nuclear plants, and even to cover (postulated) increases in electricity demand. Because of their late maturity (expected at the earliest around 2030), NPPs of the Fourth Generation, which are currently under development, cannot play a major role in Switzerland, since, with the exception of the Leibstadt NPP, all decisions regarding replacement of the current Swiss NPPs have to be taken before 2030. (author)

  3. Energy Perspectives In Switzerland: The Potential Of Nuclear Power

    Energy Technology Data Exchange (ETDEWEB)

    Foskolos, K.; Hardegger, P

    2005-03-01

    In 2004, discussions were started in Switzerland concerning future of energy supply, including domestic electricity generation. On behalf of the Federal Office of Energy, PSI undertook a study to evaluate the potential of future nuclear technologies, covering electricity demand, with a time horizon up to 2050. It has been shown that nuclear power plants (NPPs) of the Third Generation, similar to the ones currently under construction in several other countries, built on the existing nuclear sites in Switzerland, have the potential to replace, at competitive costs, the existing nuclear plants, and even to cover (postulated) increases in electricity demand. Because of their late maturity (expected at the earliest around 2030), NPPs of the Fourth Generation, which are currently under development, cannot play a major role in Switzerland, since, with the exception of the Leibstadt NPP, all decisions regarding replacement of the current Swiss NPPs have to be taken before 2030. (author)

  4. Potential for energy technologies in residential and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Glesk, M.M.

    1979-11-01

    The residential-commercial energy technology model was developed as a planning tool for policy analysis in the residential and commercial building sectors. The model and its procedures represent a detailed approach to estimating the future acceptance of energy-using technologies both in new construction and for retrofit into existing buildings. The model organizes into an analytical framework all relevant information and data on building energy technology, building markets, and government policy, and it allows for easy identification of the relative importance of key assumptions. The outputs include estimates of the degree of penetration of the various building energy technologies, the levels of energy use savings associated with them, and their costs - both private and government. The model was designed to estimate the annual energy savings associated with new technologies compared with continued use of conventional technology at 1975 levels. The amount of energy used under 1975 technology conditions is referred to as the reference case energy use. For analytical purposes the technologies were consolidated into ten groupings: electric and gas heat pumps; conservation categories I, II, and III; solar thermal (hot water, heating, and cooling); photovoltaics, and wind systems. These groupings clearly do not allow an assessment of the potential for individual technologies, but they do allow a reasonable comparison of their roles in the R/C sector. Assumptions were made regarding the technical and economic performances of the technologies over the period of the analysis. In addition, the study assessed the non-financial characteristics of the technologies - aesthetics, maintenance complexity, reliability, etc. - that will also influence their market acceptability.

  5. Wind energy systems and their potential in the UK

    Energy Technology Data Exchange (ETDEWEB)

    Musgrove, P

    1977-01-01

    Wind Energy systems have the potential to provide at least one quarter of our present electricity requirements. The UK has much relevant technological experience, in its Aerospace and Engineering Industry, and if a Wind Energy research and development programme were adequately funded, we could start to produce significant quantities of wind generated electricity in little more than a decade. Preliminary cost studies indicate that even at today's fuel prices, wind generated electricity is very close to being economically viable. Given the expectation that the demand for oil will exceed available supplies within the next decade, and the knowledge that present reserves of oil and gas will be largely depleted within the next generation, large increases in the real cost of fossil fuels must be anticipated in the near future. These expected fuel cost increases provide the economic justification for developing and deploying wind energy systems as rapidly as possible.

  6. Potential energy landscape of TIP4P/2005 water

    Science.gov (United States)

    Handle, Philip H.; Sciortino, Francesco

    2018-04-01

    We report a numerical study of the statistical properties of the potential energy landscape of TIP4P/2005, one of the most accurate rigid water models. We show that, in the region where equilibrated configurations can be generated, a Gaussian landscape description is able to properly describe the model properties. We also find that the volume dependence of the landscape properties is consistent with the existence of a locus of density maxima in the phase diagram. The landscape-based equation of state accurately reproduces the TIP4P/2005 pressure-vs-volume curves, providing a sound extrapolation of the free-energy at low T. A positive-pressure liquid-liquid critical point is predicted by the resulting free-energy.

  7. Drisla, Macedonian energy potential capacity, v. 15(58)

    International Nuclear Information System (INIS)

    Dimitrov, Ognen; Armenski, Slave

    2007-01-01

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  8. Drisla, Macedonian energy potential capacity, v. 15(57)

    International Nuclear Information System (INIS)

    Dimitrov, Ognen; Armenski, Slave

    2007-01-01

    This study analyzes the possibility of placing an energy plant, to use municipal waste as fuel supply, on location at Drisla-sanitary stock. The energy potential has been defined by analysing the municipal waste capacity stocked at Drisla location. In addition, the quantity of the municipal waste, accumulated around Macedonia (on state level), has been calculated and defined. Furthermore, in compliance with The Low on solid waste stocking, the possibility for utilizing the already pressurized solid waste, transporting it to Drisla and finally using it as a fuel was analyzed. At the same time, an analysis of the influence to additional expenses for this purpose (transportation expenses, gasoline, employees) against the coast of additionally produced energy was conducted. (Author)

  9. The Potential of Renewable Energy Sources in Latvia

    Directory of Open Access Journals (Sweden)

    Sakipova S.

    2016-02-01

    Full Text Available The article discusses some aspects of the use of renewable energy sources in the climatic conditions prevailing in most of the territory of Latvia, with relatively low wind speeds and a small number of sunny days a year. The paper gives a brief description of the measurement equipment and technology to determine the parameters of the outer air; the results of the measurements are also analysed. On the basis of the data obtained during the last two years at the meteorological station at the Botanical Garden of the University of Latvia, the energy potential of solar radiation and wind was estimated. The values of the possible and the actual amount of produced energy were determined.

  10. Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.

    Science.gov (United States)

    Zahariev, Federico; Levy, Mel

    2017-01-12

    A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.

  11. Waste characterisation, determining the energy potential of waste

    CSIR Research Space (South Africa)

    Oelofse, Suzanna HH

    2015-11-01

    Full Text Available Changes in waste over time • Changes in population – Birth rates – Death rates –Migration • Changes in per capita generation – Socio-economic status – Degree of urbanisation – Household size • Recycling, composting and source reduction initiatives..., determining the energy potential of waste 25 November 2015 by Prof Suzan Oelofse Research Group Leader: Waste for Development Competency Area: Solutions for a Green Economy 2 WtE should consider Fitness for purpose • Feedstock...

  12. Electronic structure, molecular bonding and potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ruedenberg, K. [Ames Laboratory, IA (United States)

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  13. Regional prediction of long-term landfill gas to energy potential.

    Science.gov (United States)

    Amini, Hamid R; Reinhart, Debra R

    2011-01-01

    Quantifying landfill gas to energy (LFGTE) potential as a source of renewable energy is difficult due to the challenges involved in modeling landfill gas (LFG) generation. In this paper a methodology is presented to estimate LFGTE potential on a regional scale over a 25-year timeframe with consideration of modeling uncertainties. The methodology was demonstrated for the US state of Florida, as a case study, and showed that Florida could increase the annual LFGTE production by more than threefold by 2035 through installation of LFGTE facilities at all landfills. The estimated electricity production potential from Florida LFG is equivalent to removing some 70 million vehicles from highways or replacing over 800 million barrels of oil consumption during the 2010-2035 timeframe. Diverting food waste could significantly reduce fugitive LFG emissions, while having minimal effect on the LFGTE potential; whereas, achieving high diversion goals through increased recycling will result in reduced uncollected LFG and significant loss of energy production potential which may be offset by energy savings from material recovery and reuse. Estimates showed that the power density for Florida LFGTE production could reach as high as 10 Wm(-2) with optimized landfill operation and energy production practices. The environmental benefits from increased lifetime LFG collection efficiencies magnify the value of LFGTE projects. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Fossil energy savings potential of sugar cane bio-energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thu Lan T. [Department of Agroecology, Aarhus University, Tjele (Denmark); The Joint Graduate School of Energy and Environment, King Mongkut' s University of Technology Thonburi, Bangkok (Thailand); Hermansen, John E. [Department of Agroecology, Aarhus University, Tjele (Denmark); Sagisaka, Masayuki [Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology, Tsukuba (Japan)

    2009-11-15

    One important rationale for bio-energy systems is their potential to save fossil energy. Converting a conventional sugar mill into a bio-energy process plant would contribute to fossil energy savings via the extraction of renewable electricity and ethanol substituting for fossil electricity and gasoline, respectively. This paper takes a closer look at the Thai sugar industry and examines two practical approaches that will enhance fossil energy savings. The first one addresses an efficient extraction of energy in the form of electricity from the excess bagasse and cane trash. The second while proposing to convert molasses or sugar cane to ethanol stresses the use of bagasse as well as distillery spent wash to replace coal in meeting ethanol plants' energy needs. The savings potential achieved with extracting ethanol from surplus sugar versus current practice in sugar industry in Thailand amounts to 15 million barrels of oil a year. Whether the saving benefits could be fully realized, however, depends on how well the potential land use change resulting from an expansion of ethanol production is managed. The results presented serve as a useful guidance to formulate strategies that enable optimum utilization of biomass as an energy source. (author)

  15. Market Potential for Non-electric Applications of Nuclear Energy

    International Nuclear Information System (INIS)

    Konishi, T.; Kononov, S.; Kupitz, J.; McDonald, A.; Rogner, H.H.; Nisan, S.

    2002-01-01

    The paper presents results of a recent IAEA study to assess the market potential for non-electric applications of nuclear energy in the near (before 2020) and long term (2020-2050). The applications covered are district heating, desalination, industrial heat supply, ship propulsion, energy supply for spacecraft, and, to a lesser extent, 'innovative' applications such as hydrogen production, coal gasification, etc. While technical details are covered only briefly, emphasis is placed on economics and other factors that may promote or hinder the penetration of nuclear options in the markets for non-electric energy services. The study makes a distinction between the market size (demand for a given service) and the market potential for nuclear penetration (which may be smaller because of technical or non-technical constraints). Near-term nuclear prospects are assessed on the basis of on-going projects in the final stages of design or under construction. For the long term, use has been made of a qualitative scale ranging from 0 to 2 for five critical areas: market structure, demand pressure, technical basis, economic competitiveness, and public acceptance. The paper presents the resulting evaluation of long-term prospects for nuclear energy entering into non-electric markets. (authors)

  16. Survey of renewable energy utilization and development potential in Oceania

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper reports fiscal 2000 survey of renewable energy utilization and development potential in Oceania. In Australia and New Zealand, renewable energy has already fairly been used. In Australia, it is promoted on the government policy level, with cost reduction and improved reliability in progress. The growth of 2% is set as a target in the year 2010. Promising are biomass and wind, while contributory in the long run are photovoltaic energies. New installations of hydraulic power generation are few, but potential is high for mini hydraulic power generation. Social interest is also comparatively high in renewable energies and greenhouse effect gas. However, further technological development is necessary for a full-scale contribution to global environmental problems. The situation in other south Pacific nations depends on their policy, economic condition and level of industrialization; each country heavily imports diesel oil for power generation, is under-developed industry-wise, and is a low income nation. The countries are desperately in need of foreign investment for the purpose of solving these problems. (NEDO)

  17. Study of the potential of energy storage - Investigation report - Synthesis

    International Nuclear Information System (INIS)

    Renaud, Arnaud; Fournie, Laurent; Girardeau, Pierre; Chammas, Maxime; Tarel, Guillaume; Chiche, Alice; De Freminville; Pierre; Lacroix, Olivier; Rakotojaona, Loic; Payen, Luc; Riu, Delphine; Kerouedan, Anne-Fleur

    2013-01-01

    The objective of this study is to assess, for France and its overseas territories, the potential of energy storage by 2030, and to identify the technological sectors which are the most economically relevant. A global surplus has been calculated, as well as the benefit from additional storage capacities. This benefit has been compared with cost predictions by 2030 for different storage technologies. Economically viable powers and types of energy storages are assessed with respect to different scenarios, and impacts in terms of associated jobs are assessed. The document reports and discusses the surplus assessment for the community, describes the various services provided by energy storage, presents the modelling scenarios and hypotheses, discusses the main results of valorisation for the community, presents the various energy storage technologies (gravity, thermodynamic, electrochemical, electrostatic, inertial, latent thermal, thermo-chemical, and power to gas), presents business models and deployment potential for different applications (mass storage of electricity in France, electricity storage in a non-connected area, decentralised electricity storage as a response to grid congestion, valorisation of an electricity storage, thermal storage on a heat network, cold storage, management of diffuse demand of hot water), and discusses implications regarding employment

  18. Peaceful Uses of Nuclear Energy: A Collection of Speeches

    Science.gov (United States)

    Seaborg, Glenn T.

    1970-07-01

    It is now a quarter of a century since nuclear energy was introduced to the public. Its introduction was made in the most dramatic, but unfortunately in the most destructive way - through the use of a nuclear weapon. Since that introduction enormous strides have been made in developing the peaceful applications of this great and versatile force. Because these strides have always been overshadowed by the focusing of public attention on the military side of the atom, the public has never fully understood or appreciated the gains and status of the peaceful atom. This booklet is an attempt to correct, in some measure, this imbalance in public information and attitude. It is a compilation of remarks, and excerpts of remarks, that I [Seaborg] have made in recent years in an effort to bring to the public the story of the remarkable benefits the peaceful atom has to offer man. This is a story that grows with the development and progress of the peaceful atom. It must be told so that we can learn to use the power of nuclear energy wisely and through this use help to build a world in which the military applications of the atom will never again be a threat to mankind.

  19. Bohm's quantum potential as an internal energy

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, Glen, E-mail: gdennis502@gmail.com [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom); Gosson, Maurice A. de, E-mail: maurice.de.gosson@univie.ac.at [University of Vienna, Faculty of Mathematics, NuHAG, Oskar-Morgenstern-Platz 1, 1090 Vienna (Austria); Hiley, Basil J., E-mail: b.hiley@bbk.ac.uk [TPRU, Birkbeck College, University of London, London, WC1E 7HX (United Kingdom)

    2015-06-26

    Highlights: • The quantum potential is seen as internal energy associated with a phase space region. • Fermi's trick shows that Bohm's particle is an extended structure in phase space. • We associate Bohm's quantum potential with a context-dependent energy redistribution. • A physically motivated derivation of Schrodinger's equation is provided. • We show the Fermi set associated with a 3-D coherent state contains a quantum blob. - Abstract: We pursue our discussion of Fermi's surface initiated by Dennis, de Gosson and Hiley and show that Bohm's quantum potential can be viewed as an internal energy of a quantum system, giving further insight into its role in stationary states. This implies that the ‘particle’ referred to in Bohm's theory is not a classical point-like object but rather has an extended structure in phase space which can be linked to the notion of a symplectic capacity, a topological feature of the underlying symplectic geometry. This structure provides us with a new, physically motivated derivation of Schrödinger's equation provided we interpret Gleason's theorem as a derivation of the Born rule from fundamental assumptions about quantum probabilities.

  20. Potential of Sugarcane in Modern Energy Development in Southern Africa

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Simone P., E-mail: sp.souza@yahoo.com.br; Horta Nogueira, Luiz A. [Interdisciplinary Center for Energy Planning, University of Campinas (UNICAMP), Campinas, SP (Brazil); Watson, Helen K. [School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Durban, KZN (South Africa); Lynd, Lee Rybeck [Dartmouth College, Thayer School of Engineering, Dartmouth, NH (United States); Elmissiry, Mosad [New Partnership for Africa’s Development (NEPAD), Johannesburg, GT (South Africa); Cortez, Luís A. B. [Faculty of Agricultural Engineering, University of Campinas (UNICAMP), Campinas, SP (Brazil)

    2016-12-26

    For more than half of the Southern African population, human development is limited by a lack of access to electricity and modern energy for cooking. Modern bioenergy merits consideration as one means to address this situation in areas where sufficient arable land is available. While numerous studies have concluded that Africa has significant biomass potential, they do not indicate by how much it can effectively reduce the use of traditional biomass and provide more accessible energy, especially at a country level. Here, we evaluate the potential of sugarcane to replace traditional biomass and fossil fuel and enlarge the access to electricity in Southern Africa. By using its current molasses for ethanol production, Swaziland could increase electricity generation by 40% using bagasse and replace 60% of cooking fuel or 30% of liquid fossil fuel. Sugarcane expansion over 1% of the pasture land in Angola, Mozambique, and Zambia could replace greater than 70% of cooking fuel. Bioelectricity generation from modest sugarcane expansion could be increased by 10% in Malawi, Mozambique, and Zambia and by 20% in Angola. Our results support the potential of sugarcane as a modern energy alternative for Southern Africa.

  1. Potential of Sugarcane in Modern Energy Development in Southern Africa

    International Nuclear Information System (INIS)

    Souza, Simone P.; Horta Nogueira, Luiz A.; Watson, Helen K.; Lynd, Lee Rybeck; Elmissiry, Mosad; Cortez, Luís A. B.

    2016-01-01

    For more than half of the Southern African population, human development is limited by a lack of access to electricity and modern energy for cooking. Modern bioenergy merits consideration as one means to address this situation in areas where sufficient arable land is available. While numerous studies have concluded that Africa has significant biomass potential, they do not indicate by how much it can effectively reduce the use of traditional biomass and provide more accessible energy, especially at a country level. Here, we evaluate the potential of sugarcane to replace traditional biomass and fossil fuel and enlarge the access to electricity in Southern Africa. By using its current molasses for ethanol production, Swaziland could increase electricity generation by 40% using bagasse and replace 60% of cooking fuel or 30% of liquid fossil fuel. Sugarcane expansion over 1% of the pasture land in Angola, Mozambique, and Zambia could replace greater than 70% of cooking fuel. Bioelectricity generation from modest sugarcane expansion could be increased by 10% in Malawi, Mozambique, and Zambia and by 20% in Angola. Our results support the potential of sugarcane as a modern energy alternative for Southern Africa.

  2. Potential energy savings from cool roofs in Spain and Andalusia

    International Nuclear Information System (INIS)

    Boixo, Sergio; Diaz-Vicente, Marian; Colmenar, Antonio; Castro, Manuel Alonso

    2012-01-01

    Cool roofs are an inexpensive method to save energy and to improve the comfort level in buildings in mild and hot climates. A high scale implementation of cool roofs in Andalusia, in the south of Spain, could potentially save 295,000 kWh per year, considering only residential buildings with flat roofs using electrical heating. At the current energy prices, consumers can save 59 million euros annually in electricity costs and the emission of 136,000 metric tons of CO 2 can be directly avoided every year from the production of that electricity. If radiative forcings are considered, Andalucía can potentially offset between 9.44 and 12 Mt of CO 2 . All the provinces in the rest of Spain are also studied in this paper. The biggest savings are achieved in Gran Canaria (48%), Tenerife (48%), Cádiz (36%), Murcia (33%), Huelva (30%), Málaga (29%), Almería (29%) and Sevilla (28%), where savings are greater than 2 euros per square meter of flat roof for old buildings with dark roofs. For the biggest cities the range of savings obtained are: between 7.4% and 11% in Madrid, between 12% and 18% in Barcelona and between 14% and 20% in Valencia. -- Highlights: ► We estimate potential savings in energy, CO 2 , and money for cool roofs in Spain (residential sector with flat roofs). ► Average savings are of around one euro per square meter in the biggest cities. ► Potential savings are of more than 2 €/m 2 in the hottest cities. ► In Andalusia the potential savings are 300 MWh, 60 millions euro and 136,000 tons of CO 2 per year. ► With forcings, the CO 2 equivalence of cool roofs in Andalusia is between 9 and 12 Mt.

  3. Regional energy autarky: Potentials, costs and consequences for an Austrian region

    International Nuclear Information System (INIS)

    Schmidt, J.; Schönhart, M.; Biberacher, M.; Guggenberger, T.; Hausl, S.; Kalt, G.; Leduc, S.; Schardinger, I.; Schmid, E.

    2012-01-01

    Local actors at community level often thrive for energy autarky to decrease the dependence on imported energy resources. We assess the potentials and trade-offs between benefits and costs of increasing levels of energy autarky for a small rural region of around 21,000 inhabitants in Austria. We use a novel modeling approach which couples a regional energy system model with a regional land use optimization model. We have collected and processed data on the spatial distribution of energy demand and potentials of biomass, photovoltaics and solar thermal resources. The impacts of increasing biomass production on the agricultural sector are assessed with a land-use optimization model that allows deriving regional biomass supply curves. An energy system model is subsequently applied to find the least cost solution for supplying the region with energy resources. Model results indicate that fossil fuel use for heating can be replaced at low costs by increasing forestry and agricultural biomass production. However, autarky in the electricity and the heating sector would significantly increase biomass production and require a full use of the potentials of photovoltaics on roof tops. Attaining energy autarky implies high costs to consumers and a decline in the local production of food and feed. - Highlights: ► Energy autarky strong vision for many regional actors. ► Assessment of consequences of energy autarky for a rural region in Austria. ► Novel modeling approach coupling energy system model with land use model. ► Power and heat autarky causes high costs and decline in regional food and feed production. ► Heat autarky achievable at lower costs by utilizing regional forestry and agricultural biomass.

  4. Energy from waste. Potentials and possibilities for usage; Energie aus Abfall. Potenziale und Nutzungsmoeglichkeiten

    Energy Technology Data Exchange (ETDEWEB)

    Wallmann, Rainer; Fritz, Thomas [Hochschule fuer Angewandte Wissenschaft und Kunst (HAWK), Goettingen (DE). Fachgebiet Nachhaltige Energie- und Umwelttechnik (NEUTec); Fricke, Klaus [Technische Univ. Braunschweig (Germany). Abt. Abfall- und Ressourcenwirtschaft

    2009-05-15

    In the present article the results of appraisal for the determination of the theoretical potential of energy and the current secondary energy supply of waste streams, which are relevant for the power production in Germany are represented. To sum up, the following conclusions arise from the balance: The theoretical primary energy supply potential of the examined waste streams amounts from 540 to 650 PJ/a and corresponds from 3.9 to 4.6% of the total primary energy consumption in Germany. In consideration of the system-dependent efficiencies and steering of flow patterns for materials altogether approx. 53 PJ electricity and 104 PJ (used) heat were produced as secondary energy within the regarded ranges in the year 2006 in Germany. This corresponds approx. to 1.7% of the final energy consumption in Germany. The outcome of the evaluated energy data for 2006 is a middle energy efficiency of approx. 26.5% (approx. 8.9% electrically and approx. 17.6% thermally). Under technically optimized conditions the power efficiency can be raised possibly on approx. 37%, whereby the share of the final energy consumption in Germany would increase to 2,3%. (orig.)

  5. Biomass energy in Jordan, and its potential contribution towards the total energy mix of the Kingdom

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1994-04-01

    An evaluation of Jordan's bio-energy status was carried out. Available sources and the viability of exploitation were studied in order to identify the size of contribution that bio-energy could provide to the total energy mix of the Kingdom. The advantages of biogas technology were discussed, and a general description of Jordan's experience in this field was presented. Data on Jordan' animal, municipal, and agricultural wastes that are available as a potential source of bio-energy was tabulated. The report ascertained the economic feasibility of biogas utilization in Jordan, and concluded that the annual energy production potential from biogas, with only animal wastes being utilized, would amount to 80,000 ton oil equivalent. This amount of energy is equivalent to 2% of Jordan's total energy consumption in 1992. The utilization of biogas from municipal wastes would produce an additional 2.5% of the total energy consumption of Jordan. The annual value of utilizing animal and municipal wastes would reach 23 million Jordanian Dinars (JD). This value would increase to 61.5 million JD with the utilization of human wastes. The investment required for the utilization of bio-energy sources in Amman and its suburbs on the scale of family unit fermenters was estimated to be in the order of a million JD. The size of investment for industrial scale utilization for power generation with an electricity feed to the national grid, would range from 3 to 4 million JD. (A.M.H.). 8 refs., 4 tabs

  6. Collective and single-particle states at high excitation energy

    International Nuclear Information System (INIS)

    Van den Berg, A.M.; Van der Molen, H.K.T.; Harakeh, M.N.; Akimune, H.; Daito, I.; Fujimura, H.; Fujiwara, M.; Ihara, F.; Inomata, T.

    2000-01-01

    Complete text of publication follows. Damping of high-lying single-particle states was investigated by the study of proton decay from high-lying states in 91 Nb, populated by the 90 Zr(α,t) reaction with E α = 180 MeV. In addition to decay to the ground state of 90 Zr, semi-direct decay was observed to the low-lying (2 + and 3 - ) phonon states, confirming the conclusion from other experiments that these phonon states play an important role in the damping process of the single-particle states. Furthermore, the population and decay of Isobaric Analogue States of 91 Zr, which are located at an excitation energy of about 10 - 12 MeV in 91 Nb, has been studied in the same reaction. (author)

  7. On wind speed pattern and energy potential in Nigeria

    International Nuclear Information System (INIS)

    Adaramola, M.S.; Oyewola, O.M.

    2011-01-01

    The aim of this paper is to review wind speed distribution and wind energy availability in Nigeria and discuss the potential of using this resource for generation of wind power in the country. The power output from a wind turbine is strongly dependent on the wind speed and accurate information about the wind data in a targeted location is essential. The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. The trend shows that wind speeds are low in the south and gradually increases to relatively high speeds in the north. The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified. Also some of the challenges facing the development of wind energy and suggested solutions were presented. - Research Highlights: → Review of wind speed distribution and wind energy availability in Nigeria in presented. → The annual mean wind speeds in Nigeria range from about 2 to 9.5 m/s and the annual power density range between 3.40 and 520 kW/m 2 based on recent reported data. → The areas that are suitable for exploitation of wind energy for electricity generation as well as for water pumping were identified.

  8. Geophysical potential for wind energy over the open oceans.

    Science.gov (United States)

    Possner, Anna; Caldeira, Ken

    2017-10-24

    Wind turbines continuously remove kinetic energy from the lower troposphere, thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is, therefore, constrained by the rate of kinetic energy replenishment from the atmosphere above. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 W m -2 within large wind farms. However, in this study, we show that considerably higher power generation rates may be sustainable over some open ocean areas. In particular, the North Atlantic is identified as a region where the downward transport of kinetic energy may sustain extraction rates of 6 W m -2 and above over large areas in the annual mean. Furthermore, our results indicate that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where sustained high rates of downward transport of kinetic energy and thus, high rates of kinetic energy extraction may be geophysical possible. While no commercial-scale deep water wind farms yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  9. Nuclear momentum distribution and potential energy surface in hexagonal ice

    Science.gov (United States)

    Lin, Lin; Morrone, Joseph; Car, Roberto; Parrinello, Michele

    2011-03-01

    The proton momentum distribution in ice Ih has been recently measured by deep inelastic neutron scattering and calculated from open path integral Car-Parrinello simulation. Here we report a detailed investigation of the relation between momentum distribution and potential energy surface based on both experiment and simulation results. The potential experienced by the proton is largely harmonic and characterized by 3 principal frequencies, which can be associated to weighted averages of phonon frequencies via lattice dynamics calculations. This approach also allows us to examine the importance of quantum effects on the dynamics of the oxygen nuclei close to the melting temperature. Finally we quantify the anharmonicity that is present in the potential acting on the protons. This work is supported by NSF and by DOE.

  10. Steam systems in industry: Energy use and energy efficiency improvement potentials

    International Nuclear Information System (INIS)

    Einstein, Dan; Worrell, Ernst; Khrushch, Marta

    2001-01-01

    Steam systems are a part of almost every major industrial process today. Thirty-seven percent of the fossil fuel burned in US industry is burned to produce steam. In this paper we will establish baseline energy consumption for steam systems. Based on a detailed analysis of boiler energy use we estimate current energy use in boilers in U.S. industry at 6.1 Quads (6.4 EJ), emitting almost 66 MtC in CO(sub 2) emissions. We will discuss fuels used and boiler size distribution. We also describe potential savings measures, and estimate the economic energy savings potential in U.S. industry (i.e. having payback period of 3 years or less). We estimate the nationwide economic potential, based on the evaluation of 16 individual measures in steam generation and distribution. The analysis excludes the efficient use of steam and increased heat recovery. Based on the analysis we estimate the economic potential at 18-20% of total boiler energy use, resulting in energy savings approximately 1120-1190 TBtu ( 1180-1260 PJ). This results in a reduction of CO(sub 2) emissions equivalent to 12-13 MtC

  11. Nuclear system for problems of environment, economy, and energy. (1) Nuclear energy role and potential for energy system in Asia

    International Nuclear Information System (INIS)

    Ujita, Hiroshi; Matsui, Kazuaki; Sekimoto, Hiroshi

    2005-01-01

    Role and potential of nuclear energy system in the energy options is discussed from the viewpoint of sustainable development with protecting from global warming. It is important for mitigation of global warming that the developing countries will use nuclear power effectively. The policy that nuclear power is considered as Clean Development Mechanism would be the good measure for that. (author)

  12. The potential for scaling up a fog collection system on the eastern escarpment of Eritrea

    OpenAIRE

    Fessehaye, Mussie; Abdul-Wahab, Sabah A.; Savage, Michael J.; Kohler, Thomas; Tesfay, Selamawit

    2015-01-01

    Fog is an untapped natural resource. A number of studies have been undertaken to understand its potential as an alternative or complementary water source. In 2007, a pilot fog-collection project was implemented in 2 villages on the Eastern Escarpment of Eritrea. The government of Eritrea, buoyed by the project’s positive results, has encouraged research into and application of fog-collection technologies to alleviate water-supply problems in this region. In 2014, this study was undertaken to ...

  13. Exploring the potential uptake of distributed energy generation

    International Nuclear Information System (INIS)

    Gardner, John; Ashworth, Peta; Carr-Cornish, Simone

    2007-01-01

    Full text: Global warming has been identified as an energy problem (Klare 2007). With a predicted increase in fossil fuel use for many years to come (IEA 2004) there is a need to find a future energy path that will meet our basic requirements for energy but also help to mitigate climate change (CSIRO 2006). Currently there are a range of technological solutions available, with each representing a different value proposition. Distributed Energy (DE) is one such technological solution, which involves the widespread use of small local power generators, located close to the end user. Such generators can be powered by a range of low emission and/or renewable sources. Until now, cheap electricity, existing infrastructure and reluctance for change both at a political and individual level has meant there has been little prospect for DE to be considered in Australia, except in some remote communities. However, with the majority of Australians now rating climate change as an issue of strategic importance to Australia (Ashworth, Pisarski and Littleboy 2006), it can be inferred that Australia's tolerance for generating greenhouse gas emissions has reduced, and that potential support for DE is increasing. It is therefore important to understand what factors might influence the potential adoption of DE. As part of a research project called the Intelligent Grid, CSIRO's Energy Transformed Flagship is aiming to identify the conditions under which Distributed Energy might be effectively implemented in Australia. One component of this project involves social research, which aims to understand the drivers and barriers to the uptake of DE technology by the community. This paper presents findings from two large-scale surveys (one of householders and one of businesses), designed to assess beliefs and knowledge about environmental issues, and about traditional and renewable energy sources. The surveys also assess current energy use, and identify preferences regarding DE technology. The

  14. Energy balance of chosen crops and their potential to saturate energy consumption in Slovakia

    Directory of Open Access Journals (Sweden)

    Katarína Hrčková

    2016-06-01

    Full Text Available The aim of the present work was to assess and compare energy inputs and outputs of various crop managements in 2011–2012. Two main crops on arable land and three permanent grasslands were investigated. Silage maize (Zea mays L. and winter wheat (Triticum aestivum L. were grown on lowland, whilst two semi-natural grasslands and grassland infested by tufted hair-grass (Deschampsia caespitose (L. P. Beauv were located in mountainous regions of Slovakia. In these crops and grasslands the dry matter yield was measured and subsequently the supplementary energy, energy gain and unifying energy value – tonne of oil equivalent (TOE – were calculated. Silage maize with 233.37 GJ*ha-1 has provided the highest energy gain. In the group of grasslands, grassland infested by tufted hair-grass has offered the highest energy gain (59.77 GJ*ha-1. And this grassland had the lowest requirement on the supplementary energy (3.66 GJ*ha-1, contrary to silage maize with highest one (12.37 GJ*ha-1. The total energy potential of the crop biomasses was confronted with energy consumption in Slovakia. Winter wheat has the biggest energy potential, but it could cover only 19.6% and 11.3% total consumption of electricity or natural gas, respectively. Large area of permanent grasslands and their spatial location make them an important energy reservoir for bioenergy production. But, it is not possible to replace all consumed fossil fuels by bioenergy from these tested renewable energy sources.

  15. Municipal Solid Waste Management and its Energy Potential in Roorkee City, Uttarakhand, India

    Science.gov (United States)

    Alam, Tabish; Kulkarni, Kishore

    2016-03-01

    Energy plays a vital role in the development of any country. With rapid economic growth and multifold urbanization, India faces the problem of municipal solid waste management and disposal. This problem can be mitigate through adoption of environment friendly technologies for treatment and processing of waste before it is disposed off. Currently, urban and industrial wastes throughout India receive partial treatment before its final disposal, except in few exceptional cases. This practice leads to severe environmental pollution problems including major threat to human health. There is an absolute need to provide adequate waste collection and treatment before its disposal. Municipal Solid Waste (MSW) is getting importance in recent years. The MSW management involves collection, transportation, handling and conversion to energy by biological and thermal routes. Based on the energy potential available, the energy conversion through biogas production using available waste is being carried out. Waste-to-energy is now a clean, renewable, sustainable source of energy. The estimation of energy content of MSW in Roorkee city is discussed in this paper. Furthermore this paper also takes into account the benefits of carbon credits.

  16. Onshore wind energy potential over Iberia: present and future projections

    Science.gov (United States)

    Rochinha, Carlos A.; Santos, João A.; Liberato, Margarida L. R.; Pinto, Joaquim G.

    2014-05-01

    Onshore grid-connected wind power generation has been explored for more than three decades in the Iberian Peninsula. Further, increasing attention has been devoted to renewable energy sources in a climate change context. While advantages of wind energy are widely recognized, its distribution is not spatially homogeneous and not uniform throughout the year. Hence, understanding these spatial-temporal distributions is critical in power system planning. The present study aims at assessing the potential power output estimated from 10 m wind components simulated by a regional climate model (CCLM), driven by ERA40 reanalysis. Datasets are available on a grid with a high spatial resolution (approximately 20 km) and over a 40-yr period (1961-2000). Furthermore, several target sites, located in areas with high installed wind generation capacity, are selected for local-to-regional scale assessments. The results show that potential wind power is higher over northern Iberia, mostly in Cantabria and Galicia, while Andalucía and Cataluña record the lowest values. With respect to the intra-annual variability, summer is by far the season with the lowest potential energy outputs. Furthermore, the inter-annual variability reveals an overall downward long-term trend over the 40-yr period, particularly in the winter time series. A CCLM transient experiment, forced by the SRES A1B emission scenario, is also discussed for a future period (2041-2070), after a model validation/calibration process (bias corrections). Significant changes in the wind power potential are projected for the future throughout Iberia, but their magnitude largely depends on the locations. This work was partially supported by FEDER (Fundo Europeu de Desenvolvimento Regional) funds through the COMPETE (Programa Operacional Factores de Competitividade) and by national funds through FCT (Fundação para a Ciência e a Tecnologia, Portugal) under project STORMEx FCOMP-01-0124-FEDER- 019524 (PTDC/AAC-CLI/121339/2010).

  17. Economic aspects and potentials of renewable energy sources in Germany

    International Nuclear Information System (INIS)

    Mannsbart, W.; Reichert, J.

    1992-01-01

    While there is a high theoretical potential for renewable energy sources in Germany, assessing theoretical potentials is more or less like playing with numbers; severe technical shortcomings and economic factors prevent then from being fully achieved. Unsuitable azimuth and slope of roofs, shading, absence of central hot water systems limit the application of collectors. The present storage technology is not suitable for a solar share higher than 50%. Individual space heating is not feasible under local climatic conditions. The broad application of biomass fuels fails because of limited resources. Feeding high amounts of fluctuating electricity generated by wind and photovoltaic systems into utility grids causes stability and storage problems. Insufficient training of installation personnel, lack of incentives for multi-family housing owners and high investment costs hinder the market penetration of renewable energy sources. Drastic cost reductions can only be expected from mass production. Therefore, appropriate policy measures - raised energy prices, as well as, subsidies or tax reliefs are necessary for market breakthrough

  18. Intermolecular potential energy surface and thermophysical properties of ethylene oxide.

    Science.gov (United States)

    Crusius, Johann-Philipp; Hellmann, Robert; Hassel, Egon; Bich, Eckard

    2014-10-28

    A six-dimensional potential energy hypersurface (PES) for two interacting rigid ethylene oxide (C2H4O) molecules was determined from high-level quantum-chemical ab initio calculations. The counterpoise-corrected supermolecular approach at the MP2 and CCSD(T) levels of theory was utilized to determine interaction energies for 10178 configurations of two molecules. An analytical site-site potential function with 19 sites per ethylene oxide molecule was fitted to the interaction energies and fine tuned to agree with data for the second acoustic virial coefficient from accurate speed of sound measurements. The PES was validated by computing the second virial coefficient, shear viscosity, and thermal conductivity. The values of these properties are substantiated by the best experimental data as they tend to fall within the uncertainty intervals and also obey the experimental temperature functions, except for viscosity, where experimental data are insufficient. Due to the lack of reliable data, especially for the transport properties, our calculated values are currently the most accurate estimates for these properties of ethylene oxide.

  19. Understanding usage patterns of electric kettle and energy saving potential

    International Nuclear Information System (INIS)

    Murray, D.M.; Liao, J.; Stankovic, L.; Stankovic, V.

    2016-01-01

    Highlights: • Time-of-use analysis to motivate kettle usage and consumption prediction. • Identification of households whose kettle usage and consumption is outside the norm. • Mathematical model to estimate water volume from consumed power measurements only. • Quantification of energy savings if a household uses its kettle more efficiently. • Kettle usage and demand prediction using an Adaptive Neuro Fuzzy Inference System. - Abstract: The availability of smart metering and smart appliances enables detecting and characterising appliance use in a household, quantifying energy savings through efficient appliance use and predicting appliance-specific demand from load measurements is possible. With growing electric kettle ownership and usage, lack of any efficiency labelling guidelines for the kettle, slow technological progress in improving kettle efficiency relative to other domestic appliances, and current consumer attitudes, urgent investigation into consumer kettle usage patterns is warranted. From an efficiency point of view, little can be done about the kettle, which is more efficient than other methods of heating water such as the stove top kettle. However, since a majority households use the kettle inefficiently by overfilling, in order to meet energy targets, it is imperative to quantify inefficient usage and predict demand. For the purposes of scalability, we propose tools that depend only on load measurement data for quantifying and visualising kettle usage and energy consumption, assessing energy wastage through overfilling via our proposed electric kettle model, and predicting kettle-specific demand, from which we can estimate potential energy savings in a household and across a housing stock. This is demonstrated using data from a longitudinal study across a sample of 14 UK households for a two-year period.

  20. Geophysical Potential for Wind Energy over the Open Oceans

    Science.gov (United States)

    Possner, A.; Caldeira, K.

    2017-12-01

    Wind turbines continuously remove kinetic energy from the lower troposphere thereby reducing the wind speed near hub height. The rate of electricity generation in large wind farms containing multiple wind arrays is therefore constrained by the rate of kinetic energy replenishment from the atmosphere above. In particular, this study focuses on the maximum sustained transport of kinetic energy through the troposphere to the lowest hundreds of meters above the surface. In recent years, a growing body of research argues that the rate of generated power is limited to around 1.5 Wm-2 within large wind farms. However, in this study we demonstrate that considerably higher power generation rates may be sustainable over some open ocean areas in giant wind farms. We find that in the North Atlantic maximum extraction rates of up to 6.7 Wm-2 may be sustained by the atmosphere in the annual mean over giant wind farm areas approaching the size of Greenland. In contrast, only a third of this rate is sustained on land for areas of equivalent size. Our simulations indicate a fundamental difference in response of the troposphere and its vertical kinetic energy flux to giant near-surface wind farms. We find that the surface heat flux from the oceans to the atmosphere may play an important role in creating regions where large sustained rates of downward transport of kinetic energy and thus rates of kinetic energy extraction may be geophysically possible. While no commercial-scale deep-water wind turbines yet exist, our results suggest that such technologies, if they became technically and economically feasible, could potentially provide civilization-scale power.

  1. Assessment of Global Wind Energy Resource Utilization Potential

    Science.gov (United States)

    Ma, M.; He, B.; Guan, Y.; Zhang, H.; Song, S.

    2017-09-01

    Development of wind energy resource (WER) is a key to deal with climate change and energy structure adjustment. A crucial issue is to obtain the distribution and variability of WER, and mine the suitable location to exploit it. In this paper, a multicriteria evaluation (MCE) model is constructed by integrating resource richness and stability, utilization value and trend of resource, natural environment with weights. The global resource richness is assessed through wind power density (WPD) and multi-level wind speed. The utilizable value of resource is assessed by the frequency of effective wind. The resource stability is assessed by the coefficient of variation of WPD and the frequency of prevailing wind direction. Regression slope of long time series WPD is used to assess the trend of WER. All of the resource evaluation indicators are derived from the atmospheric reanalysis data ERA-Interim with spatial resolution 0.125°. The natural environment factors mainly refer to slope and land-use suitability, which are derived from multi-resolution terrain elevation data 2010 (GMTED 2010) and GlobalCover2009. Besides, the global WER utilization potential map is produced, which shows most high potential regions are located in north of Africa. Additionally, by verifying that 22.22 % and 48.8 9% operational wind farms fall on medium-high and high potential regions respectively, the result can provide a basis for the macroscopic siting of wind farm.

  2. Potential impacts of nanotechnology on energy transmission applications and needs.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Science Division

    2007-11-30

    The application of nanotechnologies to energy transmission has the potential to significantly impact both the deployed transmission technologies and the need for additional development. This could be a factor in assessing environmental impacts of right-of-way (ROW) development and use. For example, some nanotechnology applications may produce materials (e.g., cables) that are much stronger per unit volume than existing materials, enabling reduced footprints for construction and maintenance of electricity transmission lines. Other applications, such as more efficient lighting, lighter-weight materials for vehicle construction, and smaller batteries having greater storage capacities may reduce the need for long-distance transport of energy, and possibly reduce the need for extensive future ROW development and many attendant environmental impacts. This report introduces the field of nanotechnology, describes some of the ways in which processes and products developed with or incorporating nanomaterials differ from traditional processes and products, and identifies some examples of how nanotechnology may be used to reduce potential ROW impacts. Potential environmental, safety, and health impacts are also discussed.

  3. Potential environmental effects of energy conservation measures in northwest industries

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M C; Gygi, K F; Hendrickson, P L

    1992-01-01

    The Bonneville Power Administration (Bonneville) has identified 101 plants in the Pacific Northwest that account for 80% of the region's industrial electricity consumption. These plants offer a precise target for a conservation program. PNL determined that most of these 101 plants were represented by 11 major industries. We then reviewed 36 major conservation technologies used in these 11 industrial settings to determine their potential environmental impacts. Energy efficiency technologies designed for industrial use may result in direct or indirect environmental impacts. Effects may result from the production of the conservation measure technology, changes in the working environment due to different energy and material requirements, or changes to waste streams. Industry type, work-place conditions, worker training, and environmental conditions inside and outside the plant are all key variables that may affect environmental outcomes. To address these issues this report has three objectives: Describe potential conservation measures that Bonneville may employ in industrial programs and discuss potential primary impacts. Characterize industrial systems and processes where the measure may be employed and describe general environmental issues associated with each industry type. Review environmental permitting, licensing, and other regulatory actions required for industries and summarize the type of information available from these sources for further analysis.

  4. Theoretical studies of potential energy surfaces and computational methods

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R. [Argonne National Laboratory, IL (United States)

    1993-12-01

    This project involves the development, implementation, and application of theoretical methods for the calculation and characterization of potential energy surfaces involving molecular species that occur in hydrocarbon combustion. These potential energy surfaces require an accurate and balanced treatment of reactants, intermediates, and products. This difficult challenge is met with general multiconfiguration self-consistent-field (MCSCF) and multireference single- and double-excitation configuration interaction (MRSDCI) methods. In contrast to the more common single-reference electronic structure methods, this approach is capable of describing accurately molecular systems that are highly distorted away from their equilibrium geometries, including reactant, fragment, and transition-state geometries, and of describing regions of the potential surface that are associated with electronic wave functions of widely varying nature. The MCSCF reference wave functions are designed to be sufficiently flexible to describe qualitatively the changes in the electronic structure over the broad range of geometries of interest. The necessary mixing of ionic, covalent, and Rydberg contributions, along with the appropriate treatment of the different electron-spin components (e.g. closed shell, high-spin open-shell, low-spin open shell, radical, diradical, etc.) of the wave functions, are treated correctly at this level. Further treatment of electron correlation effects is included using large scale multireference CI wave functions, particularly including the single and double excitations relative to the MCSCF reference space. This leads to the most flexible and accurate large-scale MRSDCI wave functions that have been used to date in global PES studies.

  5. Kinetic energy in the collective quadrupole Hamiltonian from the experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Jolos, R.V., E-mail: jolos@theor.jinr.ru [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation); Kolganova, E.A. [Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Dubna State University, 141980 Dubna (Russian Federation)

    2017-06-10

    Dependence of the kinetic energy term of the collective nuclear Hamiltonian on collective momentum is considered. It is shown that the fourth order in collective momentum term of the collective quadrupole Hamiltonian generates a sizable effect on the excitation energies and the matrix elements of the quadrupole moment operator. It is demonstrated that the results of calculation are sensitive to the values of some matrix elements of the quadrupole moment. It stresses the importance for a concrete nucleus to have the experimental data for the reduced matrix elements of the quadrupole moment operator taken between all low lying states with the angular momenta not exceeding 4.

  6. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    International Nuclear Information System (INIS)

    Schaefer, Bastian; Goedecker, Stefan; Alireza Ghasemi, S.; Roy, Shantanu

    2015-01-01

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods

  7. Experimental survey of the potential energy surfaces associated with fission

    International Nuclear Information System (INIS)

    Britt, H.C.

    1980-01-01

    Progress in the experimental determination of the properties of the potential energy surface associated with fission is reviewed. The importance of nuclear symmetry effects on the calculation of fission widths is demonstrated. Evidence is presented for the fragmentation of the mass-asymmetric second barrier in the thorium region and the axial asymmetric first barrier in the californium region. Detailed analyses of experimental data suggest the presence of two parallel second barriers; the normal mass-asymmetric, axial-symmetric barrier and a slightly higher mass-symmetric, axial-asymmetric barrier. Experimental barrier parameters are determined systematically and compared with calculations from various theoretical models. Techniques for expanding fission probability measurements to higher energies are discussed. (author)

  8. Exploitation of wind energy and its potential in Czechoslovakia

    International Nuclear Information System (INIS)

    Rychetnik, V.

    1990-01-01

    Examples from over the world are shown to demonstrate the potential of wind energy in power generation. The basic types of wind motors and the installed capacities are given. In Czechoslovakia the wind conditions are rather complex. Wind energy can be economically exploited at sites where the mean wind velocity at 10 m above the ground exceeds 4 m/s. This can cover about 2% of annual power generation in Czechoslovakia. The amount of electricity generated and its cost are estimated. The investment into a wind power plant would pay back in several years. The use of small wind power plants to supply, e.g., individual houses will be of limited importance. (M.D.). 4 figs., 8 refs

  9. Stabilized quasi-Newton optimization of noisy potential energy surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Bastian; Goedecker, Stefan, E-mail: stefan.goedecker@unibas.ch [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Alireza Ghasemi, S. [Institute for Advanced Studies in Basic Sciences, P.O. Box 45195-1159, IR-Zanjan (Iran, Islamic Republic of); Roy, Shantanu [Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel (Switzerland)

    2015-01-21

    Optimizations of atomic positions belong to the most commonly performed tasks in electronic structure calculations. Many simulations like global minimum searches or characterizations of chemical reactions require performing hundreds or thousands of minimizations or saddle computations. To automatize these tasks, optimization algorithms must not only be efficient but also very reliable. Unfortunately, computational noise in forces and energies is inherent to electronic structure codes. This computational noise poses a severe problem to the stability of efficient optimization methods like the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm. We here present a technique that allows obtaining significant curvature information of noisy potential energy surfaces. We use this technique to construct both, a stabilized quasi-Newton minimization method and a stabilized quasi-Newton saddle finding approach. We demonstrate with the help of benchmarks that both the minimizer and the saddle finding approach are superior to comparable existing methods.

  10. CALCULATING SOLAR ENERGY POTENTIAL OF BUILDINGS AND VISUALIZATION WITHIN UNITY 3D GAME ENGINE

    Directory of Open Access Journals (Sweden)

    G. Buyuksalih

    2017-10-01

    Full Text Available Solar energy modelling is increasingly popular, important, and economic significant in solving energy crisis for big cities. It is a clean and renewable resource of energy that can be utilized to accommodate individual or group of buildings electrical power as well as for indoor heating. Implementing photovoltaic system (PV in urban areas is one of the best options to solve power crisis over expansion of urban and the growth of population. However, as the spaces for solar panel installation in cities are getting limited nowadays, the available strategic options are only at the rooftop and façade of the building. Thus, accurate information and selecting building with the highest potential solar energy amount collected is essential in energy planning, environmental conservation, and sustainable development of the city. Estimating the solar energy/radiation from rooftop and facade are indeed having a limitation - the shadows from other neighbouring buildings. The implementation of this solar estimation project for Istanbul uses CityGML LoD2-LoD3. The model and analyses were carried out using Unity 3D Game engine with development of several customized tools and functionalities. The results show the estimation of potential solar energy received for the whole area per day, week, month and year thus decision for installing the solar panel could be made. We strongly believe the Unity game engine platform could be utilized for near future 3D mapping visualization purposes.

  11. Calculating Solar Energy Potential of Buildings and Visualization Within Unity 3d Game Engine

    Science.gov (United States)

    Buyuksalih, G.; Bayburt, S.; Baskaraca, A. P.; Karim, H.; Rahman, A. Abdul

    2017-10-01

    Solar energy modelling is increasingly popular, important, and economic significant in solving energy crisis for big cities. It is a clean and renewable resource of energy that can be utilized to accommodate individual or group of buildings electrical power as well as for indoor heating. Implementing photovoltaic system (PV) in urban areas is one of the best options to solve power crisis over expansion of urban and the growth of population. However, as the spaces for solar panel installation in cities are getting limited nowadays, the available strategic options are only at the rooftop and façade of the building. Thus, accurate information and selecting building with the highest potential solar energy amount collected is essential in energy planning, environmental conservation, and sustainable development of the city. Estimating the solar energy/radiation from rooftop and facade are indeed having a limitation - the shadows from other neighbouring buildings. The implementation of this solar estimation project for Istanbul uses CityGML LoD2-LoD3. The model and analyses were carried out using Unity 3D Game engine with development of several customized tools and functionalities. The results show the estimation of potential solar energy received for the whole area per day, week, month and year thus decision for installing the solar panel could be made. We strongly believe the Unity game engine platform could be utilized for near future 3D mapping visualization purposes.

  12. Overview of direct air free cooling and thermal energy storage potential energy savings in data centres

    International Nuclear Information System (INIS)

    Oró, Eduard; Depoorter, Victor; Pflugradt, Noah; Salom, Jaume

    2015-01-01

    In the last years the total energy demand of data centres has experienced a dramatic increase which is expected to continue. This is why data centres industry and researchers are working on implementing energy efficiency measures and integrating renewable energy to overcome energy dependence and to reduce operational costs and CO 2 emissions. The cooling system of these unique infrastructures can account for 40% of the total energy consumption. To reduce the energy consumption, free cooling strategies are used more and more, but so far there has been little research about the potential of thermal energy storage (TES) solutions to match energy demand and energy availability. Hence, this work intends to provide an overview of the potential of the integration of direct air free cooling strategy and TES systems into data centres located at different European locations. For each location, the benefit of using direct air free cooling is evaluated energetically and economically for a data centre of 1250 kW. The use of direct air free cooling is shown to be feasible. This does not apply the TES systems by itself. But when using TES in combination with an off-peak electricity tariff the operational cooling cost can be drastically reduced. - Highlights: • The total annual hours for direct air free cooling in data centres are calculated. • The potential of TES integration in data centres is evaluated. • The implementation of TES to store the ambient air cold is not recommended. • TES is feasible if combined with redundant chillers and off-peak electricity price. • The cooling electricity cost is being reduced up to 51%, depending on the location

  13. Energy potential of the wind and possibility for construction of big energy systems

    International Nuclear Information System (INIS)

    Gruevski, Trpe

    2004-01-01

    In this paper a brief theoretical survey is given on the wind as a clean and renewable energy source.The wind energy potential is analyzed as well as the power limits that could be obtained as a result of the wind kinetic energy.The total generating costs for wind turbine systems are determined by total investments costs, the life time, the operating and maintenance costs, the wind regime, the efficiency and availability of the wind turbine. The optimum size of a wind turbine depends on the wind speed, the wind turbine costs, the construction costs, the environmental impact and the social costs. The value of wind energy depends on the application that is made of the energy generated and on the costs of alternatives

  14. Solar energy systems: assessment of present and future potential

    International Nuclear Information System (INIS)

    Kuehne, H.-M.; Aulich, H.

    1992-01-01

    This paper discusses the present state and the future potential of solar thermal and photovoltaic (PV) technologies, and examines both the environmental implications of these technologies and the economics which determine their viability in the energy market. Although some significant cost reductions have been achieved, particularly in PV technology, solar conversion technologies are still not generally competitive against conventional fuels, and future cost reductions may be limited. It is argued that fiscal measures will be necessary if solar conversion technologies are to make a significant global impact. (Author)

  15. Oxathiiranes 8 On the OCS2 Singlet Potential Energy Surface

    DEFF Research Database (Denmark)

    Carlsen, Lars

    1982-01-01

    The reaction between atomic oxygen and carbon disulfide is predicted to lead to at least two primary products, which are the dithiiranone (1) and the oxathiirane-thione (2) and/or the carbon disulfide S-oxide (4). The possible intramolecular equilibria 1 ⇄ 2, 1 ⇄ 3, 2 ⇄ 4, and 2 ⇄ 5 as well...... as the fragmentations of the possible intermediates 1–5 have been studied theoretically within the semiempirical cndo/B framework as conceivable ground-state reactions. On the basis of mo correlations and potential energy changes along the reaction paths, supplementary with previously reported experimental data...

  16. Energy strategy and mitigation potential in energy sector of the Russian federation

    Energy Technology Data Exchange (ETDEWEB)

    Yakovlev, A.F.; Petrov, V.N.; Chupyatov, V.P.

    1996-12-31

    This paper describes the mitigation potential in the Russian energy sector and presents CO{sub 2} - emission scenarios. Based on the Russian energy strategy, energy conservation potential has been estimated and three groups of energy conservation measures have been pointed out. Taking into account the economic development scenarios and the scenarios of energy consumption and energy conservation, future CO{sub 2} emission scenarios for 2000 and 2010 have been prepared. Some important characteristics of these scenarios have been presented and discussed. For the period 2000-2010 annual growth rates for CO{sub 2} emission in the Russian energy sector will not exceed 0.9-1.3 %, and emission levels in 2000 make up - 75-78 %, and in 2010 - 81-88 % of the 1990 level. For the probable scenario the CO{sub 2} emission reducing will make up about 6% and 25% (for the optimistic scenario about 16% and 31%) of CO{sub 2} emission for reference scenario in 2000 and 2010 respectively. Additional CO{sub 2} emission reducing (3-5% of domestic CO{sub 2} emission) will result from increasing share of natural gas consumption.

  17. Balancing collective and individual interests in transactive energy management of interconnected micro-grid clusters

    International Nuclear Information System (INIS)

    Chen, Yang; Hu, Mengqi

    2016-01-01

    The emerging technology, transactive energy network, can allow multiple interconnected micro-grids (a.k.a. micro-grid clusters) to exchange energy for greater energy efficiency. Existing research has demonstrated that the micro-grid clusters can achieve some collective interests (e.g., minimizing total energy cost). However, some micro-grids may have to make sacrifices of their individual interests (e.g., increasing cost) for collective interests of the clusters. To bridge these research gaps, we propose four different transactive energy management models for micro-grid clusters where each micro-grid is allowed to have energy transactions with others. The first model focuses on maximizing collective interests, both the collective and individual interests are considered in the second model, and the last two models aim to maximize both the collective and individual interests. The performances of the proposed models are evaluated using a cluster of sixteen micro-grids with different energy profiles. It is demonstrated that 1) all of the four models can maximize the collective interests, 2) the third model can maximize the relative individual interests where each micro-grid can achieve the same percentage of cost savings as the clusters, and 3) the fourth model can maximize the absolute individual interests where each micro-grid can achieve the same amount of cost savings. - Highlights: • A modeling framework is developed for transactive energy management of the micro-grid clusters. • Four operation decision models are developed to balance the collective and individual interests. • The prices of local energy transaction are modeled. • The micro-grid clusters can achieve 15.34% energy cost savings.

  18. Assessing geothermal energy potential in upstate New York. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, D.S. [SUNY, Buffalo, NY (United States)

    1996-08-01

    The potential of geothermal energy for future electric power generation in New York State is evaluated using estimates of temperatures of geothermal reservoir rocks. Bottom hole temperatures from over 2000 oil and gas wells in the region were integrated into subsurface maps of the temperatures for specific geothermal reservoirs. The Theresa/Potsdam formation provides the best potential for extraction of high volumes of geothermal fluids. The evaluation of the Theresa/Potsdam geothermal reservoir in upstate New York suggests that an area 30 miles east of Elmira, New York has the highest temperatures in the reservoir rock. The Theresa/Potsdam reservoir rock should have temperatures about 136 {degrees}C and may have as much as 450 feet of porosity in excess of 8%. Estimates of the volumes of geothermal fluids that can be extracted are provided and environmental considerations for production from a geothermal well is discussed.

  19. A new empirical potential energy function for Ar2

    Science.gov (United States)

    Myatt, Philip T.; Dham, Ashok K.; Chandrasekhar, Pragna; McCourt, Frederick R. W.; Le Roy, Robert J.

    2018-06-01

    A critical re-analysis of all available spectroscopic and virial coefficient data for Ar2 has been used to determine an improved empirical analytic potential energy function that has been 'tuned' to optimise its agreement with viscosity, diffusion and thermal diffusion data, and whose short-range behaviour is in reasonably good agreement with the most recent ab initio calculations for this system. The recommended Morse/long-range potential function is smooth and differentiable at all distances, and incorporates both the correct theoretically predicted long-range behaviour and the correct limiting short-range functional behaviour. The resulting value of the well depth is ? cm-1 and the associated equilibrium distance is re = 3.766 (±0.002) Å, while the 40Ar s-wave scattering length is -714 Å.

  20. Structures and potential energy functions of Pu3 molecule

    International Nuclear Information System (INIS)

    Meng Daqiao; Jiang Gang; Liu Xiaoya; Luo Deli; Zhu Zhenghe

    2001-01-01

    Density functional (B3LYP) method with relativistic effective core potential (RECP) has been used to optimize the structures of Pu 2 and Pu 3 molecules. The results show that the ground states of Pu 2 and Pu 3 molecules are of D ∞h and D 3h symmetry, and of 13 and 19 fold, respectively. The spectral constants of Pu 2 , ω e = 52.3845 cm -1 and ω e x e = 0.0201 cm -1 , and the harmonic frequencies of Pu 3 , ν 1 = 56.9007 cm -1 , ν 2 = 57.1816 cm - '1 and ν 3 = 64.0785 cm -1 , have also been obtained on the B3LYP/RECP level. The potential energy functions of Pu 2 and Pu 3 have been derived, for the first time so far as known, from normal equation fitting and the many-body expansion theory

  1. Automated Data Collection for Determining Statistical Distributions of Module Power Undergoing Potential-Induced Degradation

    DEFF Research Database (Denmark)

    Hacke, Peter; Spataru, Sergiu

    We propose a method for increasing the frequency of data collection and reducing the time and cost of accelerated lifetime testing of photovoltaic modules undergoing potential-induced degradation (PID). This consists of in-situ measurements of dark current-voltage curves of the modules at elevate...

  2. Energy efficiency and carbon trading potential in Malaysia

    International Nuclear Information System (INIS)

    Oh, Tick Hui; Chua, Shing Chyi

    2010-01-01

    The damage inflicted by global warming is happening far faster than any experts have predicted or anticipated. Since the Kyoto Protocol was signed in 1997 to fight global warming through reducing global greenhouse gases (GHGs) emission, the world climate pattern has worsened at an accelerated rate beyond expectation. While developed countries sanctioned by the protocol are committed to achieve their GHG emission targets, developing nations play similar roles on a voluntary basis. Since almost all of the GHGs emissions come from energy sector, it is obvious that energy policy and related regulatory frameworks play imperative roles in realizing the Kyoto Protocol objectives. With carbon dioxide (CO 2 ) touted as the main remedy in the GHGs emissions, it is only reasonable that carbon trading becomes the essential element in the Protocol. Recently a milestone is marked in the Kyoto Protocol with the 2009 Climate Summit in Copenhagen, Denmark, with all participating countries further committed themselves in fulfilling the protocol's obligations before the commitment period due in 2012. It is worthwhile to review the various energy efficiency efforts and carbon trading potential in Malaysia, a country which although does not bear any obligation, has ratified and lauded the cause of the protocol. Malaysia as a developing nation is seen as a direct beneficiary from carbon trading and in this paper, how the country energy policies have evolved over the years with concerted efforts from the government to minimize its carbon footprint through numerous energy efficiency implementations are discussed in length. The impact from the 2009 Climate Summit on Malaysia is also briefed. (author)

  3. Assessment of market potential of compressed air energy storage systems

    Science.gov (United States)

    Boyd, D. W.; Buckley, O. E.; Clark, C. E., Jr.

    1983-12-01

    This report describes an assessment of potential roles that EPRI might take to facilitate the commercial acceptance of compressed air energy storage (CAES) systems. The assessment is based on (1) detailed analyses of the market potential of utility storage technologies, (2) interviews with representatives of key participants in the CAES market, and (3) a decision analysis synthesizing much of the information about market and technology status. The results indicate a large potential market for CAES systems if the overall business environment for utilities improves. In addition, it appears that EPRI can have a valuable incremental impact in ensuring that utilities realize the potential of CAES by (1) continuing an aggressive information dissemination and technology transfer program, (2) working to ensure the success of the first United States CAES installation at Soyland Power Cooperative, (3) developing planning methods to allow utilities to evaluate CAES and other storage options more effectively and more realistically, and (4) supporting R and D to resolve residual uncertainties in first-generation CAES cost and performance characteristics. Previously announced in STAR as N83-25121

  4. Collection and dissemination of thermal energy storage system information for the pulp and paper industry

    Science.gov (United States)

    Edde, H.

    1981-01-01

    The collection and dissemination of thermal energy storage (TES) system technology for the pulp and paper industry with the intent of reducing fossil fuel usage is discussed. The study plan is described and a description presented of example TES systems.

  5. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Pulp and Paper Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Sabine Brueske, Caroline Kramer, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. pulp and paper manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas, representing 52% of sector-wide energy consumption. Energy savings opportunities for individual processes are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity

  6. Bandwidth Study on Energy Use and Potential Energy Saving Opportunities in U.S. Iron and Steel Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Keith Jamison, Caroline Kramer, Sabine Brueske, Aaron Fisher

    2015-06-01

    Energy bandwidth studies of U.S. manufacturing sectors can serve as foundational references in framing the range (or bandwidth) of potential energy savings opportunities. This bandwidth study examines energy consumption and potential energy savings opportunities in U.S. iron and steel manufacturing. The study relies on multiple sources to estimate the energy used in six individual process areas and select subareas, representing 82% of sector-wide energy consumption. Energy savings opportunities for individual processes and subareas are based on technologies currently in use or under development; the potential savings are then extrapolated to estimate sector-wide energy savings opportunity.

  7. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    Science.gov (United States)

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  8. Potential energy curves for diatomic zinc and cadmium

    International Nuclear Information System (INIS)

    Bender, C.F.; Rescigno, T.N.; Schaefer, H.F. III; Orel, A.E.

    1979-01-01

    Molecular electronic structure theory has been applied to the low-lying electronic states of Zn 2 and Cd 2 . Gaussian basis sets of size Zn (13s 9p 5d) and Cd (15s 11p 7d) have been optimized in atomic calculations on the ground 1 S and excited 3 P electronic states. The general contraction scheme of Raffenetti has been used to reduce these primitive Gaussian bases to size Zn (5s 4p 1d) and Cd (6s 4p 2d) without any degradation in the atomic SCF energies. Following X 1 Σ + /sub g/ ground state SCF calculations, full configuration interaction was performed for the four valence electrons. The resulting potential energy curves for Zn 2 and Cd 2 are, with some notable exceptions, qualitatively similar. In the case of Cd 2 , we have obtained potential curves which include spin--orbit coupling and have carried out a detailed analysis of the fluorescence intensity from the first 1/sub u/ ( 3 Σ + /sub u/) excited state

  9. Energy usage and technical potential for energy saving measures in the Swedish residential building stock

    International Nuclear Information System (INIS)

    Mata, Érika; Sasic Kalagasidis, Angela; Johnsson, Filip

    2013-01-01

    This paper provides an analysis of the current energy usage (net energy and final energy by fuels) and associated carbon dioxide (CO 2 ) emissions of the Swedish residential building stock, which includes single-family dwellings and multi-family dwellings. Twelve energy saving measures (ESMs) are assessed using a bottom–up modeling methodology, in which the Swedish residential stock is represented by a sample of 1400 buildings (based on data from the year 2005). Application of the ESMs studied gives a maximum technical reduction potential in energy demand of 53%, corresponding to a 63% reduction in CO 2 emissions. Although application of the investigated ESMs would reduce CO 2 emissions, the measures that reduce electricity consumption for lighting and appliances (LA) will increase CO 2 emissions, since the saved electricity production is less CO 2 -intensive than the fuel mix used for the increased space heating required to make up for the loss in indirect heating obtained from LA. - Highlights: ► Analysis of year 2005energy use and CO2 emissions of Swedish residential buildings. ► Includes all single-family dwellings and multi-family dwellings. ► Bottom–up modeling of building stock represented by 1400 buildings. ► Technical effects of 12 energy saving measures are assessed. ► Energy demand can be reduced by53% and associated CO 2 emissions by 63%

  10. Wind and Solar Energy Potential Assessment for Development of Renewables Energies Applications in Bucaramanga, Colombia

    International Nuclear Information System (INIS)

    Ordóñez, G; Osma, G; Vergara, P; Rey, J

    2014-01-01

    Currently, the trend of micro-grids and small-scale renewable generation systems implementation in urban environments requires to have historical and detailed information about the energy potential resource in site. In Colombia, this information is limited and do not favor the design of these applications; for this reason, must be made detailed studies of the energy potential in their cities. In this paper is presented the wind and solar energy resource assessment for the city of Bucaramanga, based on the monitoring on four strategic points during the years 2010, 2011 and 2012. According to the analysis, is evidenced a significant solar resource throughout the year ascending on average to 1 734 kWh/m 2 , equivalent to 4.8 kWh/m 2 /day. Also, from a wind statistical study based on the Weibull probability distribution and Wind Power Density (WPD) was established the wind potential as Class 1 according to the scale of the Department of Energy of the United States (DOE), since the average speed is near 1.4 m/s. Due this, it is technically unfeasible the using of micro-turbines in the city, even so their potential for natural ventilation of building was analyzed. Finally, is presented a methodology to analyze solar harvesting by sectors in the city, according to the solar motion and shadowing caused by existing structures

  11. Market potential for non-electric applications of nuclear energy

    International Nuclear Information System (INIS)

    2002-01-01

    The objective of this report is to assess the market potential for the non-electric applications of nuclear energy in the near (before 2020) and long (2020-2050) terms. The main non-electric applications are defined here as district heating, desalination (of sea, brackish and waste water), industrial heat supply, ship propulsion and the energy supply for spacecraft. This report is principally devoted to these applications, although a less detailed assessment of some innovative applications (e.g. hydrogen production and coal gasification) is also provided. While the technical details of these applications are covered briefly, emphasis is placed on the economic and other factors that may promote or hinder the penetration of the nuclear option into the market for non-electric energy services. The report is intentionally targeted towards expected demands. It is for this reason that its sections are structured by demand categories and not according to possible reactor types. At the same time, the orientation on the demand side can result in overlaps at the supply side, because the same nuclear reactor can often serve more than one type of demand. Such cases are noted as appropriate. Each section characterizes a specific non-electric application in terms of its market size, its prospects for nuclear technologies and the economic competitiveness of the technologies

  12. Potential strategic consequences of the nuclear energy revival

    International Nuclear Information System (INIS)

    Ferguson, Ch.D.

    2010-01-01

    Many people have projected their hopes and fears onto nuclear power. Nuclear energy has both benefits and risks, and disagreement persists about whether this energy source is, on balance, more of an asset than a liability. This debate involves a complicated set of factors that are difficult to assess, let alone fully resolve because of the differing interests in various countries' use and pursuit of nuclear power. Renewed interest throughout the globe in harnessing this energy source has stoked this perennial debate and raised concern about security threats from states and non-state actors while holding out the promise of more electricity for more people. While the motivations for nuclear energy vary among states, the two primary public goods this energy source offers are countering human-induced climate change and providing for greater energy security. Although views on how to achieve energy security differ, the essential aspect for nuclear energy is that for several countries, especially those with scarce indigenous energy sources from fossil fuels, investing in nuclear power plants diversifies electricity production portfolios and helps reduce dependence on foreign sources of energy. The focus here is on assessing the potential security consequences of increased use of nuclear power in the existing nuclear power states and most importantly in many more states that have in recent years expressed interest in this power source. The risks of nuclear power include possible reactor accidents, release of radioactive waste to the environment, attacks on or sabotage of nuclear facilities, and misuse of peaceful nuclear technologies to make nuclear weapons. While safety of nuclear plants and disposal of radioactive waste are important issues, this paper analyzes the latter two issues. In addition, it addresses two under-examined risks: military attacks on nuclear facilities and the effects on security alliances and conventional arms buildups as more countries seek to

  13. Potential strategic consequences of the nuclear energy revival

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Ch.D.

    2010-07-01

    Many people have projected their hopes and fears onto nuclear power. Nuclear energy has both benefits and risks, and disagreement persists about whether this energy source is, on balance, more of an asset than a liability. This debate involves a complicated set of factors that are difficult to assess, let alone fully resolve because of the differing interests in various countries' use and pursuit of nuclear power. Renewed interest throughout the globe in harnessing this energy source has stoked this perennial debate and raised concern about security threats from states and non-state actors while holding out the promise of more electricity for more people. While the motivations for nuclear energy vary among states, the two primary public goods this energy source offers are countering human-induced climate change and providing for greater energy security. Although views on how to achieve energy security differ, the essential aspect for nuclear energy is that for several countries, especially those with scarce indigenous energy sources from fossil fuels, investing in nuclear power plants diversifies electricity production portfolios and helps reduce dependence on foreign sources of energy. The focus here is on assessing the potential security consequences of increased use of nuclear power in the existing nuclear power states and most importantly in many more states that have in recent years expressed interest in this power source. The risks of nuclear power include possible reactor accidents, release of radioactive waste to the environment, attacks on or sabotage of nuclear facilities, and misuse of peaceful nuclear technologies to make nuclear weapons. While safety of nuclear plants and disposal of radioactive waste are important issues, this paper analyzes the latter two issues. In addition, it addresses two under-examined risks: military attacks on nuclear facilities and the effects on security alliances and conventional arms buildups as more countries seek to

  14. Transportation Energy Futures Series. Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Patel, D. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Bertram, K. M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-02-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  15. Transportation Energy Futures Series: Potential for Energy Efficiency Improvement Beyond the Light-Duty-Vehicle Sector

    Energy Technology Data Exchange (ETDEWEB)

    Vyas, A. D.; Patel, D. M.; Bertram, K. M.

    2013-03-01

    Considerable research has focused on energy efficiency and fuel substitution options for light-duty vehicles, while much less attention has been given to medium- and heavy-duty trucks, buses, aircraft, marine vessels, trains, pipeline, and off-road equipment. This report brings together the salient findings from an extensive review of literature on future energy efficiency options for these non-light-duty modes. Projected activity increases to 2050 are combined with forecasts of overall fuel efficiency improvement potential to estimate the future total petroleum and greenhouse gas (GHG) emissions relative to current levels. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  16. Energy-delay trade-off of wireless data collection in the plane

    NARCIS (Netherlands)

    Mitici, M.A.; Goseling, Jasper; de Graaf, Maurits; Boucherie, Richardus J.

    2014-01-01

    We analyze the Pareto front of the delay of collecting data from wireless devices located in the plane according to a Poisson process and the energy needed by the devices to transmit their observations. Fundamental bounds on the energy-delay trade-off over the space of all achievable scheduling

  17. The calculation of collective energies from periodic time-dependent Hartree-Fock solutions

    International Nuclear Information System (INIS)

    Zahed, I.; Baranger, M.

    1983-06-01

    A periodic TDHF solution is used as the reference state for a diagrammatic expansion of the propagator. A discrete Fourier transform leads to a function of energy, whose poles are the corresponding energy levels. Limiting the expansion to first-order diagrams leads to a new derivation of the Bohr-Sommerfeld-like quantization rule for collective states

  18. 75 FR 4836 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2010-01-29

    ... ``Tribal Energy Resource Agreements (TERAs)'' to the Office of Management and Budget (OMB) for renewal... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of request...

  19. Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy.

    Science.gov (United States)

    Chen, Jun; Yang, Jin; Li, Zhaoling; Fan, Xing; Zi, Yunlong; Jing, Qingshen; Guo, Hengyu; Wen, Zhen; Pradel, Ken C; Niu, Simiao; Wang, Zhong Lin

    2015-03-24

    With 70% of the earth's surface covered with water, wave energy is abundant and has the potential to be one of the most environmentally benign forms of electric energy. However, owing to lack of effective technology, water wave energy harvesting is almost unexplored as an energy source. Here, we report a network design made of triboelectric nanogenerators (TENGs) for large-scale harvesting of kinetic water energy. Relying on surface charging effect between the conventional polymers and very thin layer of metal as electrodes for each TENG, the TENG networks (TENG-NW) that naturally float on the water surface convert the slow, random, and high-force oscillatory wave energy into electricity. On the basis of the measured output of a single TENG, the TENG-NW is expected to give an average power output of 1.15 MW from 1 km(2) surface area. Given the compelling features, such as being lightweight, extremely cost-effective, environmentally friendly, easily implemented, and capable of floating on the water surface, the TENG-NW renders an innovative and effective approach toward large-scale blue energy harvesting from the ocean.

  20. ROMANIA'S ENERGY POTENTIAL OF RENEWABLE ENERGIES IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Maghear Diana

    2011-12-01

    environmental pollution as well as the depletion of the conventional resources that are highly polluting, highlighting the energy potential that renewable energy resources Romania has. This issue will be extensively discussed in the thesis entitled 'The necessity and importance of sustainable development of Romania. Case study on the use of renewable energies for heating the population in the western part of Romania' which I intend to realize and support at The West University of Timisoara, Faculty of Economics and Business Administration, under the guidance of Professor Doctor Laura Cismas.

  1. Computed Potential Energy Surfaces and Minimum Energy Pathways for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such parameters as rate constants as a function of temperature, product branching ratios, and other detailed properties. For some dynamics methods, global potential energy surfaces are required. In this case, it is necessary to obtain the energy at a complete sampling of all the possible arrangements of the nuclei, which are energetically accessible, and then a fitting function must be obtained to interpolate between the computed points. In other cases, characterization of the stationary points and the reaction pathway connecting them is sufficient. These properties may be readily obtained using analytical derivative methods. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method to obtain accurate energetics, gives usefull results for a number of chemically important systems. The talk will focus on a number of applications including global potential energy surfaces, H + O2, H + N2, O(3p) + H2, and reaction pathways for complex reactions, including reactions leading to NO and soot formation in hydrocarbon combustion.

  2. Biogas from poultry waste-production and energy potential.

    Science.gov (United States)

    Dornelas, Karoline Carvalho; Schneider, Roselene Maria; do Amaral, Adriana Garcia

    2017-08-01

    The objective of this study was to evaluate the effect of heat treatment on poultry litter with different levels of reutilisation for potential generation of biogas in experimental biodigesters. Chicken litter used was obtained from two small-scale poultry houses where 14 birds m -2 were housed for a period of 42 days per cycle. Litter from aviary 1 received no heat treatment while each batch of litter produced from aviary 2 underwent a fermentation process. For each batch taken, two biodigesters were set for each aviary, with hydraulic retention time of 35 days. The efficiency of the biodigestion process was evaluated by biogas production in relation to total solids (TS) added, as well as the potential for power generation. Quantified volumes ranged from 8.9 to 41.1 L of biogas for aviary 1, and 6.7 to 33.9 L of biogas for aviary 2, with the sixth bed reused from both aviaries registering the largest biogas potential. Average potential biogas in m 3  kg -1 of TS added were 0.022 to 0.034 for aviary 1 and 0.015 to 0.022 for aviary 2. Energy values ​​of biogas produced were calculated based on calorific value and ranged from 0.06 to 0.33 kWh for chicken litter without fermentation and from 0.05 to 0.27 kWh for chicken litter with fermentation. It was concluded that the re-use of poultry litter resulted in an increase in biogas production, and the use of fermentation in the microbiological treatment of poultry litter seems to have negatively influenced production of biogas.

  3. Revisiting Renewable Energy Map in Indonesia: Seasonal Hydro and Solar Energy Potential for Rural Off-Grid Electrification (Provincial Level

    Directory of Open Access Journals (Sweden)

    Agung Wahyuono Ruri

    2018-01-01

    Full Text Available Regarding the acceleration of renewable energy diffusion in Indonesia as well as achieving the national energy mix target, renewable energy map is essential to provide useful information to build renewable energy system. This work aims at updating the renewable energy potential map, i.e. hydro and solar energy potential, with a revised model based on the global climate data. The renewable energy map is intended to assist the design off-grid system by hydropower plant or photovoltaic system, particularly for rural electrification. Specifically, the hydro energy map enables the stakeholders to determine the suitable on-site hydro energy technology (from pico-hydro, micro-hydro, mini-hydro to large hydropower plant. Meanwhile, the solar energy map depicts not only seasonal solar energy potential but also estimated energy output from photovoltaic system.

  4. Progress in the development of global medium-energy nucleon-nucleus optical model potentials

    International Nuclear Information System (INIS)

    Madland, D.G.

    1997-01-01

    Two existing global medium-energy nucleon-nucleus phenomenological optical model potentials are described and compared with experiment and with each other. The first of these employs a Dirac approach (second-order reduction) that is global in projectile energy and projectile isospin and applies to the target nucleus 208 Pb. The second of these employs a relativistic equivalent to the Schroedinger equation (including relativistic kinematics) that is global in projectile energy, projectile isospin, and target (Z,A). Finally, current work is described and the influence of the nuclear bound state problem (treated in relativistic mean field theory) on the Dirac scattering problem is mentioned. Spherical target nuclei are treated in the present work and strongly-collective target nuclei (rotational and vibrational) requiring coupled-channels approaches will be treated in a future paper. (author)

  5. Potential alternative energy technologies on the Outer Continental Shelf.

    Energy Technology Data Exchange (ETDEWEB)

    Elcock, D.; Environmental Assessment

    2007-04-20

    This technical memorandum (TM) describes the technology requirements for three alternative energy technologies for which pilot and/or commercial projects on the U.S. Outer Continental Shelf (OCS) are likely to be proposed within the next five to seven years. For each of the alternative technologies--wind, wave, and ocean current--the TM first presents an overview. After each technology-specific overview, it describes the technology requirements for four development phases: site monitoring and testing, construction, operation, and decommissioning. For each phase, the report covers the following topics (where data are available): facility description, electricity generated, ocean area (surface and bottom) occupied, resource requirements, emissions and noise sources, hazardous materials stored or used, transportation requirements, and accident potential. Where appropriate, the TM distinguishes between pilot-scale (or demonstration-scale) facilities and commercial-scale facilities.

  6. Economics and yields of energy plantations: Status and potential

    International Nuclear Information System (INIS)

    Kenney, W.A.; Gambles, R.L.; Zsuffa, L.

    1992-01-01

    A study was carried out to: determine the factors affecting the cost of energy conversion feedstocks in short rotation intensive culture plantations of trees; determine the factors influencing biomass yield; identify interrelationships between the previous two objectives; present estimates of potential biomass yields and associated economics; and to identify gaps in the knowledge of the economics and yields of biomass production and their interrelationships. Reported costs for most aspects had a wide range. Currently, yields of 10-15 dry Mg/hectare/y are readily achievable. Using the cost and yield data, and assuming a biomass price of $40/dry Mg, a series of cash flow analyses were performed. For the low cost inputs, all scenarios were marginally profitable. For the high cost inputs, none of the scenarios were profitable. A current scenario, using figures for contract farming, was not profitable, however this system would break even with a yield of 23.3 dry Mg/hectare/y, within the range of some production clones. A future scenario using farm labour with increased productivity, product values, and machinery efficiencies yielded a profit-making situation. The addition of incentives increased profitability. There is great potential for the production of woody biomass in Canada as a feedstock for energy and other products. Continued and more intensive breeding and selection to develop high yielding stress tolerant clones, cost efficient harvesting systems, continued research into optimization of planting density, rotation length and cultural techniques, and characterization of promising clones with respect to nutrient-use efficiency, site requirements and pest/disease resistance are important areas for further work. 81 refs., 3 figs., 13 tabs

  7. In-flight food delivery and waste collection service: the passengers’ perspective and potential improvement

    Science.gov (United States)

    Romli, F. I.; Rahman, K. Abdul; Ishak, F. D.

    2016-10-01

    Increased competition in the commercial air transportation industry has made service quality of the airlines as one of the key competitive measures to attract passengers against their rivals. In-flight services, particularly food delivery and waste collection, have a notable impact on perception of the overall airline's service quality because they are directly and interactively provided to passengers during flight. An online public survey is conducted to explore general passengers' perception of current in-flight food delivery and waste collection services, and to identify potential rooms for improvement. The obtained survey results indicate that in-flight service does have an effect on passengers' choice of airlines. Several weaknesses of the current service method and possible improvements have been established from the collected responses.

  8. Renewable energy technologies in the Maldives - Realizing the potential

    International Nuclear Information System (INIS)

    Alphen, Klaas van; Hekkert, Marko P.; Sark, Wilfried G.J.H.M. van

    2008-01-01

    Like in many Small Island Developing States, the techno-economic potential of renewable energy technologies (RETs) in the Maldives is substantial. However, it is not certain that these economically viable RETs will indeed be implemented and utilized, since this is greatly influenced by various social, institutional and political factors (i.e., the Innovation System). In order to steer away from activities that enhance the current fossil fuel based lock-in situation and create an environment that increases the chance of a successful transfer and diffusion of RETs, several projects have been set up in the Maldives. These projects have been initiated by the Global Environmental Facility, the United Nations Development Program, and the European Commission. In this article we evaluate these projects by analyzing whether or not they strengthen the local Renewable Energy Innovation System. This evaluation shows that these RE programs strengthen most of the key processes necessary in an Innovation System conducive to technology transfer. However, as not enough attention is being paid to local entrepreneurial activities and the creation of a domestic market for RETs, the process of RET transfer might run the risk of stagnation after completion of the RE programs. (author)

  9. Energy potential from municipal solid waste in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Sivapalan Kathirvale; Muhd Noor Muhd Yunus [Malaysian Institute for Nuclear Technology Research, Selangor Darul Ehsan (Malaysia). Incineration and Renewable Energy Center; Kamaruzzaman Sopian; Abdul Halim Samsuddin [University Kebangsaan Malaysia, Selangor Darul Ehsan (Malaysia). Faculty of Engineering

    2004-04-01

    The average amount of municipal solid waste (MSW) generated in Malaysia is 0.5-0.8 kg/person/day and has increased to 1.7 kg/person/day in major cities. This paper highlights the MSW characteristics for the city of Kuala Lumpur. Currently, the waste management approach being employed is landfill, but due to rapid development and lack of space for new landfills, big cities in Malaysia are switching to incineration. A simple evaluation was conducted to establish the amount of energy that would be recovered based on the characteristics of the MSW if it were to be incinerated. From the characterization exercise, the main components of the Malaysian MSW were found to be food, paper and plastic, which made up almost 80% of the waste by weight. The average moisture content of the MSW was about 55%, making incineration a challenging task. The calorific value of the Malaysian MSW ranged between 1500 and 2600 kcal/kg. However, the energy potential from an incineration plant operating based on 1500 ton of MSW/day with an average calorific value of 2200 kcal/kg is assessed to be at 640 kW/day. (author)

  10. Potential of Biomass for Energy. Market Survey Portugal

    International Nuclear Information System (INIS)

    2007-03-01

    The objective of this market survey is to provide information about the biomass sector in Portugal, relevant to mainly small and medium-sized enterprises (SME) in the Netherlands that are interested to strengthen their position in that sector. Much knowledge could be gathered from conversations with the partners of Sunergy, the company responsible for this survey. Sunergy is producing bio-diesel, and considering further investments in the solid biomass sector, and therefore well familiar with the developments. Other interviews were held with representatives of the Government (DGGE), association of forestry owners (AFLOPS), a biomass trading SME (Sobioen), the leading environmental NGO (Quercus), and an association representing the paper- and pulp industry (CELPA). Chapter 1 is a general introduction on biomass. Chapter 2 gives the background of the Portuguese energy sector and the relative importance of renewable and biomass energies within this market. Some prospects for future developments of the different renewable sources are given. Portugal's energy sector is dominated by a small number of players, which are introduced. Also the current policies and incentives (subsidies) are presented. In Chapter 3 the focus is on the Portuguese biomass sector, presenting the current use of biomass in each of the subsectors: transport, electricity and heat, and an overview of the policy framework specifically for biomass. Chapter 4 is a literature review of the market for existing and potential biomass resources, including demand, supply and other characteristics. Chapter 5 synthesizes the previous chapters. Also an overview of key drivers and key constraints for growth of this sector is given, leading to conclusions regarding the opportunities for Dutch companies. Finally, further information on how to proceed once the interest for Portugal's biomass sector is vested is listed at the end of Chapter 5

  11. Future World Energy Demand and Supply: China and India and the Potential Role of Fusion Energy

    International Nuclear Information System (INIS)

    Sheffield, John

    2005-01-01

    Massive increases in energy demand are projected for countries such as China and India over this century e.g., many 100s of megawatts of electricity (MWe) of additional electrical capacity by 2050, with more additions later, are being considered for each of them. All energy sources will be required to meet such a demand. Fortunately, while world energy demand will be increasing, the world is well endowed with a variety of energy resources. However, their distribution does not match the areas of demand and there are many environmental issues.Such geopolitical issues affect China and India and make it important for them to be able to deploy improved technologies. In this regard, South Korea is an interesting example of a country that has developed the capability to do advanced technologies - such as nuclear power plants. International collaborations in developing these technologies, such as the International Thermonuclear Reactor (ITER), may be important in all energy areas. Fusion energy is viewed as an interesting potential option in these three countries

  12. The potential of energy farming in the southeastern California desert

    Science.gov (United States)

    Lew, V.

    1980-04-01

    The use of energy forms to provide future sources of energy for California is considered. Marginal desert lands in southeastern California are proposed for the siting of energy farms using acacia, eucalyptus, euphorbia, guayule, jojoba, mesquite, or tamarisk.

  13. Brazil's energy potential: a governance challenge

    International Nuclear Information System (INIS)

    Sebille-Lopez, Philippe

    2015-07-01

    Except good quality anthracite, Brazil possesses all possible energy resources in large quantities: large natural gas and oil reserves, high hydroelectric capacities, but also high wind and solar capacities. Despite this potential, Brazil is often facing large electric power failures. After a first part which proposes an overview of characteristics of the hydrocarbon sector (overview of oil discoveries, evocation of the Petrobras monopoly, comments about shortfall in natural gas production, and about ethanol as adjustment variable in transports but insufficient to solve the external dependency of Brazil for oil-based products), the author tries to identify and understand the political management of this sector by the Workers Party since 2003 (law, local content and limits of oil at the service of the Brazilian economy, Petrobras as a state within the state, issues related to corruption). The author then focuses on electricity, tries to understand why, despite this high potential and constant investment in this sector, the country is still facing these power failures. In this respect, he notably comments the status and condition of electricity production, the reform of electricity pricing, and the lack of statistics on hydroelectricity, and outlines that improvements are long coming. He also highlights the role of politics in the management of this sector

  14. Potential of Livestock Generated Biomass: Untapped Energy Source in India

    Directory of Open Access Journals (Sweden)

    Gagandeep Kaur

    2017-06-01

    Full Text Available Modern economies run on the backbone of electricity as one of major factors behind industrial development. India is endowed with plenty of natural resources and the majority of electricity within the country is generated from thermal and hydro-electric plants. A few nuclear plants assist in meeting the national requirements for electricity but still many rural areas remain uncovered. As India is primarily a rural agrarian economy, providing electricity to the remote, undeveloped regions of the country remains a top priority of the government. A vital, untapped source is livestock generated biomass which to some extent has been utilized to generate electricity in small scale biogas based plants under the government's thrust on rural development. This study is a preliminary attempt to correlate developments in this arena in the Asian region, as well as the developed world, to explore the possibilities of harnessing this resource in a better manner. The current potential of 2600 million tons of livestock dung generated per year, capable of yielding 263,702 million m3 of biogas is exploited. Our estimates suggest that if this resource is utilized judiciously, it possesses the potential of generating 477 TWh (Terawatt hour of electrical energy per annum.

  15. Estimating Solar Energy Potential in Buildings on a Global Level

    DEFF Research Database (Denmark)

    Petrichenko, Ksenia

    2015-01-01

    This chapter contributes to the debate around net-zero energy concept from a global perspective. By means of comprehensive modelling, it analyses how much global building energy consumption could be reduced through utilisation of building-integrated solar energy technologies and energy......-efficiency improvements. Valuable insights on the locations and building types, in which it is feasible to achieve a net-zero level of energy performance through solar energy utilisation, are presented in world maps....

  16. Transverse energy per charged particle in heavy-ion collisions: Role of collective flow

    Science.gov (United States)

    Kumar Tiwari, Swatantra; Sahoo, Raghunath

    2018-03-01

    The ratio of (pseudo)rapidity density of transverse energy and the (pseudo)rapidity density of charged particles, which is a measure of the mean transverse energy per particle, is an important observable in high energy heavy-ion collisions. This ratio reveals information about the mechanism of particle production and the freeze-out criteria. Its collision energy and centrality dependence is almost similar to the chemical freeze-out temperature until top Relativistic Heavy-Ion Collider (RHIC) energy. The Large Hadron Collider (LHC) measurement at √{s_{NN}} = 2.76 TeV brings up new challenges towards understanding the phenomena like gluon saturation and role of collective flow, etc. being prevalent at high energies, which could contribute to the above observable. Statistical Hadron Gas Model (SHGM) with a static fireball approximation has been successful in describing both the centrality and energy dependence until top RHIC energies. However, the SHGM predictions for higher energies lie well below the LHC data. In order to understand this, we have incorporated collective flow in an excluded-volume SHGM (EV-SHGM). Our studies suggest that the collective flow plays an important role in describing E T/ N ch and it could be one of the possible parameters to explain the rise observed in E T/ N ch from RHIC to LHC energies. Predictions are made for E T/ N ch , participant pair normalized-transverse energy per unit rapidity and the Bjorken energy density for Pb+Pb collisions at √{s_{NN}} = 5.02 TeV at the Large Hadron Collider.

  17. CPAC: Energy-Efficient Data Collection through Adaptive Selection of Compression Algorithms for Sensor Networks

    Science.gov (United States)

    Lee, HyungJune; Kim, HyunSeok; Chang, Ik Joon

    2014-01-01

    We propose a technique to optimize the energy efficiency of data collection in sensor networks by exploiting a selective data compression. To achieve such an aim, we need to make optimal decisions regarding two aspects: (1) which sensor nodes should execute compression; and (2) which compression algorithm should be used by the selected sensor nodes. We formulate this problem into binary integer programs, which provide an energy-optimal solution under the given latency constraint. Our simulation results show that the optimization algorithm significantly reduces the overall network-wide energy consumption for data collection. In the environment having a stationary sink from stationary sensor nodes, the optimized data collection shows 47% energy savings compared to the state-of-the-art collection protocol (CTP). More importantly, we demonstrate that our optimized data collection provides the best performance in an intermittent network under high interference. In such networks, we found that the selective compression for frequent packet retransmissions saves up to 55% energy compared to the best known protocol. PMID:24721763

  18. IFREMER-ADEME colloquium 'Offshore renewable energies: offshore wind energy - sea currents and waves. Collection of abstracts

    International Nuclear Information System (INIS)

    2004-10-01

    This document contains programme and abstracts of contributions presented during a colloquium. These contributions first addresses the context, and regulatory and economic aspects of offshore wind and sea energy: specificities related to the Public Maritime Domain for the implantation of offshore wind turbines, economy of sea energies within a perspective of de-carbonation of the world energy sector, case of offshore wind turbines and assessment of economic impacts of the implantation of sea renewable energy production units, financing stakes for offshore wind energy projects. A second set of contribution addresses the state-of -the-art and feedbacks for offshore wind energy installations. The third set addresses the assessment of resource potential, measurements, models and production prediction for offshore wind energy: case of French coasts, use of radar for remote sensing, wind climatology modelling, data acquisition for wind farm and data processing. The fourth set of contributions addresses the state-of-the-art, feedback, and R and D for sea current energy, while the fifth one addressed the same aspects for sea wave energy. Technology, installations, maintenance and storage in the field of wind energy are then addressed, and the last set deals with environmental and social-economical impacts of sea renewable energies

  19. Abstract Collection of 19th Forum: Energy Day in Croatia: Energy Future - Vision 2050

    International Nuclear Information System (INIS)

    2010-01-01

    Why the 2050 energy vision is already so important? In the times of recession, of rising unemployment, of sluggish economic activity and the decline of standard of living of individuals, the year 2050 may seem as a very distant future, almost beyond our reach. What are the arguments PRO long term strategies, despite of the fact that the forecast for so many influential factors (such as consumption, population number, economic growth, etc.) appears to be highly uncertain. The first pro comes from the very fact that the energy industry operates in long time frames. Research, preparation, designing, construction and exploitation of energy facilities are a long term process and, as such, it requires long-term strategic plans. Moreover, we should bear in mind that the processes of technological development are also extensive and their final outcome is not always predictable, especially in time horizons of realization of a new technology and its commercial usability, then strategic visions referring to long time frames become crucial. Of course, it is necessary but not sufficient a case for long term strategies, because this is not something we did not know before. The said features of the energy industry are all quite well known, and they don not make difference between the present period and any other period in the past. The new PRO argument comes from the climate change and the need to dramatically reduce CO 2 and other greenhouse gas emissions compared to 1990 levels or other year which is used as a benchmark for needed changes aimed at climate preservation. Dramatic emission reduction (with expected target of as much as 50%), while expecting an increase in energy consumption, brings about the changes along the whole cycle of production, transmission, distribution, and use of energy. The energy sector in 2050, with reduced CO 2 and other GHG emissions, has a totally different landscape in terms of consumption structure at end-user level and therefore in terms of

  20. On the global and regional potential of renewable energy sources

    NARCIS (Netherlands)

    Hoogwijk, Monique Maria

    2004-01-01

    In this thesis, the central research question is: what can be the contribution of renewable energy sources to the present and future world and regional energy supply system. The focus is on wind, solar PV and biomass energy (energy crops) for electricity generation. For the assessment of the

  1. Synergy potential for oil and geothermal energy exploitation

    NARCIS (Netherlands)

    Ziabakhshganji, Z.; Maghami Nick, Hamidreza M.; Donselaar, Rick; Bruhn, D.F.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources,

  2. Potential Ambient Energy-Harvesting Sources and Techniques

    Science.gov (United States)

    Yildiz, Faruk

    2009-01-01

    Ambient energy harvesting is also known as energy scavenging or power harvesting, and it is the process where energy is obtained from the environment. A variety of techniques are available for energy scavenging, including solar and wind powers, ocean waves, piezoelectricity, thermoelectricity, and physical motions. For example, some systems…

  3. Quantitative appraisal and potential analysis for primary biomass resources for energy utilization in China

    Energy Technology Data Exchange (ETDEWEB)

    Yanli, Yang; Peidong, Zhang; Yonghong, Zheng; Lisheng, Wang [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Wenlong, Zhang; Yongsheng, Tian [Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of science, Qingdao 266101 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China)

    2010-12-15

    As the largest agricultural country, China has abundant biomass resources, but the distribution is scattered and difficult to collect. It is essential to estimate the biomass resource and its potential for bioenergy utilization in China. In this study, the amount of main biomass resources for possible energy use and their energy utilization potential in China are analyzed based on statistical data. The results showed that the biomass resource for possible energy use amounted to 8.87 x 10{sup 8} tce in 2007 of which the crops straw is 1.42 x 10{sup 8} tce, the forest biomass is 2.85 x 10{sup 8} tce, the poultry and livestock manure is 4.40 x 10{sup 7} tce, the municipal solid waste is 1.35 x 10{sup 6} tce, and the organic waste water is 6.46 x 10{sup 6} tce. Through the information by thematic map, it is indicated that, except arctic-alpine areas and deserts, the biomass resource for possible energy use was presented a relatively average distribution in China, but large gap was existed in different regions in the concentration of biomass resources, with the characteristics of East dense and West sparse. It is indicated that the energy transformation efficiency of biomass compressing and shaping, biomass anaerobic fermentation and biomass gasification for heating have higher conversion efficiency. If all of the biomass resources for possible energy use are utilized by these three forms respectively, 7.66 x 10{sup 12} t of biomass briquettes fuel, 1.98 x 10{sup 12} m{sup 3} of low calorific value gas and 3.84 x 10{sup 11} m{sup 3} of biogas could be produced, 3.65 x 10{sup 8} t to 4.90 x 10{sup 8} t of coal consumption could be substituted, and 6.12 x 10{sup 8} t to 7.53 x 10{sup 8} t of CO{sub 2} emissions could be reduced. With the enormous energy utilization potential of biomass resources and the prominent benefit of energy saving and emission reduction, it proves an effective way to adjust the energy consumption structure, to alleviate the energy crisis, to ensure

  4. Biomass energy - large potential in North-West Russia

    International Nuclear Information System (INIS)

    Borchsenius, Hans

    2000-01-01

    Changing from oil or coal to bio fuel is a high priority in all European countries. The potential for such a transition is largest in North-West Russia, where several factors point to biomass energy: large bio fuel resources, large need for heating because of the cold climate, and almost 100% coverage of district heating. Here, the largest continuous coniferous forest in Europe supplies the raw material for a considerable forest industry, including some of the biggest sawmills and paper- and cellulose factories in the world. The fraction of the timber that cannot go into this production is suitable as bio fuel. About 15% of the raw material in this industry is bark and sawdust which can be used for energy production. In addition, 10% of the biomass of the trees remains on the forest floor as twigs, treetops etc. If all this sawdust and felling waste was used to replace heating oil, the corresponding reduction of CO2 emission would amount to 25 mill m3 per year. The forest industry in Russia is currently in full production, and an increasing mass of sawdust and wood waste is accumulating in depositories that cover larger and larger areas. Depositories are often set on fire to keep down the masses; at the same time, the district heating plants are fired with expensive oil or coal. This paradoxical situation is due to the economical crises in the 1990s. Neither private companies nor the local governments could invest in bio fueled boilers. Bio fuel projects are cost-effective and easy to document and perfectly suitable for joint implementations under the Kyoto Protocol

  5. Tropical Cyclone Signatures in Atmospheric Convective Available Potential Energy

    Science.gov (United States)

    Studholme, Joshua; Gulev, Sergey

    2016-04-01

    Tropical cyclones play an important role in the climate system providing transports of energy and water vapor, forcing the ocean, and also affecting mid-latitude circulation phenomena. Tropical cyclone tracks experience strong interannual variability and in addition, longer term trend-like changes in all ocean basins. Analysis of recent historical data reveal a poleward shift in the locations of tropical cyclone tracks in both the Northern and Southern Hemispheres (Kossin et al. 2014, Nature, 509, 349-352). The physical consequences of these alterations are largely unconstrained. For example, the increasing encroachment of tropical cyclone activity into the extra-tropical environment presents a novel and still poorly understood paradigm for tropical-extratropical interactions. In this respect, the role that the atmospheric convective available potential energy (CAPE) plays in the dynamics of tropical cyclones is highly interesting. The two characteristic global-scale spatial patterns in CAPE are identified using EOF analysis. The first pattern shows an abundance of CAPE in the centre of the Pacific and corresponds to the El Nino Southern Oscillation. The second one is capturing positive CAPE anomalies in the oceanic tropics and negative anomalies over equatorial Africa. Associated with these buoyancy patterns, alterations in tropical cyclone activity occur in all basins forming both zonal and meridional patterns. Atmospheric buoyancy is the trigger for deep convection, and subsequently cyclone genesis. This is the mechanism of impact upon location at the start of cyclone tracks. It is found to have less impact upon where cyclones subsequently move, whether or not they undergo extratropical transition and when and where they experience lysis. It is shown that CAPE plays a critical role in the general circulation in the tropics which in turn is the larger steering context for embedded systems within the Walker and Hadley cells. So this lack of `latter life' impact

  6. An assessment of the biomass potential of Cyprus for energy production

    International Nuclear Information System (INIS)

    Kythreotou, Nicoletta; Tassou, Savvas A.; Florides, Georgios

    2012-01-01

    Biodegradable waste in Cyprus predominately consists of the biodegradable fraction of municipal solid waste, sewage sludge, solid and liquid agricultural residues and solid and liquid wastes from food and drink industries. Biodegradable waste is a very important source of biomass. The potential amount of solid and liquid biomass of the specified waste streams was estimated to be 9.2 million tonnes, after collecting data on the waste generation coefficients. Both liquid and solid waste can be used for the production of biogas (BG), which can be combusted for the production of thermal and electrical energy. The potential biogas production was estimated on the basis of Chemical Oxygen Demand (COD) consumption and on the basis of digested mass. The potential biogas production was found to be 114 and 697 million m 3 respectively. Further research is required for the improvement of waste generation coefficients. The results on energy production provide an indication of the importance of promotion of anaerobic digestion for the treatment of biodegradable waste to the energy balance of the country. Anaerobic digestion can provide decentralisation of energy production, and production of energy in areas that are in most cases remote. -- Highlights: ► Waste generation coefficients were estimated according to available data for Cyprus. ► Total solid and liquid biomass from waste was estimated to be 9.2 million tonnes. ► Biogas production was estimated using COD and mass digested. ► Further research is required for the improvement of waste generation coefficients. ► Energy production estimates indicates the importance of anaerobic digestion.

  7. Passive water collection with the integument: mechanisms and their biomimetic potential.

    Science.gov (United States)

    Comanns, Philipp

    2018-05-22

    Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals - in excess of 39 species from 24 genera - have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced. © 2018. Published by The Company of Biologists Ltd.

  8. Marine and Hydrokinetic Renewable Energy Technologies: Potential Navigational Impacts and Mitigation Measures

    Energy Technology Data Exchange (ETDEWEB)

    Cool, Richard, M.; Hudon, Thomas, J.; Basco, David, R.; Rondorf, Neil, E.

    2009-12-10

    checklist for assessing the navigational impacts of potential marine and hydrokinetic projects, and provides guidance for improving the existing navigational guidance promulgated by the USCG in Navigation Vessel Inspection Circular 02 07. At the request of the USCG, our checklist and mitigation guidance was written in a generic nature so that it could be equally applied to offshore wind projects. PCCI teleconferenced on a monthly basis with DOE, Pacific Energy Ventures and reVision in order to share information and review work products. Although the focus of our effort was on marine and hydrokinetic technologies, as defined above, this effort drew upon earlier work by the USCG on offshore wind renewable energy installations. The guidance provided herein can be applied equally to marine and hydrokinetic technologies and to offshore wind, which are collectively referred to by the USCG as Renewable Energy Installations.

  9. The Potential for Renewable Energy Development to Benefit Restoration of the Salton Sea. Analysis of Technical and Market Potential

    Energy Technology Data Exchange (ETDEWEB)

    Gagne, Douglas [National Renewable Energy Lab. (NREL), Golden, CO (United States); Haase, Scott [National Renewable Energy Lab. (NREL), Golden, CO (United States); Oakleaf, Brett [National Renewable Energy Lab. (NREL), Golden, CO (United States); Hurlbut, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Akar, Sertac [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wall, Anna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pienkos, Philip [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melius, Jennifer [National Renewable Energy Lab. (NREL), Golden, CO (United States); Melaina, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    This report summarizes the potential for renewable energy development in the Salton Sea region, as well as the potential for revenues from this development to contribute financially to Salton Sea restoration costs. It considers solar, geothermal, biofuels or nutraceutical production from algae pond cultivation, desalination using renewable energy, and mineral recovery from geothermal fluids.


  10. Radial collective flow in heavy-ion collisions at intermediate energies

    International Nuclear Information System (INIS)

    Borderie, B.

    1996-11-01

    The production of radial collective flow is associated with collisions leading to sources which undergo multifragmentation/explosion processes. After a theoretical survey of possible causes of production of radial flow, methods used to derive experimental values are discussed. Finally, a large set of data is presented which can be used to study and disentangle the different effects leading to radial collective flow. The dominant role of compression in the lower energy domain is emphasized. (author)

  11. Truncation of CPC solar collectors and its effect on energy collection

    Science.gov (United States)

    Carvalho, M. J.; Collares-Pereira, M.; Gordon, J. M.; Rabl, A.

    1985-01-01

    Analytic expressions are derived for the angular acceptance function of two-dimensional compound parabolic concentrator solar collectors (CPC's) of arbitrary degree of truncation. Taking into account the effect of truncation on both optical and thermal losses in real collectors, the increase in monthly and yearly collectible energy is also evaluated. Prior analyses that have ignored the correct behavior of the angular acceptance function at large angles for truncated collectors are shown to be in error by 0-2 percent in calculations of yearly collectible energy for stationary collectors.

  12. Geothermal energy in Italy - its importance, potential and projects

    International Nuclear Information System (INIS)

    Berger, W.

    2005-01-01

    This article discusses the perspectives for the use of geothermal energy in Italy. Starting with an overview of the principles of the use of geothermal energy in general, the article goes on to review Italy's geothermal resources and their relevance to energy supply. Figures are given on the political situation in Italy concerning energy and the rapidly increasing demands made on electricity supply. Political support for renewable energy in Italy is looked at and models for financing projects are examined. Examples of geothermal energy projects are given and the perspectives for further developments in this industry are looked at

  13. An assessment of tidal energy potential. The Lima estuary

    Energy Technology Data Exchange (ETDEWEB)

    Trigo-Teixeira, A. [Department of Civil Engineering and Architecture, Instituto Superior Tecnico, Lisbon Technical University, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Rebordao, I. [WW Consulting Engineers, Laveiras, Caxias 2760-032 (Portugal)

    2009-07-01

    A hydrodynamic model was set up for the Lima estuary (Portugal) and a preliminary assessment of the strength of tidal currents to produce tidal energy was made. To calibrate the model results were compared with measured data, and the model tuned to reproduce water levels and currents in several locations within the estuary. The data was acquired with ADCPs, during a field campaign that was planed to cover a spring-neap tide cycle, in October 2006. The Advanced Circulation Model - ADCIRC was forced with the most important harmonic constituents present in the ocean tide signal. Upstream, in the river boundary, the discharge was taken from hydrographs. The wetting and drying tool was also applied and a detailed bathymetry was considered, since there are areas in the domain where salt marshes occur, drying out at low tide. The tidal currents potential were assessed for a scenario of tidal forcing only, without any river discharge. The lower estuary is occupied by the port infrastructure and navigation channels which conflicts with any kind of equipment installation. Values of the currents and water depths given by the model indicate that some places in the main channel of the middle estuary, might be interesting to install micro turbines in the future, depending on the evolution of the requirements of this technology.

  14. Alternative future energy pathways: Assessment of the potential of innovative decentralised energy systems in the UK

    International Nuclear Information System (INIS)

    Chmutina, Ksenia; Goodier, Chris I.

    2014-01-01

    In order to meet its 2050 target of 80% carbon emissions reduction, the UK is facing a challenge of restructuring its energy system, possibly by introducing more decentralised energy (DE) systems. Following semi-structured interviews, four exemplar international cases have been critiqued in order to investigate the variety and interrelationship of the drivers and barriers involved during their implementation, and then compared with the barriers and drivers that can potentially affect the implementation of similar projects in the UK context. The impacts of the barriers on the outcomes of these projects were evaluated, and recommendations were presented on overcoming these barriers if replicating similar projects in the UK context. Governance drivers play the most significant role, whereas financial drivers (commonly believed to be crucial), are deemed to play a lesser role. Social, governance and financial barriers rather than technological barriers constitute the central problem areas for the increased adoption of DE. The drivers and barriers experienced in the international cases were similar to those anticipated in the UK. The case studies present a high potential for replication and scaling up in the UK context and demonstrate that the increased implementation of DE systems could also enhance social and governance benefits. - Highlights: • This paper examines four international urban decentralised energy initiatives. • Drivers and barriers are found to be highly diverse but similar to the ones in the UK. • Governance drivers play the most significant role. • Increased implementation of DE systems can enhance social and governance benefits

  15. Energy-Neutral Data Collection Rate Control for IoT Animal Behavior Monitors

    Directory of Open Access Journals (Sweden)

    Jay Wilhelm

    2017-11-01

    Full Text Available Energy-neutral operation (ENO is a major concern for Internet of things (IoT sensor systems. Animals can be tagged with IoT sensors to monitor their movement and behavior. These sensors wirelessly upload collected data and can receive parameters to change their operation. Typically, the behavior monitors are powered by a battery where the system relies upon harvesting solar radiation for sustainable operation. Solar panels typically are used as the harvesting mechanism and can have a level of uncertainty regarding consistent energy delivery due to factors such as adverse weather, foliage, time of day, and individual animal behavior. The variability of available energy inevitably creates a trade-off in the rate at which data can be collected with respect to incoming and stored energy. The objective of this research was to investigate and simulate methods and parameters that can control the data collection rate of an IoT behavior monitor to achieve sustained operation with unknown and random energy harvesting. Analysis and development of a control system were performed by creating a software model of energy consumption and then simulating using different initial conditions and random energy harvesting rates for evaluation. The contribution of this effort was the exploration into the usage of a discrete-time gain scheduled Proportional–Integral–Derivative (PID that was tuned to a specific device configuration, using battery state of charge as an input, and found to maintain a battery level set-point, reject small solar harvesting energy disturbances, and maintain a consistent data collection rate throughout the day.

  16. determination of bio-energy potential of palm kernel shell

    African Journals Online (AJOL)

    88888888

    2012-11-03

    Nov 3, 2012 ... most viable application in Renewable Energy options such as bioenergy and biomass utilization. Its higher heating ... enable it release volatile matter necessary for bio-energy production. ..... ment and Efficiency. Ministry of ...

  17. The Potential for Scaling Up a Fog Collection System on the Eastern Escarpment of Eritrea

    Directory of Open Access Journals (Sweden)

    Mussie Fessehaye

    2015-11-01

    Full Text Available Fog is an untapped natural resource. A number of studies have been undertaken to understand its potential as an alternative or complementary water source. In 2007, a pilot fog-collection project was implemented in 2 villages on the Eastern Escarpment of Eritrea. The government of Eritrea, buoyed by the project’s positive results, has encouraged research into and application of fog-collection technologies to alleviate water-supply problems in this region. In 2014, this study was undertaken to assess the coverage, prevalence, intensity, and seasonality of fog on the Eastern Escarpment of Eritrea and consequently to identify potential beneficiary villages. Three independent methods used in the study—satellite image analyses, personal interviews, and a standard fog collector—produced reasonably similar characterizations of fog coverage and timing. The period with high fog incidence is mainly between November and March, with the highest number of fog days per year (96 on the central Eastern Escarpment and decreasing frequency to the south (78 days and north (73 days. The fog intensity on the central Eastern Escarpment is very high and in most cases reduces visibility to less than 500 m. In this period, a light to moderate breeze blows predominantly from the north and northeast. More than half of the villages in the region currently have a reliable water-supply system. The rest depend on seasonal roof-water harvesting, rock-water harvesting, and truck delivery and, therefore, could potentially benefit from fog collection as a supplementary water source. In particular, fog water could be useful for a small number of beneficiaries, including public services like schools and health facilities, where conventional water-delivery systems are not viable.

  18. Energy consumption and CO2 emissions of industrial process technologies. Saving potentials, barriers and instruments

    International Nuclear Information System (INIS)

    Fleiter, Tobias; Schlomann, Barbara; Eichhammer, Wolfgang

    2013-01-01

    Which contribution can the increase of energy efficiency achieve in the industry energy for the energy transition in Germany? To answer this question a model-based analysis of existing energy efficiency potentials of the energy-intensive industries is performed, which account for about 70% of the total energy demand of the industry. Based on this industry for each sector are instruments proposed for the implementation of the calculated potential and to overcome the existing barriers. [de

  19. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Frank A., E-mail: bender@isys.uni-stuttgart.de; Bosse, Thomas; Sawodny, Oliver

    2014-09-15

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection.

  20. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles

    International Nuclear Information System (INIS)

    Bender, Frank A.; Bosse, Thomas; Sawodny, Oliver

    2014-01-01

    Highlights: • Driving cycle acquisition in a refuse collection vehicle. • Vehicle modeling and validation for numerical simulations based on the measured driving cycle. • Fuel consumption analysis for a conventional diesel vehicle and a hybrid hydraulic vehicle. - Abstract: Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection

  1. French Brittany macroalgae screening: composition and methane potential for potential alternative sources of energy and products.

    Science.gov (United States)

    Jard, G; Marfaing, H; Carrère, H; Delgenes, J P; Steyer, J P; Dumas, C

    2013-09-01

    Macroalgae are biomass resources that represent a valuable feedstock to be used entirely for human consumption or for food additives after some extractions (mainly colloids) and/or for energy production. In order to better develop the algal sector, it is important to determine the capacity of macroalgae to produce these added-values molecules for food and/or for energy industries on the basis of their biochemical characteristics. In this study, ten macroalgae obtained from French Brittany coasts (France) were selected. The global biochemical composition (proteins, lipids, carbohydrates, fibers), the presence and characteristics of added-values molecules (alginates, polyphenols) and the biochemical methane potential of these algae were determined. Regarding its biochemical composition, Palmaria palmata is interesting for food (rich in nutrients) and for anaerobic digestion (0.279 LCH4/gVS). Saccharina latissima could be used for alginate extraction (242 g/kgTS, ratio between mannuronic and guluronic acid M/G=1.4) and Sargassum muticum for polyphenol extraction (19.8 g/kgTS). Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Seizing the Potential of Renewable Energy in Indonesia

    OpenAIRE

    Aulia, Ando Fahda

    2010-01-01

    The high dependency on fossil fuels, such as oil and coal, in fulfilling Indonesia'senergy consumption, has made Indonesia become a net oil importer country. Moreover,the recent global trend intends to lower the environmental impact due to carbon energy.In order to meet energy sustainability, these concerns have to be reduced throughdeveloping alternative sources of energy. Having renewable energy is currentlyconsidered as one strategy for Indonesia to meet its rapid economic growth. This pap...

  3. Fluid circulating pump operated by same incident solar energy which heats energy collection fluid

    Science.gov (United States)

    Collins, E. R.

    1980-01-01

    The application of using a spacecraft solar powered pump terrestrially to reduce or eliminate the need for fossil fuel generated electricity for domestic solar hot water systems was investigated. A breadboard prototype model was constructed utilizing bimetals to convert thermal energy into mechanical motion by means of a toggle operated shutter mechanism. Although it did not meet expected thermal efficiency, the prototype model was sufficient to demonstrate the mechanical concept.

  4. Low-energy coupling of individual and collective degrees of freedom: a general microscopic approach

    International Nuclear Information System (INIS)

    Quentin, P.; Meyer, M.

    1988-01-01

    A general microscopic approach of low energy coupling of individual and collective degrees of freedom is presented. The ingredients of a Bohr-Mottelson unified model description are determined consistently from the Skyrme SIII effective interaction, through the adiabatic limit of the time-dependent Hartree-Fock-Bogoliubov approximation. Three specific aspects will be mostly developed: i) the effect of pairing correlations on adiabatic mass parameters and collective dynamics; ii) a consistent coupling of collective and individual degrees of freedom to describe odd nuclei; iii) a study of spectroscopic data in odd-odd nuclei as a test of effective nucleon-nucleon interactions. (author)

  5. Renewable energy: the potential opportunities and obligations of ...

    African Journals Online (AJOL)

    Renewable energy is generally recognised as a positive step on the pathway to sustainable development, but biomass-based renewable energy is becoming a controversial issue. In agriculture, the lure of first-generation biofuels is already distorting world food markets, energy crops such as sugar cane and oil palm ...

  6. The Potential of Renewable Energy Systems in China

    DEFF Research Database (Denmark)

    Liu, Wen; Lund, Henrik; Mathiesen, Brian Vad

    2009-01-01

    This paper discusses the prospective of renewable energy in the process of sustainable development in China. Along with the high-speed economic development and increasing energy consumption, the Chinese Government faces a growing pressure to maintain the balance between energy supply and demand a...

  7. Tempered orbital energies and the potential curve within a molecule

    International Nuclear Information System (INIS)

    Anno, T.; Sakai, Y.

    1979-01-01

    It is shown that the sum of the tempered orbital energies behaves much the same way as does the some of the Hartree--Fock orbital energies. The H 2 moluecule in its minimum basis set description is chosen as an example and comparison of orbital energies is carried out

  8. Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering

    Science.gov (United States)

    Kappus, B.; Bataller, A.; Putterman, S. J.

    2013-12-01

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  9. Status and potential of nuclear energy in Pakistan

    International Nuclear Information System (INIS)

    Khan, A.M.; Jalal, A.I.

    1991-01-01

    Pakistan is an energy resource deficient country which is heavily dependent on imported energy, while its per capita energy consumption level is still very low. Energy and electricity needs have been growing rapidly and these trends are expected to continue. Pakistan needs to make use of nuclear power on a large scale. This paper discusses the limitations of indigenous energy resources in coping with the future requirements of electricity and compares the cost economics of nuclear power with that of electricity generation based on imported oil and coal. It then describes the efforts being made in the country to make use of nuclear power in a self-reliant manner. (author)

  10. Sustainable development - the potential contribution of nuclear energy

    International Nuclear Information System (INIS)

    Bourdier, Jean-Pierre; Barre, Bertrand; Durret, Louis-Francois

    1998-01-01

    Sustainable development combines development, durability and sustainability. Energy is crucial for development: it brings work, nutrition, health, security, community, etc. Electrical energy offers the most possibilities for the consumer, particularly as regards the problems of pollution on the site of consumption. Nuclear generation is one of the best ways of producing electricity. Midway between stock energies and flow energies, it has several advantages: low consumption of resources, safety, compactness and cleanliness. Waste is not a specifically nuclear problem: it should be considered in terms of a life cycle analysis; construction, dismantling and functioning have to be assessed. The size of certain energies' contribution to the greenhouse effect is therefore made clear. Reprocessing represents a saving of energy, without environmental or health damage. It contributes to energy control, and therefore to sustainable development

  11. Power from Perspective: Potential future United States energy portfolios

    International Nuclear Information System (INIS)

    Tonn, Bruce; Healy, K.C.; Gibson, Amy; Ashish, Ashutosh; Cody, Preston; Beres, Drew; Lulla, Sam; Mazur, Jim; Ritter, A.J.

    2009-01-01

    This paper presents United States energy portfolios for the year 2030, developed from seven different Perspectives. The Perspectives are characterized by different weights placed on fourteen defining values (e.g., cost, social acceptance). The portfolios were constructed to achieve three primary goals, energy independence, energy security, and greenhouse gas reductions. The portfolios are also evaluated over a comprehensive set of secondary criteria (e.g., economic growth, technical feasibility). It is found that very different portfolios based on very different defining values can achieve the three primary goals. Commonalities among the portfolios include reliance upon cellulosic ethanol, nuclear power, and energy efficiency to meet year 2030 energy demands. It is concluded that the US energy portfolio must be diverse and to achieve national energy goals will require an explicit statement of goals, a strong role for government, and coordinated action across society

  12. Computed Potential Energy Surfaces and Minimum Energy Pathway for Chemical Reactions

    Science.gov (United States)

    Walch, Stephen P.; Langhoff, S. R. (Technical Monitor)

    1994-01-01

    Computed potential energy surfaces are often required for computation of such observables as rate constants as a function of temperature, product branching ratios, and other detailed properties. We have found that computation of the stationary points/reaction pathways using CASSCF/derivative methods, followed by use of the internally contracted CI method with the Dunning correlation consistent basis sets to obtain accurate energetics, gives useful results for a number of chemically important systems. Applications to complex reactions leading to NO and soot formation in hydrocarbon combustion are discussed.

  13. The potential energy conservation of the Dutch industrial, business and service sector

    International Nuclear Information System (INIS)

    Van der Werff, R.L.; Opschoor, J.B.

    1992-01-01

    The database ICARUS has been used as a starting point to estimate the economical potential for energy conservation in different sectors of the Dutch society. ICARUS is based on research on real energy consuming processes and applications in a number of sub-sectors of the Dutch economy. The present energy conservation potential in the Netherlands is based on energy conservation studies in the Netherlands and other countries. For this article the economical efficient energy conservation potentials in 1992 have been investigated for the Dutch sectors, which do not supply energy. The potentials are determined on the basis of the technical energy conservation potentials for the year 2000, according to the database ICARUS. Two methods were used to extract the economic potential from the technical potential: the method of the Net Market Value and the method of the payback period. From the ICARUS analysis it appears that the technical potential for energy conservation is 479 PJ, which is 28.8% of the primary energy consumption of 1664 PJ in 1985. The economic energy conservation potential is 262 PJ for a payback period of less than five years, which is 17% of the 1985 primary energy consumption. Next to the above-mentioned analysis policy-aimed simulations were carried out for three scenarios to determine economical energy conservation potentials. In one scenario doubled energy prices were used in comparison with the 1991 prices. Another scenario uses the Net Market Value method with a 5% discount rate, and the third scenario uses both parameters

  14. The fractional virial potential energy in two-component systems

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2008-01-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, φ = φ(y, m, characterized (for assigned values of the fractional mass, m = Mj /Mi by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of m is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the (Oyφ plane, where the fractional truncation radius along a selected direction is y = Rj /Ri , and the fractional virial potential energy is φ = (Eji vir /(Eij vir . Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of N = 16 elliptical galaxies (EGs on the (Oyφ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, m, and equal scaled truncation radius, or concentration, Ξu = Ru /r† , u = i, j, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, y, or fractional scaling radii, y† = r† /r† , deduced from sample objects.

  15. 76 FR 47605 - Notice of Proposed Information Collection: Comment Request; Energy Efficient Mortgages (EEMs)

    Science.gov (United States)

    2011-08-05

    ... value of the energy saved over the useful life of the improvement. Section 2123 of the Housing Economic... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR-5484-N-27] Notice of Proposed... Secretary for Housing, HUD. ACTION: Notice. SUMMARY: The proposed information collection requirement...

  16. Joint Mobile Data Collection and Wireless Energy Transfer in Wireless Rechargeable Sensor Networks.

    Science.gov (United States)

    Zhong, Ping; Li, Ya-Ting; Liu, Wei-Rong; Duan, Gui-Hua; Chen, Ying-Wen; Xiong, Neal

    2017-08-16

    In wireless rechargeable sensor networks (WRSNs), there is a way to use mobile vehicles to charge node and collect data. It is a rational pattern to use two types of vehicles, one is for energy charging, and the other is for data collecting. These two types of vehicles, data collection vehicles (DCVs) and wireless charging vehicles (WCVs), are employed to achieve high efficiency in both data gathering and energy consumption. To handle the complex scheduling problem of multiple vehicles in large-scale networks, a twice-partition algorithm based on center points is proposed to divide the network into several parts. In addition, an anchor selection algorithm based on the tradeoff between neighbor amount and residual energy, named AS-NAE, is proposed to collect the zonal data. It can reduce the data transmission delay and the energy consumption for DCVs' movement in the zonal. Besides, we design an optimization function to achieve maximum data throughput by adjusting data rate and link rate of each node. Finally, the effectiveness of proposed algorithm is validated by numerical simulation results in WRSNs.

  17. 78 FR 23290 - Renewal of Agency Information Collection for Energy Resource Development Program Grants

    Science.gov (United States)

    2013-04-18

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs [DR.5B813.IA001113] Renewal of Agency Information Collection for Energy Resource Development Program Grants AGENCY: Bureau of Indian Affairs... 1995, the Assistant Secretary--Indian Affairs is seeking comments on the renewal of Office of...

  18. 78 FR 19005 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2013-03-28

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Renewal of Agency Information Collection for Tribal Energy Resource Agreements AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of request...--Indian Affairs is seeking comments on the renewal of Office of Management and Budget (OMB) approval for...

  19. 78 FR 37567 - Renewal of Agency Information Collection for Tribal Energy Resource Agreements

    Science.gov (United States)

    2013-06-21

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs [DR.5B811.IA000913] Renewal of Agency Information Collection for Tribal Energy Resource Agreements AGENCY: Bureau of Indian Affairs, Interior... Assistant Secretary--Indian Affairs is seeking comments on the renewal of Office of Management and Budget...

  20. 78 FR 4867 - Renewal of Agency Information Collection for Energy Resource Development Program Grants

    Science.gov (United States)

    2013-01-23

    ... DEPARTMENT OF THE INTERIOR Bureau of Indian Affairs Renewal of Agency Information Collection for Energy Resource Development Program Grants AGENCY: Bureau of Indian Affairs, Interior. ACTION: Notice of... Secretary--Indian Affairs is seeking comments on the renewal of Office of Management and Budget (OMB...

  1. Potential of photosynthetically produced organic matter as an energy feedstock. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spedding, C.R.W.; Walsingham, J.M.; McDougall, V.D.; Shiels, L.A.; Carruthers, S.P.

    1982-01-01

    The following aspects of biomass as an energy source are discussed: fuel supplies, land resources, sources of biomass for fuel, utilization processes, energy cost of producing energy, and potential energy savings. Included in an appendix are fossil fuel energy budgets for crops grown in the United Kingdom.

  2. Evaluation of Potential Locations for Siting Small Modular Reactors near Federal Energy Clusters to Support Federal Clean Energy Goals

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Omitaomu, Olufemi A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    Geographic information systems (GIS) technology was applied to analyze federal energy demand across the contiguous US. Several federal energy clusters were previously identified, including Hampton Roads, Virginia, which was subsequently studied in detail. This study provides an analysis of three additional diverse federal energy clusters. The analysis shows that there are potential sites in various federal energy clusters that could be evaluated further for placement of an integral pressurized-water reactor (iPWR) to support meeting federal clean energy goals.

  3. Determining the potential of inedible weed biomass for bio-energy and ethanol production

    Directory of Open Access Journals (Sweden)

    Siripong Premjet

    2013-02-01

    Full Text Available Surveys of indigenous weeds in six provinces located in the low northern part of Thailand were undertaken to determine the potential of weed biomass for bio-energy and bio-ethanol. The results reveal that most of the weed samples had low moisture contents and high lower heating values (LHVs. The LHVs at the highest level, ranging from 17.7 to 18.9 Mg/kg, and at the second highest level, ranging from 16.4 to 17.6 Mg/kg, were obtained from 11 and 31 weed species, respectively. It was found that most of the collected weed samples contained high cellulose and low lignin contents. Additionally, an estimate of the theoretical ethanol yields based on the amount of cellulose and hemicellulose in each weed species indicated that a high ethanol yield resulted from weed biomasses with high cellulose and hemicellulose contents. Among the collected weed species, the highest level of ethanol yield, ranging from 478.9 to 548.5 L/ton (substrate, was achieved from 11 weed species. It was demonstrated that most of the collected weed species tested have the potential for thermal conversion and can be used as substrates for ethanol production.

  4. The Renewable Energy In Vietnam Potential Development Orientation

    OpenAIRE

    Van Vang Le; Danh Chan Nguyen; Van Huong Dong

    2017-01-01

    Up to 2014 the development of renewable energy in Vietnam has undergone a process of nearly three decades with many ups and downs. This change depends on the concern of the state Ministries in research development project implementation and financial support for renewable energy development. It is easy to see that only when the development of renewable energy has the attention and direction of the state through a policy system a unified program the proper funding of the budget and Internation...

  5. Energy research and technology development data collection strategies. The case of Greece

    International Nuclear Information System (INIS)

    Doukas, Haris; Papadopoulou, Alexandra G.; Nychtis, Christos; Psarras, John; Van Beeck, Nicole

    2009-01-01

    The European Union (EU) from the beginning of 2007 has focused its emphasis on the development of a new policy that puts energy back at the heart of EU action. Indeed, it has very often been stated that the difficulty and complexity of achieving green energy targets in the EU will require strengthened measures to promote implementation of new energy technologies (NET), as well as measures to support the related energy Research and Technology Development (R and TD). Often forgotten is the fact, that most of all, a European-wide co-ordinated forum is needed to continuously develop and sophisticate the monitoring and methodology results, bringing together specialised statisticians, energy researchers and experts on energy socio-economics. Today a nebulous picture prevails on the existence of categorized data with regards to energy Research and Technology Development (R and TD) expenditure. In this context, aim of this paper is the presentation of energy R and TD data collection strategies, as well as the related findings for the Greek energy market. (author)

  6. Energy Consumption Research of Mobile Data Collection Protocol for Underwater Nodes Using an USV

    Directory of Open Access Journals (Sweden)

    Zhichao Lv

    2018-04-01

    Full Text Available The Unmanned Surface Vehicle (USV integrated with an acoustic modem is a novel mobile vehicle for data collection, which has an advantage in terms of mobility, efficiency, and collection cost. In the scenario of data collection, the USV is controlled autonomously along the planning trajectory and the data of underwater nodes are dynamically collected. In order to improve the efficiency of data collection and extend the life of the underwater nodes, a mobile data collection protocol for underwater nodes using the USV was proposed. In the protocol, the stop-and-wait ARQ transmission mechanism is adopted, where the duty cycle is designed considering the ratio between the sleep mode and the detection mode, and the transmission ratio is defined by the duty cycle, wake-up signal cycles, and USV’s speed. According to protocol, the evaluation index for energy consumption is constructed based on the duty cycle and the transmission ratio. The energy consumption of the protocol is simulated and analyzed using the mobile communication experiment data of USV, taking into consideration USV’s speed, data sequence length, and duty cycle. Optimized protocol parameters are identified, which in turn denotes the proposed protocol’s feasibility and effectiveness.

  7. Analysis on Potential of Electric Energy Market based on Large Industrial Consumer

    Science.gov (United States)

    Lin, Jingyi; Zhu, Xinzhi; Yang, Shuo; Xia, Huaijian; Yang, Di; Li, Hao; Lin, Haiying

    2018-01-01

    The implementation of electric energy substitution by enterprises plays an important role in promoting the development of energy conservation and emission reduction in china. In order to explore alternative energy potential of industrial enterprises, to simulate and analyze the process of industrial enterprises, identify high energy consumption process and equipment, give priority to alternative energy technologies, and determine the enterprise electric energy substitution potential predictive value, this paper constructs the evaluation model of the influence factors of the electric energy substitution potential of industrial enterprises, and uses the combined weight method to determine the weight value of the evaluation factors to calculate the target value of the electric energy substitution potential. Taking the iron and steel industry as an example, this method is used to excavate the potential. The results show that the method can effectively tap the potential of the electric power industry

  8. Potential of sustainable energy with regard to engineering structures. WINN Energy from Water; Potentie duurzame energie bij kunstwerken. WINN Energie uit water

    Energy Technology Data Exchange (ETDEWEB)

    De Jong, R.J. [Deltares, Delft (Netherlands); Slootjes, N. [HKV Lijn in Water, Lelystad (Netherlands); Van den Noortgaete, T. [Royal Haskoning, Amersfoort (Netherlands)

    2009-11-15

    This exploratory study focuses on the options of generating electrical energy from flowing water of constructions. Machines that could be suitable for other locations are also indicated. Remarks on deployment of hydropower in future constructions are also included [Dutch] Deze verkennende studie richt zich op de mogelijkheden bij bestaande kunstwerken elektrische energie uit stromend water op te wekken. Mogelijke machines voor andere locaties worden ook aangegeven. Opmerkingen over toepassing van waterkracht bij toekomstige werken zijn ook opgenomen.

  9. Potential of building-scale alternative energy to alleviate risk from the future price of energy

    International Nuclear Information System (INIS)

    Bristow, David; Kennedy, Christopher A.

    2010-01-01

    The energy used for building operations, the associated greenhouse gas emissions, and the uncertainties in future price of natural gas and electricity can be a cause of concern for building owners and policy makers. In this work we explore the potential of building-scale alternative energy technologies to reduce demand and emissions while also shielding building owners from the risks associated with fluctuations in the price of natural gas and grid electricity. We analyze the monetary costs and benefits over the life cycle of five technologies (photovoltaic and wind electricity generation, solar air and water heating, and ground source heat pumps) over three audience or building types (homeowners, small businesses, large commercial and institutional entities). The analysis includes a Monte Carlo analysis to measure risk that can be compared to other investment opportunities. The results indicate that under government incentives and climate of Toronto, Canada, the returns are relatively high for small degrees of risks for a number of technologies. Ground source heat pumps prove to be exceptionally good investments in terms of their energy savings, emission, reductions, and economics, while the bigger buildings tend also to be better economic choices for the use of these technologies.

  10. On the interaction potential in low energy ion scattering

    International Nuclear Information System (INIS)

    Chini, T.K.; Ghose, D.

    1989-01-01

    The shadow cones for 998 eV Li + → Ag and 2 keV Na + → Cu are calculated by classical scattering theory using Thomas-Fermi-Moliere potential, universal potential of Ziegler et al. and the Born-Mayer potential. It is found that the Born-Mayer potential with the parameters calculated by Andersen and Sigmund also predicts well the shape of the shadow cones. (orig.)

  11. Potential energy savings by using direct current for residential applications

    DEFF Research Database (Denmark)

    Diaz, Enrique Rodriguez; Quintero, Juan Carlos Vasquez; Guerrero, Josep M.

    2017-01-01

    improvement in the power converter units. However, for residential applications, the efficiency is not always improved. A grid connected residential microgrid, with renewable energy sources (RES), energy storage systems (ESS) and local loads, is presented in this work. The microgrid has been modelled...

  12. Potential of energy efficiency measures in the world steel industry.

    NARCIS (Netherlands)

    Galama, Tjebbe

    2013-01-01

    SUMMARY The world steel industry plays a major role in energy use and Greenhouse Gas (GHG) emissions now and in the future. Implementing energy efficiency measures is among one of the most cost-effective investments that the industry could make in improv

  13. Energy summit discussions with Federal Chancellor Merkel - potential legislative consequences

    International Nuclear Information System (INIS)

    Heller, W.

    2006-01-01

    The energy summit discussions held by Federal Chancellor Merkel are to converge in a consistent energy policy concept by late 2007. The second summit held on October 9, 2006 was prepared by three working groups. Working Group 1 was to handle 'International Aspects', Working Group 2, the 'National Aspects of Energy Supply', and Working Group 3, finally, 'Research and Energy Efficiency'. The reports dealing with international aspects and with research and energy efficiency were in the focus of discussions at the summit. The report about national aspects had not yet reached the level of maturity required for discussion. None of the reports contained anything under the headings of 'Setting aside the Gorleben Moratorium' and 'Continued Exploration of the Salt Dome for a Repository' and 'Extension of the Plant Life of Our Nuclear Power Plants'. This sounds very easy and is urgently required, but it is neither announced nor seriously debated in politics. If these legislative measures were taken and the rhetoric about the broad energy mix turned into energy policy reality, many problems in climate protection, in energy supply continuity, and in competitive electricity supply could be solved more easily. (orig.)

  14. An investigation on the fuel savings potential of hybrid hydraulic refuse collection vehicles.

    Science.gov (United States)

    Bender, Frank A; Bosse, Thomas; Sawodny, Oliver

    2014-09-01

    Refuse trucks play an important role in the waste collection process. Due to their typical driving cycle, these vehicles are characterized by large fuel consumption, which strongly affects the overall waste disposal costs. Hybrid hydraulic refuse vehicles offer an interesting alternative to conventional diesel trucks, because they are able to recuperate, store and reuse braking energy. However, the expected fuel savings can vary strongly depending on the driving cycle and the operational mode. Therefore, in order to assess the possible fuel savings, a typical driving cycle was measured in a conventional vehicle run by the waste authority of the City of Stuttgart, and a dynamical model of the considered vehicle was built up. Based on the measured driving cycle and the vehicle model including the hybrid powertrain components, simulations for both the conventional and the hybrid vehicle were performed. Fuel consumption results that indicate savings of about 20% are presented and analyzed in order to evaluate the benefit of hybrid hydraulic vehicles used for refuse collection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Dimensional oscillation. A fast variation of energy embedding gives good results with the AMBER potential energy function.

    Science.gov (United States)

    Snow, M E; Crippen, G M

    1991-08-01

    The structure of the AMBER potential energy surface of the cyclic tetrapeptide cyclotetrasarcosyl is analyzed as a function of the dimensionality of coordinate space. It is found that the number of local energy minima decreases as the dimensionality of the space increases until some limit at which point equipotential subspaces appear. The applicability of energy embedding methods to finding global energy minima in this type of energy-conformation space is explored. Dimensional oscillation, a computationally fast variant of energy embedding is introduced and found to sample conformation space widely and to do a good job of finding global and near-global energy minima.

  16. Potential Energy Savings in Refrigeration Systems Using Optimal Setpoints

    DEFF Research Database (Denmark)

    Larsen, Lars Finn Slot; Thybo, Claus

    2004-01-01

    Energy efficiency of refrigeration systems has gradually been improved with help of control schemes utilizing the more flexible components. This paper proposes an approach in line with this trend, where a suboptimal condenser pressure is found in order to minimize the energy consumption. The obje......Energy efficiency of refrigeration systems has gradually been improved with help of control schemes utilizing the more flexible components. This paper proposes an approach in line with this trend, where a suboptimal condenser pressure is found in order to minimize the energy consumption....... The objective is to give an idea of how this optimization scheme works as well as to show what amount of energy it is possible to save. A steady state model of a simple refrigeration system will be used as a basis for the optimization....

  17. Estimates of the potential for energy conservation in the Chinese steel industry

    International Nuclear Information System (INIS)

    Lin Boqiang; Wu Ya; Zhang Li

    2011-01-01

    The study evaluates the energy saving potential of the Chinese steel industry by studying its potential future energy efficiency gap. In order to predict the future energy efficiency gap, a multivariate regression model combined with risk analysis is developed to estimate future energy intensity of China's steel industry. It is found that R and D intensity, energy saving investment, labor productivity and industry concentration are all important variables that affect energy intensity. We assess the possible measures as to how China's steel industry can narrow the energy efficiency gap with Japan by means of scenario analysis. Using Japan's current energy efficiency level as baseline, the energy saving potential of China's steel industry is more than 200 million ton coal equivalent in 2008, and it would fall to zero in 2020. However, if greater efforts were made to conserve energy, it would be possible to narrow down the energy efficiency gap between China and Japan by around 2015. Finally, using the results of the scenario analysis, future policy priorities for energy conservation in China's steel industry are assessed in this paper. - Highlights: → The energy saving potential of the Chinese steel industry is evaluated. → A multivariate regression model combined with risk analysis is developed. → R and D, energy saving investment, labor, and structure affect energy intensity.→ The energy saving potential of China's steel industry would fall to zero in 2020.→ Future policy for energy conservation in China's steel industry are assessed.

  18. Potential utilization of renewable energy sources and the related problems

    International Nuclear Information System (INIS)

    Roos, I.; Selg, V.

    1996-01-01

    Estonia's most promising resource of renewable energy is the natural biomass. In 1994 the use of wood and waste wood formed about 4.9% of the primary energy supply, the available resource will provide for a much higher share of biomass in the future primary energy supply, reaching 9-14%. Along with the biomass, wind energy can be considered the largest resource. On the western and northern coast of Estonia, in particular, on the islands, over several years, the average wind speed has been 5 m/s. Based on the assumption that the wind speed exceeds 6 m/s in the area that forms ca 1.5% of the Estonian territory (the total area of Estonia is about 45,000 km 2 ) and is 5 - 6 m/s on about 15% of the total area, using 0.5 MW/km 2 for the installation density, very approximate estimates permit to state that the maximum hypothetical installed capacity could be 3750 MW. It might be useful to make use of the current maximum 50 MW, which could enable the generation of approximately 70 - 100 GW h of energy per year. Although the solar energy currently has no practical use in Estonia and the resource of hydro power is also insignificant (only ca 1% of the electricity consumption), these two resources of renewable energy hold future promise in view of the use of local resources and that of environmental protection. It is not reasonable to regard renewable energy sources as a substitute for the traditional oil shale-based power engineering in Estonia. But, to some extent, local energy demand can be covered by renewable energy sources. Thus, they can contribute to the reduction of the greenhouse gases emissions in Estonia

  19. The Fractional Virial Potential Energy in Two-Component Systems

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-12-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, $phi=phi(y,m$, characterized (for assigned values of the fractional mass, $m=M_j/ M_i$ by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of $m$ is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the $({sf O}yphi$ plane, where the fractional truncation radius along a selected direction is $y=R_j/R_i$, and the fractional virial potential energy is $phi=(E_{ji}_mathrm{vir}/(E_{ij}_mathrm{vir}$. Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of $N=16$ elliptical galaxies (EGs on the $({sf O}yphi$ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, $m$, and equal scaled truncation radius, or concentration, $Xi_u=R_u/r_u^dagger$, $u=i,j$, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, $y$, or fractional scaling radii, $y^dagger=r_j^dagger/r_i^dagger$, deduced from sample objects.

  20. An economic evaluation of the potential for distributed energy in Australia

    International Nuclear Information System (INIS)

    Lilley, William E.; Reedman, Luke J.; Wagner, Liam D.; Alie, Colin F.; Szatow, Anthony R.

    2012-01-01

    We present here economic findings from a major study by Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) on the value of distributed energy technologies (DE; collectively demand management, energy efficiency and distributed generation) for reducing greenhouse gas emissions from Australia's energy sector (CSIRO, 2009). The study covered potential economic, environmental, technical, social, policy and regulatory impacts that could result from their wide scale adoption. Partial Equilibrium modeling of the stationary energy and transport sectors found that Australia could achieve a present value welfare gain of around $130 billion when operating under a 450 ppm carbon reduction trajectory through to 2050. Modeling also suggests that reduced volatility in the spot market could decrease average prices by up to 12% in 2030 and 65% in 2050 by using local resources to better cater for an evolving supply–demand imbalance. Further modeling suggests that even a small amount of distributed generation located within a distribution network has the potential to significantly alter electricity prices by changing the merit order of dispatch in an electricity spot market. Changes to the dispatch relative to a base case can have both positive and negative effects on network losses. - Highlights: ► Quantified impact of distributed generation (DG) on the Australian energy sector. ► Australia could achieve a welfare gain of around $130 billion through to 2050. ► Wholesale market modeling found that DG led to lower price levels and volatility. ► DG has impacts on the transmission system in terms of dispatch and system losses.